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Abstract
Given a reducible 3-manifold M with an aspherical summand in its prime decomposition
and a homeomorphism f : M → M , we construct a map of degree one from a finite cover of
M � f S1 to a mapping torus of a certain aspherical 3-manifold. We deduce that M � f S1 has
virtually infinite first Betti number, except when all aspherical summands of M are virtual
T 2-bundles. This verifies all cases of a conjecture of T.-J. Li and Y. Ni, that any mapping
torus of a reducible 3-manifold M not covered by S2 × S1 has virtually infinite first Betti
number, except when M is virtually (#nT 2

� S1)#(#mS2 × S1). Li-Ni’s conjecture was
recently confirmed by Ni with a group theoretic result, namely, by showing that there exists a
π1-surjection from a finite cover of any mapping torus of a reducible 3-manifold to a certain
mapping torus of #mS2 × S1 and using the fact that free-by-cyclic groups are large when the
free group is generated by more than one element.
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1 Introduction

The virtual first Betti number of a manifold M is defined to be

vb1(M) = sup
{
b1(M) | M is a finite cover of M

}

(where b1 denotes the first Betti number) and takes values in N0 ∪ {∞}. This notion arises
naturally in geometric topology and it is often difficult to compute. A recent prominent
example is given by the resolution of the Virtual Haken Conjecture [1] which implies that
vb1 = ∞ for hyperbolic 3-manifolds, and therefore completes the picture for the values of
vb1 in dimension three. Li and Ni [10] used this picture to compute vb1 for mapping tori of
prime 3-manifolds:

Theorem 1.1 [10, Theorem 1.2] Let X = M � f S1 be a mapping torus of a closed prime
3-manifold M. Then vb1(X) is given as follows:

B Christoforos Neofytidis
neofytidis.1@osu.edu

1 Department of Mathematics, Ohio State University, Columbus, OH 43210, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-020-02485-w&domain=pdf


1692 C. Neofytidis

(1) If M is a spherical manifold, then vb1(X) = 1;
(2) If M is S1 × S2 or finitely covered by T 2

� S1, then vb1(X) ≤ 4;
(3) In all other cases, vb1(X) = ∞.

When the fiber M is reducible, then the monodromy f of the mapping torus M� f S1 is in
general more complicated than when M is irreducible; see [11,12,15]. Li and Ni conjectured
that almost always vb1(M � f S1) = ∞ when M is reducible:

Conjecture 1.2 [10, Conjecture 5.1] If M is a closed oriented reducible 3-manifold, then
vb1(M � f S1) = ∞, unless M is finitely covered by S2 × S1.

As pointed out in [10, Lemma 5.4] (see Lemma 2.2), if M is a closed reducible 3-
manifold which is not covered by S2 × S1, then M is finitely covered by a connected sum
M ′#(S2 × S1)#(S2 × S1), for some closed 3-manifold M ′. Since free-by-cyclic groups are
largewhenever the free group is generated bymore than one element (cf. [5,7,14]), we deduce
that

vb1((#mS
2 × S1) � f S

1) = ∞ for m ≥ 2.

Thus, when M contains an aspherical summand in its prime decomposition, and not only
summands covered by mapping tori of T 2, Conjecture 1.2 follows by the following result:

Theorem 1.3 Let M be a closed oriented reducible 3-manifold that contains at least one
aspherical summand in its prime decomposition. For any mapping torus M � f S1, there is a
finite cover M of M containing an aspherical summand M1 in its prime decomposition and
a degree one map

M � f k S
1 −→ M1 �h S1,

for some k ≥ 1 and some homeomorphism h : M1 −→ M1.

Recently, Ni [13] verified Conjecture 1.2 by showing that there exists a surjection from
the fundamental group of a mapping torus of a finite cover of M to the fundamental group
of a mapping torus of a connected sum #mS2 × S1, m ≥ 2, and making use of the fact that
free-by-cyclic groups with at least three generators are large. Our result is in a sense both
stronger and weaker than Ni’s result. It is stronger, on the one hand, because it comes with a
construction of a map of non-zero degree, instead of just a π1-surjection as in [13]. Indeed,
it is likely that there is even a degree one map from a mapping torus of a finite covering of
M to a mapping torus of a connected sum #mS2 × S1; see [13, p. 1592]. However, the map
we construct here makes essential use of the asphericity of the summand M1 and therefore
our method cannot be extended to the case where no aspherical summand exists in the prime
decomposition of M . On the other hand, the π1-surjection obtained by Ni covers as well the
case where the aspherical summands of M are only virtual mapping tori of T 2. Therefore,
it is natural to ask whether one can find a topological proof of Conjecture 1.2 for connected
sums of type (#nT 2

� S1)#(#mS2 × S1). Also, it would be interesting to find a purely group
theoretic proof that for every reducible 3-manifold M that is not finitely covered by S2 × S1,
any π1(M)-by-cyclic group is large.

Outline

In Sect. 2 we give some facts about finite coverings of mapping tori and in Sect. 3 we recall
the description of self-homeomorphisms of closed reducible 3-manifolds. The main body of
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the proof of Theorem 1.3 is given in Sects. 4 and 5. Finally, we discuss Conjecture 1.2 in
Sect. 6.

2 Preliminaries

We begin our discussion by gathering some well-known facts needed for our proofs.
Let M be a closed oriented reducible 3-manifold. By the Kneser-Milnor theorem [8], M

can be decomposed as a connected sum

M = M1# · · · #Mn#(#mS
2 × S1)#(#sp=1S

3/Qp),

where each Mi is aspherical and S3/Qp are spherical quotients with fundamental groups the
finite groups Qp .

The following lemmas give some precise descriptions of finite covers of M and can be
found in [9, pp. 23–24] and [10, Lemma 5.4] respectively:

Lemma 2.1 If n = 0 and M �= RP3#RP3 or S2×S1, then M is finitely coveredby#m′ S2×S1,
for some m′ ≥ 2.

Proof Let the projection

ϕ : π1(M) −→ Q1 × · · · × Qs

of the free product π1(M) = Fm ∗ Q1 ∗ · · · ∗ Qs to the direct product
∏s

p=1 Qp . By the
Kurosh subgroup theorem, the kernel of ϕ is a free group, say Fm′ , where m′ ≥ 2. Since
moreover ker(ϕ) has finite index in π1(M), Grushko’s theorem implies that M is finitely
covered by the connected sum #m′ S2 × S1. 
�
Lemma 2.2 If n ≥ 1, then M is finitely covered by M ′#(#m′ S2×S1), where M ′ is a connected
sum of aspherical 3-manifolds and m′ ≥ 2.

Proof Let M = M1#M2, where M1 is aspherical and M2 �= S3 (not necessarily prime).
Since π1(M1) is residually finite, there is a d-fold cover M1 of M1 for some d ≥ 3, and so
M is d-fold covered by M = M1#(#dM2). Now, since π1(M2) is residually finite, there is a
finite group G together with a surjection

ψ : π1(M) −→ G,

which maps π1(M1) to the trivial element and each π1(M2) surjectively to G. Then, since
G is finite, it is easy to see that the cover of M corresponding to ker(ψ) contains at least
m′ := d − 1 ≥ 2 connected summands S2 × S1. 
�

Finally, we quote two general facts about coverings of mapping tori whose proof is easy
and left to the reader (see also [10, Section 2]).

Lemma 2.3 Let f : M −→ M be a self-homeomorphism of a closed oriented manifold (of
any dimension).

(a) M � f S1 is finitely covered by M � f k S
1 for every k ≥ 1.

(b) If M is a finite cover of M, then M � f S1 is finitely covered by M � f k S
1 for some k.
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3 Self-homeomorphisms of reducible 3-manifolds

In this section, we recall the isotopy types of orientation-preserving homeomorphisms of
3-manifolds. For the most part we follow the description given in McCullough’s survey
paper [11], however we adapt some parts of his description in order to simplify our next
arguments.

SupposeM is a closed oriented reducible 3-manifold. By the discussion in Sect. 2, wemay
assume that M does not contain any spherical quotients in its prime decomposition. Consider
the following construction of M : Let W be a punctured 3-cell obtained by removing n + m
open 3-balls from a 3-sphere, and let

S1, S2, . . . , Sn, Sn+1, Sn+2, . . . , Sn+m

be its boundary components. For each of the Si , i = 1, . . . , n, remove the interior of a 3-ball
D3
i from Mi , and attach M ′

i = Mi − int(D3
i ) to Si along ∂D3

i . Similarly, for each of the S j ,
j = n + 1, . . . , n + m, remove the interior of a 3-ball D3

j = D2
j × I j from S2 × S1, and

attach (S2 × S1)′j = (S2 × S1) − int(D2
j × I j ) to S j along ∂D3

j .
Using the above construction, we now describe three types of homeomorphisms of M .

We remark that two orientation-preserving homeomorphisms of W are isotopic if and only
if they induce the same permutation on the boundary components of W .

1. Homeomorphisms preserving summands. These are the homeomorphisms of M which
restrict to the identity on W . Note that this class of homeomorphisms includes the so-called
“spins” of S2×S1 as given followingMcCullough’s construction ofM ; compare [11,Remark,
p. 69].

2. Interchanges of homeomorphic summands. IfMi andMj are two orientation-preserving
homeomorphic summands, then a homeomorphism of M can be constructed by fixing the
rest of the summands, leaving W invariant, and interchanging M ′

i and M ′
j .

Similarly, we can interchange any two S2 × S1 summands, leaving W invariant.

3. Slide homeomorphisms. For i = 1, . . . , n, let M̂i be obtained from M by replacing M ′
i

with a 3-ball Bi . Let α be an arc in M̂i which meets Bi only in its endpoints and Jt an isotopy
of M̂i that moves Bi around α, with J0 = idM̂i

and J1|Bi = idBi . The homeomorphism

s : M −→ M

defined by

s|M−M ′
i
= J1|M̂i−Bi

and s|M ′
i
= id|M ′

i
.

is called slide homeomorphism of Mthat slides Miaround α. Starting with a different isotopy
Jt , then s changes by an isotopy and perhaps by a rotation about the boundary component
Si . Therefore each α might determine two isotopy classes of a slide homeomorphism. Note
that if T is the frontier of a regular neighborhood of M ′

i ∪ α in M , then T is a compressible
torus and s is isotopic to a certain Dehn twist about T .

Similarly, one can slide an S2 × S1 summand around an arc in M − (S2 × S1)′j .
We remark that if α1 and α2 are two arcs meeting Bi only in their endpoints, and α

represents their product, then a slide of Mi around α is isotopic to a composite of slides
around α1 and α2. Similarly for sliding S2 × S1.

With the above description, we have the following classification result of self-
homeomorphisms of closed reducible 3-manifolds. This result was first announced in [6]
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and an elegant proof was given by McCullough [11, pp. 70–71], based on an argument of
Scharlemann [3, Appendix A].

Theorem 3.1 [11, p. 69] If M is a closed oriented reducible 3-manifold, then any orientation-
preserving homeomorphism f : M −→ M is isotopic to a composition of the following three
types of homeomorphisms:

(1) homeomorphisms preserving summands;
(2) interchanges of homeomorphic summands;
(3) slide homeomorphisms.

In fact, the proof of Theorem 3.1 presented in [11, pp. 70–71], together with our adaptions
on the construction of M , implies that

f = g3g2g1, (3.1)

where g3 is a finite composition of homeomorphisms of type 3 (slide homeomorphisms) and
isotopies of M , and g1, g2 are compositions of finitely many homeomorphisms of type 1 and
2 respectively.

4 Commutativity in homotopy

Next, we show that there are self-homeomorphisms of an aspherical summand of a reducible
3-manifold whose “conjugation” by the pinch map in homotopy gives the three types of
homeomorphisms described in the previous section.

According to the proof of Lemma 2.2, we may assume, after possibly passing to a finite
cover, that M contains an aspherical summand M1 in its prime decomposition so that the
self-homeomorphism f : M −→ M does not contain a component of g2 that interchanges
M1 with another summand.

Clearly M1 can be considered as being obtained by replacing each M ′
i (i ≥ 2) and

(S2 × S1)′j with a 3-ball Bi and Bj respectively. Then we can construct a pinch map

p : M1# · · · #Mn#(#mS
2 × S1) −→ M1,

by mapping each M ′
i (i ≥ 2) to Bi , each (S2 × S1)′j to Bj and the rest of the part identically

to itself.
We will show the following whose line of proof follows that of [13, Lemmas 3.6 and 3.7]

adapted to our situation:

Lemma 4.1 For each component gi of f , there is a self-homeomorphism hi of the aspherical
summand M1 such that the following diagram commutes in homotopy, i.e. (p ◦ gi )∗ =
(hi ◦ p)∗.

π1(M)

p∗

gi ∗
π1(M)

p∗

π1(M1)
hi ∗

π1(M1)

Proof We will examine each of the (components of) gi separately.

Homeomorphisms preserving summands Suppose first, that g1 is a self-homeomorphism of
summands Mi or of S2 × S1. Define
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h1 : M1 −→ M1

by

h1|M ′
1

= g1|M ′
1
and h1|M1−M ′

1
= id|W∪(∪n

i=2Bi )∪(∪m
j=1Bn+ j ).

If γ is a loop in M ′
1, then g1(γ ) is a loop in M ′

1 as well, and so

p ◦ g1(γ ) = g1(γ ) = g1 ◦ p(γ ) = h1 ◦ p(γ ). (4.1)

If γ /∈ M ′
1, then g1(γ ) /∈ M ′

1, and since W ∪ (∪n
i=2Bi ) ∪ (∪m

j=1Bn+ j ) is simply connected,
we deduce that g1(γ ) and p(γ ) are homotopically trivial. Thus again p∗ ◦ g1∗ = h1∗ ◦ p∗.

Interchanges of homeomorphic summandsNow, let g2 be a homeomorphism that interchanges
two aspherical summands Mi and Mj or two copies of S2 × S1. By our assumption on M1,
we know that i, j �= 1. Set

h2 : M1 −→ M1, h2 := id

If γ is a loop in M ′
1, then g2(γ ) = γ , and so

p ◦ g2(γ ) = p(γ ) = γ = h2(γ ) = h2 ◦ p(γ ). (4.2)

If γ /∈ M ′
1, then g2(γ ) /∈ M ′

1, and so, as in the previous case, p∗ ◦ g2∗ = h2∗ ◦ p∗, because
W ∪ (∪n

i=2Bi ) ∪ (∪m
j=1Bn+ j ) is simply connected.

Slide homeomorphisms Finally, let g3 be a slide homeomorphism.
Suppose first that g3 slides M1 around an arc α in M − M ′

1 such that α ∩ (M ′
i ) and

α ∩ (S2 × S1)′j is a single arc for any i ≥ 2 and any j . By McCullough’s description, there is
a Dehn twist sα about the frontier T of a regular neighbourhood of M ′

1 ∪ α which is isotopic
to g3. An arc β in W ∪ (∪n

i=2Bi ) ∪ (∪m
j=1Bn+ j ) is given by letting β|W be the same as α|W

and β|(∪n
i=2Bi )∪(∪m

j=1Bn+ j ) be the trivial arc. Then we can define a Dehn twist sβ about the

frontier T ′ of a regular neighborhood of M ′
1 ∪ β (corresponding to g3). This defines our new

homeomorphism h3 : M1 −→ M1. If γ is a loop in M ′
1, then clearly

p ◦ g3(γ ) = p(γ ) = γ = h3(γ ) = h3 ◦ p(γ ). (4.3)

If γ /∈ M ′
1, then, after homotoping γ if necessary, we can assume that γ ∩ T = ∅ and

p(γ )∩T ′ = ∅. We then have g3(γ ) = sα(γ ) = γ and so p◦g3(γ ) = p(γ ) is homotopically
trivial, becauseW ∪ (∪n

i=2Bi )∪ (∪m
j=1Bn+ j ) is simply connected. Thus p∗ ◦ g3∗ = h3∗ ◦ p∗

as required.
Next, assume that g3 slides some Mi , i �= 1, around an arc in M − M ′

i (similarly for
sliding a copy of S2 × S1). We can assume that α ∩ M ′

1 is not trivial, otherwise the proof is
identical to the above argument. Now, we have an arc β which is given by α in M ′

1 ∪ W and
it is trivial in (∪n

i=2Bi ) ∪ (∪m
j=1Bn+ j ), and Dehn twists sα and sβ about tori T and T ′, given

similarly as above. In this way, we define our homeomorphism h3 : M1 −→ M1. For loops
not in M ′

1 the situation is as before, because p(γ ) is homotopically trivial. For a loop γ in
M ′

1, we can assume again that, after homotoping γ , we have γ ∩ T = ∅ and γ ∩ T ′ = ∅.
Then

p ◦ g3(γ ) = p ◦ sα(γ ) = p(γ ) = γ = sβ(γ ) = h3 ◦ p(γ ). (4.4)

This finishes the proof of the lemma. 
�

123



Virtual Betti numbers of mapping tori of 3-manifolds 1697

5 Finishing the proof of Theorem 1.3

Now we will construct a map of degree one from M � f S1 to M1 �h S1, for some homeo-
morphism h : M1 −→ M1.

As above, we can assume by Lemmas 2.1 and 2.2 that M = M1# · · · #Mn#(#mS2 × S1),
where Mi are aspherical and n ≥ 1. Moreover, we assume that M1 is not interchanged under
f with another summand Mi (by the proof of Lemma 2.2).
Consider the classifying space Bπ1(M) = M1∨· · ·∨Mn∨(∨mS1) and the homotopically

unique map

B( f∗) : M1 ∨ · · · ∨ Mn ∨ (∨mS
1) −→ M1 ∨ · · · ∨ Mn ∨ (∨mS

1),

where f∗ : π1(M) −→ π1(M) is the isomorphism induced by f . Let also the map

B(p∗) : M1 ∨ · · · ∨ Mn ∨ (∨mS
1) −→ M1,

induced by the pinch map p. (Again, p∗ : π1(M1) ∗ · · · ∗ π1(Mn) ∗ Fm −→ π1(M1) denotes
the induced homomorphism.)

By Theorem 3.1 (and the comments after that), we know that f = g3g2g1, where g3 is
a finite composition of homeomorphisms of type 3 and isotopies of M , and each of g1, g2
is a composition of finitely many homeomorphisms of type 1 and 2 respectively, as given in
Sect. 3.

By Lemma 4.1, there is a homeomorphism h : M1 −→ M1 such that

p∗ ◦ f∗ = h∗ ◦ p∗. (5.1)

For set h = h3h2h1, where each (component of) hi is given by Lemma 4.1. Then applying
successively Lemma 4.1 on each hi we deduce that (5.1) indeed holds. Therefore, there is a
well-defined surjective homomorphism

p∗ : π1(M � f S
1) −→ π1(M1 �h S1)

which maps each element x of π(M) to p∗(x) ∈ π1(M1) and the generator of the infinite
cyclic group acting (through f∗) on π1(M) to the generator of the infinite cyclic group acting
(through h∗) on π1(M1).

Remark 5.1 If we replace M1 by the connected sum #mS2 × S1 and adapt accordingly
Lemma 4.1 to the situation of [13, Lemmas 3.6 and 3.7], then we will obtain a surjection

π1(M � f S
1) −→ Fm �h∗ Z. (5.2)

This surjection does not yield a map of non-zero degree, because the classifying space of Fm
is one dimensional.

The homomorphism p∗ gives rise to a well-defined map

B(p∗) : Bπ1(M � f S
1) −→ Bπ1(M1 �h S1).

Since M1 is aspherical, the homotopy long exact sequence for π1(M1 �h S1) implies that
M1 �h S1 is aspherical. Furthermore,

π1(M � f S
1) = 〈π1(M), t | t xt−1 = f∗(x), x ∈ π1(M)〉 = π1(Bπ1(M) �B( f∗) S

1).
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Again, by the asphericity of Bπ1(M), we deduce that Bπ1(M)�B( f∗) S
1 is aspherical. Thus

B(p∗) is (homotopic to) a map

Bπ1(M) �B( f∗) S
1 −→ M1 �h S1

[(a, t)] �→ [(B(p∗)(a), t)],
which we still denote by B(p∗).

Define now a map

F : M � f S
1 −→ M1 �h S1

by

F := B(p∗) ◦ ψM� f S1 ,

where ψM� f S1 : M � f S1 −→ Bπ1(M) �B( f∗) S
1 is the classifying map for M � f S1

(recall that π1(M � f S1) = π1(Bπ1(M)�B( f∗) S
1)). Let alsoψM : M −→ Bπ1(M) denote

the classifying map for M . Then the following diagram

0 = H4(M)

0

0
H4(M � f S1)

H4(ψM� f S
1 )

α1
H3(M)

H3(ψM )

0
H3(M)

H3(ψM )

· · ·

0 = H4(Bπ1(M))

0

0
H4(Bπ1(M) �B( f∗) S1)

H4(B(p∗))

α2
H3(Bπ1(M))

H3(B(p∗))

H3(Bπ1(M))

H3(B(p∗))

· · ·

0 = H4(M1)
0

H4(M1 �h S1)
α3

H3(M1)
0

H3(M1) · · ·
implies

α3 ◦ H4(B(p∗)) ◦ H4(ψM� f S1)([M � f S
1])

= H3(B(p∗)) ◦ α2 ◦ H4(ψM� f S1)([M � f S
1])

= H3(B(p∗)) ◦ H3(ψM ) ◦ α1([M � f S
1])

= H3(B(p∗)) ◦ H3(ψM )([M])
= H3(B(p∗))([M1], . . . , [Mn]) = [M1].

This means that

H4(F)([M � f S
1]) = [M1 �h S1],

completing the proof of Theorem 1.3.

6 Virtual first Betti numbers

In this section we discuss Conjecture 1.2.
Recall that the finiteness of virtual first Betti numbers ofmapping tori of prime 3-manifolds

follows that of their fiber M , namely vb1(M) (and vb1(M � f S1)) is finite if and only if M
is virtually S3, S2 × S1 or a T 2-bundle. More precisely, if a 3-manifold M is finitely covered
by S3, S2 × S1 or a T 2-bundle, then vb1(M) ≤ 3, and the corresponding mapping tori of
M satisfy vb1(M � f S1) ≤ vb1(M) + 1 ≤ 4 for any homeomorphism f : M −→ M . It
is therefore natural to examine Conjecture 1.2 according to whether a reducible 3-manifold
contains a prime summand with virtually infinite first Betti number or not.
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6.1 At least one prime summandwith virtually infinite first Betti number

Suppose first that a reducible 3-manifold M contains a summand in its prime decomposition
with vb1 = ∞. This summand is necessarily aspherical. If f : M −→ M is an orientation
preserving homeomorphism, then Theorem 3.1 tells us that f is isotopic to a composition
g3g2g1 where each gi is a finite composition of homeomorphisms of type i = 1, 2, 3. By
Lemmas 2.1, 2.2 and 2.3 (and their proofs), there is a finite a cover M of M containing an
aspherical summand M1 in its prime decomposition which is not virtually a mapping torus
of T 2 and is not interchanged by some f k (under a component of type 2) with any other
summand of M . Then Theorem 1.3 implies that there is a self-homeomorphism h of M1 and
a degree one map

M � f k S
1 −→ M1 �h S1.

In particular, b1(M � f k S
1) ≥ b1(M1 �h S1), and so Theorem 1.1 implies that

vb1(M � f S
1) = ∞.

This proves Conjecture 1.2 in all cases, except when M is virtually (#nT 2
� S1)#(#mS2 ×

S1) (containing at least two summands).

6.2 Only summands with virtually finite first Betti numbers

Suppose, finally, that M is (virtually) of the form (#nT 2
� S1)#(#mS2 × S1). In that case,

Theorem 1.3 is not anymore applicable to deduce that vb1(M � f S1) = ∞. On the one
hand, if n = 0, then #mS2 × S1 does not contain any aspherical summands. On the other
hand, if n �= 0, then Theorem 1.3 implies that there is a degree one map M � f k S1 −→
(T 2

� S1) �h S1, which, however, does not suffice to conclude that vb1(M � f S1) = ∞
because vb1((T 2

� S1) �h S1) ≤ 4. It would be interesting to find topological arguments
that cover those two cases as well.

Nevertheless, we can appeal to group theoretic results to deduce that vb1 = ∞ in the
remaining two cases. First, one can deduce from known results that π1((#mS2 × S1) � f S1)
is large for m ≥ 2: By [2,4], the free-by-cyclic group

Fm � f∗ Z = π1((#mS
1 × S1) � f S

1), m ≥ 2,

is word hyperbolic if and only if it does not contain as subgroup an isomorphic copy of Z
2.

In the case where Fm � f∗ Z is hyperbolic, then it is large by [1,7,14]. If now Z
2 ⊂ Fm � f∗ Z,

then Fm � f∗ Z is large by [5]. Thus in all cases we deduce that vb1(Fm � f∗ Z) = ∞ as
required.

Therefore, using the largeness of Fm � f∗ Z, we conclude that

vb1((#mS
2 × S1) � f S

1) = ∞ for m ≥ 2.

Remark 6.1 By [2,4], Fm � f∗ Z being word hyperbolic is equivalent to the automorphism f∗
being atoroidal, i.e. having no non-trivial periodic conjugacy classes.When f∗ is toroidal (i.e.
it has some non-trivial periodic conjugacy class), Ni also showed that vb1(Fm � f∗ Z) = ∞;
see [13, Lemma 2.4].

Finally, as Ni shows in all cases where aspherical summands exist, our remaining case of
mapping tori of (#nT 2

� S1)#(#mS2 × S1), where n ≥ 1, can be treated as follows: Recall
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that we can always assume thatm ≥ 2 and using the π1-surjection induced by the pinch map

π1(((#nT
2

� S1)#(#mS
2 × S1)) � f S

1) −→ π1((#mS
2 × S1) �h S1),

we deduce that

vb1(((#nT
2

� S1)#(#mS
2 × S1)) � f S

1) = ∞
as required; see also Remark 5.1.
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