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Abstract
We introduce new complex analytic integral transforms, the Lisbon Integrals, which naturally
arise in the study of the affine spaceC

k of unitary polynomials Ps(z)where s ∈ C
k and z ∈ C,

si identified to the i-th symmetric function of the roots of Ps(z). We completely determine
the D-modules (or systems of partial differential equations) the Lisbon Integrals satisfy and
prove that they are their unique global solutions. If we specify a holomorphic function f
in the z-variable, our construction induces an integral transform which associates a regular
holonomic module quotient of the sub-holonomic module we computed. We illustrate this
correspondence in the case of a 1-parameter family of exponentials ft (z) = exp(t z) with t
a complex parameter.
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924 D. Barlet, T. Monteiro

1 Introduction

The main purpose of this paper is to understand the behaviour of functions obtained by
integration of C∞-forms on the fibers of a holomorphic proper fibration. This has been
investigated by the first author in two extreme cases: when the basis is 1-dimensional (see
[2]) and when the fibers are finite (see [3]), but also by many authors in more general settings
(see for instance [4,12,13]).

In the present paper we look at a simple but very interesting case where the fibers are the
roots of the universal monic equation of degree k. The general result proved in [3] says that
the singularity of these functions are controlled by regular holonomic D-modules.

Our purpose it to give a precise answer in this special context. For instance, giving two
entire functions f and g in O(C) we want to compute the regular holonomic system whose
solutions are the k-uples of continuous functions on C

k given by

�p(s1, . . . , sk) :=
∑

Ps (z j )=0

z j
p f (z j )ḡ(z j ) p ∈ [0, k − 1]

where Ps(z) = ∑k
h=0(−1)hshzk−h is the universal monic polynomial of degree k.

As we are interested only in holomorphic derivatives in s, the function g is irrelevant
for the D-module we are interested in, but, more surprisingly, there exists a sub-holonomic
D-module of which all these k-uples of (continuous functions) are solutions ( in the sense of
distributions).

We determine precisely this D-module, via formula (@@), for which it is useful to
consider (in the simplest form, without g) the complex integral representation (4) of �P .

In order tomake this computation, amain step is to introduce the trace of differential forms
f (z)ds1∧· · ·∧dsk−1∧dz corresponding to the natural holomorphic volume forms on H :=
{(s, z) ∈ C

k ×C / Ps(z) = 0} identified to C
k via the map (s, z) �→ (s1, . . . , sk−1, z). These

holomorphic traces1 have a very simple integral representation via the “Lisbon integrals”
(see integral representation (3) below).

Here we explicit the D -modules of which (3) are (the unique) solutions via formula
(@) showing that they derive from a very simple one by the usual functorial operations on
D-modules (inverse image and direct image) as follows:

Note that the hypersurface H is also defined by the equation

sk = (−1)k−1
k∑

h=1

(−1)hshz
k−h .

Let j : H ⊂ C
k+1 denote the closed embedding and let BH |Ck+1 denote the regular holonomic

DCk+1 -module of holomorphic distributions supported by H . Since the restriction of the
projection

π : C
k+1 −→ C

k, (s, z) �→ s

1 despite the “denominators” in the formula

Trace(z p f (z)ds1 ∧ · · · ∧ dsk−1 ∧ dz) =
⎛

⎜⎝
∑

Ps (z j )=0

z j
p f (z j )

P ′
s (z j )

⎞

⎟⎠ ds1 ∧ · · · ∧ dsk

theses forms have no singularity on the discriminant hypersurface {�(s) = 0} in C
k .
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On Lisbon integrals 925

to H is proper (with finite fibers), given a coherentDCk+1 -moduleL non characteristic for H ,
following [11] we obtain a complex inDb

coh(DCk ), the integral transformed ofL , given by the
composition of the usual derived functors of direct image and inverse image forD-modules,

Dπ∗(BH |Ck+1
L⊗O

Ck+1 L ) � Dπ∗(H 1[H ](L )) � (π |H )∗ j∗L

Note that BH |Ck+1 = H 1[H ](OCk+1) and that for such a module L , we have, thanks to

Kashiwara’s equivalence theorem (cf Theorem 4.1 and Proposition 4.2, [7]), H 1[H ](L ) �
H 0Dj∗Dj∗L � j∗ j∗L .

We show that theDCk -module determined by all vector functions� f given by the integral
transform (3) ( f varying in the space of holomorphic functions in the z-variable) is obtained
as an integral transform in the sense of Kashiwara and Schapira [11] of a coherent DCk+1 -
module L .

In this noteL is the quotient of DCk+1 by the ideal generated by the partial derivatives in
si , i = 1, . . . , k, hence the sheaf of solutions of L is p−1OC where p(s, z) = z.

To simplify we shall keep the notation π also for the restriction π |H of π to H .
As a consequence, we show that Lisbon Integrals (3) are exactly the global solutions of

π∗ j∗L .
Moreover, once an entire function f is fixed, we can consider the regular holonomic

DCk+1 -module (denoted by L f ) it defines:

L f = DCk+1/J

where J is the coherent ideal of DCk+1 of operators P such that P f = 0; hence, according
to [9, Theorem 8.1], π∗ j∗L f is regular holonomic. We explicit this module in the case of
the family ft (z) = etz where t is a complex parameter.

Since integrals (3) and (4) are strongly related as explained below, for the sake of simplicity
we call both Lisbon Integrals.

We also prove that Lisbon integrals (4) are global solutions of another DCk -module Ñ
which shares with the first this very simple relation:

Let A(s) be the (k, k)-matrix companion of the unitary polynomial Ps(z). If� is a solution
of π∗ j∗L then � := P ′

s(A(s))�, where P ′
s denotes the partial derivative of Ps with respect

to z, is a solution of Ñ . Furthermore, this correspondence � ↔ � is a bijection when
restricting to the complementary of the discriminant hypersurface {�(s) = 0}.

Important features of the scalar components of Lisbon integrals are the following:

• They are common solutions of a particular sub-holonomic system. This aspect will be
developed in another paper by the first author. Here we compute only the simplest case
k = 2.

• Each entire function f determines a solution of Ñ which scalar component of order h
is the trace with respect to π in the holomorphic sense of the function f (z)zh on H .

Last but not the least, these computations illustrate the fact that it is not so easy, even
in a rather simple situation, to follow explicitly the computations hidden in the “yoga” of
D-module theory.

We warmly thank the referee for the many pertinent comments contributing to clarify this
work.
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926 D. Barlet, T. Monteiro

2 Lisbon integrals and the differential system they satisfy

2.1 Lisbon integrals

For (z1, . . . , zk) ∈ C
k denote s1, . . . , sk the elementary symmetric functions of z1, . . . , zk .

LetSk denote the k-symmetric group, that is, the group of bijections of {1, . . . , k}. We shall
consider in the sequel s1, . . . , sk as coordinates on C

k � C
k
/
Sk , isomorphism given by the

standard symmetric function theorem.
We shall denote Ps(z) := ∏k

j=1(z − z j ) = ∑k
h=0(−1)hshzk−h with the convention

s0 ≡ 1.
We shall often write P(s, z) instead of Ps(z) with no risk of ambiguity.
The discriminant �(s) of Ps is the polynomial in s corresponding to the symmetric

polynomial
∏

1≤i< j≤k(zi − z j )2 via the symmetric function theorem.

Lemma 2.1 For h ∈ N and f ∈ O(C) any entire holomorphic function, let us define, for
R � ||s||,

ϕh(s) := 1

2iπ

∫

|ζ |=R

f (ζ )ζ hdζ

Ps(ζ )
. (1)

Thenϕh(s) is independent of the choice of R large enough and defines a holomorphic function
on C

k . For �(s) �= 0 we have

ϕh(s) =
k∑

j=1

zhj f (z j )

P ′
s(z j )

(2)

where z1, . . . , zk are the roots of Ps(z).

Proof The independence on R large enough when s stays in a compact set of C
n is clear. For

s in the interior of a compact set, Ps(ζ ) does not vanish on {|ζ | = R} for R large enough, so
we obtain the holomorphy of ϕh near any point in C

k . The formula (2) is given by a direct
application of the Residue’s theorem. ��

In fact, it will be convenient to consider the k functions ϕ0, . . . , ϕk−1 as the component

of a vector valued function � :=

⎛

⎜⎜⎝

ϕ0

ϕ1

· · ·
ϕk−1

⎞

⎟⎟⎠. Defining E(z) :=

⎛

⎜⎜⎝

1
z

· · ·
zk−1

⎞

⎟⎟⎠ we obtain

�(s) = 1

2iπ

∫

|ζ |=R

f (ζ )E(ζ )dζ

Ps(ζ )
. (3)

Definition 2.2 We call � (sometimes also denoted by � f when precision is required) the
Lisbon Integral associated to f . The scalar components of�, denoted byϕh ,h = 0, . . . , k−1,
are called the scalar Lisbon Integrals. One also denote by ϕh the functions constructed by
the same formula, with h ∈ N, still denominated by “scalar Lisbon Integrals”.

It will be also interesting to introduce another type of integrals, still called Lisbon Integrals
for the sake of simplicity:

�(s) := 1

2iπ

∫

|ζ |=R

f (ζ )E(ζ )P ′
s (ζ )dζ

Ps(ζ )
(4)

� will also be noted below by � f when precision is required.
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On Lisbon integrals 927

It is easy to see that this is again a vector valued holomorphic function on C
k and the

Residue’s theorem entails that, for �(s) �= 0, the component ψh of � is given by:

ψh(s) =
k∑

j=1

zhj f (z j ). (5)

Proposition 2.3 If f is not identically zero then � and � are non zero vector-valued holo-
morphic functions on C

k .

Proof Suppose that f is non identically zero. Then the statement follows as an immediate
consequence of the non vanishing of the Van der Monde determinant of z1, . . . , zk when
these complex numbers are pairwise distinct. ��
ANEXAMPLETake f ≡ 1.Then formula (5) shows thatψh(s) is theh-thNewton symmetric
functions of the roots of the polynomial Ps . So it is a quasi-homogeneous polynomial in s of
weight h (the weight of s j is j by definition).

Let us show that we have ϕh(s) ≡ 0 for h ∈ [0, k − 2] and ϕk−1(s) ≡ 1 in this case. For
h ∈ [0, k − 2] the formula (1) gives the estimate (with f ≡ 1)

|ϕh | ≤ Rh+1

(R − a)k−1

if each root of Ps is in the disc {|z| ≤ a} when R > a > 0. When R → +∞ this gives
ϕh(s) ≡ 0 for h ∈ [0, k − 2]. For h = k − 1 write

kzk−1 = P ′
s (z) −

k−1∑

h=1

(−1)h(k − h)shz
k−h−1.

This gives, using the previous case and formula (2), that ϕk−1(s) ≡ 1.

2.2 The partial differential system

Let us introduce the (k, k)matrix A (the companion matrix) associated to the polynomial Ps :

A :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 0 · · · 0

0 · · · 0

0 · · · 0 1
(−1)k−1sk · · · (−1)h−1sh · · · · · · s1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6)

Theorem 2.b. 1 The vector valued holomorphic function � on C
k satisfies the following

differential system

(−1)k+h ∂�

∂sh
(s) = ∂(Ak−h�)

∂sk
(s) ∀s ∈ C

k and ∀h ∈ [1, k − 1]. (@)

Moreover, this system is integrable2 and if � is a solution of this system, so is A�.

2 We shall explain in the proof what we mean here.
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928 D. Barlet, T. Monteiro

The proof of this result will use several lemmas.

Lemma 2.4 Let A be a (k, k) matrix with entries in C[x] and put B := λ∂A
∂x where λ is a

complex number. Let M be the (2k, 2k) matrix given by

M :=
(
A B
0 A

)
.

Then for each p ∈ N we have

M p =
(
Ap Bp

0 Ap

)
(a)

where Bp := λ
∂(Ap)

∂x .

Proof As the relation (a) is clear for p = 0, 1 let us assume that it has been proved for p and
let us prove it for p + 1. We have:

(
Ap Bp

0 Ap

) (
A B
0 A

)
=

(
Ap+1 ApB + Bp A
0 Ap+1

)

which allows to conclude. ��
Corollary 2.b.2 For each integer p ∈ [0, k − 1] the following equality holds in the module
C
k ⊗C C[s1, . . . , sk, z]

/
(P2) over the C-algebra C[s1, . . . , sk, z]

/
(P2)

z pE(z) = ApE(z) + (−1)k−1Ps(z)
∂(Ap)

∂sk
E(z) (7)

In particular, for any entire function f (of the variable z), we have

�z f = A(s)� f

Moreover the following identity in the module C
k ⊗C C[s1, . . . , sk, z]

/
(P2) holds

P ′
s(z)E(z) = P ′

s(A)E(z) + (−1)k−1Ps(z)
∂(P ′

s (A))

∂sk
E(z). (8)

Proof In the basis 1, z, . . . , zk−1, Ps(z), zPs(z), . . . , zk−1Ps(z) of this algebra which is a
free rank 2k module on C[s1, . . . , sk], the multiplication by z is given by the matrix M of
the previous lemma with A as in (6) and with B := (−1)k−1 ∂A

∂sk
. This proves equality (7).

As P ′
s(z) = ∑k−1

h=0(−1)h(k − h)zk−h−1 does not depend on sk it is enough to sum up the
previous equalities with p = k−h−1 with the convenient coefficients to obtain the equality
(8). ��
Lemma 2.5 For any h ∈ [1, k] and any p ∈ N the matrix A in (6) satisfies the relation:

(−1)k−h ∂Ap

∂sh
= ∂Ap

∂sk
Ak−h (9)

Proof The case p = 1 of (9) is an easy direct computation on the matrix A. Assume that the
assertion is proved for p ≥ 1. Then Leibnitz’s rule gives:

(−1)k−h ∂Ap+1

∂sh
= (−1)k−h ∂Ap

∂sh
A + Ap(−1)k−h ∂A

∂sh

= ∂Ap

∂sk
Ak−h+1 + Ap ∂A

∂sk
Ak−h = ∂Ap+1

∂sk
Ak−h

concluding the proof of (9). ��
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On Lisbon integrals 929

Proof of the Theorem 2.b. 1 By derivation inside the integral in (3) we obtain:

∂�

∂sh
(s) = 1

2iπ

∫

|ζ |=R
f (ζ )E(ζ )(−1)h+1ζ k−h dζ

Ps(ζ )2
and in particular

∂�

∂sk
(s) = 1

2iπ

∫

|ζ |=R
f (ζ )E(ζ )(−1)k+1 dζ

Ps(ζ )2

Now for h ∈ [1, k − 1] we use the formula of corollary 2.b.2 to obtain:

∂�

∂sh
= (−1)h+1Ak−h(−1)k−1 ∂�

∂sk
+ (−1)h+1(−1)k−1 ∂Ak−h

∂sk
�

that is to say, we obtain (@) as desired:

(−1)k+h ∂�

∂sh
= ∂(Ak−h�)

∂sk
∀h ∈ [1, k]

By the integrability of the system (@) we mean that for any � such that (@) holds, then the

computation of the partial derivatives ∂2�
∂sh∂s j

using the system (@) gives a symmetric result
in (h, j) for any pair (h, j) in [1, k]. Note that if h or j is equal to k the assertion is trivial.

So consider a couple (h, j) ∈ [1, k − 1]2. Thanks to Lemma 2.5 we have :

(−1)h+ j ∂2�

∂s j∂sh
= (−1)k− j ∂

∂sk

[
∂(Ak−h�)

∂s j

]

= (−1)k− j ∂

∂sk

[
∂Ak−h

∂s j
� + Ak−h ∂�

∂s j

]

= ∂

∂sk

[
∂Ak−h

∂sk
Ak− j� + Ak−h ∂(Ak− j�)

∂sk

]

= ∂2

∂s2k

[
A2k−h− j�

]

which is symmetric in (h, j).
To finish the proof of the theorem we have to show that A� is a solution of (@) when �

is a solution of (@). This is given by the following computation

(−1)k−h ∂(A�)

∂sh
= (−1)k−h ∂A

∂sh
� + (−1)k−h A

∂�

∂sh

= ∂A

∂sk
.Ak−h� + A

∂Ak−h�

∂sk
= ∂(Ak−h(A�))

∂sk

which also uses Lemma 2.5. ��
Remark 2.6 A consequence of our computation on the integrability of the system (@) is the
fact that for any solution � and any pair (h, j) ∈ [1, k] the second order partial derivative

∂2�
∂s j ∂sh

only depends on h + j . This implies that any scalar Lisbon integral ϕh satisfies

∂2ϕh

∂s p∂sq+1
= ∂2ϕh

∂s p+1∂sq
∀ p, q such that 1 ≤ p < q ≤ k − 1 (10)

Let us denote by � the discriminant hypersurface � = {�(s) = 0}. An easy calculation
shows that away of � the matrix P ′

s (A(s)) is invertible.
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930 D. Barlet, T. Monteiro

The next corollary of theorem 2.b. 1 gives an analogous system to (@) for the vector
function � defined in (4) which is singular along �.

Corollary 2.b.3 (1) The vector valued holomorphic function � on C
k satisfies the following

differential system:

(−1)k+h ∂�

∂sh
(s) = ∂(Ak−h�)

∂sk
(s) + (−1)k(k − h)Ak−h−1P ′

s(A)−1�(s) (@@)

∀h ∈ [1, k − 1], which is singular along the discriminant hyperdurface

� := {s ∈ C
k;�(s) = 0}.

(2) If � is any solution of (@@) then A� is also a solution of (@@).
(3) If � is any solution of (@) then � = P ′

s (A)� is a solution of (@@).
(4) If � is any solution of (@@) on C

k
� � then � := P ′

s(A(s))−1� is a solution of (@)

on C
k

� �.

Statement (1) follows by (8) in Corollary 2.b.2.
Statement (3) follows by direct computation:
For such a � = P ′

s(A)�, for each h ∈ [1, k − 1]

(−1)k−h ∂�

∂sh
(s) = (−1)k−2h(k − h)Ak−h−1�(s)+

k−1∑

p=0

(−1)p(k − p)(−1)k−2hsp
∂(Ak−p−1�)

∂sh
(s)

and using now the fact that Ak−p−1� is solution of (@) we obtain

(−1)k−h ∂�

∂sh
(s)=(−1)k−2h(k − h)Ak−h−1�(s) +

k−1∑

p=0

(−1)p(k − p)sp
∂(A2k−p−h−1�)

∂sk
(s)

= (−1)k−2h(k − h)Ak−h−1�(s) + ∂(Ak−h P ′
s (A)�)

∂sk
(s)

= (−1)k−2h(k − h)Ak−h−1P ′
s (A)−1�(s) + ∂(Ak−h�)

∂sk
(s)

which gives the formula (@@).
Since P ′

s (A) commutes with A, the assertion (2) is easy. ��
The proof of (4) is a simple consequence of (9) in Lemma 2.5.

2.3 Example: the case k = 2

In this example we will explicit the system (@) and also a partial differential operators in the
Weyl algebraC[s1, s2]〈∂s1 , ∂s2〉, which annihilates the scalar components of its solutions. The
left ideals inDCk of differential operators annihilating respectively the scalar components of
the solutions of (@) and of (@@) for arbitrary k are described in [1].

Here we use the notations s := s1 and p := s2. In that case, with � = (ϕ0, ϕ1), the
differential system (@) becomes:

∂ϕ0

∂s
= ∂ϕ1

∂ p
(11)
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On Lisbon integrals 931

∂ϕ1

∂s
= −ϕ0 − p

∂ϕ0

∂ p
+ s

∂ϕ1

∂ p
(12)

corresponding to the matrix A :=
(

0 1
−p s

)
. Differentiating (12) with respect to p we obtain,

after substituting via (11)

∂2ϕ0

∂s2
= −2

∂ϕ0

∂ p
− p

∂2ϕ0

∂ p2
− s

∂2ϕ0

∂s∂ p
(�)

and so
∂2ϕ0

∂s2
+ s

∂2ϕ0

∂s∂ p
+ p

∂2ϕ0

∂ p2
+ 2

∂ϕ0

∂ p
= 0

Differentiating (12) with respect to s we obtain, after substituting via (11)

− ∂2ϕ1

∂s2
= ∂ϕ1

∂ p
+ p

∂2ϕ1

∂ p2
+ ∂ϕ1

∂ p
+ s

∂2ϕ1

∂s∂ p
(��)

and so
∂2ϕ1

∂s2
+ s

∂2ϕ1

∂s∂ p
+ p

∂2ϕ1

∂ p2
+ 2

∂ϕ1

∂ p
= 0

Then the second order differential operator of weight −2

 := ∂2

∂s2
+ s

∂2

∂s∂ p
+ p

∂2

∂ p2
+ 2

∂

∂ p
(���)

anihilates ϕ0 and ϕ1 for any solution � of the system ((11), (12)).
A DIRECT PROOF THAT  ANIHILATES SCALAR LISBON INTEGRALS FOR ALL
m ∈ N.

We have, for any entire function f : C → C and for R � max{|s|, |p|}:

ϕm(s, p) = 1

2iπ

∫

|ζ |=R
f (ζ )

ζmdζ

ζ 2 − sζ + p
(a)

This gives:

∂ϕm

∂s
(s, p) = 1

2iπ

∫

|ζ |=R
f (ζ )

ζm+1dζ

(ζ 2 − sζ + p)2
(b)

∂ϕm

∂ p
(s, p) = − 1

2iπ

∫

|ζ |=R
f (ζ )

ζmdζ

(ζ 2 − sζ + p)2
(c)

∂2ϕm

∂s2
(s, p) = 2

1

2iπ

∫

|ζ |=R
f (ζ )

ζm+2dζ

(ζ 2 − sζ + p)3
(d)

∂2ϕm

∂s∂ p
(s, p) = −2

1

2iπ

∫

|ζ |=R
f (ζ )

ζm+1dζ

(ζ 2 − sζ + p)3
(e)

∂2ϕm

∂ p2
(s, p) = 2

1

2iπ

∫

|ζ |=R
f (ζ )

ζmdζ

(ζ 2 − sζ + p)3
(f)

Now it is easy to check that (d) + s(e) + p( f ) + 2(c) = 0.
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932 D. Barlet, T. Monteiro

3 The left action of 0(C,DC) on Lisbon integrals

For each entire function f of the variable zwe shall henceforward denote by� f the associated
Lisbon integral (previously generically denoted by �). Clearly the assignement

f �→ � f

is C-linear and, according to Proposition 2.3, it is injective.

Lemma 3.1 Let f be an entire function on C and let � f the corresponding Lisbon integral.

(1) Let g bean entire function of z. Then�g f = g(A(s))� f . In particular� f = f (A(s))�1.
(2) We have the identity

�∂z( f )(s) = −∇� f (s) +
(
k−1∑

h=0

(k − h)sh∂sh+1

)
(� f )(s)

where ∇ is the constant (k, k) matrix

⎛

⎜⎜⎜⎜⎝

0 0 0 · · · 0
1 0 0 · · · 0
0 2 0 · · · 0
0 0 · · · 0
0 · · · 0 k − 1 0

⎞

⎟⎟⎟⎟⎠
.

Proof When g is a polynomial on z, statement (1) follows easily in Corollary 2.b.2. For an
arbitrary entire function g, it is a consequence of [5, Lem 3.1.8].

Let us prove (2): Consider the Lisbon integral

�∂z f (s) = 1

2iπ

∫

|ζ |=R
f ′(ζ )E(ζ )

dζ

Ps(ζ )

Integration by parts gives, as ∂z(E)(z) = ∇E(z) :

�∂z( f )(s) = −∇� f (s) + 1

2iπ

∫

|ζ |=R
f (ζ )E(ζ )

P ′
s (ζ )

Ps(ζ )2
dζ (∗)

Now, using the equalities P ′
s(ζ ) = ∑k−1

h=0(−1)h(k − h)shζ k−h−1 and

∂� f

∂sh
(s) = − 1

2iπ

∫

|ζ |=R
f (ζ )E(ζ )

(−1)hζ k−hdζ

Ps(ζ )2

we obtain the formula of the lemma. ��
Remark 3.2 From formula (∗) and according to (8) we obtain also the formula

�∂z( f )(s) = −∇� f (s) + (−1)k−1 ∂(P ′
s(A)� f )

∂sk
(s) (∗∗)

Note that the formula�(z. f )′ = � f +�z f ′ corresponding to the usual relation ∂z z−z∂z =
1 follows from the linearity of the map f �→ � f and the Leibniz rule (z f )′ = f + z f ′.

It is not obvious that when � is solution of the system (@), then

(�∂z)(s) := −∇�(s) + (−1)k−1∂sk (P
′
s (A)�)(s)
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(given by the formula (∗∗)) is also a solution of the same system. A direct verification of this
fact is consequence of the formula given in the lemma below.

Lemma 3.3 We have the following identity:

∇Ap − Ap∇ + pAp−1 = (−1)k−1∂sk (A
p)P ′

s (A), ∀p ≥ 1, ∀s ∈ C
k .

Proof Let check the case p = 1 first. It is an easy computation to obtain that ∇A − A∇ +
I d is the matrix which have all lines equal to 0 excepted its last one which is given by
(x1, . . . , xk) with xh = (−1)k−hhsk−h for h ∈ [1, k] with s0 ≡ 0. On the other hand, the
matrix (−1)k−1∂sk A has only a non zero term at the place (k, 1) which equal to 1, so it is
quite easy to see that (−1)k−1(∂sk A)Ap has only a non zero term at the place (k, p + 1)
with value (−1)k−1. According to the computation of (−1)k−1∂sk (A)P ′

s (A)we conclude the
desired formula for p = 1

Now we shall make an induction on p ≥ 1 to prove the general case. Then assume p ≥ 2
and the formula proved for p − 1. Then write

∇Ap − Ap∇ = (∇Ap−1 − Ap−1∇)A + Ap−1(∇A − A∇).

Using the induction hypothesis and the case p = 1 gives

∇Ap − Ap∇ = −(p − 1)Ap−2A − Ap−1+
+ (−1)k−1∂sk (A

p−1)P ′
s (A)A + (−1)k−1Ap−1∂sk (A)P ′

s (A)

= −pAp−1 + (−1)k−1(∂sk (A
p−1)A + Ap−1∂sk (A))P ′

s (A)

= −pAp−1 + (−1)k−1∂sk (A
p)P ′

s(A).

Now we shall make the direct verification that � solution of (@) implies that

−∇� + (−1)k−1∂sk (P
′
s (A)�)

is also solution of (@):

X := (−1)k+h∂sh (∇�) − ∂sk (A
k−h∇�) = ∂sk (∇Ak−h�) − ∂sk (A

k−h∇�)

= ∂sk
[ − (k − h)Ak−h−1� + (−1)k−1∂sk (A

k−h)P ′
s (A)�

]

thanks to the previous lemma. Also, using the fact that P ′
s(A)� is a simple linear combination

of solutions of (@) (with non constant coefficients, but very simple), we obtain the formula:

(−1)k+h∂sh (P
′
s(A)�) = (−1)k(k − h)Ak−h−1� + ∂sk (A

k−h P ′
s(A)�).

Then:

Y := (−1)k+h∂sh (∂sk (P
′
s (A)�)) − ∂sk (A

k−h∂sk (P
′
s (A)�))

= ∂sk
[
(−1)k(k − h)Ak−h−1� + ∂sk (A

k−h P ′
s (A))�) − Ak−h∂sk (P

′
s(A)�)

]

= ∂sk
[
(−1)k(k − h)Ak−h−1� + ∂sk (A

k−h)P ′
s (A)�)

]

and −X + (−1)k−1Y = 0, as desired. ��
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934 D. Barlet, T. Monteiro

4 TheD
Ck -module associated to Lisbon integrals

We shall begin by recalling some basic facts on D-modules and by fixing notations.
For a morphism of manifolds f : Y → X , we use the notation of [10]

fd := t f ′ : T ∗X ×X ×Y −→ T ∗Y

and

fπ : T ∗X ×X ×Y −→ T ∗X

the associated canonical morphisms of vector bundles.
We recall that a conic involutive submanifold V of the cotangent bundle T ∗Z of amanifold

Z (real or complex) is regular if the restriction ω|V of the canonical 1-form ω on T ∗Z
never vanishes outside the 0-section. Recall also that if (x1, . . . , xn, ξ1, . . . , ξn) are canonical
symplectic coordinates on T ∗Z , then ω(x, ξ) = ∑n

i=1 ξi dxi .
Let us fix some k ∈ N, k ≥ 2. In C

k+1 = C
k × C we consider the coordinates

(s1, . . . , sk, z). As in the previous sections we set

P(s, z) = zk +
k−1∑

h=1

(−1)hshz
k−h

Obviously

P(s1, . . . , sk, z) = 0 ⇐⇒ sk = (−1)k−1
k−1∑

h=0

(−1)hshz
k−h,

where s0 = 1. We note s = (s1, . . . , sk) and s′ := (s1, . . . , sk−1).
Let H be the smooth hypersurface of C

k+1 given by the zeros of P(s, z).
Let us denote by L the DCk+1 -module with one generator u defined by the equations

∂u/∂s1 = · · · = ∂u/∂sk = 0. Such module is an example of a so called partial de Rham
systems, which have the feature, among others, that their characteristic varieties are non
singular regular involutive. In our case we have

CharL = {(s, z); (η, τ ) ∈ C
k+1 × C

k+1such that η = 0}.
Since H ⊂ C

k+1 is defined by the equation

P(s, z) = (−1)ksk +
k−1∑

h=0

(−1)hshz
k−h = 0,

T ∗
HC

k+1 is the subbundle of T ∗
C
k+1|H described by

{(s, z; η, τ), (s, z) ∈ H , ∃λ ∈ C such that (η, τ ) = λdP(s, z)}.
This means that P(s, z) = 0 and that their exists λ ∈ C with ηh = λ(−1)hzk−h for each
h ∈ [1, k] and that τ = λP ′(s, z). Hence as ηk = λ(−1)k and this implies:

CharL ∩ T ∗
HC

k+1 ⊂ T ∗
Ck+1C

k+1

(as usual, T ∗
Ck+1C

k+1 denotes the zero section of T ∗
C
k+1), in other words H is non char-

acteristic for L . Let us denote by j : H ↪→ C
k+1 the closed embedding. By Kashiwara’s

classical results (which can be found in [8]) it follows that the induced system Dj∗L byL
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on H is concentrated in degree zero andN := H 0Dj∗L is aDCH -coherent module whose
characteristic variety is exactly

jd j
−1
π Char(L ).

Recall that

Dj∗L := OH
L⊗ j−1O

Ck+1
j−1L

and in this non-characteristic case

� j−1 OCk+1

P(s′, sk, z)OCk+1
⊗ j−1O

Ck+1
j−1L

We have

N := j−1(
DCk+1

PDCk+1 + DCk+1∂s1 + · · · + DCk+1∂sk
) � j−1(OCk+1/POCk+1) < ∂z >

which is isomorphic as a DH -module to

OH < ∂z >� DH

DH∂s1 + · · · + DH∂sk−1

where ∂si stands for the derivation ∂/∂si on OH and ∂z as a derivation on OH is the class of
∂z in the quotient above.

In particular N is sub-holonomic and it is a partial de Rham system similarly to L .
Let us now determine the image of N under the morphism π : C

k � H → C
k given by

(s′, z) �→ (s′, sk). Clearly π is proper surjective with finite fibers.
Recall that one denotes by DCk←H the transfer (π−1DCk ,DH )-bimodule

(π−1DCk ⊗π−1O
Ck

π−1�⊗−1

Ck ) ⊗π−1O
Ck

�H

Recall also that, according to the properness and the fiber finiteness of π , we have

Dπ∗N � H 0Dπ∗N = π∗(DCk←H ⊗DH N )

where we abusively use the notation π∗ for the direct image functor in the categoy of D-
modules in the two left terms and for the direct image functor for sheaves in the right term.
According to [8, Theorems 4.25 and 4.27] (see also the comments in loc.cit. before Theorem
4.27), one knows that Dπ∗N is concentrated in degree zero and that

CharH 0Dπ∗N = πππ−1
d CharN .

So we may henceforward denote for short π∗N := Dπ∗N without ambiguity.
Let � as above be the zero set of the discriminant of P , which can also be defined as the

image by π of the subset of H defined by {P ′(s, z) = 0}.
Since πd is given by the k × k matrix

(
I d 0

∂sk/∂s′ ∂sk/∂z

)T

we conclude that Char π∗N is the image by ππ of the set

{(s′, z); (η′, τ ) ∈ C
k × C

k / η j = −(−z)k− j−1τ, ∀ j ∈ [1, k − 1]}
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936 D. Barlet, T. Monteiro

so it is given by the set

{(s, η) ∈ C
k × C

k / ∃z ∈ C such that Ps(z) = 0 and with η j = (−z)k− j−1ηk ∀ j ∈ [1, k − 1]}
Then Char π∗N is an involutif analytic subset of T ∗

C
k with codimension k − 1 which

proves the following:

Lemma 4.1 π∗N is a subholonomic DCk+1 -module.

Remark 4.2 Let Ñ denote the DCk -module associated to (@@). Then Ñ is clearly not
subholonomic.

Proposition 4.3 The DCk -module π∗N is the quotient of Dk
Ck � DCk ⊗C C

k by the action
of

Ah := ∂sh ⊗ I dCk + (−1)k−h−1∂sk ⊗ A(s)k−h for j ∈ [1, k − 1].
Moreover the action of z and ∂z on π∗N deduced from the action of DH on N 3 are given
respectively by

A0 := 1 ⊗ A(s) and B := 1 ⊗ ∇ + (−1)k−1∂sk ⊗ P ′
s (A(s))

where we put P ′
s (z) := (∂z(Ps(z)) and ∇ :=

⎛

⎜⎜⎜⎜⎝

0 0 · · · 0
1 0 · · · 0
0 2 0 · · ·
· · · · · · · · · · · ·
0 · · · k − 1 0

⎞

⎟⎟⎟⎟⎠

Proof Our goal is to explicit π∗N and to check that it coincides with the DCk -module
associated to the system (@) in Theorem 2.b. 1.

In a first step we explicit the transfer-module

DCk←H := π−1DCk ⊗π−1O
Ck

(π−1�⊗−1

Ck ⊗π−1O
Ck

�H )

as a (π−1DCk ,DH )-bimodule. The next step is to determine the cokernel of

α : (DCk←H )k−1 −→ DCk←H

(u1, . . . , uk−1) �→
k−1∑

i=1

ui∂si

The last step is to apply π∗.
Let us denote for short

σ := ωH ⊗ ω⊗−1

Ck := ds1 ∧ · · · ∧ dsk−1 ∧ dz ⊗ (ds1 ∧ · · · ∧ dsk−1 ∧ dsk)
⊗−1

the generator of the line bundle π−1�⊗−1

Ck ⊗π−1O
Ck

�H .
Recall that OH = OCk+1/J , where J is the ideal generated by P(s, z). Hence OH

is a π−1OCk -free module with rank k since each section a(s′, z) of OH is equivalent, by
Weierstrass Division Theorem, to a unique polynomial

∑k−1
j=0 a j (s′, sk)z j modulo P(s, z),

for some sections a j of OCk .
Hence DCk←H is a left π−1DCk -free module of rank k generated by the k-sections

3 Note that z and ∂z commute with ∂sh for h ∈ [1, k − 1] in DH .
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(1⊗ z jσ) j=0,...,k−1. Since the right action of each operator in DH is π−1DCk -linear, it is
sufficient to calculate each (1 ⊗ z jσ)∂si , i = 1, . . . , k − 1, j = 0, . . . , k − 1.

Now recall that H is defined in C
k+1 by the equation sk = (−1)k−1 ∑k−1

h=0(−1)hshzk−h

with the convention s0 = 1 and so s1, . . . , sk−1, z are global coordinates on H . Then we
have in H

∂sk
∂sh

= (−1)k−h−1zk−h and
∂sk
∂z

= (−1)k−1P ′
s(z)

where P ′
s (z) does not depend on sk .

Let F := 1 ⊗ E(z)σ denote the basis (1 ⊗ z jσ), j ∈ [0, k − 1] of the free rank k
left π−1(DCk )-module DCk←H . Recall that, according to [8, Remark 4.18], in view of the
generators described above, the action ofDH inDCk←H is defined by the following formulas,
where we consider F as a k-vector and use the usual matrix product

Fθ(s′) = θ(s′)F where θ ∈ OH does not depend on z (0∗)

Fz = A(s)F (1∗)

− F∂sh = ∂sh F + (−1)k−h−1∂sk (A(s)k−h F) ∀h ∈ [1, k − 1] (2∗)

− F∂z = ∇F + (−1)k−1∂sk
(
P ′
s(A(s))F

)
(3∗)

where we have used the equalities zE(z) = A(s)E(z) and ∂z(E(z)) = ∇E(z).
Summing up:

• For g ∈ OH represented by
∑k−1

r=0 gr (s)z
r , the (k × k) matrix G of the

π−1DCk -linear morphism defined by g on DCk←H is given by
G := ∑k−1

r=0 gr (s)A(s)r

• Let us consider theDCk -linearmorphismα : (Dk
Ck )

(k−1) → Dk
Ck defined by the following

k − 1 (k, k)-matrices

Ah := ∂sh ⊗ I dCk + (−1)k−h−1∂sk ⊗ A(s)k−h

Let� be inOk
Ck . In view of the relation (2∗), the map (1⊗ zhσ) �→ �h , for h ∈ [0, k−1]

will induce an element of H omD
Ck

(π∗N ,OCk ), that is to say a solution of π∗N , if and

only if we have ∂sh (�) = (−1)k−h∂sk (A
k−h�), that is, in and only if � satisfies (@), since

the generator of π∗N is anihilated by the action of ∂sh for each h ∈ [1, k−1]. In conclusion:
π∗N � coker α

by the finitness of the fibers of π .

Remark 4.4 N is naturally endowed with a structure of right �(C;DC)-module. By functo-
riality π∗N is also a right �(C;DC)-module and its structure coincides with the induced by
the right DC action defined by (1∗) and (3∗) on DCk←H ⊗DH N , since it commutes with
each ∂si , for i = 1, . . . , k − 1. Therefore we obtain a natural left action of �(C,DC) on
H omD

Ck
(π∗N ,OCk ).

We also conclude, according to Lemma 3.1:

Proposition 4.5 The left action of �(C;DC) defined by the above Remark 4.4 on
H omD

Ck
(π∗N ,OCk ) coincides with the left action of �(C;DC) on Lisbon integrals.
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938 D. Barlet, T. Monteiro

If � is a solution of π∗N , replacing in the formula (3∗) the second term thanks to the
equality obtained for � after applying (2∗) or equivalently (@), we also derive a right action
of ∂z which is given by the formula

−�∂z = ∇� −
k−1∑

h=0

(k − h)sh∂sh+1�

Our next goal is to conclude in Proposition 4.7 below that there are no global holomorphic
solutions of π∗N other than those of the form � f , for some holomorphic function f only
depending on z. Since j is non-characteristic we have an isomorphism

j−1RHomD
Ck+1 (L ,OCk+1) � RHomDH (N ,OH )

According to Theorem 4.33 (2) of [8], making X = H , Y = C
k, f = π,N = OCk in

loc.cit, we obtain

Theorem 4.6 For any open subset � of C
k we have an isomorphism functorial on N com-

patible with restrictions to open subsets

R�(π−1(�); RHomDH (N ,OH )) � R�(�; RHomD
Ck

(π∗N ,OCk ))

Recall that this isomorphism uses as a tool the “trace morphism”: π∗OH → OCk con-
structed in [8, Proposition 4.34].

Since for any open subset � and anyDH -moduleP , �(�; ·) andH omDH (P, ·) are left
exact functors, since if � is a Stein open set and if P admits a global resolution by free
DH -modules of finite rank, then RHomDH (P,O) is represented by a complex in degrees
≥ 0 with �(�, ·)-acyclic entries, we conclude that

H0(R�(H ; RHomDH (N ,OH ))) = �(H ;H omDH (N ,OH )) and

H0(R�(Ck; RHomD
Ck

(π∗N ,OCk ))) = �(Ck;H omD
Ck

(π∗N ,OCk ))

therefore Theorem 4.6 entails a C-linear isomorphism

T : HomDH (N ,OH ) � HomD
Ck

(π∗N ,OCk )

Proposition 4.7 The correspondence

f �→ �( f ) := � f

defines a C-linear isomorphism

� : �(C;OC) −→ �(Ck;H omD
Ck

(π∗N ,OCk )) = HomD
Ck

(π∗N ,OCk )

Moreover, this isomorphism is also �(C,DC)-left linear.

Proof The last statement is clear from Proposition 4.5 and Lemma 3.1.
The remaining of the statement is equivalent to prove that � : f �→ � f defines an

isomorphism HomDH (N ,OH ) → HomD
Ck

(π∗N ,OCk ).
We already know that � is injective. It remains to prove that � is surjective. For each f ∈

�(C,OC), we introduce the regular holonomic DC-module M f (a regular flat holomorphic
connection onC) ofwhich the constant sheafC f in degree zero is the complexof holomorphic
solutions.
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Note that N � OCk−1 � DC where we consider C
k−1 endowed with the coordinates

(s1, . . . , sk−1) and C with the coordinate z. We denote by N f the regular holonomic DH -
module (a regular flat holomorphic connection on H )

N f := OCk−1 � M f .

It is clear that N f is a quotient of N , and, by the left exactness of π∗, π∗N f is a
quotient of π∗N . Moreover, according to Proposition 4.5 and Lemma 3.1, � f belongs to
HomD

Ck
(π∗N f ,OCk ). According to Theorem 4.6, for each f we have a C-linear isomor-

phism T f : HomDH (N f ,OH ) � HomD
Ck

(π∗N f ,OCk ) which makes this last one a one
dimensional C-vector space. Moreover, by left exactness of Hom and the exactness of π∗,
we have monomorphisms HomD

Ck
(π∗N f ,OCk )⊂HomD

Ck
(π∗N ,OCk ) and, by functorial-

ity, we have T ( f ) = T f ( f ).

We shall use the following result:

Lemma 4.8 Suppose that f �= 0. ThenHomD
Ck

(π∗N f ,OCk ) is a one dimensional C-vector
space generated by � f .

Proof The result follows by Proposition 2.3 since � f is a non zero element of
HomD

Ck
(π∗N f ,OCk ) hence it is a generator as a C-vector space. ��

Let us now end the proof of Proposition 4.7.
Clearly HomDH (N ,OH ) = ∑

f HomDH (N f ,OH ) and, according to Lemma 4.8, for
each f , HomD

Ck
(π∗N f ,OCk ) is theC-vector space spanned by� f ; hence T ( f ) = λ� f for

some λ ∈ C
∗. Since �λ f = λ� f we conclude that � is surjective which gives the desired

result. ��
As a consequence, isomorphism � explicits isomorphism of Theorem 4.6 since they

coincide up to the multiplication by a constant λ �= 0.

4.1 An example

To conclude this article, let us give an interesting example of choice of the entire function f on
C for which we explicit the regular holonomic system on C

k associated to the corresponding
Lisbon integrals.
THE CASE ft (z) := etz Let us fix a parameter t ∈ C

∗ and consider the entire function
ft (z) := etz .
First remark that according to Lemma 3.1, we have ∂E(z)

∂z = ∇E(z) where ∇ is the (k, k)
matrix given by

∇ :=

⎛

⎜⎜⎜⎜⎝

0 0 · · · 0
1 0 · · · 0
0 2 0 · · ·
· · · · · · · · · · · ·
0 · · · k − 1 0

⎞

⎟⎟⎟⎟⎠

We have4

� ft (s) := 1

2iπ

∫

|ζ |=R

etζ E(ζ )dζ

Ps(ζ )

4 Remember that t is a fixed complex parameter.
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and, according to the linearity of �(·), we also have

t� ft (s) = �∂z( ft )(s)

which, applying (∗∗) in Remark 3.2, entails

t� ft (s) = −∇� ft (s) + (−1)k−1 ∂(P ′
s(A)� ft )

∂sk
(s) (13)

Hence

(t I d + ∇)� ft (s) = (−1)k−1 ∂(P ′
s (A)� ft )

∂sk
(s). (14)

This also implies the following equation for � ft away of the discriminant hypersurface
�:

(t I d + ∇)P ′
s (A)−1� ft (s) = (−1)k−1 ∂(� ft )

∂sk
(s) (15)

for

� ft (s) = P ′
s (A)� ft (s) = 1

2iπ

∫

|ζ |=R

etζ P ′
s (ζ )E(ζ )dζ

Ps(ζ )
.

Combining (14) with the system (@) it is easy to see that we obtain a meromorphic
integrable connexion on the trivial vector bundle of rank k on C

k with a pole along the
discriminant hypersurface.

The regularity of this meromorphic connexion is then consequence of the regularity of
the DH -module Netz = DHu which is given by the equations

∂sh u = 0, ∀h ∈ [1, k − 1] and (∂z − t)u = 0

which is clearly regular holonomic on H . So its direct image by π (as a DCk -module) is
regular holonomic on C

k (see [9, Theorem 8.1]).
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