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Abstract
In this paper we investigate surfaces in CP2 without complex points and characterize the
minimal surfaces without complex points and the minimal Lagrangian surfaces by Ruh–
Vilms type theorems. We also discuss the liftability of an immersion from a surface to CP2

into S5 in Appendix A.
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Introduction

In recent yearsminimal Lagrangian surfaces inCP2 have been studied intensively (see [3,13–
16], etc.). It turned out that an automorphism σ of sl3C of order 6 is of crucial importance.
Similar investigations have used the restriction of σ to real forms of sl3C and have discussed
the surface classes of minimal Lagrangian surfaces in CH2 [12] and definite affine spheres
[6]. Also the class of indefinite affine spheres and timelike minimal Lagrangian surfaces
in the indefinite complex hyperbolic 2-space have been investigated in a similar way [4,
7]. Moreover, those classes of surfaces have a unified picture by using real forms of the
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Kac-Moody Lie algebra of A(2)
2 type [9]. While σ arose naturally in classical geometric

investigations, the question arose, whether also σ 2 and σ 3 have a simple geometric meaning.
The starting point for an approach to this question was the paper [13], which investigated

arbitrary immersions fromRiemann surfaces toCP2 without complex points. However, since
immersions from S2 to CP2 have been investigated intensively, for the final goals of this
paper we exclude the Riemann surface S2 from our discussion. More precisely, we consider
an immersion f : M → CP2 without complex points, where M is a Riemann surface
different from S2. For our approach it is crucial to lift f to a map f : M → S5 such that
f = π ◦ f where π : S5 → CP2 denotes the Hopf fibration. To clarify, when such a lift
exists we have proven in the appendix that for a non-compact Riemann surface such a lift
always exists and that in the case of a compact Riemann surface either the given immersion
already has a global lift to S5 or one can find a threefold covering τ : M̂ → M of M such
that the immersion f̂ = f ◦ τ : M̂ → CP2 admits a global lift to S5.

So for this paper we always assume that any immersion under consideration does have
a global lift to S5. For a more detailed investigation of liftable immersions f : M → CP2

with global lift f : M → S5, we consider, to begin with, their composition with the universal
covering π̃ : D → M of M . In other word, we first investigate the case, where M = D is
simply-connected.

In this setting the ideas presented in [13] is applied. However, while in loc.cit. the inves-
tigation quickly moved on to consider minimal Lagrangian tori in CP2, in the present paper
we consider a natural SU3-frame F(f) and thus obtain a setting similar to the one used in [5].

In particular, two lifts with SU3-frame only differ by a cubic root. Moreover, the Maurer-
Cartan form of the frame F(f) clearly displays the natural invariants of an immersion into
CP2 without complex points.

To understand what surface classes correspond to σ, σ 2 and σ 3 we apply the notion of a
primitive harmonic map relative to some automorphism of sl3C. The corresponding theory,
basically due to Black [1], is collected in the first three subsections of Sect. 2. Then we prove
(Theorem 2.4) that the lift f : M → S5 of a liftable immersion f : M → CP2 without
complex points is primitive harmonic relative to σ, σ 2 and σ 3 respectively if and only if
f is minimal Lagrangian, minimal without complex points and minimal Lagrangian or flat
homogeneous, respectively. It is natural to ask, whether actually any primitive harmonic map
relative to σ , σ 2 and σ 3 is associated to an immersion into CP2 without complex points.
This is assured in Theorem 2.6.

The last part of the paper answers a natural question arising from the above: when consid-
ering primitive harmonic maps one singles out special immersions among a larger class of
immersions and the frames of these immersions project to k-symmetric spaces like a “Gauss
like map”. How does this work out for the surface classes considered in this paper?

We start by considering spaces FL j , j = 1, 2, 3 similar to [12]. Thus we obtain three 6-
symmetric spaces of dimension 7 which all are actually equivariantly isomorphic to SU3/U1

(Theorem 3.3 and Corollary 3.4). From these spaces we obtain natural projections to four
different spaces (Theorem 3.5). Two of these are equivariantly diffeomorphic symmetric
spaces relative to σ 3 of dimension 5 and two are equivariantly diffeomorphic 3-symmetric

spaces relative toσ 2 of dimension6.Let SLGr(3, C), ˜SLGr(3, C)denote the symmetric spaces
above and ˜Fl2, Fl2 the 3-symmetric spaces above. Then for any immersion f : D → CP2

without complex points and with lift f : D → S5 and SU3-frame F(f) we define a Gauss

type map G j to FL j , H1 to SLGr(3, C), H2 to Fl2, H3,1 to ˜SLGr(3, C) and H3,2 to ˜Fl2
given by the natural projection of F(f). We finally prove the Ruh-Vilms Theorems for σ ,
σ 2 and σ 3 (Theorem 3.6), characterizing minimal Lagrangian surfaces and minimal surfaces
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Ruh–Vilms theorems for minimal surfaces without complex. . . 1753

without complex points by the primitive harmonicity of the corresponding Gauss maps. In
appendix A, we discuss the liftability of an immersion f : M → CP2 into S5.

1 Theory of surfaces in CP2

1.1 Basic definitions: themetrics

LetCP2 denote the 2-dimensional complex projective space endowed with the Fubini-Study
metric of constant holomorphic sectional curvature 4.

For the convenience of the reader we recall the definition. For this we will use the natural
C-bilinear quadratic form

Z · W =
3

∑

k=1

zkwk,

where Z = (z1, z2, z3), W = (w1, w2, w3) ∈ C
3.

Then it is well known that the Fubini-Study metric can be given in homogeneous coordi-
nates by the formula:

ds2 = |Z |2|dZ |2 − (Z̄ · dZ)(Z · d Z̄)

|Z |4 , (1.1)

where Z is a local holomorphic section of the tautological bundle of CP2.
Now it is an easy computation to show that Eq. (1.1) is unchanged, if one replaces Z by

hZ , where h is any scalar C∞-function with values in C
∗. As a consequence, we can replace

Z by Z/|Z | and thus obtain:
ds2 = |dZ |2 − (Z̄ · dZ)(Z · d Z̄) = (dZ − (dZ · Z̄)Z) ⊗ (d Z̄ − (d Z̄ · Z)Z̄). (1.2)

Note that now Z maps into the unit sphere S5 in C
3. Also note that we will obtain the same

expression if we replace here Z by hZ , where h is any C
∞-function with values in S1.

Letπ : S5 → CP2 be theHopf-projection, p → [p]. Thenπ is aRiemannian submersion,
if one considers the metric on S5 induced from the standard Hermitian product on C

3 and
the Fubini-Study metric on CP2.

1.2 Liftable surfaces inCP2

Let M be a Riemann surface different from S2 and f : M → CP2 a conformal immersion.
We will write the induced metric locally in the form

g = 2eωdzdz̄, (1.3)

for some real valued function ω.
For the approach used in this paper we will need lifts of f : M → CP2 to f : M → S5.

Lemma 1.1 Let M be a contractible Riemann surface and f : M → CP2 a conformal
immersion, then there exists a conformal immersion f : M → S5 such that f = π ◦ f holds.

Proof We consider the pullback f ∗S5 of the Hopf fibration to M . Then f ∗S5 is an S1-bundle
over M . But fiber bundles over a contractible base are trivial. Therefore there exists a section
s : M → f ∗S5 and the composition of s with the natural map from f ∗S5 to S5 yields the
desired map. �	
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For general Riemann surfaces M and general conformal immersions f : M → CP2 such
a (global) lift f : M → S5 may not exist.

As a consequence, papers considering surfaces as we do in this paper usually restrict f
to contractible open subsets U of M . Since it is not clear how one can glue these maps
for different U ′s together, we will not follow this approach, but rather consider exclusively
liftable immersions, where an immersion f : M → CP2 is called liftable if there exists an
immersion f : M → S5 such that f = π ◦ f holds.

Note, two lifts of some immersion f differ by a scalar function which takes values in S1.
In the rest of this paper we will always use conformal liftable surfaces.

1.3 The basic invariants for surfaces f : D → CP2 in terms of f

Let fM : M → CP2 be a liftable immersion and fM : M → S5 a lift of f .
Using the universal cover π̃ : D → M of M we will also consider the immersion

f̃M = fM ◦ π̃ and write f̃M = f : D → S5.
We consider next the following diagram.

D S5

M CP2

f

π̃ π

fM

fM

Lemma 1.2 One can choose without loss of generality f such that the diagram commutes.

Proof We have chosen f such that the diagram

D S5

CP2

f

f̃M
π

commutes, i.e., π ◦ f = f̃M . We also have the relations fM = π ◦ fM and f̃M = fM ◦ π̃ and
write f̃M = f : D → S5.

It suffices to prove that the diagram

D S5

M

f

π̃
fM

commutes. We observe π ◦ fM ◦ π̃ = fM ◦ π̃ = f̃M = π ◦ f. Therefore there exists a scalar
function h with values in S1 such that fM ◦ π̃ = hf holds. Thus by replacing f by hfwe obtain
the claim. �	

In the rest of the paper we will always assume that the diagrams just considered all
commute. Also note that we have adjusted our notation so that objects defined on D usually
have neither a .̃ nor the subscript M .
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We want to define a (moving) frame for fM and will build it by using the lift f : D → S5.
On D we will use the complex coordinates z = x + iy and z̄ = x − iy, respectively. In the

following, the subscripts z and z̄ denote the derivatives with respect to z and z̄, respectively,
defined via the Cauchy-Riemann operators

∂z := 1

2

(

∂

∂x
− i

∂

∂ y

)

, ∂z̄ := 1

2

(

∂

∂x
+ i

∂

∂ y

)

.

Thus we obtain, e.g.,

fz = ∂zf := 1

2

(

∂f

∂x
− i

∂f

∂ y

)

, fz̄ = ∂z̄f := 1

2

(

∂f

∂x
+ i

∂f

∂ y

)

.

The following definition is crucial for this paper

ξ := fz − (fz · f̄)f and η := fz̄ − (fz̄ · f̄)f. (1.4)

After substitution into (1.2) the fact that the metric g is conformal gives

ξ · η̄ = ξ · f̄ = η · f̄ = 0, (1.5)

e−ωξ · ξ̄ + e−ωη · η̄ := a + b = 2, (1.6)

where we define
a := e−ωξ · ξ̄ and b := e−ωη · η̄. (1.7)

Writing temporarily ξ = ξ [f] and analogously for η it is easy to check that ξ [hf] = hξ [f]
and η[hf] = hη[f] hold for all functions h : D → S1. Therefore a and b are independent
of the choices of the local lift f and the complex coordinate z. Since 0 ≤ a, b ≤ 2, we can
define globally an invariant function θ : D → [0, π ] by

θ := 2 arccos

(√

a

2

)

. (1.8)

It is easy to verify that the invariant θ defined above is exactly the Kähler angle of f , see
for example [18]. In particular, a = b is equivalent to f being Lagrangian. In this case
a = b = 1.

Definition 1 A point p ∈ D is called holomorphic (anti-holomorphic or real respectively)
for f : D → CP2 if θ(p) = 0 (π or π

2 respectively). A point is called a complex point of
f , if it is holomorphic or anti-holomorphic.

Note that p is a complex point of f if and only if a = 0 or a = 2. As a consequence, ξ = 0
or η = 0, respectively.

In order to be able to describe all immersions into CP2 without complex points we
introduce two more invariants:


 := e−ωξz̄ · η̄dz := φdz, (1.9)

� := ξz · η̄dz3 := ψdz3. (1.10)

Using (1.5) one can easily check that 
 and � are independent of the choices of a lift f of
f and the complex coordinate z of D and thus are globally defined on the Riemann surface
D.

Moreover, if f is transformed by an isometry T ∈ SU3 to T f , then ξ and η are transformed
by T to T ξ and Tη respectively. From the definitions it follows that 
 and � are SU3-
invariant.
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We call � the cubic Hopf differential and � = i(
− 
̄) themean curvature form. (Note,
some authors call 
 the mean curvature form.)

Remark 1.3 The definitions of 
 and � show that the complex points of f are zeros of 


and �.

1.4 Themoving frame equations for surfaces without complex points

f : D → CP2 be a contractible surface without complex points and let f : D → S5 be a lift
of f . We define ξ and η by (1.4). Then at each point of D we obtain a basis of C

3 given by
{ξ, η, f}.

We combine these vectors to form a matrix

F̃ = (ξ, η, f).

Due to (1.5), (1.6) and the fact that f · f̄ = 1 holds, this matrix satisfies the two equations

F̃z = F̃Ũ, F̃z̄ = F̃Ṽ,

where

Ũ =
⎛

⎜

⎝

az/a + ωz + ρ + a−1φ −a−1φ̄ 1

b−1e−ωψ ρ + b−1φ 0

0 −beω ρ

⎞

⎟

⎠
,

Ṽ =
⎛

⎜

⎝

−ρ̄ − a−1φ̄ −a−1e−ωψ̄ 0

b−1φ bz̄/b + ωz̄ − ρ̄ − b−1φ̄ 1

−aeω 0 −ρ̄

⎞

⎟

⎠
,

and where we have abbreviated
ρ = fz · f̄. (1.11)

Note, if we can choose f as a horizontal lift, i.e., satisfying df · f̄ = 0, then ρ = 0.
The integrability condition

Ũz̄ − Ṽz = [Ũ, Ṽ]

splits into the following four scalar conditions

ρz̄ + ρ̄z = (a − b)eω, (1.12)

(log a)zz̄ + ωzz̄ = (b − 2a)eω − (a−1φ)z̄ − (a−1φ̄)z − (ab)−1|φ|2 + (ab)−1e−2ω|ψ |2,
(1.13)

ψz̄ + (a−1 − b−1)φ̄ψ + (a−1 − b−1)eωφ2 = eω(φz − ωzφ) − eωφ(log(ab))z, (1.14)

(log b)zz̄ + ωzz̄ = (a − 2b)eω + (b−1φ)z̄ + (b−1φ̄)z − (ab)−1|φ|2 + (ab)−1e−2ω|ψ |2.
(1.15)

Wenote that (1.12) is not essential. Byusing theDolbeault Lemma, see [10,Theorem13.2],
we obtain
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Proposition 1.4 One can choose without loss of generality f such that ρ satisfies

∂z̄ρ = 1

2
(a − b)eω. (1.16)

In this case we write ρ0 instead of ρ.

Proof Define ρ0 as above. Then (1.12) is equivalent to

(ρ − ρ0)z̄ + (ρ − ρ0)z̄ = 0. (1.17)

Moreover, � = i{(ρ − ρ0)dz − (ρ − ρ0)dz̄} is a closed real 1-form. Let δ : D → R denote
a solution to dδ = �. Then the new lift f̃ = eiδf satisfies the compatibility conditions above
with ρ̃ = ρ0. �	
Remark 1.5 1. The result above hinges heavily on the fact, that multiplication of f by a

scalar function with values in S1 does not change a, b, ω, φ and ψ , as was pointed out
in a previous subsection.

2. But we will also need that the diagrams in Sect. 1.3 all commute. To maintain this fact
we will also need to adjust fM by the same factor we have used for f.

For later use it will be convenient to bring the matrices Ũ and Ṽ into a more symmetric form.
For this purpose we consider

F = F̃R,

where R denotes the diagonal matrix

R = diag
(

−ie− ω
2
√
a

−1
,−ie− ω

2
√
b

−1
, 1

)

.

Then we obtain
F−1dF = Udz + Vdz̄,

where

U =

⎛

⎜

⎜

⎝

1
2
az
a + 1

2ωz + ρ + a−1φ −√
ab

−1
φ̄ i

√
ae

ω
2

√
ab

−1
e−ωψ − 1

2
bz
b − 1

2ωz + ρ + b−1φ 0

0 i
√
be

ω
2 ρ

⎞

⎟

⎟

⎠

, (1.18)

V =

⎛

⎜

⎜

⎝

− 1
2
az̄
a − 1

2ωz̄ − ρ̄ − a−1φ̄ −√
ab

−1
e−ωψ̄ 0

√
ab

−1
φ 1

2
bz̄
b + 1

2ωz̄ − ρ̄ − b−1φ̄ i
√
be

ω
2

i
√
ae

ω
2 0 −ρ̄

⎞

⎟

⎟

⎠

. (1.19)

Several remarks are in place:

1. F̃ and F = F̃R have the same last column. As a consequence f = F̃e3 = Fe3. Hence
a local lift of some immersion f without complex points can be retrieved from both
frames.

2. V = −ŪT .
3. trace(U) = (a−1 + b−1)φ + 3ρ + 1

2 (
az
a − bz

b ).
4. trace(V) = −trace(U).
5. F−1dF = Udz + Vdz̄ is skew-hermitian.
6. If the initial condition for the solution to the equation F−1dF = Udz + Vdz̄ is in U3,

then the whole solution F is in U3. In particular, in this case det(F) ∈ S1.
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7. Sometimes we will need to know fromwhich f the frameF has been constructed. In such
a case we write F = F(f).

With these pieces of information we obtain

Theorem 1.6 (Fundamental Theorem of liftable surfaces in CP2 without complex points,
[11])

1. Let fM : M → CP2 be a liftable immersion without complex points and lift fM : M →
S5. Let g = 2eωdzdz̄ denote the induced metric, θ : D → (0, π) the Kähler angle,
� the cubic form, 
 the mean curvature form (all defined from f as in Sect. 1.3). Set
a = 2 cos θ

2 , b = 2 sin θ
2 and ρ = ρ0 is defined by (1.11). Then the conditions (1.12),

(1.13), (1.14) and (1.15) are satisfied.
2. Conversely, let g = 2eωdzdz̄ be a Riemannian metric on the simply connected Riemann

surface D. Let θ : D → (0, π) be a real valued function and 
 and � a (1, 0)-form
and a (3, 0)-form on D respectively. Set a = 2 cos θ

2 , b = 2 sin θ
2 and ρ = ρ0 is given

in Proposition 1.4. If these data satisfy the conditions (1.12), (1.13), (1.14) and (1.15),
then there exists an immersion f : D → CP2 without complex points such that the given
data have the meaning for f as stated in (1). In particular, in this case the given data
are the corresponding invariants for some lift f : D → S5 of f .
Moreover, if f descends to a map f̂ : M̂ → S5 for some Riemann surface M̂, then
π ◦ f̂ : M̂ → CP2 is a liftable immersion without complex points from M̂ to CP2.

3. If two isometric surfaces f : D → CP2 and f̂ : D̂ → CP2 without complex points
have the same forms 
 and � and the same Kähler function θ , i.e., if there exists some
diffeomorphism κ : D → D̂ such that g = κ∗ĝ, θ = θ̂ ◦ κ , 
 = κ∗
̂ and � = κ∗�̂,
then there exists an isometry T ∈ SU3 such that f = T ◦ f̂ ◦ κ .

The following result will be particularly convenient.

Theorem 1.7 Let fM : M → CP2 be a liftable immersion without complex points. Then one
can choose, without loss of generality, a lift fM : M → S5 of f such that the corresponding
frame F has determinant 1. Such lift is called a special lift for fM .

Proof First we note that F is unitary and thus has determinant δ in S1. Since F is defined on
D, we can take a cubic root of δ. Let h ∈ S1 denote the inverse of this cubic root. Then the
property ξ [hf] = hξ [f] and η[hf] = hη[f] for all functions h : D → S1 implies the claim,
where we also need to adjust fM as before. �	
Corollary 1.8 Under the assumptions above one can specialize the lift fM in two ways (by
multiplication by a function with values in S1) so that one can assume that ρ = ρ0 holds, or
so that F ∈ SU3 holds.

From here on we will always assume that F ∈ SU3. It is important to note that now ρ can
not be assumed to have the special form ρ0.

Corollary 1.9 Under the assumptions above the trace of the Maurer-Cartan form of F van-
ishes identically.

In the case of minimal Lagrangian surfaces, a = b = 1 and 
 ≡ 0, thus one can have
a horizontal lift f, i.e., ρ = 0 and the trace of the Maurer–Cartan form of F vanishes
automatically.
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2 Algebraic digression

In this section we discuss briefly the algebraic setting which will be used in the following
sections.

2.1 The automorphism�

We consider the order 6 automorphism σ of the Lie algebra g = sl3C, given by

σ(X) = −PXT P, where P =
⎛

⎜

⎝

0 ε2 0

ε4 0 0

0 0 1

⎞

⎟

⎠
(2.1)

with ε = e
iπ
3 . We also consider the connected Lie group G = SL3C and the automorphism

σG of order 6
σG(g) = P(gT )−1P. (2.2)

Then σ is the differential of σG and we will use from now on the same notation for both
homomorphisms. By abuse of notation we will also write σG by σ . We would like to point
out that σ is an outer automorphism of g.

By a simple computation we obtain

σ 2(X) = P2X P−1
2 , with P2 = diag(ε4, ε2, 1). (2.3)

The formula on the group level is the same. We would like to point out that σ 2 is an inner
automorphism.

Finally we derive

σ 3(X) = −P3X
T P3, with P3 =

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠ . (2.4)

We would like to point out that σ 3 is an outer automorphism of g. In the context of certain
surface classes we will discuss the automorphisms σ , σ 2 and σ 3 of g.

Since, the eigenspaces of the various powers ofσ all can be derived from the eigenspaces of
σ , we discuss this case first. Explicitly the eigenspaces gk of σ with respect to the eigenvalue
εk in sl3C are given as follows

g0 =
⎧

⎨

⎩

⎛

⎝

a
−a

0

⎞

⎠ | a ∈ C

⎫

⎬

⎭

, g1 =
⎧

⎨

⎩

⎛

⎝

0 b 0
0 0 a
a 0 0

⎞

⎠ | a, b ∈ C

⎫

⎬

⎭

,

g2 =
⎧

⎨

⎩

⎛

⎝

0 0 a
0 0 0
0 −a 0

⎞

⎠ | a ∈ C

⎫

⎬

⎭

, g3 =
⎧

⎨

⎩

⎛

⎝

a
a

−2a

⎞

⎠ | a ∈ C

⎫

⎬

⎭

,

g4 =
⎧

⎨

⎩

⎛

⎝

0 0 0
0 0 a

−a 0 0

⎞

⎠ | a ∈ C

⎫

⎬

⎭

, g5 =
⎧

⎨

⎩

⎛

⎝

0 0 a
b 0 0
0 a 0

⎞

⎠ | a, b ∈ C

⎫

⎬

⎭

.

The eigenspaces of σ 2 are

• g1 + g4 for the eigenvalue ε2,
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1760 J. F. Dorfmeister et al.

• g2 + g5 for the eigenvalue ε4,
• g3 + g0 for the eigenvalue 1.

The eigenspaces for σ 3 are

• g4 + g2 + g0 for the eigenvalue 1,
• g1 + g3 + g5 for the eigenvalue ε3 = −1.

2.2 The real form involution �

The real form gR = su3 of g = sl3C is given by the anti-linear involution

τ(X) = −X̄ T , X ∈ sl3C.

We also consider the anti-linear involution τG on G = SL3C

τG(g) = (ḡT )−1, g ∈ SL3C. (2.5)

By abuse of notation we will also write τG by τ . Then a direct computation shows that σ in
(2.1) and τ commute, i.e., τ ◦ σ = σ ◦ τ , thus τ and the eigenspaces of σ have the relation

τ(g j ) = g− j , j = 0, 1, . . . , 5. (2.6)

In particular g0 and g0 ⊕ g3 are subalgebras of su3 with the obvious complexifications.

2.3 k-symmetric spaces

As we discussed in Sect. 2.2, σ and τ commute, and thus we arrive at a definition of k-
symmetric spaces, as it will be used in our paper.

Definition 2 Let GR/GR

0 be a real homogeneous space such that GR is a real form of a
complex Lie group G given by a real form involution τ , that is, GR = Fix(G, τ ). Moreover,
let σ be an order k (k ≥ 2) automorphism of G, leaving GR invariant and commuting with
τ . Then GR/GR

0 is called a k-symmetric space if the following condition is satisfied

Fix(GR, σ )◦ ⊂ GR

0 ⊂ Fix(GR, σ ), (2.7)

where Fix(GR, σ )◦ denotes the identity component of Fix(GR, σ ).

2.4 Primitive maps and the loop group formalism

In the last subsection we have discussed complex Lie algebras and Lie groups. For the
applications to geometry we will need to work with real Lie groups.

Thus we consider a complex Lie group as before and let τ denote an anti-holomorphic
involution of G. Then we put

GR = Fix(G, τ ).

Similarly we define LieGR = gR.

Definition 3 Let κ be any automorphism of g of finite order k > 2. Let gm denote the
eigenspaces of κ , wherewe choosem ∈ Z and actuallyworkwithm mod k. LetF : D → G
be a smooth map. Then F will be called primitive relative to κ if
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F−1dF = α−1dz + α′
0dz + α′′

0dz̄ + α1dz̄ ∈ g−1 + g0 + g1,

where αm , α′
0 and α′′

0 take values in an eigenspace gm of κ .

By abuse of notation we will also write α0 = α′
0dz + α′′

0dz̄.

Lemma 2.1 Let F be primitive relative to κ and let us write F−1dF = α−1dz + α0 + α1dz̄.
Then λ−1α−1dz + α0 + λα1dz̄ is integrable for all λ ∈ C

∗.

Proof Together with a straightforward computation one needs to use that because of k > 2
the sum g−1 + g0 + g1 of eigenspaces is direct. �	
The importance of this observation has been elaborated on and explained in [2, Section 3.2]
and [1].

Theorem 2.2 [1,2] Let G be a complex Lie group, σ an automorphism of G of finite order
k ≥ 2 and τ an anti-holomorphic involution of G which commutes with σ . Let GR

0 be any
Lie subgroup of GR satisfying Fix(GR, σ )◦ ⊂ GR

0 ⊂ Fix(GR, σ ). Then we consider the k-
symmetric space GR/GR

0 together with the (pseudo-)Riemannian structure induced by some
bi-invariant (pseudo-)Riemannian structure on GR. Let h : D → GR/GR

0 be a smooth map
and F : D → GR a frame for h, i.e., h = π ◦ F , where π : GR → GR/GR

0 denotes the
canonical projection.

Then the following statements hold:

1. If k = 2, then h is harmonic if and only if λ−1α−1dz + α0 + λα1dz̄ is integrable for all
λ ∈ C

∗.
2. If k > 2, then h is harmonic if F is primitive relative to σ .

From the above theorem, we have the following definition.

Definition 4 Retain the notation in Theorem 2.2.

1. The frame F is called primitive harmonic, if F−1dF = α−1dz + α0 + α1dz̄ such that
λ−1α−1dz + α0 + λα1dz̄ is integrable for all λ ∈ C

∗.
2. The map h is called primitive harmonic map, if the frame F is primitive harmonic.

This admits a direct application of the loop group method (see [8] for the basic formalism,
presented in loc.cit. for compact groups.)

The first step here is to integrate

F−1
λ dFλ = λ−1α−1dz + α0 + λα1dz̄.

Since τ maps gm to g−m , we can assume that Fλ is contained in GR for all λ ∈ S1. Note
that wewill writeF(z, λ) orFλ(z), whatever is most convenient.Wewill usually also assume
F(z0, λ) = I for a once and for all fixed base point z0.

Then it follows from the above that also hλ = Fλ mod GR

0 is a primitive harmonic map
with frame Fλ. Usually Fλ is called an extended frame for h.

The loop group method constructs in principle all these extended frames. For this one
does not read F(z, λ) as a family of frames, parametrized by λ, but as a function of z into
some loop group.

Here are the basic definitions:

1. �G = {g : S1 → G}. Considering G as a subgroup of some matrix algebra Mat(n, C)

we use the Wiener norm on �Mat(n, C) and thus induce a Banach Lie group structure
on �G.
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2. �+G =
{

g ∈ G | g has a holomorphic extension to the open unit disk
and g−1 has the same property

}

.

3. �+∗ G = {g ∈ �+G | g(0) = I }.
4. �−G=

{

g∈G | g has a holomorphic extension to the open upper unit disk in CP1

and g−1 has the same property

}

.

5. �−∗ G = {g ∈ �−G | g(∞) = I }.
6. �GR = {g ∈ �G | τ(g(λ)) = g(λ) for all λ ∈ S1}.
Finally, we will actually always use twisted subgroups of the groups above. First we have

�Gσ = {

g ∈ �G | σ(g(ε−1λ)) = g(λ) for all λ ∈ S1
}

.

The other twisted groups are defined analogously, like

�+∗ Gσ = �+∗ G ∩ �Gσ .

By the form of F−1
λ dFλ we infer that all the loop matrices associated with geometric quanti-

ties are actually defined for all λ ∈ C
∗. However, geometric interpretations are usually only

possible for λ ∈ S1.
To understand the construction procedure mentioned above one considers next again h

and F as above and decomposes

F(z, λ) = C(z, λ) · L+(z, λ),

where C is holomorphic in z ∈ D and holomorphic in λ ∈ C
∗ and L+(z, λ) ∈ �+Gσ .

Since S2 does not occur in this paper as domain of a harmonic map, such a decomposition
is always possible, and defines a holomorphic potential η for h by the formula

η = C−1dC.

The potential η takes the form

η = λ−1η−1(z)dz + λ0η0(z)dz + λ1η1(z)dz + λ2η2(z)dz + · · · . (2.8)

We would like to emphasize:

1. All coefficient functions η j are holomorphic on D.
2. All η j are contained in gm( j), where m( j) = 0, 1, 2, . . . , k − 1 and m( j) ≡ j mod k.

This explains the procedure to obtain a holomorphic potential from a primitive harmonic
map. The fortunate point is that this procedure can be reversed.

The following theorem is a straightforward generalization of a result of [8].

Theorem 2.3 (Loop group procedure, [8]) Let G, σ and τ as above. Let h : D → GR/GR

0 be
a primitive harmonic map with extended frame Fλ. Define C by F(z, λ) = C(z, λ) ·L+(z, λ)

and put η = C−1dC. Then η has the form stated in (2.8), the coefficient functions η j of η are
holomorphic on D and we have η j ∈ gm( j) and m( j) ≡ j mod k.

Conversely, consider any holomorphic 1-form ξ satisfying the three conditions just listed
for η. Then solve the ODE dC = Cξ on D with C ∈ �G. Next write C = Fλ · V+ with
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Fλ ∈ �GR
σ and V+ ∈ �+Gσ . Then Fλ is the extended frame of the associated family of

some primitive harmonic map h : D → GR/GR

0 .

2.5 Evaluation of themeaning of primitive harmonic maps relative to�,�2, and�3

We start by evaluating what it means that a Maurer-Cartan form of some frame of some
liftable immersion into CP2 without complex points is primitive relative to σ , σ 2, or σ 3

respectively.
We will use the notation introduced just above.

Theorem 2.4 Let G = SL3C and g = sl3C its Lie algebra. Let τ denote the real form
involution of G singling out GR = SU3 in G and let σ = σG be the automorphism of order
6 of G given by σ(g) = P(gT )−1P in (2.1). Assume moreover, that f is the lift of a liftable
immersion f into CP2 without complex points and with frame F in GR. Then the following
statements hold:

1. F is primitive harmonic relative to σ if and only if f is minimal Lagrangian in CP2.
2. F is primitive harmonic relative to σ 2 if and only if f is minimal inCP2 without complex

points.
3. F is primitive harmonic relative to σ 3 if and only if either f is minimal Lagrangian or

f is flat homogeneous in CP2.

Remark 2.5 From Theorem 2.4, in each case, we have a primitive harmonic map in GR/GR

0
relative to σ , σ 2 and σ 3, respectively. We will discuss these maps in Sect. 3 in detail.

Proof Since our statement basically only uses local properties, we can assume without loss
of generality that f and f are defined on a contractible domain D.

1. We consider the Maurer-Cartan form α of some frame of f. Then primitive harmonicity
relative to σ means that there is no component of α in the spaces g j , j = 2, 3, 4. It is
straightforward to see that this is equivalent to φ = 0, a = b(= 1) and that the diagonal is
in g0. In particular ρ = 0 and the matrices (1.18) and (1.19) have exactly the form of the
Maurer-Cartan form of a minimal Lagrangian immersion (including the case � = 0).

2. We consider again the Maurer-Cartan form of f. Then primitive harmonicity relative
to σ 2 means that there is no component of U in the spaces g j , j = 1, 4, and there is no
component of V in the spaces g j , j = 2, 5. These two conditions are equivalent to φ = 0.

Thus the primitivity relative to σ 2 is equivalent to f being minimal without complex
points by Theorem 1.6.

3. In this case we need to consider U = U0 + λU1 for all λ ∈ S1, where U0 takes values
in the fixed point space of σ 3 and U1 takes values in the eigenspace for the eigenvalue −1.

From section 2 we know that the eigenspaces for σ 3 are g4 + g2 + g0 for the eigenvalue
1 and g1 + g3 + g5 for the eigenvalue ε3 = −1. We thus consider a primitive 1-form
α̂ = Udz + Vdz̄, where U is of the form

U = U0 + λ−1U1,

where

U0 =
⎛

⎜

⎝

u11 0 i
2 (

√
a − √

b)e
ω
2

0 −u11 0

0 − i
2 (

√
a − √

b)e
ω
2 0

⎞

⎟

⎠
,
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U1 =

⎛

⎜

⎜

⎝

w −√
ab

−1
φ i

2 (
√
a + √

b)e
ω
2

√
ab

−1
e−ωψ w 0

0 i
2 (

√
a + √

b)e
ω
2 −2w

⎞

⎟

⎟

⎠

,

and an analogous expression holds for V = −(U)T .

We already know from the beginning of the proof that for λ = 1 the map f comes from
some immersion f into CP2 without complex points. It thus is of importance to observe that
our 1-form α has the form stated in (1.18) and (1.19). As a consequence, we know the form
of the diagonal entries of U and V .

Next we evaluate the integrability condition dα + 1
2 [α ∧α] = 0. Expanding in λ it is easy

to see that only the following two equations need to be evaluated:

1. ∂z̄U1 = [U1,V0],
2. ∂z̄U0 − ∂zV0 = [U1,V1] + [U0,V0].
We look first at the first of these matrix equations and evaluate the (11)-entry and the (23)-
entry. After a simple computationwe obtain ∂z̄w = − 1

4 (a−b)eω and−3w i
2 (

√
a−√

b)e
ω
2 =

0. Altogether we conclude that a = b holds on D. In particular we then also have a = b = 1
and that w is holomorphic.

We can assume, since we have normalized our frames to have determinant 1, by using
formula (3) after (1.19), that trace(U) = (a−1 + b−1)φ + 3ρ + 1

2 (
az
a − bz

b ) = 0, holds. Thus
we have ρ = − 2

3φ = −2w. In particular, φ is holomorphic.
Evaluating the matrix equation (1) above further, we obtain from the matrix entry (13) the

equation ωz
2 = u11.Now the equations for thematrix entries (12) and (21) imply ∂z̄φ = 2ū11φ

and that ψ is holomorphic respectively. As a result, φ = 0 and the 1-form α is exactly the
Maurer-Cartan form of the SU3-frame of a minimal Lagrangian immersion, or ω, φ and ψ

are all constant with ψ is non-vanishing, which gives a Lagrangian homogeneous surface.
One can check easily that with these conditions the 1-form α actually is primitive relative to
σ 3. �	
In the sections above we had always assumed that we start from some liftable immersion into
CP2 and consider the frame constructed at the beginning of this paper.

The next theorem is more general. As before we will use e3 = (0, 0, 1)T .

Theorem 2.6 Let f̂ : D → S5 be a smooth map and F̂ : D → SU3 a frame such that
F̂ .e3 = f̂. Moreover, we assume that the Maurer-Cartan form α̂ of F̂ has the general form,
more precisely we thus consider a 1-form α̂ = Ûdz + V̂dz̄, in �su3, where

Û =
⎛

⎜

⎝

u11 + w u12 u13

u21 −u11 + w 0

0 u32 −2w

⎞

⎟

⎠
,

and

V̂ =
⎛

⎜

⎝

−ū11 − w̄ −ū21 0

−ū12 ū11 − w̄ −ū32

−ū13 0 2w̄

⎞

⎟

⎠
.

Furthermore, we assume that u13 and u23 never vanish. Then the following statements hold:

1. Each primitive harmonic F̂ relative to σ can be derived from a minimal Lagrangian
immersion in CP2.
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2. Each primitive harmonic F̂ relative to σ 2 can be derived from a minimal immersion in
CP2 without complex points.

3. Each primitive harmonic F̂ relative to σ 3 can be derived from a minimal Lagrangian
immersion or a flat homogeneous immersion in CP2.

Proof For the proof we can replace without loss of generality a given f by a gauged one.
Hence, by using the assumptions one can gauge α̂ by a diagonal matrix in SU3 such that for
the matrix entries u jk of Û we obtain: u13 = i A and u32 = i B with A and B globally defined
positive functions. We also define ψ by putting u21 = (AB)−1ψ . Then the matrix Û attains
the form

Û =
⎛

⎜

⎝

u11 + w u12 i A

(AB)−1ψ −u11 + w 0

0 i B −2w

⎞

⎟

⎠

and V̂ = −(Û)T has the form

V̂ =
⎛

⎜

⎝

−¯̂u11 − w̄ −(AB)−1ψ̄ 0

−ū12 ū11 − w̄ i B

i A 0 2w̄

⎞

⎟

⎠
.

It is not difficult to verify that there exist uniquely determined a, b > 0 such that

A = √
aeω/2, B = √

beω/2, a + b = 2.

Using these definitions we finally define φ by the equation: u12 = −√
ab

−1
φ. By assumption

we have the solution F̂ to the system dF̂ = F̂ α̂. We write F̂ = (f̂1, f̂2, f̂). An evaluation of
the equation for F̂ yields

f̂z = i Af̂1 − 2wf̂.

And similarly we obtain for f̂z̄ in view of V̂ = −(Û)T the equation

f̂z̄ = i B f̂2 + 2w̄f̂.

A simple calculation shows now that f̂z and f̂z̄ are linearly independent everywhere. Thus f̂
is an immersion (into S5) and it follows that the projection f̂ of f̂ toCP2 is also an immersion
(and then obviously has the lift f̂). We need to show that f̂ does not have any complex points.
For this we consider as in (1.4):

ξ := f̂z − (f̂z · ¯̂f)f̂ and η := f̂z̄ − (f̂z̄ · ¯̂f)f̂.
A straightforward computation yields ξ · ξ̄ = A2 > 0 and a similar computation yields

η ·η̄ = B2 > 0. Next we observe that one canwrite A and B uniquely in the form A = √
ae

ω
2 ,

B = √
be

ω
2 , with a, b > 0 and a + b = 2. Then we can rewrite a = e−ωξ · ξ̄ and similarly

b = e−ωη · η̄ and it follows that f does not have any complex points.
Note that this implies that f̂ induces themetric g = 2eωdzdz̄ (by comparison to Sect. 1.2).

Moreover we infer ρ̂ = f̂z ·¯̂f and also f̂1 = −ie− ω
2
√
a−1

ξ . In addition, this implies ρ̂ = −2w.

Similarly, we have f̂2 = −ie− ω
2
√
b

−1
η.

As a consequence, the frame F̂ coincides with the frame F . Thus f̂ as defined above from
F̂ is the lift of an immersion into CP2 without complex points.

Hence the claims (1), (2) and (3) follow from the last Theorem. �	
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3 Ruh–Vilms type theorems

In the famous Theorem of Ruh-Vilms [17], for immersions into R
3, one proves that the

Gauss map into S2 of an immersion into R
3 is harmonic if and only if the original immersion

has constant mean curvature. We will generalize this situation to minimal surfaces without
complex points in CP2 and to minimal Lagrangian surfaces in CP2.

In our discussion of minimal surfaces in CP2 without complex points and of minimal
Lagrangian surfaces in CP2 we restricted to liftable surfaces and thus moved the discussion
primarily to surfaces defined on some contractible domainD ⊂ C.Therefore, in the following
sections we will exclusively consider immersions defined on D.

3.1 Various bundles

We first introduce three 6-symmetric spaces of dimension 7 which are bundles over S5. Our
approach applies and extends ideas of [14] to our case.

We consider the spaces FL1, FL2, and FL3. We first choose a natural basis

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T

of C
3.

(1) FL1 :Wenow considerC
3 as the real 6-dimensional symplectic vector space given by

the symplectic form � = Im〈 , 〉. Then the family of (real) oriented Lagrangian subspaces
of C

3 form a submanifold of the real Grassmannian 3-spaces of C
3, that is, they form the

Grassmannian manifold LGr(3, C
3) of oriented Lagrangian subspaces. It is easy to see that

LGr(3, C
3) can be represented as the homogeneous space U3/SO3. In this paper we use the

special orthogonal matrix group SO3 as the connected subgroup of SU3 corresponding to the
sub-Lie-algebra of su3 given by

so3 =

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

ia 0 y

0 −ia ȳ

−ȳ −y 0

⎞

⎟

⎠

∣

∣

∣ a ∈ R, y ∈ C

⎫

⎪

⎬

⎪

⎭

⊂ su3,

which is isomorphic to the standard so3 by the automorphism X �→ Ad(H)(X), where

H =
⎛

⎜

⎝

1−i
2

1+i
2 0

1+i
2

1−i
2 0

0 0 1

⎞

⎟

⎠
.

The orbit of SU3 in LGr(3, C
3) through the point eSO3 will be called special Lagrangian

Grassmannian and it will be denoted by SLGr(3, C
3). The elements in this orbit will be called

oriented special Lagrangian subspaces of C
3.

We summarize this by

Proposition 3.1 SU3 acts transitively on SLGr(3, C
3), and we obtain

SLGr(3, C
3) = SU3/SO3.

The base point eSO3 corresponds to the real Lagrangian subspace of C
3 given by H−1

R
3.

Next we define

FL1 = {(v, V ) | v ∈ S5, v ∈ V , V ∈ SLGr(3, C
3)}.
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It is easy to verify that SU3 acts (diagonally) on FL1. Note that the natural projection from
FL1 toCP

2 is a Riemannian submersionwhich is equivariant under the natural group actions.
Since S5 = SU3/SU2, where SU2 means SU2 × {1}, the stabilizer at

(e3, spanR{ẽ1, ẽ2, e3})∈FL1 with ẽ1=
(

1 + i

2
,
1−i

2
, 0

)T

, ẽ2=
(

1 − i

2
,
1+i

2
, 0

)T

is clearly given by SU2 ∩ SO3, that is

U1 = {(a, a−1, 1) | a ∈ S1}.
Therefore

FL1 = SU3/U1.

(2) FL2 : For the definition of FL2, we consider certain special regular complex flags
in C

3. Here by a regular complex flag Q we mean a sequence of four complex subspaces,
Q0 = {0} ⊂ Q1 ⊂ Q2 ⊂ Q3 = C

3 of C
3, where Q j has complex dimension j . We then

define the notion of a special regular complex flag in C
3 over q ∈ S5 by requiring that we

have a regular complex flag in C
3, where the space Q1 satisfies Q1 = Cq . Thus we define

FL2 =
{

(w,W) | w ∈ S5,W is a special regular complex

flag over w in C
3 satisfying W1 = Cw

}

.

The definition of a special flag means that for a given vector q �= 0 in C
3 one can find three

pairwise orthogonal vectors q1, q2, q3 ∈ C
3 with q3 = q

|q| such that the vectors q1, q2 and q3
represent the same orientation as ẽ1, ẽ2, e3. By an argument similar to the previous case we
conclude that SU3 acts transitively on the family of special flags. Moreover, the stabilizer of
the action at the point (e3, 0 ⊂ Ce3 ⊂ Ce3 ⊕ Cẽ2 ⊂ Ce3 ⊕ Cẽ2 ⊕ Cẽ1) is again given by
SO3 ∩ diag, where diag denotes the set of all diagonal matrices in SU3. Thus it is again U1

and we have altogether shown

Proposition 3.2 SU3 acts transitively on FL2, and FL2 can be represented as

FL2 = SU3/U1.

Note that the natural projection from FL2 to CP
2 is a Riemannian submersion which is

equivariant under the natural group actions.
(3) FL3 : Finally, using the isometry group SU3 of S5, we can directly define a homoge-

neous space FL3 as

FL3 =

⎧

⎪

⎨

⎪

⎩

U P UT
∣

∣

∣ U ∈ SU3 and P =
⎛

⎜

⎝

0 ε2 0

ε4 0 0

0 0 1

⎞

⎟

⎠

⎫

⎪

⎬

⎪

⎭

, (3.1)

where ε = eπ i/3.

Theorem 3.3 We retain the assumptions and the notion above. Then the following statements
hold:

1. The spaces FL j ( j = 1, 2, 3) are homogeneous under the natural action of SU3.
2. The homogeneous space FL j ( j = 1, 2, 3) can be represented as

FL j = SU3/U1, where U1 = {diag(a, a−1, 1) | a ∈ S1}.
In particular they are all 7-dimensional.
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Proof The statements clearly follow from Propositions 3.1, 3.2 and the definition of FL3 in
(3.1), where the stabilizer at P is easily computed as U1. �	
Corollary 3.4 The homogeneous spaces FL j ( j = 1, 2, 3) are 6-symmetric spaces. Further-
more, they are naturally equivariantly diffeomorphic.

Proof First we note that the group GR = SU3 has the complexification G = SL3C and is
the fixed point set group of the real form involution τ given in (2.5).

We show that FL3 is a 6-symmetric space. First note that the stabilizer

StabP = {X ∈ SU3 | X P XT = P} (3.2)

at the point P of FL3 is U1. We already know that the order 6-automorphism σ of SU3 given
in (2.2) and the real form involution τ commute. Moreover, a direct computation shows that
the fixed point set of σ in SU3 is U1. Thus StabP satisfies the condition in Definition 2. Hence
FL3 is 6-symmetric space in the sense of Definition 2. Furthermore, since all the spaces FL j

are SU3-orbits with the same stabilizer, the identity homomorphism of SU3 descends for any
pair of homogeneous spaces FL j and FLm to a diffeomorphism

φ jm : FLm → FL j

such that for any g ∈ SU3 and p ∈ FLm we have

φ jm(g.p) = g.φ jm(p).

As a consequence, also FL1 and FL2 are 6-symmetric spaces. �	

3.2 Projections from the bundles

Wehave seen that the homogeneous spaces FL j ( j = 1, 2, 3) are 7 dimensional 6-symmetric
spaces. In this sectionwedefinenatural projections from FL j to several homogeneous spaces.

First from FL1, we have a projection to SLGr(3, C
3) given by

FL1 � (v, V ) �−→ V ∈ SLGr(3, C
3).

It is easy to see that SLGr(3, C
3) is a symmetric space with the involution σ 3 defined in (2.4).

Next from FL2, we have a projection to a full flag manifold:

FL2 � (w,W ) �−→ W ∈ Fl2,

where Fl2 is defined as

Fl2 = {W | W is a regular complex flag in C
3}.

It is easy to see that Fl2 is a 3-symmetric space with the involution σ 2 stated in (2.3).
Finally from FL3, we have two projections. We first let k ∈ StabP as in (3.2) with

P =
⎛

⎜

⎝

0 ε2 0

ε4 0 0

0 0 1

⎞

⎟

⎠
, ε = eπ i/3,

then a straightforward computation shows that

kPPT k−1 = kPkT PT = PPT , kPPT PkT = P(kT )−1PT k−1P = PPT P.
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Therefore we have two projections

FL3 � U PUT �−→ U (PPT )U−1 ∈ ˜Fl2,

FL3 � U PUT �−→ U (PPT P)UT ∈ S̃LGr(3, C),

where ˜Fl2 and S̃LGr(3, C) are defined as

˜Fl2 = {U (PPT )U−1 | U ∈ SU3}, S̃LGr(3, C) = {U (PPT P)UT | U ∈ SU3}.
Note that it is easy to compute

PPT =
⎛

⎜

⎝

ε4 0 0

0 ε2 0

0 0 1

⎞

⎟

⎠
, PPT P =

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠ ,

and the stabilizer in SU3 at PPT of ˜Fl2 and the stabilizer in SU3 at PPT P of S̃LGr(3, C)

are

StabPPT = D3, StabPPT P = SO3,

where

D3 = {diag(a1, a2, a3) ∈ SU3},
and where StabPPT P is exactly the same group as the stabilizer of SLGr(3, C). Thus
SLGr(3, C) and S̃LGr(3, C) are naturally equivariantly diffeomorphic. An analogous argu-
ment applies to Fl2 and ˜Fl2. Now the stabilizer of ˜Fl2 is determined by the matrix
characterizing σ 2, whence ˜Fl2 (and thus Fl2) is the 3-symmetric space associated with
σ 2. Similarly, SLGr(3, C) (and thus S̃LGr(3, C)) is the symmetric space associated with σ 3.

Thus we obtain:

Theorem 3.5 We retain the assumptions and the notion above. Then the following statements
hold:
1. The spaces SLGr(3, C) and S̃LGr(3, C) are naturally equivariantly diffeomorphic sym-

metric spaces relative to σ 3, and they are 5-dimensional.
2. The spaces Fl2 and F̃l2 are naturally equivariantly diffeomorphic 3-symmetric spaces

relative to σ 2, and they are 6-dimensional.
3. The homogeneous spaces SLGr(3, C) and S̃LGr(3, C), and Fl2 and F̃l2 can be repre-

sented as

SLGr(3, C) = SU3/SO3, S̃LGr(3, C) = SU3/SO3,

Fl2 = SU3/D3, F̃l2 = SU3/D3.

We now define several projections:

π j : SU3 → FL j , ( j = 1, 2, 3),

and

π̃1 : FL1 → SLGr(3, C), π̃2 : FL2 → Fl2, π̃3,1 : FL3 → S̃LGr(3, C),

π̃3,2 : FL3 → ˜Fl2.
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Schematically, we have the following diagram:

SU3

FL1 FL3 FL2

SLGr(3, C) ∼= S̃LGr(3, C) ˜Fl2 ∼= Fl2

�
�

���
π1

�
π3

�
�

���
π2

�
�

��
π̃1 �

���
π̃3,1 �

�
��

π̃3,2 �
�

���

π̃2

3.3 Gauss maps

We now define three Gauss maps for any liftable immersion f : M → CP
2 without complex

points, with M a Riemann surface. For our purposes in this subsection it will suffice to
consider the lift f to a map f̃ : D → CP

2, where D denotes the universal cover of M .
Therefore we will assume from now on M = D, unless the opposite is stated explicitly.

So let us thus assume that f is defined on a simply connected domain D ⊂ C and that
f is a special lift of f . Then we define the frame F : D → U3 as in Theorem 1.7 such that
detF = 1, that is,

F : D → SU3. (3.3)

F will be called the normalized frame. Note that the function ρ has been chosen now and
may not coincide with ρ0 as in Proposition 1.4.

Definition 5 Retain the above notation.

1. Consider the projections π j ◦ F : D → FL j ( j = 1, 2, 3), where π j : SU3 → FL j .
Then

G j = π j ◦ F ( j = 1, 2, 3)

will be called the Gauss map of f with values in FL j . These Gauss maps are clearly
well-defined on D (independent of the choice of coordinates).

2. Furthermorewe follow theGaussmapswith theprojections from FL j toSLGr(3, C), Fl2,

S̃LGr(3, C) or ˜Fl2 respectively as discussed just above, i.e.,

Hi = π̃i ◦ πi ◦ F (i = 1, 2), H3,i = π̃3,i ◦ π3 ◦ F (i = 1, 2).

These maps will be called the Gauss maps of f with values in SLGr(3, C), Fl2,
S̃LGr(3, C) or ˜Fl2 respectively.

Our definitions were a priori not very geometric. But by following [14] we find analogously
7 obvious geometric interpretations of the Gauss map.

For FL1 and SLGr(3, C): Let G1 : D → FL1 be given by

p �→ (f(p), spanR{ξ̃ (p), η̃(p), f(p)}),
where

ξ̃ = −ie−ω/2√a
−1

ξ, η̃ = −ie−ω/2
√
b

−1
η,
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and f is a lift of f such that detF = 1. Furthermore, the Gauss map H1 : D → SLGr(3, C)

is given by π̃1 ◦ G1, i.e.,
p �→ (spanR{ξ̃ (p), η̃(p), f(p)}).

For FL2 and Fl2: Let G2 : D → FL2 be given by

p �→ (f(p), 0 ⊂ Cf(p) ⊂ Cf(p) ⊕ Cξ̃ (p) ⊂ Cf(p) ⊕ Cξ̃ (p) ⊕ Cη̃(p)).

Furthermore, the Gauss map H2 : D → Fl2 is given by π̃2 ◦ G2, i.e.,
p �→ (0 ⊂ Cf(p) ⊂ Cf(p) ⊕ Cξ̃ (p) ⊂ Cf(p) ⊕ Cξ̃ (p) ⊕ Cη̃(p)).

For FL3, S̃LGr(3, C) and ˜Fl2: We observe that one can represent the Gauss map G3 by
using the frame F defined in Theorem 1.7 as

G3 = FP FT , with P =
⎛

⎜

⎝

0 ε2 0

ε4 0 0

0 0 1

⎞

⎟

⎠
,

where ε = eπ i/3. Furthermore, theGaussmapsH3,1 : D → S̃LGr(3, C) andH3,2 : D → ˜Fl2
are given by π̃3,i ◦ G3, i.e.,

H3,1 : p �→ F(PPT P)FT , H3,2 : p �→ F(PPT )F−1.

3.4 Ruh–Vilms type theorems associated with the Gauss maps

We finally arrive at Ruh-Vilms type theorems.

Theorem 3.6 (Ruh-Vilms theorems for σ, σ 2 and σ 3)With the notation used above we con-
sider for any liftable immersion into CP2 the Gauss maps:
1. G j : M → FL j for j = 1, 2, 3,

2. H2 = π̃2 ◦ G2 : M → Fl2 and H3,2 = π̃3,2 ◦ G3 : M → F̃l2,

3. H1 = π̃1 ◦ G1 : M → SLGr(3, C) and H3,1 = π̃3,1 ◦ G3 : M → ˜SLGr(3, C).

Then the following statements hold:
1. G j ( j = 1, 2, 3) is primitive harmonicmap into FL j if and only ifF is primitive harmonic

relative to σ if and only if the corresponding surface is a minimal Lagrangian immersion
into CP2.

2. H2 or H3,2 is primitive harmonic in Fl2 or F̃l2 if and only if F is primitive harmonic
relative to σ 2 if and only if the corresponding surface is a minimal immersion into CP2

without complex points.

3. H1 or H3,1 is primitive harmonic map into SLGr(3, C) or ˜SLGr(3, C) if and only if F
is primitive harmonic relative to σ 3 if and only if the corresponding surface is either a
minimal Lagrangian immersion or a flat homogeneous immersion into CP2.

Proof The first equivalence in (1) is due to the definition of primitive harmonicity into a
k-symmetric space. The second equivalence has been stated in Theorem 2.4. The proofs for
(2) and (3) are similar. �	
Remark 3.7 We would like to point out that the result above is not contained in [14].
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Appendix A

In this appendix, we discuss the liftability of an immersion f : M → CP2 into S5.

A.1. The non-compact case

Theorem A.1 Let D ⊂ C be a simply-connected domain and f : D → CP2 an immersion
without complex points. Let f0 : D → S5 be a lift of f and F(f0) the corresponding frame.
Then

(a) There exists some smooth function δ : D → S1 such that detF(δf0) = 1.
(b) Any two lifts f0 and f1 of f for which detF(f0) = 1 and detF(f1) = 1 differ by a cubic

root of unity.

Proof (a) Put δ0 = detF(f0). Then δ0 : D → S1 is smooth. Since D is simply-connected we
can define the smooth function δ = δ

−1/3
0 : D → S1, then detF(δf0) = 1.

(b) Assume detF(f0) = detF(f1) = 1. Since f0 and f1 are both lifts of f on D, there
exists some smooth function h : D → S1 such that f1 = hf0 holds. Then detF(f1) =
detF(hf0) = 1 implies h3 = 1. Hence h is a constant. �	

From this we derive

Theorem A.2 Let M be a non-compact Riemann surface and f : M → CP2 an immersion
without complex points. Then there exists a global lift f : M → S5.

Proof Let {Uα} be an open covering of M by open contractible subsets (disks). Then on
each Uα there exists some lift fα : Uα → S5 of f|Uα such that detF(fα) = 1 holds. On the
intersectionUα ∩Uβ we consider a connected componentC ι

αβ .Then fα = hι
αβ fβ onC ι

αβ with

some unique smooth function hι
αβ : C ι

αβ → S1. Now F(fα) = F(hι
αβ fβ) = (hι

αβ)3F(fβ)

and the requirement that detF(fα) = detF(fβ) = 1 holds implies that hι
αβ is a cubic root of

unity. In particular, hι
αβ is constant and thus holomorphic. Altogether we obtain fα = hαβ fβ

onUα ∩Uβ with a holomorphic function hαβ onUα ∩Uβ . It is easy to verify that the family of
hαβ is a cocycle. Since we have assumed thatM is non-compact, the cocycle {hαβ} splits (see,
e.g. [10], Corollary 30.5). Therefore there exist holomorphic functions wα on Uα satisfying
hαβ = w−1

α wβ. As a consequence the family of wαfα defines a globally defined function
f : M → S5 and thus a global lift of f . �	
Remark A.3 1. The frame corresponding to f, as in the last theorem, generally speaking only

makes sense if f is defined on a simply-connected open subset of C. As a consequence,
the condition detF(f) = 1 only makes sense on D.

2. If M is compact, then one can repeat the argument above with a meromorphic splitting.
Hence one needs to admit (finitely many) singularities in the global lift f.

The general case

Recall that we assume that M is different from S2. We use this right below, when we state
that f̃ : D → CP2 has a lift f̃ : D → S5. This is proven by considering the pull back bundle
and using that D is contractible.
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Proposition A.4 Let f : M → CP2 be an immersion without complex points and f̃ : D →
CP2 denote the lift f̃ = f ◦ π̃ of f to the universal cover π̃ : D → M. Then f̃ has a lift
f̃ : D → S5 and the following statements hold

1. For γ ∈ π1(M), acting on D by Möbius transformations, we obtain that also γ ∗ f̃ is a lift
of f̃ .

2. For all γ ∈ π1(M) we have (γ ∗ f̃)(z, z̄) = c(γ, z, z̄)f̃(z, z̄) with c taking values in S1.
3. After multiplying f̃ by a scalar multiple in S1 we can assume without loss of generality

that F(f̃) is contained in SU3.
4. For f̃ as just above and γ ∈ π1(M) we obtain

γ ∗(F(f̃))(z, z̄) = c(γ, z, z̄)F(f̃)(z, z̄)k(γ, z, z̄), (A.1)

with k(γ, z, z̄) = diag(|γ ′|/γ ′, |γ ′|/γ̄ ′, 1), where γ ′ = γz .

Proof 1. This can be deduced directly after composing these maps with the Hopf fibration.
2. This just rephrases that both maps are lifts of f̃ .
3. As pointed out in the remark above this can be done since the frame is defined on a

simply-connected domain.
4. This claim will follow from a series of simple statements:
First by the chain rule we have (γ ∗ f̃)z = ∂z(f̃ ◦ γ ) = f̃z ◦ γ · γ ′. Then it follows that

γ ∗(ξ(f̃)) = γ ∗ f̃z − (γ ∗ f̃z · γ ∗ f̃)γ ∗ f̃

= 1

γ ′ (γ
∗ f̃)z − (

1

γ ′ (γ
∗ f̃)z · γ ∗ f̃)γ ∗ f̃

= 1

γ ′ {(cf̃)z − ((cf̃)z · cf̃)cf̃}

= 1

γ ′ {cz f̃ + cf̃z − ((cz f̃ + cf̃z) · ¯̃f)f̃}

= 1

γ ′ cξ(f̃).

That is, γ ∗(ξ(f̃)) = (γ ′)−1c(γ, ·)ξ(f̃). Similarly, we obtain γ ∗(η(f̃)) = (γ̄ ′)−1c(γ, ·)η(f̃). On
the other hand, since γ acts onD by isometries, eωdzdz̄ = γ ∗(eωdzdz̄) = γ ∗(eω)|γ ′|2dzdz̄.
Moreover, the functions a and b are independent of the choice of f̃. Putting this together we
obtain for the frame F(f̃) the claim. �	
Corollary A.5 In viewof the fact thatwe can assume detF(f̃) = 1, the transformation formula
above for the frame implies c(γ, z, z̄)3 = 1 and thus

c(γ, z, z̄) = c(γ ) ∈ S1 (A.2)

for all γ ∈ π1(M). In particular, c : π1(M) → S1 is a homomorphism with values in the
group A3 of cubic roots of unity, whence the image of c is either {e} or all of A3.

From this we derive the following

Theorem A.6 Let M be a Riemann surface, different from S2, and f : M → CP2 an
immersion without complex points. Let π̃ : D → M denote the universal covering of M
and f̃ = f ◦ π̃ : D → CP2 the natural lift of f to D. Let f̃ : D → S5 denote a lift of f̃
satisfying detF(f̃) = 1. Let c : π1(M) → S1 denote the homomorphism induced by f̃ and
put � = ker(c). Furthermore, define the Riemann surface M̂ = �\D. Then the following
statements hold :
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a) The definitions above induce naturally a sequence of coverings

D
π̂

M̂
τ

M, (A.3)

where the first map is denoted by π̂ and the second map is denoted by τ . Recall that our
definitions imply π = τ ◦ π̂ . Moreover, the covering map τ has either order 1 or order 3.

b) Putting f̂ = f ◦ τ : M̂ → CP2 we obtain the commuting diagram,

D S5

M̂ CP2

M

�f̃

�
π̂

�
π

�
τ

�
��	f̂

�̂f

�
��	
f

where f̂ : M̂ → S5 is the naturally global lift of f̂ . Then, either M̂ = M and f itself has
a global lift or τ : M̂ → M has order three and M̂ has the global lift f̂.

Proof Since the image of c is either only the identity element of S1 or the full group of cubic
roots, the kernel of c either is all of π1(M) or a subgroup � satisfying A3 ∼= π1(M)/�.

In the first case M̂ = M and f̂ actually is a global lift of f . In the second case, the map
f̂ : M̂ → CP2 has a global lift, namely f̂ : M̂ → S5. �	

Corollary A.7 Let M be a Riemann surface different from S2 and f : M → CP2 an immer-
sion without complex points. Then either f has a global lift f : M → S5, or there exists a
3-fold covering τ : M̂ → M of M such that the immersion f̂ = f ◦ τ : M̂ → CP2 has a
global lift, while the given f : M → CP2 has not.
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