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Abstract
In theirwork Ikromov andMüller (FourierRestriction forHypersurfaces inThreeDimensions
and Newton Polyhedra. Princeton University Press, Princeton, 2016) proved the full range
L p − L2 Fourier restriction estimates for a very general class of hypersurfaces in R

3 which
includes the class of real analytic hypersurfaces. In this article we partly extend their results
to the mixed norm case where the coordinates are split in two directions, one tangential and
the other normal to the surface at a fixed given point. In particular, we resolve completely
the adapted case and partly the non-adapted case. In the non-adapted case the case when the
linear height hlin(φ) is below two is settled completely.
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1 Introduction

For a given smooth hypersurface S in R
n , its surface measure dσ , and a smooth compactly

supported function ρ ≥ 0, ρ ∈ C∞
0 (S), the associated Fourier restriction problem asks for

which p, q ∈ [1,∞] the estimate

( ∫
| f̂ |qρdσ

)1/q

≤ Cp,q ‖ f ‖L p(Rn), f ∈ S(Rn), (1.1)

holds true. This problem was first considered by E.M. Stein in the late 1960s. Soon thereafter
the problem was essentially solved for curves in two dimensions, see [4,7,34]. The higher
dimensional case in its most general form is still wide open. The three dimensional case, as
of yet, is far from being completely understood even when S is the sphere, and there has
been a lot of deep work in the direction of understanding L p − Lq estimates for surfaces
with both vanishing and non-vanishing Gaussian curvature. A small sample of such works
are [2,3,12,21,24,30,33].

The case when q = 2 has proven to be more tractable since one can use the “R∗R
technique”. This was exploited by Tomas and Stein (see [31]) to obtain the full range of
L p − L2 estimates when the hypersurface in question is the unit sphere, and later further
developed by Greenleaf [11] where the full range of L p − L2 estimates was obtained for
surfaces with non-vanishing Gaussian curvature. In fact, Greenleaf proved that if one has
a decay estimate on the Fourier transform of ρdσ (which can be interpreted as a uniform
estimate for an oscillatory integral), i.e.,

|̂ρdσ(ξ)| � (1 + |ξ |)−1/h, ξ ∈ R
n,

then the associated restriction estimate holds true for p′ ≥ 2(h + 1) and q = 2. However,
in general, this range is not optimal. Recently I.A. Ikromov and D. Müller in their series of
works (see [14–16], and also their work with M. Kempe [13]) have developed techniques for
proving the full range of L p − L2 estimates for a very general class of surfaces in R

3. Their
work builds upon the work of V.I. Arnold and his school (in particular, the work byVarchenko
[32]) which highlighted the importance of the Newton polyhedron within problems involving
oscillatory integrals, and upon the work of Phong and Stein [25] and Phong et al. [26] in the
real analytic case where the authors in addition to the Newton polyhedron used the Puiseux
series expansions of roots to obtain results on oscillatory integral operators. For further and
more detailed references we refer the reader to [16].

In [16] Ikromov and Müller proved the following theorem.
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Theorem 1.1 Let S be a smooth hypersurface in R
3 and dσ its surface measure. After local-

isation and a change of coordinates assume that S is given as the graph of a smooth function
φ : 	 → R of finite type with φ(0) = 0 and ∇φ(0) = 0, where 	 ⊆ R

2 is an open neigh-
bourhood of 0. Furthermore, assume that φ is linearly adapted in its original coordinates.
Let ρ ≥ 0, ρ ∈ C∞

c (S), be a smooth compactly supported function. Then the estimate (1.1)
holds true for all ρ with support contained in a sufficiently small neighbourhood of 0 when
q = 2 and when either

(a) φ is adapted in its original coordinates and p ≥ 2(h(φ) + 1), or
(b) φ is not adapted in its original coordinates, satisfies the Condition (R), and p ≥

2(hres(φ) + 1).

Since linear transformations respect the Fourier transform, one can always assume linear
adaptedness. The quantities h(φ) and hres(φ) are respectively the height and the restriction
height of the function φ (the precise definitions can be found in Sects. 1.1 and 2.3 below
respectively; also note that we use hres(φ) to denote the restriction height of the function φ

instead of hr(φ) as in [16]). Condition (R) is a factorisation condition which is true for real
analytic functions, but not for general smooth functions, and it remains open whether this
condition can be removed in the above theorem.

In this paper we shall be interested in the mixed norm case with L p(R3) denoting from
now on the space L p3

x3 (L p2
x2 (L p1

x1 )) and q = 2 in (1.1). We shall be interested in the particular
casewhen p1 = p2, i.e., we only differentiate between the tangential and the normal direction
to the surface S at the point 0 ∈ S. This means we take ‖ f ‖L p(R3) to mean

( ∫ ( ∫ ∫
| f |p1(x1, x2, x3)dx1dx2

)p3/p1

dx3

)1/p3

.

Henceforth we shall denote by p the pair (p1, p3). Our task is to determine for which (p1, p3)
the inequality

( ∫
| f̂ |2ρdσ

)1/2

≤ Cp ‖ f ‖L p(R3) = Cp ‖ f ‖L p3
x3 (L

p1
(x1,x2)

)
, f ∈ S(R3), (1.2)

holds true for ρ ≥ 0 supported in a sufficiently small neighbourhood of 0.
This question is of great interest in the theory of PDEs, as was noticed by Strichartz in [29].

Namely, one can obtain mixed norm Strichartz estimates for a wide collection of symbols φ

determining the surface S since the estimate (1.2) can be reinterpreted as an a priori estimate

‖u‖L p
(x,t)(R

3) ≤ C‖g‖L2(R2)

for the Cauchy problem{
∂t u(x, t) = iφ(D)u(x, t), (x, t) ∈ R

2 × R,

u(x, 0) = g(x), x ∈ R
2,

where g has its Fourier transform supported in a small neighbourhood of the origin and φ(D)

is the operator with symbol φ(ξ).
It turns out that we can use the same basic techniques and phase space decompositions as

in [16] in proving the estimate (1.2) in the cases we consider (namely, the adapted case and
the non-adapted case with hlin(φ) < 2). The main additional ingredients we shall use are
some basic ideas from [9] (see also [20]) for handling mixed norms. In our case additional
complications appear which were absent in the corresponding cases in [16] and some of
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1532 L. Palle

which resemble problems appearing in some of the final chapters of [16]. For example, after
making a phase space decomposition of the kernel of the convolution operator obtained by
the “R∗R technique”, a recurring theme will be that we will not be able to sum absolutely
the operators associated to the kernel decomposition pieces whose operators were absolutely
summable [16]. A further interesting feature of the mixed norm case is that estimates for the
mixed norm endpoint for operators of certain kernel pieces become invariant under scalings
considered in [16].

The structure of this article is as follows. In the following Sect. 1.1 we review some
fundamental concepts such as the Newton polyhedron and adapted coordinates. In Sect. 1.2
we state the main results of this paper, namely Theorem 1.2 which states the necessary
conditions, and Theorem 1.3 which gives us the mixed norm Fourier restriction estimates
in the adapted case and the case hlin(φ) < 2. In Sect. 2 we derive the necessary conditions
(by means of Knapp-type examples) for the exponents in (1.2). See Proposition 2.1. In
Sect. 2.4 we also determine explicitly the Newton polyhedra of φ in its original and adapted
coordinates in the case when the linear height of φ is strictly less than 2. Section 3 contains
auxiliary results that we shall often refer to. In Sect. 3.2 we list results related to oscillatory
integrals and also some results on oscillatory sums from [16] that are useful in conjunction
with complex interpolation. In Sect. 3.3 we state results which we need for handling mixed
norms. In Sect. 4, Proposition 4.2, we deal with the adapted case, i.e., we prove that if φ is
adapted in its original coordinates, then the estimate (1.2) holds for all p’s determined by
the necessary conditions, except occasionally for a certain endpoint. In the same section (see
Proposition 4.3) we also reduce the general non-adapted case to considering the part near
the principal root jet of φ. In Sects. 5 and 6 we handle the case when the linear height of
φ is strictly less than 2 for a class of functions φ which includes all analytic functions (see
Theorem 5.1 for a precise formulation).

For reasons of consistency we use the same notational conventions as in [16]. We use
the “variable constant” notation meaning that constants appearing in calculations and in the
course of our arguments may have different values on different lines. Furthermore we use the
symbols∼,�,�,�,� in order to avoidwriting down constants. Ifwe have two nonnegative
quantities A and B, then by A � B wemean that there is a sufficiently small positive constant
c such that A ≤ cB, by A � B we mean that there is a (possibly large) positive constant C
such that A ≤ CB, and by A ∼ B we mean that there are positive constants C1 ≤ C2 such
that C1A ≤ B ≤ C2A. One defines analogously A � B and A � B. Often the constants c
and C shall depend on certain parameters p in which case we occasionally write A �p B,
A �p B, etc., in order to emphasize this dependence.

A further notational convention adopted from [16] is the use of symbolsχ0 andχ1 in denot-
ing certain nonnegative smooth compactly supported functions on R. Namely, we require χ0

to be supported in a neighbourhood of the origin and identically 1 near the origin, and χ1 to
be supported away from the origin and identically 1 on some open neighbourhood of 1 ∈ R.
These cutoff functions χ0 and χ1 may vary from line to line, and sometimes, when several
χ0 and χ1 appear within the same formula, they may even designate different functions.

1.1 Fundamental concepts and basic assumptions

Let the surface S be given as the graph S = Sφ := {(x1, x2, φ(x1, x2)) : x = (x1, x2) ∈
	 ⊂ R

2} of a smooth and real-valued function φ defined on an open neighbourhood 	 of
the origin. We can assume without loss of generality that φ(0) = 0 and we take 	 to be a
sufficiently small neighbourhood of the origin in R

2. In the mixed norm case we cannot use
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the rotational invariance of the Fourier transform in order to reduce to the case ∇φ(0) = 0.
Instead we use a different linear transformation (for details see Sect. 3.1), and so we may
and shall assume ∇φ(0) = 0.

Next,we impose onφ to be a function of finite type at 0. Thismeans that there exists amulti-
index α ∈ N

2
0 such that ∂

αφ(0) �= 0. By continuity, φ is of finite type on a neighbourhood of
0. We may therefore assume that φ is of finite type in each point of 	. We define the Taylor
support of φ as the set T (φ) := {α ∈ N

2
0 : ∂αφ(0) �= 0}. The Newton polyhedron N (φ) of

φ is the convex hull of the set
⋃

α{(t1, t2) ∈ R
2 : t1 ≥ α1, t2 ≥ α2}, where the union is over

all α such that ∂αφ(0) �= 0 (and so |α| ≥ 2). See Fig. 1. Both edges and vertices are called
faces of N (φ). We define the Newton diagram Nd(φ) of φ to be the union of all compact
faces of N (φ).

If we are given a face e0 of N (φ), we can define its associated (formal) series

φe0(x1, x2) :=
∑

α∈e0∩T (φ)

∂αφ(0)

α! xα. (1.3)

If e0 is a compact face, then φe0(x1, x2) is a mixed homogeneous polynomial. This means
that there exists a weight κe0 = (κ

e0
1 , κ

e0
2 ) ∈ [0,∞)2 such that for any r > 0 we have

φe0(r
κ
e0
1 x1, rκ

e0
2 x2) = rφe0(x1, x2), and we call φe0 a κe0 -homogeneous polynomial. κe0 is

uniquely determined if and only if e0 is not a vertex. In fact, in the case when e0 is an edge,
we define Lκe0 to be the unique line containing e0:

e0 ⊆ Lκe0 . (1.4)

Then the weight κe0 is uniquely determined by the relation

Lκe0 =
{
(t1, t2) ∈ R

2 : κ
e0
1 t1 + κ

e0
2 t2 = 1

}
. (1.5)

When e0 is an unbounded face, φe0(x1, x2) is to be taken only as a formal power series. Note
that then e0 is either a vertical or horizontal edge of N (φ), and we can also find unique κ

e0
1

and κ
e0
2 (one of them being 0 in this case) such that (1.4) holds.

Of particular interest is the principal face π(φ) defined as the face of minimal dimension
of N (φ) which intersects the bisectrix {(t1, t2) ∈ R

2 : t1 = t2}. Its associated series (or
homogeneous polynomial) we call the principal part of φ and denote by φpr := φπ(φ). Let
κ = (κ1, κ2) determine the line Lκ as in (1.5) containing the principal face if it is an edge,
or when it is a vertex, let κ determine the edge of N (φ) having the principal face as its left
endpoint. Interchanging the x1 and x2 coordinates, if necessary, we may always assume that
κ2 ≥ κ1. We shall denote the ratio κ2/κ1 by m, and so m ≥ 1.

The Newton distance d(φ) of φ is defined to be the coordinate d of the point (d, d) which
is the intersection of the bisectrix and the principal face of N (φ). One can easily see that if
κ = (κ1, κ2) determines the line containing the principal face (or any of the supporting lines
to N (φ) in case π(φ) = {(d, d)}), then we have d(φ) = 1/(κ1 + κ2).

The Newton height h(φ) of φ is defined as

h(φ) := sup{d(φ ◦ ϕ) : ϕ a smooth local coordinate change}.
By a smooth local coordinate change we mean a function ϕ which is smooth and invertible
in a neighbourhood of the origin, and ϕ(0) = 0. We also define the linear height as

hlin(φ) := sup{d(φ ◦ ϕ) : ϕ a linear coordinate change}.
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1534 L. Palle

For a coordinate change ϕ we shall denote the new cooridnates by y = ϕ(x). In this case
we also denote dy = d(φ ◦ ϕ). We say that φ is adapted in the y coordinates if dy = h(φ).
Analogously, we say that φ is linearly adapted in coordinates y if dy = hlin(φ). When φ is
adapted in its original coordinates x we say that φ is adapted, and if φ is not adapted in its
original coordinates, then we say that φ is non-adapted. Analogous expressions we shall use
for linear adaptedness. We obviously always have dx = d(φ) ≤ hlin(φ) ≤ h(φ).

The existence of an adapted coordinate system for real analytic functions on R
2 was first

proven by Varchenko in [32]. He gave an explicit algorithm on how to construct an adapted
coordinate system. His result was generalised in [14] where it was shown that an adapted
coordinate system exists for general smooth functions. It turns out that in the smooth case one
can also essentially use Varchenko’s algorithm. In this article when we refer to Varchenko’s
algorithm we shall always mean the variant used in [14]. In this variant one constructs an
adapted coordinate system in the form of a non-linear shear transformation

y1 = x1, y2 = x2 − ψ(x1).

The smooth real-valued function ψ can be taken in the real-analytic case to be the principal
root jet of φ as defined in [16]. We denote the function φ in the new (adapted) coordinates
by φa . Then we have

φa(y) = φ(y1, y2 + ψ(y1)).

We remark that when φ is not adapted, then m = κ2/κ1 is a positive integer and ψ(x1) −
b1xm1 = O(xm+1

1 ) for some nonzero real constant b1.
We introduce next Varchenko’s exponent ν(φ) ∈ {0, 1}. If h(φ) ≥ 2 and there exists an

adapted coordinate system y such that in these coordinates the principal face of φa(y) is a
vertex, we define ν(φ) := 1. In all other cases we take ν(φ) := 0. In particular ν(φ) = 0
whenever h(φ) < 2. A concrete characterisation for determining when an adapted coordinate
system having the principal face as a vertex exists can be found in [15, Lemma 1.5].

Let us discuss next linear adaptedness.We assume that hlin(φ) < h(φ), i.e., that we cannot
achieve adapted coordinateswith a linear coordinate change. In [16, Section 1.3] it was shown
that in this case we can always find a linearly adapted coordinate system, and [16, Proposition
1.7] gives an explicit characterisation of when a coordinate system is linearly adapted. It was
shown in particular that if the coordinate system x is not already linearly adapted, then one
just needs to apply the first step of Varchenko’s algorithm in order to obtain it.

Since in our mixed norm case we consider only p1 = p2, we can freely use linear
coordinate changes in “tangential” variables (x1, x2) in the expression (1.2). Thus we may
assume without loss of generality that either the original coordinate system x is already
adapted, or that it is at least linearly adapted. In particular, we may assume d(φ) = hlin(φ).

The final important concept we introduce is the augmented Newton polyhedronN res(φa)

of a non-adapted φ (note the slight change in notation compared to [16], where N r(φa) is
used instead). N res(φa) is defined as the convex hull of the set

N (φa) ∪ L+,

where L+ is defined as follows. Let Lκ be the line containing the principal face π(φ) of
N (φ) and let P = (t P1 , t P2 ) be the point on Lκ ∩N (φa)with the smallest t2 coordinate. Such
a point always exists. Then L+ is the ray{

(t1, t2) ∈ Lκ : t2 ≥ t P2

}
.

(See Fig. 1).
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Fig. 1 The (augmented) Newton polyhedron associated to φa

1.2 Themain results

Let us briefly review all the conditions on the function φ which we may assume without loss
of generality when considering the mixed norm restriction problem:

• φ(0) = 0 and ∇φ(0) = 0,
• φ is of finite type on 	,
• the weight κ determined by the principal face of N (φ) (or by the edge containing the

principal face as its left endpoint) satisfies m = κ2/κ1 ≥ 1, and
• the original coordinate system x is either adapted, or linearly adapted but not adapted. In

both cases we have d(φ) = hlin(φ).

Recall that S denotes the surface given as the graph of φ and dσ its surface measure. We
are considering the mixed norm Fourier restriction problem (1.2) when ρ is supported in a
sufficiently small neighbourhood of the origin.

We begin by stating necessary conditions which will be obtained by means of Knapp-type
examples. When φ is not adapted we denote by

K : [0, κ1] → [0,+∞]
the function defined in the following way. Consider all lines of the form

L κ̃ =
{
(t1, t2) ∈ R

2 : κ̃1t1 + κ̃2t2 = 1
}
, (1.6)

where κ̃ ∈ [0,∞)2 is a weight. For each 0 ≤ κ̃1 ≤ κ1 there is a unique κ̃2 so that (1.6)
determines a supporting line L κ̃ toN res(φa). We then define K (κ̃1) to be κ̃2 for κ̃1 ∈ [0, κ1]
(see Fig. 2). Note that then the weight (0, K (0)) determines line containing the horizontal
edge of the augmented Newton polyhedron, i.e., the right most edge ofN res(φa). The weight
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1536 L. Palle

Fig. 2 The typical form of the graph of the function K : κ̃1 �→ κ̃2

(κ1, K (κ1)) = κ determines the line containing the edge associated to the principal face of
N (φ) which is the left most edge of N res(φa).

Denote by L the Legendre transformation, which acts on real-valued convex functions K
by:

L(K )[w] := sup
u∈[0,κ1]

(wu − K (u)). (1.7)

Then we may state the necessary conditions in the following way:

Theorem 1.2 Let φ be as above and let us assume that the estimate (1.2) holds true with
ρ(0) �= 0. If φ is adapted, then we have the necessary condition

1

d(φ)p′
1

+ 1

p′
3

≤ 1

2d(φ)
.

If K is as above and φ is linearly adapted, but not adapted, then we necessarily have

1

p′
3

≤ −1

2
L(K )

[
2 + 2m

p′
1

− 1

]
.

Recall that d(φ) = h(φ) when φ is adapted. The above theorem is a direct consequence of
Proposition 2.1 in Sect. 2 below and the discussion in Sect. 2.2. The necessary conditions
are depicted in Fig. 3.

The main result of this paper is:

Theorem 1.3 Let φ be as above and ρ supported in a sufficiently small neighbourhood of 0.
If either

(a) φ is adapted in its original coordinates, or
(b) φ is non-adapted, hlin(φ) < 2, and φ is real analytic,
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Fig. 3 Necessary conditions in the (1/p′
1, 1/p

′
3)-plane

then the estimate (1.2) holds true for all (1/p′
1, 1/p

′
3) as determined by Theorem 1.2, except

for the point (1/p′
1, 1/p

′
3) = (0, 1/(2h(φ)))where it is false if ρ(0) �= 0 and either h(φ) = 1

or ν(φ) = 1.

In case (b) we shall actually prove the claim for a more general class of functions than is
stated here.

The part (a) of the above theorem follows from Proposition 4.2, and the part (b) follows
from Theorem 5.1 Let us mention that in the case hlin(φ) < 2 it turns out that we always have
ν(φ) = 0, which will be important for the boundary point (1/p′

1, 1/p
′
3) = (0, 1/(2h(φ))).

In this article we do not deal with the non-adapted case when hlin(φ) ≥ 2 in its full
generality. Let us briefly comment howone can easily get somepreliminary Fourier restriction
estimates. Namely, the abstract result from [20] byKeel andTao implies thatwe automatically
have the Fourier restriction estimate for the region labeled by KT in Fig. 3 below. For details
we refer to Proposition 4.1.

One can combine this result with the case p1 = p3 from Theorem 1.1 and get by interpo-
lation the region labeled by I M in Fig. 3.

2 Necessary conditions

In this section our assumptions on φ are as explained in Sect. 1.2. Our goal is to find a
complete set of necessary conditions on p = (p1, p3) ∈ [1,∞]2 for (1.2) to hold true
whenever ρ(0) �= 0. We shall reframe the conditions in several ways: an “explicit” form in
Sect. 2.1, a form as in Theorem 1.2 using the Legendre transformation of K in Sect. 2.2, and
a form when we fix the ratio p′

1/p
′
3 in Sect. 2.3. In Sect. 2.4 we discuss the normal forms of

φ when hlin(φ) < 2 and determine explicitly the necessary conditions in this case.
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2.1 The explicit form

Let us first introduce some further notation. Recall that if φ is linearly adapted but not
adapted, then the adapted coordinate system is obtained through (y1, y2) = (x1, x2−ψ(x1)),
where ψ is the principal root jet, and recall that the function φ in the new coordinates y is
φa(y1, y2) = φ(y1, y2 + ψ(y1)), i.e., φa represents the function φ in adapted coordinates.
We denote the vertices of N (φa) by

(Al , Bl) ∈ N
2
0, l = 0, 1, 2, . . . , n,

where n ≥ 0 and we assume that the points are ordered from left to right, i.e., Al−1 < Al for
l = 1, 2, . . . , n. Next, we denote the compact edges of N (φa) by

γl := [(Al−1, Bl−1), (Al , Bl)], l = 1, 2, . . . , n,

and also the unbounded edges by

γ0 := {(t1, t2) ∈ R
2 : t1 = A0, t2 ≥ B0}, γn+1 := {(t1, t2) ∈ R

2 : t1 ≥ An, t2 = Bn},
see Fig. 1. Let us denote by Ll , l = 0, . . . , n + 1, the associated lines on which these edges
lie. Each line Ll is given by the equation

κl1t1 + κl2t2 = 1,

where (κl1, κ
l
2) ∈ [0,∞)2 is its associatedweight.We also introduce the quantity al := κl2/κ

l
1,

which is related to the slope of Ll , namely, its slope is then equal to −1/al . We obviously
have a0 = 0 and an+1 = ∞.

Recall that we denote by 0 < m < ∞ the leading exponent in the Taylor expansion of ψ

and that we define Lκ to be the unique line κ1t1 + κ2t2 = 1 satisfying κ2 = mκ1 and which
is a supporting line to the Newton polyhedron N (φa) (see Fig. 1). This line coincides with
the line containing the principal face of N (φ), as follows from Varchenko’s algorithm.

Next, let l0 be such that al0 > m ≥ al0−1. Note that the point (Al0−1, Bl0−1) is the
right endpoint of the intersection of Lκ and N (φa). Varchenko’s algorithm also shows that
Bl0−1 ≥ Al0−1. We denote by la the index such that κ l

a
is associated to the principal face

of N (φa). If π(φa) is a vertex, we take la to be associated to the edge to the left of π(φa).
Note la ≥ l0.

Now we can express the augmented Newton polyhedron N res(φa) as the convex hull of
the set N (φa) ∪ L+

κ , where L+
κ denotes the ray {(t1, t2) ∈ Lκ : t2 ≥ Bl0−1}.

Before stating the necessary conditions analogous to [16, Proposition 1.16], let us recall
that in the case of the principal face being a vertex, we take κ to determine the line containing
the edge ofN (φ)which has π(φ) as its left endpoint. Furthermore recall thatm = κ2/κ1 ≥ 1
and that φ is linearly adapted in its original coordinates.

Proposition 2.1 Let φ be as above. Let ρ ≥ 0, ρ ∈ C∞
0 (S), be a smooth compactly supported

function with ρ(0) �= 0, and assume that the estimate (1.2) holds true. If φ is non-adapted,
let us consider the nonlinear shear transformation (y1, y2) = (x1, x2 − ψ(x1)) and let
φa(y) := φ(y1, y2 + ψ(y1)) be the function φ expressed in the adapted coordinates. Then it
necessarily follows that for all weights (κ̃1, κ̃2) such that L κ̃ is a supporting line toN res(φa)

we have

(1 + m)κ̃1

p′
1

+ 1

p′
3

≤ κ̃1 + κ̃2

2
. (2.1)
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This is equivalent to

(1 + m)κl1

p′
1

+ 1

p′
3

≤ κl1 + κl2

2
, l = l0, . . . , n + 1,

(1 + m)κ1

p′
1

+ 1

p′
3

≤ κ1 + κ2

2
. (2.2)

Furthermore, when φ is either adapted or non-adapted we have the conditions

1

d(φ)p′
1

+ 1

p′
3

≤ 1

2d(φ)
,

1

p′
3

≤ 1

2h(φ)
. (2.3)

In particular when φ is non-adapted the first condition in (2.3) then coincides with the one
in the second line of (2.2). Moreover in this case the conditions in (2.2) for l > la are
redundant, and if we fix p′

3 = ∞ (resp. p′
1 = ∞) then all the conditions reduce to p′

1 ≥ 2
(resp. p′

3 ≥ 2h(φ)).

Proof We give only a sketch of the proof since it follows the same lines as in [16]. Let us
consider any supporting line L κ̃ to the augmented Newton polyhedron N res(φa) for some
weight (κ̃1, κ̃2). This particularly implies by the definition of the augmented Newton diagram
that κ̃2 ≥ mκ̃1.

We first consider the case when κ̃1 > 0, i.e., when the associated line L κ̃ is not horizontal.
In this case for each sufficiently small ε > 0 we define the region Da

ε := {y ∈ R
2 : |y1| ≤

εκ̃1 , |y2| ≤ εκ̃2}, which in the original coordinate system has the form Dε := {x ∈ R
2 :

|x1| ≤ εκ̃1 , |x2 − ψ(x1)| ≤ εκ̃2}. Using the φa
κ̃
part of the Taylor approximation of φa one

easily gets that for each y ∈ Da
ε we have |φa(y)| ≤ Cε. Returning to the x coordinates we

obtain |φ(x)| ≤ Cε when x ∈ Dε . But for x ∈ Dε one has

|x2| ≤ εκ̃2 + |ψ(x1)| � εκ̃2 + εmκ̃1 � εmκ̃1 ,

since |ψ(x1)| � |x1|m and κ̃2 ≥ mκ̃1. Therefore the region Dε is contained in the set where
|x1| ≤ C1ε

κ̃1 and |x2| ≤ C2ε
mκ̃1 . Thus, we choose a Schwartz function ϕε which has its

Fourier transform of the form

ϕ̂ε(x1, x2, x3) = χ0

(
x1

C1εκ̃1

)
χ0

(
x2

C2εmκ̃1

)
χ0

(
x3
Cε

)
,

for some smooth compactly supported function χ0 which is identically 1 on the interval
[−1, 1]. Then in particular we have ϕ̂ε(x1, x2, φ(x1, x2)) ≥ 1 on Dε .

Now on the one hand, since ρ(0) �= 0, we have
(∫

S
|ϕ̂ε|2ρdσ

)1/2

� |Dε|1/2 = ε(κ̃1+κ̃2)/2,

and on the other

‖ϕε‖L p3
x3 (L

p1
(x1,x2)

)
∼ ε

(1+m)κ̃1
p′1

+ 1
p′3 .

Plugging these into (1.2) and letting ε → 0 one obtains (2.1) for the non-horizontal edges.
In the horizontal case κ̃1 = 0 one only slightly changes the argument. Namely, one

defines for a sufficiently small δ > 0 the set Da
ε := {y ∈ R

2 : |y1| ≤ εδ, |y2| ≤ εκ̃2}. The
associated set in the x coordinates Dε is then contained in the box determined by |x1| ≤ εδ

and |x2| ≤ εmδ . Furthermore, using a Taylor series expansion, one can easily show that for
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x ∈ Dε we have again |φ(x)| ≤ Cε. Now one proceeds as in the non-horizontal case, the
only difference is that after taking the limit ε → 0, one also needs to take the limit δ → 0.

Let us now briefly explain why (2.1) and (2.2) are equivalent. We obviously have that
(2.1) implies (2.2). For the reverse implication we note that the κ̃’s considered in (2.2) are
by definition precisely those for which the lines L κ̃ contain the edges of the augmented
Newton diagram. This means that all the other supporting lines touch the augmented Newton
diagram at only one point. Now one just uses the fact that the associated weight κ̃ of such a
supporting line L κ̃ is obtained by a convex combination of weights associated to the edges
which intersect at the point through which L κ̃ passes. Thus, all the conditions in (2.1) can be
obtained as convex combinations of conditions in (2.2).

The proof of (2.3) is similar to the one for (2.1). One considers the set Dε defined by
{x ∈ R

2 : |x1| ≤ εκ1 , |x2| ≤ εκ2} in the case when the principal face of N (φ) is compact.
If it is not compact, then one uses {x ∈ R

2 : |x1| ≤ εδ, |x2| ≤ εκ2}. Using the Taylor
approximation of φ(x) one gets that for x ∈ Dε we have |φ(x)| � ε. The first condition in
(2.3) is then obtained by plugging

ϕ̂ε(x1, x2, x3) = χ0

(
x1
εκ1

)
χ0

(
x2
εκ2

)
χ0

(
x3
Cε

)
,

into the estimate (1.2) in the compact case. In the non-compact case we just change εκ1 to
εδ .

In the adapted case, when d(φ) = h(φ), we also get automatically the second condition
from the first one. Finally, as was mentioned at the beginning of this section, if φ is non-
adapted and if we take l such that κ l is associated to the principal face of N (φa), then we
have h(φ) = 1/(κ l1 + κl2). Therefore the associated condition to this l in (2.2) implies the
second condition in (2.3).

Let us now prove the remaining claims. When p′
1 = ∞, then all the conditions indeed

reduce to 1/p′
3 ≤ 1/(2h(φ)) since κl1 + κl2 is minimal precisely for the edge γla which

intersects the bisectrix ofN (φa). This is a direct consequence of the fact that the augmented
Newton polyhedron is obtained by the intersection of upper half-planes which have Lκ and
Ll ’s with κ l2/κ

l
1 > m (i.e., for l ≥ l0) as boundaries, and of the fact that the bisectrix intersects

Ll at (1/(κ l1 + κl2), 1/(κ
l
1 + κl2)).

When p′
3 = ∞, then the condition 1/p′

1 ≤ 1/2 is the strongest one; this is a direct
consequence of κ l2/κ

l
1 > m = κ2/κ1.

We finally prove that one does not need to consider all the conditions in the first row of
(2.2), but only for l = l0, . . . , la where la is such that γla is the principal face ofN (φa). This
follows from the following two facts. Namely, we first note that the line in the (1/p′

1, 1/p
′
3)-

plane given by

κ l1 + κl2

2
= (1 + m)κl1

p′
1

+ 1

p′
3

(2.4)

intersects the axis 1/p′
1 = 0 at the point which has the 1/p′

3 coordinate equal to (κ l1 + κl2)/2,
which is greater than 1/(2h(φ)) if l �= la , by the previous discussion in the case p′

1 = ∞. And
secondly, as κ l1 decreases when l increases, the slope of the line (2.4) in the (1/p′

1, 1/p
′
3)-

plane increases with l too. Therefore, in the (1/p′
1, 1/p

′
3)-plane the lines given by (2.4) and

corresponding to necessary conditions associated to any l with l > la are lying above the
line associated to la in the area where 1/p′

1 ≥ 0. ��
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Thenecessary conditions fromProposition2.1 determine apolyhedron in the (1/p′
1, 1/p

′
3)-

plane which we denote by P (see Fig. 3). Let us define the lines

L̃l :=
{( 1

p′
1
,
1

p′
3

)
: (1 + m)κl1

p′
1

+ 1

p′
3

= κl1 + κl2

2

}
, l = l0, . . . , n + 1,

L̃ :=
{( 1

p′
1
,
1

p′
3

)
: (1 + m)κ1

p′
1

+ 1

p′
3

= κ1 + κ2

2

}
,

associated to the necessary conditions. Using arguments similar as in the proof of Proposition
2.1, or the Legendre transformation from the following Sect. 2.2, one can show that the
polyhedron P is of the form P = OPPl0 Pl0+1 . . . Pla−1Pla P̃ , i.e., the polyhedron with
vertices O, P, Pl0 , Pl0+1, . . . , Pla−1, Pla , P̃ , where the point O is the origin and the other
points are as follows. The point P is (1/2, 0) and the point P̃ is (0, 1/(2h(φ))). The point
Pl0 is the intersection of L̃ and L̃l0 , and all the other points Pl are given as intersections of
the lines L̃l and L̃l−1 for l = l0 + 1, . . . , la .1

As in the p1 = p3 case considered in [16], we expect that the conditions from Proposition
2.1 are sharp. This will of course follow if we prove that the Fourier restriction estimate
is true within the range they determine. In the adapted case, when d(φ) = h(φ), the only
condition we obtained was

1

h(φ)

1

p′
1

+ 1

p′
3

≤ 1

2h(φ)
. (2.5)

This condition is sharp as will be shown in Sect. 4, though sometimes the endpoint estimate
on the 1/p′

3 axis will not hold.

2.2 The form using the Legendre transformation

As already noted, the necessary conditions can be stated as

(1 + m)κ̃1

p′
1

+ 1

p′
3

≤ κ̃1 + κ̃2

2
,

for all (κ̃1, κ̃2) such that L κ̃ is a supporting line to the augmented Newton polyhedron of φa .
This can be rewritten as

1

p′
3

≤ −1

2

((2 + 2m

p′
1

− 1
)
κ̃1 − κ̃2

)
.

As in Sect. 1.2we denote by K the function associating to each κ̃1 ∈ [0, κ1] the κ̃2 such that L κ̃

is a supporting line to the augmentedNewtonpolyhedronofφa , i.e.,wehave κ̃ = (κ̃1, K (κ̃1)).
The Legendre transformation of K is given by (1.7) and thus we have

1

p′
3

≤ −1

2
L(K )

[
2 + 2m

p′
1

− 1

]
.

We have depicted the graph of K in Fig. 2.

1 An easy calculation shows that Pl0 = 1
2 ( 1

m+1 (1+ (κ
l0
2 − κ2)/(κ

l0
1 − κ1)), κ2−κ1(κ

l0
2 − κ2)/(κ

l0
1 − κ1))

and that for indices l = l0 + 1, . . . , la one has Pl = 1
2 ( 1

m+1 (1 + (κl2 − κl−1
2 )/(κl1 − κl−1

1 )), κl−1
2 −

κl−1
1 (κl2 − κl−1

2 )/(κl1 − κl−1
1 )).
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2.3 Conditions when the ratio is fixed

If we fix a ratio r = p′
1/p

′
3 ∈ [0,∞], then we are able to introduce a quantity slight more

general than the restriction height hres(φ) introduced in [16]. We shall not use this quantity
in this article, but it may prove useful when considering the mixed norm Fourier restriction
for functions φ with hlin(φ) ≥ 2. The cases r ∈ {0,∞} are not interesting since we shall
prove the associated results in Sect. 4 easily, so we assume that r ∈ (0,∞) is fixed. In this
case by plugging in p′

1 = rp′
3 the conditions (2.2) can be restated as

p′
3

2
≥ (1 + m)κ̃1 + r

r(κ̃1 + κ̃2)
,

where again κ̃ is such that L κ̃ is a supporting line to the augmented Newton polyhedron
N res(φ f ). But now we notice that the number on the right hand side of the above inequality
is actually the t2-coordinate of the intersection of the line L κ̃ with the parametrised line
t �→ (t − 1+m

r , t), which we shall denote by �
(m)
r . This motivates us to define

hlr := (1 + m)κl1 + r

r
(
κl1 + κl2

) − 1

when κ l2/κ
l
1 > m (i.e., for l ≥ l0). Then, if we define

hresr (φ) := max

{
d(φ) + 1

r
− 1, hl0r , . . . , hn+1

r

}
, (2.6)

the conditions (2.2) can be restated as the requirement that the inequalities

p′
1 ≥ 2r

(
1 + hresr (φ)

)
, p′

3 ≥ 2
(
1 + hresr (φ)

)
, (2.7)

must hold necessarily true for all r ∈ (0,∞), along with the inequalities p′
1 ≥ 2 and

p′
3 ≥ 2h(φ), representing the respective cases r = 0 and r = ∞.
By definition, the restriction height hres(φ) from [16] coincides with hresr (φ) when r = 1,

and in the same way as in [16] we see from (2.6) that hresr (φ) + 1 can be read off as the

t2-coordinate of the point where the line �
(m)
r intersects the augmented Newton diagram of

φa (see Fig. 4).

2.4 Necessary conditions when hlin(�) < 2

In the case when φ is non-adapted and the linear height of φ is strictly less than 2 it turns out
that there are only two necessary conditions from Proposition 2.1. Namely, in this case we
shall show that l0 = la , and therefore the only conditions are

(1 + m)κl
a

1

p′
1

+ 1

p′
3

≤ κl
a

1 + κl
a

2

2
,

(1 + m)κ1

p′
1

+ 1

p′
3

≤ κ1 + κ2

2
.

If we replace above the inequality signs with equality signs, we get two linear equations in
(1/p′

1, 1/p
′
3). Let (1/p′

1, 1/p
′
3) be the solution of this system. We shall call p = (p1, p3)

the critical exponent. Then, by interpolation, it is sufficient to prove the Fourier restriction
estimate (1.2) for the exponent p and the endpoint exponents associated to the points lying
on the axes, i.e., (1/2, 0) and (0, 1/(2h(φ))).

In order to obtain what precisely the critical exponent p is, we recall [16, Proposition 2.11]
which gives us explicit normal forms of φ in the case when hlin(φ) < 2. In the real analytic
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Fig. 4 The restriction height

case these normal forms were derived in [27] by Siersma. [16, Proposition 2.11] states that
there are two type of singularities, A and D.

In the case of A type singularity the form of the function φ is

φ(x1, x2) = b(x1, x2)(x2 − ψ(x1))
2 + b0(x1). (2.8)

Here ψ , b, and b0 are smooth functions such that ψ(x1) = cxm1 + O(xm+1
1 ) (with c �= 0

and m ≥ 2), b(0, 0) �= 0, and b0(x1) = xn1β(x1) (with either β(0) �= 0 and n ≥ 2m + 1,
or b0 is flat, i.e., “n = ∞”). The function ψ is the principal root jet of φ. If b0 is flat, this
is A∞ type singularity, and otherwise it is An−1 type singularity. In adapted coordinates, the
formula (2.8) turns into

φa(y1, y2) = ba(y1, y2)y
2
2 + b0(y1), (2.9)

where ba(y1, y2) = b(y1, y2 + ψ(y1)), i.e., the function b in (y1, y2) coordinates. From the
formulas (2.8) and (2.9) one can now determine the form of the Newton polyhedron of φ and
φa (see Fig. 5). Reading off the Newton polyhedra we have

(κ1, κ2) =
( 1

2m
,
1

2

)
, d(φ) = 2m

m + 1
,

(κl
a

1 , κl
a

2 ) =
(1
n

,
1

2

)
, h(φ) = 2n

n + 2
,

and so the necessary conditions (2.2) can be written as

2

p′
1

+ 4m

m + 1

1

p′
3

≤ 1,
4(m + 1)

n + 2

1

p′
1

+ 4n

n + 2

1

p′
3

≤ 1.

Now an easy calculation shows that (1/p′
1, 1/p

′
3) = (1/(2m + 2), 1/4), i.e., we have deter-

mined the critical exponent.
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Fig. 5 TheNewton polyhedra associated to An−1 type singularity in the (linearly adapted) original and adapted
coordinates respectively, and the associated necessary conditions

Fig. 6 TheNewton polyhedra associated to Dn+1 type singularity in the (linearly adapted) original and adapted
coordinates respectively, and the associated necessary conditions

In the case of D type singularity [16, Proposition 2.11] tells us that

φ(x1, x2) = (x1b1(x1, x2) + x22b2(x2))(x2 − ψ(x1))
2 + b0(x1),

φa(y1, y2) =
(
y1b

a
1(y1, y2) + (y2 + ψ(y1))

2b2(y2 + ψ(y1))
)
y22 + b0(y1), (2.10)

i.e., the function b from (2.8) is now to be written as b(x1, x2) = x1b1(x1, x2) + x22b2(x2).
In this case we have the conditions b1(0, 0) �= 0 and b2(x2) = c2xk2 + O(xk+1

2 ). Again
ψ(x1) = cxm1 + O(xm+1

1 ) (c �= 0, m ≥ 2) and b0(x1) = xn1β(x1), but now either β(0) �= 0
and n ≥ 2m + 2, or b0 is flat. If b0 is flat, this is D∞ type singularity, and otherwise it is
Dn+1 type singularity. The function ba1 is the function b1 in (y1, y2) coordinates. Now one
determines the form of the Newton polyhedra (see Fig. 6) and reads off that

(κ1, κ2) =
( 1

2m + 1
,

m

2m + 1

)
, d(φ) = 2m + 1

m + 1
,

(κl
a

1 , κl
a

2 ) =
(1
n

,
n − 1

2n

)
, h(φ) = 2n

n + 1
.

Therefore, the necessary conditions can be written as

2

p′
1

+ 2(2m + 1)

m + 1

1

p′
3

≤ 1,
4(m + 1)

n + 1

1

p′
1

+ 4n

n + 1

1

p′
3

≤ 1.

Again, a simple calculation shows that (1/p′
1, 1/p

′
3) = (1/(4m + 4), 1/4).

Note that in the A∞ and D∞ cases the necessary conditions form a right-angled trapezium
in the (1/p′

1, 1/p
′
3)-plane (easily seen by taking n → ∞; one can also do a direct calculation).

As the critical exponents in the cases An−1 and Dn+1 do not depend on n, one is easily
convinced that the critical exponents of A∞ and D∞ cases are equal to the respective critical
exponents of An−1 and Dn+1.
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3 Auxiliary results

3.1 Reduction to the case∇�(0) = 0

In Sect. 1.1 we mentioned that one can always reduce the mixed normed Fourier restriction
problem to the case when ∇φ(0) = 0, despite rotational invariance not being at one’s dis-
posal. Let us justify this. Consider the linear transformation L(x1, x2, x3) := (x1, x2, x3 +
∂1φ(0)x1 + ∂2φ(0)x2) whose inverse and transpose are respectively L−1(x1, x2, x3) =
(x1, x2, x3−∂1φ(0)x1−∂2φ(0)x2) and Lt (x1, x2, x3) = (x1+∂1φ(0)x3, x2+∂2φ(0)x3, x3).
Plugging in the function f ◦ Lt into the expression of the mixed norm Fourier restriction
estimate (1.2) we obtain

( ∫
|F( f ◦ Lt )|2(ξ, φ(ξ))ρ(ξ)

√
1 + |∇φ(ξ)|2dξ

)1/2

≤ Cp ‖ f ◦ Lt‖L p3
x3 (L

p1
(x1,x2)

)
.

Now one just notices that ‖ f ◦ Lt‖L p3
x3 (L

p1
(x1,x2)

)
= ‖ f ‖L p3

x3 (L
p1
(x1,x2)

)
, and that

|F( f ◦ Lt )|2(ξ, φ(ξ)) = |F f |2(L−1(ξ, φ(ξ))) = |F f |2(ξ, φ(ξ) − ξ · ∇φ(0)),

since the determinant of L is 1. Thus the estimate (1.2) with the function φ is equivalent
(up to a slight change in amplitude due to the Jacobian factor

√
1 + |∇φ(ξ)|2) to the same

estimate with the function φ replaced by the function ξ �→ φ(ξ) − ξ · ∇φ(0), which has
gradient 0 at the origin.

3.2 Auxiliary results related to oscillatory sums and integrals

We first mention that we shall often use the more or less standard van der Corput Lemma
from [16] (see [16, Lemma 2.1]), originating from the work of van der Corput [5].2

Another lemma (less general, but with a stronger implication than the one in [16, Section
2.2]) we need gives us an asymptotic of an oscillatory integral of Airy type. We shall also
need some variants, but these we shall state and prove along the way when they are needed.

Lemma 3.1 For λ ≥ 1 and u ∈ R, |u| � 1, let us consider the integral

J (λ, u, s) :=
∫
R

eiλ(b(t,s)t3−ut)a(t, s)dt,

where a, b are smooth and real-valued functions on an open neighbourhood of I × K for I
a compact neighbourhood of the origin in R and K a compact subset of R

m. Let us assume
that b(t, s) �= 0 on I × K and that |t | ≤ ε on the support of a. If ε > 0 is chosen sufficiently
small and λ sufficiently large, then the following holds true:

(a) If λ2/3|u| � 1, then we can write

J (λ, u, s) = λ−1/3g
(
λ2/3u, λ−1/3, s

)
,

where g(v, μ, s) is a smooth function of (v, μ, s) on its natural domain.

2 There is a typo in [16, Lemma 2.1]: in the estimate in part (a) the expression (1 + |λ|)−1/M should be
changed to |λ|−1/M .
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(b) If λ2/3|u| � 1, then we can write

J (λ, u, s) = λ−1/2|u|−1/4χ0(u/ε)
∑

τ∈{+,−}
aτ (|u|1/2, s; λ|u|3/2)eiλ|u|3/2qτ (|u|1/2,s)

+ (λ|u|)−1E(λ|u|3/2, |u|1/2, s),
where a± are smooth functions in (|u|1/2, s) and classical symbols3 of order 0 in λ|u|3/2,
and where q± are smooth functions such that |q±| ∼ 1. The function E is a smooth
function satisfying ∣∣∂α

μ∂β
v ∂

γ
s E(μ, v, s)

∣∣ ≤ CN ,α,β,γ |μ|−N ,

for all N , α, β, γ ∈ N0.

The proof is the same as in [16], up to obvious modifications.
Next, we state results relating the Newton polyhedron and its associated quantities with

asymptotics of oscillatory integrals.

Theorem 3.2 Let φ : 	 → R be a smooth function of finite type defined on an open set
	 ⊂ R

2 containing the origin. If 	 is a sufficiently small neighbourhood of the origin and
η ∈ C∞

c (	), then∣∣∣∣
∫

ei(ξ1x1+ξ2x2+ξ3φ(x))η(x)dx

∣∣∣∣ ≤ Cη(1 + |ξ |)−1/h(φ) (log(2 + |ξ |))ν(φ),

for all ξ ∈ R
3.

This result was proven in [15] and can be interpreted as a uniform estimate with respect to
a linear pertubation of the phase. The case when h(φ) < 2 was considered earlier in [6]. In
the case when φ is real analytic and there is no pertubation (i.e., ξ1 = ξ2 = 0) the above
result goes back to Varchenko [32]. In the case of a real analytic function φ one actually has a
uniform estimate with respect to analytic pertubations (this was proved by Karpushkin [18]).

We also have the following result from [15] which gives us sharpness of Theorem 3.2 in
the case when ξ1 = ξ2 = 0.

Theorem 3.3 Let φ be as in Theorem 3.2 and let us define for λ > 0 the function

J±(λ) :=
∫

e±iλφ(x)η(x)dx

for an η ∈ C∞
c (	). If the principal face π(φa) of N (φa) is a compact face, and if 	 is a

sufficiently small neighbourhood of the origin, then

lim
λ→+∞

λ1/h(φ)

(log λ)ν(φ)
J±(λ) = c±η(0),

where c± are nonzero constants depending on the phase φ only.

An analogous result was proved earlier by Greenblatt in [10] for real analytic phase functions
φ. When the principal face is not compact, Theorem 3.3 may fail in general (for an example
of this see [17]).

3 There is a slight error in [16, Lemma 2.2]. Namely, there the functions a± should also be classical symbols
of order 0 in the same variable as stated here.
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Finally, we state three lemmas which we shall often use in conjunction with Stein’s
complex interpolation theorem. The proofs of the first and the third lemma can be found in
[16, Section 2.5], while we only give a brief note on the proof of the second lemma since it
is a direct modification of the first one. The proof of all of them are elementary, though the
proof of the third one is quite technical.

Lemma 3.4 Let Q = ∏n
k=1[−Rk, Rk] be a compact cuboid in R

n for some real numbers
Rk > 0, k = 1, . . . , n, and let α, β1, . . . , βn be some fixed nonzero real numbers. For a C1

function H defined on an open neighbourhood of Q, nonzero real numbers a1, . . . , an, and
M a positive integer we define

F(t) :=
M∑
l=0

2iαlt (HχQ)
(
2β1la1, . . . , 2

βnlan
)

for t ∈ R. Then there is a constant C which depends only on Q and the numbers α and βk’s,
but not on H, ak’s, M, and t, such that

|F(t)| ≤ C
‖H‖C1(Q)

|2iαt − 1|
for all t ∈ R.

We shall often use this lemma in combination with the holomorphic function

γ (ζ ) := 2α(ζ−1) − 1

2α(θ−1) − 1
(3.1)

when applying complex interpolation. This function has the property that |γ (1+ i t)F(t)| ≤
Cθ for a positive constant Cθ < +∞, and γ (θ) = 1.

The following lemma is a slight variation of what was written in [16, Remark 2.8].

Lemma 3.5 Let Q = ∏n
k=1[−Rk, Rk] be a compact cuboid in R

n for some real numbers
Rk > 0, k = 1, . . . , n, let α, β1, . . . , βn be some fixed nonzero real numbers, and let
0 < ε < 1. For a C1 function H on a neighbourhood of Q, nonzero real numbers a1, . . . , an,
and M a positive integer we define

F(t) :=
M∑
l=0

2iαlt (HχQ)
(
2β1la1, . . . , 2

βnlan
)

for t ∈ R. Then there is a constant C which depends only on Q and the numbers α, βk’s,
and ε, but not on H, ak’s, M, and t, such that

|F(t)| ≤ C
|H(0)| + ∑n

k=1 Ck

|2iαt − 1|
for all t ∈ R. The constants Ck are given as

C1 := sup
y1∈R1

|y1|1−ε

∫ 1

0
|(∂1H)(sy1, 0, . . . , 0)|ds,

Ck := sup
y1,...,yk

|yk |1−ε

∫ 1

0
|(∂k H)(y1, . . . , yk−1, syk, 0, . . . , 0)|ds, k > 1,

where the supremum goes over the set
∏k

j=1[−R j , R j ].
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The only difference compared to the proof of [16, Lemma 2.7] is that one now writes

H(y) = H(0) + |y1|ε H(y1, 0, . . . , 0) − H(0)

|y1|ε

+
n∑

k=1

|yk |ε H(y1, . . . , yk−1, yk, 0, . . . , 0) − H(y1, . . . , yk−1, 0, 0, . . . , 0)

|yk |ε , (3.2)

and notes that the fractions are bounded by their respective Ck’s.
In the above lemma we could have directly definedCk’s as the Hölder quotients appearing

in (3.2), but the formulas used in Lemma 3.5 turn out to be more practical. One can easily
construct an example though where using the Hölder quotients is more appropriate. One

example is when one has an oscillatory factor such as in H(y1) = yε
1 e

iy−1
1 , 0 < y1 < 1

(cf. the Riemann singularity as in [28, Chapter VIII, Subsection 1.4.2]). This function is ε-
Hölder continuous at 0 and satisfies the conclusion of Lemma 3.5 in the sense that |F(t)| ≤
C/|2iαt −1|, but one can showwithout toomuch effort that the integral definingC1 in Lemma
3.5 is infinite.

The third lemma is a two parameter version of the first one.

Lemma 3.6 Let Q = ∏n
k=1[−Rk, Rk] be a compact cuboid in R

n for some real numbers
Rk > 0, k = 1, . . . , n, and let α1, α2 ∈ Q

×, and βk
1 , β

k
2 ∈ Q, k = 1, . . . , n, be fixed

numbers such that α1β
k
2 −α2β

k
1 �= 0 for all k (i.e., the vector (α1, α2) is linearly independent

from (βk
1 , β

k
2 )). For a C2 function H defined on an open neighbourhood of Q, nonzero real

numbers a1, . . . , an, and M1, M2 positive integers we define

F(t) :=
M1∑
l1=0

M2∑
l2=0

2i(α1l1+α2l2)t (HχQ)
(
2(β1

1 l1+β1
2 l2)a1, . . . , 2

(βn
1 l1+βn

2 l2)an
)

for t ∈ R. Then there is a constant C which depends only on Q and the numbers α1, α2,
βk
1 ’s, β

k
2 ’s, but not on H, ak’s, M1, M2, and t, such that

|F(t)| ≤ C
‖H‖C2(Q)

|ρ(t)|
for all t ∈ R. The function ρ is defined by ρ(t) := ∏N

ν=1 ρ̃(νt)ρ̃(−νt), where

ρ̃(t) := (2iα1t − 1)(2iα2t − 1)
n∏

k=1

(
2i(α1β

k
2−α2β

k
1 )t − 1

)
,

and N is a positive integer depending on the βk
1 ’s and βk

2 ’s.

For future reference we also note the following construction from [16, Remark 2.10] of a
complex function γ on the strip � := {ζ ∈ C : 0 ≤ Re ζ ≤ 1} which shall be used in the
context of complex interpolation together with the above two parameter lemma. If we are
given 0 < θ < 1 and the exponents α1, α2, and βk

1 ’s, β
k
2 ’s as above, we define

γ (ζ ) :=
N∏

ν=1

γ̃ (ν(ζ − 1))γ̃ (−ν(ζ − 1))

γ̃ (ν(θ − 1))γ̃ (−ν(θ − 1))
, (3.3)
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where

γ̃ (ζ ) := (2α1ζ − 1)(2α2ζ − 1)
n∏

k=1

(
2(α1β

k
2−α2β

k
1 )ζ − 1

)
.

The function γ has the following two key properties. It is an entire analytic function uniformly
bounded on the strip �, and for the function F as in Lemma 3.6 there is a positive constant
Cθ < +∞ such that for all t ∈ R we have |γ (1 + i t)F(t)| ≤ Cθ . It also has the property
that γ (θ) = 1.

3.3 Auxiliary results related tomixed Lp-norms

In this section R shall denote the Fourier restriction operator L p(R3) → L2(dμ) for a positive
finite Radon measure μ, and all functions and measures will have R

3 as their domain, unless
stated otherwise. Recall that we assume p = (p1, p3).

We first recall what happens in the simple case when p = (2, 1) and μ has the form

〈μ, f 〉 =
∫

	

f (x, φ(x)) η(x)dx,

where φ is any measurable function on an open set 	 and η ∈ C∞
c (	) is a nonnegative

function. In this case the form of the adjoint of R is

(R∗ f )(x1, x2, x3) =
∫
R2

ei(x1ξ1+x2ξ2+x3φ(ξ)) f (ξ)η(ξ)dξ,

and it is called the extension operator. Using Plancherel for each fixed x3, we easily get
boundedness of R∗ : L2(dμ) → L∞

x3 (L
2
(x1,x2)

). Note that the operator bound depends only

on the L∞ norm of η. In particular we know that R : L1
x3(L

2
(x1,x2)

) → L2(dμ) is bounded.

When considering the L p−L2 Fourier restriction problem for other p’s, it is advantageous
to reframe the problem using the so called “R∗R”method. The boundedness of the restriction
operator R : L p → L2(dμ) is equivalent to the boundedness of the operator T = R∗R,
which can be written as

T f (y) :=
∫
R3

∫
R3

f (y − x)eiξ ·x dμ(ξ) dx = f ∗

̂

μ(y), f ∈ S(R3), (3.4)

in the pair of spaces L p → L p′
, where p′ denotes the Young conjugate exponents (p′

1, p
′
3).

Note that the operator T is linear in μ and it even makes sense for a complex μ (unlike the
restriction operator R). This enables us to decompose the measure μ into a sum of complex
measures, each having an associated operator of the same form as in (3.4).

The following few lemmas give us information on the boundedness of convolution oper-
ators such as in (3.4).

Lemma 3.7 Let us consider the convolution operator T : f �→ f ∗ μ̂ for a tempered Radon
measure μ (i.e., a Radon measure which is a tempered distribution).

(i) If μ̂ is a measurable function which satisfies

|μ̂(x1, x2, x3)| � A(1 + |x3|)−σ̃ (3.5)

for some σ̃ ∈ [0, 1), then the operator norm of T : L p → L p′
for (1/p′

1, 1/p
′
3) =

(0, σ̃ /2) is bounded (up to a multiplicative constant) by A.
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(ii) Ifμ is a bounded function such that ‖μ‖L∞ � B, then the operator norm of T : L2 → L2

is bounded (up to a multiplicative constant) by B.

Proof One can easily show by integrating (3.4) in (x1, x2) variables that

‖T f (·, y3)‖L∞
(y1,y2)

� A
∫
R

‖ f (·, y3 − x3)‖L1
(x1,x2)

(1 + |x3|)−σ̃ dx3,

and therefore we can now apply the (one-dimensional) Hardy-Littlewood-Sobolev inequality
and obtain the claim in the first case. The second case when p1 = p3 = 2 is a well known
classical result for multipliers. ��
For a more abstract approach to the above lemma see [9,20]. There one also obtains an
appropriate result for σ̃ = 1 when 1/p′

1 > 0, but shall not need this.
A particular useful application of the above lemma is the following.

Lemma 3.8 Let us consider T : f �→ f ∗ μ̂ for a tempered Radon measure μ which is now
localised in the frequency space supp μ̂ ⊂ R

2 × [−λ3, λ3] for a λ3 � 1. Let us assume that
μ and μ̂ are measurable functions satisfying

‖μ̂‖L∞ � A, ‖μ‖L∞ � B. (3.6)

Then T is a bounded operator for ( 1
p′
1
, 1
p′
3
) = (0, σ̃

2 ) for all σ̃ ∈ [0, 1), with the associated

operator norm being at most (up to a multiplicative constant) A λσ̃
3 . The operator norm of

T : L2 → L2 is bounded (up to a multiplicative constant) by B.

Proof We only need to obtain the decay estimate (3.5). We note that since μ̂ has x3 support
bounded by λ3, it follows

|μ̂(x1, x2, x3)| � A (1 + λ−1
3 |x3|)−σ̃ � A λσ̃

3 (1 + |x3|)−σ̃

for all σ̃ ∈ [0, 1). ��
At the end of this section we note the following simple result which tells us that the

conclusion of Lemma 3.7 is in a sense quite sharp. We remark that the last conclusion in the
lemma below is consistent with the condition σ̃ < 1 in (3.5).

Lemma 3.9 Consider the convolution operator T : f �→ f ∗ μ̂ for a tempered Radon
measure μ whose Fourier transform μ̂ is continuous. Let ϕ : [0,+∞) → (0,+∞) be an
increasing and unbounded continuous function and assume that at least one of the limits

lim
x3→−∞ μ̂(0, 0, x3)

(1 + |x3|)σ̃
ϕ(|x3|) or lim

x3→+∞ μ̂(0, 0, x3)
(1 + |x3|)σ̃

ϕ(|x3|)
exists for some σ̃ ∈ (0, 1), with the limiting value being a nonzero number. Then T : L p →
L p′

is not a bounded operator for (1/p′
1, 1/p

′
3) = (0, σ̃ /2). The conclusion also holds in

the case when ϕ is the constant function 1, σ̃ = 1, and if we additionally assume that μ̂ is
an L∞(R3) function and that both of the above limits exist and are equal, with the limiting
value being a nonzero number.

Proof Let us begin the proof by assuming that the operator T : L
2

2−σ̃
x3 (L1

(x1,x2)
) →

L2/σ̃
x3 (L∞

(x1,x2)
) is bounded. Since μ̂ is continuous, without loss of generality we can assume

that
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μ̂(x) ∼ |x3|−σ̃ ϕ(|x3|) (3.7)

for all x in the open setU of the form {x ∈ R
3 : x3 > K , |(x1, x2)| < εU (x3)}, where K > 0

and εU is a continuous and strictly positive function on R.
Now consider the function

f (x) = ε−2χ0

( x1
ε

)
χ0

( x2
ε

)
χ0

( x3
M

)
,

where χ0 is smooth, identically 1 in the interval [−1, 1], and supported within the interval
[−2, 2]. Then

‖ f ‖
L

2
2−σ̃
x3 (L1

(x1,x2)
)

∼ M1− σ̃
2 ,

and if we assume ε to be sufficiently small and M sufficiently large, one obtains by a simple
calculation that

T f (0, 0, x3) ∼
(

χ0

( ·
M

)
∗

(
| · |−σ̃ ϕ(| · |)

))
(x3)

for all x3 such that 4M < x3 < C(M, ε), where C(M, ε) → ∞ when ε → 0 and M is
fixed. If in addition we know say x3 ≤ 5M < C(M, ε), then

T f (0, 0, x3) � M1−σ̃ ϕ(|M |),
and the lower bound on the norm is

‖T f ‖
L2/σ̃
x3 (L∞

(x1,x2)
)
�

(
M1−σ̃ ϕ(|M |)

)
M σ̃ /2 = M1−σ̃ /2 ϕ(|M |).

But now by the boundedness assumption we obtain

M1−σ̃ /2 ϕ(|M |) � M1−σ̃ /2 ∼ ‖ f ‖
L

2
2−σ̃
x3 (L1

(x1,x2)
)

,

i.e., ϕ(|M |) � 1. This is impossible in general since we can take M → ∞.
In the case when the limits are equal, σ̃ = 1, and ϕ is the constant function 1, we redefine

U as the set {x ∈ R
3 : |x3| > K , |(x1, x2)| < εU (x3)} after which we can take (3.7) to be

true for x ∈ U too. If we use the same f as above, then for any x3 ∈ [−M/2, M/2] we
easily obtain from the definition of T that

|T f (0, 0, x3)| �
∫ M/2

K
|t |−1dt − K‖μ̂‖L∞ � lnM

for anM sufficiently large and ε sufficiently small. Thus the norm‖T f ‖L2
x3

(L∞
(x1,x2)

) is bounded

belowbyM1/2 lnM , while ‖ f ‖L2
x3

(L1
(x1,x2)

) is of sizeM
1/2. This is impossible if T is bounded.

��

In the case σ̃ = 1 and when ϕ is identically equal to a nonzero constant the above
proof does not work if the limits have the same absolute value but opposite signs. This
is related to the fact that an operator given as a convolution against x �→ x/(1 + x2) is
bounded L2(R) → L2(R) since the Fourier transform of x �→ x/(1+ x2) is up to a constant
ξ �→ e−|ξ | sgn ξ .
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4 The adapted case and reduction to restriction estimates near the
principal root jet

Here we mimic [16, Chapter 3] and the last section of [15], where the adapted case for
p1 = p3 was considered. In this section we shall be concerned with measures of the form

〈μ, f 〉 =
∫

f (x, φ(x))η(x)dx, (4.1)

where φ(0) = 0,∇φ(0) = 0, and η is a smooth nonnegative function with support contained
in a sufficiently small neighbourhood of 0. We assume that φ is of finite type on the support
of η. The associated Fourier restriction problem is

( ∫
| f̂ |2dμ

)1/2

≤ C ‖ f ‖
L
p3
x3

(
L
p1
(x1,x2)

), f ∈ S(R3), (4.2)

for any η with support contained in a sufficiently small neighbourhood of 0.
The following proposition will be useful in this section.

Proposition 4.1 Letμ,φ, andη be as above. Then themixed normFourier restriction estimate
(4.2) holds true for the point (1/p′

1, 1/p
′
3) = (1/2, 0). Furthermore we have the following

two cases.

(i) If either h(φ) = 1 or ν(φ) = 1, then the estimate (4.2) holds true for 1/p′
1 = 0 and

1/p′
3 < 1/(2h(φ)). In this case the estimate for (1/p′

1, 1/p
′
3) = (0, 1/(2h(φ))) does not

hold if η(0) �= 0.
(ii) If h(φ) > 1 and ν(φ) = 0, then the estimate (4.2) holds true for (1/p′

1, 1/p
′
3) =

(0, 1/(2h(φ))).

Proof The claim for (1/p′
1, 1/p

′
3) = (1/2, 0) follows from considerations at the beginning

of Sect. 3.3.
Let us now recall what happens in the non-degenerate case, i.e., when the determinant of

the Hessian detHφ(0, 0) �= 0. This is equivalent to h(φ) = 1 and in this case φ is adapted in
any coordinate system. Here we have the bound (4.2) for all of the (1/p′

1, 1/p
′
3) given in the

necessary condition (2.5), except for the point (0, 1/2), for which it does not hold. This fact
is actually true globally, i.e., the Strichartz estimates hold (see [9,20] and references therein)
in the same range, and one can easily convince oneself that the same proof as in say [20] goes
through in our local case. For the negative results at the point (0, 1/2) in the case of Strichartz
estimates see [19] and [23]. We can also get a negative result at the point (0, 1/2) directly
in our case by applying Lemma 3.9 for the case σ̃ = 1 and ϕ is identically equal to 1. The
limits in Lemma 3.9 are obtained by a simple application of the two dimensional stationary
phase method. Furthermore, since the Hessian does not change its sign when changing the
phase φ �→ −φ, the limits in both directions are equal.

The claims for the case when h(φ) > 1 follow easily by applying Theorems 3.2 and 3.3
to Lemmas 3.7 and 3.9 respectively. In Lemma 3.9 we take ϕ to be the logarithmic function
x �→ log(2 + x). ��

4.1 The adapted case

The following proposition tells us precisely when the Fourier restriction estimate holds in
the adapted case.
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Proposition 4.2 Let us assume that μ, φ, and η are as explained at the beginning of this
section, and let us assume that φ is adapted.

(i) If h(φ) = 1 or ν(φ) = 1, then the full range Fourier restriction estimate given by the
necessary condition (2.5) holds true, except for the point (1/p′

1, 1/p
′
3) = (0, 1/(2h(φ)))

where it is false if η(0) �= 0.
(ii) If h(φ) > 1 and ν(φ) = 0, then the full range Fourier restriction estimate given by the

necessary condition (2.5) holds true, including the point (1/p′
1, 1/p

′
3) = (0, 1/(2h(φ))).

Proof The case when h(φ) = 1 is the classical known case and it was already discussed in the
proof of Proposition 4.1. The case when h(φ) > 1 and ν(φ) = 0 follows from Proposition
4.1 by interpolation.

Let us now consider the remaining case when h(φ) > 1 and ν(φ) = 1. Then if we would
use Proposition 4.1 and interpolation as in the previous case, we would miss all the boundary
points determined by the line of the necessary condition (2.5) except the point (1/2, 0)
where we know that the estimate always holds. Recall that this is essentially because we
have the logarithmic factor in the decay of the Fourier transform of μ. Instead, one can use
the strategy from [15, Section 4] to avoid this problem. We only briefly sketch the argument.
One decomposes

μ =
∑
k≥k0

μk,

where μk are supported within ellipsoid annuli centered at 0 and closing in to 0. This is done
by considering the partition of unity

η(x) =
∑
k≥k0

ηk(x) =
∑
k≥k0

η(x)χ ◦ δ2k (x),

where χ is an appropriate C∞
c (R2) function supported away from the origin and

δr (x) = (rκ1x1, r
κ2 x2),

where κ = (κ1, κ2) is the weight associated to the principal face ofN (φ). Next, one rescales
the measures μk and obtains measures μ0,(k) having the form (4.1). These new measures
have uniformly bounded total variation and Fourier decay estimate with constants uniform
in k: ∣∣μ̂0,(k)(ξ)

∣∣ � (1 + |ξ |)−1/h(φ).

Note that there is no logarithmic factor anymore. Now we can use Proposition 4.1 and
interpolation to obtain the mixed norm Fourier restriction estimate within the range (2.5) for
each μ0,(k). As in [15, Section 4], one now easily obtains the bound4∫

| f̂ |2dμk � 2(|κ|+2)k‖ f ◦ δe2k‖2L p3
x3

(
L
p1
(x1,x2)

), f ∈ S(R3),

where δer (x1, x2, x3) = (rκ1x1, rκ2 x2, r x3). The scaling in our mixed norm case is

‖ f ◦ δe2k‖L p3
x3 (L

p1
(x1,x2)

)
= 2

−k(
κ1+κ2
p1

+ 1
p3

)‖ f ‖
L
p3
x3

(
L
p1
(x1,x2)

),

4 In the equation right above [15, Equation (4.7)] there is a typo. Instead of (|κ|/2 + 1)k in the exponent, it
should be (|κ| + 2)k.
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and therefore∫
| f̂ |2dμk � 2

k(|κ|+2)−2k( κ1+κ2
p1

+ 1
p3

)‖ f ‖2
L
p3
x3 (L

p1
(x1,x2)

)
= 2

k(|κ|+2− 2|κ|
p1

− 2
p3

)‖ f ‖2
L
p3
x3

(
L
p1
(x1,x2)

)

= 2
2k|κ|(− 1

2+ 1
p′1

+ 1
|κ|p′3

)‖ f ‖2
L
p3
x3 (L

p1
(x1,x2)

)
≤ ‖ f ‖2

L
p3
x3

(
L
p1
(x1,x2)

),

by the necessary condition 1/p′
1+1/(|κ|p′

3) ≤ 1/2, and the equalities d(φ)|κ| = h(φ)|κ| =
1. The rest of the proof is the same as in [15] if we assume p1 > 1, since then one can
use the Littlewood-Paley theorem5 and the Minkowski inequality (which we can apply since
p1 = p2 ≤ 2 and p3 ≤ 2) to sum the above inequality in k. The proof of Proposition 4.2 is
done. ��

4.2 Reduction to the principal root jet

In this section we make some preliminary reductions for the case when φ is not adapted.
Recall that we may assume that φ is linearly adapted and that we denote by ψ the principal
root of φ. Then we can obtain the adapted coordinates y (after possibly interchanging the
coordinates x1 and x2) through (y1, y2) = (x1, x2−ψ(x1)). Before stating the last proposition
of this section (analogous to [16, Proposition 3.1]) let us recall some notation from [16]. We
write

ψ(x1) = b1x
m
1 + O

(
xm+1
1

)
,

where b1 �= 0 and m ≥ 2 by linear adaptedness (see [16, Proposition 1.7]). If F is an
integrable function on the domain of η, say 	 ⊆ R

2, then we denote

μF := (F ⊗ 1)μ.

If χ0 denotes a C∞
c (R) function equal to 1 in a neighbourhood of the origin, we may define

ρ1(x1, x2) := χ0

(
x2 − b1xm1

εxm1

)
,

where ε is an arbitrarily small parameter. The domain of ρ1 is a κ-homogeneous subset of 	

which contains the principal root jet x2 = ψ(x1) of φ when 	 is contained in a sufficiently
small neighbourhood of 0.

Proposition 4.3 Assume φ is of finite type on 	, non-adapted, and linearly adapted (i.e.,
d(φ) = hlin(φ)). Let ε > 0 be sufficiently small and let μ1−ρ1 have support contained in
a sufficiently small neighbourhood of 0. Then the mixed norm Fourier restriction estimate
(4.2) with respect to the measure μ1−ρ1 holds true for all (1/p′

1, 1/p
′
3) which satisfy

1

d(φ)

1

p′
1

+ 1

p′
3

≤ 1

2d(φ)
, p1 > 1,

i.e., within the range determined by the necessary condition associated to the principal face
ofN (φ), except maybe the boundary points of the form (0, 1/p′

3). In particular, it also holds
true within the narrower range determined by all of the necessary conditions, excluding
maybe the boundary points of the form (0, 1/p′

3).

5 Herewe don’t need amixed normLittlewood-Paley theorem since the decomposition is only in the tangential
direction where p1 = p2. Note that the ordering of the mixed norm is important, namely that the outer norm
is associated to the normal direction.
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We just briefly mention that the proof of the Proposition 4.3 is trivial as soon as one uses
the results from [16, Chapter 3]. Analogously to the previous section, one decomposes the
measureμ1−ρ1 by using the κ dilations associated to the principal face ofN (φ). Themeasures
νk obtained by rescaling are of the form (4.1), have uniformly bounded total variation, and
have the Fourier transform decay (with constants uniform in k)

|̂νk(ξ)| � (1 + |ξ |)−d(φ).

All of this was proven in [16, Chapter 3]. Therefore we have the Fourier restriction estimate
for each νk for the points (1/p′

1, 1/p
′
3) = (1/2, 0) and (1/p′

1, 1/p
′
3) = (0, 1/(2d(φ))). Now

one uses again interpolation, the Minkowski inequality, and the Littlewood-Paley theorem,
to obtain the claim.

Note that the estimates for the boundary points of the form (0, 1/p′
3) can be directly solved

for the original measure μ through Proposition 4.1.

5 The case hlin(�) < 2

In the remainder of this article we shall be concerned with the proof of:

Theorem 5.1 Let φ : R
2 → R be a smooth function of finite type defined on a sufficiently

small neighbourhood 	 of the origin, satisfying φ(0) = 0 and ∇φ(0) = 0. Let us assume
that φ is linearly adapted, but not adapted, and that hlin(φ) < 2. We additionally assume
that the following holds: Whenever the function b0 appearing in (2.8), (2.9), (2.10) is flat
(i.e., when φ is A∞ or D∞ type singularity), then it is necessarily identically equal to 0.
In this case, for all smooth η ≥ 0 with support in a sufficiently small neighbourhood of the
origin the Fourier restriction estimate (4.2) holds for all p given by the necessary conditions
determined in Sect. 2.4.

The above condition on the function b0 is implied by the Condition (R) from [16] (see
[16, Remark 2.12. (c)]).

We begin with some preliminaries. As one can see from the Newton diagrams in Sect. 2.4,
the assumption in our case hlin(φ) < 2 implies that h(φ) ≤ 2. Additionally, we see that
h(φ) = 2 implies that we either have A∞ or D∞ type singularity. As mentioned in Sect. 1.1,
the Varchenko exponent is 0, i.e., ν(φ) = 0, if h(φ) < 2.When h(φ) = 2 the equality ν(φ) =
0 also holds true in our case since the principal faces are non-compact. We conclude that if
hlin(φ) < 2, then by Proposition 4.1 we have the mixed norm Fourier restriction estimate
(4.2) for both of the points (1/p′

1, 1/p
′
3) = (1/2, 0) and (1/p′

1, 1/p
′
3) = (0, 1/(2h(φ))).

Therefore, according to Sect. 2.4, by interpolation it remains to prove the estimate (4.2) for
the respective critical exponents given by

(
1

p′
1
,
1

p′
3

)
=

(
1

2(m + 1)
,
1

4

)
in case of A type singularity,

(
1

p′
1
,
1

p′
3

)
=

(
1

4(m + 1)
,
1

4

)
in case of D type singularity,

(5.1)

where m ≥ 2 is the principal exponent of ψ from Sect. 2.4.
Recall that according to Proposition 4.3 we may concentrate on the piece of the measure

μ located near the principal root jet:
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〈μρ1 , f 〉 =
∫
x1≥0

f (x, φ(x)) η(x) ρ1(x)dx,

where

ρ1(x) = χ0

(
x2 − ω(0)xm1

εxm1

)
(5.2)

for an arbitrarily small ε and ω(0)xm1 the first term in the Taylor expansion of

ψ(x1) = xm1 ω(x1),

where ω is a smooth function such that ω(0) �= 0.
As we use the same decompositions of the measure μρ1 as in [16], we shall only briefly

outline the decomposition procedure.

5.1 Basic estimates

Before we outline the further decompositions and rescalings ofμρ1 , we first describe here the
general strategy for proving the Fourier restriction estimates for the pieces obtained through
these decompositions. All of the pieces ν of the measure μρ1 will essentially be of the form

〈ν, f 〉 =
∫

f ◦ �(x) a(x)dx,

where � is a phase function and a ≥ 0 an amplitude. The amplitude will usually be com-
pactly supported with support away from the origin. Both � and a will depend on various
decomposition related parameters. We shall need to prove the Fourier restriction estimate
with respect to these measures with estimates being uniform in a certain sense with respect
to the appearing decomposition parameters.

At this point one uses the “R∗R” method applied to the measure ν. The resulting operator
is Tν which acts by convolution against the Fourier transform of ν. Now one considers the
spectral decomposition (νλ)λ of the measure ν so that each functions νλ is localised in the
frequency space at λ = (λ1, λ2, λ3), where λi ≥ 1 are dyadic numbers for i = 1, 2, 3. For
such functions νλ we shall obtain bounds of the form (3.6). By Lemma 3.8 then we have the
bounds on their associated convolution operators T λ

ν :

‖T λ
ν ‖

L2/(2−σ̃ )
x3

(
L1

(x1,x2)

)
→L2/σ̃

x3

(
L∞

(x1,x2)

) � Aλσ̃
3 , ‖T λ

ν ‖L2→L2 � B, (5.3)

for all σ̃ ∈ [0, 1). A and B shall again depend on various decomposition related parameters.
If we now define

(θ, σ̃ ) :=
(

1

m + 1
,
m − 1

2m

)
, in case of A type singularity, (5.4)

(θ, σ̃ ) :=
(

1

2(m + 1)
,

m

2m + 1

)
, in case of D type singularity, (5.5)

then interpolating (5.3) (θ being the interpolation coefficient) we get precisely the estimate
for the critical exponent in (5.1) with the bound

‖T λ
ν ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � A1−θ Bθλ
1
2−θ

3 . (5.6)
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Now it remains to sum over λ.
When θ < 1/4, we shall be able to always sum absolutely. In the cases when θ = 1/4

and particularly θ = 1/3 (note that both appear only in A type singularity with m = 3 and
m = 2 respectively) we shall need the complex interpolation method developed in [16].

5.2 First decompositions and rescalings of��1

As in Sect. 4, we use the κ dilatations associated to the principal face of N (φ), and subse-
quently aLittlewood-Paley argument. Then it remains to prove the Fourier restriction estimate
for the renormalised measures νk of the form

〈νk, f 〉 =
∫

f (x, φ(x, δ)) a(x, δ) dx,

uniformly in k. As was shown in [16, Section 4.1], the function φ(x, δ) has the form

φ(x, δ) := b̃(x1, x2, δ1, δ2)
(
x2 − xm1 ω(δ1x1)

)2 + δ3x
n
1β(δ1x1),

where δ = (δ1, δ2, δ3) := (2−κ1k, 2−κ2k, 2−(nκ1−1)k), and

b̃(x1, x2, δ1, δ2) =
{
b(δ1x1, δ2x2), in case of A type singularity,

x1b1(δ1x1, δ2x2) + δ2m−1
1 x22b2(δ2x2), in case of D type singularity.

(5.7)

Above the functions b, b1, b2, β, and the quantity n are as in Sect. 2.4. Recall that m =
κ2/κ1 ≥ 2 and so δ2 = δm1 . The amplitude a(x, δ) ≥ 0 is a smooth function of (x, δ)
supported at

x1 ∼ 1 ∼ |x2|.
Furthermore, due to the ρ1 cutoff function, which has a κ-homogeneous domain, we may
assume |x2 − xm1 ω(0)| � 1.

Since we can take k arbitrarily large, the parameter δ approaches 0. This implies that
on the domain of integration of a we have that b̃(x1, x2, δ1, δ2) converges as a function of
(x1, x2) to b(0, 0) (resp. b1(0, 0)x1) in C∞ when k → ∞ and φ has A type singularity (resp.
D type singularity). The amplitude a(x, δ) converges in C∞

c to a(x, 0). We also recall that
according to the assumption in Theorem 5.1, we may assume that δ3 = 0 if “n = ∞”, i.e.,
if b0 is flat in the normal form of φ.

The next step is to decompose the (compactly) supported amplitude a into finitely many
parts, each localised near a point v = (v1, v2) for which we may assume that it satisfies
v2 = vm1 ω(0) (by compactness and since in (5.2) we can take ε arbitrarily small). The newly
obtainedmeasureswe denote by νδ and their new amplitudes by the same symbol a(x, δ) ≥ 0:

〈νδ, f 〉 =
∫

f (x, φ(x, δ)) a(x, δ) dx,

where now the support of a(·, δ) is contained in the set |x − v| � 1.
Since we can use Littlewood-Paley decompositions in the mixed norm case (see [22,

Theorem 2], and also [1,8]), we can now decompose the measure νδ in the x3 direction
in the same way as in [16, Section 4.1]. This is achieved by using the cutoff functions
χ1(22 jφ(x, δ)) in order to localise near the part where |φ(x, δ)| ∼ 2−2 j . Then it remains to
prove the mixed norm estimate (4.2) for measures νδ, j with bounds uniform in paramteres
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j ∈ N and δ = (δ1, δ2, δ3) ∈ R
3, δi ≥ 0, i = 1, 2, 3, where the measures νδ, j are defined

through

〈νδ, j , f 〉 :=
∫
x1≥0

f (x, φ(x, δ))χ1(2
2 jφ(x, δ))a(x, δ)dx, (5.8)

where j can be taken sufficiently large and δ sufficiently small. The function 22 jφ(x, δ) can
be written as

22 jφ(x, δ) = 22 j b̃(x1, x2, δ1, δ2)
(
x2 − xm1 ω(δ1x1)

)2 + 22 jδ3x
n
1β(δ1x1).

Following [16], we distinguish three cases: 22 jδ3 � 1, 22 jδ3 � 1, and the most involed
22 jδ3 ∼ 1.

5.3 The case 22jı3 � 1

Aswasdone in [16, Subsection4.1.1],we change coordinates from (x1, x2) to (x1, 22 jφ(x, δ))
and subsequently perform a rescaling (which we adjust to our mixed norm case). Then one
obtains that the mixed norm Fourier restriction for νδ, j is equivalent to the estimate

∫
| f̂ |2dν̃δ, j ≤ C δ

1
2
3 2

j‖ f ‖2Lp(R3)
, f ∈ S(R3), (5.9)

where ν̃δ, j is the rescaled measure

〈ν̃δ, j , f 〉 :=
∫

f (x1, φ(x, δ, j), x2)a(x, δ, j)χ1(x1)χ1(x2)dx .

The function a(x, δ, j) has in δ and j uniformly bounded Cl norms for an arbitrarily large
l ≥ 0, and the phase function is given by

φ(x, δ, j) := b̃1
(
x1,

√
2−2 j x2 + δ3xn1 β̃(δ1x1), δ1, δ2

)
×

√
2−2 j x2 + δ3xn1 β̃(δ1x1) + xm1 ω(δ1x1),

(5.10)

where x1 ∼ 1, x2 ∼ 1, and without loss of generality we may assume b̃1(x1, x2, 0, 0) ∼ 1
and β̃(0) ∼ 1; for details see [16, Subsection 4.1.1]. There the phase function φ(x, δ, j) was
obtained by solving the equation

22 jφ(y, δ) = 22 j b̃(y1, y2, δ1, δ2)
(
y2 − ym1 ω(δ1y1)

)2 − 22 jδ3y
n
1 β̃(δ1y1)

in y2 after substituting x1 = y1 and x2 = 22 jφ(y, δ).
By using the implicit function theorem one can show that when δ → 0, then we have the

following C∞ convergence in the (x1, x2) variables:{
b̃1(x1, x2, δ1, δ2) → b(0, 0)−1/2, in case of A type singularity,

b̃1(x1, x2, δ1, δ2) → (b1(0, 0)x1)−1/2, in case of D type singularity.
(5.11)

In both the A and D type singularity cases we see that b̃1 does not depend on x2 in an essential
way.

Now we proceed to perform a spectral decomposition of ν̃δ, j , i.e., for (λ1, λ2, λ3) dyadic
numbers with λi ≥ 1, i = 1, 2, 3, we define the spectrally localised measures νλ

j through
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ν̂λ
j (ξ1, ξ2, ξ3) :=χ1

(
ξ1

λ1

)
χ1

(
ξ2

λ2

)
χ1

(
ξ3

λ3

)̂
ν̃δ, j (ξ)

=χ1

(
ξ1

λ1

)
χ1

(
ξ2

λ2

)
χ1

(
ξ3

λ3

)

×
∫

e−i(ξ2φ(x,δ, j)+ξ3x2+ξ1x1) a(x, δ, j) χ1(x1) χ1(x2) dx . (5.12)

We slightly abuse notation in the following way. Whenever λi = 1, then the appropriate
factor χ1(

ξi
λi

) in the above expression should be considered as a localisation to |ξi | � 1,
instead of |ξi | ∼ 1.

If we define the operators

T̃δ, j f := f ∗ ̂̃νδ, j , T λ
j f := f ∗ ν̂λ

j ,

then we formally have T̃δ, j = ∑
λ T

λ
j , and according to (5.9) and by applying the “R∗R”

technique we need to prove

‖T̃δ, j‖Lp→Lp′ � δ
1
2
3 2

j . (5.13)

In case when we are able to obtain this estimate by summing absolutely the operator pieces
T λ
j we shall proceed as explained in Sect. 5.1. In this case in order to obtain the (5.3) estimates

we need an L∞ bound for ν̂λ
j , which we shall get from the expression (5.12), and an L∞

bound for νλ
j , which we shall derive next.

Using the equation (5.12) we get by Fourier inversion

νλ
j (x1, x2, x3) = λ1λ2λ3

∫ ̂

χ1(λ1(x1 − y1))

̂

χ1(λ2(x2 − φ(y, δ, j)))

×

̂

χ1(λ3(x3 − y2)) a(y, δ, j) χ1(y1) χ1(y2) dy.

(5.14)

Here we immediately obtain that the L∞ bound on νλ
j is up to a multiplicative constant λ2

by using the first and the third factor within the integral by substituting λ1y1 and λ3y2. On
the other hand, one can easily verify that

∂y2φ(y, δ, j) ∼ δ
−1/2
3 2−2 j � 1,

and hence by substituting z1 = λ1y1, z2 = λ2φ(y, δ, j), and utilising the first two factors
within the integral, we obtain ‖νλ

j ‖L∞ � δ
1/2
3 22 jλ3, and therefore combining these two

estimates we get
‖νλ

j ‖L∞ � min{λ2, δ
1/2
3 22 jλ3}. (5.15)

It remains to estimate the Fourier side; for this we shall need to consider several cases
depending on the relation between λ1, λ2, and λ3. Let us mention that as in [16], here we
shall have no problems when absolutely summing the “diagonal” pieces where λ1 ∼ λ2 ∼
δ
1/2
3 22 jλ3. However, unlike in [16], a case appears which is not absolutely summable. This
will be a recurring theme in this article.

Case 1 λ1 � λ2 or λ1 � λ2, and λ3 � λ2. In this case we can use integration by parts
in both x1 and x2 in (5.12) to obtain

‖ν̂λ
j ‖L∞ �

(
λ3 max{λ1, λ2}

)−N
,
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for any nonnegative integer N . Therefore, after plugging this estimate and the estimate (5.15)
into (5.3) and (5.6), wemay sum in all three parameters λ1, λ2, and λ3, after which one obtains
an admissible estimate for (5.13).

Case 2 λ1 � λ2 or λ1 � λ2, and λ3 � λ2. Here it is sufficient to use integration by parts
in x1 from which we can obtain a fast decay in max{λ1, λ2} and hence in all λi ’s. Again,
after interpolating summation of operators T λ

j is possible in all three parameters.

Case 3 λ1 ∼ λ2 and λ3 � δ
−1/2
3 2−2 jλ2. In this case we see that necessarily λ1 � δ

1
2
3 2

2 j .
Also we note that if we fix say λ1, then there are only finitely many dyadic numbers λ2 such
that λ1 ∼ λ2, and therefore we essentially need to sum in only two parameters in this case.
By stationary phase (and integration by parts when away from the critical point) in x1 and
integration by parts in x2 we get

‖ν̂λ
j ‖L∞ � λ

− 1
2

1

(
δ
− 1

2
3 2−2 j λ1

)−N

.

The better bound in (5.15) is δ
1/2
3 22 jλ3. Therefore (5.6) becomes in our case

‖T λ
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � λ
(θ−1)(N+1/2)
1

(
δ
1
2
3 22 j

)N (1−θ) (
δ
1
2
3 22 j

)θ

λθ
3 λ

1
2−θ

3

� λ
(θ−1)(N+1/2)
1 λ

1
2
3

(
δ
1
2
3 22 j

)N−(N−1)θ

,

and hence by summation in λ3 and taking N = 1 we get

∑
λ3�δ

−1/2
3 2−2 jλ1

‖T λ
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � λ
θ(N+1/2)−N
1

(
δ
1
2
3 22 j

)N−(N−1)θ− 1
2

� λ
3θ/2−1
1

(
δ
1
2
3 22 j

) 1
2

� λ
− 1

2
1

(
δ
1
2
3 22 j

) 1
2

.

Now we obviously get the desired result by summation over λ1 � δ
1
2
3 2

2 j .

Case 4 λ1 ∼ λ2 and λ3 ∼ δ
−1/2
3 2−2 jλ2. Here we essentially sum in only one parameter.

Let us first determine the estimate in (5.6).

Subcase (a) 1 ≤ λ1 � δ
3
2
3 2

4 j . Here we have by stationary phase in x1

‖ν̂λ
j ‖L∞ � λ

−1/2
1 .

Therefore by (5.6) we obtain

‖T λ
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � λ
1
2 (θ−1)
1 λθ

1 λ
1
2−θ

3 = λ
3
2 θ− 1

2
1

(
δ
− 1

2
3 2−2 jλ1

) 1
2−θ

= δ
1
2 θ− 1

4
3 22 jθ− j λ

θ
2
1 .

Subcase (b) λ1 � δ
3
2
3 2

4 j . In this case we have by stationary phase in x1 and subsequently
by the van der Corput lemma (see [16, Lemma 2.1], (i), with M = 2) in the second

‖ν̂λ
j ‖L∞ � δ

3/4
3 22 jλ−1

1 ,
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and hence

‖T λ
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � δ
3
4− 3

4 θ

3 22 j−2 jθ λθ−1
1 λθ

1 δ
1
2 θ− 1

4
3 22 jθ− j λ

1
2−θ

1

= δ
1
2− 1

4 θ

3 2 j λ
θ− 1

2
1 .

Now we sum in λ1 using the estimates obtained in calculations in Subcases (a) and (b):

∑
λ1≥1

‖T λ
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � δ
1
2 θ− 1

4
3 22 jθ− j

(
δ
3
2
3 2

4 j
) θ

2 + δ
1
2− 1

4 θ

3 2 j
(

δ
3
2
3 2

4 j
)θ− 1

2

= 2 · δ
5θ−1
4

3 24 jθ− j ,

and therefore it remains to see whether this is admissible for (5.13):

δ
5θ−1
4

3 24 jθ− j � δ
1
2
3 2 j ⇐⇒ δ

− 3−5θ
4

3 � (22 j )1−2θ .

But recall that 22 jδ3 � 1, i.e., δ−1
3 � 22 j , and notice that 0 < θ ≤ 1/3 implies 0 <

(3 − 5θ)/4 ≤ 1 − 2θ . Hence, it is indeed admissible and we are done with this case.
Case 5 λ1 ∼ λ2 and λ3 � δ

−1/2
3 2−2 jλ2. Here we have by the stationary phase method

in x1 and integration by parts in x2

‖ν̂λ
j ‖L∞ � λ

− 1
2

1 (λ3)
−N ,

and the bound in (5.15) is λ1 ∼ λ2. Interpolating, we obtain (with a different N )

‖T λ
j ‖

L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)
� λ

(3θ−1)/2
1 λ−N

3 . (5.16)

Now if θ < 1/3, then we can easily sum in both λ1 and λ3. Therefore, we assume in the
following that θ = 1/3.

Subcase (a) λ1 � δ
1
2
3 2

2 j . Summing here in λ1 between δ
1/2
3 22 j and δ

1/2
3 22 j λ3, both up

to a multiplicative constant, we get

∑
δ
1
2
3 22 j�λ1�δ

1
2
3 22 jλ3

‖T λ
j ‖

L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)
� λ−N

3 log2

(
δ
1/2
3 22 j λ3

δ
1/2
3 22 j

)
� λ−N+1

3 .

Now we may sum in λ3 to get the desired result.

Subcase (b) 1 ≤ λ1 � δ
1
2
3 2

2 j . Note that here we sum λ3 over all the dyadic numbers

greater than or equal to 1. We can also assume that λ1 � δ
1
2
3 2

j since summation in λ1 in

(5.16) up to δ
1
2
3 2

j gives the bound λ
−N+1/2
3 log2(δ

1
2
3 2

j ) which we can sum in λ3 and then

estimate by δ
1
2
3 2

j . This is admissible for (5.13).

In order to obtain the required bound in the remaining range δ
1
2
3 2

j � λ1 � δ
1
2
3 2

2 j ,
1 ≤ λ3, we need to use the complex interpolation technique developed in [16]. For simplicity
we assume that λ1 = λ2 (we can do this without losing much on generality since for a fixed
λ1 there are only finitely many dyadic numbers λ2 such that λ1 ∼ λ2).
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We need to consider the following function parametrised by the complex number ζ and
the dyadic number λ3:

μ
λ3
ζ = γ (ζ )

(
δ
−3/2
3 2−3 j

)ζ ∑
δ
1/2
3 2 j�λ1�δ

1/2
3 22 j

(λ1)
1−3ζ
2 νλ

j , (5.17)

where γ (ζ ) = 2−3(ζ−1)/2 − 1. The associated convolution operator (given by convolution
against the Fourier transform of the function μ

λ3
ζ ) we denote by T λ3

ζ .
At this point let us mention that whenever we use complex interpolation we shall generi-

cally denote byμζ the consideredmeasure parametrised by the complex number ζ , sometimes
with an additional superscript, as is in the current case. Similarly, the associated operator shall
be denoted by Tζ , up to possibly appearing superscripts.

For ζ = 1/3 we see that

δ
1/2
3 2 j μ

λ3
ζ =

∑
δ
1/2
3 2 j�λ1�δ

1/2
3 22 j

νλ
j ,

which means, by Stein’s interpolation theorem, that it is sufficient to prove

‖T λ3
i t ‖

L2/(2−σ̃ )
x3

(
L1

(x1,x2)

)
→L2/σ̃

x3

(
L∞

(x1,x2)

) � λ−N
3 , ‖T λ3

1+i t‖L2→L2 � 1, (5.18)

for some N > 0, with constants uniform in t ∈ R, and where σ̃ = 1/4 since m = 2, i.e.,
θ = 1/3 (see (5.4)).

The first estimate is trivial in (5.18). Namely, since ν̂λ
j have essentially disjoint supports,

it follows from the formula (5.17) and the estimate on the Fourier transform of νλ
j that

‖μ̂λ3
i t ‖L∞ � λ−N

3 , for any N ∈ N, the implicit constant depending of course on N . Now one
just uses the results from Sect. 3.3 (and in particular Lemma 3.7).

In order to prove the second estimate in (5.18) we shall need to use the oscillatory sum
result Lemma 3.4. It turns out that the term (δ

−3/2
3 2−3 j )ζ in the definition ofμλ3

ζ is redundant,
and that we can actually prove the stronger estimate∥∥∥∥∥∥∥

∑
δ
1/2
3 2 j�λ1�δ

1/2
3 22 j

(λ1)
−1− 3

2 i t νλ
j

∥∥∥∥∥∥∥
L∞

� 1

γ (1 + i t)
= 1∣∣∣2− 3

2 i t − 1
∣∣∣ , (5.19)

uniformly in t .
We start by substituting λ1y1 �→ y1 and λ3y2 �→ y2 in the expression (5.14) and plugging

the obtained expression into the sum on the left hand side of (5.19):

∑
δ
1/2
3 2 j�λ1�δ

1/2
3 22 j

(λ1)
− 3

2 i t
∫∫ ̂

χ1(λ1x1 − y1)

̂

χ1(λ1x2 − λ1φ(y1/λ1, y2/λ3, δ, j))

×

̂

χ1(λ3x3 − y2) a(y1/λ1, y2/λ3, δ, j) χ1(y1/λ1) χ1(y2/λ3) dy1dy2.

Recall that here y1 ∼ λ1 and y2 ∼ λ3 are both positive, and that |φ(λ−1
1 y1, λ

−1
3 y2, δ, j)| ∼ 1.

Therefore we can assume |(x1, x2)| ≤ C for some large constant C , since otherwise we can
use the first two factors within the integral to gain a factor λ−N

1 . As the dominant term in
φ is in the y1 variable and as λ3 is fixed, we shall only concentrate on the y1 integration
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and consider y2/λ3 ∼ 1 as a bounded parameter. Therefore the inner y1 integration, after
substituting λ1x1 − y1 �→ y1, becomes

∑
δ
1/2
3 2 j�λ1�δ

1/2
3 22 j

(λ1)
− 3

2 i t
∫ ̂

χ1(y1)

̂

χ1

(
λ1x2 − λ1φ(x1 − λ−1

1 y1, λ
−1
3 y2, δ, j)

)

× a
(
x1 − λ−1

1 y1, λ
−1
3 y2, δ, j

)
χ1(x1 − λ−1

1 y1)dy1,

where now x1 − λ−1
1 y1 ∼ 1, and therefore |y1| � λ1.

Next, we can restrict ourselves, by using a smooth cutoff function, to the discussion of
the integration domain where |y1| � λε

1 for some small ε, since in the other part by using

the first factor in the integral we could gain a factor of λ−Nε
1 . Since λ1 � δ

1/2
3 2 j � 1 can be

taken arbitrarily large, and hence λ−1
1 y1 arbitrarily small, the relation x1−λ−1

1 y1 ∼ 1 implies
x1 ∼ 1. Therefore by applying a Taylor expansion to the function φ(x1−λ−1

1 y1, λ
−1
3 y2, δ, j)

in the first variable, we obtain

∑
δ
1/2
3 2 j�λ1�δ

1/2
3 22 j

(λ1)
− 3

2 i t
∫ ̂

χ1(y1)

̂

χ1(λ1Q(x1, x2, λ
−1
3 y2, δ, j) + y1 r

(
λ−1
1 y1, x1, λ

−1
3 y2, δ, j)

)

× a
(
x1 − λ−1

1 y1, λ
−1
3 y2, δ, j

)
χ1

(
x1 − λ−1

1 y1
)

χ0
(
λ−ε
1 y1

)
dy1,

where |∂N
1 r | ∼ 1 for any N ≥ 0, and Q(x1, x2, λ

−1
3 y2, δ, j) = x2 − φ(x1, λ

−1
3 y2, δ, j).

Now we note that the first two factors in the integral are essentially a convolution, and
therefore, by using this two factors, one easily obtains that the bound on the integral is
|λ1Q|−N . If |λ1Q| � 1, |λ1Q|−N is a geometric series summable in λ1, and if |λ1Q| � 1,
then we are actually within the scope of Lemma 3.4. Namely, we define the function H as

H(z1, z2, z3; λ−1
3 y2, x1, x2, δ, 2

− j ) :=
∫ ̂

χ1(y1)

̂

χ1(z1 + y1 r(z
1/ε
2 y1, x1, λ

−1
3 y2, δ, j))

× a
(
x1 − z1/ε2 y1, λ

−1
3 y2, δ, j

)
χ1

(
x1 − z1/ε2 y1

)
χ0(z2 y1)dy1.

Note that H does not actually depend on z3, but we need to use it in order to implement
the lower bound on λ1 in the summation (this is realised through the characteristic function
χQ in the definition of F(t) in Lemma 3.4). Tracing back, we note that all the dependencies
in j are actually dependencies in 2− j . All the parameters (λ−1

3 y2, x1, x2, δ, 2− j ) are now
restrained to a bounded set and the C1 norm of H in (z1, z2, z3) is bounded uniformly in all
the (bounded) parameters if (z1, z2, z3) are contained in a bounded set. Therefore by taking

(z1, z2, z3) = (λ1Q(x1, x2, λ
−1
3 y2, δ, j), λ

−ε
1 , δ

1/2
3 2 jλ−1

1 )

and applying Lemma 3.4 with α = −3/2, λ1 = 2l , M = cδ1/23 22 j for a small c > 0

determined by the implicit constant in the summation condition λ1 � δ
1/2
3 22 j , and with

(β1, β2, β3) = (1,−ε,−1), (a1, a2, a3) = (Q(x1, x2, λ
−1
3 y2, δ, j), 1, δ

1/2
3 2 j ),

we obtain the bound (5.19). Note that the lower bound on λ1 in the summation in (5.19) is
realised by taking |z3| � 1. We are done with the case 22 jδ3 � 1.
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5.4 The setting when 22jı3 � 1

As explained in Sect. [16, Subsection 4.2], in this case we use the change of coordinates
(x1, x2) �→ (x1, 2− j (x2 + xm1 ω(δ1x1))) in the expression (5.8) for νδ, j . After renormalis-
ing the measure νδ, j we obtain that the mixed norm Fourier restriction estimate for νδ, j is
equivalent to ∫

| f̂ |2dν̃δ, j ≤ C ‖ f ‖2Lp(R3)
, f ∈ S(R3),

where ν̃δ, j is the rescaled measure

〈ν̃δ, j , f 〉 :=
∫

f (x1, 2
− j x2 + xm1 ω(δ1x1), φ

a(x, δ, j))a(x, δ, j)dx .

As we see, the Fourier restriction inequality is invariant in the mixed norm case with respect
to the scaling we applied. This was interestingly not the case when p1 = p2 = p3.

The function a(x, δ, j) has the form

a(x, δ, j) := χ1(φ
a(x, δ, j))a

(
x1, 2

− j x2 + xm1 ω(δ1x1), δ
)

and the phase function is given by

φa(x, δ, j) :=b̃
(
x1, 2

− j x2 + xm1 ω(δ1x1), δ1, δ2
)
x22 + 22 jδ3x

n
1β(δ1x1), (5.20)

where |b̃(x1, x2, 0, 0)| ∼ 1 and |β(0)| ∼ 1.
Also, we recall (see (5.7)) that when δ → 0, then b̃(x1, x2, δ1, δ2) converges in C∞ to

a nonzero constant if φ has A type singularity, and that it converges up to a multiplicative
constant to x1 if φ has D type singularity. We shall assume without loss of generality that
b̃(x1, x2, δ1, δ2) > 0 since one can just reflect the third coordinate of f in the expression for
the measure ν̃δ, j .

Support assumptions on a(·, δ) from Sect. 5.2 (namely, that the support is contained in
a small neighbourhood of the point (v1, v

m
1 ω(0)) for some v1 > 0) imply that a(·, δ, j) is

supported in a set where x1 ∼ 1 and |x2| � 1.
We again perform a spectral decomposition of ν̃δ, j , i.e., for (λ1, λ2, λ3) dyadic numbers

with λi ≥ 1, i = 1, 2, 3, we consider localised measures νλ
j defined through

ν̂λ
j (ξ) = χ1

(
ξ1

λ1

)
χ1

(
ξ2

λ2

)
χ1

(
ξ3

λ3

) ∫
e−i�(x,δ, j,ξ) a(x, δ, j) χ1(x1) χ1(x2) dx, (5.21)

with the complete phase function � being

�(x, δ, j, ξ) := ξ3φ
a(x, δ, j) + 2− jξ2x2 + ξ2x

m
1 ω(δ1x1) + ξ1x1.

We also introduce the operators T̃δ, j f := f ∗ ̂̃νδ, j and T λ
j f := f ∗ ν̂λ

j . Then we need to
prove:

‖T̃δ, j‖Lp→Lp′ � 1. (5.22)

In most of the cases this will be done in a similar manner as in the previous section. In the
case when 22 jδ3 ∼ 1, θ = 1/3, and λ1 ∼ λ2 ∼ λ3, with which we shall deal in the next
section, we shall need to perform a finer analysis.
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5.5 The case 22jı3 � 1

Here we have the stronger bounds x1 ∼ 1 and |x2| ∼ 1 since φa(x, δ, j) ∼ 1 by (5.20) and
the assumption 22 jδ3 � 1. We also have |∂x2φa(x, δ, j)| ∼ 1 since φa(x, δ, j) is a small
pertubation of b(0, 0)x22 in case of A type singularity, and a small pertubation of b1(0, 0)x1x22
in case of D type singularity.

Taking the inverse transform of (5.21) we get

νλ
j (x) = λ1λ2λ3

∫ ̂

χ1(λ1(x1 − y1))

̂

χ1

(
λ2

(
x2 − 2− j y2 − ym1 ω(δ1y1)

))

×

̂

χ1(λ3(x3 − φa(y, δ, j))) a(y, δ, j) χ1(y1) χ1(y2) dy.

(5.23)

Similarly as in the case 22 jδ3 � 1, we can consider either the substitution (z1, z2) =
(λ1y1, λ22− j y2), or the substitution (z1, z2) = (λ1y1, λ3φa(y, δ, j)) (in order to carry this
out one needs to consider the cases y2 ∼ 1 and y2 ∼ −1 separately). Then one can easily
obtain

‖νλ
j ‖L∞ � min{2 jλ3, λ2}. (5.24)

Next we calculate the L∞ bounds on the Fourier transform by using the expression (5.21).
Here we shall consider only the following case, as one can easily check that in all the

other cases one gets the desired estimate (5.22) by summing absolutely.
Case λ1 ∼ λ2 and 2− jλ2 � λ3 � λ2. By the stationary phase method in x1 and

integration by parts in x2

‖ν̂λ
j ‖L∞ � λ

− 1
2

1 (λ3)
−N ,

and the better bound in (5.24) is λ2.
One is easily convinced that unless θ = 1/3, one can sum absolutely in both parameters.

Henceforth we shall assume θ = 1/3 and use complex interpolation in order to deal with
this case. Here we know that φ has A type singularity and σ̃ = 1/4. For simplicity we shall
again assume that λ1 = λ2.

We consider the following function parametrised by the complex number ζ and the dyadic
number λ3:

μ
λ3
ζ = γ (ζ )

∑
λ3�λ1�2 jλ3

(λ1)
1−3ζ
2 νλ

j ,

where γ (ζ ) = 2−3(ζ−1)/2 − 1. We denote the associated convolution operator by T λ3
ζ . For

ζ = 1/3 we see that

μ
λ3
ζ =

∑
λ3�λ1�2 jλ3

νλ
j .

Hence, by interpolation it suffices to prove∥∥∥T λ3
i t

∥∥∥
L2/(2−σ̃ )
x3

(
L1

(x1,x2)

)
→L2/σ̃

x3

(
L∞

(x1,x2)

) � λ−N
3 ,

∥∥∥T λ3
1+i t

∥∥∥
L2→L2

� 1,

for some N > 0, with constants uniform in t ∈ R.
The first estimate follows right away since ν̂λ

j have essentially disjoint supports, and so

the L∞ estimate for ν̂λ
j implies ‖μ̂λ3

i t ‖L∞ � λ−N
3 , for any N ∈ N.
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We prove the second estimate using Lemma 3.4. We need to prove∥∥∥∥∥∥
∑

λ3�λ1�2 jλ3

(λ1)
−1− 3

2 i t νλ
j

∥∥∥∥∥∥
L∞

� 1∣∣∣2− 3
2 i t − 1

∣∣∣ , (5.25)

uniformly in t .
We first use the substitution (z1, z2) = (y1, φa(y1, y2, δ, j)) in the expression (5.23),

considering the cases y2 ∼ 1 and y2 ∼ −1 separately. In order to solve for (y1, y2) in terms
of (z1, z2), we introduce for a moment intermediary coordinates (ỹ1, ỹ2) = (y1, 2− j y2 +
ym1 ω(δ1y1)). In coordinates (ỹ1, ỹ2) the expression for φa = z2 becomes

22 j b̃(ỹ1, ỹ2, δ1, δ2)(ỹ2 − ỹm1 ω(δ1 ỹ1))
2 + 22 jδ3 ỹ

n
1β(δ1 ỹ1).

Then one can easily see that by solving for ỹ2 in terms of (z1, z2), one gets precisely the
expression (5.10) as in the case 22 jδ3 � 1. Therefore by solving for y2 in terms of (z1, z2)
one gets

y2 = ±b̃1
(
z1,

√
2−2 j z2 − δ3zn1β(δ1z1), δ1, δ2

)
×

√
z2 − 22 jδ3zn1β(δ1z1),

where now both z1 and z2 are positive. We shall from now on consider y2 as a function of
(z1, z2). On the limit j → ∞ and δ → 0 the function y2 = y2(z1, z2, δ, j) converges to
±C

√
z2 for some constant C �= 0 since we are in the θ = 1/3 case (i.e., A type singularity

case); see (5.11).
After applying the just introduced substitution to the expression (5.23) we get

νλ
j (x) = λ1λ2λ3

∫ ̂
χ1(λ1(x1 − z1))

̂
χ1

(
λ2

(
x2 − 2− j y2(z1, z2, δ, j) − zm1 ω(δ1z1)

))

×

̂

χ1(λ3(x3 − z2)) ã1(z, δ, j) χ1(z1) χ1(y2(z1, z2, δ, j)) dz,

where ã1 is the function a multiplied by the Jacobian of the change of variables. Since
|y2| ∼ 1 is equivalent to |z2| ∼ 1, we may rewrite again the above expression as

νλ
j (x) = λ1λ2λ3

∫ ̂

χ1(λ1(x1 − z1))

̂

χ1

(
λ2

(
x2 − 2− j y2(z1, z2, δ, j) − zm1 ω(δ1z1)

))

×

̂

χ1(λ3(x3 − z2)) ã(z, δ, j) χ1(z1) χ1(z2) dz.
(5.26)

Now we substitute λ1z1 �→ z1 and λ3z2 �→ z2 in the expression (5.26), plug it into the sum
(5.25), and obtain

∑
λ3�λ1�2 jλ3

(λ1)
− 3

2 i t
∫ ̂

χ1(λ1x1 − z1)

̂

χ1

(
λ1x2 − 2− jλ1y2

(
λ−1
1 z1, λ

−1
3 z2, δ, j

)

− λ−m+1
1 zm1 ω

(
δ1λ

−1
1 z1

))

×

̂

χ1(λ3x3 − z2) × ã
(
λ−1
1 z1, λ

−1
3 z2, δ, 2

− j
)

χ1

(
λ−1
1 z1

)
χ1

(
λ−1
3 z2

)
dz.

Now we have z1 ∼ λ1, z2 ∼ λ3, and |y2(λ−1
1 z1, λ

−1
3 z2, δ, j)| ∼ 1.
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We can assume |(x1, x2)| ≤ C for some large constant C , since otherwise we can use the
first two factorswithin the integral and gain a factor ofλ−N

1 . Similarly as in the case 22 jδ3 � 1
we shall consider integration in z1 only (and λ−1

3 z2 shall be a bounded parameter), and one
can also use the substitution z1 �→ λ1x1 − z1 to reduce the problem to when |z1| � λε

1 and
x1 ∼ 1. We also introduce ψδ(x1) = xm1 ω(δ1x1). Then it remains to estimate

∑
λ3�λ1�2 jλ3

(λ1)
− 3

2 i t
∫ ̂

χ1(z1)

̂

χ1

(
λ1

(
x2 − ψδ

(
x1 − λ−1

1 z1
)

− 2− jλ1y2
(
x1 − λ−1

1 z1, λ
−1
3 z2, δ, j

)))

× ã
(
x1 − λ−1

1 z1, λ
−1
3 z2, δ, 2

− j
)

χ1

(
x1 − λ−1

1 z1
)

χ0
(
z1λ

−ε
1

)
dz1.

Within the second factor in the integral we can use a Taylor approximation at x1 and obtain

∑
λ3�λ1�2 jλ3

(λ1)
− 3

2 i t
∫ ̂

χ1(z1)

̂

χ1

(
λ1Q

(
x1, x2, λ

−1
3 z2, δ, 2

− j
)

+ z1r
(
λ−1
1 z1, x1, λ

−1
3 z2, δ, 2

− j
))

× ã
(
x1 − λ−1

1 z1, λ
−1
3 z2, δ, 2

− j
)

χ1

(
x1 − λ−1

1 z1
)

χ0
(
z1λ

−ε
1

)
dz1,

where |∂N
1 r | ∼ 1 for N ≥ 0 since the term ψδ is dominant, and Q is a smooth function with

uniform bounds. Now we notice that this form is the same as in the case 22 jδ3 � 1 in the
part where we used complex interpolation, and hence the same proof using the oscillatory
sum lemma can be applied, up to obvious changes such as changing the summation bounds.

5.6 The case 22jı3 ∼ 1

As in [16] we denote

σ := 22 jδ3, b#(x, δ, j) := b̃
(
x1, 2

− j x2 + xm1 ω(δ1x1), δ
)

,

and so σ ∼ 1 and |b#(x, δ, j)| ∼ 1. Therefore the complete phase can be rewritten as

�(x, δ, j, ξ) := ξ1x1 + ξ2x
m
1 ω(δ1x1) + ξ3σ x

n
1β(δ1x1) + 2− j ξ2x2 + ξ3b

#(x, δ, j)x22 .
(5.27)

Recall also that in this case we have the weaker conditions x1 ∼ 1 and |x2| � 1 for the
domain of integration in the integral in (5.21).

We furthermore slightly modify the notation in this case, as it was done in [16]. Namely,
δ shall denote in this section (δ1, δ2) since δ3 appears only in σ . We also note that in this case
there is no A∞ nor D∞ type singularity.

Let us introduce the notation

ψω(y1) = ym1 ω(δ1y1), ψβ(y1) = σ yn1β(δ1y1).

Then, after applying the inverse Fourier transform to (5.21), we may write

νλ
j (x) = λ1λ2λ3

∫ ̂

χ1(λ1(x1 − y1))

̂

χ1

(
λ2

(
x2 − 2− j y2 − ψω(y1)

))

×

̂

χ1(λ3(x3 − b#(y, δ, j)y22 − ψβ(y1))) a(y, δ, j) χ1(y1) χ0(y2) dy.

(5.28)

As was noted in [16, Subsection 4.2.2.], here we have the bounds

‖νλ
j ‖L∞ � λ

1/2
3 min

{
2 jλ

1/2
3 , λ2

}
. (5.29)
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Namely, in the first factor within the integral in (5.28) we can substitute λ1y1 �→ y1, and
afterwards either substitute λ22− j y2 �→ y2 in the second factor, or use the van der Corput
lemma (see [16, Lemma 2.1], (i)) in the third factor with respect to the y2 variable.

As can easily be seen from (5.27) by using integration by parts in x1, if one of λ1, λ2
is considerably larger than any other λi , i = 1, 2, 3, then we can easily gain a sufficiently
strong estimate with which one can sum absolutely in all three parameters λi , i = 1, 2, 3,
the operators T λ

j .
If λ3 is significantly larger than both λ1 and λ2 and φ is of type A, we can also use

integration by parts in x1 in order to get a sufficiently strong estimate. In the case when λ3
is the largest and φ is of type D, then b#(x, δ, j) is approximately x1 in the C∞ sense, and
so in this case and when |x2| ∼ 1, we use integration by parts in x2, and when |x2| � 1
integration by parts in x1. In both parts we get the bound λ−N

3 with which we can obtain a
summable estimate for T λ

j in all three parameters.
As it turns out, in almost all the other possible relations between λi , i = 1, 2, 3, we shall

need complex interpolation if θ = 1/3, or if θ = 1/4 and it is the “diagonal” case, i.e., all
the λi , i = 1, 2, 3, are of approximately the same size. If θ = 1/3 and λi , i = 1, 2, 3, are of
approximately the same size we shall actually need a finer analysis where estimates on Airy
integrals are needed. This will be done in the next section.

Case 1.1. λ1 ∼ λ3, λ2 � λ1, and λ2 ≤ 2 jλ
1/2
1 . On the part where |x2| ∼ 1 we can

use integration by parts in x2 and obtain much stronger estimates sufficient for absolute
summation. When |x2| � 1 we use stationary phase in both variables, and so

‖ν̂λ
j ‖L∞ � λ−1

1 , ‖νλ
j ‖L∞ � λ

1/2
1 λ2.

If θ < 1/3 then we can sum absolutely in the usual way, and if θ = 1/3, we need to use
complex interpolation for indices λ1 ≤ 22 j (the other part can again be obtained by summing
absolutely). When θ = 1/3 interpolation gives

‖T λ
j ‖

L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)
� (λ1λ

−1
2 )−1/3,

and one is easily convinced that we may restrict ourselves to the case 1 � λ1 � 22 j ,
1 � λ2 � λ1. The bound on the operator norm motivates us to define k through 2k :=
λ1λ

−1
2 = 2k1−k2 , where 2k1 = λ1 and 2k2 = λ2. Our goal is to prove that for each k within

the range 1 � 2k � 22 j we have

∥∥∥∥∥∥∥
∑

λ1λ
−1
2 =2k

T λ
j

∥∥∥∥∥∥∥
L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � 2−k/3,

since then we obtain the desired estimate by summation in k.
We shall slightly simplify the proof by assuming that λ1 = λ3. Let us consider the

following function parametrised by the complex number ζ and the integer k:

μk
ζ = 2k

3ζ−1
2 γ (ζ )

∑
λ1λ

−1
2 =2k

(λ1)
3−9ζ
4 νλ

j ,
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where γ (ζ ) = (2−9(ζ−1)/4 − 1)/(2
3
2 − 1). The associated convolution operator (convolution

against the Fourier transform of μk
ζ ) we denote by T k

ζ . It is sufficient to prove
∥∥∥T k

it

∥∥∥
L2/(2−σ̃ )
x3

(
L1

(x1,x2)

)
→L2/σ̃

x3

(
L∞

(x1,x2)

) � 2−k/2, ‖T k
1+i t‖L2→L2 � 1,

with constants uniform in t ∈ R. Recall that σ̃ = 1/4 since m = 2 and θ = 1/3.
The first estimate follows right away. Namely, since ν̂λ

j have supports located at λ, then

by the estimate for the L∞ norm of the function ν̂λ
j we have

|μ̂k
i t (ξ)| � 2−k/2

(1 + |ξ3|)1/4 ,

and now one needs to recall Lemma 3.7.
We prove the second estimate by using Lemma 3.4. We need to prove∥∥∥∥∥∥∥
∑

λ1λ
−1
2 =2k

2k(λ1)
− 3

2 − 9
4 i t νλ

j

∥∥∥∥∥∥∥
L∞

=
∥∥∥∥∥∥

∑
2k�λ1�22 j

λ
−1/2
1 λ−1

2 λ1
− 9

4 i t ν
(λ1,λ12−k ,λ1)
j

∥∥∥∥∥∥
L∞

� 1∣∣∣2− 9
4 i t − 1

∣∣∣ ,
(5.30)

uniformly in t .
After substituting λ1y1 �→ y1 and λ

1/2
1 y2 �→ y2 in the expression (5.28), we get that the

sum on the left hand side of (5.30) is

∑
2k�λ1�22 j

λ
− 9

4 i t
1

∫ ̂
χ1(λ1x1 − y1)

̂
χ1

(
2−kλ1x2 − 2− j−kλ

1/2
1 y2 − 2−kλ1ψω

(
λ−1
1 y1

))

×

̂

χ1

(
λ1x3 − b#

(
λ−1
1 y1, λ

−1/2
1 y2, δ, j

)
y22 − λ1ψβ(λ−1

1 y1)
)

× a
(
λ−1
1 y1, λ

−1/2
1 y2, δ, j

)
χ1

(
λ−1
1 y1

)
χ0

(
λ

−1/2
1 y2

)
dy.

Using the first three factors we can reduce the problem to the case |x | ≤ C for some large
constant C . Now, as we have done in previous instances of complex interpolation, we use the
substitutionλ1x1−y1 �→ y1, conclude that it is sufficient to consider the part of the integration
domain where |y1| ≤ λε

1. In particular then x1 ∼ 1 and we can use Taylor approximation for
ψω and ψβ at x1. Then one gets

∑
2k�λ1≤22 j

λ
− 9

4 i t
1

∫ ̂

χ1(y1)

̂

χ1

(
2−kλ1Qω(x1, x2, δ1) − 2−k y1rω

(
λ−1
1 y1, x1, δ1

)
− 2− j−kλ

1/2
1 y2

)

×

̂

χ1

(
λ1Qβ(x1, x3, δ1) − y1rβ

(
λ−1
1 y1, x1, δ1

)
− b#

(
x1 − λ−1

1 y1, λ
−1/2
1 y2, δ, j

)
y22

)

× a
(
x1 − λ−1

1 y1, λ
−1/2
1 y2, δ, j

)
χ1

(
x1 − λ−1

1 y1
)

χ0

(
λ

−1/2
1 y2

)
χ0

(
λ−ε
1 y1

)
dy,

where |∂N
1 rω| ∼ 1 and |∂N

1 rβ | ∼ 1 for any N ≥ 0. Also note that 2− jλ
1/2
1 � 1.

We may now conclude that it is sufficient to consider the cases when either |A| � 1 or
|B| � 1, where A := 2−kλ1Qω(x1, x2, δ1), B := λ1Qβ(x1, x3, δ1), since otherwise, when
both |A| and |B| are bounded, we could apply Lemma 3.4, similarly as in the case 22 jδ3 � 1,
to the function
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H(z1, z2, z3, z4, z5; x, δ, σ )

:=
∫ ̂

χ1(y1)

̂

χ1

(
z1 − 2−k y1rω

(
z1/ε4 y1, x1, δ1

)
− 2−k z3y2

)

×

̂

χ1

(
z2 − y1rβ

(
z1/ε4 y1, x1, δ1

)
− b#

(
x1 − z1/ε4 y1, z

1/(2ε)
4 y2, δ, j

)
y22

)

× a
(
x1 − z1/ε4 y1, z

1/(2ε)
4 y2, δ, j

)
χ1

(
x1 − z1/ε4 y1

)
χ0

(
z1/(2ε)4 y2

)
χ0(z4y1) dy,

where we would plug in

(z1, z2, z3, z4, z5) =
(
2−kλ1Qω(x1, x2, δ1), λ1Qβ(x1, x3, δ1), 2

− jλ
1/2
1 , λ−ε

1 , 2kλ−1
1

)
.

Note that the upper bounds on z4 and z5 are given by the summation bounds for the parameter
λ1, and that the function H does not depend on z5. Furthermore, the C1 norm of H in
(z1, z2, z3, z4, z5) is bounded since derivatives of Schwartz functions are Schwartz and only
factors of polynomial growth in y1 and y2 appearwhen taking the derivatives. The polynomial
growth in y1 can be dealt with by using the first factor. For the polynomial growth in y2 one
has to consider the cases |y2| � |y1|N and |y2| � |y1|N separately. In the first case we can
obviously again use the first factor, and in the second case we use the third factor inside
which the term b# y22 is now dominant.

Let us now first assume |B| � 1. The first three factors within the integral are behaving
essentially like

̂
χ1(y1)

̂
χ1

(
A − 2−k y1 − 2− j−kλ

1/2
1 y2

) ̂
χ1

(
B − y1 − y22

)
.

Wemay reduce ourselves to the discussion of the part of the integration domain where |y1| �
|B|εB since otherwise, when |y1| � |B|εB , we could use the first factor, obtain the estimate
|B|−NεB for the integral, and then sum this geometric series in λ1. Then |B − y1rβ | ∼ |B|,
and the integral we need to estimate is bounded by

∫ ∣∣∣∣∣

̂

χ1
(
B − y1rβ − y22b

#)
∣∣∣∣∣ dy2 �

∫
|

̂

χ1(B − y1rβ − t)| |t |−1/2dt ≤ C |B|−1/2,

for some constant C . Now one can again sum in λ1.
Let us now assume |B| ≤ CB for some large, but fixed constant CB , and let |A| � CB .

Again, we can reduce ourselves to the part where |y1| � |A|εA , and so |A−2−k y1rω| ∼ |A|.
Therefore if |y2| ≤ |A|1/2, then using the second factor we get that the integral is bounded
(up to a constant) by |A|−N . If |y2| > |A|1/2, then |B − y1rβ − y22b

#| � |A| and so we can
use the third factor, and sum in λ1.

Case 1.2 λ1 ∼ λ3, λ2 � λ1, and λ2 > 2 jλ
1/2
1 . In this case we have the same bound for

the Fourier transform as in Case 1.1. Hence, using ‖νλ
j ‖L∞ � 2 jλ1 and interpolating one

can easily see that we can sum the operator pieces absolutely in this case.
Case 2.1 λ2 ∼ λ3, λ1 � λ2, and λ2 ≤ 22 j . Here again we may use stationary phase in

both variables (and when |x2| ∼ 1 even integration by parts in x2). The estimates are

‖ν̂λ
j ‖L∞ � λ−1

2 , ‖νλ
j ‖L∞ � λ

3/2
2 ,
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and therefore independent of λ1. As in [16] we define

σ
λ2,λ3
j =

∑
λ1�λ2

νλ
j ,

and note that then we can write

̂
σ

λ2,λ3
j = χ0

(
ξ1

λ2

)
χ1

(
ξ2

λ2

)
χ1

(
ξ3

λ3

)̂
ν̃δ, j ,

where χ0 is a smooth cutoff function supported in a sufficiently small neighbourhood of 0.
Therefore, one easily sees that using the same argumentation as for νλ

j we have

‖̂
σ

λ2,λ3
j ‖L∞ � λ−1

2 , ‖σλ2,λ3
j ‖L∞ � λ

3/2
2 .

The operator norm bound is

‖T λ2,λ3
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � λ
(3θ−1)/2
2 .

Hence, if θ < 1/3, then we obtain the desired result by summing the geometric series, and
if θ = 1/3, one needs to use complex interpolation.

Here we skip the proof since its very similar to Case 1.1 after one notes that since we
obtain the function σ

λ2,λ2
j by summation in λ1, the expression (5.28) has to be replaced by

σ
λ2,λ2
j = λ32

∫ ̂
χ0(λ2(x1 − y1))

̂
χ1(λ2(x2 − 2− j y2 − ψω(y1)))

×

̂

χ1(λ2(x3 − b#(y, δ, j)y22 − ψβ(y1))) a(y, δ, j) χ1(y1) χ0(y2) dy.

Recall that the function χ0 of the first factor within the integral in this case has support
contained in [−ε, ε] where the small constant ε depends on the implicit constant in the
relation λ1 � λ2.

Case 2.2 λ2 ∼ λ3, λ1 � λ2, and λ2 > 22 j . Similarly as in the previous case one has

σ
λ2,λ3
j =

∑
λ1�λ2

νλ
j ,

∥∥∥∥̂
σ

λ2,λ3
j

∥∥∥∥
L∞

� λ−1
2 ,

∥∥∥σ
λ2,λ3
j

∥∥∥
L∞ � 2 jλ2,

from which one obtains the desired estimate by summing absolutely.
Case 3.1 λ1 ∼ λ2, λ3 � λ1, and λ

1/2
3 � 2− jλ1. In this case, by stationary phase in both

variables, the estimates are∥∥∥ν̂λ
j

∥∥∥
L∞ � λ

−1/2
1 λ

−1/2
3 ,

∥∥∥νλ
j

∥∥∥
L∞ � λ1λ

1/2
3 . (5.31)

If θ < 1/3 one can again sum the operator pieces absolutely. For θ = 1/3 we see
∥∥∥T λ

j

∥∥∥
L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � 1.

Therefore, in this case we shall need the oscillatory sum lemmawith two parameters (Lemma
3.6) when applying complex interpolation.
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As usual we assume λ1 = λ2. We consider the following function parametrised by the
complex number ζ :

μζ = γ (ζ )
∑
λ1,λ3

λ
1−3ζ
2

1 λ
1−3ζ
4

3 νλ
j ,

where γ (ζ ) is to be defined later as appropriate. The summation is over allλ1 andλ3 satisfying
the conditions of this case (Case 3.1). Notice that we necessarily have λ1 � 1.

We denote by Tζ the associated convolution operator against the Fourier transform of μζ .
Then by interpolation it suffices to prove

‖Tit‖L2/(2−σ̃ )
x3

(
L1

(x1,x2)

)
→L2/σ̃

x3

(
L∞

(x1,x2)

) � 1, ‖T1+i t‖L2→L2 � 1,

with constants uniform in t ∈ R.
In order to prove the first estimate, we need the decay bound (3.5), i.e.,

|μ̂i t (ξ)| � 1

(1 + |ξ3|)1/4 .

But this follows automatically by (5.31), the definition of μζ , and the fact that each ν̂λ
j has

its support located at λ.
It remains to prove the L2 → L2 estimate by showing∥∥∥∥∥∥

∑
λ1,λ3

(λ1)
−1− 3

2 i t (λ3)
− 1

2− 3
4 i t νλ

j

∥∥∥∥∥∥
L∞

� 1

|γ (1 + i t)| , (5.32)

uniformly in t .
After substituting λ1y1 �→ y1 and λ

1/2
3 y2 �→ y2 in the expression (5.28), we get that the

sum on the left hand side of (5.32) is

∑
λ1,λ3

(λ1)
− 3

2 i t (λ3)
− 3

4 i t
∫ ̂

χ1(λ1x1 − y1)

̂

χ1

(
λ1x2 − 2− jλ1λ

−1/2
3 y2 − λ1ψω

(
λ−1
1 y1

))

×

̂

χ1

(
λ3x3 − b#

(
λ−1
1 y1, λ

−1/2
3 y2, δ, j

)
y22 − λ3ψβ

(
λ−1
1 y1

))

× a
(
λ−1
1 y1, λ

−1/2
3 y2, δ, j

)
χ1

(
λ−1
1 y1

)
χ0

(
λ

−1/2
3 y2

)
dy.

Using the first two factors we can restrict ourselves to the case when |(x1, x2)| ≤ C for some
large constant C .

Next, we use the substitution λ1x1−y1 �→ y1, conclude that it is sufficient to consider inte-
gration over |y1| ≤ λε

1 and that we have x1 ∼ 1. Then, after using the Taylor approximation
for ψω and ψβ at x1, one gets

∑
λ1,λ3

(λ1)
− 3

2 i t (λ3)
− 3

4 i t

×
∫ ̂

χ1(y1)

̂

χ1

(
λ1Qω(x1, x2, δ1) − y1rω(λ−1

1 y1, x1, δ1) − 2− jλ1λ
−1/2
3 y2

)

×

̂

χ1

(
λ3Qβ(x1, x3, δ1) − λ3λ

−1
1 y1rβ

(
λ−1
1 y1, x1, δ1

)
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− b#
(
x1 − λ−1

1 y1, λ
−1/2
3 y2, δ, j

)
y22

)

× a

(
x1 − λ−1

1 y1, λ
−1/2
3 y2, δ, j

)
χ1

(
x1 − λ−1

1 y1

)
χ0

(
λ

−1/2
3 y2

)
χ0

(
λ−ε
1 y1

)
dy,

(5.33)

where |∂N
1 rω| ∼ 1 and |∂N

1 rβ | ∼ 1 for any N ≥ 0. Recall that 2− jλ1λ
−1/2
3 � 1 and

λ3λ
−1
1 � 1.
If we define A := λ1Qω(x1, x2, δ1), B := λ3Qβ(x1, x3, δ1), then we need to see what

happens when either |A| � 1 or |B| � 1. Let us assume that CB is a sufficiently large
positive constant.

Subcase |B| > CB and |A| � 1. In this case we shall use the Hölder variant of the one
parameter oscillatory sum lemma (Lemma 3.5) for each fixed λ3. We define

H̃(z1, z2, z3, z4; λ3, x1, x3, δ, 2
− j )

:=
∫ ̂

χ1(y1)

̂

χ1

(
z1 − y1rω

(
z1/ε3 y1, x1, δ1

)
− z2y2

)

×

̂

χ1

(
λ3Qβ(x1, x3, δ1) − z4y1rβ

(
z1/ε3 y1, x1, δ1

)
− b#

(
x1 − z1/ε3 y1, λ

−1/2
3 y2, δ, j

)
y22

)

× a

(
x1 − z1/ε3 y1, λ

−1/2
3 y2, δ, j

)
χ1

(
x1 − z1/ε3 y1

)
χ0

(
λ

−1/2
3 y2

)
χ0(z3y1) dy, (5.34)

where we shall plug in

(z1, z2, z3, z4) = (λ1Qω(x1, x2, δ1), 2
− jλ1λ

−1/2
3 , λ−ε

1 , λ3λ
−1
1 ).

Note that the parameters λ3 and x3 are not bounded.
Applying Lemma 3.5 we get∥∥∥∥∥∥(λ3)

− 1
2− 3

4 i t
∑
λ1

(λ1)
−1− 3

2 i t νλ
j

∥∥∥∥∥∥
L∞

� |H̃(0)| + ∑4
k=1 Ck

|2− 3
2 i t − 1|

� ‖H̃‖L∞ + ∑4
k=1 Ck

|γ (1 + i t)| ,

if we add an appropriate factor to γ (i.e., our γ needs to contain a factor equal to the expression
(3.1)). It remains to prove that one can estimate ‖H̃‖L∞ and the constants Ck , k = 1, 2, 3, 4,
by |B|−εB since then we can sum in λ3.

First let us consider the expression for H̃(z). The first three factors within the integral are
behaving essentially like

̂

χ1(y1)

̂

χ1(z1 − y1 − z2y2)

̂

χ1(B − z4y1 − y22 ).

Since we could otherwise use the first factor and estimate by |B|−εB , we may restrict our
discussion to the part of the integration domain where |y1| � |B|εB . Then we have |B −
z4y1rβ | ∼ |B|, and therefore

∫ ∣∣∣∣∣

̂

χ1
(
B − z4y1rβ − y22b

#)
∣∣∣∣∣ dy2 ≤ 2

∫
|

̂

χ1(B − z4y1rβ − t)| |t |−1/2dt ≤ C |B|−1/2,

for a constant C . Hence, we have the required bound for ‖H̃‖L∞ .
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Next, we see that taking derivatives in z1 and z4, doesn’t change in an essential way the
actual form of H̃ since we only obtain polynomial growth in y1 which can be absorbed by
χ̂1(y1), and since derivatives of Schwartz functions are again Schwartz. Therefore, we may
estimate Ck , k = 1, 4, in the same way as we estimated the original integral.

Permuting the order of the variables zk , k = 1, 2, 3, 4 appropriately, we see from the
expressions for Ck in Lemma 3.5 that we may now assume z1 = z4 = 0. Taking the
derivative in z3 we obtain several terms. We deal with the terms where a y1 factor appears in
the same way as we have dealt with in the previous cases. It remains to deal with the term
where y22 factor appears, that is

− z−1+1/ε
3 (∂1b

#)
(
x1 − z1/ε3 y1, λ

−1/2
3 y2, δ, j

)

×
∫ ̂

χ1(y1)

̂

χ1

(
z1 − y1rω

(
z1/ε3 y1, x1, δ1

)
− z2y2

)

× (

̂

χ1)
′ (λ3Qβ (x1, x3, δ1) − z4y1rβ

(
z1/ε3 y1, x1, δ1

)
− b#

(
x1 − z1/ε3 y1, λ

−1/2
3 y2, δ, j

)
y22

)

× a
(
x1 − z1/ε3 y1, λ

−1/2
3 y2, δ, j

)
χ1

(
x1 − z1/ε3 y1

)
χ0

(
λ

−1/2
3 y2

)
χ0(z3y1) y1y

2
2 dy.

This integral can be estimated by

∫ ∣∣∣∣∣χ0

(
λ

−1/2
3 y2

)
(

̂

χ1)
′ (B − y22b

#)
∣∣∣∣∣ |z3|−1+1/ε y22dy2. (5.35)

The key is now to notice that if we fix λ3, then λ1 goes over the set where λ1 � λ3. In
particular, since we shall plug in z3 = λ−ε

1 , we have |z3|−1+1/ε � λ−1+ε
3 . Therefore using

the first factor in (5.35) we obtain the bound for (5.35) to be

∫ ∣∣∣∣∣
( ̂

χ1

)′ (
B − y22b

#)
∣∣∣∣∣ |y2|εdy2,

for some different ε. Now one subsitutes t = y22b
# and easily obtains an admissible bound

of the form |B|−εB .
For the last constant C2 we shall need to consider the Hölder norm. Here we may assume

z1 = z3 = z4 = 0. The derivative in z2 can be estimated by the integral

∫ ∣∣∣

̂

χ1(y1) (

̂

χ1)
′(−y1rω(0, x1, δ1) − z2y2)

̂

χ1(B − b#(x1, λ
−1/2
3 y2, δ, j)y

2
2 ) y2

∣∣∣dy.
We shall now consider only the part where y2 ≥ 0 and z2 ≥ 0, as other cases can be treated
in the same way. Then substituting t = y22 one gets that the estimate for ∂z2 H̃ is

∫∫ ∣∣∣

̂

χ1(y1) (

̂

χ1)
′ (−y1rω − z2t

1/2) ̂

χ1(B − tb#)
∣∣∣dy1dt .

From this form it is obvious that we may now restrict ourselves to the part of the integration
domain where |y1| � |B|εB and |t | ∼ |B| by using the first and the third factor respectively.
If we denote this integration domain by UB , then the bound for the C2 constant in Lemma
3.5 reduces to estimating
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|z2|1−ϑ

∫ 1

0

∫∫
UB

∣∣∣

̂

χ1(y1) (

̂

χ1)
′(−y1rω − sz2t

1/2)

̂

χ1(B − tb#)
∣∣∣dy1dtds

= |z2|−ϑ

∫ z2

0

∫∫
UB

∣∣∣

̂

χ1(y1) (

̂

χ1)
′(−y1rω − s̃t1/2)

̂

χ1(B − tb#)
∣∣∣dy1dtds̃,

where ϑ represents the Hölder exponent. If |z2| ≤ |B|−1/4, then we obviously have the
required estimate. Therefore, let us assume |z2| > |B|−1/4. Then |z2|−ϑ < |B|ϑ/4 and so
integration on the domain |s̃| ≤ |B|−1/4 is not a problem. On the other hand, if |s̃| > |B|−1/4,
then |s̃t1/2| � |B|1/4 by our assumption on the size of t . Thus we may use the Schwartz
property of the second factor in the integral and obtain the required estimate. This finishes
the proof of the case where |B| � 1 and |A| � 1.

Subcase |B| > CB and |A| � 1. The preceding argumentation for the estimate of ‖H̃‖L∞
is also valid in this case since we have not used the second factor, and so we see that we can
always estimate the integral appearing in (5.33) by |B|−1/2. It remains to gain a decay in |A|.

If we furthermore assume |A| ≤ |B|, then |B|−1/2 ≤ |B|−1/4|A|−1/4, and so we can sum
in both λ1 and λ3. Therefore we may consider |A| > |B| next, and reduce our problem using
the first factor in the integral in (5.33) to the part where |y1| � |A|εA . Then |z1 − y1rω| =
|A− y1rω| ∼ |A|, and so we can gain an |A|−εA using the second factor in the integral, unless
|z2y2| ∼ |A|. But since |z2| � 1, we see that |z2y2| ∼ |A| implies |y2| � |A|, and so we can
use finally the third factor where then the y22 term is dominant.

Subcase |B| ≤ CB and |A| > C2
B . We can reduce ourselves to the integration over

|y1| � |A|εA , and so |A − y1rω| ∼ |A|. Therefore, if |y2| ≤ |A|1/2, then using the second
factor we get that the integral is bounded (up to a constant) by |A|−1. If |y2| > |A|1/2, then
|B − z4y1rβ − y22b

#| � |A|, and so we can use the third factor, and sum in both λ1 and λ3
(since |B| < |A|).

Subcase |B| ≤ CB and |A| ≤ C2
B . Finally, if both |A| ≤ C2

B and |B| ≤ CB are bounded,
we use the two parameter oscillatory sum lemma. We define the function

H(z1, . . . , z6; x1, δ, 2− j ) :=
∫ ̂

χ1(y1)

̂

χ1

(
z1 − y1rω

(
z1/ε3 y1, x1, δ1

)
− z5y2

)

×

̂

χ1

(
z2 − z6y1rβ

(
z1/ε3 y1, x1, δ1

)
− b#

(
x1 − z1/ε3 y1, z4y2, δ, j

)
y22

)

× a

(
x1 − z1/ε3 y1, z4y2, δ, j

)
χ1

(
x1 − z1/ε3 y1

)
χ0(z4y2) χ0(z3y1) dy,

where we shall plug in

(z1, z2, z3, z4, z5, z6) =
(

λ1Qω(x1, x2, δ1), λ3Qβ(x1, x3, δ1), λ
−ε
1 , λ

−1/2
3 , 2− jλ1λ

−1/2
3 , λ3λ

−1
1

)
.

The associated exponents are (α1, α2) = (−3/2,−3/4) and(
β1
1 , β

1
2

)
= (1, 0),

(
β2
1 , β

2
2

)
= (0, 1),

(
β3
1 , β

3
2

)
= (−ε, 0),

(
β4
1 , β

4
2

)
= (0,−1/2),

(
β5
1 , β

5
2

)
= (1,−1/2),

(
β6
1 , β

6
2

)
= (−1, 1),

and so for each k the pairs (α1, α2) and (βk
1 , β

k
2 ) are linearly independent. TheC

2 norm of H
is uniformly bounded in the bounded paramteres (x1, δ, 2− j ) by arguing in the same manner
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as in Case 1.1. Therefore we may apply Lemma 3.6 if we take γ to contain a factor equal to
the expression (3.3) (with θ = 1/3). Recall that γ needs to contain also the factor from the
case where we applied the one parameter lemma (i.e., where we had |B| > CB and |A| � 1).

Case 3.2. λ1 ∼ λ2, λ3 � λ1, and λ
1/2
3 � 2− jλ1. Here we have the same bound for the

Fourier transform as in the previous case. Therefore

‖ν̂λ
j ‖L∞ � λ

−1/2
1 λ

−1/2
3 , ‖νλ

j ‖L∞ � 2 jλ3.

One easily shows that in the case λ1 > 22 j the operator pieces are always summable. The
other case is when 2 j � λ1 ≤ 22 j and here we have summability if and only if θ < 1/3.
For θ = 1/3, we have

‖T λ
j ‖

L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � 2 j/3(λ21λ
−1
3 )−1/6.

This operator norm estimate motivates us to define k through 2k := λ21λ
−1
3 = 22k1−k3 , where

2k1 = λ1 and 2k3 = λ3. Our goal is to prove for each k that∥∥∥∥∥∥∥
∑

λ21λ
−1
3 =2k

T λ
j

∥∥∥∥∥∥∥
L
p3
x3

(
L
p1
(x1,x2)

)
→L

p′
3

x3

(
L
p′
1

(x1,x2)

) � 2(2ε−1)(k−2 j)/3

for some 0 ≤ ε < 1/2. Since k ≥ 2 j , we then obtain the desired result by summation in k.
We shall slightly simplify the proof by assuming that λ1 = λ2. Let us consider the

following function parametrised by the complex number ζ and k:

μk
ζ = γ (ζ )

∑
λ21λ

−1
3 =2k

(λ3)
1−3ζ
2 νλ

j ,

where γ (ζ ) = 2−3(ζ−1)/2 − 1. Let T k
ζ denote the associated convolution operator. By inter-

polation, we need to prove∥∥∥∥T k
it

∥∥∥∥
L2/(2−σ̃ )
x3 (L1

(x1,x2)
)→L2/σ̃

x3 (L∞
(x1,x2)

)

� 2−k/4,

∥∥∥∥T k
1+i t

∥∥∥∥
L2→L2

� 2 j 2ε(k−2 j), (5.36)

for some 0 ≤ ε < 1/2, and with constants uniform in t ∈ R. The first estimate follows right
away since ν̂λ

j have supports located at λ, and therefore by the L∞ estimate for the Fourier

transform of νλ
j we have

|μ̂k
i t (ξ)| � 2−k/4

(1 + |ξ3|)1/4 .

We prove the second estimate by using the oscillatory sum lemma. We need to prove∥∥∥∥∥∥∥
∑

λ21λ
−1
3 =2k

λ
−1− 3

2 i t
3 νλ

j

∥∥∥∥∥∥∥
L∞

=

∥∥∥∥∥∥∥
∑

λ21λ
−1
3 =2k

2kλ−2−3i t
1 ν

(λ1,λ1,2−kλ21)

j

∥∥∥∥∥∥∥
L∞

� 2 j 2ε(k−2 j)∣∣∣2− 3
2 i t − 1

∣∣∣ ,
(5.37)

uniformly in t .
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Let us discuss first the index ranges for λ1, λ3, and 2k = λ21λ
−1
3 . Recall that we are

in the case where 2 j � λ1 ≤ 22 j and 1 ≤ λ3 � λ212
−2 j , which implies λ3 � λ1 and

22 j � 2k ≤ 24 j . Let us now fix any k satisfying 22 j � 2k ≤ 24 j , and let us consider all
(λ1, λ3) such that 2k = λ21λ

−1
3 . We shall use the oscillatory sum lemma by summing in λ1

and consider λ3 = λ212
−k as a function of λ1 and k. The conditions for λ1 are then

2 j � λ1 ≤ 22 j , 1 ≤ λ212
−k � 22 j ,

which determine an interval of integers I j,k for k1 (recall λ1 = 2k1 ).
After substituting λ1y1 �→ y1 and 2− jλ1y2 �→ y2 in the expression (5.28), we get that

the sum on the left hand side of (5.37) is

2 j
∑

k1∈I j,k
λ−3i t
1

∫ ̂

χ1(λ1x1 − y1)

̂

χ1(λ1x2 − y2 − λ1ψω(λ−1
1 y1))

×

̂

χ1(λ3x3 − 22 j−kb#(λ−1
1 y1, 2

jλ−1
1 y2, δ, j)y

2
2 − λ3ψβ(λ−1

1 y1))

× a(λ−1
1 y1, 2

jλ−1
1 y2, δ, j) χ1(λ

−1
1 y1) χ0(2

jλ−1
1 y2) dy.

Since using the first two factors we can get a decay in λ1, we can restrict ourselves to
the case |(x1, x2)| � 1. When |x3| � 1, then by using the third factor we can gain a factor
λ−1
3 = (λ212

−k)−1, which sums up to a number of size∼ 1, by the definition of I j,k . Therefore
we may and shall assume |x | � 1.

Next, we use the substitution λ1x1 − y1 �→ y1, conclude that it is sufficient to consider
the part of the integration domain where |y1| ≤ λε

1, and that we may assume x1 ∼ 1. If we
use Taylor approximation for ψω and ψβ at x1, then one gets

2 j
∑

k1∈I j,k
λ−3i t
1

∫ ̂

χ1(y1)

̂

χ1(λ1Qω(x1, x2, δ1) − y1rω(λ−1
1 y1, x1, δ1) − y2)

×

̂

χ1

(
λ3Qβ(x1, x3, δ1) − λ3λ

−1
1 y1rβ(λ−1

1 y1, x1, δ1)

− 22 j−kb#
(
x1 − λ−1

1 y1, 2
jλ−1

1 y2, δ, j

)
y22

)

× a
(
x1 − λ−1

1 y1, 2
jλ−1

1 y2, δ, j
)

χ1

(
x1 − λ−1

1 y1
)

χ0

(
2 jλ−1

1 y2
)

χ0
(
λ−ε
1 y1

)
dy,

where |∂N
1 rω| ∼ 1 and |∂N

1 rβ | ∼ 1 for any N ≥ 0. Note that 22 j−k � 1 and λ3λ
−1
1 � 1,

and therefore it is sufficient to consider the cases when either |A| � 1 or |B| � 1, where
A := λ1Qω(x1, x2, δ1), B := λ3Qβ(x1, x3, δ1), since otherwise we may use the oscillatory
sum lemma. We remind that λ3 = λ212

−k is considered to be a function of λ1.
We concentrate on the first three factors within the integral:

̂

χ1(y1)

̂

χ1(A − rωy1 − y2)

̂

χ1

(
B − λ3λ

−1
1 rβ y1 − 22 j−kb# y22

)
,

where rω, rβ , and b# are all converging in C∞ to constant functions of magnitude ∼ 1 when
λ1 → ∞, δ → 0, and j → ∞.

Let us denote by M a large enough positive number.
Subcase |B| > M3 and |A| ≤ M . Then because of the first factor we may restrict our

discussion to the integration domain where |y1| < |B|1/3. There |A − rωy1| ≤ C |B|1/3 for
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some C . We may then furthermore assume |y2| ≤ 2C |B|1/3, since otherwise we could use
the second factor. Now, if we take M sufficiently large, we have∣∣∣λ3λ−1

1 rβ y1 − 22 j−kb# y22

∣∣∣ � B,

and so we can now use the third factor’s Schwartz property to obtain a factor |B|−1, which
gives summability in λ1.

Subcase |A| > M . Here we shall need a slightly finer analysis. Note that using the
first factor within the integral we can actually reduce ourselves to the integration within the
slightly narrower range |y1| < |A|ε210ε(2 j−k) for some small ε (see (5.36)), and therefore
we can also assume using the second factor that

y2 ∈ [A − C |A|ε210ε(2 j−k), A + C |A|ε210ε(2 j−k)],
for some C .

Now if |A|ε210ε(2 j−k) ≤ 1, we obtain that the bound on the integral is |A|2ε220ε(2 j−k)

(the area of the surface over which we integrate), and this is summable in λ1 over the set
|A|ε210ε(2 j−k) ≤ 1.

Therefore, we assume |A|ε210ε(2 j−k) > 1, that is |A|1/10 > 2k−2 j . Now, if M is suffi-
ciently large, we then have by the restraint on y2 that |A|2/2 < y22 < 2|A|2, and hence

C1|A|2−1/10 <

∣∣∣22 j−kb# y22

∣∣∣ < C2|A|2.
Therefore if either |B| � C1|A|2−1/10 or |B| � C2|A|2, we can simply use the Schwartz
property of the third factor within the integral. Let us now assume that B is within the
range |B| ∈ [C1|A|2−1/10,C2|A|2]. We denote δA := |A|ε210ε(2 j−k) and recall δA > 1 and
|y1| < δA ≤ |A|ε. Using the third factor within the integral we can reduce our problem to
when ∣∣∣B − λ3λ

−1
1 rβ y1 − 22 j−kb# y22

∣∣∣ ≤ δA.

The implicit function theorem implies that

y22 ∈
[
2k−2 j |B| − C ′2k−2 jδA, 2k−2 j |B| + C ′2k−2 jδA

]

⇐⇒ y22
2k−2 j |B| ∈

[
1 − C ′δA

|B| , 1 + CδA

|B|
]

,

for some C ′. Since δA ≤ |A|1/10 and |B| > |A|3/2, we can conclude

|y2| ∈
[
(2k−2 j |B|)1/2 − |A|−1/2, (2k−2 j |B|)1/2 + |A|−1/2

]
,

that is, y2 goes over a set with length at most C ′|A|−1/2. This implies that our integral is
bounded by C ′|A|−1/2+ε, which is summable in λ1.

Case 4.1. λ1 ∼ λ2 ∼ λ3 and λ1 > 22 j . As explained in a bit more detail at the end of
[16, Chapter 4] here we have∥∥∥ν̂λ

j

∥∥∥
L∞ � λ

−1/2
1 λ

−1/3
1 = λ

−5/6
1 ,

∥∥∥νλ
j

∥∥∥
L∞ � 2 jλ1,

from which one gets by interpolation∥∥∥T λ
j

∥∥∥
L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)
� 2 jθλ

(5θ−2)/6
1 .
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One can show that the operator pieces in this case are summable if and only if θ ≤ 1/4. For
θ = 1/3, we can only sum in the range λ1 > 26 j and so it remains to see what happens when
22 j < λ1 ≤ 26 j . We denote the sum of the associated operator pieces for this remaining
range by T V I I

δ, j . We shall deal with this case in the following section.

Case 4.2. λ1 ∼ λ2 ∼ λ3 and λ1 ≤ 22 j . Here only the space-side estimate changes and
we have ∥∥∥ν̂λ

j

∥∥∥
L∞ � λ

−5/6
1 , ‖νλ

j ‖L∞ � λ
3/2
1 . (5.38)

By interpolation one obtains∥∥∥T λ
j

∥∥∥
L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)
� λ

(4θ−1)/3
1 .

We denote the sum of the associated operator pieces by T V I I I
δ, j . The above estimate is obvi-

ously summable if and only if θ < 1/4. For θ = 1/4 we one can use complex interpolation
and obtain the desired estimate in the usual manner.We deal with θ = 1/3 in the next section.

6 Airy-type analysis in the case hlin(�) < 2

In this section we begin with the proof of the estimates for T V I I
δ, j and T V I I I

δ, j when θ = 1/3,
i.e., when φ is of type An−1 with m = 2 and finite n ≥ 5. In this case σ̃ = 1/4. We shall first
recall some of the notation from [16, Chapter 5]. From now on δ shall be a triple (δ0, δ1, δ2)

with δ0 = 2− j , we use λ to denote the common value λ1 = λ2 = λ3, and define

s1 := ξ1

ξ3
, s2 := ξ2

ξ3
, s3 := ξ3

λ
, s := (s1, s2, s3), s′ := (s1, s2).

Then |si | ∼ 1 for i = 1, 2, 3, and we have

ξ = λs3(s1, s2, 1), �(x, δ, j, ξ) = λs3�̃(x, δ, σ, s1, s2),

where � is the total phase from (5.27) and

�̃(x, δ, j, s1, s2) = s1x1 + s2x
2
1ω(δ1x1) + σ xn1β(δ1x1) + δ0s2x2 + x22b0(x, δ).

Recall that according to Case 4.1 and Case 4.2 from the last section of the previous section
we have ∥∥∥T λ

j

∥∥∥
L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)
� λ1/9,

and we can assume λ � 1. Furthermore, recall that σ ∼ 1, and that

b#(y, δ1, δ2, j) = b0(y, δ) := ba(δ1y1, δ0δ2y2),

where ba is the same function as in Sect. 2.4. It is the function b from Sect. 2.4 expressed in
adapted coordinates. Recall thatβ(0) �= 0,ω(0) �= 0, and b0(y, 0) = ba(0, 0) = b(0, 0) �= 0
for all y.

In terms of s the expression for the Fourier transform of νλ
δ := νλ

j becomes

χ1(s1s3)χ1(s2s3)χ1(s3)
∫

e−iλs3�̃(y,δ,σ,s1,s2)ã(y, δ)dy,
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where the amplitude ã(y, δ) := a(y, δ)χ1(y1)χ0(y2) is a smooth function supported in the
sets where x1 ∼ 1 and |x2| � 1 and whose derivatives are uniformly bounded with respect
to δ. If we denote

T λ
δ f := f ∗ ν̂λ

δ ,

then the estimate we need to prove is
∥∥∥∥∥∥∥

∑
1�λ≤δ−6

0

T λ
δ

∥∥∥∥∥∥∥
L
p3
x3 (L

p1
(x1,x2)

)→L
p′
3

x3 (L
p′
1

(x1,x2)
)

� 1

for
(

1
p′
1
, 1
p′
3

)
=

(
1
6 ,

1
4

)
. This estimate corresponds to the estimate of the sum T V I I

δ, j + T V I I I
δ, j

considered in the last section of the previous section (Case 4.1 and Case 4.2).

6.1 First steps and estimates

Our first step is to use the stationary phase in the y2 variable, ignoring the part away from
the critical point where we can obtain absolutely summable estimates. Then, as explained in
[16, Section 5.1], one obtains by using the implicit function theorem that the critical point
xc2 can be written as

xc2 = δ0s2Y2(δ1x1, δ2, δ0s2),

where Y2 is smooth, Y2(0, 0, 0) = −1/(2b(0, 0)), and |Y2| ∼ 1. Now one defines

�(x1, δ, σ, s′) := �̃(x1, x
c
2, σ, s′),

so we can write

ν̂λ
δ (ξ) = λ−1/2χ1(s1s3)χ1(s2s3)χ1(s3)

∫
e−iλs3�(y1,δ,σ,s1,s2)a0(y1, s, δ; λ)dy1,

where a0 is smooth and uniformly a classical symbol of order 0 with respect to λ, and where

�(y1, δ, σ, s1, s2) = s1y1 + s2y
2
1ω(δ1y1) + σ yn1β(δ1y1) + (δ0s2)

2Y3(δ1y1, δ2, δ0s2)
(6.1)

for a smooth Y3 with Y3(0, 0, 0) = −1/4b(0, 0) �= 0.
Recall that as a0 is a classical symbol we can express it as

a0(y1, s, δ; λ) = a00(y1, s, δ) + λ−1a10(y1, s, δ; λ),

where a00 does not depend on λ and a10 has the same properties as a0. This induces the
decomposition

νλ
δ = νλ

δ,a00
+ νλ

δ,a10
.

The function νλ

δ,a10
associated to the amplitude a10 has Fourier transform bounded by λ−3/2

and the L∞ norm on the space side is bounded by λ3/2 (by the same reasoning as used to
obtain (5.38)). From these two bounds we can easily get the required estimate for the operator
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associated to νλ

δ,a10
. Therefore from now on, by an abuse of notation, wemay and shall assume

that νλ
δ has an amplitude which does not depend on λ, i.e.,

ν̂λ
δ (ξ) = λ−1/2χ1(s1s3)χ1(s2s3)χ1(s3)

∫
e−iλs3�(y1,δ,σ,s1,s2)a0(y1, s, δ)dy1.

The next step is to localise the integration in the above integral to a small neighbourhood
of the point where the second derivative vanishes. For δ = 0 this point is

xc1 = xc1(0, σ, s2) :=
(

− 2ω(0)

n(n − 1)σβ(0)
s2

)1/(n−2)

.

Away from this point the estimate for the integral is at worst λ−1, by stationary phase or
integration by parts.

We now briefly explain how to deal with the part away from xc1. Recall from Case 4
in the last section of the previous section that the space bound on νλ

δ is 2 jλ = δ−1
0 λ if

λ > 22 j = δ−2
0 . Now using the results from Sect. 3.3 one can easily see that we can sum

absolutely in λ > δ−2
0 . The case when λ ≤ δ−2

0 has to be dealt with complex interpolation
as in the Case 4.2 from the last section of the previous section.

Hence we may now consider only the part near the critical point xc1. Abusing the notation
again, we shall denote the part near the critical point xc1 by νλ

δ too. Following [16] we shall
furthermore assume without loss of generality

− 2ω(0)

n(n − 1)σβ(0)
= 1, s2 ∼ 1, (6.2)

and that in (6.1) we are integrating over an arbitrarily small neighbourhood of xc1. There-

fore, we now have xc1(0, σ, s2) = s1/(n−2)
2 , |� ′′′(xc1(δ, σ, s2), δ, σ, s1, s2)| ∼ 1, (by implicit

function theorem) xc1 = xc1(δ, σ, s2) depends smoothly in all of its variables, and

� ′′(xc1(δ, σ, s2), δ, σ, s1, s2) = 0.

We restate [16, Lemma 5.2.] how to locally develop � at the critical point of � ′, i.e., the
point xc1. Its proof is straightforward.

Lemma 6.1 The phase � given by (6.1) can be developed locally around xc1 in the form

�(xc1(δ, σ, s2) + y1, δ, σ, s1, s2) = B0(s
′, δ, σ ) − B1(s

′, δ, σ )y1 + B3(s2, δ, σ, y1)y
3
1 ,

where B0, B1, and B3 are smooth functions, and where |B3(s2, δ, σ, y1)| ∼ 1. In fact, we
can write (after taking (6.2) into account)

xc1(δ, σ, s2) = s1/(n−2)
2 G1(s2, δ, σ ),

B0(s
′, δ, σ ) = s1s

1/(n−2)
2 G1(s2, δ, σ ) − sn/(n−2)

2 G2(s2, δ, σ ),

B1(s
′, δ, σ ) = −s1 + s(n−1)/(n−2)

2 G3(s2, δ, σ ),

B3(s
′, δ, σ, 0) = s(n−3)/(n−2)

2 G4(s2, δ, σ ),
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where Gk, k = 1, 2, 3, 4, are all smooth and of the following forms at δ = 0:

G1(s2, 0, σ ) = 1, G2(s2, 0, σ ) = n2 − n − 2

2
σβ(0),

G3(s2, 0, σ ) = n(n − 2)σβ(0), G4(s2, 0, σ ) = n(n − 1)(n − 2)

6
σβ(0),

G5(s2, 0, σ ) = (n − 1)(n − 2)

2
σβ(0),

(6.3)

where we defined G5 := G1G3 − G2. One can easily check that Gk �= 0 for each k =
1, 2, 3, 4, 5, since n ≥ 5.

By applying the lemma we may now write

ν̂λ
δ (ξ) = λ−1/2χ1(s1s3)χ1(s2s3)χ1(s3)e

−iλs3B0(s′,δ,σ )

×
∫

e−iλs3(B3(s2,δ,σ,y1)y31−B1(s′,δ,σ )y1)a0(y1, s, δ)χ0(y1)dy1,
(6.4)

where χ0 is supported here in a sufficiently small neighbourhood of the origin and a0 denotes
a slightly different function than before, but with the same relevant properties. We now
decompose ν̂λ

δ further, motivated by Lemma 3.1, into parts where λ2/3|B1(s′, δ, σ )| � 1
near the Airy cone, and (2−lλ)2/3|B1(s, δ, σ )| ∼ 1 away from the Airy cone, for M0 ≤ 2l ≤
λ/M1, where M0, M1 are sufficiently large. The Airy cone itself is given by the equation
B1 = 0.

In order to obtain such a decomposition we take smooth cutoff functions χ0 and χ1 such
that χ0 is supported in a sufficiently large neighbourhood of the origin and χ1(t) is supported
in a neighbourhood of the points−1 and 1 and away from the origin. We furthermore assume
that ∑

l∈Z
χ1(2

−2l/3t) = 1

on R\{0}. Then we can define

̂νλ
δ,Ai (ξ) := χ0(λ

2/3B1(s
′, δ, σ ))ν̂λ

δ (ξ), ν̂λ
δ,l(ξ) := χ1((2

−lλ)2/3B1(s
′, δ, σ ))ν̂λ

δ (ξ),

(6.5)

where M0 ≤ 2l ≤ λ/M1, so that

νλ
δ (ξ) = νλ

δ,Ai +
∑

M0≤2l≤λ/M1

νλ
δ,l .

We denote the associated convolution operators, convolving against the Fourier transform of
νλ
δ,Ai and νλ

δ,l , by T λ
δ,Ai and T λ

δ,l . Note that the size of the number M0 is related to how large
of a neighbourhood of 0 the cutoff function χ0 covers in the first equation of (6.5), and the
size of the number M1 is related to how small of a neighbourhood of 0 we take in (6.4) for
the y1 variable.

6.2 Estimates near the Airy cone

FromLemma 3.1, (a), we get that the bound on the Fourier transform of νλ
δ,Ai is λ−5/6. Unlike

in [16] we shall need to use complex interpolation to be able to estimate the part T λ
δ,Ai . The

proof here is actually similar to certain cases when hlin(φ) ≥ 2 in [16, Subsection 8.7.1].
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We consider the following function parametrised by ζ ∈ C:

μζ = γ (ζ )
∑

1�λ≤δ−6
0

λ
7−21ζ
12 νλ

δ,Ai ,

where γ (ζ ) = (2−7(ζ−1)/4 − 1)/(27/6 − 1). The associated operator acting by convolution
against the Fourier transform of μζ is denoted by Tζ . By interpolation, that it is sufficient to
prove

‖Tit‖L2/(2−σ̃ )
x3 (L1

(x1,x2)
)→L2/σ̃

x3 (L∞
(x1,x2)

)
� 1, ‖T1+i t‖L2→L2 � 1,

with constants uniform in t ∈ R.
In order to prove the first estimate, we need the decay bound (3.5), i.e.,

|μ̂i t (ξ)| � 1

(1 + |ξ3|)1/4 .

This follows right away by using the estimate on the Fourier transform of νλ
δ,Ai , the definition

of μζ , and the fact that each ̂νλ
δ,Ai has its support located at (λ, λ, λ).

We prove the second L2 → L2 estimate by using Lemma 3.4. We need to prove
∥∥∥∥∥∥∥

∑
1�λ≤δ−6

0

λ− 7
6− 7

4 i t νλ
δ,Ai

∥∥∥∥∥∥∥
L∞

� 1∣∣∣2− 7
4 i t − 1

∣∣∣ , (6.6)

uniformly in t .
As in [16, Subsection 5.1.1] we now apply Fourier inversion using the formulas (6.4),

(6.5), and the form of the integral from Lemma 3.1, (a). Then after changing coordinates in
the integration from (ξ1, ξ2, ξ3) to (s1, s2, s3) one gets

νλ
δ,Ai (x) = λ13/6

∫
e−iλs3(B0(s′,δ,σ )−s1x1−s2x2−x3)χ0(λ

2/3B1(s
′, δ, σ ))

× g(λ2/3B1(s
′, δ, σ ), λ−1/3, δ, σ, s)χ̃1(s)ds1ds2ds3,

where g is the smooth function from Lemma 3.1, (a), whose derivatives of any order are
uniformly bounded, and where

χ̃1(s) := χ1(s1s3)χ1(s2s3)χ1(s3)s
2
3 .

We may now also restrict ourselves to the situation where |x | � 1, since otherwise we can
get a factor λ−N by integrating by parts.

Finally, we change coordinates from s′ = (s1, s2) to (z, s2), where z := λ2/3B1(s′, δ, σ ),
and so by Lemma 6.1 we have

z = λ2/3(−s1 + s(n−1)/(n−2)
2 G3(s2, δ, σ )),

that is

s1 = s(n−1)/(n−2)
2 G3(s2, δ, σ ) − λ−2/3z.
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Thus we obtain

νλ
δ,Ai (x) = λ3/2

∫
e−iλs3�(z,s2,x,δ,σ )g

(
z, λ−1/3, δ, σ, s(n−1)/(n−2)

2 G3(s2, δ, σ ) − λ−2/3z, s2, s3
)

× χ̃1

(
s(n−1)/(n−2)
2 G3(s2, δ, σ ) − λ−2/3z, s2

)
χ0(z)dzds2ds3,

(6.7)

where by using the expressions for B0(s′, δ, σ ) and G5(s2, δ, σ ) from Lemma 6.1 one gets

�(z, s2, x, δ, σ ) := sn/(n−2)
2 G5(s2, δ, σ ) − s(n−1)/(n−2)

2 G3(s2, δ, σ )x1 − s2x2 − x3

+ λ−2/3z
(
x1 − s1/(n−2)

2 G1(s2, δ, σ )
)

.
(6.8)

We may shorten the expression in (6.7) to

νλ
δ,Ai (x) = λ3/2

∫
e−iλs3�(z,s2,x,δ,σ ) g̃

(
z, s1/(n−2)

2 , s3, λ
−1/3, δ, σ

)
dzds2ds3, (6.9)

where g̃ is smooth with uniformly bounded derivatives and localising the integration domain
to |z| � 1, s2 ∼ |s3| ∼ 1.

Next, we notice that �(z, sn−2
2 , x, 0, σ ) is a polynomial in s2 by (6.3). We therefore

substitute s0 = s1/(n−2)
2 and denote

�̃(z, s0, x, δ, σ ) = �
(
z, s1/(n−2)

0 , x, δ, σ
)

.

We are interested in localising the integration in (6.9) to the place where ∂2s0�̃ = 0 and

∂3s0�̃ �= 0. In order to carry out this reduction we need another simple lemma. It will be
applied to the first three terms of

�̃(z, s0, x, 0, σ ) = sn0G5(s
n−2
0 , 0, σ ) − sn−1

0 G3(s
n−2
0 , 0, σ )x1 − sn−2

0 x2 − x3

+ λ−2/3z(x1 − s0G1(s
n−2
0 , 0, σ )),

which constitute a polynomial in s0 whose derivatives have at most two zeros not located at
the origin. Note that the last term in the above expression is arbitrarily small.

Lemma 6.2 Assume n ≥ 5 and consider a number x0 ∼ 1. Let us define a polynomial of the
form

P(x) := xn−2(x2 + bx + c) = xn + bxn−1 + cxn−2

whose second derivative can be written as

P ′′(x) := n(n − 1)xn−4(x − x0 + ε)(x − x0 − ε).

If |ε| ≤ c1 for a sufficiently small constant c1, then |P ′(x)| ∼ 1 on a neighbourhood of x0,
which depends on c1, but not on ε. On the other hand, if |ε| > c2 for some c2 > 0 and
x0 − ε ∼ 1 (resp. x0 + ε ∼ 1), then |P ′′′(x0 − ε)| ∼c2 1 (resp. |P ′′′(x0 + ε)| ∼c2 1).

Proof One needs to express b and c in terms of x0 and ε, after which it is easy to prove the
lemma by a straightforward calculation. ��

From the first conclusion of Lemma 6.2 we see that if the zeros of ∂2s0�̃ which are away
from the origin are too close to each other, then we may use stationary phase or integration
by parts to obtain a factor of λ−1/2 (or better) and so the left hand side of (6.6) is absolutely

123



Mixed norm Strichartz-type estimates for hypersurfaces... 1585

summable. Therefore wemay assume that there is at least some distance between the zeros of
∂2s0�̃. From the second conclusion of Lemma 6.2 we obtain |∂3s0�̃| ∼ 1 in a neighbourhood
of those zeros within the integration domain (i.e., for those located at ∼ 1).

Thus, we may now use the implicit function theorem and obtain a parametrisation of a
zero of the first three terms of ∂2s0�̃:

∂2s0

(
sn0G5

(
sn−2
0 , δ, σ

)
− sn−1

0 G3

(
sn−2
0 , δ, σ

)
x1 − sn−2

0 x2
)

,

which we shall denote by sc0(x, δ, σ ), and assume it is located away from the origin. All such
zeros can be treated the same way.

We may assume we integrate arbitrarily near the zero sc0(x, δ, σ ) since again we could
otherwise use stationary phase or integration by parts. We may then use a Taylor approxima-
tion for the first three terms in �̃ at sc0(x, δ, σ ) and obtain after translating s0 �→ s0 + sc0 that
the phase has the form

�̃1(z, s0, x, δ, σ ) = B̃0(x, δ, σ ) − B̃1(x, δ, σ )s0 + B̃3(s0, x, δ, σ )s30

+ λ−2/3zG̃1(s0, x, δ, σ ) − λ−2/3zG̃2(s0, x, δ, σ )s0

with functions B̃i , i = 0, 1, 3, being smooth and |B̃3| ∼ 1. The functions G̃i are also smooth
and have the property that they do not depend on s0 when δ = 0. Note also G̃2(s0, x, 0, σ ) =
1.

Hence, we have obtained an Airy type integral with an error term of size at most λ−2/3.
We denote this newly obtained function by ν̃λ

δ,Ai :

ν̃λ
δ,Ai (x) = λ3/2

∫
e−iλs3�̃1(z,s0,x,δ,σ ) g̃1(z, s0, s3, λ

−1/3, δ, σ )dzds0ds3,

where g̃1 has the same properties as g̃, except that now the integration is over the domain
where |z| � 1, |s3| ∼ 1, and |s0| � 1.

We now prove (6.6) for the remaining piece ν̃λ
δ,Ai . Let us begin with the case when

A := λ2/3 B̃1(x, δ, σ )

satisfies |A| � 1.We claim that in this casewe can estimate the function ν̃λ
δ,Ai byλ7/6|A|−1/4,

which is absolutely summable in λ in the expression (6.6) for μ1+i t . We need a modification
of Lemma 3.1, (b), which is straightforward to prove.

Lemma 6.3 Consider the integral∫
eiλ(−b1s0+b3(s0)s30+λ−2/3g(s0))a0(s0, λ

−1/3)χ0(s0)ds0,

where all the appearing functions are smooth with uniformly bounded derivatives, and
|b3(s0)| ∼ 1. This integral can be estimated up to a constant by λ−1/3|λ2/3b1|−1/4 if
|λ2/3b1| � 1, λ � 1, and χ0 is supported in a sufficiently small neighbourhood of the
origin.

Therefore after one applies the above lemma, our problem is reduced to the case |A| � 1.
Our next step is to substitute s0 �→ λ−1/3s0. Then one gets

ν̃λ
δ,Ai (x) = λ7/6

∫
e−iλs3�̃1(z,λ−1/3s0,x,δ,σ ) g̃1(z, λ

−1/3s0, s3, λ
−1/3, δ, σ )dzds0ds3,
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where

λ�̃1(z, λ
−1/3s0, x, δ, σ ) = λB̃0(x, δ, σ ) − As0 + B̃3(λ

−1/3s0, x, δ, σ )s30

+ λ1/3zG̃1(λ
−1/3s0, x, δ, σ ) − zG̃2(λ

−1/3s0, x, δ, σ )s0,

and the new integration domain is |z| � 1, |s3| ∼ 1, and |s0| � λ1/3.
Using a Taylor approximation we can rewrite the G̃1 term as

G̃1(λ
−1/3s0, x, δ, σ ) = G̃1(0, x, δ, σ ) + λ−1/3s0r(λ

−1/3s0, x, δ, σ ).

where |∂N
t r(t, x, δ, σ )| �N 1 for any N ≥ 0 since G̃1 is constant when δ = 0. Therefore,

if we denote G̃3 = G̃2 − r , then G̃3 has the same properties as G̃2 (in particular G̃3 ∼ 1),
and we can write

λ�̃1(z, λ
−1/3s0, x, δ, σ ) = λB̃0(x, δ, σ ) − As0 + B̃3(λ

−1/3s0, x, δ, σ )s30

+ λ1/3zG̃1(0, x, δ, σ ) − zG̃3(λ
−1/3s0, x, δ, σ )s0.

From this expression one sees that we can get an integrable factor of size (1+ |s0|2)−N/2

in the amplitude of ν̃λ
δ,Ai by using integration by parts in s0, i.e., we can assume

∣∣∣∂α1
z ∂α2

s0 ∂α3
s3

(
g̃1(z, λ

−1/3s0, s3, λ
−1/3, δ, σ )

)∣∣∣ � Cα1,α2,α3(1 + |s0|2)−N/2,

as the unbounded terms in the expression for the s0 derivative of λ�̃1(z, λ−1/3s0, x, δ, σ )

vanish.
Let us denote by

E := λB̃0(x, δ, σ ), F := λ1/3G̃1(0, x, δ, σ ),

the unbounded terms of the phase. We need to reduce our problem to the case when |E | � 1
and |F | � 1 since then we can simply apply the oscillatory sum lemma.

We begin with the case |F | � 1. Let us consider the z integration. The factor tied with z
in the phase is

F − G̃3(λ
−1/3s0, x, δ, σ )s0 = F − G̃3s0,

where G̃3(λ
−1/3s0, x, δ, σ ) ∼ 1. We may therefore assume we are integrating over the area

in s0 where

|F − G̃3s0| � |F |ε,

since otherwise we can use integration by parts in z and gain a factor |F |−ε. In particular, in
this case we have |s0| ∼ |F |. But then the integrable factor (1+ |s0|2)−N/2 is of size |F |−N

and so we obtain the required bound.
It remains to consider the case |F | � 1 and |E | � 1. The idea in this case is to use

integration by parts in s3, which enables us to localise the integration to the set where |λ�̃1| �
|E |ε. If we now take |E | sufficiently large compared to both |A| and |F |, then we see that
|λ�̃1| � |E |ε forces |s0| ∼ |E |1/3. But this implies that the integrable factor (1+|s0|2)−N/2

is of size |E |−N/3, which is what we wanted. We are done with the part near the Airy cone.
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6.3 Estimates away from the Airy cone: first considerations

Recall from (6.4) and (6.5) that we may write

ν̂λ
δ,l(ξ) = λ−1/2χ1((2

−lλ)2/3B1(s
′, δ, σ ))

× χ1(s1s3)χ1(s2s3)χ1(s3)e
−iλs3B0(s′,δ,σ )

×
∫

e−iλs3(B3(s2,δ,σ,y1)y31−B1(s′,δ,σ )y1)a0(y1, s, δ)χ0(y1)dy1,

where 1 � 2l � λ. Applying Lemma 3.1, (b), we obtain

ν̂λ
δ,l(ξ) = λ−1/2χ1((2

−lλ)2/3B1(s
′, δ, σ ))χ1(s1s3)χ1(s2s3)χ1(s3)e

−iλs3B0(s′,δ,σ )

×
(
s−1/2
3 λ−1/2|B1(s

′, δ, σ )|−1/4

× a(|B1(s
′, δ, σ )|1/2, s; s3λ|B1(s

′, δ, σ )|3/2) eis3λ|B1(s′,δ,σ )|3/2q(|B1(s′,δ,σ )|1/2,s2)

+ (s3λ|B1(s
′, δ, σ )|)−1 E(s3λ|B1(s

′, δ, σ )|3/2, |B1(s
′, δ, σ )|1/2, s)

)
,

where we have slightly simplified the situation by ignoring the sign of the function q since
both q+ and q− appearing in Lemma 3.1, (b), can be treated in the same way. Note that q
depends in the second variable only in s2 and not s since the same is true for B3, as can
be readily seen from the proof of Lemma 3.1, (b). Recall that a, q , and E are smooth, and
|q| ∼ 1. E and all its derivatives have Schwartz decay in the first variable, and a is a classical
symbol of order 0 in the s3λ|B1(s′, δ, σ )|3/2 variable.

We denote

z = (2−lλ)2/3B1(s
′, δ, σ ),

and slightly change a and E in order to absorb the s3 factors. Thenwe can rewrite the previous
expression for ν̂λ

δ,l as

ν̂λ
δ,l(ξ) = λ−1/2χ1(z)χ1(s1s3)χ1(s2s3)χ1(s3)e

−iλs3B0(s′,δ,σ )

×
(
λ−1/2(2−lλ)1/6|z|−1/4a((2lλ−1)1/3|z|1/2, s; 2l |z|3/2) e−is32l |z|3/2q((2lλ−1)1/3|z|1/2,s2)

+ λ−1(2−lλ)2/3|z|−1 E(2l |z|3/2, (2lλ−1)1/3|z|1/2, s)
)
.

From this we easily see that
∥∥∥∥ν̂λ

δ,l

∥∥∥∥
L∞

� λ−5/62−l/6.

We plan to use complex interpolation and the two parameter oscillatory sum lemma
(Lemma 3.6). We consider the following function parametrised by ζ ∈ C:

μζ = γ (ζ )
∑

1�λ≤δ−6
0

M0≤2l≤λ/M1

λ
7−21ζ
12 2

1−3ζ
6 l νλ

δ,l ,

for an appropriate γ (ζ ) to be chosen later as in (3.3). We shall also use the one parameter
oscillatory sum lemma for certain subcases, and therefore we shall need to add appropriate
factors to γ of the form 3.1. The operator associated to μζ we denote by Tζ .
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By Stein’s interpolation theorem, it is sufficient to prove

‖Tit‖L2/(2−σ̃ )
x3 (L1

(x1,x2)
)→L2/σ̃

x3 (L∞
(x1,x2)

)
� 1, ‖T1+i t‖L2→L2 � 1,

with constants uniform in t ∈ R.
In order to prove the first estimate we need the decay bound (3.5), i.e.,

|μ̂i t (ξ)| � 1

(1 + |ξ3|)1/4 .

This bound follows easily by the L∞ bound on the Fourier transform of νλ
δ,l , the definition

of μζ , and the fact that each ν̂λ
δ,l has its support located at (λ, λ, λ).

It remains to prove the L2 → L2 estimate∥∥∥∥∥∥∥∥∥∥

∑
1�λ≤δ−6

0
M0≤2l≤λ/M1

λ− 7
6− 7

4 i t 2− 1
3 l− 1

2 ilt νλ
δ,l

∥∥∥∥∥∥∥∥∥∥
L∞

� 1∣∣∣γ (1 + i t)
∣∣∣ , (6.10)

uniformly in t .
We split the function νλ

δ,l as

νλ
δ,l = νE

λ,l + νaλ,l ,

where

ν̂E
λ,l(ξ) = λ−5/62−Nl χ̃1(s, z)e

−iλs3B0(s′,δ,σ ) E
(
2l |z|3/2, (2lλ−1)1/3|z|1/2, s

)

and

ν̂aλ,l(ξ) = λ−5/62−l/6χ̃1(s, z)e
−iλs3B0(s′,δ,σ ) a

(
(2lλ−1)1/3|z|1/2, s; 2l |z|3/2

)

× e−is32l |z|3/2q((2lλ−1)1/3|z|1/2,s2),

with appropriate (and in each of the above expressions possibly different) χ̃1 smooth cutoff
functions localising to the area where |s1| ∼ s2 ∼ |s3| ∼ |z| ∼ 1. In the expression for νE

λ,l

we obtain the factor 2−Nl by using the Schwartz property in the first variable of E , and so
the function E is slightly different than before, but with the same properties.

6.4 Estimates away from the Airy cone: the estimate for �E�,l

The function νE
λ,l can be treated similarly as the function νλ

δ,Ai in the case near the Airy cone.

We first apply the inverse of the Fourier transform to ν̂E
λ,l , and then substitute s = (s1, s2, s3)

for ξ = (ξ1, ξ2, ξ3). Recall that z = (2−lλ)2/3B1(s′, δ, σ ) and so by Lemma 6.1 one has

s1 = s(n−1)/(n−2)
2 G3(s2, δ, σ ) − (2lλ−1)2/3z.

We plug in this expression for s1 and also substitute s0 for s
1/(n−2)
2 . In the end one gets

νE
λ,l(x) = λ3/22−Nl

∫
e−iλs3�2(z,s0,x,δ,σ )g2

(
2l , (2lλ−1)1/3, z, s0, s3, δ, σ

)
dzds0ds3,
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where g2 is smooth and has all of its derivatives Schwartz in the first variable, and where

�2(z, s0, x, δ, σ ) := sn0G5

(
sn−2
0 , δ, σ

)
− sn−1

0 G3

(
sn−2
0 , δ, σ

)
x1 − sn−2

0 x2 − x3

+ (2lλ−1)2/3z
(
x1 − s0G1

(
sn−2
0 , δ, σ

))
.

The only difference compared to the phase in (6.8) is that there |z| � 1, while here |z| ∼ 1,
and instead of the λ−2/3 factor in front of z in the phase in (6.8), here we have the much
larger factor (2lλ−1)2/3.

We can now reduce to the situation where |x | � 1. Namely, if |x1| � 1 then we integrate
by parts in z to gain a factor (λ(2lλ−1)2/3)−N . Otherwise if |x1| � 1 and |x2| � 1, then
we integrate by parts in s0 to obtain a factor λ−N , and if |(x1, x2)| � 1 and |x3| � 1, we
integrate by parts in s3 to again gain a factor of λ−N .

Next, recall that (2lλ−1)2/3 � 1. Therefore, we may use again Lemma 6.2 and argue
similarly aswe did in the case near theAiry cone to reduce ourselves to a small neighbourhood
of a point where the second derivative in s0 of the first three terms of �2 vanishes and
|∂3s0�2| ∼ 1. By the implicit function theorem we may parametrise this point as sc =
sc(x, δ, σ ):

∂2s0

∣∣
s0=sc

(
sn0G5

(
sn−2
0 , δ, σ

)
− sn−1

0 G3

(
sn−2
0 , δ, σ

)
x1 − sn−2

0 x2 − x3
)

= 0.

The point sc depends smoothly on (x, δ, σ ).
Translating to the point sc and localising to a small neighbourhood we obtain a new

function ν̃E
λ,l of the form

ν̃E
λ,l(x) = λ3/22−Nl

∫
e−iλs3�2(z,s0,x,δ,σ ) g̃2

(
2l , (2lλ−1)1/3, z, s0, s3, δ, σ

)
dzds0ds3,

where g̃2 has the same properties as g2, except that now |s0| � 1. The new phase is

�̃2(z, s0, x, δ, σ ) = B̃0(x, δ, σ ) − B̃1(x, δ, σ )s0 + B̃3(s0, x, δ, σ )s30

+ (2lλ−1)2/3zH0(s0, x, δ, σ ) − (2lλ−1)2/3zH1(s0, x, δ, σ )s0,

where |B̃3| ∼ 1 and H1 ∼ 1. Additionally, one can see that H0 and H1 do not depend on s0
when δ = 0.

The next step is to develop the whole phase �̃2 at the point where ∂2s0�̃2 = 0. The reason
for this is that the factor (2lλ−1)2/3 is too large, and we cannot apply something similar
to Lemma 6.3. Let us denote the critical point of ∂s0�̃2 by sc0 = sc0(x, δ, σ, (2lλ−1)2/3z).
Note that sc0 is identically 0 when either δ = 0 or the variable refering to (2lλ−1)2/3z is 0.
Therefore, we can actually write

sc0 = (2lλ−1)2/3z s̃c0(x, δ, σ, (2lλ−1)2/3z),

where s̃c0 is smooth and identically 0 when δ = 0.
If we shorten ρ = (2lλ−1)2/3z, then the expression for the first derivative of �̃2 at the

point sc0 has the form

∂s0�̃2
(
z, sc0, x, δ, σ

) = (
sc0

)2
b

(
sc0, x, δ, σ

) − ρh
(
sc0, x, δ, σ

) − B̃1(x, δ, σ )

= ρ2 (
s̃c0

)2
b

(
sc0, x, δ, σ

) − ρh
(
sc0, x, δ, σ

) − B̃1(x, δ, σ ),

where h(sc0, x, δ, σ ) ∼ 1 and |b(sc0, x, δ, σ )| ∼ 1 for some smooth functions h and b.
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One can easily check that |∂3s0�̃2(z, s0, x, δ, σ )| ∼ 1. Therefore, developing the phase �̃2

at the point sc0, we may write

�̃3(z, s0, x, δ, σ ) = b0(ρ) −
[
b1 + ρb̃1(ρ)

]
s0 + b3(s0, ρ)s30 , (6.11)

where we suppressed the dependence of b0, b1, b̃1, and b3 on the bounded parameters
(x, δ, σ ). Here we know that b̃1 ∼ 1 and |b3| ∼ 1. We may again assume |s0| � 1 as
on the other part where |s0| � 1 we could use integration by parts or stationary phase and
obtain an expression which when plugged into (6.10) would be absolutely summable in both
λ and 2l .

Finally, we develop the term b0 at 0 and substitute s0 �→ λ−1/3s0. Then

λ�̃3(z, s0, x, δ, σ ) = λ
(
b00 + ρb10 + ρ2b̃0(ρ) − λ−1/3

[
b1 + ρb̃1(ρ)

]
s0 + λ−1b3(λ

−1/3s0, ρ)s30

)

= λb00 + λ1/322l/3b10z + λ−1/324l/3b̃0(ρ)z2

−
[
λ2/3b1 + 22l/3b̃1(ρ) z

]
s0 + b3(λ

−1/3s0, ρ)s30 ,

and the remaining part of the function ν̃E
λ,l is of the form

˜̃νE
λ,l(x) = λ7/62−Nl

∫
e−iλs3�̃3(z,λ−1/3s0,x,δ,σ ) g3

(
2l , (2lλ−1)1/3, z, λ−1/3s0, s3, δ, σ

)
dzds0ds3,

(6.12)

where again g3 has the sameproperties as g̃2 and in the area of integrationwehave |s0| � λ1/3.
Now, we first note that we can assume λ−1/324l/3 � 1 since otherwise we can easily sum

in both λ and l using the factor 2−Nl for a sufficiently large N . Next, we introduce

A := λb00, B := λ1/322l/3b10, D := λ2/3b1.

We need to reduce our problem to the situation when A, B, and D are bounded since then we
can simply apply the (one parameter) oscillatory sum lemma. When this is the case, the size
of the integration domain in (6.12) is not a problem since, if we split the integration domain
to the areas where |s0| � 2l/3 and |s0| � 2l/3, the first part has domain size 2l/3, which is
admissible, and in the second part the amplitude is integrable in s0 after using integration by
parts.

Case |D| � 1. We consider two subcases. The first subcase is when
∣∣∣λ2/3b1 + 22l/3b̃1(ρ) z

∣∣∣ = |D + 22l/3b̃1(ρ) z| > 1.

Here we can actually use the Airy integral lemma (Lemma 3.1, (b)) applied to s0 integration
before substituting s0 �→ λ−1/3s0, i.e., using the phase form (6.11), and obtain the bound

∥∥∥ ˜̃νE
λ,l

∥∥∥
L∞ � λ7/62−lN

∫
χ1(z)|D + 22l/3b̃1(ρ) z|−εdz,

for some constant ε > 0. After plugging into (6.10) this is absolutely summable in λ. Namely,
in the cases |D| � 22l/3 and |D| � 22l/3 we get the estimate |D|−ε , which is summable,
and the case |D| ∼ 22l/3 happens for only O(1) λ’s, which depend on l.

The second subcase is when

|D + 22l/3b̃1(ρ) z| ≤ 1.
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Then necessarily again |D| ∼ |22l/3|, and this can happen only for O(1) λ’s. By (6.12) we
have

‖ ˜̃νE
λ,l‖L∞ � λ7/62−lN ,

for maybe some different N . The factor λ7/6 is retained since in this case we can get an
integrable factor in s0 by using integration by parts. After plugging into (6.10) we may sum
over the O(1) λ’s and then in l.

Case |D| � 1, and |A| � 1 or |B| � 1. The case |A| ∼ |B| can again happen only for
O(1) number of λ’s and so we can assume that either |A| � |B| or |B| � |A|. Both cases
can be treated equally and so we can assume without loss of generality that |A| � |B|. Then
we can rewrite the phase in the form

λ�̃3(z, s0, x, δ, σ ) = B0(λ, 2l , z) − B1(λ, 2l , z)s0 + b3(λ
−1/3s0, ρ)s30 ,

where we know that for l sufficiently large |B0| ∼ |A|, |B1| ∼ 22l/3, and |b3| ∼ 1.
In order to simplify the situation a bit, we develop the amplitude function g3 into a sum of

tensor products, separating the s3 variable from the others. It is sufficient to consider each of
these tensor product terms separately, and so we can assume without loss of generality that

g3
(
2l , (2lλ−1)1/3, z, λ−1/3s0, s3, δ, σ

)
= g̃3

(
2l , (2lλ−1)1/3, z, λ−1/3s0, δ, σ

)
χ1(s3),

where g̃3 has the same properties as g3, except it does not depend on s3.
Then, after using the Fourier transform in s3, the integral in s0 for the function ˜̃νE

λ,l is of
the form∫ ̂

χ1

(
B0 − B1s0 + b3(λ

−1/3s0, ρ)s30

)
g̃3

(
2l , (2lλ−1)1/3, z, λ−1/3s0, δ, σ

)
ds0, (6.13)

where we have suppressed the variables of B0 and B1. One can easily check that this integral
is bounded by 2l/3 by considering the situations where |s0| � 2l/3 and |s0| � 2l/3 separately.

This is in fact true if we use any L1 ∩ L∞ function instead of

̂

χ1.
If now |B0 − B1s0 +b3(λ−1/3s0, ρ)s30 | � |A|ε, by using the Schwartz property we obtain

the bound

‖ ˜̃νE
λ,l‖L∞ � λ7/62−lN |A|−ε,

with a different N , which after plugging into (6.10) is summable.
Next, if |B0 − B1s0 + b3(λ−1/3s0, ρ)s30 | � |A|ε, then

B1s0 − b3(λ
−1/3s0, ρ)s30 ∈ [B0 − c|A|ε, B0 + c|A|ε],

for some small c > 0. In particular, the fact |B0| ∼ A gives us

|B1s0 − b3(λ
−1/3s0, ρ)s30 | ∼ |A|.

First we consider integration over the domain |s0| � 2l/3. In this case we get

|B1s0 − b3(λ
−1/3s0, ρ)s30 | � 2l ,

which in turn implies that |A| � 2l . But this means we can trade a 2−l factor for a |A|−1

and so we are done. The second part of the integral is where |s0| � 2l/3, which implies
|B1s0 − b3(λ−1/3s0, ρ)s30 | ∼ |s0|3, i.e., |s0| ∼ |A|1/3. But as the derivative of

B1s0 − b3(λ
−1/3s0, ρ)s30
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is of size |s0|2 ∼ |A|2/3, then if we substitute t = B1s0 − b3(λ−1/3s0, ρ)s30 in the integral
(6.13), the Jacobian is of size |A|−2/3 and so the same |A|−2/3 bound holds for the integral.
We are done with the estimate for the function νE

λ,l .

6.5 Estimates away from the Airy cone: the estimate for �a�,l

Again substituting first s for ξ , then s1 for z, and then s0 for s
1/(n−2)
2 , we obtain the expression

νaλ,l(x) = λ3/22l/2
∫

e−iλs3�4(z,s0,x,δ,σ ) g4
(
(2lλ−1)1/3, z, s0, s3, δ, σ ; 2l

)
dzds0ds3,

where g4 is smooth in all of its variables and a classical symbol of order 0 in the last 2l

variable, and where

�4(z, s0, x, δ, σ ) := sn0G5

(
sn−2
0 , δ, σ

)
− sn−1

0 G3

(
sn−2
0 , δ, σ

)
x1 − sn−2

0 x2 − x3

+ (2lλ−1)2/3z
(
x1 − s0G1

(
sn−2
0 , δ, σ

))

+ (2lλ−1)z3/2q0((2
lλ−1)1/3z1/2, s0).

We assume z ∼ 1 since the case z ∼ −1 can be treated in the same way.
We can restrict ourselves to the case |x | � 1 arguing in the same way as in the previous

case. In fact,we can restrict ourselves to the case |x1−s0G1(s
n−2
0 , δ, σ )| � 1, since otherwise

we can use integration by parts in z. From this it follows |x1| ∼ 1. Since G1(s
n−2
0 , 0, σ ) = 1,

we can also localise the integration in s0 to an arbitrarily small interval containing x1.

Lemma 6.4 Define the polynomial

P(s0; x1, x2, σ ) := (n − 1)(n − 2)

2
σβ(0)sn0 − n(n − 2)σβ(0)x1s

n−1
0 − x2s

n−2
0 .

If |x1| ∼ σ ∼ |β(0)| ∼ 1, n ≥ 5, and |x2| � 1, then

(n − 3)P ′(x1; x1, x2, σ ) = x1P
′′(x1; x1, x2, σ ),

and this expression is a polynomial in (x1, x2).

Proof One just takes the derivatives in s0 and then takes s0 = x1. ��
The coefficients of the polynomial in the above lemma come from the first three terms

of �4(z, s0, x, 0, σ ) and from Lemma 6.1. Hence, the above lemma relates the first and the
second s0 derivative of �4 at x1.

We develop the phase �4 in the variable u := x1 − s0G1(s
n−2
0 , δ, σ ), which is just a

translation of s0 to x1 when δ = 0. Then we can write

�4(z, s0, x, δ, σ ) = b0(x, δ, σ ) + b1(x, δ, σ )u + b2(x, δ, σ )u2 + b3(x, δ, σ, u)u3

+ (2lλ−1)2/3zu + (2lλ−1)z3/2q1((2
lλ−1)1/3z1/2, u),

where |q1| ∼ 1. From Lemma 6.4 one easily sees that we can conclude that either |b1| ∼
|b2| ∼ 1 or |b1|, |b2| � 1. Since |u| � 1, the case |b1| ∼ |b2| ∼ 1 would imply that we
can integrate by parts in u and obtain a factor λ−N . Therefore, we may and shall assume that
both |b1| and |b2| are very small, and so we can apply Lemma 6.2 to obtain |b3| ∼ 1 (this
reduction one could have also gotten by checking the third derivative in Lemma 6.4).
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Now note that if |u| is not of size (2lλ−1)1/3, then we can apply integration by parts in
z to gain a factor 2−lN . In fact, after we substitute u = (2lλ−1)1/3v, we can get a factor of
size 2−lN (1 + |v|2)−N/2 by integrating by parts in z. Thus, we may restrict ourselves to the
discussion of

νaI (x) = λ7/62−lN
∫

e−iλs3�5(z,v,x,δ,σ ) (1 + |v|2)−N/2

× g̃5
(
(2lλ−1)1/3, z, (2lλ−1)1/3v, s3, δ, σ ; 2l

)
(1 − χ1(v))χ0((2

lλ−1)1/3v)dzdvds3,

νaI I (x) = λ7/625l/6
∫

e−iλs3�5(z,v,x,δ,σ ) g5
(
(2lλ−1)1/3, z, (2lλ−1)1/3v, s3, δ, σ ; 2l

)
χ1(v)dzdvds3,

where both g5 and g̃5 have the same properties as g4. In the expression for νaI the
χ0((2lλ−1)1/3v) factor localises so that |u| = |(2lλ−1)1/3v| � 1. Suppressing dependence
on (x, δ, σ ), the phase is of the form

λ�5(z, v, x, δ, σ ) = λb0 + λ2/32l/3b1v + λ1/322l/3b2v
2

+ 2l
(
b3((2

lλ−1)1/3v)v3 + zv + z3/2q1((2
lλ−1)1/3z1/2, (2lλ−1)1/3v)

)
.

(6.14)

Estimates for νaI . In this case we plan to use the oscillatory sum lemma in λ only and consider
2l as a parameter. Let us denote

A := λb0, B := λ2/32l/3b1, D := λ1/322l/3b2.

We need to reduce our problem to the case when A, B, and D are bounded. As here the
integral itself is bounded by � 1, we can assume that it is not the case that |A| ∼ |B|, nor
|B| ∼ |C |, nor |A| ∼ |C |, since otherwise λ’s would go over a finite set, and we could sum in
l. Furthermore, as soon as |A| (resp. |B|, or |C |) is greater than 1, then we can automatically
assume that |A| � 24l (resp. |B| � 24l , or |C | � 24l ), since otherwise we could trade some
factors 2−lN to obtain a factor |A|−ε (resp. |B|−ε, or |D|−ε) giving summability in λ in the
expression (6.10).

If at least one of |A|, |B|, or |C | are greater than 1, we define

f (v, z, 2lλ−1) := b3((2
lλ−1)1/3v)v3 + zv + z3/2q1((2

lλ−1)1/3z1/2, (2lλ−1)1/3v),

and develop the function g̃5 into a series of tensor products with variable s3 separated, i.e.,
into a sum with terms of the form

h((2lλ−1)1/3, z, (2lλ−1)1/3v, δ, σ ; 2l) χ1(s3),

where h has the same properties as g̃5, except it does not depend on s3. Then after taking the
Fourier transform in s3, we are reduced to estimating the integral

λ7/62−lN
∫

(1 + |v|2)−N/2

̂

χ1

(
λb0 + λ2/32l/3b1v + λ1/322l/3b2v

2 + 2l f (v, z, 2lλ−1)
)

× χ1(z)(1 − χ1(v))χ0((2
lλ−1)1/3v) h((2lλ−1)1/3, z, (2lλ−1)1/3v, δ, σ ; 2l)dzdv.

(6.15)

Case |v| � 1. The bound |v| � 1 gives

| f (v, z, 2lλ−1)| ∼ 1, |∂v f (v, z, 2lλ−1)| ∼ 1, |∂2v f (v, z, 2lλ−1)| � 1.
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If |A| � max{24l , |B|, |D|}, then we can easily gain a factor |A|−1 using the Schwartz

property of

̂

χ1. If |B| � max{24l , |A|, |D|}, then the size of the derivative in v of the

function within

̂

χ1 is B and so we get the bound |B|−1 by substitution. Finally, if |D| �
max{24l , |A|, |B|}, we use the van der Corput lemma and obtain the bound |D|−1/2.

Case 1 � |v| � (2lλ−1)−1/3. In this case we can rewrite

f (v, z, 2lλ−1) = v3 f̃ (v, z, (2lλ−1)−1/3),

where f̃ is a smooth function with | f̃ | ∼ 1 and |∂kv f̃ | � |v|−k for all k ≥ 1. This means
that f is behaving essentially like v3, and in particular

| f (v, z, 2lλ−1)| ∼ |v|3, |∂v f (v, z, 2lλ−1)| ∼ |v|2.
Subcase max{|B|, |D|} ≥ 1. As mentioned before, this actually implies that we can assume
max{|B|, |D|} ≥ 24l . If now |D| � |B|, then since we could otherwise use the factor
(1+ |v|2)−N/2 in (6.15), we can restrain the integration to the domain |v| � |D|ε. Here the
derivative in v of the expression

A + Bv + Dv2 + 2l f̃ (v, z, 2lλ−1)v3 (6.16)

inside the Schwartz function

̂

χ1 in (6.15) is of size |B + cDv| for some |c| = |c(v)| ∼ 1.
But recall that |v| � 1 and so |B + cDv| ∼ |Dv| � |D|. This means that substituting the
above expression would give a Jacobian of size at most |D|−1.

Next let us consider the case |D| � |B|. If have the slightly stronger estimate |D| �
|B|1−ε, and if we assume |v| � |B|ε (which we can because of the factor (1 + |v|2)−N/2),
then in this case the derivative of (6.16) is of size |B|, whichmeans substituting this expression
yields an admissible bound.

Therefore, we may now consider the case |B|1−ε � |D| � |B| and |v| � |D|ε , which
implies, in case when ε is sufficiently small, that |D| ≥ 23l . In particular, the derivative of
(6.16) can be again written as |B + cDv| with |c| ∼ 1, and we can reduce our problem to the
part where |B + cDv| � |D|ε, since otherwise substituting would give a Jacobian of size
at most |D|−ε. But now |B + cDv| � |D|ε implies |v| ∼ |B||D|−1. Hence, it suffices to
estimate the integral

∫ ∣∣∣

̂

χ1(A + Bv + Dv2 + 2l f̃ (v, z, 2lλ−1)v3)χ1(|B|−1|D|v)

∣∣∣dv.

We substitute w = |B|−1 |D|v and write

|B||D|−1
∫ ∣∣∣

̂

χ1(A + (B|B||D|−1)w + (D|B|2|D|−2)w2 + 2l |B|3|D|−3w3r(w))χ1(w)

∣∣∣dw.

Applying the van der Corput lemma we obtain the estimate

(|B||D|−1) (|B|2|D|−1)−1/2 = |D|−1/2,

and so we are done with the case max{|B|, |D|} ≥ 1.

Subcase max{|B|, |D|} ≤ 1 and |A| � 1. Again, we may actually assume |A| � 24l . We
may also then reduce ourselves to the discussion of the case |v| � |A|ε, since in the other
part of the integration domain we can gain a factor |A|−ε. But then the expression (6.16) is
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of size ∼ |A| and we can get a factor |A|−1, and hence we are also done with the function
νaI .

Estimates for νaI I . Here we have a non-degenerate critical point in z which would give us a
factor 2−l/2. We shall not apply directly the stationary phase method here since in this case
some crucial information has been lost while we were deriving the form of the phase in this
and the previous sections. It seems that one cannot prove the required bound for complex
interpolation using the information from the form of the phase (6.14). One needs to go back to
the phase form in the original coordinates (the one before taking the inverse Fourier transform
is (6.1)) and find the critical point in the variables (y1, s1). This was carried out in [16] (see
the discussion before [16, Lemma 5.6.]). Here we only sketch the steps.

The phase in (6.1) is

�(y1, δ, σ, s1, s2) = s1y1 + s2y
2
1ω(δ1y1) + σ yn1β(δ1y1) + (δ0s2)

2Y3(δ1y1, δ2, δ0s2),

and one integrates in the y1 variable. The phase function after one applies the Fourier trans-
form is

�0(y1, s1, s2, x, δ, σ ) = �(y1, δ, σ, s1, s2) − s1x1 − s2x2 − x3, (6.17)

and one now integrates in the s and y1 variables, after substituting s for ξ . Recall that
s0 = s1/(n−2)

2 and

s1 = sn−1
0 G3

(
sn−2
0 , δ, σ

)
− λ−2/3z, v = (2lλ−1)−1/3

(
x1 − s0G1

(
sn−2
0 , δ, σ

))
.

Therefore fixing (s2, s3) is equivalent to fixing (v, s3), and in this case, finding the critical
point in (y1, s1) is equivalent to finding the critical point in the (y1, z) coordinates. Recall that
the phase form in (6.14) was derived by using the stationary phase method in y1 (implicitly
done as a part of Lemma 3.1) and changing variables from s = (s1, s2, s3) to (z, v, s3).

The key is now to notice that since the critical point is invariant with respect to coordinate
changes, and so, after applying the stationary phase in z to the phase function (6.14), we
get �5(zc, v, x, δ, σ ), which is the equal to the phase function in (6.17) after we apply the
stationary phase in (y1, s1) and get �0(yc1, s

c
1, s2, x, δ, σ ), and then change the coordinates

from s2 to v. This was carried out in [16] by explicitly calculating the critical point in (y1, s1)
in (6.17) (see [16, Lemma 5.6]). One obtains that we can rewrite the function νaI I as

νaI I (x) = λ7/62l/3
∫

e−iλs3�6(ṽ,x,δ,σ )g6
(
(2lλ−1)1/3, ṽ, s3, δ, σ ; 2l

)
χ1(ṽ)dṽds3,

where

λ�6(ṽ, x, δ, σ ) =λb̃0(x, δ, σ ) + λ2/32l/3b̃1(x, δ, σ )ṽ + δ202
2l/3λ1/3b̃2(x, δ0(2

lλ−1)1/3ṽ, δ, σ )ṽ2,

with b̃0, b̃1, b̃2 smooth, and |b̃2| ∼ 1. The amplitude g6 is a classical symbol of order 0 in
2l , but we shall ignore this dependence since the lower order terms can be treated similarly,
and even simpler since we can gain summability in l and use the one parameter oscillatory
sum lemma for λ.

We remark that the variable ṽ is only slightly different from the variable v defined above
after the statement of Lemma 6.4. Here ṽ corresponds to the v variable of [16, Subsection
5.2.3]. Comparing the definitions of both and using the implicit function theorem one can
show that for some smooth G̃ satisfying |G̃| ∼ 1 one has ṽ = vG̃((2lλ−1)1/3v, x1, δ, σ ). In
particular, there is no significant difference between v and ṽ.
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We define A := λb̃0(x, δ, σ ), B := λ2/32l/3b̃1(x, δ, σ ), D := δ202
2l/3λ1/3, suppress the

variables of b̃2, and shorten ρ = δ0(2lλ−1)1/3. Then

λ�6(ṽ, x, δ, σ ) = A + Bṽ + Db̃2(ρṽ)ṽ2,

and in order to use the oscillatory sum lemma for two parameters we need to reduce the
problem to the situation where |A|, |B|, and |D| are of size � 1. In the following we define
k through λ = 2k .

First we treat the case when at least two of |A|, |B|, and |D| are comparable. When this
is the case, λ can go over only a finite set of indices (the index sets depending on l and other
constants), and it remains to sum only in l. This is done in the following way. If |D| � 1,
then we can use van der Corput lemma and obtain a factor |D|−1/2, which is summable in l.
If |D| � 1, then the only case remaining is |A| ∼ |B|, and here we can use integration by
parts in ṽ and obtain a factor |B|−1 which we use to sum in l.

Next, we assume that we have a “strict order” between |A|, |B|, and |D|. First we shall
consider the cases when at least two of |A|, |B|, and |D| are greater than 1. If |A| �
max{|B|, |D|} � 1, we use integration by parts in s3 and obtain

|A|−1 � |A|−1/2|max{|B|, |D|}|−1/2,

which is summable. Similarly, if |B| � max{|A|, |D|} � 1, we can integrate by parts in ṽ

and obtain the estimate

|B|−1 � |B|−1/2|max{|A|, |D|}|−1/2,

which is summable. And if now |D| � max{|A|, |B|} � 1, we use the van der Corput lemma
and obtain

|D|−1/2 � |D|−1/4|max{|A|, |B|}|−1/4,

which is again summable. We are thus reduced to the case where one of |A|, |B|, or |D| are
greater than 1, and the other two much smaller.

Case |A| ≥ 1 and max{|B|, |D|} � 1. In this case by using integration by parts in s3
we can get a factor |A|−1. We use the one dimensional oscillatory sum lemma in l, and
afterwards, we can sum in λ using the factor |A|−1 which can be obtained as the bound on
the C1 norm of the function to which we applied the oscillatory sum lemma.

Case |B| ≥ 1 and max{|A|, |D|} � 1. Here we change the summation variables

2k1 := λ22l , 2k2 := λ,

so that we now sum over (k1, k2). This change of variables corresponds to the system

k1 = 2k + l, k2 = k,

which has determinant equal to 1, and so the associated linear mapping is a bijection on Z
2.

Since the summation bounds (without the constraints set by A, B, or D) are 1 � λ ≤ δ−6
0

and 1 � 2l � λ, for each fixed k1 the summation in k2 is now within the range 2k1/3 �
2k2 � 2k1/2, and the summation in k1 is for 1 � 2k1 � δ−18

0 .
The quantities B and D can be rewritten as

B = 2k1/3b̃1(x, δ, σ ), D = δ20 2
2k1/3−k2 .

Now for a fixed k1 we can apply the one-dimensional oscillatory sum lemma to sum in 2k2

since all the terms coupled with 2k2 are now within a bounded range. In order to sum in k1,
one needs to estimate the C1 norm of the function to which we have applied the oscillatory
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sum lemma. One can easily see that integrating by parts in s0 we obtain a factor |B|−1 which
in the new indices depends only on 2k1 .

Case |D| ≥ 1 and max{|A|, |B|} � 1. In this case we also change the summation
variables

2k1 := λ22l , 2k2 := λ,

so that we now sum over (k1, k2). We have

k1 = k + 2l, k2 = k, ⇐⇒ k = k2, l = (k1 − k2)/2.

Therefore when we fix k1, the summation in k2 goes over an interval of even or uneven
integers, depending on the parity of k1. Since the summation bounds (without the constraints
set by A, B, or D) are 1 � λ ≤ δ−6

0 and 1 � 2l � λ, for each k1 the summation in k2 is
now within the range 2k1/3 � 2k2 � 2k1 , and the summation in k1 is for 1 � 2k1 � δ−18

0 .
The quantities B and D can be rewritten as

B = 2k1/2+3k2/2b̃1(x, δ, σ ), D = δ20 2
k1/3.

For a fixed k1 we want to apply the oscillatory sum lemma to the summation in k2.We remark
that formally one should write k2 as either 2r + 1 or 2r (depending on the parity of k1), and
then apply the oscillatory sum lemma to the summation in r instead of k2.

Here we give a bit more details compared to the previous case since the term ρ, which
contains (2lλ−1)1/3, is coupled with D. We need to estimate the C1 norm of the function

H(z1, z2, z3; x, δ, σ ) :=
∫

e−is3(z1+z2 ṽ+Db̃2(x,z3δ0 ṽ,δ,σ )ṽ2)g6(z3, ṽ, s3, δ, σ )χ1(ṽ)dṽds3.

Formally, one should also add further dummy zi ’s for controlling the range of the summation
indices. Since we are in the case where |D| ≥ 1, |z1| � 1, and |z2| � 1, integrating by parts
in s3 we get that the L∞ estimate is |D|−1. Taking derivatives in z1 and z2 does not change
the form of the integral in an essential way, and so we can also estimate the L∞ norm of the
these derivatives by |D|−1. Taking the derivative in z3 a factor of size at most |D| appears,
but now we just apply integration by parts in s3 two times and get that we can estimate the
C1 norm of H by |D|−1.

Case |A| � 1, |B| � 1, and |D| � 1. Here we apply the two-parameter oscillatory sum
lemma. We only need to check the additional linear independence condition appearing in the
assumptions of Lemma 3.6. The terms where λ = 2k and 2l appear are

A = 2β1
1 k b̃0(x, δ, σ ), B = 2β2

1 k+β2
2 l2l/3b̃1(x, δ, σ ),

D = δ20 2
β3
1 k+β3

2 l , (2lλ−1)1/3 = 2β4
1 k+β4

2 l ,

where

(β1
1 , β

1
2 ) = (1, 0), (β2

1 , β2
2 ) = (2/3, 1/3), (β3

1 , β
3
2 ) = (1/3, 2/3), (β4

1 , β
4
2 ) = (−1/3, 1/3),

and recall from (6.10) that (α1, α2) = (−7/4,−1/2). Formally, we also have to consider
additionally (β5

1 , β
5
2 ) = (−1, 0) and (β6

1 , β
6
2 ) = (0,−1) for implementing the lower sum-

mation bounds for λ and 2l as in (6.10). We see that the condition α1β
r
2 �= α2β

r
1 is satisfied

for each r = 1, . . . , 6. Therefore, we may now apply the lemma and obtain the inequality
(6.10). This finishes the proof of Theorem 5.1.
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