
Mathematische Zeitschrift (2021) 297:339–360
https://doi.org/10.1007/s00209-020-02512-w Mathematische Zeitschrift

The growth of dimension of cohomology of semipositive line
bundles on Hermitian manifolds

Huan Wang1

Received: 29 September 2018 / Accepted: 16 February 2020 / Published online: 24 March 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this paper, we study the dimension of cohomology of semipositive line bundles over
Hermitian manifolds, and obtain an asymptotic estimate for the dimension of the space of
harmonic (0, q)-forms with values in high tensor powers of a semipositive line bundle when
the fundamental estimate holds. As applications, we estimate the dimension of cohomology
of semipositive line bundles on q-convex manifolds, pseudo-convex domains, weakly 1-
complete manifolds and complete manifolds. We also obtain the estimate of cohomology on
compact manifolds with semipositive line bundles endowed with a Hermitian metric with
analytic singularities and related results.
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340 H. Wang

1 Introduction

The purpose of this paper is to prove asymptotic estimates for the cohomology of semipositive
line bundles over various non-compact manifolds.We generalize the asymptotics obtained by
Berndtsson [4] in the compact case, which in turn refine the holomorphic Morse inequalities
of Demailly [11].

Let X be a compact complex manifold, let L be a holomorphic line bundle and E be
a holomorphic vector bundle on X . The Dolbeault cohomology H0,q(X , Lk ⊗ E) plays a
fundamental role in algebraic and complex geometry and is linked to the structure of the
manifold, cf. [9,11,19]. If L is a positive line bundle, H0,q(X , Lk ⊗ E) = 0 for q ≥ 1 and k
large enough, by the Kodaira-Serre vanishing theorem (see e.g. [19, Theorem1.5.6]) and this
can be used to prove that global holomorphic sections of Lk ⊗E give a projective embedding
of X for large k (Kodaira embedding theorem).

Assume now that L is semipositive. The solution of the Grauert-Riemenschneider con-
jecture [13] by Siu [28] and Demailly [11] shows that dim H0,q(X , Lk ⊗ E) = o(kn) as
k → ∞ for q ≥ 1. This can be used to show that X is a Moishezon manifold, if (L, hL)

is moreover positive at least at one point. Berndtsson [4] showed that we have actually
dim H0,q(X , Lk ⊗ E) = O(kn−q) as k → ∞ for q ≥ 1.

We will consider first a very general situation where we can prove the decay of the
cohomology groups as above. Let (X , ω) be a Hermitian manifold of dimension n. Let
dvX := ωn/n! be the volume form on X . Let (L, hL) and (E, hE ) be holomorphic Hermitian
line bundles on X , where L is a line bundle. We denote by (L2

0,q(X , Lk ⊗ E), ‖ · ‖) the space
of square integrable (0, q)-forms with values in Lk ⊗ E with respect to the L2 inner product

induced by the above data.We denote by ∂
E
k the maximal extension of the Dolbeault operator

on L2
0,•(X , Lk ⊗ E) and by ∂

E∗
k its Hilbert space adjoint. LetH 0,q(X , Lk ⊗ E) be the space

of harmonic (0, q)-forms with values in Lk ⊗ E on X .
For a given 0 ≤ q ≤ n, we say that the concentration condition holds in bidegree (0, q)

for harmonic forms with values in Lk ⊗ E for large k, if there exists a compact subset
K ⊂ X and C0 > 0 such that for sufficiently large k, we have

‖s‖2 ≤ C0

∫
K

|s|2dvX , (1.1)

for s ∈ Ker(∂
E
k )∩Ker(∂

E∗
k )∩ L2

0,q(X , Lk ⊗ E). The set K is called the exceptional compact
set of the concentration. We say that the fundamental estimate holds in bidegree (0, q)

for forms with values in Lk ⊗ E for large k, if there exists a compact subset K ⊂ X and
C0 > 0 such that for sufficiently large k, we have

‖s‖2 ≤ C0(‖∂E
k s‖2 + ‖∂E,∗

k s‖2 +
∫
K

|s|2dvX ), (1.2)

for s ∈ Dom(∂
E
k ) ∩ Dom(∂

E∗
k ) ∩ L2

0,q(X , Lk ⊗ E). The set K is called the exceptional
compact set of the estimate.

The first observation of this paper is an asymptotic estimate for L2-cohomology with
semipositive line bundles over Hermitian manifolds as follows. It in some sense is a refor-
mulation of Theorem 3.1, which was obtained in [31]. And the main results of this paper
are how to use Theorem 1.1 as well as the local estimate of Theorem 3.1 to obtain global
information such as the dimension of cohomology group over various non-compact complex
manifolds.

123



The growth of dimension of cohomology of semipositive line bundles... 341

Theorem 1.1 Let (X , ω) be aHermitianmanifold of dimension n. Let (L, hL) and (E, hE ) be
holomorphicHermitian line bundles on X. Assume that for some 1 ≤ q ≤ n the concentration
condition holds in bidegree (0, q) for harmonic forms with values in Lk ⊗ E for large k.
Assume that (L, hL) is semipositive on a neighbourhood of the exceptional compact set K .
Then there exists C > 0 such that for sufficiently large k, we have

dimH 0,q(X , Lk ⊗ E) ≤ Ckn−q . (1.3)

The same estimate also holds for reduced L2-Dolbeault cohomology groups,

dim H
0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (1.4)

In particular, if the fundamental estimate holds in bidegree (0, q) for forms with values in
Lk ⊗ E for large k, the same estimate holds for L2-Dolbeault cohomology groups,

dim H0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (1.5)

Note that holomorphic Morse inequalities for the L2-cohomology were obtained under the
assumption that the fundamental estimate holds in [19, Theorem 3.2.13]. They can only
deliver an estimate dim H0,q

(2) (X , Lk ⊗ E) = o(kn) as k → ∞.
A geometric situation when Theorem 1.1 can be applied is the case of a semipositive line

bundle on a complete Kähler manifold which polarizes the Kähler metric at infinity.

Theorem 1.2 Let (X , ω) be a complete Hermitian manifold of dimension n. Let (L, hL) be
a holomorphic Hermitian line bundle on X. Assume there exists a compact subset K ⊂ X
such that

√−1R(L,hL ) = ω on X\K and (L, hL) is semipositive on K .
Then there exists C > 0 such that for any q ≥ 1 and sufficiently large k, we have

dim H0,q
(2) (X , Lk ⊗ KX ) ≤ Ckn−q . (1.6)

Note that by [19, Theorem 3.3.5] we have

dim H0,0
(2) (X , Lk ⊗ KX ) ≥ kn

n!
∫
X
c1(L, hL)n + o(kn) , k → ∞

in the situation of Theorem 1.2. Moreover, the Bergman kernel of H0,0
(2) (X , Lk ⊗ KX ) has an

asymptotic expansion in powers of k on the set where c1(L, hL) > 0 by [17, Theorem 1.7].
We consider further the case of q-convex manifolds as application of Theorem 1.1. For

general holomorphic Morse inequalities on q-convex manifolds see [19, Theorem 3.5.8].

Theorem 1.3 Let X be a q-convex manifold of dimension n, and let (L, hL), (E, hE ) be
holomorphic Hermitian line bundles on X. Let � be an exhaustion function of X and K the
exceptional set. Let (L, hL) be semipositive on a sublevel set Xc := {x ∈ X : �(x) < c}
satisfying K ⊂ Xc , and let (L, hL) be positive on Xc\K.

Then there exists C > 0 such that for any j ≥ q and k ≥ 1, we have

dim H j (X , Lk ⊗ E) ≤ Ckn− j . (1.7)

We denote here by H j (X , Lk ⊗ E) the cohomology groups of the sheavesOX (Lk ⊗ E) of
holomoprhic sections of Lk ⊗ E . They are isomorphic to the Dolbeault cohomology groups
H0, j (X , Lk ⊗ E).

In the case of 1-convex manifolds estimate (1.7) holds without additional hypothesis.
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342 H. Wang

Theorem 1.4 Let X be a 1-convex manifold of dimension n, and let (L, hL) and (E, hE ) be
holomorphic Hermitian line bundles on X. Let � be an exhaustion function of X and K the
exceptional set. Let (L, hL) be semipositive on a sublevel set Xc := {x ∈ X : �(x) < c}
satisfying K ⊂ Xc. Then there exists C > 0 such that for any j ≥ 1 and k ≥ 1 the estimate
(1.7) holds.

Similarly, we also have the estimates of cohomology over pseudoconvex domains and
weakly 1-complete manifolds.

Theorem 1.5 Let M � X be a smooth (weakly) pseudoconvex domain in a complex manifold
X of dimension n. Let (L, hL) and (E, hE ) be holomorphic Hermitian line bundles on X.
Let (L, hL) be semipositive on M. Moreover, assume (L, hL) is positive in a neighbourhood
of bM. Then there exists C > 0 such that for any q ≥ 1 and sufficiently large k, we have

dim H0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (1.8)

Theorem 1.6 Let X be aweakly 1-completemanifold of dimension n. Let (L, hL) and (E, hE )

be holomorphic Hermitian line bundles on X. Let (L, hL) be semipositive on X. Moreover,
assume (L, hL) is positive on X\K for a compact subset K ⊂ X. Then there exists C > 0
such that for any q ≥ 1 and sufficiently large k, we have

dim Hq(X , Lk ⊗ E) ≤ Ckn−q . (1.9)

The next result is another generalization of [4] for line bundles endowed with a Hermitian
metric with analytic singularities. Let us recall that the analogue of the Kodaira vanishing
theorem in the case of singular metrics is the Nadel vanishing theorem [10,26]. If X is a
compact Kähler manifold, L and E are holomorphic vector bundles with rank(L) = 1, and
hL is a singular Hermitian metric such that c1(L, hL) is a Kähler current, then Hq(X , E ⊗
Lk ⊗ J (hL

k
)) = 0 for q ≥ 1 and k suffiently large, where J (hL

k
) is the Nadel multiplier

ideal sheaf associated to hL
k
. Bonavero [5] obtained holomorphic Morse inequalities for

singular Hermitian line bundles. These inequalities imply that for any q ≥ 1 we have

dim Hq(X , Lk ⊗ E ⊗ J (hL
k
)) = o(kn), k → ∞, (1.10)

if the curvature c1(L, h) is semipositive on the set of points where it is smooth. We obtain
the following refinement of (1.10).

Theorem 1.7 Let X be a compact complex manifold of dimension n and let L be a holomor-
phic line bundle on X endowed with a Hermitian metric hL with analytic singularities. Let
(E, hE ) be a holomorphic Hermitian line bundle on X. Assume c1(L, hL) ≥ 0 on the set
{x ∈ X : hL smooth on a neighborhood of x}.

Then there exists C > 0 such that for any q ≥ 1 and k ≥ 1, we have

dim Hq(X , Lk ⊗ E ⊗ J (hL
k
)) ≤ Ckn−q . (1.11)

In particular, this estimate still holds when c1(L, hL) is a positive current on X.

Remark 1.8 Under the hypothesis of Theorem 1.7, if c1(L, hL) ≥ 0 on the set {x ∈ X :
hL smooth on a neighborhood of x} and positive at least at one point, then there existC1 > 0
and C2 > 0 such that for sufficiently large k, we have

C1k
n ≤ dim H0(X , Lk ⊗ E ⊗ J (hL

k
)) ≤ C2k

n . (1.12)

Thus L is big and X is Moishezon.
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Remark 1.9 For a semipositive line bundle L on a compact complex manifold, if L is positive
at some point, Demailly’s Morse inequalities tells us that L is big. It is very interesting to
know that when we can have many holomorphic sections if L is semipositive and degenerate
everywhere. Marinescu and Savale [21] recently can produce many holomorphic sections
for a semipositive line bundle L over a Riemann surface, where L is degenerate everywhere
but of finite type. It would be desirable that if one can show that these asymptotic estimates
of O(kn−q) type for semipositive line bundles can be used to produce holomorphic sections
for some class of semipositive line bundles which is degenerate everywhere. Besides, for
a compact Riemann surface Y with a semipositive line bundle L vanishing to finite order,
H1(Y , Lk) = 0 for sufficiently large k, see [21, Corollary 21], and this vanishing theorem
for a semipositive line bundle works only in dimension one, see [21, Remark 22]. In general,
without the assumption of the vanishing of RL to finite order, dim H1(Y , Lk) < C for all
k ∈ N (see Theorem 3.17 for n = q = 1) and our estimates work in higher dimensional and
various non-compact complex manifolds.

In this paper we consider the cohomology spaces on general (possibly non-compact)
complex manifolds with semipositive line bundles. With the fundamental estimates ful-
filled, Theorem 1.1 gives an estimate of L2-Dolbeaut cohomology on arbitrary complex
manifolds. On one hand, it generalizes [4] to general complex manifolds in the context of
L2-cohomology; on the other hand, it leads to the refinement of the estimates for com-
plete manifolds, q-convex manifolds, pseudoconvex domains, weakly 1-convex manifolds,
and semipositive line bundle endowed metric with analytic singularities, see Theorem 1.2,
1.3, 1.5, 1.6 and 1.7, respectively. Note also that themagnitude kn−q in Theorems 1.1, 1.2, 1.3,
1.6, 1.7 and 3.22 cannot be improved in general, see [4, Proposition 4.2].

Our paper is organized in the following way. In Sect. 2 we introduce the notations and
recall the necessary facts. In Sect. 3, we give an asymptotic estimate for L2-cohomology
with semipositive line bundles on Hermitian manifolds, which is a uniform approach to
consider semipositive line bundles on complex manifolds. As main results, we obtain the
estimate of growth of dimension in certain possibly non-compact complex manifolds. In
additional, we revisited the compact and covering manifolds in this context. In Sect. 4, we
prove the estimate of cohomology still holds when the Hermitianmetric of the line bundle has
analytic singularities. The techniques and formulations are mainly based on Berndtsson [4],
Ma-Marinescu [19] and [31].

2 Preliminaries

2.1 L2-cohomology

Let (X , ω) be a Hermitian manifold of dimension n and (F, hF ) be a holomorphic Hermitian
vector bundle over X . Let�p,q(X , F)be the spaceof smooth (p, q)-formson X withvalues in
F for p, q ∈ N. If the rank(F) = 1, the curvature of (F, hF ) is defined by RF = ∂∂ log |s|2

hF
for any local holomorphic frame s, then the Chern-Weil form of the first Chern class of F

is c1(F, hF ) =
√−1
2π RF , which is a real (1, 1)-form on X . The volume form is given by

dvX := ωn := ωn

n! . We use the notion of positive (p, p)-form given by [9, Chapter III, §1,
(1.1) (1.2) (1.5) (1.7)]. If a (p, p)-form T is positive, we write T ≥ 0.
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344 H. Wang

Definition 2.1 We say a holomorphic Hermitian line bundle (L, hL) is semipositive on X ,
if c1(L, hL) is positive semi-definite on X , equivalently c1(L, hL) ≥ 0. For simplifying
notations, we also denote L ≥ 0.

Let �
p,q
0 (X , F) be the subspace of �p,q(X , F) consisting of elements with compact

support. The L2-scalar product on �
p,q
0 (X , F) is given by

〈s1, s2〉 =
∫
X
〈s1(x), s2(x)〉hdvX (x) (2.1)

where 〈·, ·〉h := 〈·, ·〉hF ,ω is the pointwise Hermitian inner product induced by ω and hF . We
denote by L2

p,q(X , F) the L2 completion of �
p,q
0 (X , F).

Let ∂
F : �

p,q
0 (X , F) → L2

p,q+1(X , F) be the Dolbeault operator and let ∂
F
max be its

maximal extension (see [19, Lemma 3.1.1]). From now on we still denote the maximal

extension by ∂
F := ∂

F
max and the associatedHilbert space adjoint by ∂

F∗ := ∂
F∗
H := (∂

F
max)

∗
H

for simplifying the notations. Consider the complex of closed, densely defined operators

L2
p,q−1(X , F)

∂
F

−→ L2
p,q(X , F)

∂
F

−→ L2
p,q+1(X , F), then (∂

F
)2 = 0. By [19, Proposition

3.1.2], the operator defined by

Dom(�F ) = {s ∈ Dom(∂
F
) ∩ Dom(∂

F∗
) : ∂

F
s ∈ Dom(∂

F∗
), ∂

F∗
s ∈ Dom(∂

F
)},

�Fs = ∂
F
∂
F∗
s + ∂

F∗
∂
F
s for s ∈ Dom(�F ), (2.2)

is a positive, self-adjoint extension of Kodaira Laplacian, called the Gaffney extension.

Definition 2.2 The space of harmonic forms H p,q(X , F) is defined by

H p,q(X , F) := Ker(�F ) = {s ∈ Dom(�F ) ∩ L2
p,q(X , F) : �Fs = 0}. (2.3)

The q-th reduced L2-Dolbeault cohomology is defined by

H
0,q
(2) (X , F) := Ker (∂

F
) ∩ L2

0,q(X , F)

[Im(∂
F
) ∩ L2

0,q(X , F)]
, (2.4)

where [V ] denotes the closure of the space V . The q-th (non-reduced) L2-Dolbeault coho-
mology is defined by

H0,q
(2) (X , F) := Ker (∂

F
) ∩ L2

0,q(X , F)

Im(∂
F
) ∩ L2

0,q(X , F)
. (2.5)

According to the general regularity theorem of elliptic operators (cf. [19, TheoremA.3.4]),
s ∈ H p,q(X , F) implies s ∈ �p,q(X , F). By weak Hodge decomposition (cf. [19, (3.1.21)
(3.1.22)]), we have a canonical isomorphism

H
0,q
(2) (X , F) ∼= H 0,q(X , F) (2.6)

for any q ∈ N, which associates to each cohomology class its unique harmonic representative.
The q-th cohomology of the sheaf of holomorphic sections of F is isomorphic to the q-th
Dolbeault cohomology, Hq(X , F) ∼= H0,q(X , F).
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For a given 0 ≤ q ≤ n, we say the fundamental estimate holds in bidegree (0, q) for
forms with values in F , if there exists a compact subset K ⊂ X and C > 0 such that

‖s‖2 ≤ C(‖∂F
s‖2 + ‖∂F∗‖2 +

∫
K

|s|2dvX ), (2.7)

for s ∈ Dom(∂
F
) ∩ Dom(∂

F,∗
) ∩ L2

0,q(X , F). K is called the exceptional compact set of
the estimate. If the fundamental estimate holds in bidegree (0, q) for forms with values in F ,
the reduced and non-reduced L2-Dolbeault cohomology coincide, see [19, Theorem 3.1.8].

For a given 0 ≤ q ≤ n, we say that the concentration condition holds in bidegree (0, q)

for harmonic forms with values in F , if there exists a compact subset K ⊂ X and C > 0
such that

‖s‖2 ≤ C
∫
K

|s|2dvX , (2.8)

for s ∈ Ker(∂
F
) ∩ Ker(∂

F∗
) ∩ L2

0,q(X , F). The compact set K is called the exceptional
compact set of the concentration. Note if the fundamental estimate holds in bidegree (0, q)

for forms with values in F , the concentration condition holds in bidegree (0, q) for harmonic
forms with values in F .

2.2 q-convex complexmanifolds and 0-coverings

Definition 2.3 [2] A complex manifold X of dimension n is called q-convex if there exists a
smooth function � ∈ C∞(X ,R) such that the sublevel set Xc := {� < c} � X for all c ∈ R

and the complex Hessian ∂∂� has at least n − q + 1 positive eigenvalues outside a compact
subset K ⊂ X . Here Xc � X means that the closure Xc is compact in X . We call � an
exhaustion function and K exceptional set. We say X is q-complete if K = ∅ in additional.

Definition 2.4 A complex manifold X of dimension n is called a q-convex manifold with a
plurisubharmonic exhaustion function near the exceptional set, if there exists a compact subset
K ⊂ X and a smooth function � ∈ C∞(X ,R) such that the sublevel set Xc := {� < c} � X
for all c ∈ R, and the complex Hessian ∂∂� has at least n − q + 1 positive eigenvalues on
X\K and

√−1∂∂� ≥ 0 on Xc\K for some Xc with K ⊂ Xc.

Let M be a relatively compact domain with smooth boundary bM in a complex manifold
X . Let ρ ∈ C∞(X ,R) such that M = {x ∈ X : ρ(x) < 0} and dρ �= 0 on bM = {x ∈ X :
ρ(x) = 0}. We denote the closure ofM byM = M∪bM . We say that ρ is a defining function
of M . Let T (1,0)

x bM := {v ∈ T (1,0)
x X : ∂ρ(v) = 0} be the analytic tangent bundle to bM at

x ∈ bM . The Levi form of ρ is the 2-formLρ := ∂∂ρ ∈ C∞(bM, T (1,0)∗bM⊗T (0,1)∗bM).

Definition 2.5 A relatively compact domain M with smooth boundary bM in a complex
manifold X is called strongly (resp. (weakly)) pseudoconvex if the Levi formLρ is positive
definite (resp. semidefinite).

Note that any strongly pseudoconvex domain is 1-convex.

Definition 2.6 A complex manifold X is called weakly 1-complete if there exists a smooth
plurisubharmonic function ϕ ∈ C∞(X ,R) such that {x ∈ X : ϕ(x) < c} � X for any c ∈ R.
ϕ is called an exhaustion function.

Note that any 1-convex manifold is weakly 1-complete.
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346 H. Wang

Definition 2.7 A Hermitian manifold (X , ω) is called complete, if all geodesics are defined
for all time for the underlying Riemannian manifold.

If (X , ω) is complete, for arbitrary holomorphic Hermitian vector bundle (F, hF ) on X ,

�
0,•
0 (X , F) is dense in Dom(∂

F
), Dom(∂

F∗
H ) and Dom(∂

F
)∩Dom(∂

F∗
H ) in the graph-norms

of ∂
F
, ∂

F∗
H and ∂

E +∂
E∗
H respectively, see [19, Lemma 3.3.1 (Andreotti-Vesentini), Corollary

3.3.3]. Here the graph-norm of R is defined by ‖s‖ + ‖Rs‖ for s ∈ Dom(R).

Definition 2.8 Let (X , ω) be a Hermitian manifold of dimension n on which a discrete group
� acts holomorphically, freely and properly such that ω is a �-invariant Hermitian metric
and the quotient X/� is compact. We say (X , ω) is a �-covering manifold.

2.3 Kodaira Laplacian with@-Neumann boundary conditions

Let (X , ω) be a Hermitian manifold of dimension n and (F, hF ) be a holomorphic Hermitian
vector bundle over X . LetM be a relatively compact domain in X . Let ρ be a defining function
of M satisfying M = {x ∈ X : ρ(x) < 0} and |dρ| = 1 on bM , where the pointwise norm
| · | is given by gT X associated to ω.

Let en ∈ T X be the inward pointing unit normal at bM and e(0,1)
n its projection on T (0,1)X .

In a local orthonormal frame {w1, . . . , wn} of T (1,0)X , we have e(0,1)
n = −∑n

j=1 w j (ρ)w j .

Let B0,q(X , F) := {s ∈ �0,q(M, F) : i
e(0,1)
n

s = 0 on bM}. We have B0,q(M, F) =
Dom(∂

F∗
H ) ∩ �0,q(M, F) and the Hilbert space adjoint ∂

F∗
H of ∂

F
coincides with the formal

adjoint ∂
F∗

of ∂
F
on B0,q(M, F), see [19, Proposition 1.4.19]. We consider the operator

�N s = ∂
F
∂
F∗
s+∂

F∗
∂
F
s for s ∈ Dom(�N ) := {s ∈ B0,q(M, F) : ∂

F
s ∈ B0,q+1(M, F)}.

The Friedrichs extension of �N is a self-adjoint operator and is called the Kodaira Laplacian
with ∂-Neumann boundary conditions, which coincides with the Gaffney extension of the

Kodaira Laplacian, see [19, Proposition 3.5.2]. Note�0,•(M, F) is dense in Dom(∂
F
) in the

graph-norms of ∂
F
, and B0,•(M, F) is dense in Dom(∂

F∗
H ) and in Dom(∂

F
) ∩ Dom(∂

F∗
H )

in the graph-norms of ∂
F∗
H and ∂

E + ∂
E∗
H , respectively, see [19, Lemma 3.5.1]. Here the

graph-norm of R is defined by ‖s‖ + ‖Rs‖ for s ∈ Dom(R).

2.4 Hermitianmetric with analytic singularities on line bundles

Definition 2.9 Let X be a connected compact complex manifold of dimension n and L
a holomorphic line bundle on X . On L we say hL is a Hermitian metric with analytic
singularities, if there exists a smooth Hermitian metric hL0 and a function ϕ ∈ L1

loc(X ,R)

with locally

ϕ = c

2
log

⎛
⎝∑

j∈J

| f j |2
⎞
⎠ + ψ, (2.9)

where J is at most countable, c is a non-negative rational number, f j are non-zero holomor-
phic functions and ψ is a smooth function, such that hL = hL0 e

−2ϕ .

Note that for a Hermitian metric with analytic singularities on line bundles over connected
compact complex manifolds (see Definition 2.9), the non-negative rational number c does
not depend on the local form (2.9) of the weight ϕ.
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For any local holomorphic frame eL of L , hL0 (eL , eL) = e−2ψ0 , where ψ0 is smooth, thus
the local weights of hL is given by c

2 log(
∑

J | f j |2) + (ψ + ψ0). Because locally ψ + ψ0 is
smooth, we use (2.9) to represent the local weight of hL for simplifying notations.

For ϕ ∈ L1
loc(X ,R), the Nadel multiplier ideal sheafJ (ϕ) is the ideal subsheaf of germs

of holomorphic functions f ∈ OX ,x such that | f |2e−2ϕ is integrable with respect to the
Lebesgue measure in local coordinates near x . We defineJ (hL) := J (ϕ), which does not
depend on the choice of ϕ, see [10] or [19, Definition 2.3.13].

3 Asymptotic estimate for L2-cohomology with semipositive line
bundles

Let (X , ω) be a Hermitian manifold of dimension n and let (L, hL) and (E, hE ) be holo-
morphic Hermitian line bundles over X . Let H 0,q(X , Lk ⊗ E) be the space of harmonic
(0, q)-formswith values in Lk⊗E . Let {skj } j≥1 be an orthonormal basis ofH 0,q(X , Lk⊗E)

and let Bq
k be the Bergman density function defined by

Bq
k (x) =

∑
j≥1

|skj (x)|2hk ,ω , x ∈ X , (3.1)

where | · |hk ,ω is the pointwise norm of a form, see [31]. The function (3.1) is well-defined
by an adaptation of [7, Lemma 3.1] to form case. By replacing E

⊗
�n(T (1,0)X) for E in

H n,q(X , Lk ⊗ E), we can rephrase [31, Theorem 1.1] as follows.

Theorem 3.1 Let (X , ω) be aHermitianmanifold of dimension n and let (L, hL) and (E, hE )

be holomorphic Hermitian line bundles over X. Let K ⊂ X be a compact subset and assume
that (L, hL) is semipositive on a neighborhood of K .

Then there exists C > 0 depending on the compact set K , the metric ω and the bundles
(L, hL) and (E, hE ), such that for any x ∈ K, k ≥ 1 and q ≥ 1,

Bq
k (x) ≤ Ckn−q , (3.2)

where Bq
k (x) is the Bergman density function (3.1) of harmonic (0, q)-forms with values in

Lk ⊗ E.

Ageneral result on asymptotic estimate for L2-cohomologywith semipositive line bundles
over Hermitian manifolds follows immediately.

Theorem 3.2 (Theorem 1.1) Let (X , ω) be a Hermitian manifold of dimension n. Let (L, hL)

and (E, hE ) be holomorphic Hermitian line bundles on X. Let 1 ≤ q ≤ n. Assume the
concentration condition holds in bidegree (0, q) for harmonic forms with values in Lk ⊗ E
for large k. Moreover, assume (L, hL) is semipositive on a neighbourhood of the exceptional
set K . Then there exists C > 0 such that for sufficiently large k we have

dimH 0,q(X , Lk ⊗ E) ≤ Ckn−q . (3.3)

The same estimate also holds for reduced L2-Dolbeault cohomology groups,

dim H
0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (3.4)

In particular, if the fundamental estimate holds in bidegree (0, q) for forms with values in
Lk ⊗ E for large k, the same estimate holds for L2-Dolbeault cohomology groups

dim H0,q
(2) (X , Lk ⊗ E) ≤ Ckn−q . (3.5)
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Proof By Theorem 3.1 and the concentration condition, we have

dim H
(0,q)

(2) = dimH 0,q(X , Lk ⊗ E) (3.6)

=
∑
j≥1

‖skj ‖2 ≤ C0

∫
K
Bq
k (x)dvX ≤ C0C vol(K )kn−q (3.7)

for sufficiently large k.Note that H0,q
(2) (X , F) = H

0,q
(2) (X , F) and the dimension is finite,when

the fundamental estimate holds in bidegree (0, q) for forms with values in a holomorphic
Hermitian vector bundle (F, hF ) by [19, Theorem 3.1.8]. ��

3.1 q-Convexmanifolds

3.1.1 Exhaustion functions with the plurisubharmonic near the exceptional set

In this section we prove the following general result about the growth of the cohomology of
q-convex manifolds.

Theorem 3.3 Let X be a q-convex manifold of dimension n, and let (L, hL), (E, hE ) be
holomorphic Hermitian line bundles on X. Let � be an exhaustion function of X and K the
exceptional set. Let (L, hL) be semipositive on a sublevel set Xc := {x ∈ X : �(x) < c}
satisfying K ⊂ Xc, and let

√−1∂∂� ≥ 0 on Xc\K. Then there exists C > 0 such that for
any j ≥ q and k ≥ 1, we have

dim H j (X , Lk ⊗ E) ≤ Ckn− j . (3.8)

Let X be a q-convex manifold of dimension n, let � be a plurisubharmonic exhaustion
function of X and K the exceptional set. By the definition, � ∈ C∞(X ,R) satisfies Xc :=
{� < c} � X for all c ∈ R,

√−1∂∂� has n − q + 1 positive eigenvalues on X\K . In this
section, we fix real numbers u0, u and v satisfying u0 < u < c < v and K ⊂ Xu0 .

Let (L, hL) and (E, hE ) be holomorphic Hermitian line bundles on X . We have that the
fundamental estimate holds in bidegree (0, j) for forms with values in Lk ⊗ E for large k
and each q ≤ j ≤ n on Xc when X is a q-convex manifold, see Proposition 3.8, which was
obtained in [19, Theorem 3.5.8] for the proof of Morse inequalities on q-convex manifold.
For the sake of completeness, we prove it here.

Firstly, we choose now a Hermitian metric on a q-convex manifold X .

Lemma 3.4 ([19, Lemma 3.5.3]) For any C1 > 0 there exists a metric gT X (with Hermitian
formω) on X such that for any j ≥ q and any holomorphic Hermitian vector bundle (F, hF )

on X,

〈(∂∂�)(wl , wk)w
k ∧ iwl s, s〉h ≥ C1|s|2, s ∈ �

0, j
0 (Xv\Xu, F), (3.9)

where {wl}nl=1 is a local orthonormal frame of T
(1,0)X with dual frame {wl}nl=1 of T

(1,0)∗X.

Nowwe consider the q-convexmanifold X associated with themetricω obtained above as
a Hermitian manifold (X , ω). Note for arbitrary holomorphic vector bundle F on a relatively

compact domain M in X , the Hilbert space adjoint ∂
F∗
H of ∂

F
coincides with the formal

adjoint ∂
F∗

of ∂
F
on B0, j (M, F) = Dom(∂

F∗
H ) ∩ �0, j (M, F), 1 ≤ j ≤ n. So we simply

use the notion ∂
F∗

on B0, j (M, F), 1 ≤ j ≤ n.
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Secondly, we modify Hermitian metric hLχ on L and show the fundamental estimate
fulfilled. Let χ(t) ∈ C∞(R) such that χ ′(t) ≥ 0, χ ′′(t) ≥ 0. We define a Hermitian metric
hL

k

χ := hL
k
e−kχ(�) on Lk for each k ≥ 1 and set Lk

χ := (Lk, hL
k

χ ). Thus

RLk
χ = kRLχ = kRL + kχ ′(�)∂∂� + kχ ′′(�)∂� ∧ ∂�. (3.10)

Lemma 3.5 ([19, (3.5.19)]) There exists C2 > 0 and C3 > 0 such that, if χ ′(�) ≥ C3 on
Xv\Xu, then

‖s‖2 ≤ C2

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) (3.11)

for s ∈ B0, j (Xc, Lk ⊗ E) with supp(s) ⊂ Xv\Xu, j ≥ q and k ≥ 1, where the L2-norm
‖ · ‖ is given by ω, hL

k

χ and hE on Xc.

Lemma 3.6 Let ε > 0 satisfying Xc+ε\Xc−ε := {c − ε < � < c + ε} � Xv\Xu. Let
φ ∈ C∞

0 (Xv,R) with supp(φ) ⊂ Xv\Xu such that 0 ≤ φ ≤ 1 and φ = 1 on Xc+ε\Xc−ε .
Let K ′ := Xc−ε := {� ≤ c − ε}. Then, for any s ∈ B0,p(Xc, Lk ⊗ E), 1 ≤ p ≤ n, we have

‖φs‖2 ≥ ‖s‖2 −
∫
K ′

|s|dvX , (3.12)

where the Hermitian norm | · | and the L2-norm ‖ · ‖ are given by ω, hL
k

χ and hE on Xc.

Proof For s ∈ B0,p(Xc, Lk⊗E) = Dom(∂
E∗
k )∩�0,p(Xc, Lk⊗E),φs ∈ �0,p(Xc, Lk⊗E)

and i
e(0,1)
n

(φs) = i
e(0,1)
n

(s) = 0 on bXc by φs = s on the neighbourhood Xc+ε\Xc−ε of bXc.

Thus φs ∈ B0,p(Xc, Lk ⊗ E) with supp(φs) ⊂ Xv\Xu ,

‖φs‖2 =
∫
Xc

|φs|2dvX =
∫
Xc\Xu

|φs|2dvX =
∫

{c−ε<�<c}
|φs|2dvX +

∫
u<�≤c−ε

|φs|2dvX

=
∫

{c−ε<�<c}
|s|2dvX +

∫
{u<�≤c−ε}

|φs|2dvX

≥
∫
Xc\Xc−ε

|s|2dvX = ‖s‖2 −
∫
K ′

|s|2dvX . (3.13)

��
Lemma 3.7 Let φ be in Lemma 3.6, and let ξ := 1−φ and C1 := supx∈Xc

|dξ(x)|2
gT∗X > 0.

Then, for any s ∈ B0,p(Xc, Lk ⊗ E), 1 ≤ p ≤ n, and k ≥ 1, we have

‖∂E
k (ξs)‖2 + ‖∂E∗

k (ξs)‖2 ≤ 3

2
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) + 6C1‖s‖2, (3.14)

1

k
(‖∂E

k (φs)‖2 + ‖∂E∗
k (φs)‖2) ≤ 5

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) + 12C1

k
‖s‖2, (3.15)

where the L2-norm ‖ · ‖ is given by ω, hL
k

χ and hE on Xc.

Proof The first inequality follows from [19, (3.2.8)]. For simplifying notations, we use ∂

and ∂
∗
instead of ∂

E
k and ∂

E∗
k respectively. From 1

2‖∂(φs)‖2 − ‖∂s‖2 ≤ ‖∂s − ∂(φs)‖2,
1
2‖∂

∗
(φs)‖2 − ‖∂∗

s‖2 ≤ ‖∂∗
s − ∂

∗
(φs)‖2 and the first inequality, we have

1

2
(‖∂(φs)‖2 + ‖∂∗

(φs)‖2) ≤ 5

2
(‖∂s‖2 + ‖∂∗

s‖2) + 6C1‖s‖2, (3.16)
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thus the second inequality follows. ��

Proposition 3.8 Let X be a q-convex manifold of dimension n with the exceptional set K ⊂
Xc. Then there exists a compact subset K ′ ⊂ Xc and C0 > 0 such that for sufficiently large
k, we have

‖s‖2 ≤ C0

k
(‖∂E

k s‖2 + ‖∂E∗
k,Hs‖2) + C0

∫
K ′

|s|2dvX (3.17)

for any s ∈ Dom(∂
E
k )∩Dom(∂

E∗
k,H )∩ L2

0, j (Xc, Lk ⊗ E) and q ≤ j ≤ n, where χ ′(�) ≥ C3

on Xv\Xu in Lemma 3.5 and the L2-norm is given by ω, hL
k

χ and hE on Xc.

Proof We follow [19, Theorem 3.5.8]. Since B0, j (Xc, Lk ⊗ E) is dense in Dom(∂
E
k ) ∩

Dom(∂
E∗
k,H ) ∩ L2

0, j (Xc, Lk ⊗ E) with respect to the graph norm of ∂
E
k + ∂

E∗
k,H , we only to

show this inequality holds for s ∈ B0, j (Xc, Lk ⊗ E) with j ≥ q and large k.
Suppose now s ∈ B0, j (Xc, Lk⊗E). Letφ be in Lemma 3.6. Thusφs ∈ B0, j (Xc, Lk⊗E)

with supp(φs) ⊂ Xv\Xu . By Lemma 3.5, there exists C2 > 0 and C3 > 0 such that for
j ≥ q and k ≥ 1, we have

‖φs‖2 ≤ C2

k
(‖∂E

k (φs)‖2 + ‖∂E∗
k (φs)‖2) (3.18)

where χ ′(�) ≥ C3 on Xv\Xu and the L2-norm ‖ · ‖ is given by ω, hL
k

χ and hE on Xc. Next
applying (3.15) and Lemma 3.6, we obtain

‖s‖2 −
∫
K ′

|s|2dvX ≤ 5C2

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) + 12C1C2

k
‖s‖2. (3.19)

For k ≥ 24C1C2, it follows that 1 − 12C1C2
k ≥ 1

2 and

‖s‖2 ≤ 10C2

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) + 2

∫
K ′

|s|2dvX . (3.20)

The proof is complete by choosing C0 := max{10C2, 2} and k ≥ 24C1C2. ��

Thirdly, wewill show that (Lχ , hLχ ) is semipositive if (L, hL) is semipositive by choosing
a appropriate χ . Let C2 > 0 and C3 > 0 be in Lemma 3.5. We choose χ ∈ C∞(R) such that
χ ′′(t) ≥ 0, χ ′(t) ≥ C3 on (u, v) and χ(t) = 0 on (−∞, u0). Therefore, χ ′(�(x)) ≥ C3 > 0
on Xv\Xu and χ(�(x)) = χ ′(�(x)) = 0 on Xu0 . Note that K ⊂ Xu0 and u0 < u < c < v.
Now we have a fixed χ which leads to the following proposition.

Proposition 3.9 Let X be a q-convex manifold with
√−1∂∂� ≥ 0 on Xc\K. If (L, hL) is

semipositive on Xc, then (L, hLχ ) is semipositive on Xc for χ defined above.

Proof From the above definition of χ , we have χ ′(�) ≥ 0 on X , χ ′(�) = 0 on K . Since � is
plurisubharmonic on Xc\K , i.e.,

√−1∂∂� ≥ 0 on Xc\K , we have
√−1χ ′(�)∂∂� ≥ 0 on

Xc. Since χ ′′(�) ≥ 0 and
√−1∂� ∧ ∂� ≥ 0 on Xc, we have

√−1χ ′′(�)∂� ∧ ∂� ≥ 0 on Xc.
Finally

√−1RLχ = √−1RL + √−1χ ′(�)∂∂� + √−1χ ′′(�)∂� ∧ ∂� ≥ 0 on Xc. ��

Now we can prove the main result of this section as follows.
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Proof of Theorem 3.3 By Proposition 3.9 with the fixed χ , Proposition 3.8 and using Theo-
rem 1.1 for Xc endowed with Hermitian metric ω obtained in Lemma 3.4, there exists C > 0
such that for any j ≥ q and sufficiently large k,

dim H0, j
(2) (Xc, L

k ⊗ E) = dimH 0, j (Xc, L
k ⊗ E) ≤ Ckn− j (3.21)

holds with respect to themetricsω, hLχ and hE on Xc. From [19, Theorem 3.5.6 (Hörmander),
Theorem 3.5.7 (Andreotti-Grauert)(i), Theorem B.4.4 (The Dolbeault isomorphism)], we
have for j ≥ q ,

H j (X , Lk ⊗ E) ∼= H j (Xv, L
k ⊗ E) ∼= H0, j (Xv, L

k ⊗ E) ∼= H0, j
(2) (Xc, L

k ⊗ E).

Thus the conclusion holds for sufficiently large k. Also we know that for any holomorphic
vector bundle F , dim H j (X , F) < ∞ for j ≥ q by [19, TheoremB.4.8 (Andreotti-Grauert)].
So the conclusion holds for all k ≥ 1. ��

Proof of Theorem 1.4 Apply Theorem 3.3 for 1-convex manifolds. ��

By adapting the duality formula [15, 20.7 Theorem] for cohomology groups to Theo-
rem 3.3, we have the analogue result to [31, Remark 4.4] for seminegative line bundles.

Corollary 3.10 Let X be a q-convexmanifold of dimension n with a plurisubharmonic exhaus-
tion function� near the exceptional set K , and let (L, hL), (E, hE )beholomorphicHermitian
line bundles on X. Let (L, hL) be seminegative on a sublevel set Xc = {x ∈ X : �(x) < c}
satisfying K ⊂ Xc. Then there exists C > 0 such that for any 0 ≤ j ≤ n − q and k ≥ 1, the
j-th cohomology with compact supports

dim[H0, j (X , Lk ⊗ E)]0 ≤ Ck j . (3.22)

In particular, dim[H0,0(X , Lk ⊗ E)]0 ≤ C.

Proof Combine [15, 20.7 Theorem] and Theorem 3.3. ��

3.1.2 Line bundles with positivity near the exceptional set

A natural question in Theorem 3.3 is whether the hypothesis on plurisubharmonic exhaustion
function is necessary. In this section, we show that such hypothesis can be replaced by the
positivity assumption of line bundle near the exceptional set.

Proof of Theorem 1.3 Let X be a q-convex manifold of dimension n, let (L, hL), (E, hE ) be
holomorphic Hermitian line bundles on X . Let � ∈ C∞(X ,R) be the exhaustion function
satisfying

√−1∂∂� has n − q + 1 positive eigenvalues on X\K .
Since (L, hL) be semipositive on a sublevel set Xc = {x ∈ X : �(x) < c} satisfying the

exceptional set K ⊂ Xc and positive on Xc\K , we fix real numbers u0, u, c′ and v satisfying
u0 < u < c′ < v < c and K ⊂ Xu0 . Thus for Xc′ := {x ∈ X : �(x) < c′}, we see
K ⊂ Xc′ , L ≥ 0 on Xc′ and L > 0 on Xv\K . For simplifying notions, we still denote c′ by
c in this proof, that is, there exists real numbers u0, u, c and v satisfying u0 < u < c < v

and K ⊂ Xu0 and L ≥ 0 on Xc and L > 0 on Xv\K .
Firstly, we choose the metric ω on X from Lemma 3.4.
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Secondly, we show the fundamental estimate holds. Note L > 0 on Xv\K , by the same
argument in Lemma 3.5 without modification of hL by hLχ , we have that there exists C2 > 0
and k0 > 0 such that

‖s‖2 ≤ C2

k
(‖∂E

k s‖2 + ‖∂E∗
k s‖2) (3.23)

for s ∈ B0, j (Xc, Lk ⊗ E) with supp(s) ⊂ Xv\Xu , j ≥ q and k ≥ k0 > 0, where the L2-
norm ‖ · ‖ is given by ω, hL

k
and hE on Xc. As in Proposition 3.8 without the modification

of hL , we conclude that there exist a compact subset K ′ ⊂ Xc (In fact, let ε > 0 such that
{c − ε < � < c + ε} � Xv\Xu , K ′ := {� < c − ε} as in Lemma 3.6) and C0 > 0 such that
for sufficiently large k, we have

‖s‖2 ≤ C0

k
(‖∂E

k s‖2 + ‖∂E∗
k,Hs‖2) + C0

∫
K ′

|s|2dvX (3.24)

for any s ∈ Dom(∂
E
k ) ∩ Dom(∂

E∗
k,H ) ∩ L2

0, j (Xc, Lk ⊗ E) and each q ≤ j ≤ n, where the

L2-norm is given by ω, hL
k
and hE on Xc.

Finally, we can apply Theorem 1.1 on Xc. Therefore, there exists C > 0 such that for any
j ≥ q and sufficiently large k,

dim H0, j
(2) (Xc, L

k ⊗ E) ≤ Ckn− j (3.25)

holds with respect to the metrics ω, hL and hE on Xc. As in the proof of Theorem 3.3, the
conclusion holds for all k ≥ 1. ��

By adapting the duality formula [15, 20.7 Theorem] for cohomology groups to Theo-
rem 1.3, we have the analogue result to [31, Remark 4.4] for seminegative line bundles.

Corollary 3.11 Let X be a q-convex manifold of dimension n, and let (L, hL), (E, hE ) be
holomorphic Hermitian line bundles on X. Let � be an exhaustion function of X and K the
exceptional set. Let (L, hL) be seminegative on a sublevel set Xc = {x ∈ X : �(x) < c}
satisfying K ⊂ Xc, and let (L, hL) be negative on Xc\K. Then there exists C > 0 such that
for any 0 ≤ j ≤ n − q and k ≥ 1, the j-th cohomology with compact supports

dim[H0, j (X , Lk ⊗ E)]0 ≤ Ck j . (3.26)

In particular, dim[H0,0(X , Lk ⊗ E)]0 ≤ C.

Proof Combining [15, 20.7 Theorem] and Theorem 1.3. ��

Remark 3.12 (Compatibility to the vanishing theorem on q-convex manifolds) Let (E, hE )

be a holomorphic vector bundle on X . If (L, hL) > 0 on Xc with K ⊂ Xc instead of the
hypothesis (L, hL) ≥ 0 on Xc\K in Theorem 1.3, then for j ≥ q and sufficiently large k,

dim H j (X , Lk ⊗ E) = 0. (3.27)

In particular, if X is q-complete, then H p(X , E) = 0 for p ≥ q and arbitrary holomorphic
vector bundle E . In fact, the fundamental estimates hold with K = ∅ in these cases, thus the
space of harmonic forms is trivial, see [19, Theorem 3.5.9].
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3.2 Pseudo-convex domains

Theorem 3.13 Let M � X be a smooth strongly pseudoconvex domain in a complexmanifold
X of dimension n. Let (L, hL) and (E, hE ) be holomorphic Hermitian line bundles on X.
Let (L, hL) be semipositive on M. Then there exists C > 0 such that for any q ≥ 1 and
k ≥ 1, we have

dim Hq(M, Lk ⊗ E) ≤ Ckn−q . (3.28)

Proof Note a strongly pseudocovex domain is 1-convex and applying Theorem 1.4. ��
Proof of Theorem 1.5 We follow [19, Theorem 3.5.10]. Let ω be a Hermitian metric on X .
Note L > 0 around bM , by the same argument in Proposition 3.8 without the modification
of hL , we conclude that there exist a compact subset K ′ ⊂ M and C0 > 0 such that for
sufficiently large k,

‖s‖2 ≤ C0

k
(‖∂E

k s‖2 + ‖∂E∗
k,Hs‖2) + C0

∫
K ′

|s|2dvX (3.29)

for any s ∈ Dom(∂
E
k ) ∩ Dom(∂

E∗
k,H ) ∩ L2

0,q(M, Lk ⊗ E) and each 1 ≤ q ≤ n, where the

L2-norm is given by ω, hL
k
and hE on M . Finally, we apply Theorem 1.1 on M . ��

3.3 Weakly 1-complete manifolds

Proof of Theorem 1.6 We follow [19, Theorem 3.5.12]. Let ϕ ∈ C∞(X ,R) be an exhaustion
function of X such that

√−1∂∂ϕ ≥ 0 on X and Xc := {ϕ < c} � X for all c ∈ R. We
choose a regular value c ∈ R of ϕ such that K ⊂ Xc by Sard’s theorem. Thus Xc is a smooth
pseudoconvex domain and L > 0 on a neighbourhood of bXc. We apply Theorem 1.5, for
any q ≥ 1 and sufficiently large k

dim H0,q
(2) (Xc, L

k ⊗ E) = dimH 0,q(Xc, L
k ⊗ E) ≤ Ckn−q . (3.30)

Finally, by [29, Theorem 6.2] (see [19, Theorem 3.5.11]) and Dolbeault isomorphism, it
follows that Hq(X , Lk⊗E) ∼= Hq(Xc, Lk⊗E) ∼= H0,q(Xc, Lk⊗E) ∼= H 0,q(Xc, Lk⊗E)

for q ≥ 1 and sufficiently large k. ��
Remark 3.14 Marinescu [22] positively answered a question of Ohsawa [27, §1. Remark 2]
by proving Morse inequalities on weakly 1-complete manifolds. If L is q-positive outside
a compact subset K ⊂ Xc, dim H p(Xc, Lk) are at most of polynomial growth of degree n
with respect to k for p ≥ q . Theorem 1.6 says that if L is 1-positive outside a compact subset
K ⊂ Xc and L ≥ 0 on Xc additionally, then dim H p(Xc, Lk) are at most of polynomial
growth of degree n − p with respect to k for p ≥ 1.

Generally we have the following result when (L, hL) might be not semipositive.

Corollary 3.15 Let X be a weakly 1-complete manifold of dimension n. Let (L, hL) and
(E, hE ) be holomorphic Hermitian line bundles on X. Suppose there exists f ∈ C∞(X ,R)

such that
√−1R(L,hL ) + √−1∂∂ f ≥ 0 on X, and

√−1R(L,hL ) + √−1∂∂ f > 0 on X\K
for a compact subset K ⊂ X. Then there exists C > 0 such that for any q ≥ 1 and sufficiently
large k, we have

dim Hq(X , Lk ⊗ E) ≤ Ckn−q . (3.31)
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Proof Apply Theorem 1.6 for the line bundle (L, hLe− f ). ��
Note that, by definition, there always exists a smooth function f on a weakly 1-convex
manifold X such that

√−1∂∂ f ≥ 0, thus Corollary 3.15 implies the estimate may still hold
when (L, hL) is not semipositive everywhere.

Remark 3.16 (Compatibility to Nakano vanishing theorem on weakly 1-convex mani-
folds [19, Theorem 3.5.15]) If (L, hL) > 0 on X instead of (L, hL) ≥ 0 in Theorem 1.6,
then for q ≥ 1 and sufficiently large k, Hq(X , Lk ⊗ E) = 0, which implies the vanishing
theorem on 1-convex (in particular, compact) manifold in Remark 3.12.

3.4 Complete manifolds

Proof of Theorem 1.2 We follow [19, Theorem 3.3.5]. Since (X , ω) is complete, ∂
E∗
k,H = ∂

E∗
k ,

that is, the Hilbert space adjoint and the maximal extension of the formal adjoint of ∂
E
k

coincide for arbitrary holomorphic Hermitian vector bundle (E, hE ). Let � = i(ω) be the
adjoint of the operatorω∧·with respect to the Hermitian inner product induced byω and hL .
In a local orthonormal frame {w j }nj=1 of T

(1,0)X with dual frame {w j }nj=1 of T
(1,0)∗X , ω =√−1

∑n
j=1 w j ∧ w j and � = −√−1iw j iw j . Thus

√−1R(L,hL ) = √−1
∑n

j=1 w j ∧ w j

outside K .
Let {ek} be a local frame of Lk . For s ∈ �

n,q
0 (X\K , Lk), we canwrite s = ∑

|J |=q sJw
1∧

· · · ∧ wn ∧ w J ⊗ ek locally, thus

[√−1RL ,�]s =
∑

|J |=q

(qsJw
1 ∧ · · · ∧ wn ∧ wJ ) ⊗ ek = qs. (3.32)

Since (X\K ,
√−1R(L,hL )) is Kähler, we apply Nakano’s inequality [19, (1.4.52)],

‖∂ks‖2 + ‖∂∗
k s‖2 = 〈�Lk

s, s〉 ≥ k〈[√−1RL ,�]s, s〉. (3.33)

Thus for any 1 ≤ q ≤ n,

‖∂ks‖2 + ‖∂∗
k s‖2 ≥ qk‖s‖2 ≥ k‖s‖2. (3.34)

Therefore, we have

‖s‖2 ≤ 1

k
(‖∂ks‖2 + ‖∂∗

k s‖2), (3.35)

for s ∈ �
n,q
0 (X\K , Lk) with 1 ≤ q ≤ n.

Next we follow the analogue argument in Proposition 3.8 to obtain the fundamental esti-
mates as follows. Let V andU be open subsets of X such that K ⊂ V � U � X . We choose
a function ξ ∈ C∞

0 (U ,R) such that 0 ≤ ξ ≤ 1 and ξ ≡ 1 on V . We set φ := 1 − ξ , thus
φ ∈ C∞(X ,R) satisfying 0 ≤ φ ≤ 1 and φ ≡ 0 on V .

Now let s ∈ �
n,q
0 (X , Lk), thus φs ∈ �

n,q
0 (X\K , Lk). We set K ′ := U , then

‖φs‖2 ≥ ‖s‖2 −
∫
K ′

|s|2dvX , (3.36)

and similarly there exists a constant C1 > 0 such that

1

k
(‖∂k(φs)‖2 + ‖∂∗

k(φs)‖2) ≤ 5

k
(‖∂ks‖2 + ‖∂∗

k s‖2) + 12C1

k
‖s‖2. (3.37)
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By combining the above three inequalities, there exists C0 > 0 such that for any s ∈
�

n,q
0 (X , Lk) = �

0,q
0 (X , Lk ⊗ KX ) with 1 ≤ q ≤ n and k large enough

‖s‖2 ≤ C0

k
(‖∂ks‖2 + ‖∂∗

k s‖2) + C0

∫
K ′

|s|2dvX . (3.38)

Finally, since �
0,•
0 (X , Lk ⊗ KX ) is dense in Dom(∂

KX
k ) ∩ Dom(∂

KX∗
k ) in the graph-norm,

for each 1 ≤ q ≤ n the fundamental estimate holds in bidegree (0, q) for forms with values
in Lk ⊗ KX for k large. So the conclusion follows from Theorem 1.1. ��

3.5 Compact manifolds and coverings revisited

Theorem 3.17 ([4]) Let X be a compact complex manifold of dimension n. Let (L, hL) and
(E, hE ) be holomorphic Hermitian line bundles on X. Assume (L, hL) is semipositive on X.
Then there exists C > 0 such that for any q ≥ 1 and k ≥ 1 we have

dim H0,q(X , Lk ⊗ E) ≤ Ckn−q . (3.39)

Note that this theorem is a special case of Theorem 1.1, 1.2, 1.3, 1.4, 1.6, 1.7 and the following
Theorem 3.22.

Corollary 3.18 Let X be a compact manifold of dimension n, and let (L, hL), (E, hE ) be
holomorphic Hermitian line bundles on X. Let (L, hL) be seminegative on X. Then there
exists C > 0 such that 0 ≤ q ≤ n − 1,

dim H0,q(X , Lk ⊗ E) ≤ Ckq . (3.40)

In particular, dim H0,0(X , Lk ⊗ E) ≤ C.

Proof It follows from Serre duality and Theorem 3.17. ��
For the case of nef line bundles, the following observation refines the estimates in Theo-

rem 3.17 as well as Corollary 3.18, and reflects that the magnitude kn−q are precise.

Lemma 3.19 [12] Let L be a nef holomorphic line bundle on a compact complex manifold
X. Then every non-trivial section in H0(X , L−1) has no zero at all.

Corollary 3.20 Let X be a compact manifold of dimension n, and let L be holomorphic
Hermitian line bundles on X. Let L be nef. Then, for any k ∈ N,

0 ≤ dim H0,n(X , Lk ⊗ KX ) = dim H0,0(X , L−k) ≤ 1. (3.41)

Proof Suppose there exists k ≥ 1 such that H0(X , L−k) �= 0, then there exists s0 ∈
H0(X , L−k) such that s0(x) �= 0 for all x ∈ X by Lemma 3.19. Let s ∈ H0(X , L−k).
It follows that s ⊗ s−1

0 ∈ O(X) = C, thus H0(X , L−k) = Cs0. And the case of k = 0 is
trivial. ��
Remark 3.21 Let X be a compact complex manifold of dimension n and (L, hL) a holomor-
phic Hermitian line bundle on X . Let M := {v ∈ L∗ : |v|hL∗ = 1}. It is known that the
∂b (Kohn-Rossi) cohomology Hq

b,k(M) ∼= Hq(X , Lk), see [20, Section 1.5] and [16, (2.8)].

Thus if L ≥ 0 on X , dim Hq
b,k(M) ≤ Ckn−q for all q ≥ 1 and k ≥ 1.

123



356 H. Wang

The study of L2 cohomology spaces on coverings of compact manifolds has also inter-
esting applications, cf. [14,18]. The results are similar to the case of compact manifolds, but
we have to use the reduced L2 cohomology groups and von Neumann dimension instead of
the usual dimension, see [31, Theorem 1.2] or Theorem 3.22. For example, in the situation
of Theorem 3.22, if the line bundle (L, hL) is positive, the Andreotti-Vesentini vanishing

theorem [1] shows that H
0,q
(2) (X , Lk ⊗ E) ∼= H 0,q(X , Lk ⊗ E) = 0 for q ≥ 1 and k large

enough. The holomorphicMorse inequalities of Demailly [11] were generalized to coverings
by Chiose-Marinescu-Todor [23,30] (cf. also [19, (3.6.24)]) and yield in the conditions of

Theorem 3.22 that dim� H
0,q
(2) (X , Lk ⊗ E) = o(kn) as k → ∞ for q ≥ 1. Hence Theo-

rem 3.22 generalizes [4] to covering manifolds and refines the estimates obtained in [23,30].

Theorem 3.22 [31] Let (X , ω) be a �-covering manifold of dimension n. Let (L, hL) and
(E, hE ) be two �-invariant holomorphic Hermitian line bundles on X. Assume (L, hL) is
semipositive on X. Then there exists C > 0 such that for any q ≥ 1 and k ≥ 1 we have

dim� H
0,q
(2) (X , Lk ⊗ E) = dim� H 0,q(X , Lk ⊗ E) ≤ Ckn−q . (3.42)

See [31, Theorem 1.2] for the complete proof. As a remark, note that for a fundamental
domain U � X with respect to �, we used

dim� H 0,q(X , Lk ⊗ E) =
∫
U
Bq
k (x)dvX , (3.43)

which is similar to the formula

dimH 0,q(X , Lk ⊗ E) ≤ C0

∫
K
Bq
k (x)dvX (3.44)

used in the proof of Theorem 1.1.
The following estimate was firstly obtained by Morse inequalities for covering mani-

folds [23,30]. We do not assume the holomorphic Morse inequalities for coverings in our
proof.

Corollary 3.23 Under the hypothesis of Theorem 3.22, if (L, hL) is positive at least at one
point additionally, then there exists C1 > 0 and C2 > 0 such that for k large enough

C1k
n ≤ dim� H0(X , Lk ⊗ E) ≤ C2k

n . (3.45)

Proof It follows from Riemann-Roch-Hirzebruch formula for coverings [3]

n∑
q=0

(−1)n−q dim� H
0,q
(2) (X , Lk ⊗ E) = kn

n!
∫
X/�

(−1)nc1(L/�, hL/�)n + o(kn)(3.46)

(see also [19, Theorem 3.6.7]) and Theorem 3.22. ��

4 Semipositive line bundles endowedmetric with analytic singularities

Let X be a connected compact complex manifold of dimension n and L a holomorphic line
bundle on X . Let hL be a Hermitian metric with analytic singularities with local weight

ϕ = c

2
log

⎛
⎝∑

j∈J

| f j |2
⎞
⎠ + ψ, (4.1)
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where J is at most countable, c is a non-negative rational number, f j are non-zero holo-
morphic functions and ψ is a smooth function, such that hL(eL , eL) = e−2ϕ for a local
holomorphic frame eL of L . We denote by J (hL) := J (ϕ) the Nadel multiplier ideal
sheaf of hL . We define the regular part of X with respect to hL by R(hL) := {x ∈ X :
hL smooth on a neighborhood of x} and the singular part by S(hL) := X\R(hL).

In this section,we follow the argument ofBonavero’s singular holomorphicMorse inequal-
ities [5] closely and provide three lemmas, see [19, 2.3.2] for details. In the end, we combine
them to prove a result which is analogue to Theorem 3.17.

Firstly, we blow up the singularities of hL as below, see [19, Lemma 2.3.19].

Lemma 4.1 There exists a proper modification π̃ : X̃ −→ X such that the local weight ϕ̃

of the metric hL̃ = π̃∗hL on L̃ = π̃∗L has the form ϕ ◦ π̃ = c
2 log |g|2 + ψ̃ , where g is

holomorphic and ψ̃ is smooth.

Secondly, we construct a smooth Hermitian metric hL̂ on a modified line bundle L̂ on X̃ , see
[19, Lemma 2.3.20, Lemma 2.3.21]. For a holomorphic vector bundle F over X , we denote
by F̃ := π∗F the pull-back on X̃ .

Lemma 4.2 With the proper modification in Lemma 4.1, there exists a holomorphic line
bundel L̂ on X̃ and a smooth Hermtian metric hL̂ satisfying the following conditions:

(1) There exists m ∈ N\{0} such that the curvature is locally given by

R(L̂,hL̂ ) = 2m∂∂ψ̃; (4.2)

(2) For any k ∈ N\{0} and arbitrary holomorphic vector bundle Ẽ on X̃ , there exists k′ ∈ N,
m′ ∈ [0,m) with k = mk′ + m′, and a holomorphic vector bundle Ẽm′ over X̃ with
rank(Ẽm′) = rank(Ẽ), such that

Hq(X̃ , L̃k ⊗ Ẽ ⊗ J (hL̃
k
)) = Hq(X̃ , L̂k′ ⊗ Ẽm′). (4.3)

Here note that there exists C1 > 0 and C2 > 0 such that for any integer p ∈ [0, n] and
k large enough, C1k p ≤ k′p ≤ C2k p.

Thirdly, relation to the cohomology on X , see [19, (2.3.45)].

Lemma 4.3 Let E be an arbitrary holomorphic vector bundle over X. With the proper mod-
ification in Lemma 4.1, for all q ≥ 0 and k large enough, there exists an isomorphism

Hq(X , Lk ⊗ E ⊗ J (hL
k
)) ∼= Hq(X̃ , L̃k ⊗ Ẽ ⊗ KX̃ ⊗ K̃ ∗

X ⊗ J (hL̃
k
)). (4.4)

Finally we substitute these into our setting of semi-positivity of (L, hL) on X , and obtain
another generalization of Theorem 3.17.

Proof of Theorem 1.7 Consider a local weight ϕ like in (4.1) defined on an open connected
subset U ⊂ X . Thus

S(hL) ∩U = {x ∈ U : ϕ not smooth at x} = ∩ j∈J Z( f j ), (4.5)

where Z( f j ) := {x ∈ U : f j (x) = 0}.
Let π̃ : X̃ → X be a proper modification of Lemma 4.1. The local weight of (L̃, hL̃) on

Ũ := π̃−1(U ) has the form

ϕ ◦ π̃ = c

2
log

⎛
⎝∑

j∈J

| f j ◦ π̃ |2
⎞
⎠ + ψ ◦ π̃ = c

2
log |g|2 + ψ̃, (4.6)
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where ψ̃ is smooth on Ũ . Thus Z(g) := {z ∈ Ũ : g(y) = 0} satisfies
Z(g) = {y ∈ Ũ : ϕ ◦ π̃ not smooth at y} = π̃−1(S(hL) ∩U ). (4.7)

Since c1(L, hL) =
√−1
2π R(L,hL ) ≥ 0 on X\S(hL), ϕ is smooth plurisubharmonic on

U\S(hL), i.e.,
√−1∂∂ϕ ≥ 0 on U\S(hL). Therefore, ϕ ◦ π̃ is smooth plurisubharmonic on

π̃−1(U\S(hL)) = Ũ\Z(g), and since ∂∂ log |g|2 = 0 on Ũ\Z(g), we have on Ũ\Z(g)
√−1∂∂ψ̃ = √−1∂∂(ϕ ◦ π̃) ≥ 0. (4.8)

Next we show
√−1∂∂ψ̃ ≥ 0 on Z(g). In fact, suppose there exists y0 ∈ Z(g) such that√−1∂∂ψ̃(y0) has at least one negative eigenvalue. By the smoothness of ψ̃ , there exists an

open neighbourhood V0 ⊂ Ũ of y0 satisfying
√−1∂∂ψ̃ has at least one negative eigenvalue

on V0. Since Z(g) is nowhere dense subset in Ũ , there exists y1 ∈ V0 such that y1 ∈ Ũ\Z(g).
So we obtain a contradiction.

Finally, by using Lemma 4.2 (1), we obtain c1(L̂, hL̂) =
√−1
2π R(L̂,hL̂ ) = m

π

√−1∂∂ψ̃ ≥ 0

on Ũ , i.e., (L̂, hL̂) is a semipositive line bundle on X̃ . By (4.4), (4.3) and Theorem 3.17
applied to X̃ with (L̂, hL̂), we have

dim Hq(X , Lk ⊗ E ⊗ J (hL
k
)) = Hq(X̃ , L̂k′ ⊗ (Ẽ ⊗ KX̃ ⊗ K̃ ∗

X )m′) ≤ Ck′n−q ≤ CC2k
n−q .

Since a positive current c1(L, hL) on X is semipositive on R(hL), the last assertion follows.
��

In analogy to the covering manifolds case, we have the following estimate of the space of
holomorphic sections obtained firstly by Bonavero, see [6] and [19, Corollary 2.3.46].

Corollary 4.4 Under the hypothesis of Theorem 1.7, if (L, hL) is positive at least at one point
additionally, then for k large enough

C1k
n ≤ dim H0(X , Lk ⊗ E ⊗ J (hL

k
)) ≤ C2k

n . (4.9)

In particular, if X is additionally Kähler, then X is projective.

Proof It follows from Theorem 1.7 and asymptotic Riemann-Roch-Hirzebruch formula for
hL with analytic singularities (see [19, (2.3.45), (2.3.31), (1.7.1)])

n∑
q=0

(−1)n−q dim Hq(X , Lk ⊗ E ⊗ J (hL
k
)) = kn

n!
∫
R(hL )

(−1)nc1(L, hL)n + o(kn),

(4.10)

where R(hL) := {x ∈ X : hL smooth on a neighborhood of x} is the regular part of X with
respect to hL . Thus L is big, X is Moishezon. So X is projective when it is Kähler. ��
Corollary 4.5 Let X be a compact manifold of dimension n, let L and E be holomorphic line
bundles on X. Let hL be the Hermitian metric on L with analytic singularities as in (4.1).
Assume c1(L, hL) ≥ 0 on R(hL). Then, as k → ∞, we have

dim Hq(X , E ⊗ Lk ⊗ J (hL
k
)) =

{
kn
n!

∫
X(0) c1(L, hL)n + o(kn), for q = 0,

O(kn−q), for 1 ≤ q ≤ n.

(4.11)
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Proof The second equality is fromTheorem 1.7 and the first is given by combining the second
equality and (4.10). ��

Remark 4.6 The smooth version (i.e., hL is smooth everywhere) of Corollary 4.5 are given
by [4,11]. Matsumura [24, Problem 3.4] asked the question if one can remove the assumption
that hL has analytic singularities. He proved this in the case where X is projective in [25,
Theorem 4.1]. Note that on projective manifolds, Demailly had similar estimates O(kn−q)

for nef line bundles, see [8].
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