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Abstract
We compute an asymptotic expression for the Arakelov self-intersection number of the rel-
ative dualizing sheaf of Edixhoven’s minimal regular model for the modular curve X0(p2)
over Q. The computation of the self-intersection numbers are used to prove an effective ver-
sion of the Bogolomov conjecture for the semi-stable models of modular curves X0(p2) and
obtain a bound on the stable Faltings height for those curves in a companion article (Banerjee
and Chaudhuri in Isr J Math, 2020).
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1 Introduction

In this article, we derive an asymptotic expression for the Arakelov self-intersection number
of the relative dualizing sheaf of the minimal regular model over Z for the modular curve
X0(p2) in terms of its genus gp2 for a prime p. For odd, square-free N ∈ N, this quantity
was computed for the congruence subgroups Γ0(N ) [1], Γ1(N ) [28] and recently for the
principal congruence subgroups Γ (N ) [13]. We generalize our work to semi-stable models
of these modular curves in a companion article [6]. We use the computation regarding the
infinite part of the Arakelov self-intersection for the modular curve X0(p2) done in the
present paper to compute the Arakelov self-intersection numbers for semi-stable models in
[6]. From the viewpoint of Arakelov theory, the main motivation for studying the Arakelov
self-intersection numbers is to prove an effective Bogomolov conjecture for the particular
modular curve X0(p2). Bogomolov conjecture was proved by Ullmo [32] using Ergodic
theory, though the proof is not effective. In [6], we prove an effective Bogomolov conjecture
and find an asymptotic expression of the stable Faltings heights for the modular curves of the
form X0(p2). In another ambitious direction, we hope that our results will find applications in
finding Fourier coefficients of modular forms and residual Galois representations associated
to modular forms following the strategy outlined in [11].

The main technical difficulty of this paper lies in the fact that for square free N the special
fibers of the modular curves are reduced and even semi-stable over Q, while without this
hypothesis the special fiber is non-reduced and not semi-stable. We manage to remove the
square-free assumption in our paper because of a careful analysis of the regular but non-
minimal models of the corresponding modular curves, following Edixhoven [10]. The bound
on the self-intersection number for the infinite place in terms of Green’s function has been
achieved by the idea outlined by Zagier [33] using the Selberg trace formula.

Our first result concerns an asymptotic expression of the constant term of the Rankin–
Selberg transform at the cusp∞ of theArakelovmetric. To state it we need some notation. Let
H be the complex upper half plane and denote the non-compact modular curve corresponding
to the subgroup Γ0(p2) by Y0(p2) := Γ0(p2)\H. Let μhyp be the hyperbolic measure on
the Riemann surface X0(p2) and vΓ0(p2) be the volume of the compactified modular curve
X0(p2) [8, p. 182]. We denote the weight zero Eisenstein series at the cusp ∞ by E∞,0(z, s)
and by F the Arakelov metric on X0(p2) (see Sect. 3.3). The Rankin–Selberg transform at
the cusp ∞ of the Arakelov metric on X0(p2) is defined to be

RF (s) :=
∫

Y0(p2)
E∞,0(z, s)F(z)μhyp.

The above function has a meromorphic continuation in the whole complex plane with simple
pole at s = 1 with residue v−1

Γ0(p2)
. Let the Laurent series expansion of the Rankin–Selberg

transform at s = 1 be given by

RF (s) = 1

vΓ0(p2)(s − 1)
+ RΓ0(p2)∞ + O(s − 1).

Theorem 1.1 The constant term RΓ0(p2)∞ in the Laurent series expansion of the Rankin–
Selberg transform of the Arakelov metric on the modular curve X0(p2) is asymptotically
given by

RΓ0(p2)∞ = o

(
log(p2)

gp2

)
.
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Arakelov self-intersection numbers of minimal... 1289

The underlying philosophy in the proof of Theorem 1.1 is the same as that of Abbes–Ullmo
[1, Theorem F, p. 6], Mayer [28] and Grados Fukuda [13]. By invoking the Selberg trace
formula, computation of the Rankin–Selberg transform of the Arakelov metric reduces to
finding contribution of variousmotions ofΓ0(p2) in the trace formula. The proof hinges on the
simplification of suitable Eisenstein series (cf. Proposition 3.2) that in turn is a generalization
of [1, Proposition 3. 2. 2]. The actual computation of the hyperbolic (Sect. 4.2.1) and parabolic
(Sect. 4.2.3) contributions is slightly different from the above mentioned papers because of
the condition we imposed on N .

Note that the elliptic contribution in the Selberg trace formula will not follow directly
in the same way as that of Abbes–Ullmo [1]. In loc. cit., the authors used the square free
assumption in a crucial way to factorize the Epstein zeta functions suitably (cf. [1, Lemma
3.2.4]). As Mayer [28] and M. Grados Fukuda [13] worked with modular curves of the form
X1(N ) and X(N ) respectively, there is no elliptic contribution in those cases. We use an
observation of M. Grados Fukuda in conjunction to the book of Zagier [34] to find a suitable
bound on the elliptic contribution in Proposition 4.4. In the present paper, we give bounds
on the terms in the Laurent series expansion of a certain Zeta function that appears in the
elliptic contribution (Sect. 4.2.2) rather than finding the actual expression as accomplished
by Abbes–Ullmo [1]. The fact that our N has only one prime factor is an advantage for us.

The computations of these three different types of contributions may be a bit complicated
for general modular curves depending on the number of factors of N . We strongly believe
that it is possible to prove an analogue of Theorem 1.1 for modular curves of the form X0(N )

for general N by the same strategy and modifying Proposition 3.2.2 of Abbes–Ullmo [1]
suitably. However, the validity of our Theorem 1.2 depends on the information about special
fibers of the arithmetic surface associated to a modular curve and this can’t be extended to an
arbitrary N without non trivial algebro-geometric consideration. Hence, we choose to give a
complete proof of Theorem 1.1 only for N = p2 in this paper. Although, we write down the
computations in the Sects. 3, 4 to suit our specific modular curves X0(p2) considered in this
paper, most of the results can be generalized with some minor changes to any modular curve
of the form X0(N ) with arbitrary N ∈ N. For the general strategy to prove the theorem for
general modular curves, we wish to refer to Abbes–Ullmo [1], Mayer [28] and M. Grados
Fukuda [13].

Being an algebraic curve over Q, X0(p2) has a minimal regular model over Z which
we denote by X0(p2). Let ωp2 be the relative dualizing sheaf of X0(p2) equipped with the
Arakelov metric and ω2

p2
= 〈ωp2 , ωp2〉 be the Arakelov self-intersection number as defined

in Sect. 2.
The following theorem is analogous to Proposition D of [1], Theorem 1 of [28] and

Theorem 5.2.3 of [13] for the modular curve X0(p2):

Theorem 1.2 The Arakelov self intersection numbers for the modular curve X0(p2) satisfy
the following asymptotic formula

ω2
p2 = 3gp2 log(p2) + o(gp2 log(p)).

Similar results on the Arakelov self intersection numbers for general arithmetic surfaces
are obtained in [23,24]. It is only possible to give an upper and lower bound for general
arithmetic surfaces but in the case of modular curves of the form X0(p2), we obtain an
asymptotic expression since the required algebro-geometric information is available thanks
to the work of Bas Edixhoven.
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1290 D. Banerjee et al.

2 Arakelov intersection pairing

Let K be a number field and R be its ring of integers. Let X be an arithmetic surface over
Spec R (in the sense of Liu [26, Chapter 8, Definition 3.14]) with the map f : X → Spec R.
Let X = X(0) be the generic fiber which is a smooth irreducible projective curve over K . For
each embedding σ : K → C we get a connected Riemann surface Xσ by taking the C points
of the scheme

X ×Spec K ,σ SpecC.

Collectively we denote

X∞ = X(C) =
⊔

σ :K→C

Xσ .

Any line bundle L on X induces a line bundle on Xσ which we denote by Lσ . A metrized
line bundle L̄ = (L, h) is a line bundle L on X along with a hermitian metric hσ on each
Lσ . Arakelov invented an intersection pairing for metrized line bundles which we describe
now. Let L̄ and M̄ be two metrized line bundles with non-trivial global sections l and m
respectively such that the associated divisors do not have any common components, then

〈L̄, M̄〉 = 〈L, M〉fin +
∑

σ :K→C

〈Lσ , Mσ 〉.

The first summand is the algebraic part whereas the second summand is the analytic part of
the intersection. For each closed point x ∈ X , lx and mx can be thought of as elements of
OX ,x via a suitable trivialization. If X (2) is the set of closed points of X , (the number 2 here
signifies the fact that a closed point is an algebraic cycle on X of codimension 2), then

〈L, M〉fin =
∑

x∈X (2)

log #(OX ,x/(lx , mx )).

Now for the analytic part, we assume that the associated divisors of l and m which we denote
by div(l)σ and div(m)σ onXσ do not have any common points, and that div(l)σ = ∑

α nα Pα

with nα ∈ Z, then

〈Lσ , Mσ 〉 = −
∑
α

nα log ||m(Pα)|| −
∫
Xσ

log ||l||c1(Mσ ).

Here || · || denotes the norm given by the hermitian metric on L or M respectively and is
clear from the context. The first Chern class of Mσ is denoted by c1(Mσ ) and it is a closed
(1, 1) form on Xσ (see for instance Griffith–Harris [14]).

This intersection product is symmetric in L̄ and M̄ . Moreover if we consider the group
of metrized line bundles up to isomorphisms, called the arithmetic Picard group denoted by
P̂icX , then the arithmetic intersection product extends to a symmetric bilinear form on all of
P̂icX . It can be extended by linearity to the rational arithmetic Picard group

P̂icQX = P̂icX ⊗ Q.

For more details see Arakelov [2,3] and Curilla [7].
Arakelov gave a unique way of attaching a hermitian metric to a line bundle on X , see for

instance Faltings [12, Section 3]. We summarise the construction here. Note that the space
H0(Xσ ,�1) of holomorphic differentials on Xσ has a natural inner product on it

〈φ,ψ〉 = i

2

∫
Xσ

φ ∧ ψ.
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Let us assume that the genus ofXσ is greater than or equal to 1. Choose an orthonormal basis
f σ
1 , . . . , f σ

g of H0(Xσ ,�1), . The canonical volume form on Xσ is

μσ
can = i

2g

g∑
j=1

f σ
j ∧ f σ

j .

There is a hermitian metric on a line bundle L on X such that c1(Lσ ) = deg(Lσ )μσ
can for

each embedding σ : K → C. This metric is unique up to scalar multiplication. Such a metric
is called admissible. An admissible metric may also be obtained using the canonical Green’s
function, we describe that procedure presently.

Let now X be a Riemann surface of genus greater than 1 and μcan the canonical volume
form. The canonical Green’s function for X is the unique solution of the differential equation

∂z∂z gcan(z, w) = iπ(μcan(z) − δw(z))

where δw(z) is the Dirac delta distribution, with the normalization condition∫
X
gcan(z, w)μcan(z) = 0.

For Q ∈ X there is a unique admissible metric on L = OX (Q) such that the norm of the
constant function 1, which is a section of OX (Q), at the point P is given by

|1|(P) = exp(gcan(P, Q)).

By tensoring we can get an admissible metric on any line bundle on X .
Let again X be an arithmetic surface over R as above. Now we assume that the generic

genus of X is greater than 1. To any line bundle L on X we can associate in this way a
hermitian metric on Lσ for each σ . This metric is called the Arakelov metric.

Let L and M be two line bundles on X , we equip them with the Arakelov metrics to get
metrized line bundles L̄ and M̄ . The Arakelov intersection pairing of L and M is defined as
arithmetic intersection pairing of L̄ and M̄

〈L, M〉Ar = 〈L̄, M̄〉.
It relates to the canonical Green’s function as follows. Let l and m be meromorphic sections
of L and M as above. Assume that the corresponding divisors don’t have any common
components. Furthermore let

div(l)σ =
∑
α

nα,σ Pα,σ , and div(m)σ =
∑
β

rβ,σ Qβ,σ

then

〈L, M〉Ar = 〈L, M〉fin −
∑

σ :K→C

∑
nα,σ rβ,σ gσ

can(Pα,σ , Qβ,σ ).

ByωX ,Ar we denote the relative dualizing sheaf onX (see Qing Liu [26, chapter 6, section
6.4.2]) equipped with the Arakelov metric. We shall usually denote this simply by ω if the
arithmetic surface X is clear from the context.

We are interested in a particular invariant of the modular curve X0(p2) which arises from
Arakelov geometry and has applications in number theory. The modular curve X0(p2)which
is defined over Q and has a minimal regular model X0(p2) over Z for primes p > 5. In this
paper we shall calculate the Arakelov self intersection ω2 = 〈ω,ω〉 of the relative dualizing
sheaf on X0(p2).
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We retain the notation K for a number field and R its ring of integers. If X is a smooth
curve over K then a regular model for X is an arithmetic surface p : X → Spec R with
an isomorphism of the generic fiber X(0) to X . If genus of X is greater than 1 then there
is a minimal regular model Xmin , which is unique. Xmin is minimal among the regular
models for X in the sense that any proper birational morphism to another regular model is
an isomorphism. Another equivalent criterion for minimality is that Xmin does not have any
prime vertical divisor that can be blown down without introducing a singularity.

A regular model for X0(p2)/Q was constructed in Edixhoven [10]. We denote this model
by X̃0(p2)/Z. This model is not minimal but a minimal model X0(p2) is easily obtained by
blowing down certain prime vertical divisors. We describe these constructions in Sect. 5.

Remark 2.1 By [8, Theorem 3.1.1], the genus gp2 of X0(p2) is given by

gp2 = 1 + (p + 1)(p − 6) − 12c

12

where c ∈ {
0, 1

2 ,
2
3 ,

7
6

}
.

3 Canonical Green’s functions and Eisenstein series

In this section, we evaluate the canonical Green’s function gcan for X0(p2) at the cusps in
terms of the Eisenstein series.

3.1 Eisenstein series

We recall the definition and some properties of the Eisenstein series that we need for our
purpose. For a more elaborate discussion on Eisenstein series for general congruence sub-
groups, we refer to Kühn [22] or Grados [13, p. 10]. Let ∂(X0(p2)) be the set of all cusps of
X0(p2) for which we have the following complete description by [5]

∂
(
X0(p2)

) = {0,∞} ∪
{
1

lp
: l = 1, . . . , (p − 1)

}
.

For P ∈ ∂(X0(p2)), let Γ0(p2)P be the stabilizer of P in Γ0(p2). Denote by σP , any scaling
matrix of the cusp P , i.e., σP is an element of SL2(R) with the properties σP (∞) = P and

σ−1
P Γ0(p2)PσP = Γ0(p2)∞ =

{
±
(
1 m
0 1

)
| m ∈ Z

}
.

We fix such a matrix. For γ = (
a b
c d

) ∈ SL2(R) and k ∈ {0, 2}, define the automorphic
factor of weight k to be

jγ (z; k) = (cz + d)k

|cz + d|k . (3.1)

Let H = {z|z ∈ C; Im(z) > 0} be the complex upper half plane.

Definition 3.1 For z ∈ H and s ∈ C with Re(s) > 1, the non-holomorphic Eisenstein series
EP,k(z, s) at a cusp P ∈ ∂(X0(p2)) of weight k is defined to be

EP,k(z, s) =
∑

γ∈Γ0(p2)P \Γ0(p2)

(
Im(σ−1

P γ z)
)s

j
σ−1

P γ
(z; k)−1.
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The series EP,k(z, s) is a holomorphic function of s in the region Re(s) > 1 and for each
such s, it is an automorphic form (function if k = 0) of z with respect to Γ0(p2). Moreover, it
has a meromorphic continuation to the whole complex plane. Also, EP,k is an eigenfunction
of the hyperbolic Laplacian Δk of weight k. Recall that

Δk = y2
(

∂2

∂x2
+ ∂2

∂ y2

)
− ik(k − 1)y

∂

∂x
. (3.2)

For any N ∈ N, letvΓ0(N ) be the volumeof theFuchsian groupof first kindΓ0(N ) [8, Equation
5.15, p. 183]. We note that EP,0 has a simple pole at s = 1 with residue 1/vΓ0(p2) [16,
Proposition 6.13] independent of the z variable. Being an automorphic function, EP,0(z, s)
has a Fourier series expansion at any cusp Q, given by

EP,0(σQ(z), s) = δP,Q ys + φ
Γ0(p2)
P,Q (s)y1−s +

∑
n 
=0

φ
Γ0(p2)
P,Q (n, s)Ws(nz); (3.3)

where

φ
Γ0(p2)
P,Q (s) = √

π
Γ (s − 1

2 )

Γ (s)

∞∑
c=1

c−2s SP,Q(0, 0; c),

φ
Γ0(p2)
P,Q (n, s) = π sΓ (s)−1|n|s−1

∞∑
c=1

c−2s SP,Q(0, n; c).

Here, SP,Q(a, b; c) is the Kloosterman sum [16, p. 48, equation (2.23)] and Ws(z) is the
Whittaker function [16, p. 20, equation (1.26)]. Let

CΓ0(p2)
P,Q = lim

s→1

(
φ

Γ0(p2)
P,Q (s) − 1

vΓ0(p2)

1

s − 1

)
(3.4)

be the constant term in the Laurent series expansion of φ
Γ0(p2)
P,Q (s).

The following proposition regarding the Eisenstein series of weight zero at the cusp ∞
will be crucial in the subsequent sections.

Proposition 3.2 The Eisenstein series of weight zero at the cusp ∞ can be expressed as

E∞,0(z, s) = 1

2

1

ζ(2s)

1

1 − p−2s

⎡
⎣ ′∑

(m,n)

ys

|p2mz + n|2s
−

′∑
(m,n)

ys

|p2mz + pn|2s

⎤
⎦ . (3.5)

Here,
∑′

(m,n) denote the summation over (m, n) ∈ Z2 − {(0, 0)}.
Proof For t ∈ {1, p}, notice that

′∑
(m,n)

ys

|p2mz + tn|2s
=

∞∑
d=1

′∑
(m,n)∈Z2;(m,n)=d

ys

|p2mz + tn|2s

=
∞∑

d=1

′∑
(m′,n′)∈Z2;(m′,n′)=1

ys

|p2dm′z + tdn′|2s

= ζ(2s)

⎛
⎝ ∑

(m,n)=1

ys

|p2mz + tn|2s

⎞
⎠ .

123
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In other words, Eq. (3.5) is equivalent to

2(1 − p−2s)E∞,0(z, s) =
∑

(m,n)=1

ys

|p2mz + n|2s
−

∑
(m,n)=1

ys

|p2mz + pn|2s
. (3.6)

The left hand side of (3.6) is equal to

2(1 − p−2s)
∑

γ∈Γ0(p2)∞\Γ0(p2)

Im(γ z)s

= 2(1 − p−2s)
1

2

∑
(m,n)=1,
m≡0(p2)

ys

|mz + n|2s

=
∑

(m,n)=1,
m≡0(p2)

ys

|mz + n|2s
− p−2s

∑
(m,n)=1,
m≡0(p2)

ys

|mz + n|2s

=
∑

(m,n)=1,
m≡0(p2)

ys

|mz + n|2s
−

∑
(m,n)=1,
m≡0(p2)

ys

|pmz + pn|2s

=
∑

(p2m,n)=1

ys

|p2mz + n|2s
−

∑
(p2m,n)=1

ys

|p3mz + pn|2s
.

(3.7)

The first term in the right hand side of (3.6) is equal to

∑
(m,n)=1,p 
|n

ys

|p2mz + n|2s
+

∑
(m,n)=1,p|n

ys

|p2mz + n|2s

=
∑

(m,n)=1,p 
|n

ys

|p2mz + n|2s
+

∑
(m,pn)=1

ys

|p2mz + pn|2s
,

and the second term in the right hand side of (3.6) is equal to

∑
(m,n)=1,
(m,pn)=1

ys

|p2mz + pn|2s
+

∑
(m,n)=1,
(m,pn)=p

ys

|p2mz + pn|2s

=
∑

(m,n)=1,
(m,pn)=1

ys

|p2mz + pn|2s
+

∑
(pm,n)=1,
(pm,pn)=p

ys

|p3mz + pn|2s

=
∑

(m,n)=1,
(m,pn)=1

ys

|p2mz + pn|2s
+

∑
(pm,n)=1,
(m,n)=1

ys

|p3mz + pn|2s
.

Therefore the right hand side of (3.6) is

∑
(m,n)=1,p 
|n

ys

|p2mz + n|2s
−

∑
(pm,n)=1,(m,n)=1

ys

|p3mz + pn|2s
. (3.8)
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To complete the proof using (3.7) and (3.8), we only need to observe that (p2m, n) = 1 if
and only if (m, n) = 1 and p 
 |n, so that

∑
(p2m,n)=1

ys

|p2mz + n|2s
=

∑
(m,n)=1,p 
|n

ys

|p2mz + n|2s
;

and similarly (p2m, n) = 1 if and only if (pm, n) = 1 and (m, n) = 1, so that

∑
(p2m,n)=1

ys

|p3mz + pn|2s
=

∑
(pm,n)=1,(m,n)=1

ys

|p3mz + pn|2s
.

��

3.1.1 Computation of C00(p2)∞,∞ and C00(p2)
∞,0

In this section, we compute the terms CΓ0(p2)∞,∞ and CΓ0(p2)
∞,0 that appear in Eq. 3.17. To do the

same, we expand the constant terms of the Eisenstein series φ
Γ0(p2)∞,∞ (s) and φ

Γ0(p2)
∞,0 (s) as

defined above. The below computations are inspired by [21].

Lemma 3.3 The Laurent series expansion of φ
Γ0(p2)∞,∞ (s) at s = 1 is given by

φ
Γ0(p2)∞,∞ (s) = 1

vΓ0(p2)

1

s − 1
+ 1

vΓ0(p2)

(
2γE M + aπ

6
− (2p2 − 1) log(p2)

p2 − 1

)
+ O(s − 1),

where γE M is the Euler–Mascheroni constant and a is the derivative of
√

π
Γ (s− 1

2 )

Γ (s)ζ(2s) at s = 1.

Proof From [16, page 48], we compute

S∞,∞(0, 0; c) = ∣∣{d (mod c)| ( a b
c d

) ∈ Γ0(p2)}∣∣ =
{
0 if p2 � c,

φ(c) if p2 | c.

Writing c in the form c = pk+2n where k ≥ 0 and p � n,

φ(c) = φ(pk+2n) = φ(pk+2)φ(n) = (p − 1)pk+1φ(n).

Therefore,
∞∑

c=1

c−2s S∞,∞(0, 0; c) =
∞∑

n=1,p�n

∞∑
k=0

(pk+2n)−2s(p − 1)pk+1φ(n)

= p−4s+1(p − 1)
∞∑

n=1,p�n

n−2sφ(n)

∞∑
k=0

p(−2s+1)k

= p−4s+1(p − 1)

(
ζ(2s − 1)

ζ(2s)

p2s − p

p2s − 1

)(
1

1 − p−2s+1

)

= p(p − 1)

p2s(p2s − 1)

ζ(2s − 1)

ζ(2s)
.

Hence, we deduce that

φ
Γ0(p2)∞,∞ (s) = (

p(p − 1)
) ( 1

p2s(p2s − 1)

)(
√

π
Γ (s − 1

2 )

Γ (s)ζ(2s)

)
ζ(2s − 1). (3.9)
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The second factor is holomorphic at s = 1 and has the Taylor series expansion

1

p2s(p2s − 1)
= 1

p2(p2 − 1)
− (2p2 − 1) log(p2)

p2(p2 − 1)2
(s − 1) + O

(
(s − 1)2

)
. (3.10)

The third factor is holomorphic as well at s = 1 and has the Taylor series expansion

√
π

Γ (s − 1
2 )

Γ (s)ζ(2s)
= 6

π
+ a(s − 1) + O

(
(s − 1)2

)
, (3.11)

Finally, the Riemann zeta function ζ(2s −1) is meromorphic at s = 1 with the Laurent series
expansion

ζ(2s − 1) = 1

2(s − 1)
+ γE M + O(s − 1). (3.12)

Multiplying these expansions, we see that

φ
Γ0(p2)∞,∞ (s) =

(
1

p(p + 1)

6

π

1

2

)
1

s − 1

+
(

1

p(p + 1)

6

π
γE M + 1

p(p + 1)
a
1

2
− (2p2 − 1) log(p2)

p(p + 1)(p2 − 1)

6

π

1

2

)

+O(s − 1).

This equation gives the result observing that vΓ0(p2) = π
3 p(p + 1). ��

Corollary 3.4 The constant term in the Laurent series expansion at s = 1 of the Eisenstein
series E∞,0 at the cusp ∞ is given by

CΓ0(p2)∞,∞ = 1

vΓ0(p2)

(
2γE M + aπ

6
− (2p2 − 1) log(p2)

p2 − 1

)
.

Lemma 3.5 The Laurent series expansion of φ
Γ0(p2)
∞,0 (s) at s = 1 is

φ
Γ0(p2)
∞,0 (s) = 1

vΓ0(p2)

1

s − 1

+ 1

vΓ0(p2)

(
2γE M + aπ

6
− (p2 − p − 1)

p2 − 1
log(p2)

)
+ O(s − 1);

(3.13)

where γE M and a are as in Lemma 3.3.

Proof Let σ0 be the scaling matrix of the cusp 0 defined by

σ−1
0 = 1√

p2
Wp2 ∈ SL2(R), (3.14)

where Wp2 =
(

0 1
−p2 0

)
is the Atkin–Lehner involution. For the cusp ∞, we take σ∞ = I as

a scaling matrix. From [16, page 48], we then have

S∞,0(0, 0; c) =
∣∣∣
{

d (mod c)| ( a b
c d

) =
(

pb′ −a′/p
pd ′ −pc′

)
, a′, b′, c′, d ′ ∈ Z, a′d ′ − b′c′ p2 = 1

}∣∣∣

=
{
0 if p � c or p2 | c,

φ(n) if c = pn with p � n.
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Therefore, we obtain

∑
c

c−2s S∞,0(0, 0; c) =
∞∑

n=1,p�n

p−2sn−2sφ(n) = 1

p2s

ζ(2s − 1)

ζ(2s)

p2s − p

p2s − 1
.

Thus, we deduce that

φ
Γ0(p2)
∞,0 (s) = (p2s − p)

(
1

p2s(p2s − 1)

)(
√

π
Γ (s − 1

2 )

Γ (s)ζ(2s)

)
ζ(2s − 1)

= 1

p(p − 1)
(p2s − p)φ

Γ0(p2)∞,∞ (s),

using (3.9). The function p2s − p is holomorphic near s = 1 and has the Taylor series
expansion

p2s − p = (p2 − p) + (p2 log(p2))(s − 1) + O
(
(s − 1)2

)
. (3.15)

Combining this with Lemma 3.3 yields (3.13). ��

By Lemma 3.5, we compute the constant term of the Eisenstein series:

Corollary 3.6 The constant term of the Eisenstein series E∞,0 at the cusp 0 is given by

CΓ0(p2)
∞,0 = 1

vΓ0(p2)

(
2γE M + aπ

6
− (p2 − p − 1)

p2 − 1
log(p2)

)
.

3.2 Relation between Green’s function and Eisenstein series

Let Gs(z, w) be the automorphic Green’s function [1, p. 4]. The automorphic Green’s
function and the Eisenstein series are related by the following equation [1, Proposition E,
p. 5]

gcan(∞, 0) = − 2π lim
s→1

(
φ

Γ0(p2)
∞,0 (s) − 1

vΓ0(p2)

1

s − 1

)
− 2π

vΓ0(p2)

+ 2π lim
s→1

(
1

vΓ0(p2)

1

s(s − 1)
+
∫

X0(p2)×X0(p2)
Gs(z, w)μcan(z)μcan(w)

)

+ 2π lim
s→1

(∫
X0(p2)

E∞,0(z, s)μcan(z)

+
∫

X0(p2)
E0,0(z, s)μcan(z) − 2

vΓ0(p2)

1

s − 1

)
.

For brevity, we write

RΓ0(p2)∞ = 1

2
lim
s→1

(∫
X0(p2)

E∞,0(z, s)μcan(z)

+
∫

X0(p2)
E0,0(z, s)μcan(z) − 2

vΓ0(p2)

1

s − 1

)
. (3.16)
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We will show in Sect. 3.3 that RΓ0(p2)∞ as defined above coincides with RΓ0(p2)∞ that appears
in Theorem 1.1. From [13, Proposition 4.1.2, p. 65], we know that

2π lim
s→1

(
1

vΓ0(p2)

1

s(s − 1)
+
∫

X0(p2)×X0(p2)
Gs(z, w)μcan(z)μcan(w)

)
= O

(
1

gp2

)
.

Note that Gs(z, w) = −GΓ0(p2)
s (z, w) in loc. cit. The key inputs in the above important esti-

mate are results of Jorgenson–Kramer [18, Lemma 3.7, p. 690] and [19] on the constant term
of the logarithmic derivate of the Selberg zeta function for varying congruence subgroups.

Since
gp2

v
Γ0(p2)

= O(1), we have

gcan(∞, 0) = −2πCΓ0(p2)
∞,0 + 4π RΓ0(p2)∞ + O

(
1

gp2

)
. (3.17)

3.3 Computation ofR00(p2)∞

We first show that RΓ0(p2)∞ = RΓ0(p2)∞ is the constant term in the Laurent series expansion of
the Rankin–Selberg transform at the cusp∞ of theArakelovmetric.We start bywriting down
the canonical volume form μcan in coordinates. Let S2

(
Γ0(p2)

)
be the space of holomorphic

cusp forms of weight 2 with respect to Γ0(p2). We then have an isomorphism S2
(
Γ0(p2)

) ∼=
H0(X0(p2),�1) given by f (z) �→ f (z)dz. The space of cusp forms S2

(
Γ0(p2)

)
is equipped

with the Petersson inner product. Let { f1, . . . , fgp2
} be an orthonormal basis of S2

(
Γ0(p2)

)
.

The Arakelov metric on X0(p2) is the function given by

F(z) := Im(z)2

gp2

gp2∑
j=1

| f j (z)|2. (3.18)

It is easy to see that the Arakelov metric as defined above is independent of the choice of
orthonormal basis. In the local co-ordinate z, the canonical volume form μcan(z) is given by
[13, p. 18]

μcan(z) = i

2gp2

gp2∑
j=1

| f j (z)|2dz ∧ dz = F(z)μhyp. (3.19)

Next, we recall the definition of Rankin–Selberg transform of a function at the cusp ∞
[13, p. 19]. Let f be a Γ0(p2)-invariant holomorphic function on H of rapid decay at the
cusp ∞, i.e., the constant term in the Fourier series expansion of f at the cusp ∞

f (x + iy) =
∑

n

an(y)e2π inx ,

satisfies the asymptotic a0(y) = O(y−M ) for some M > 0 as y → ∞. The Rankin–Selberg
transform of f at the cusp ∞, denoted by R f (s), is then defined as

R f (s) :=
∫

Y0(p2)
f (z)E∞,0(z, s)μhyp(z) =

∫ ∞

0
a0(y)ys−2 dy.
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The function R f (s) is holomorphic for Re(s) > 1 and admits a meromorphic continuation
to the whole complex plane and has a simple pole at s = 1 with residue

1

vΓ0(p2)

∫
Y0(p2)

f (z)μhyp(z).

The following lemma is similar to [28, Lemma 3.5]. We determine the relation between
the Rankin–Selberg transforms at the cusp 0 (defined similarly by replacing ∞ with 0) and
∞ from the following lemma.

Lemma 3.7 The Rankin–Selberg transforms of the Arakelov metric at the cusps 0 and ∞ are
related by ∫

Y0(p2)
E0,0(z, s)μcan(z) =

∫
Y0(p2)

E∞,0(z, s)μcan(z).

Proof Let σ0 be the scaling matrix of the cusp 0 defined in (3.14). Notice that

E0,0(z, s) =
∑

γ∈Γ0(p2)0\Γ0(p2)

(
Im(σ−1

0 γ z)
)s =

∑
β∈Γ0(p2)∞\Γ0(p2)

(
Im(βσ−1

0 z)
)s

=
∑

β∈Γ0(p2)∞\Γ0(p2)

(
Im(σ−1∞ β(σ−1

0 z))
)s = E∞,0(σ

−1
0 z, s),

by taking σ∞ = I . Now substituting z = σ0w, and using the fact that μcan is invariant under
σ0, the result follows. ��

As a result we have the following simpler formula for RΓ0(p2)∞ defined in 3.16

RΓ0(p2)∞ = lim
s→1

(∫
Y0(p2)

E∞,0(z, s)μcan(z) − 1

vΓ0(p2)

1

s − 1

)
. (3.20)

Let F be the Arakelov metric on X0(p2) and write μcan(z) = F(z)μhyp in Eq. (3.20). Then
we see that the integral is the Rankin–Selberg transform RF (s) of F at the cusp∞ and hence

RΓ0(p2)∞ = RΓ0(p2)∞ . The next section of the paper is devoted to finding an estimate ofRΓ0(p2)∞
using this formula. In the rest of the paper, we denote by RG the Rankin–Selberg transform
of a function G at the cusp ∞.

3.4 Epstein zeta functions

In this subsection, we define the Epstein zeta functions and recall some basic properties of
the same. We first recall a connection between quadratic forms and matrices in the group
Γ0(N ). For a, b, c ∈ Z, let [a, b, c] be the quadratic form

Φ(X , Y ) = aX2 + bXY + cY 2 = (X , Y )
(

a b/2
b/2 c

)
(X , Y )t .

The discriminant of Φ is by definition dis(Φ) := b2 − 4ac. For any integer l ∈ Z with
|l| 
= 2, define

Ql = {Φ| dis(Φ) = l2 − 4},
Ql(N ) = {

Φ|Φ ∈ Ql;Φ = [Na, b, c] : a, b, c ∈ Z
}
.
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The full modular group SL2(Z) acts on Ql by

Ql × SL2(Z) → Ql

(Φ, δ) �→ Φ ◦ δ
(3.21)

where Φ ◦ δ(X , Y ) = Φ
(
(X , Y )δt

)
. If δ = ( x y

z t

)
, then it can be shown that

Φ ◦ δ = [
Φ(x, z), b(xt + yz) + 2(axy + czt),Φ(y, t)

]
.

Note that the above defines an action of Γ0(N ) on Ql(N ).

Proposition 3.8 Let Φ ∈ Ql be a quadratic form with dis(Φ) = l2 − 4. If |l| < 2 then
SL2(Z)Φ is finite and if |l| > 2 then

SL2(Z)Φ = {±Mn : n ∈ Z
}

for some M ∈ SL2(Z) with positive trace and which is unique up to replacing M by M−1.
Moreover, if Φ ∈ Ql(N ), then

Γ0(N )Φ = SL2(Z)Φ.

Proof Let Φ = [a, b, c] be a quadratic form with discriminant dis(Φ) = Δ. By [34, p. 63,
Satz 2], note that SL2(Z)Φ consists precisely of the following matrices

UΦ(x, y) =
(

x−yb
2 −cy

ay x+yb
2

)
, (3.22)

where (x, y) ∈ Z2 is a solution of the Pell’s equation PΔ : x2 − Δy2 = 4. If |l| < 2,
then Δ < 0, in which case there are only finitely many integer solutions of PΔ and hence
SL2(Z)Φ is finite. On the other hand, if |l| > 2, then Δ > 0, and again by [34, p. 63, Satz 2],
SL2(Z)Φ ∼= Z×Z/2Z. This guarantees the existence of an M as required [34, p. 65]. Finally,
since Φ ∈ Ql(N ), we have UΦ ∈ Γ0(N ) (cf. (3.22)) and hence SL2(Z)Φ = Γ0(N )Φ . ��
Remark 3.9 For a quadratic form Φ ∈ Ql with |l| > 2, let M be as in the proposition. The
largest eigenvalue of M is called its fundamental unit and is denoted by εΦ . Note that it is
well-defined as the eigenvalues of M−1 are reciprocals of the eigenvalues of M .

Next, consider the set of matrices in the modular group Γ0(N ) of trace l

Γ0(N )l := {
γ ∈ Γ0(N ) : tr(γ ) = l

}
.

Note that Γ0(N ) acts on this set by conjugation

Γ0(N )l × Γ0(N ) → Γ0(N )l

(γ, δ) �→ δ−1γ δ.

There is a Γ0(N ) equivariant one-one correspondence between Γ0(N )l and Ql(N ) given
by

ψ : γ =
(

a b
Nc d

)
�→ Φγ = [Nc, d − a,−b],

with inverse

ψ ′ : Φ = [aN , b, c] �→ γΦ =
( l−b

2 −c
Na l+b

2

)
.
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We observe that this correspondence induces a bijection

Ql(N )/Γ0(N ) ∼= Γ0(N )l/Γ0(N ).

Now fix a quadratic form Φ ∈ Ql and introduce the notation

Φ · (m, n) = Φ(n,−m), (m, n) ∈ Z2.

Also consider the following subset of Z2:

MΦ = {
(m, n) ∈ Z2 : Φ · (m, n) > 0

} ⊂ Z2.

Observe that SL2(Z)Φ acts on MΦ by matrix multiplication from the right which follows
from the identity

(Φ ◦ δ) · (m, n)δ = Φ · (m, n), δ ∈ SL2(Z). (3.23)

Definition 3.10 The Epstein zeta function associated to the quadratic form Φ is defined to
be

ζΦ(s) =
∑

(m,n)∈MΦ/SL2(Z)Φ

1

(Φ · (m, n))s

which is well-defined by (3.23).

The series converges absolutely for Re(s) > 1 and defines a holomorphic function. It has
a meromorphic extension to the entire complex plane and has a simple pole at s = 1 with
residue (see [1, §3.2.2]):

Ress=1 ζΦ(s) =
{

2π√| dis(Φ)|
1

|SL2(Z)Φ | dis(Φ) < 0,
1√| dis(Φ)| log(εΦ) disΦ > 0,

(3.24)

where εΦ is the fundamental unit as in Remark 3.9. Now let Φ ∈ Ql(N ) be a quadratic form
and d | N . Consider the following sets

Md = {
(Nm, dn) ∈ Z2 \ {0, 0}},

MΦ
d = {(Nm, dn)|Φ · (Nm, dn) > 0}.

Note that SL2(Z)Φ = Γ0(N )Φ acts on MΦ
d in view of (3.23).

Definition 3.11 For a quadratic form Φ ∈ Ql(N ) and d | N , define the zeta function

ζΦ,d(s) =
∑

(m,n)∈MΦ
d /SL2(Z)Φ

1

(Φ · (m, n))s

which is well-defined by (3.23).

Consider the group homomorphism ∗d : Γ0(N ) → Γ0(d) defined by

γ =
(

x y
N z t

)
�→ γ ∗d =

(
x N

d y
dz t

)

and note that this map induces the injection ∗d : Ql(N ) → Ql(d)

Φ = [Na, b, c] �→ Φ∗d =
[

da, b,
N

d
c

]
.

123



1302 D. Banerjee et al.

The map ∗d respects the action (see (3.21)) of Γ0(N ) on Ql(N ) in the sense that (Φ ◦γ )∗d =
Φ∗d ◦ γ ∗d . This immediately implies that ∗d maps Γ0(N )Φ into Γ0(d)Φ∗d . This map is also
surjective. Indeed, suppose Φ = [Na, b, c] and Δ = dis(Φ) = dis(Φ∗d). If B ∈ Γ0(d)Φ∗d ,
then by (3.22),

B = UΦ∗d (x, y) =
(

x−yb
2 − N

d cy
day x+yb

2

)

where (x, y) is a solution of the Pell’s equation x2 − Δy2 = 4. Set

A =
(

x−yb
2 −cy

Nay x+yb
2

)
.

It is evident that A ∈ Γ0(N )Φ and A∗d = B.
To find a relation between ζΦ,d and the Epstein zeta function, note that Φ · (Nm, dn) =

(Nd)Φ∗d · (m, n), and thus

ζΦ,d(s) =
∑

(m,n)∈MΦ
d /Γ0(N )Φ

1

(Φ · (m, n))s

=
∑

(m,n)∈MΦ∗d
/Γ0(d)

Φ∗d

(
1

(Nd)Φ∗d · (m, n)

)s

= 1

(Nd)s
[SL2(Z)Φ∗d : Γ0(d)Φ∗d ]ζΦ∗d (s).

(3.25)

By Proposition 3.8, we have [SL2(Z)Φ∗d : Γ0(d)Φ∗d ] = 1. We now calculate the residue of
ζΦ,d(s) by expressing it in terms of Epstein zeta functions. Our computation is similar to that
of [1, Proposition 3.2.3]. From (3.24), we get for dis(Φ) > 0

Ress=1 ζΦ,d(s) = log εΦ∗d

Nd
√
dis(Φ∗d)

= log εΦ

Nd
√
dis(Φ)

. (3.26)

For dis(Φ) < 0, we also obtain

Ress=1 ζΦ,d(s) = 2π

Nd
√| dis(Φ∗d)||SL2(Z)Φ∗d |

= 2π

Nd
√| dis(Φ)||SL2(Z)Φ | .

(3.27)

Definition 3.12 Let μ be the Möbius function. Define the zeta function

ζΓ0(p2)(s, l) = 1

2ζ(2s)(1 − p−2s)

∑
d∈{1,p}

μ(d)
∑

Φ∈Ql (p2)/Γ0(p2)

ζΦ,d(s).

Again, these zeta functions are suitable linear combinations of Epstein zeta functions. Hence
these functions have meromorphic continuations in the entire complex s plane with simple
pole at s = 1. The residues can be computed using the formulae of residues of Epstein zeta
functions. In other words, we have the following Laurent series expansion at s = 1:

ζΓ0(p2)(s, l) = a−1(l)

s − 1
+ a0(l) + O(s − 1).
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4 Spectral expansions of automorphic kernels

4.1 Selberg trace formula

To compute RF (s), we follow the strategy carried out in [1] and [28]. Consider on one hand
the spectral expansions of certain automorphic kernels that consist of the term F together
with some well-behaved terms and on the other hand the contribution of various motions
of Γ0(p2) to these kernels. Computation of RF (s) then reduces to understanding the other
terms in this identity which are easier to handle. To elaborate this process, let us recall the
definitions of these kernels. For t > 0, let ht : R → R be the test function

ht (r) = e−t( 14+r2),

which is a function of rapid decay.

4.1.1 Automorphic kernels of weights k = 0, 2

The automorphic kernels involve the inverse Selberg/Harish-Chandra transform φk(t, ·) of
ht of weights k = 0, 2. These are given by

gt (v) = 1

2π

∫ ∞

−∞
ht (r)e−ivr dr , v ∈ R,

qt (e
v + e−v − 2) = gt (v), v ∈ R,

φ0(t, u) = − 1

π

∫ ∞

−∞
q ′

t (u + v2) dv, u ≥ 0,

φ2(t, u) = − 1

π

∫ ∞

−∞
q ′

t (u + v2)

√
u + 4 + v2 − v√
u + 4 + v2 + v

dv, u ≥ 0.

(4.1)

Consider the functions

u(z, w) = |z − w|2
4 Im z Imw

and H(z, w) = w − z

z − w
,

and for γ ∈ SL2(Z) set

νk(t, γ ; z) = jγ (z, k)Hk/2(z, γ z)φk(t, u(z, γ z)).

Here, jγ is the automorphic factor defined in (3.1).
The automorphic kernel Kk(t, z) of weight k with respect to Γ0(p2) is defined as

K0(t, z) := 1

2

∑
γ∈Γ0(p2)

ν0(t, γ ; z) = 1

2

∑
γ∈Γ0(p2)

φ0
(
t, u(z, γ z)

)
,

K2(t, z) := 1

2

∑
γ∈Γ0(p2)

ν2(t, γ ; z) = 1

2

∑
γ∈Γ0(p2)

jγ (z, 2)H(z, γ z)φ2
(
t, u(z, γ z)

)
.

(4.2)
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We also denote the corresponding summations over the elliptic, hyperbolic, and parabolic
elements of Γ0(p2) by Ek , Hk , and Pk respectively, i.e.,

Ek(t, z) := 1

2

∑
γ∈Γ0(p2)
| tr(γ )|<2

νk(t, γ ; z),

Hk(t, z) := 1

2

∑
γ∈Γ0(p2)
| tr(γ )|>2

νk(t, γ ; z),

Pk(t, z) := 1

2

∑
γ∈Γ0(p2)
| tr(γ )|=2

νk(t, γ ; z),

(4.3)

and write E = E2 − E0, H = H2 − H0 and P = P2 − P0. Let RH , RE and RP be the
Rankin–Selberg transforms of these functions at the cusp ∞.

We now simplify the calculation of the Rankin–Selberg transforms of various terms above.
To do the same, we introduce

Fl
k(t, z) :=

∑
γ∈Γ0(p2)
tr(γ )=l

νk(t, γ ; z), (4.4)

Rl
k(t, s) :=

∫
Y0(p2)

E∞,0(z, s)Fl
k(t, z)μhyp(z). (4.5)

We now compute Rl
k by exploiting the connection between Epstein zeta function and Eisen-

stein series.

Lemma 4.1 Let γ ∈ Γ0(p2)l and suppose Φγ · (m, n) > 0. We have the following equality
of integrals

∫
H

νk(t, γ ; z)
ys

|mz + n|2s
μhyp(z) = 1

(Φγ · (m, n))s

∫
H

νk(t, γl ; z)ysμhyp(z),

where γl =
(

l
2

l2
4 − 1

1 l
2

)
.

Proof For a matrix γ = (
a b
c d

)
, we have the quadratic formΦγ = [c, d −a,−b] associated

to γ . Consider the matrix

T = 1√
Φγ · (m, n)

(
n −(d − a) n

2 − bm
−m cn − (d − a)m

2

)
.

We can easily verify that T ∈ SL2(R), T −1γ T = γl , and
Im T w

|mT w + n|2 = Imw

Φγ · (m, n)
.

A small check using matrix multiplication shows that νk(t, γ ; T w) = νk(t, T −1γ T ;w).
Thus the equality of the integrals follows immediately once we substitute z = T w. ��
Proposition 4.2 For all l ∈ Z with |l| 
= 2, we have the following equality

Rl
k(t, s) = ζΓ0(p2)(s, l)Ik(t, s, l).
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Here, we denote by I ±
k (t, s, l) =

∫
H

νk(t, γ±l ; z)ysμhyp(z) and Ik(t, s, l) = I +
k (t, s, l) −

I −
k (t, s, l).

Proof From Proposition 3.2, we obtain

E∞,0(z, s) = 1

2ζ(2s)(1 − p−2s)

∑
d∈{1,p}

μ(d)
∑

(m,n)∈Md

ys

|mz + n|2s
.

From Eqs. (4.4) and (4.5), we now have

Rl
k(t, s)

= 1

2ζ(2s)(1 − p−2s)

∑
d∈{1,p}

μ(d)

∫
Y0(p2)

∑
tr(γ )=l

∑
(m,n)∈Md

νk(t, γ ; z)
ys

|mz + n|2s
μhyp(z).

For a fixed l ∈ Z with |l| 
= 2, denote

S±
d (l) =

{(
Φ, (m, n)

)|Φ ∈ Ql(p2), (m, n) ∈ M±Φ
d

}
,

and

σ±
d (l, t, z) =

∑
S±

d (l)

νk(t, γ ; z)
ys

|mz + n|2s
.

Recall the identification of the quadratic form Φ with the matrix γΦ (see Sect. 3.4). For
simplicity of notation, we write γΦ = γ . For a fixed γ , we now break the summations inside
the integral into two parts to get a simplification

∑
tr(γ )=l

∑
(m,n)∈Md

νk(t, γ ; z)
ys

|mz + n|2s
=

∑
tr(γ )=l

(σ+
d (l, t, z) + σ−

d (l, t, z)).

The congruence subgroup Γ0(p2) acts freely on S±
d (l) component wise

α · (Φ, (m, n)
) = (

Φ ◦ α, (m, n)α
)
.

Hence, we have

Rl
k(t, s) = 1

2ζ(2s)(1 − p−2s)

∑
d∈{1,p}

μ(d)

∫
Y0(p2)

∑
tr(γ )=l

(σ+
d (l, t, z) + σ−

d (l, t, z))μhyp(z).

Recall that Φ ◦ α corresponds to α−1γα. Following [13, p. 86], write (mα, nα) = (m, n)α.
As in loc. cit., a small check shows that νk(t, α−1γα; z) = νk(t, γ ;αz) and ys

|mα z+nα |2s =
(Im αz)s

|mαz+n|2s . We deduce that

σ±
d (l, t, z) =

∑
(Φ,(m,n))∈S±

d (l)/Γ0(p2)

∑
α∈Γ0(p2)

νk(t, α
−1γα; z)

ys

|mαz + nα|2s

=
∑

(Φ,(m,n))∈S±
d (l)/Γ0(p2)

∑
α∈Γ0(p2)

νk(t, γ ;αz)
(Im αz)s

|mαz + n|2s
.

Since the group Γ0(p2) acts on the set S±
d (l) component wise, we have

S±
d (l)/Γ0(p2) =

{
(Φ, (m, n))|Φ ∈ Ql(p2)/Γ0(p2), (m, n) ∈ M±Φ

d /Γ0(p2)Φ
}

.
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Using Lemma 4.1, we deduce that
∫

Y0(p2)
σ+

d (l, t, z)μhyp(z)

=
∑

(Φ,(m,n))∈S+
d (l)/Γ0(p2)

∫
H

νk(t, γ ; z)
ys

|mz + n|2s
μhyp(z)

=
∑

Φ∈Ql (p2)/Γ0(p2)

∑
(m,n)∈MΦ

d /Γ0(p2)Φ

1

Φγ · (m, n)s

∫
H

νk(t, γl ; z)ysμhyp(z)

= I +
k (t, s, l)ζΓ0(p2)(s, l).

Observe hat −Φγ = Φ−γ and S−
d (l) = S+

d (−l). Hence, we obtain
∫

Y0(p2)
σ−

d (t, z)μhyp(z) = I −
k (t, s, l)ζΓ0(p2)(s, l)

and the proposition now follows. ��

4.1.2 Spectral expansions

Recall that the hyperbolic LaplacianΔk defined in (3.2) acts as a positive self-adjoint operator
on L2(Γ0(p2)\H, k)—the space of square integrable automorphic forms of weight k [1,
Definition 3.1.1, p. 22]. Both these operators have the same discrete spectrum [31] say

0 = λ0 < λ1 ≤ λ2 · · · .

For weights k ∈ {0, 2}, the eigenspaces L2
λ j

(Γ0(p2)\H, k) corresponding to eigenvalue
λ j 
= 0 are isomorphic via the Mass operators of weight 0:

Λ0 = iy
∂

∂x
+ y

∂

∂ y
: L2

λ j
(Γ0(p2)\H, 0) → L2

λ j
(Γ0(p2)\H, 2).

We write λ j = 1/4+ r2j where r j is real or purely imaginary and let {u j } be an orthonormal
basis of eigenfunctions of Δ0 corresponding to λ j .

Theorem 4.3 [13, Theorem 1.5.7, p. 16] The spectral expansions are given by

K0(t, z) = 1

vΓ0(p2)
+

∞∑
j=1

ht (r j )|u j (z)|2

+ 1

4π

∑
P∈∂(X0(p2))

∫ ∞

−∞
ht (r)

∣∣∣∣EP,0

(
z,

1

2
+ ir

)∣∣∣∣
2

dr ,

K2(t, z) = gp2 F(z) +
∞∑
j=1

ht (r j )

λ j
|Λ0u j (z)|2

+ 1

4π

∑
P∈∂(X0(p2))

∫ ∞

−∞
ht (r)

∣∣∣∣EP,2

(
z,

1

2
+ ir

)∣∣∣∣
2

dr .
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4.2 Different contributions in the Rankin–Selberg transform of the Arakelovmetric

We now prove Proposition 4.4 in this subsection that will determine the term RΓ0(p2)∞ of
our Theorem 1.1. To obtain the same, let us first define the following quantities for weights
k ∈ {0, 2}:

D0(t, z) =
∞∑
j=1

ht (r j )|u j (z)|2, D2(t, z) =
∞∑
j=1

ht (r j )

λ j
|Λ0u j (z)|2,

Ck(t, z) = 1

4π

∑
P∈∂(X0(p2))

∫ ∞

−∞
ht (r)

∣∣∣∣EP,k

(
z,

1

2
+ ir

)∣∣∣∣
2

dr + 2 − k

2

1

vΓ0(p2)
;
(4.6)

and write D = D2 − D0 and C = C2 − C0. From Theorem 4.3, we then have

K2(t, z) − K0(t, z) = gp2 F(z) + D(t, z) + C(t, z). (4.7)

On the other hand from (4.3)

K2(t, z) − K0(t, z) = H(t, z) + E(t, z) + P(t, z). (4.8)

Combining these two equations, we obtain the identity

gp2 F(z) + D(t, z) + C(t, z) = H(t, z) + E(t, z) + P(t, z). (4.9)

Note that our Eq. (4.9) is exactly same as the identity of [13, p. 72] as P = P − C in loc.
cit. By integrating with respect to E∞,0(z, s)μhyp, we obtain the key identity

gp2 RF (s) = −RD(t, s) + RH (t, s) + RE (t, s) + RP−C (t, s) (4.10)

as announced in the beginning of this section.

Proposition 4.4 The contributions in the Rankin–Selberg transform arising from different
motions are given as follows:

(i) The discrete contribution RD(t, s) is holomorphic at s = 1 for all t and Rdis
0 (t) :=

RD(t, 1) satisfies

Rdis
0 (t) → 0

as t → ∞.
(ii) The hyperbolic contribution RH (t, s) is holomorphic at s = 1 for all t and Rhyp

0 (t) :=
RH (t, 1) is of the form

Rhyp
0 (t) = Ehyp(t) − t − 1

2vΓ0(p2)

where limt→∞ Ehyp(t) = 1
2v

Γ0(p2)
Oε(p2ε).

(iii) The elliptic contribution RE (t, s) at s = 1 is of the form

RE (t, s) = Rell−1(t)

s − 1
+ Rell

0 (t) + O(s − 1),

where Rell−1(t) and Rell
0 (t) have finite limits as t → ∞, and Rell

0 = lim
t→∞ Rell

0 (t) =
o(log(p)).
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(iv) The parabolic and spectral contribution RP−C (t, s) is given by:

RP−C (t, s) = Rpar
−1 (t)

s − 1
+ Rpar

0 (t) + O(s − 1).

Here, Rpar
0 (t) = t+1

2v
Γ0(p2)

+ Epar(t) with limt→∞ Epar(t) = 1−log(4π)
4π + O

(
log p

p2

)
.

Since ht (r) = e−t( 14+r2), proof of part (i) of Proposition 4.4 follows from [28, Proposition
5.2.4] (see also [28, p. 30]). The explicit description of the modular curves are not used in
this portion of [28] and hence the same proof works verbatim in our case also. The proof of
remaining three parts will be given in the next three subsections.

As mentioned in the introduction, the underlying strategies for proving the other parts of
Proposition 4.4 are also same as that of Abbes–Ullmo [1], Mayer [28] andM. Grados Fukuda
[13]. However, they used squarefree assumption of the levels of modular curves crucially to
write down the Eisenstein series and hence implement the strategy of Zagier [33] involving
Selberg’s trace formula. To follow the same strategy, we first compute the Eisenstein series
of weight 0 at the cusp ∞ for our modular curves X0(p2) in Proposition 3.2. This is a key
step in Zagier’s program and we implement the same strategy for our specific modular curves
of the form X0(p2) similar to the above mentioned papers.

In the rest of this section, we simplify the calculation of the Rankin–Selberg transforms
of various terms above. For all l ∈ Z, recall the definitions of Fl

k(t, z) and Rl
k(t, s) from the

previous section (see (4.4) and (4.5)). Then observe that RH , RE and RP can be obtained
by summing up Rl

2 − Rl
0 respectively over |l| > 2, |l| < 2 and |l| = 2. We now prove

Proposition 4.4 which is then used to get an expression forRΓ0(p2)∞ . Consequently we derive
an asymptotic expression of gcan(∞, 0) in terms of p.

4.2.1 The hyperbolic contribution

Recall that the hyperbolic contribution in the Rankin–Selberg transform is determined by a
suitable theta function. We proceed to define these theta functions in our context.

Let γ ∈ Γ0(p2) be a hyperbolic element, i. e., tr(γ ) = l; |l| > 2. Let v the eigenvalue
of γ with v2 > 1. Recall that the norm of the matrix γ is defined to be N (γ ) := v2. Since
tr(γ ) = l, it is easy to see that nl = (l + √

l2 − 4)/2 is the larger eigenvalue of γ . The theta
function for X0(p2) is defined by [29]

ΘΓ0(p2)(ξ) =
∑
|l|>2

∑
Φ∈Ql (p2)/Γ0(p2)

log εΦ√
l2 − 4

1√
4πξ

e− ξ2+(log n2l )2

4ξ .

Note that this function is exactly equal to the one defined in [1, p. 54] asΦ �→ γΦ , N (γ0) = ε2Φ
and N (γ ) = n2

l .

Proposition 4.5 The hyperbolic contribution RH (t, s) in the trace formula is holomorphic
at s = 1 and it has the following integral representation:

RH (t, 1) = − 1

2vΓ0(p2)

∫ t

0
ΘΓ0(p2)(ξ) dξ.

Proof From Proposition 4.2, the hyperbolic contribution is given by

RH (t, s) =
∑
|l|>2

ζΓ0(p2)(s, l)
(
I2(t, s, l) − I0(t, s, l)

)
.
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Observe that from (3.26)

Ress=1 ζΓ0(p2)(s, l) = 1

πvΓ0(p2)

∑
Φ∈Ql (p2)/Γ0(p2)

log εΦ√
l2 − 4

. (4.11)

Let us consider the integral

Al(t) = −π

2

∫ t

0

1√
4πξ

e− ξ2+(log n2l )2

4ξ dξ.

From [1, Propositions 3.3.2, 3.3.3], we obtain

I2(t, s, l) − I0(t, s, l) = Al(t)(s − 1) + O
(
(s − 1)2

);
for Re(s) < 1 + δ and δ > 0.

It follows that RH (t, s) is holomorphic near s = 1 and has the required form. ��
Proof of Proposition 4.4 (ii) By the above proposition, we write

Rhyp
0 (t) = RH (t, 1) = Ehyp(t) − t − 1

2vΓ0(p2)

with

Ehyp(t) = − 1

2vΓ0(p2)

(∫ t

0
(ΘΓ0(p2)(ξ) − 1) dξ + 1

)
.

Let ZΓ0(p2) be the Selberg’s zeta function for X0(p2). Note that by [1, Lemma 3.3.6]:

∫ ∞

0
(ΘΓ0(p2)(ξ) − 1) dξ = lim

s→1

(
Z ′

Γ0(p2)
(s)

ZΓ0(p2)(s)
− 1

s − 1

)
− 1. (4.12)

Using [17, p. 27], we obtain

lim
s→1

(
Z ′

Γ0(p2)

ZΓ0(p2)
− 1

s − 1

)
= Oε(p2ε). (4.13)

It follows that limt→∞ Ehyp(t) = 1
2v

Γ0(p2)
Oε(p2ε) as required. ��

4.2.2 The elliptic contribution

Recall that (see Sect. 3.4) there is a bijective correspondence between matrices of trace l and
quadratic forms of discriminant l2 − 4. The explicit map is given by:

Φ = [a, b, c] �→ γΦ =
( l−b

2 −c
a l+b

2

)
.

To obtain the elliptic contribution in the trace formula, consider matrices with traces l ∈
{0,±1}.

For D = b2 − 4ac = l2 − 4, consider the imaginary quadratic field K = Q(
√−D).

In this section, we only consider D ∈ {1, 3}. For the complex number θ = b+√
D

2a , set
aθ = Z + Zθ andA be the ideal class (same as narrow ideal classes for imaginary quadratic
fields) corresponding to aθ . For any number field K , let ζK (s) be the Dedekind zeta function
of K .
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1310 D. Banerjee et al.

Let ζ(s,A) be the partial zeta function associated to a (narrow) ideal class A [13, p.131,
Appendix C]. By [13, p.78], observe that ζΦ(s) = ζ(s,A). In loc. cit. the author assumed
that |l| > 2. Since all the ingredients to write down this equation are there in [34] and valid
for |l| 
= 2, it is easy to see that same proof works for |l| 
= 2.

In our case, the class numbers of the quadratic fields K = Q(
√−D) are 1. We have an

equality of two different zeta functions

ζ(s,A) = ζK (s). (4.14)

For any N ∈ N, let hl(N ) be the cardinality of the set |Ql(N )/Γ0(N )|. In particular for
l ∈ {0,±1}, we have hl(1) = 1 (since the class numbers of the corresponding imaginary
quadratic fields are one). We have the following estimate for hl(p2):

∣∣Ql(p2)/Γ0(p2)
∣∣ ≤ ∣∣Ql/SL2(Z)

∣∣∣∣SL2(Z) : Γ0(p2)
∣∣

≤ hl(1)
∣∣SL2(Z) : Γ0(p2)

∣∣ ≤ ∣∣SL2(Z) : Γ0(p2)
∣∣. (4.15)

Proof of Proposition 4.4 (iii) The elliptic contribution is obtained by putting l = 0, 1,−1 in
Proposition 4.2. We have

RE (t, s) =
∑

l∈{0,1,−1}

(
I2(t, s, l) − I0(t, s, l)

)
ζΓ0(p2)(s, l).

Recall the Laurent series expansions of the following functions [see Definition 3.12 and [1,
§3.3.3, p. 57]]:

ζΓ0(p2)(s, l) = a−1(l)

s − 1
+ a0(l) + O(s − 1),

I2(t, s, l) − I0(t, s, l) = b0(t, l) + b1(t, l)(s − 1) + O((s − 1)2).

Observe that

Rell−1(t) =
1∑

l=−1

a−1(l)b0(t, l),

Rell
0 (t) =

1∑
l=−1

a0(l)b0(t, l) + a−1(l)b1(t, l).

Note that bi (t, l) differ from Ci,l(t) of [1, §3.3.3, p. 57] by a multiplicative function that does
not depend on t and therefore limt→∞ bi (t, l) exists, say bi (∞, l).

We now proceed to find an estimate on Rell
0 (t). FromDefinition 3.12 and (3.25), we obtain

ζΓ0(p2)(s, l)

= 1

2ζ(2s)(1 − p−2s)

∑
d∈{1,p}

μ(d)
1

(p2d)s

∑
Φ∈Ql (p2)/Γ0(p2)

ζΦ∗d (s)

= 1

2ζ(2s)(1 − p−2s)

1

p2s

⎛
⎝ ∑

Φ∈Ql (p2)/Γ0(p2)

ζΦ∗1(s) − 1

ps

∑
Φ∈Ql (p2)/Γ0(p2)

ζΦ∗p (s)

⎞
⎠

= I1(s)I2(s)
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with I1(s) = 1
2ζ(2s)(1−p−2s )

1
p2s and

I2(s) =
∑

Φ∈Ql (p2)/Γ0(p2)

ζΦ∗1(s) − 1

ps

∑
Φ∈Ql (p2)/Γ0(p2)

ζΦ∗p (s).

For t ∈ {1, p}, consider the following series (depending on l):

Jt (s) =
∑

Φ∈Ql (p2)/Γ0(p2)

ζΦ∗t (s).

To study the Laurent series expansion of the above series, write

Jt (s) = c−1,t

s − 1
+ c0,t + O((s − 1)).

For the Dedekind zeta functions ζK (s) with K = Q(
√

l2 − 4) and l ∈ {0,±1}, the residues
and the constants of theLaurent series expansions dependonly on thefields K . For i ∈ {0,−1}
and t ∈ {1, p}, we then get the following bounds of the coefficients of the above expansion
using the estimate (4.15):

|ci,t | ≤ Ci · ∣∣SL2(Z) : Γ0(p2)
∣∣

for some constants Ci ’s. These constants are determined by the Dedekind zeta functions
and are independent of the prime p. The corresponding Laurent series expansion is given
by

I2(s) = J1(s) − 1

ps
Jp(s)

= c−1,1

s − 1
+ c0,1 + O(s − 1) − 1

ps

(
c−1,p

s − 1
+ c0,p + O(s − 1)

)

= c−1,1

s − 1
+ c0,1 + O(s − 1)

−
(
1

p
− log p

p
(s − 1) + O((s − 1)2)

)(
c−1,p

s − 1
+ c0,p + O(s − 1)

)

= 1

s − 1

(
c−1,1 − c−1,p

p

)
+
(

c0,1 − c0,p

p
+ log p

c−1,p

p
+ O(s − 1)

)

= A−1(p)

s − 1
+ A0(p) + O(s − 1);

with A−1(p) = c−1,1 − c−1,p
p and A0(p) = c0,1 − c0,p

p + log p
c−1,p

p . A small check shows
that:

I1(s) = 3

π2(p2 − 1)
+
(

D1 log p + D2

p2 − 1
− 6 log p

π2(p2 − 1)

)
(s − 1) + O(s − 1)2;

where the constants D1 and D2 are independent of p. We conclude that

ζΓ0(p2)(s, l) = 1

2ζ(2s)(1 − p−2s)

∑
d∈{1,p}

μ(d)
1

(p2d)s

∑
Φ∈Ql (p2)/Γ0(p2)

ζΦ∗d (s)

= I1(s)I2(s)

= 3A−1(p)

π2(p2 − 1)

1

s − 1
+ 3A0(p)

π2(p2 − 1)
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+
(

D1 log(p) + D2

p2 − 1
− 6 log p

π2(p2 − 1)

)
A−1(p) + O((s − 1)).

Hence,weobtaina−1(l)= 3A−1(p)

π2(p2−1)
anda0(l)= 3A0(p)

π2(p2−1)
+
(

D1 log p+D2
p2−1

− 6 log p
π2(p2−1)

)
A−1(p).

Observe that all the terms in the above expression have p2 − 1 in the denominator and it is
of same order in p as |SL2(Z) : Γ0(p2)|. Since the constants D1 and D2 are independent of
p, we get Rell

0 = o(log p). ��

4.2.3 The parabolic and spectral contribution

Recall that we are interested in the term RP−C of (4.10). Let a0(y, s; q,∞, k) be the zero-th
Fourier coefficient of Eq,k(z, s). It is given by

a0 (y, s; q,∞, 0) = δq,∞ys + φq,∞(s)y1−s,

a0 (y, s; q,∞, 2) = δq,∞ys + φq,∞(s)
1 − s

s
y1−s .

Consider the series

Ẽq,k(z, s) = Eq,k(z, s) − a0

(
y,

1

2
+ ir; q∞, k

)
.

For any z ∈ H with z = x + iy, define the functions

p1(t, y, k) = 1

2

∫ 1/2

−1/2

∑
γ∈Γ0(p2),

| tr(γ )|=2,γ /∈Γ0(p2)∞

νk(t, γ ; z)dx,

p2(t, y, k) = 1

2

∫ 1/2

−1/2

∑
γ∈Γ0(p2)∞

νk(t, γ ; z) dx − y

2π

∫ ∞

−∞
ht (r) dr ,

p3(t, y, k) = − y

2π

∫ ∞

−∞
ht (r)φ∞,∞

(
1

2
− ir

)(
1
2 + ir
1
2 − ir

)k/2

y2ir dr − 2 − k

2

1

vp2
,

p4(t, y, k) = − 1

4π

∑
q∈∂ X0(p2)

∫ 1/2

−1/2

∫ ∞

−∞
ht (r)

∣∣∣∣Ẽq,k

(
x + iy,

1

2
+ ir

)∣∣∣∣
2

drdx .

For j ∈ {1, 2, 3, 4}, the corresponding Mellin transforms are defined as

M j (t, s) =
∫ ∞

0

(
p j (t, y, 2) − p j (t, y, 0)

)
ys−2dy.

With our assumption on the prime p, observe that gp2 > 1. By [13, Lemma 4.4.1], we
have for Re(s) > 1

RP−C (t, s) = M1(t, s) + M2(t, s) + M3(t, s) + M4(t, s). (4.16)

To study the function p1(t, y, k), we examine the matrices that appear in the sum. Say B =
Γ0(N )∞ = {± (

1 m
0 1

) | m ∈ Z
}
be the parabolic subgroup of Γ0(N ). A simple computation

[1, p. 37] involving matrices shows that any matrix in SL2(Z) of trace 2 is of the form( 1−a b
−c 1+a

)
with a2 = bc. Matrices with traces −2 can be treated in a similar manner by

multiplying by −I . Write the matrices as
( 1−a b

−c 1+a

) =
(

δ −β
−γ α

) (
1 m
0 1

) ( α β
γ δ

)
=
(
1−mγ δ mδ2

−mγ 2 1+mγ δ

)
∈ Γ0(p2).
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To ensure the same we need p2 | mγ 2. Hence, we have three possibilities (i) p | γ but p � m
(ii) p | m but p2 � m, p | γ , and (iii) p2 | m. In other words, any matrix γ ∈ Γ0(p2) with
trace 2 is of the form σ−1

(
1 m
0 1

)
σ with m ∈ Z and for some unique matrix σ . In the first two

cases, σ ∈ B\Γ0(p) where as in the third case σ ∈ B\SL2(Z).
For weights k ∈ {0, 2} and d ∈ {1, p}, define the following functions that appear as

sub-sums in p1(t, y, k) corresponding to the cases (i) and (ii):

qd(t, y, k) = 1

2

∫ 1/2

−1/2

∑
m 
=0,(m,p)=1

∑
σ∈B\Γ0(p),

σ 
=B

νk
(
t, σ−1 (±1 md

0 ±1

)
σ ; z

)
dx

=
∫ 1/2

−1/2

∑
m 
=0,(m,p)=1

∑
σ∈B\Γ0(p)/B,

σ 
=B

∞∑
n=−∞

νk
(
t, σ−1 ( 1 md

0 1

)
σ ; z + n

)
dx .

Next, we consider the other sub-sum that appears in p1(t, y, k) corresponding to case (iii):

qp2(t, y, k) = 1

2

∫ 1/2

−1/2

∑
m 
=0

∑
σ∈B\SL2(Z),

σ 
=B

νk

(
t, σ−1

(
±1 mp2

0 ±1

)
σ ; z

)
dx

=
∫ 1/2

−1/2

∑
m 
=0

∑
σ∈B\SL2(Z)/B,

σ 
=B

∞∑
n=−∞

νk

(
σ−1

(
1 mp2

0 1

)
σ ; z + n

)
dx .

From the above observation, we have a following decomposition of the function p1:

p1(t, y, k) = q1(t, y, k) + qp(t, y, k) + qp2(t, y, k).

Recall that B = Γ0(N )∞ = {± (
1 m
0 1

) | m ∈ Z
}
is the parabolic subgroup of Γ0(N ).

Lemma 4.6 For any matrix τ = (
a b
c d

) ∈ SL2(R) − B with tr(τ ) = ±2, we have
∫

H

νk(t, τ ; z) Im(z)sμhyp(z) = 1

|c|s
∫

H

νk(t, L±; z) Im(z)sμhyp(z);

where L± = (±1 0
1 ±1

)
.

Proof Substitute z = T w where T = 1√
c

(
1 a−d

2
0 c

)
. ��

For any positive integer M , define

LM (s) =
∑

σ∈B\Γ0(M)/B,

σ=( ∗ ∗
c ∗

)
, c 
=0

1

|c|2s

and

ζM (s) =
∑

m≥1,(m,M)=1

1

ms
.

For k ∈ {0, 2}, consider the following integrals:

Ik(t, s, 2) =
∫

H

νk(t, L+; z)(Im z)sμhyp(z) +
∫

H

νk(t, L−; z)(Im z)sμhyp(z).
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Proposition 4.7 For the modular curves of the form X0(p2), the Mellin transform M1(t, s)
can be written as product of following simple functions

M1(t, s) = p

p − 1

(
1 − 1

p2s

)
ζ(s)Lp(s)

(
I2(t, s, 2) − I0(t, s, 2)

)
.

Proof For any matrix σ ∈ B\Γ0(p2)with σ = (
a b
c d

)
, denote c(σ ) = c. Note that this choice

is independent of the right coset representative.
By Lemma 4.6, we obtain
∫ ∞

0
q1(t, y, k)ys−2dy =

∑
m 
=0,

(m,p)=1

∑
σ∈B\Γ0(p)/B,

σ 
=B

∫
H

νk(t, σ
−1 ( 1 m

0 1

)
σ ; z)(Im z)sμhyp

=
∑

m 
=0,
(m,p)=1

∑
σ∈B\Γ0(p)/B,

σ 
=B

1

|c(σ−1
(
1 m
0 1

)
σ)|s Ik(t, s, 2)

= ζp(s)Ik(t, s, 2)Lp(s),∫ ∞

0
qp(t, y, k)ys−2dy =

∑
m 
=0,

(m,p)=1

∑
σ∈B\Γ0(p)/B,

σ 
=B

∫
H

νk(t, σ
−1 ( 1 mp

0 1

)
σ ; z)(Im z)sμhyp

= ζp(s)

ps
Ik(t, s, 2)Lp(s),

∫ ∞

0
qp2(t, y, k)ys−2dy =

∑
m 
=0

∑
σ∈B\SL2(Z)/B,

σ 
=B

∫
H

νk(t, σ
−1

(
1 mp2

0 1

)
σ ; z)(Im z)sμhyp

= ζ(s)

p2s
Ik(t, s, 2)L1(s).

Recall the identity ζp(s) = ζ(s)(1 − p−s). By summing up, we deduce that

M1(t, s) =
((

1 − 1

p2s

)
Lp(s) + 1

p2s
L1(s)

)
ζ(s)

(
I2(t, s, 2) − I0(t, s, 2)

)
. (4.17)

By [16, p. 49 and Theorem 2.7, p. 46], we now get

L1(s) = ζ(2s − 1)

ζ(2s)
.

From [1, Lemma 3.2.19], we deduce that

φ
Γ0(p)∞,∞ (s) = √

π
Γ (s − 1

2 )

Γ (s)

p − 1

p2s − 1

ζ(2s − 1)

ζ(2s)
. (4.18)

Hence, we obtain [1, p.56]

φ
Γ0(p)∞,∞ (s) = √

π
Γ (s − 1

2 )

Γ (s)
Lp(s). (4.19)

Comparing (4.18) and (4.19), we have L1(s) = p2s − 1

p − 1
Lp(s). The result follows by sub-

stituting this in (4.17). ��
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Proposition 4.8 The Laurent series expansion of M1(t, s) at s = 1 is given by

M1(t, s) =
(

1

vΓ0(p)

p + 1

p
A1(t)

)
1

s − 1

+ 1

vΓ0(p)

p + 1

p

((
3γEM + aπ

6
− log(p2)

)
A1(t) + B1(t)

)

+ O(s − 1);
where the functions A1(t) and B1(t) are independent of p. Furthermore, we have
limt→∞ A1(t) = 1/2 and B1(t) has a finite limit as t → ∞, which we call B1(∞).

Proof From Proposition 4.7 and (4.19), we obtain

M1(t, s) = p

p − 1

(
1 − 1

p2s

)
ζ(s)φΓ0(p)∞,∞ (s)

(
Γ (s)√

πΓ (s − 1
2 )

(
I2(t, s, 2) − I0(t, s, 2)

))
.

(4.20)

By [1, p.59] we have

φ
Γ0(p)∞,∞ (s) = 1

vΓ0(p)

1

s − 1
+ 1

vΓ0(p)

(
2γEM + a

π

6
− p2

p2 − 1
log(p2)

)
+ O(s − 1),

and

ζ(s) = 1

s − 1
+ γEM + O(s − 1).

Recall that we have a well-known Laurent series expansion
(
1 − 1

p2s

)
=
(
1 − 1

p2

)
+ log(p2)

p2
(s − 1) + O((s − 1)2).

By a verbatim generalization of [13, Lemma B.2.1] and [1, Proposition 3.3.4] we have:

Γ (s)√
πΓ (s − 1

2 )
[I2(t, s, 2) − I0(t, s, 2)] = A1(t)(s − 1) + B1(t)(s − 1)2 + O((s − 1)3);

where limt→∞ A1(t) = 1/2. It also follows from [1, Lemma 3.3.10] that B1(t) has a finite
limit as t → ∞. Putting these in Eq. (4.20), we get the required result. ��

From [13, Lemma 4.4.7-9], we obtain

M2(t, s) = 1

s − 1

(
A2(t) + 1

4π

)
+
(
1 − log(4π)

4π
+ γEMA2(t) + B2(t)

)
+ O(s − 1),

M3(t, s) = 1

vΓ0(p2)

1

s − 1
+
(
CΓ0(p2)∞,∞

2
+ t + 1

2vΓ0(p2)

)
+ O(s − 1),

M4(t, s) = A4(t) + O(s − 1),

(4.21)

where A2, B2, A4 depend only on t and tends to zero as t → ∞, and CΓ0(p2)∞,∞ is the constant

term of φ
Γ0(p2)∞,∞ (see Lemma 3.3).
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Proof of Proposition 4.4 (iv) Combining (4.16), Proposition 4.8 and (4.21), we get

RP−C (t, s) = Rpar
−1 (t)

s − 1
+ Rpar

0 (t) + O(s − 1);
where

Rpar
−1 = 1

4π
+ 1

vΓ0(p2)
+ 1

vΓ0(p)

p + 1

p
A1(t) + A2(t)

and

Rpar
0 = 1

vΓ0(p)

p + 1

p

((
3γEM + aπ

6
− log(p2)

)
A1(t) + B1(t)

)

+ 1 − log(4π)

4π
+ γEMA2(t) + B2(t) + CΓ0(p2)∞,∞

2
+ t + 1

2vΓ0(p2)
+ A4(t).

Moreover writing Rpar
0 (t) = t + 1

2vΓ0(p2)
+ Epar(t) we have

lim
t→∞ Epar(t) = 1

2vΓ0(p)

p + 1

p

(
3γEM + aπ

6
− log(p2) + 2B1(∞)

)

+ 1 − log(4π)

4π
+ CΓ0(p2)∞,∞

2

= 1 − log(4π)

4π
+ CΓ0(p2)∞,∞

2
+ O

(
log(p2)

p2

)
.

We only need to show that CΓ0(p2)∞,∞ = O
(
log(p2)

p2

)
which follows from our computation of

φ
Γ0(p2)∞,∞ in Lemma 3.3. This concludes the proof of Proposition 4.4. ��

4.3 Asymptotics of the canonical Green’s function

Proof of Theorem 1.1 From Eq. (4.10), we have

gp2 RF (s) = −RD(t, s) + RH (t, s) + RE (t, s) + RP−C (t, s).

Hence, we get the following equality:

gp2RΓ0(p2)∞ = −Rdis
0 (t) + Rhyp

0 (t) + Rell
0 (t) + Rpar

0 (t).

According to the Proposition 4.4 as t → ∞, we have Rdis
0 (t) → 0, Rell

0 = o(log(p)). We

also have Rhyp
0 (t) = Ehyp(t) − t−1

2v
Γ0(p2)

and Rpar
0 (t) = t+1

2v
Γ0(p2)

+ Epar(t) and hence

Rhyp
0 (t) + Rpar

0 (t) = Ehyp(t) + Epar(t) + 1

vΓ0(p2)
.

From Proposition 4.4, recall that limt→∞ Ehyp(t) = 1
2v

Γ0(p2)
Oε(p2ε) and limt→∞ Epar(t) =

1−log(4π)
4π + O

(
log(p2)

p2

)
. As t → ∞, we have

RΓ0(p2)∞ = 1

gp2
lim

t→∞
(
−Rdis

0 (t) + Rhyp
0 (t) + Rell

0 (t) + Rpar
0 (t)

)
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= 1

gp2
lim

t→∞
(

Rhyp
0 (t) + Rpar

0 (t) + Rell
0

)

= 1

gp2
lim

t→∞

(
Ehyp(t) + Epar(t) + 1

vΓ0(p2)

)
+ o

(
log(p2)

gp2

)

= 1

gp2

(
1 − log(4π)

4π
+ O

(
log(p2)

p2

)

+ 1

2vΓ0(p2)
Oε(p2ε) + 1

vΓ0(p2)

)
+ o

(
log(p2)

gp2

)

= o

(
log(p2)

gp2

)
.

The last equality follows from vΓ0(p2) = π
3 p(p + 1). ��

Proposition 4.9 For p > 7, we have the following asymptotic expression

gcan(∞, 0) = 6 log(p2)

p(p + 1)
+ o

(
log(p2)

gp2

)
.

Proof Using Theorem 1.1, Remark 2.1 and (3.17), we obtain

gcan(∞, 0) = −2πCΓ0(p2)
∞,0 + o

(
log(p2)

gp2

)
.

By Corollary 3.6, we also have

−2πCΓ0(p2)
∞,0 = 6 log(p2)

p(p + 1)
+ o

(
log(p2)

gp2

)
;

noting that vΓ0(p2) = π
3 p(p+1). Hence, asymptotically themain contribution for gcan(∞, 0)

comes from CΓ0(p2)
∞,0 and the proposition follows. ��

Remark 4.10 We need the assumption p > 7 in the parabolic part as the computations are
carried out under the assumption that gp2 > 1.

In [4], the estimates on Arakelov-Green’s functions are provided for general non-compact
orbisurfaces.

5 Minimal regular models of Edixhoven

For primes p ≥ 7, the modular curve X0(p2) is an algebraic curve defined over Q.
In [10], Bas Edixhoven constructed regular models X̃0(p2) for all such primes. Note that

the above mentioned models are arithmetic surfaces over SpecZ. These models however are
not minimal. In this section, we recall the regular models of Edixhoven and describe the
minimal regular models obtained from them.

For any prime q of Z such that q 
= p the fiber X̃0(p2)Fq is a smooth curve of genus gp2 ,
the genus of X0(p2). For the prime p the fiber X̃0(p2)Fp is reducible and non-reduced, of
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1318 D. Banerjee et al.

arithmetic genus gp2 , and whose geometry depends on the class of p in Z/12Z. To describe
X̃0(p2) it is thus enough to describe the special fiber.

The minimal regular model X0(p2) is obtained from X̃0(p2) by three successive blow
downs of curves in the special fiber X̃0(p2)Fp and we shall denote by π : X̃0(p2) → X0(p2)
the morphism from Edixhoven’s model. In the computations, we shall use [26, Chapter 9,
Theorem 2.12] repeatedly. Let · be the local intersection pairing as in [26].

In the following subsections, we shall explicitly describe the special fiber of the minimal
regular model X0(p2). We shall also compute the local intersection numbers among the
various components in the fiber. The Arakelov intersections in this case are obtained by
simply multiplying the local intersection numbers by log(p). The following proposition is
the key finding of this section:

Proposition 5.1 The special fiber of X0(p2) consists of two curves C ′
2,0 and C ′

0,2 and the
local intersection numbers are given by:

C ′
2,0 · C ′

0,2 = −(C ′
2,0)

2 = −(C ′
0,2)

2 = p2 − 1

24
.

The proof of the previous proposition shall take up the rest of this section. It is divided
into four cases depending on the residue of p modulo 12.

5.1 Case p ≡ 1 (mod 12)

Following Edixhoven [10], we draw the special fiber Vp = X̃0(p2)Fp in Fig. 1 in this
case. Each component is a P1 and the pair (n, m) adjacent to each component denotes the
multiplicity of the component n and the local self-intersection number m. The arithmetic
genus is given by gp2 = 12k2 − 3k − 1 where p = 12k + 1.

Proposition 5.2 The local intersection numbers of the vertical components supported on the
special fiber of X̃0(p2) are given in the following table.

C2,0 C0,2 C1,1 E F

C2,0 − p(p−1)
12

p−1
12

p−1
12 0 0

C0,2
p−1
12 − p(p−1)

12
p−1
12 0 0

C1,1
p−1
12

p−1
12 −1 1 1

E 0 0 1 −2 0

F 0 0 1 0 −3

Proof The self-intersections C2
1,1, E2 and F2 were calculated by Edixhoven (see [10, Fig.

1.5.2.1]). Since Vp is the principal divisor (p), we must have Vp · D = 0 for any vertical
divisor D. Moreover, Vp = C2,0 + C0,2 + (p − 1)C1,1 + p−1

2 E + p−1
3 F is the linear

combination of all the prime divisors of the special fiber counted with multiplicities. All the
other intersection numbers can be easily calculated using these information. For example
Vp · E = 0 gives (p −1)C1,1 · E + (p−1)

2 E2 = 0, now since E2 = −2 we have C1,1 · E = 1.
The other calculations are analogous and we omit them here. ��
Proof of Proposition 5.1 When p ≡ 1 (mod 12): By Proposition 5.2, note that the component
C1,1 is rational and has self-intersection −1. By Castelnuovo’s criterion [26, Chapter 9,
Theorem 3.8] we can thus blow down C1,1 without introducing a singularity. Let X0(p2)′
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Fig. 1 The special fiber X̃0(p2)Fp when p ≡ 1 (mod 12)

be the corresponding arithmetic surface and π1 : X̃0(p2) → X0(p2)′, be the blow down
morphism.

For E ′ = π1(E), we see that π∗
1 E ′ = E + C1,1. In fact π∗

1 E ′ = E + μC1,1 (see
Liu [26, Chapter 9, Proposition 2.18]). Using [26, Chapter 9, Theorem 2.12], we obtain 0 =
C1,1 ·π∗

1 E ′ = 1−μ. Hence, we deduce that (E ′)2 = (π∗
1 E ′)2 = 〈E +C1,1, E +C1,1〉 = −1.

Thus E ′ is a rational curve in the special fiber of X0(p2)′ with self intersection −1. It can
thus be blown down again and the resulting scheme is again regular. LetX0(p2)′′ be the blow
down and π2 : X̃0(p2) → X0(p2)′′ the morphism from X̃0(p2).

Let F ′ = π2(F), and if π∗
2 F ′ = F + μC1,1 + νE for μ, ν ∈ Q then using the fact that

C1,1 · π∗
2 F ′ = E · π∗

2 F ′ = 0 we find μ = 2 and ν = 1. This yields π∗
2 F ′ = F + 2C1,1 + E

and hence (F ′)2 = −1. We can thus blow down F ′ further to arrive finally at an arithmetic
surface X0(p2). This is the minimal regular model of X0(p2) since no further blow down is
possible. Let π : X̃0(p2) → X0(p2) be the morphism obtained by composing the sequence
of blow downs.

The special fiber of X0(p2) consists of two curves C ′
2,0 and C ′

0,2, that are the images of
C2,0 and C0,2 respectively under π . They intersect with high multiplicity at a single point.
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Fig. 2 The special fiber X̃0(p2)Fp when p ≡ 5 (mod 12)

To calculate the intersections we notice that

π∗C ′
2,0 = C2,0 + p − 1

2
C1,1 + p − 1

4
E + p − 1

6
F,

π∗C ′
0,2 = C0,2 + p − 1

2
C1,1 + p − 1

4
E + p − 1

6
F,

obtained as before from the fact that the intersections of π∗C ′
2,0 and π∗C ′

0,2 with C1,1, E
and F are all 0. This yields

C ′
2,0 · C ′

0,2 = −(C ′
2,0)

2 = −(C ′
0,2)

2 = p2 − 1

24
.

��

5.2 Case p ≡ 5 (mod 12)

In this case the special fiber Vp = X̃0(p2)Fp is described by Fig. 2. Each component is a P1

and the genus is given by gp2 = 12k2 + 5k where p = 12k + 5.
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Proposition 5.3 The local intersection numbers of the vertical components supported on the
special fiber of X̃0(p2) for p ≡ 5 (mod 12) are given in the following table.

C2,0 C0,2 C1,1 E F

C2,0 − p2−p+4
12

p−5
12

p−5
12 0 1

C0,2
p−5
12 − p2−p+4

12
p−5
12 0 1

C1,1
p−5
12

p−5
12 −1 1 1

E 0 0 1 −2 0

F 1 1 1 0 −3

The calculations are very similar to the previous case hence we omit the proof.

Proof of Proposition 5.1 When p ≡ 5 (mod 12): The minimal regular model is obtained by
blowing down C1,1, then the image of E and then the image of F as in the previous section.
We again denote the minimal regular model by X0(p2), and by π : X̃0(p2) → X0(p2) the
morphism obtained by the successive blow downs.

The special fiber of X0(p2) again consists of two curves C ′
2,0 and C ′

0,2 that are the images
of C2,0 and C0,2 respectively under π . The curves C ′

2,0 and C ′
0,2 intersect at a single point.

In this case we have

π∗C ′
2,0 = C2,0 + p − 1

2
C1,1 + p − 1

4
E + p + 1

6
F,

π∗C ′
0,2 = C0,2 + p − 1

2
C1,1 + p − 1

4
E + p + 1

6
F,

obtained as before from the fact that the intersections of π∗C ′
2,0 and π∗C ′

0,2 with C1,1, E
and F are all 0. This yields

C ′
2,0 · C ′

0,2 = −(C ′
2,0)

2 = −(C ′
0,2)

2 = p2 − 1

24
.

��

5.3 Case p ≡ 7 (mod 12)

In this case the special fiber Vp = X̃0(p2)Fp is described by Fig. 3. Each component is a P1

occurring with the specified multiplicity. The genus is given by gp2 = 12k2 + 9k + 1 where
p = 12k + 7.

Proposition 5.4 The local intersection numbers of the prime divisors supported on the special
fiber of X̃0(p2) for p ≡ 7 (mod 12) are given in the following table.

C2,0 C0,2 C1,1 E F

C2,0 − p2−p+6
12

p−7
12

p−7
12 1 0

C0,2
p−7
12 − p2−p+6

12
p−7
12 1 0

C1,1
p−7
12

p−7
12 −1 1 1

E 1 1 1 −2 0

F 0 0 1 0 −3
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Fig. 3 The special fiber X̃0(p2)Fp when p ≡ 7 (mod 12)

Proof of Proposition 5.1 When p ≡ 7 (mod 12): The minimal regular model is obtained by
blowing down C1,1, then the image of E and then the image of F as in the previous sub-
section. Let X0(p2) be the minimal regular model and π : X̃0(p2) → X0(p2) the morphism
obtained by the successive blow downs.

The special fiber of X0(p2) consists of two curves C ′
2,0 and C ′

0,2 that are the images of
C2,0 and C0,2 respectively under π . The curves C ′

2,0 and C ′
0,2 intersect at a single point. Here

π∗C ′
2,0 = C2,0 + p − 1

2
C1,1 + p + 1

4
E + p − 1

6
F,

π∗C ′
0,2 = C0,2 + p − 1

2
C1,1 + p + 1

4
E + p − 1

6
F,

easily calculated using fact that the intersections of π∗C ′
2,0 and π∗C ′

0,2 with C1,1, E and F
are all 0. This yields

C ′
2,0 · C ′

0,2 = −(C ′
2,0)

2 = −(C ′
0,2)

2 = p2 − 1

24
.

��
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Fig. 4 The special fiber X̃0(p2)Fp when p ≡ 11 (mod 12)

5.4 Case p ≡ 11 (mod 12)

In this final case the special fiber Vp = X̃0(p2)Fp is described by Fig. 4. Each component is
a P1. The genus is given by gp2 = 12k2 + 17k + 6 where p = 12k + 11.

Proposition 5.5 The local intersection numbers of the prime divisors supported on the special
fiber of X̃0(p2) for p ≡ 11 (mod 12) are given in the following table.

C2,0 C0,2 C1,1 E F

C2,0 − p2−p+10
12

p−11
12

p−11
12 1 1

C0,2
p−11
12 − p2−p+10

12
p−11
12 1 1

C1,1
p−11
12

p−11
12 −1 1 1

E 1 1 1 −2 0

F 1 1 1 0 −3

Let us now complete the proof of Proposition 5.1 by presenting the final case.
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Proof of Proposition 5.1 When p ≡ 11 (mod 12): The minimal regular model is again
obtained by blowing downC1,1, then the image of E and then the image of F as in the previous
section. We again denote the minimal regular model by X0(p2). Let π : X̃0(p2) → X0(p2)
be the morphism obtained by the successive blow downs.

The special fiber of X0(p2) consists of two curves C ′
2,0 and C ′

0,2 that are the images of
C2,0 and C0,2 respectively under π intersecting at a single point. Mimicking the calculations
of the previous sub-section

π∗C ′
2,0 = C2,0 + p − 1

2
C1,1 + p + 1

4
E + p + 1

6
F,

π∗C ′
0,2 = C0,2 + p − 1

2
C1,1 + p + 1

4
E + p + 1

6
F .

This again yields

C ′
2,0 · C ′

0,2 = −(C ′
2,0)

2 = −(C ′
0,2)

2 = p2 − 1

24
.

��

6 Algebraic part of self-intersection

We continue with the notation from Sect. 5. Let H0 and H∞ be the sections of X0(p2)/Z

corresponding to the cusps 0,∞ ∈ X0(p2)(Q). The horizontal divisor H0 intersects exactly
one of the curves of the special fiber at an Fp rational point transversally (cf. Liu [26,
Chapter 9, Proposition 1.30 and Corollary 1.32]). We call that component C ′

0. It follows
from the cusp and component labelling of Katz and Mazur [20, p. 296] that H∞ meets the
other component transversally and we call it C ′∞. The components C ′

0 and C ′∞ intersect in a
single point.

Recall that the local intersection numbers are given by [cf. Proposition 5.1]:

C ′
0 · C ′∞ = −(C ′

0)
2 = −(C ′∞)2 = p2 − 1

24
. (6.1)

Let KX0(p2) be a canonical divisor of X0(p2), that is any divisor whose corresponding line
bundle is the relative dualizing sheaf. We then have the following result:

Lemma 6.1 For sp = p2 − 1

24
, consider the vertical divisors V0 = − gp2 − 1

sp
C ′
0 and V∞ =

− gp2 − 1

sp
C ′∞. The divisors

Dm = KX0(p2) − (2gp2 − 2)Hm + Vm, m ∈ {0,∞}
are orthogonal to all vertical divisors of X0(p2) with respect to the Arakelov intersection
pairing.

Proof For any prime q 
= p ifV is the corresponding fiber over (q) ∈ SpecZ, then 〈Vm, V 〉 =
0. Moreover, by the adjunction formula [26, Chapter 9, Proposition 1.35], 〈KX0(p2), V 〉 =
(2gp2 − 2) log p. The horizontal divisor Hm meets any fiber transversally at a smooth Fp

rational point which gives 〈Dm, V 〉 = 0.
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Again using the adjunction formula

〈KX0(p2), C ′
0 + C ′∞〉 = (2gp2 − 2) log p,

and on the other hand from the discussion of X0(p2) it is clear that 〈KX0(p2), C ′
0〉 =

〈KX0(p2), C ′∞〉, hence we have
〈KX0(p2), C ′

0〉 = 〈KX0(p2), C ′∞〉 = (gp2 − 1) log p.

If m ∈ {0,∞}, then
〈Dm, C ′

m〉 = (gp2 − 1) log p − (2gp2 − 2) log p + (gp2 − 1) log p = 0.

Finally if n ∈ {0,∞} and n 
= m then

〈Dm, C ′
n〉 = (gp2 − 1) log p − 0 − (gp2 − 1) log p = 0.

This completes the proof. ��
The proof of the following lemma is analogous to Abbes–Ullmo [1, Proposition D].

Lemma 6.2 For m ∈ {0,∞}, consider the horizontal divisors Hm as above. We have the
following equality of the Arakelov self-intersection number of the relative dualizing sheaf:

(ωp2)
2 = −4gp2(gp2 − 1)〈H0, H∞〉 +

(g2
p2

− 1) log p

sp
+ ep

with

ep =
{
0 if p ≡ 11 (mod 12),

O(log p) if p 
≡ 11 (mod 12).

Proof Since Dm has degree 0 and is perpendicular to vertical divisors, by a theorem of
Faltings–Hriljac [12, Theorem 4], we obtain:

〈Dm, Dm〉 = −2
(
Néron-Tate height of O(Dm)

) := hm . (6.2)

This yields

〈Dm, KX0(p2) − (2gp2 − 2)Hm〉 = hm .

The previous expression expands to

ω2
p2 = −(2gp2 − 2)2H2

m + 2(2gp2 − 2)〈KX0(p2), Hm〉 − 〈KX0(p2), Vm〉
+ (2gp2 − 2)〈Hm, Vm〉 + hm .

Nowusing the equality 〈Dm, Vm〉 = 0which yields 〈KX0(p2), Vm〉−(2gp2−2)〈Hm, Vm〉+
V 2

m = 0 and the adjunction formula 〈KX0(p2), Hm〉 = −H2
m , (see Lang [25, Ch. IV, Sec. 5,

Corollary 5.6]), we get:

(ωp2)
2 = −4gp2(gp2 − 1)H2

m + V 2
m + hm .

This yields

(ωp2)
2 = −2gp2(gp2 − 1)(H2

0 + H2∞) + 1

2
(V 2

0 + V 2∞) + 1

2
(h0 + h∞). (6.3)
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Consider the divisor D∞ − D0 = (2gp2 −2)(H0− H∞)+(V∞ −V0). The generic fiber of
the line bundle corresponding to the above divisor is supported on cusps. ByManin–Drinfeld
theorem [9,27], D∞ − D0 is a torsion element of the Jacobian J0(p2). Moreover the divisor
D∞ − D0 satisfies the hypothesis of the Faltings–Hriljac theorem, which along with the
vanishing of Neron–Tate height at torsion points implies 〈D0 − D∞, D0 − D∞〉 = 0. Hence,
we obtain

H2
0 + H2∞ = 2〈H0, H∞〉 + V 2

0 − 2〈V0, V∞〉 + V 2∞
(2gp2 − 2)2

.

Substituting this in (6.3) we deduce

(ωp2)
2 = −4gp2(gp2 − 1)〈H0, H∞〉 − 1

2gp2 − 2
(V 2

0 + V 2∞)

+ gp2

gp2 − 1
〈V0, V∞〉 + 1

2
(h0 + h∞).

For p ≡ 11 (mod 12), the modular curve X0(p2) has no elliptic points. We deduce that
for m ∈ {0,∞}, the divisors Dm are supported at cusps and hence h0 = h∞ = 0 (see [1,
Lemma 4.1.1]).

If p 
≡ 11 (mod 12), the canonical divisor KX0(p2) is supported at the set of cusps and the
set of elliptic points. ByManin–Drinfeld theorem, theNéron–Tate heights hN T of the divisors
supported at cusps is zero. We provide a bound on the Néron–Tate heights of elliptic points
by a computation similar to [30, Section 6, equation 36]. Let f p2 : X0(p2) → X0(1) = P1

be the natural projection. Let i and j be the points on X0(1) corresponding to the points i

and j = e
2π

√−1
3 of the complex upper half plane H. Let Hi (respectively Hj ) be the divisor

of X0(p2) consisting of elliptic points lying above i (respectively j).
By an application of Hurwitz formula [30, cf. proof of Lemma 6.1, p. 670], we have:

KX0(p2) ∼ C − 1

2

∑
f p2 (Qi )=i,

eQi =1

Qi − 2

3

∑
f p2 (Q j )= j,

eQ j =1

Q j ,

where C is a divisor with rational coefficients supported at the cusps and Qi (respectively
Q j ) are points on X0(p2) above i (respectively j) with ramification index eQi (respectively
eQ j ).

Hence by an application of theManin–Drinfeld theorem, we have an equality [30, Lemma
6.1]:

h0 = h∞ = 1

36
hN T

(
3(Hi − v2∞) + 4(Hj − v3∞)

) ; (6.4)

with v2 = (1 + (−1
p )) (the number of elliptic points in X0(p2) lying above i) and v3 =

(1 + (−3
p )) (the number of elliptic points in X0(p2) lying above j ).

In [30, Lemma 6.2] the authors show that the preimages of i under f p2 with ramification
index 1 are Heegner points of discriminant −4, these are precisely the elliptic points of
X0(p2) lying over i . On the other hand, the preimages of j with ramification index 1 are
Heegner points of index −3. These are the elliptic points over j .

Let c be an elliptic point of X0(p2) lying above i or j . By [15, p. 307], we have

hN T ((c) − (∞)) = 〈c, c〉∞ + 〈c, c〉fin.
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The expression in loc. cit. can be simplified in our situation. To compute 〈c, c〉fin for c lying
above i (respectively above j), we count the number of roots of unity in Z[i] (respectively
in Z[ 1+

√−3
2 ]). We deduce that 〈c, c〉fin = 2 log(p2) if c ∈ X0(p2) is a Heegner point lying

above i (respectively, 〈c, c〉fin = 3 log(p2) if c lies above j).
The simplification of 〈c, c〉∞ follows from [30, Section 6, p. 671]. Recall that

〈c, c〉∞ = lim
s→1

(
H(s) + 4π

vΓ0(p2)(s − 1)

)
+ O(1);

with

H(s) = −8
∞∑

n=1

σ(n)r(p2n + 4)Qs−1

(
1 + np2

2

)
.

In the above expression, σ(n) is the function as defined in [15, Prop (3.2), Chap IV] with
|σ(n)| ≤ τ(n) and τ(n) the number of divisors of n, r(n) is the number of ideals of norm

n in Z[i] (respectively in Z[ 1+
√−3
2 ]) and Qs−1(x) is the Legendre function of second kind

[15, p. 238]. For any ε > 0, we have an estimate r(n) = Oε(nε).

Using the estimate Qs−1(x)= O(x−s) as x →+∞,weget H(s)= Oε

(
p2ε−2

(
1+ 1

|s−1|
))

for all s withRe(s) > 1. For the other part, a suitable bound on H(s) is obtained in the region
7
8 ≤ Re(s) ≤ 1 + ε using [16, Proposition 7.2]. By the Phragmén–Lindelöf principle and
using the above estimate, we deduce [30, Section 6, p. 673]

lim
s→1

(
H(s) + 4π

vΓ0(p2)(s − 1)

)
= Oε(p2ε−2).

From the above, we get an estimate 〈c, c〉∞ = Oε(p2ε−2). By the parallelogram law of
Néron–Tate heights (Néron–Tate heights are always positive) and using (6.4) we obtain (see
[30, Section 6, p. 673])

ep = 1

2
(h0 + h∞) = O(log p).

The lemma now follows from (6.1). ��
Using the above results, we obtain Theorem 1.2 of the paper.

Proof of Theorem 1.2 By the previous lemma, we have

ω2
p2 = −4gp2(gp2 − 1)〈H0, H∞〉 +

(g2
p2

− 1) log p

sp
+ ep

= 4gp2(gp2 − 1)gcan(∞, 0) +
(g2

p2
− 1) log p

sp
+ ep.

An explicit computation of genus [cf. Remark 2.1] shows that

gp2 − 1 = (p + 1)(p − 6) − 12c

12

with c ∈ {
0, 1

2 ,
2
3 ,

7
6

}
.

By Proposition 4.9, we obtain

4gp2(gp2 − 1)gcan(∞, 0) = 4gp2 log p + o(gp2 log p). (6.5)
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Furthermore, we deduce the following asymptotic:

(g2
p2

− 1) log p

sp
= (gp2 + 1)(gp2 − 1) log p

sp

= (gp2 + 1) log p[2 + o(1)]
= 2gp2 log p + o(gp2 log p).

Since ep = o(gp2 log p), this completes the proof. ��
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