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Abstract
Let f ∈ L p(Rd), d ≥ 3, and let At f (x) be the average of f over the sphere with radius
t centered at x . For a subset E of [1, 2] we prove close to sharp L p → Lq estimates for
the maximal function supt∈E |At f |. A new feature is the dependence of the results on both
the upper Minkowski dimension of E and the Assouad dimension of E . The result can be
applied to prove sparse domination bounds for a related global spherical maximal function.
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1058 T. Anderson et al.

1 Introduction and statement of results

Let At f (x) denote the mean of a locally integrable function f over the sphere with radius t
centered at x . That is,

At f (x) =
∫

f (x − t y)dσ(y),

where σ is the standard normalized surface measure on the unit sphere in R
d and d ≥ 2. Let

E ⊂ [1, 2] and
ME f (x) = sup

t∈E
|At f (x)|, (1.1)

which is well defined as a measurable function at least for continuous f . We consider
the problem of L p-improving estimates, i.e. L p → Lq estimates for q > p, partially
motivated by the problem of sparse domination results for the global maximal function
ME f (x) = supk∈Z supt∈E |A2k t f (x)|, dependent on the geometry of E , see Sect. 6. The
sparse domination problem is suggested by a remark in [11].

It is well known [15] that for E = {point} (when ME reduces to a single average) we have
L p → Lq boundedness if and only if (1/p, 1/q) belongs to the closed triangle with corners
(0, 0), (1, 1) and ( d

d+1 ,
1

d+1 ). For the other extreme case E = [1, 2] a necessary condition for
L p → Lq boundedness is that (1/p, 1/q) belongs to the closed quadrangle Q with corners
P1 = (0, 0), P2 = ( d−1

d , d−1
d ), P3 = ( d−1

d , 1
d ) and P4 = (

d(d−1)
d2+1

, d−1
d2+1

), see [20]. By
results of Stein [24] for d ≥ 3, and Bourgain [3] there is a positive result for the segment
[P1, P2) while boundedness fails at P2. For p < q almost sharp results are due to Schlag
and Sogge [20] (see also previous work by Schlag [19] on the circular maximal function)
and additional endpoint results were obtained by Lee [13]. For the point P2 Bourgain [2] had
showna restrictedweak type inequality, andLee [13] also showed in addition a restrictedweak
type inequality for the points P3 and P4. This implies by interpolation that M[1,2] satisfies
strong type bounds on the half-open edge [P1, P2) and the open edges [P1, P4), (P4, P3).
Moreover restricted strong type estimates hold on the hald-open edge [P2, P3). It is not
known whether the L p → Lq bound holds for P3 or P4. In two dimensions the quadrangle
Q becomes a triangle as the points P2 and P3 coincide. From [13] we have that L p → Lq

boundedness holds on Q with exception of the points P2 = P3 and P4. Lee also shows the
L5/2,1(R2) → L5,∞(R2) estimate, i.e. the restricted weak type inequality corresponding to
P4 (and it is open whether the endpoint L5/2 → L5 estimate holds). In two dimensions, for
the point P2 = P3 the endpoint restricted weak type inequality is true for radial functions
[12] but fails for general functions, see §8.3 of [21].

In this paperwe take up the case of L p improving estimates for sphericalmaximal functions
with sets of dilations intermediate between the two above extreme cases; here we mainly
consider the problem in dimensions d ≥ 3 although some partial results in two dimensions
are included. Satisfactory results for p = q are in [22] where it was shown that the precise
range of L p boundedness depends on the upper Minkowski dimension β of the set E , which
should also play a role for L p → Lq estimates. However it turns out that the notion of
upper Minkowski dimension alone is not appropriate to determine the range of L p → Lq

boundedness, and that in addition another type of dimension, the upper Assouad dimension,
plays a significant role.

We recall the definitions. For a set E ⊂ R and δ > 0 denote by N (E, δ) the minimal
number of compact intervals of length δ needed to cover E . The upper Minkowski dimension
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Bounds for spherical maximal operators 1059

Fig. 1 The region Q(β, γ ) with
d = 3, β = 0.8, γ = 1

dimM E of a compact set E is the smallest β so that there is an estimate

N (E, δ) ≤ C(ε)δ−β−ε (1.2)

for all δ < 1 and ε > 0. The upper Assouad dimension dimAE is the smallest number γ so
that there exist δ0 > 0, and constants Cε for all ε > 0 such that for all δ ∈ (0, δ0) and all
intervals I of length |I | ∈ (δ, δ0) we have

N (E ∩ I , δ) ≤ Cε(δ/|I |)−γ−ε. (1.3)

Clearly we have 0 ≤ dimM E ≤ dimAE ≤ 1 for every compact subset of R. For the Cantor
middle third setC wehave dimMC = dimAC = log3 2.More generally the upperMinkowski
and upper Assouad dimensions are equal for large classes of quasi-self-similar sets, see [6,
§2.2] for precise definitions. In contrast, if 0 < β < 1 then for the set E(β) = {1+ n−a(β) :
n ∈ N}, with a(β) = 1−β

β
we have dimM E(β) = β and dimAE(β) = 1.

One seeks to determine the region of (1/p, 1/q) for which ‖ME‖L p→Lq is finite. It turns
out that the following definitions are relevant to answer this question, up to endpoints (Fig.
1).

Definition (i) For β ≤ γ ≤ 1 let Q(β, γ ) be the closed convex hull of the points

Q1 = (0, 0), Q2(β) = ( d−1
d−1+β

, d−1
d−1+β

),

Q3(β) = (
d−β

d−β+1 ,
1

d−β+1 ), Q4(γ ) = (
d(d−1)

d2+2γ−1
, d−1
d2+2γ−1

).
(1.4)

(ii) Let Seg(β) be the line segment connecting (0, 0) and Q2(β), with (0, 0) included and
Q2(β) excluded.

(iii) Let R(β, γ ) denote the union of Seg(β) and the interior of Q(β, γ ).

Note that

R(β, γ2) � R(β, γ1) if β ≤ γ1 < γ2 ≤ 1.

It was shown in [22] that boundedness holds on the segment Seg(β) and this is sharp up to
the endpoint. A number of conjectures for endpoint situations for L p → L p boundedness are
in [23] and these conjectures were confirmed there for the problem of L p → L p estimates
on radial functions; see also [21] for partial results for convex sequences when the radiality
assumption can be dropped. A slight variation of the arguments in [22] shows that in the
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1060 T. Anderson et al.

interior of the triangle with corners Qi (β), i = 1, 2, 3 we have L p → Lq boundedness, see
Sect. 2. Interpolation with the above mentioned results by Schlag-Sogge and Lee then shows
that we have L p → Lq boundedness in the region R(β, 1). On the other hand the standard
examples (cf. Sects. 4.1, 4.2, 4.3) show that boundedness fails in the complement ofQ(β, β).
The main result of this paper is to close this gap (at least in dimensions d ≥ 3).

Theorem 1 Let d ≥ 3, 0 ≤ β ≤ γ ≤ 1 or d = 2, 0 ≤ β ≤ γ ≤ 1/2. Let E be a subset of
[1, 2] with dimM E = β, dimAE = γ . Then for (1/p, 1/q) contained in R(β, γ ),

‖ sup
t∈E

|At f |‖q � ‖ f ‖p. (1.5)

Remark The conclusion of the theorem in the two-dimensional case continues to hold in the
case γ > 1/2 not covered in this paper. This requires arguments different from what we use
here, see [18].

We now turn to the issue of sharpness. It turns out that Theorem 1 is sharp up to endpoints
for a large class of setswhich includes the abovementioned convex sequences Ea = {1+n−a}
where dimM Ea = (a + 1)−1 and dimAEa = 1, and also sets with dimAE = dimM E (in
particular, self–similar sets). Moreover we shall, for every β ≤ γ ≤ 1, construct sets E(β, γ )

with dimM E(β, γ ) = β, dimAE(β, γ ) = γ so that Theorem 1 is sharp up to endpoints for
these sets, meaning that L p → Lq boundedness of ME fails if (1/p, 1/q) /∈ Q(β, γ ).

We can say more about the sets E for which such sharpness results can be proved. To
describe this family we work with definitions of dimensions which interpolate between upper
Minkowski dimension and Assouad dimension, notions that were introduced by Fraser and
Yu [7]. For 0 ≤ θ < 1 one defines dimA,θ E to be the smallest number γ (θ) so that there
exist δ0 > 0, and constants Cε for all ε > 0 such that for all δ ∈ (0, δ0) and all intervals I of
length |I | = δθ we have

N (E ∩ I , δ) ≤ Cε(δ/|I |)−γ (θ)−ε. (1.6)

The function θ 
→ dimA,θ E is called the Assouad spectrum of E . Note that dimA,0E =
dimM E . There are some immediate inequalities relating the Assouad spectrum with
Minkowski and Assouad dimensions (see [7, Prop. 3.1]),

dimM E ≤ dimA,θ E ≤ min
(
dimM E
1−θ

, dimAE
)

. (1.7)

Indeed, the inequality dimA,θ E ≤ dimAE holds by definition, while the inequality
dimA,θ E ≤ dimM E/(1−θ) follows from N (E∩ I , δ) ≤ N (E, δ). To see the first inequality
in (1.7) let us write β = dimM E and γ (θ) = dimA,θ E . Cover the set E with an essentially
disjoint collection I of intervals I of length δθ so that #I ≤ 2N (E, δθ ) ≤ C(ε1)(δ

θ )−β−ε1

and use

N (E, δ) ≤
∑
I∈I

N (E ∩ I , δ) ≤
∑
I∈I

Cε(δ
θ−1)γ (θ)+ε

≤ CεC(ε1)δ
−θ(β+ε1)−(1−θ)(γ (θ)+ε).

By definition of Minkowski dimension and letting ε, ε1 tend to zero, we get β ≤ θβ + (1 −
θ)γ (θ), which implies β ≤ γ (θ) since 0 ≤ θ < 1. For more sophisticated relations between
the various dimensions in theAssouad spectrum, see [7]. The papers [7,8] contain discussions
of many interesting examples that are relevant in the context of Assouad dimension and
Assouad spectrum.
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Bounds for spherical maximal operators 1061

Here we are interested, for suitable sets E , in those values of θ for which

dimA,θ E = dimAE . (1.8)

While the Assouad spectrum is generally not monotone (see [7, §8]), it holds that once the
Assouad spectrum reaches the Assouad dimension then it stays there, i.e. if dimA,θ0E =
dimAE then dimA,θ E = dimAE for θ0 < θ < 1 (see [7, Cor. 3.6]). Note that the upper
bound in (1.7) implies that (1.8) can only hold for θ ≥ 1 − β/γ , where β = dimM E and
γ = dimAE . This leads us to introduce the following terminology.

Definition We say that a set E is (β, γ )-Assouad regular if dimM E = β, dimAE = γ and
dimA,θ E = dimAE for 1 > θ > 1−β/γ. E is calledAssouad regular if it is (β, γ )-Assouad
regular for some pair (β, γ ).

Note that when dimM E = dimAE or dimM E = 0, then E is always Assouad regular.
Also, the convex sequences Ea = {1 + n−a} are ( 1

a+1 , 1)-Assouad regular (see [7, Thm.
6.2]). In Sect. 5 we shall give examples of (β, γ )-Assouad regular sets, for every pair (β, γ )

with 0 < β < γ ≤ 1. We shall show that Theorem 1 is sharp up to endpoints for Assouad
regular sets.

Theorem 2 Let d ≥ 2, E ⊂ [1, 2] and β = dimM E.

(i) If (1/p, 1/q) /∈ Q(β, β), then

sup{‖ME f ‖q : ‖ f ‖p ≤ 1} = ∞. (1.9)

(ii) Let θ ∈ [0, 1) such that
dimA,θ E = dimM E

1−θ
. (1.10)

Then (1.9) holds for (1/p, 1/q) /∈ Q(β,
β

1−θ
).

(iii) If 0 ≤ β ≤ γ ≤ 1 and E is (β, γ )-Assouad regular, then (1.9) holds for (1/p, 1/q) /∈
Q(β, γ ). In particular, Theorem 1 is sharp up to endpoints for Assouad regular sets.

Observe that (ii) implies (i) because (1.10) holds trivially for θ = 0. Moreover, if E is
(β, γ )–Assouad regular, then (1.10) holds with θ = 1 − β/γ , i.e. γ = β

1−θ
, so (ii) also

implies (iii). The validity of (ii) is proven in Sect. 4.
It would be interesting to investigate the sharpness of Theorem 1 for sets E which are not

Assouad regular. For more on this topic, see [18].

Endpoint results

Here we discuss endpoint questions on the off-diagonal boundaries of Q(β, γ ) and give a
result which is somewhat analogous to one of Lee’s theorems in [13]. The theorem involves
restricted weak type estimates (with Lorentz spaces L p,1, Lq,∞) at the points Q2(β), Q3(β)

and Q4(γ ) and strong type estimates on the open edges connecting these points. Recall that
ME is said to be of strong type (p, q) if ME : L p → Lq is bounded, and of restricted weak
type (p, q) if ME : L p,1 → Lq,∞ is bounded. To prove these results we need to slightly
strengthen the dimensional assumptions in Theorem 1.

Theorem 3 Let d ≥ 3, 0 ≤ β ≤ γ ≤ 1, or d = 2, 0 ≤ β ≤ γ < 1/2. Let E ⊂ [1, 2].
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1062 T. Anderson et al.

(i) Suppose that in addition β < 1 and

sup
0<δ<1

δβN (E, δ) < ∞. (1.11)

If (1/p, 1/q) is one of the points

Q2(β) =
(

d−1
d−1+β

, d−1
d−1+β

)
, Q3(β) =

(
d−β

d−β+1 ,
1

d−β+1

)

then ME is of restricted weak type (p, q). ME is of strong type (p, q) whenever ( 1p , 1
q )

belongs to the open line segment connecting Q2(β) and Q3(β).
(ii) Suppose that

sup
0<δ<1

sup
δ≤|I |≤1

(
δ
|I |

)γ

N (E ∩ I , δ) < ∞, (1.12)

where the second supremum is taken over all intervals I of length in [δ, 1]. Let ( 1p , 1
q ) =

Q4(γ ) = (
d(d−1)

d2+2γ−1
, d−1
d2+2γ−1

). Then ME is of restricted weak type (p, q).

(iii) Suppose that β < 1 and that both (1.11) and (1.12) hold. Then ME is of strong type
(p, q) for all ( 1p , 1

q ) ∈ Q(β, γ )\{Q2(β), Q3(β), Q4(γ )}.

This paper

In Sect. 2 we begin proving Theorems 1 and 3 by discussing elementary and basically known
estimates relevant for the p = q cases and the bounds at Q3(β). In Sect. 3 we prove the upper
bounds at Q4(γ ), thus concluding the proofs of Theorems 1 and 3. In Sect. 4 we discuss
examples proving Theorem 2; see Sect. 4.4 for the new argument of sharpness for Assouad
regular sets. In Sect. 5 we give some relevant constructions of sets with prescribedMinkowski
andAssouad dimensions. Section 6 contains a discussion of related sparse domination bounds
for the global maximal operatorME .

2 Preliminary results

In this section we assume d ≥ 2. We dyadically decompose the multiplier of the spherical
means. Let η0 be a C∞ function with compact support in {ξ : |ξ | < 2} such that η0(ξ) = 1
for |ξ | ≤ 3/2. For j ≥ 1 set η j (ξ) = η0(2− j ξ) − η0(21− j ξ) so that η j is supported in the
annulus {ξ : 2 j−1 < |ξ | < 2 j+1}. Let σ denote the surface measure of the unit sphere in R

d .
Define A j

t f , j = 0, 1, 2, . . . via the Fourier transform by

̂
A j
t f (ξ) = η j (ξ )̂σ (tξ) f̂ (ξ). (2.1)

We change notation for added flexibility. Let a(t, ·) be a multiplier and a symbol of order
zero, satisfying |∂M

t ∂α
ξ a(t, ξ)| ≤ C |ξ |−α for all multiindices α with |α| ≤ 100d and all M .

Denote by S0 the class of these symbols. For a ∈ S0 and j ≥ 1 let

T±, j
t [a, f ](x) =

∫
η j (ξ)a(t, ξ) f̂ (ξ)ei〈x,ξ〉±i t |ξ |dξ

so that, by well-known stationary phase arguments (see [25, Ch. VIII]),

A j
t f = 2− j(d−1)/2

(
T+, j
t [a j,+, f ] + T−, j

t [a j,−, f ]
)

,
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Bounds for spherical maximal operators 1063

where a j,± are symbols in S0, with bounds uniform in j . In what follows a j ∈ S0 is fixed

and T j
t refers to either f 
→ T±, j

t [a j,±, f ].
We shall need a pointwise estimate for the convolution kernels of the operators T j

t and
T j
t (T j

t ′ )
∗ provided by the following lemma.

Lemma 2.1 Let χ ∈ C∞
c (Rd), supported in {ξ : 1/2 < |ξ | ≤ 2} and let

κ j,±(x, t) =
∫

χ(2− j ξ)ei〈x,ξ〉±i t |ξ |dξ.

Then there are constants CN depending only on bounds for a finite number of derivatives of
χ so that for all (x, t) ∈ R

d × R:

|κ j,±(x, t)| ≤ CN2
jd(1 + 2 j |x |)− d−1

2 (1 + 2 j
∣∣|x | − |t |∣∣)−N . (2.2)

Proof We change variables and write

κ j,±(x, t) = 2 jd
∫

χ(ω)ei2
j 〈x,ω〉±i t2 j |ω|dω.

If max{|x |, |t |} ≤ C2− j we use the trivial estimate |κ j,±(x, t)| ≤ 2 jd . From integration by
parts we obtain

|κ j,±(x, t)| �M

{
2 jd(1 + 2 j |x |)−M if |x | > 2|t |,
2 jd(1 + 2 j |t |)−M if |t | > 2|x |.

It remains to consider the case |t | ≈ |x | > 2− j . Then we apply polar coordinates, stationary
phase in the spherical variables, and integration by parts in the resulting oscillatory integral
to get (2.2). ��

We now state the basic estimate used in [22].

Lemma 2.2 (i) For 1 ≤ p ≤ 2,

2− j(d−1)/2‖ sup
t∈E

|T j
t f |‖p � N (E, 2− j )1/p2− j(d−1)(1−1/p)‖ f ‖p.

(ii) For 2 ≤ p ≤ ∞,

2− j(d−1)/2‖ sup
t∈E

|T j
t f |‖p � N (E, 2− j )1/p2− j(d−1)/p)‖ f ‖p.

Proof For (i) one interpolates between the cases p = 1 and p = 2, and for (ii) one interpolates
between the cases p = ∞ and p = 2. ��

The same argument also gives

Lemma 2.3 For 2 ≤ q ≤ ∞, 1/q ′ + 1/q = 1,

2− j(d−1)/2‖ sup
t∈E

|T j
t f |‖q � N (E, 2− j )

1
q 2 j(1− d+1

q )‖ f ‖q ′ .

Proof We interpolate between q = 2 and q = ∞. The case q = 2 is from the previous
lemma. For the case q = ∞ we use that the convolution kernel K j

t of 2− j(d−1)/2T j
t satisfies

the uniform bound |K j
t (x)| � 2 j (by Lemma 2.1). ��
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Bourgain’s interpolation trick

For various restricted weak type estimates we apply a familiar interpolation argument due
to Bourgain [2], see also an abstract extension in the appendix of [4]. It says assuming
a0, a1 > 0, that if (R j ) j≥0 are sublinear operators which map L p0,1 to Lq0,∞ with operator
norm O(2 ja0) and L p1,1 to Lq1,∞ with operator norm O(2− ja1) then

∑
j≥0 R j is of restricted

weak type (p, q) where

( 1p , 1
q ) = (1 − θ)

(
1
p0

, 1
q0

)
+ θ

(
1
p1

, 1
q1

)
, θ = a0

a0+a1
.

Using this result we get

Lemma 2.4 Suppose 0 < β < 1 and assumption (1.11) holds. Then ME is of restricted weak
type p, q if (1/p, 1/q) is either one of Q2(β), Q3(β).

Proof For the statement with Q2(β) we apply Lemma 2.2 and assumption (1.11) to get for
1 ≤ p ≤ 2,

‖ sup
t∈E

|A j
t f |‖p � 2

j
(
d−1+β

p −d+1
)
‖ f ‖p.

We consider these inequalities for p0, p1 where p0 <
d−1+β
d−1 < p1. We then use Bourgain’s

interpolation argument to deduce∥∥∥∥∥∥
∑
j≥0

sup
t∈E

|A j
t f |

∥∥∥∥∥∥
L p,∞

� ‖ f ‖L p,1 , p = d−1+β
d−1 .

This gives the asserted weak restricted weak type inequality for ME at Q2(β).
For the result at Q3(β) we apply Lemma 2.3 instead and obtain under assumption (1.11),

for 2 ≤ q ≤ ∞,

‖ sup
t∈E

|A j
t f |‖q � 2 j(1− d+1−β

q )‖ f ‖q ′ .

Bourgain’s interpolation argument gives∥∥∥∥∥∥
∑
j≥0

sup
t∈E

|A j
t f |

∥∥∥∥∥∥
Lq,∞

� ‖ f ‖Lq′,1 , q = d + 1 − β.

This gives the asserted restricted weak type inequality for ME at Q3(β). ��
Corollary 2.5 Let E ⊂ [1, 2] and dimM E = β.

(i) Then for d−1+β
d−1 < p < ∞

∥∥∥∥sup
t∈E

|A j
t f |

∥∥∥∥
p

�p 2− ja(p)‖ f ‖p

with a(p) > 0.
(ii) For (1/p, 1/q) in the interior of the triangle Tβ with corners Q1, Q2(β), Q3(β)we have∥∥∥∥sup

t∈E
|A j

t f |
∥∥∥∥
q

�p 2− ja(p,q)‖ f ‖p,

for some a(p, q) > 0.
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Bounds for spherical maximal operators 1065

Proof Use N (E, 2− j ) �ε 2 j(β+ε), apply the previous lemmata to A j
t . ��

3 Estimates nearQ4(�): the role of Assouad dimension

As the case β = 1 is already known (see [20]) we shall assume in this section that β < 1.
Let γ ≤ 1 and

p4 = d2+2γ−1
d2−d

, q4 = d2+2γ−1
d−1 ,

i.e. Q4(γ ) = (1/p4, 1/q4).

Proposition 3.1 Let either d ≥ 3, or both d = 2 and γ < 1/2. Suppose that assumption
(1.12) holds. Then

‖ME f ‖Lq4,∞ � ‖ f ‖L p4,1 . (3.1)

Proof Let ϑ = (d−1)2−2γ
d2+2γ−1

and notice that ϑ ∈ (0, 1) if d = 3 or d = 2, γ < 1/2. One checks

that 1 − ϑ = 2(d−1+2γ )

d2+2γ−1
and

(
1
p4

, 1
q4

, 0
)

= (1 − ϑ)
(
1
2 ,

d−1
2(d−1+2γ )

,
2γ−(d−1)2

2(d−1+2γ )

)
+ ϑ(1, 0, 1).

For all estimates concerning A j
t weshall assumed ≥ 2, and assumption (1.12).ByLemma2.3

we have
∥∥ sup
t∈E

|A j
t f |

∥∥∞ � 2 j‖ f ‖1. (3.2)

We shall prove, for d ≥ 2,

∥∥ sup
t∈E

|A j
t f |

∥∥
qγ ,∞ � 2− j (d−1)2−2γ

2(d−1+2γ ) ‖ f ‖2, where qγ = 2(d−1+2γ )
d−1 . (3.3)

Notice that (d−1)2−2γ
2(d−1+2γ )

> 0 for d ≥ 3 or d = 2, γ < 1/2. The asserted restricted weak type
inequality follows from (3.2) and (3.3), using Bourgain’s interpolation trick. It remains to
prove (3.3).

For each j let I j (E) denote the collection of intervals J of the form [k2− j , (k + 1)2− j ]
which intersect E . For each interval I with length at least 2− j we form I j (E ∩ I ). Then

#I j (E ∩ I ) ≤ 7N (E ∩ I , 2− j ). (3.4)

Indeed if V is any collection of intervals of length 2− j covering E ∩ I , and if J ∈ I j (E ∩ I )
there must be an interval J̃ (J ) ∈ V which intersects J ; moreover if J , J ′ have distance
≥ 3 · 2− j then the intervals J̃ (J ) and J̃ (J ′) in V must be disjoint. This means that the
cardinality of V is at least one seventh of the cardinality of I j (E ∩ I ) and (3.4) follows. By
our assumption (1.12) we also have

#I j (E ∩ I ) ≤ C |I |γ 2 jγ (3.5)

for any interval of length at least 2− j .
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1066 T. Anderson et al.

We now fix j . Let I j (E) = {Iν} and let {tν} be the set of left endpoints of these intervals.
Here the indices ν are chosen from some finite set which we call Z j . Equipping Z j with the

counting measure, we claim that it suffices to show that for qγ = 2(d−1+2γ )
d−1 ,

‖A j
tν f ‖Lqγ ,∞(Rd×Z j )

+
∫ 2− j

0
‖∂s A j

tν+s f ‖Lqγ ,∞(Rd×Z j )
ds � 2− j (d−1)2−2γ

2(d−1+2γ ) ‖ f ‖2. (3.6)

Indeed, by the fundamental theorem of calculus

sup
t∈E

|A j
t f | ≤ sup

ν∈Z j

|A j
tν f | +

∫ 2− j

0
sup
ν∈Z j

|∂s A j
tν+s f |ds

Taking Lqγ ,∞-norms (recall that Lq,∞ is normable, see [10]) on both sides and noting that

meas(

{
x : sup

ν∈Z j

|g(x, ν)| > λ

}
) ≤ measRd×Z j

({(x, ν) : |g(x, ν)| > λ})

we see that ‖ supt∈E |A j
t f |‖q,∞ is dominated by a constant times the left hand side of (3.6).

The estimate (3.6) follows once we show that

2− j(d−1)/2‖T j
tν f ‖Lqγ ,∞(Rd×Z j )

� 2− j (d−1)2−2γ
2(d−1+2γ ) ‖ f ‖2. (3.7)

Given a function g : R
d × Z j → C, define the operator

S j g(x, ν) = 2− j(d−1)
∑

ν′∈Z j

T j
tν (T

j
tν′ )

∗[g(·, ν′)](x).

A T T ∗ argument using that the dual space of Lq ′,1 is Lq,∞ shows that (3.7) follows once we
establish

‖S j g‖Lqγ ,∞(Rd×Z j )
� 2− j (d−1)2−2γ

d−1+2γ ‖g‖
Lq′

γ ,1
(Rd×Z j )

. (3.8)

We use a variant of the argument in the proof of the L2 Fourier restriction theorem [27]
(see also [26]). For n ≥ 0 and ν ∈ Z j we define

Zn, j (ν) :=
{
ν′ ∈ Z j : 2− j+n−1 ≤ |tν − tν′ | < 2− j+n

}
.

Observe thatZn, j (ν) is empty if n ≥ j+3 and thatZ j = ⋃
n≥0 Zn, j (ν). Define the operators

Sn, j acting on functions g : R
d × Z j → C by

Sn, j g(x, ν) = 2− j(d−1)
∑

ν′∈Zn, j (ν)

T j
tν (T

j
tν′ )

∗[g(·, ν′)](x).

Then S j = ∑
n≥0 Sn, j . We claim that

‖Sn, j g‖L∞(Rd×Z j )
� 2−n(d−1)/2+ j‖g‖L1(Rd×Z j )

(3.9)

and

‖Sn, j g‖L2(Rd×Z j )
� 2nγ− j(d−1)‖g‖L2(Rd×Z j )

. (3.10)
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Then (3.8) follows by Bourgain’s interpolation trick: with θ = 2/qγ = d−1
d−1+2γ ,

(
1
q ′
γ
, 1
qγ

, 0
)

= θ
( 1
2 ,

1
2 , γ

) + (1 − θ)
(
1, 0,− d−1

2

)
.

From Lemma 2.1 we get that the convolution kernel K j
ν,ν′ of T

j
tν (T

j
tν′ )

∗ satisfies

‖K j
ν,ν′ ‖∞ � 2 jd(1 + 2 j |tν − tν′ |)− d−1

2 . (3.11)

This implies (3.9). It remains to prove (3.10). Using the Cauchy-Schwarz inequality we get

⎛
⎜⎝ ∑

ν∈Z j

∥∥∥∥∥∥
∑

ν′∈Zn, j (ν)

T j
tν (T

j
tν′ )

∗[g(·, ν′)]
∥∥∥∥∥∥
2

2

⎞
⎟⎠

1/2

≤
⎛
⎝ ∑

ν∈Z j

#(Zn, j (ν))
∑

ν′∈Zn, j (ν)

∥∥∥T j
tν (T

j
tν′ )

∗[g(·, ν′)]
∥∥∥2
2

⎞
⎠

1/2

≤
⎛
⎝ ∑

ν∈Z j

#(Zn, j (ν))
∑

ν′∈Zn, j (ν)

∥∥g(·, ν′)
∥∥2
2

⎞
⎠

1/2

,

where we have used that ‖T j
t ‖L2→L2 = O(1). Finally, by (3.5) we have #Zn, j (ν) � 2nγ for

all ν ∈ Z j . Together with the previous display this implies (3.10). ��

The above proof also gives

Corollary 3.2 Suppose that dimAE = γ . Then for all ε > 0
∥∥∥∥sup
t∈E

|A j
t f |

∥∥∥∥
q4

�ε 2 jε‖ f ‖p4 . (3.12)

Proof The assumption means that given any ε > 0 the assumption (1.12) holds with γ + ε

in place of γ . Hence we get (3.3) with an additional factor of C(ε)2 jε for all ε > 0, and
interpolation as before yields the result. ��

Proof Theorem 1 is now immediate from Corollaries 2.5 and 3.2. Theorem 3 follows by a
combination of Lemma 2.4, Proposition 3.1 and real interpolation.

4 Necessary conditions: Proof of Theorem 2

Let β = dimM E and suppose that θ ∈ [0, 1) is such that dimA,θ E = β
1−θ

. Set γ̃ = β
1−θ

and
assume that (1/p, 1/q) is such that ME is bounded from L p(Rd) to Lq(Rd). We will show
that (1/p, 1/q) ∈ Q(β, γ̃ ).

This is done by providing four separate examples, each corresponding to one of the
(generically) four edges ofQ(β, γ̃ ). One is just in view of translation invariance [9], and two
others are adaptations of standard examples for spherical means and maximal functions (see
[19,20,22]). The last example reveals the role of the Assouad spectrum.
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4.1 The line connectingQ1 andQ2(ˇ)

This is simply the necessary condition p ≤ q imposed by translation invariance on R
d ; one

tests ME on f + f (· − a) where f is compactly supported and a is a large vector, see [9].

4.2 The line connectingQ2(ˇ) andQ3(ˇ)

First let Bδ be the ball of radius δ � 1 centered at the origin and χδ the characteristic function
of Bδ , so that ‖ f χδ‖p ≤ δd/p . The maximal function ME is of size � δd−1 on a union of
annuli with measure N (E, δ)δ. This leads to the inequality

δd−1+1/q N (E, δ)1/q � δd/p.

By the assumption dimM E = β we have given ε > 0 a sequence δm , with δm → 0 as
m → ∞, such that N (E, δm) ≥ δ

ε−β
m . Hence, after letting ε → 0 we get the condition

1−β
q + d − 1 ≥ d

p (4.1)

as being necessary for L p → Lq boundedness.

4.3 The line connectingQ1 andQ4(˜�)

As in [19] we may take fδ = 1C(δ,t) where C(δ, t) is the δ neighborhood of the circle of
radius t ∈ [1, 2] centered at the origin. Then ‖ fδ‖p = δ1/p and |At f (x)| ≥ 1 for |x | ≤ cδ.
Hence we δd/q � δ1/p which forces d/q ≥ 1/p, as required.

4.4 The line connectingQ3(ˇ) andQ4(˜�)

By assumption, for every ε > 0 there exists an arbitrarily small δ > 0 and an interval
I ⊂ [1, 2] with |I | = δθ such that N (E ∩ I , δ) ≥ (|I |/δ)γ̃−ε . Set α = β/γ̃ and

σ = δα/2 ≥ δ1/2.

Let r be the left endpoint of the interval I and let gδ,I be the characteristic function of the
set

{(y′, yd) : ||y| − r | ≤ δ, |y′| ≤ σ }.
Then

‖gδ,I ‖p ≈ (δσ d−1)1/p = δ(
1+ α

2 (d−1)) 1
p .

Choose a covering of E ∩ I by a collection J of pairwise disjoint intervals, each of length δ

such that E ∩ I ∩ J �= ∅ for every J ∈ J . Then #J ≥ N (E ∩ I , δ).
Let c ∈ (0, 1) be a sufficiently small absolute constant not depending on dimension that

is to be determined. We claim that for all t ∈ ∪J∈J J and all x = (x ′, xd) with |x ′| ≤ cδσ−1

and |xd + t − r | ≤ cδ,

MEgδ,I (x) ≥ At gδ,I (x
′, xd) � σ d−1. (4.2)

Indeed, let y = (y′, yd) ∈ Sd−1 with |y′| ≤ cσ . Compute
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|x + t y|2 = |x ′|2 + x2d + 2t〈x ′, y′〉 + 2t xd yd + t2

= |x ′|2 + (xd + t)2 + 2t xd

(√
1 − |y′|2 − 1

)
+ 2t〈x ′, y′〉.

Since |xd + t − r | ≤ cδ and |x ′|2 ≤ c2δ2σ−2 ≤ c2δ,

||x ′|2 + (xd + t)2 − r2| ≤ 6cδ,

|2t〈x ′, y′〉| ≤ 4|x ′||y′| ≤ 4c2δ,

|2t xd(
√
1 − |y′|2 − 1)| ≤ 2(|t − r | + cδ)|y′|2 ≤ 2c(|I | + cδ)σ 2 ≤ 4cδ,

where we used that |I | = δθ = δσ−2. This implies

||x + t y|2 − r2| ≤ 14cδ,

and hence ||x+ t y|−r | ≤ δ when we pick c small enough (say, c = 10−2). Also, |x ′ + t y′| ≤
|x ′| + 2|y′| ≤ σ so that altogether we proved gδ,I (x + t y) = 1. This establishes (4.2). Since
the intervals J ∈ J are disjoint, the corresponding regions of x where (4.2) holds can be
chosen disjoint. Hence,

‖MEgδ,I ‖q � σ d−1
(
N (E ∩ I , δ)δ · (δσ−1)d−1

)1/q

Finally, we estimate N (E ∩ I , δ) ≥ (|I |/δ)γ̃−ε = δ−β+εαand let ε and δ tend to zero to find
the necessary condition

L( 1p , 1
q ) := α

2 (d − 1) + (
d − β − (d − 1) α

2

) 1
q − (

1 + α
2 (d − 1)

) 1
p ≥ 0.

A computation shows that L(Q3(β)) = 0 and L(Q4(γ̃ )) = L(Q4(β/α)) = 0.

5 Examples of Assouad regular sets

Let 0 < β < γ < 1. We construct a (β, γ )-Assouad regular subset of [1, 2]. In what follows
we put λ = 2−1/β and μ = 2−1/γ , so that λ < μ < 1/2.

5.1 Cantor set construction

We review the standard Cantor set construction adapted to a compact interval I0,1 = [a, b],
see [16, p. 60]. We let Iμ

1,1 be the compact interval of length μ(b − a) that includes the left
endpoint of Iμ

0,0 and let I
μ
1,2 be the compact interval of length μ(b−a) that includes the right

endpoint of I0,0. Continue this selection for the two compact subintervals. At stage k − 1 we
get 2k−1 intervals Iμ

k−1,1, . . . , I
μ

k−1,2k−1 of length μk(b − a).

We let Cμ
k ([a, b]) = ∪2k

ν=1 I
μ
k,ν and let bd(C

μ
k ([a, b])) the set of boundary points of the 2k

intervals Iμ
k,1, . . . I

μ

k,2k
. The usual Cantor set is given by Cμ([a, b]) = ∩∞

k=1C
μ
k ([a, b]); it is

of Hausdorff dimension and Assouad dimension γ . However in our example below we will
not work with the full Cantor sets.
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5.2 Construction of the set E

Let Jk = [1 + λk+1, 1 + λk]. We now start to build a Cantor set with dissection μ = 2−1/γ

on each interval Jk , however to keep the Minkowski dimension β we shall, for a suitable
integer m(k), stop at the m(k)th generation and only take the endpoints of the 2m(k) resulting
intervals of length

δk := λk−1μm(k) = 2−k/β−m(k)/γ . (5.1)

Let θ = 1 − β/γ ∈ (0, 1). Then we set m(k) = 1 + � k
θ
�. This choice is made so that

δθ
k ≈ |Jk | ≈ 2−k/β . (5.2)

We then set

E =
∞⋃
k=1

Ek where Ek = bd(Cμ

m(k)(Jk)).

5.3 Dimensional estimates

Lemma 5.1 For 0 < β < γ < 1, θ = 1 − β/γ and E as constructed in Sect. 5.2 we have
that

dimAE = γ, dimA,θ E = γ, dimM E = β.

More precisely, the quantities

(i) lim
δ→0

δβN (E, δ), (ii) lim
δ→0

δβN (E, δ),

(iii) lim
δ→0

sup
|I |=δθ

(
δ
|I |

)γ
N (E ∩ I , δ), (iv) lim

δ→0
sup

|I |=δθ

(
δ
|I |

)γ
N (E ∩ I , δ),

(v) lim
δ→0

sup
δ≤|I |

(
δ
|I |

)γ
N (E ∩ I , δ), (vi) lim

δ→0
sup
δ≤|I |

(
δ
|I |

)γ
N (E ∩ I , δ).

are all finite and positive.

Proof Let us first show

dimAE = γ. (5.3)

In order to see that dimAE ≤ γ note that, in view of the Cantor structure of each Ek with
dissection μ = 2−1/γ , we get for I ⊂ Jk

N (Ek ∩ I , δ) �
{

(δ/|I |)−γ if δk < δ < |I | ≤ |Jk |,
(δk/|I |)−γ if δ < δk ≤ |I | ≤ |Jk |. (5.4)

Then, for an arbitrary interval I ⊂ [1, 2] and δ < |I |,
N (E ∩ I , δ) ≤

∑
k≥0

N (Ek ∩ (Jk ∩ I ), δ)

� δ−γ

⎛
⎜⎜⎜⎝

∑
k : 1≥2−k/β>|I |

Jk∩I �=∅

|I |γ +
∑

k : 2−k/β≤|I |
2−kγ /β

⎞
⎟⎟⎟⎠ � δ−γ |I |γ .
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This gives dimAE ≤ γ , and also shows that the quantities (iii), (iv), (v), (vi) are finite. We
can also conclude dimA,θ E ≤ γ.

Next we observe,

N (E ∩ Jk, δk) = N (Ek, δk) = 2m(k) ≈ (δk/|Jk |)−γ (5.5)

This also shows that the quantity (iii) is positive (also (iv), (v), (vi)) and that dimAE ≥ γ .
Thus we have now proved (5.3).

Note that we have not yet made use of the particular choice ofm(k) (that is, (5.2)). Taking
(5.2) into account we see that (5.5) also implies that the quantity (iv) is positive (hence also
the ones in (iii), (v), (vi)) and that dimA,θ E ≥ γ. Moreover using (5.2) we also obtain

N (E ∩ Jk, δk) ≈ δ
−β
k

which implies the positivity of (ii) (and (i)), and dimM E ≥ β.

It now only remains to consider the upper bounds for N (E, δ). These again depend on
(5.2). Let δ ∈ (0, 1) be given. Since δθ

k ≈ |Jk |,

N

⎛
⎜⎝ ⋃

k : δ≥δθ
k

Ek, δ

⎞
⎟⎠ � 1.

This gives

N (E, δ) � 1 +
∑

k:δk<δ<δθ
k

N (Ek, δ) +
∑

k≥0:δk≥δ

N (Ek, δ),

which by (5.4) (with I = Jk) and (5.2) is

�
∑

k : δk<δ<δθ
k

δ−γ δ
γ−β

k +
∑

k≥0:δk≥δ

δ
−γ

k δ
γ−β

k � δ−β .

Hence we proved the finiteness of the quantities (i), (ii) and the bound dimM E ≤ β. ��

6 A consequence for sparse domination bounds

One motivation to prove sharp L p → Lq estimates comes from the problem of sharp sparse
domination bounds for the global maximal operator

ME f (x) = sup
k∈Z

sup
t∈E

|A2k t f (x)|,

as suggested in §7.5.3 in [11], with various consequences to weighted norm inequalities. The
concept of sparse domination originates in Lerner’s paper [14]. Here we use the definition of
sparse domination of bilinear forms in [11], which in some form goes back to [1]. We refer
the reader to [5,11] for many additional references and historical remarks.

A collection S of cubes is called sparse if for every Q ∈ S, there is a measurable set
AQ ⊂ Q so that |AQ | ≥ |Q|/4 such that the sets {AQ : Q ∈ S} are disjoint.
Definition Let (p1, p2) be a pair of exponents, each in [1,∞). Let T be a sublinear operator
T mapping compactly supported L p1 functions in R

n to locally integrable functions on R
n .
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For a sparse family S we set

�S,p1,p2( f , g) :=
∑
Q∈S

|Q|
(

1

|Q|
∫
Q

| f (x)|p1dx
)1/p1 (

1

|Q|
∫
Q

|g(x)|p2dx
)1/p2

.

Then is called the sparse form associated with S. We say that T satisfies a (p1, p2) sparse
domination inequality if there is a constant C such that

∣∣∣∣
∫

T f (x)g(x)dx

∣∣∣∣ ≤ C sup
{
�S,p1,p2( f , g) : S sparse

}
(6.1)

holds for all continuous compactly supported f and locally integrable g; here the supremum
is taken over all sparse families S. We define ‖T ‖sp(p1,p2) as the infimum over all C > 0
such that (6.1) holds for all f ∈ L p1 , g ∈ L p2 with compact support. It is easy to see that
‖T ‖L p→L p � ‖T ‖sp(p1,p2), for p1 < p < p′

2; see e.g. [11, Prop. 6.1].

Let E ⊂ [1, 2] and consider the global maximal function

ME f (x) = sup
k∈Z

sup
t∈E

|A2k t f (x)|

mentioned in the introduction. The paper by Lacey [11] shows that Theorem 1 and a related
regularity result imply certain sparse domination inequalities for theME mentioned. Lacey’s
result covered the cases E = {point} and E = [1, 2]. For general E ⊂ [1, 2] we get

Theorem 6.1 Let 0 ≤ β ≤ γ ≤ 1, d ≥ 3 or 0 ≤ β ≤ γ ≤ 1/2, d = 2. Let E be as in
Theorem 1. Suppose that (p−1

1 , 1 − p−1
2 ) belongs to the interior of R(β, γ ). Then

‖ME‖sp(p1,p2) < ∞.

The needed regularity result alluded to above is

Lemma 6.2 Let E be as in Theorem 1. Then for (1/p, 1/q) ∈ R(β, γ ) there is α(p, q) > 0
such that

‖ sup
t∈E

|At f (· + h) − At f (·)|‖q � |h|α(p,q)‖ f ‖p. (6.2)

Proof This regularity result is of course a by-product of the proof of Theorem 1. We have,
for A j

t f as in (2.1),

∥∥ sup
t∈E

|A j
t f |

∥∥
q + 2− j

∥∥∥ sup
t∈E

∣∣∇x,t A
j
t f

∣∣∥∥∥
q

� 2− jε(p,q)‖ f ‖p,

for ε(p, q) > 0 if (1/p, 1/q) ∈ R(β, γ ). This immediately implies (6.2), for someα(p, q) >

0. ��

Proof of Theorem 6.1 The reduction in [5,11] can be applied (see also [17] for related argu-
ments). One systematically replaces in [11] the full local maximal operator M[1,2] by its
modification ME for general E ⊂ [1, 2] and uses Theorem 1 and Lemma 6.2 in the proof. ��

Remark 6.3 If in this proof one uses the L p(R2) → Lq(R2) result in [18] one can drop the
condition γ ≤ 1/2 in the two-dimensional case of Theorem 6.1.

123



Bounds for spherical maximal operators 1073

Remark 6.4 One can also obtain sparse domination results for the general spherical maximal
operator

ME f = sup
t∈E

|At f |

when E ⊂ (0,∞). In this context, one has to use dilation invariant notions of the Minkowski
and Assouad dimensions for the sets E ∩ [λ, 2λ], with uniformity in λ in the definitions.
Specifically, if Eλ := λ−1E ∩ [1, 2] we then let β be the infimum over all β̃ > 0 for which

sup
λ>0

sup
δ∈(0,1)

δβ̃N (Eλ, δ) < ∞.

We let γ be the infimum over all γ̃ > 0 for which

sup
λ>0

sup
I⊂[1,2]

sup
δ∈(0,1)

(δ/|I |)γ̃ N (Eλ, δ) < ∞.

Then ‖ME‖sp(p1,p2) < ∞ holds under the assumption that (p−1
1 , 1 − p−1

2 ) belongs to
R(β, γ ).
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