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Abstract
We study some basic properties and examples of Hermitian metrics on complex manifolds
whose traces of the curvature of the Chern connection are proportional to the metric itself.
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Introduction

In this note we aim to study certain “special” Hermitian metrics ω on compact complex
(mostly non-Kähler) manifolds X , focusing on the geometry of the Chern connection. In a
previous paper [3] we started by looking at constant Chern-scalar curvature metrics in a
conformal class of Hermitian metrics, giving partial results towards what we called Chern–
Yamabe problem.

Here instead we collect some results on the Chern–Einstein problem(s). Namely, we look
for Hermitian metrics whose Chern–Ricci forms are (non-necessarily constant) multiple of
the metric itself. Note that, due to the lack of Bianchi symmetry, we have actually three
different ways to contract the curvature.

A partial account on the literature includes [2,4,8,10,11,15,16,18,19,30,38,43,46], see also
the discussion at [34]. We now survey our main results.
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First-Chern–Einstein metrics

The first-Chern–Ricci form Ric(1)(ω) arises by tracing the endomorphism part of the Chern-
curvature tensor. It yields a closed real (1, 1)-form that represents the first Bott–Chern class
cBC
1 (X) ∈ H1,1

BC (X). We claim that the corresponding Chern–Einstein problem, i.e., the
search for Hermitian metrics ω satisfying

Ric(1)(ω) = λω for λ ∈ C∞(X;R),

is basically understood. If cBC
1 (X) = 0 there exists a Chern–Ricci-flat metric in any con-

formal class, and X is called a (non-Kähler) Calabi–Yau manifold [46], and non-Kähler
examples actually do exist, e.g. Kodaira surfaces. If instead we are looking to not identi-
cally zero (non-necessarily constant, otherwise the statement is completely trivial) Einstein
factor λ, it turns out that the manifold is actually Kähler of a very special type, and all
first-Chern–Einstein metrics are easy to describe.

Theorem A (See Theorem 5) Let (Xn, g) be a compact first-Chern–Einstein manifold, with
non-identically-zero Einstein factor. Then g is conformal to a Kähler metric in ±c1(X), with
conformal factor depending explicitly on the Ricci potential of the Kähler metric. Conversely,
starting with a Kähler metric in ±c1(X), one can always construct a Chern–Einstein metric,
unique up to scaling, in the conformal class.

The above result is essentially telling that the first-Chern–Einstein problem is uninteresting
for further investigations beside the fundamental Kähler–Einstein case or the non-Kähler
Calabi–Yau situation [44]. So let us discuss the more promising second-Chern–Einstein
problem.

Second-Chern–Einsteinmetrics

The second-Chern–Ricci form Ric(2)(ω) is obtained by tracing the two other indices of the
Chern-curvature tensor by means of the metric. Thus a second-Chern–Einstein metric [15]
is just a Hermitian metric on T X that is Hermitian–Einstein by taking trace with itself. A
straighforward computation for the conformal change of the second-Chern–Ricci form shows
the second-Chern–Einstein problem depends only on the conformal class [15]. In particular,
we can apply conformal methods to study the Einstein factor. Here we distinguish between
weak-second-Chern–Einstein and strong-second-Chern–Einstein metrics, according to the
Einstein factor being a function, respectively, constant.

Theorem B (See Theorem 7, after [16], [3, Theorems 3.1–4.1]) Let (Xn, g) be a compact
weak-second-Chern–Einstein manifold. Then we can choose a representative in the confor-
mal class of g such that its Einstein factor has a sign, equal to the sign of the degree of the
anti-canonical line bundle with respect to the conformal Gauduchon metric. Moreover, if
this sign is non-positive, then there is representative in the conformal class which is actually
strong-second-Chern–Einstein.

The assumption on the sign in the previous statement holdswhen theKodaira dimension of
X is greater than or equal to zero, and it would be removed if one can prove theChern–Yamabe
conjecture [3, Conjecture 2.1]. Thus, in this latter case, the weak-second-Chern–Einstein and
strong-second-Chern–Einstein problems would became fully equivalent.

As a consequence, on compact manifolds, one gets a series of obstructions [13,16,45,49]:
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• the possible signs of the Einstein factor are determined according to K X and K −1
X being

pseudo-effective or unitary flat (see Theorem 8);
• second-Chern–Ricci-flat metrics have Kod(X) ≤ 0 (see Corollary 9);
• positive second-Chern–Einstein manifolds do not have non-trivial holomorphic p-forms;

negative second-Chern–Einstein manifolds do not have non-trivial holomorphic p-
vector-fields, for p ≥ 1 (see Theorem 10).

We also noticed that second-Chern–Ricci metrics g are weakly-g-Hermitian–Einstein
[23,25,33], whence we get further obstructions as:

• the Bogomolov-Lübcke inequality (3.2) holds [5,31];
• the Kobayashi–Hitchin correspondence assures that the holomorphic tangent bundle is

g-semi-stable [24,32].

We conclude by providing several examples. Clearly holomorphically-parallelizable man-
ifolds are Chern-flat, hence strong-second-Chern–Einstein with zero Einstein factor. See [6]
for a characterization of compact Hermitian Chern-flat manifolds as quotients of complex
Hermitian Lie groups. Furthermore, the classical Hopf manifold and the new examples by
Fabio Podestà [38] are strong-second-Chern–Einstein, both with positive Einstein factor. On
the other hand, in the literature we did not find any example of non-Kähler second-Chern–
Einstein metric with negative Einstein factor, even local. The following result provide such
examples on (non-compact) four-dimensional solvable Lie groups with invariant complex
structures, as classified in [1,36,41,42], see [37]. Explicit computations are performed with
the help of Sage [40].

Theorem C (See Sect. 3.3.6) There are four-dimensional solvable Lie groups endowed with
invariant complex structures admitting strong-second-Chern–Einstein metrics with negative
Einstein factors.

We can perform explicit computations on compact quotients of four-dimensional solvable
Lie groups [21], including in particular the non-Kähler examples of Inoue surfaces and
Kodaira surfaces. As regards strong-second-Chern-Einstein metrics on these manifolds, we
have the following:

Theorem D (See Theorem 12) Inoue surfaces and Kodaira surfaces, seen as quotients of
solvable Lie groups endowed with invariant complex structures, do not admit any invariant
second-Chern–Einstein metric. On the other hand, Kodaira surfaces admit first-Chern–Ricci-
flat metrics.

Remark 1 In fact, as we learnt by Stefan Ivanov, second-Chern–Einstein metrics can not
exist on non-Kähler compact complex surfaces, except for the Hopf surfaces, thanks to [18,
Theorem 2], see also [15]. We ask whether there is any non-Kähler example of negative
second-Chern-Einstein metric on a compact complex manifold of higher dimension.

Remark 2 We have not investigated the third way to contract the Chern curvature yet, since
we are very skeptical about the possible geometric meaning of such quantity.

1 Preliminaries and notation

Let Xn be a complex n-dimensional manifold endowed with a Hermitian structure h =
g − √−1ω, where g is the associated Riemannian metric and ω = g(_, J_) is the
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associated (1, 1)-form; here, we consider T ∗ X endowed with the dual complex structure
Jα := α(J−1_). The holomorphic tangent bundle TX is then a holomorphic Hermitian
bundle, and we consider its Chern connection ∇Ch , namely, the unique Hermitian connec-
tion on TX extending the Cauchy-Riemann operator ∂̄ . We denote by � := (∇Ch)2 ∈
∧2(X;End TX )

g
 ∧2(X; TX ⊗ TX ) the curvature tensor of the Chern connection. In local
holomorphic coordinates z j , denoting with hi j̄ the Hermitian matrix representing the Her-
mitian structure h, the curvature �(ω) has the following expression:

�(ω) = �i j̄ k�̄

√−1dzi ∧ dz̄ j ⊗ √−1dzk ∧ dz̄�

where

�i j̄ k�̄ = − ∂2hk�̄

∂zi∂ z̄ j
+ h pq̄ ∂hkq̄

∂zi

∂h p�̄

∂ z̄ j
.

1.1 Chern–Ricci curvatures and Chern–Einsteinmetrics

There are essentially three, in general different, ways to contract the above quantity �(ω).
We can define two real (1, 1)-forms as follows, [17, Section I.4], see also [30, Section 3.1.2].
In local coordinates, the first Chern–Ricci form is

Ric(1)(ω) := tr�(ω) = tr� ¯i j••
√

−1dzi ∧ dz̄ j

= hk�̄�i j̄ k�̄

√−1dzi ∧ dz̄ j = −∂2 log det (hk�̄)

∂zi∂ z̄ j
dzi ∧ dz̄ j ,

and the second Chern–Ricci form is

Ric(2)(ω) = trg�••k�̄

√−1dzk ∧ dz̄� = hi j̄�i j̄ k�̄

√−1dzk ∧ dz̄�.

Note that Ric(1)(ω) is a closed (1, 1)-form that represents the first Chern class c1(X) :=
c1(TX ) = c1(K −1

X ) ∈ H2(X;R). More precisely, it represents the first Bott-Chern class

cBC
1 (X) ∈ H1,1

BC (X). On the other hand, Ric(2)(ω) is in general not closed.
We also notice that there is a third way to contract the curvature �, namely, define the

tensor

Ric(3)
k j̄

(ω) = trg�• j̄ k• = hi �̄�i j̄ k�̄ = hi �̄� j �̄i k̄ .

On a Kähler manifold, (or more in general for Hermitian metrics being Kähler-like in the
sense of [48],) the three Chern–Ricci curvatures coincide.

Definition 3 For i ∈ {1, 2} a Hermitian manifold (Xn, g) is called (i)-Chern–Einstein if

Ric(i)(ω) = λω,

for some real-valued function λ ∈ C∞(X;R), which is called the Einstein factor, where
Ric(i)(ω) denotes the (i)-contraction as above and ω denotes the natural defined (1, 1)-form
associated to the metric.

Sometimes we distinguish between weak-(i)-Chern–Einstein and strong-(i)-Chern–Einstein
metrics, according to the Einstein factor being a function, respectively, constant.

The Chern-scalar curvature is defined as

SCh(ω) := trgRic
(1) = trg Ric

(2) = hi j̄ hk�̄�i j̄ k�̄,
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Remarks on Chern–Einstein Hermitian metrics 1711

and the third Chern-scalar curvature is defined as

S(3)(ω) := hk j̄ hi �̄�i j̄ k�̄.

(See [30, Equation (4.18)] for a comparison between SCh and S(3).) Clearly, if ω is either
(1)-Chern–Einstein or (2)-Chern–Einstein with Einstein factor λ, then SCh(ω) = nλ.

Remark 4 Compare [2,10–12,20,28] in the almost-complex setting.

1.2 Formulas for the conformal changes

Let ω f := e f ω be a conformal change of ω. Then we compute for the curvature form
� f := �(e f ω) of the Chern connection for such metric:

(� f )i j̄ k�̄ = e f (�i j̄ k�̄ − hk�̄∂
2
i j̄

f ).

Thus:

Ric(1)(ω f ) = Ric(1)(ω) − n
√−1∂∂̄ f , (1.1)

Ric(2)(ω f ) = Ric(2)(ω) − ω �Ch f , (1.2)

where�Ch denotes the Chern–Laplacian with respect toω, namely,�Ch f := 1
2 (ω, ddc f )ω

= �ω f + (d f , ϑ)ω = −2h jk̄∂2
j k̄

f , where ϑ is defined by dωn−1 =: ϑ ∧ ωn−1. See [28,

Corollary 4.4] in the more general almost-Hermitian setting.

2 First-Chern–Einsteinmetrics

Let Xn be a compact complex manifold endowed with a Hermitian metric ω. Consider
the Chern connection ∇Ch , and the (1)-Chern–Ricci form. Denote by T (X , Y ) := ∇Ch

X Y −
∇Ch

Y X−[X , Y ] the torsion tensor of∇Ch , and by τ
loc:= T k

jkdz j its trace-of-torsion form. In this

section, we investigate the condition weak-(1)-Chern–Einstein, namely, when Ric(1)(ω) =
λω for λ ∈ C∞(X;R).

First of all, we notice that the Einstein factorλ is constant non-zero if and only if the torsion
form τ vanishes identically, by [19, Theorem 4]. In this case, the metric is actually Kähler,
since dRic(1)(ω) = 0. (The same conclusion by [19] holds true for the strong-(3)-Chern–
Ricci curvature, see [4, Theorem 4.1]: namely, (3)-Chern–Einstein metrics with constant
non-zero Einstein factor are actually Kähler.)

A way to construct weak-(1)-Chern–Einstein metrics is via the following completely
elementary trick based on the

√−1∂∂̄-lemma. If Xn is compact and its first Chern class c1(X)

has a sign, i.e., there exists a Kähler metric ω ∈ ±2πc1(X) = ±2πcBC
1 (X) ∈ H1,1

BC (X),
then there exists a function f ∈ C∞(X;R) (the Ricci potential), unique up to a constant,

such that Ric(1)(ω) = ±ω + √−1∂∂̄ f . Consider the conformal metric ω f := e
f
n ω. Then,

thanks to (1.1),

Ric(1)(ω f ) = Ric(1)(ω) − √−1∂∂̄ f = ±ω = ±e− f
n ω f .

Note that if we instead assume cBC
1 (X) = 0, the same argument gives a weak-(1)-Chern–

Ricci-flat metric, unique up to scaling in its conformal class.
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1712 D. Angella et al.

Our first result shows that all weak-(1)-Chern–Einstein metrics with non-zero Einstein
factor are constructed in the above way. Therefore, in non-Kähler geometry, the only inter-
esting case is for (1)-Chern–Einstein-flat metrics. Note that our result has a flavor similar to
the picture described in [9,27] in the case of complex surfaces.

Theorem 5 Let (Xn, g) be a compact weak-(1)-Chern–Einstein manifold of dimension n ≥ 2,
and suppose that the Einstein factor λ is not identically equal to zero. Then:

• X is Fano or anti-Fano, i.e. the first Chern class c1(X) has a sign;
• g is conformally equivalent to a Kähler metric η ∈ ±2πc1(X);

• up to scaling, λ must be given by ±e− f
n , where f is a Ricci potential for η.

In particular, such metrics are unique up to scaling in their conformal class.

Proof Letω be a weak-(1)-Chern–Einstein metric with Einstein factor λ not identically equal
to zero, and let η be the unique Gauduchon representative of volume one in its conformal
class [14, Théorème 1]. Thus ω = egη for some function g. Define the function λ̃ := λ eg

and consider the (n − 1, n)-form

λ̃n−1
√−1 ∂λ̃n−1 ∧ ηn−1.

Note that, by the Chern–Einstein condition,

∂(λ̃η) = ∂(λω) = ∂(Ric(1)(ω)) = 0.

Hence λ̃∂η = −∂λ̃ ∧ η. Now we compute

λ̃n−1
√−1 ∂∂λ̃n−1 ∧ ηn−1

= d
(
λ̃n−1

√−1 ∂λ̃n−1 ∧ ηn−1
)

− ∂λ̃n−1 ∧ √−1 ∂λ̃n−1 ∧ ηn−1

+λ̃n−1
√−1 ∂λ̃n−1 ∧ ∂ηn−1

= d
(
λ̃n−1

√−1 ∂λ̃n−1 ∧ ηn−1
)

.

Recall that theHodge-deRhamLaplacian�d,η = [d, d∗
η ] and theChern Laplacian�Ch

η =
2
√−1 trη∂∂ on smooth functions are related by [17, pages 502–503]:

�Ch
η f = �d,η f + (d f , θη)η,

where θη denotes the co-closed torsion 1-form of the Gauduchon metric, that is, dηn−1 =
θη ∧ ηn−1, and d∗

η θη = 0. Integrating on the compact manifold X , we get:

0 =
∫

X
λ̃n−1

√−1 ∂∂λ̃n−1 ∧ ηn−1

= 1

2n

∫

X
λ̃n−1�Ch

η λ̃n−1ηn

= 1

2n

∫

X
λ̃n−1�d,ηλ̃

n−1ηn + 1

2n

∫

X
λ̃n−1

(
dλ̃n−1, θη

)

η
ηn

= 1

2n

∫

X

∣∣∣dλ̃n−1
∣∣∣
2
ηn + 1

4n

∫

X

(
dλ̃2n−2, θη

)

η
ηn

= 1

2n

∫

X

∣∣∣dλ̃n−1
∣∣∣
2
ηn .

Thus our function λ̃ is a non-zero constant and η is in fact Kähler.
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Remarks on Chern–Einstein Hermitian metrics 1713

Using again the Chern–Einstein condition we find

2πc1(X) = 2πcBC
1 (X) � Ric(1)(η) = λ̃η + √−1 ∂∂̄(ng).

Hence the first Chern class c1(X) ≶ 0 depending on the value of λ̃, i.e., X is Fano or
anti-Fano. Thus our original weak-(1)-Chern–Einstein metric is conformally Kähler, and
the Einstein factor λ is given, up to scaling, by the Ricci potential of a Kähler metric in
±2πc1(X). Uniqueness up to scaling of weak-(1)-Chern–Einstein metrics in their conformal
class follows immediately by the uniqueness up to constant of the Ricci potential. 
�

In particular, (1)-Chern–Einstein metrics on non-Kähler manifolds occur only for (1)-
Chern–Ricci-flat metrics. In particular, cBC

1 (X) = 0, which also implies c1(X) = 0, (but
not the converse: compare shape e.g., the Hopf manifold in Example 3.3.1). In this case, the
following result gives a complete description:

Theorem 6 (See [46, Proposition 1.1, Theorem 1.2], [47, Corollary 2]) On a compact Her-
mitian manifold (Xn, g) with cBC

1 (X) = 0, there exists a strong-(1)-Chern–Einstein metric
with Einstein factor λ = 0. It can be given either as a conformal transformation eϕg of g;
or as associated to the form ω + √−1 ∂∂ϕ where ω is the fundamental form of g. In both
cases, ϕ is unique up to additive constants.

In [44], See also [39], by proving theGauduchon’s generalization of theCalabi’s conjecture
for compact complex manifolds satisfying cBC

1 (X) = 0, it is proved that it is also always
possible to find Gauduchon (1)-Chern–Ricci-flat metrics, hence providing existence of non-
Kähler special metrics satisfying both curvature and cohomological conditions.

3 Second-Chern–Einsteinmetrics

We consider now the second Chern–Ricci curvature, and the corresponding Chern–Einstein
condition.

3.1 Second-Chern–Einsteinmetrics in the conformal class

The first fundamental remark is that, thanks to (1.2), the weak-(2)-Chern–Einstein property
is a property of the conformal Hermitian structure, and not just of the Hermitian structure, see
also [15]. More precisely, under the conformal change ω �→ exp(− f ) ·ω, the Einstein factor
changes as λ �→ exp( f ) · (

λ + �Ch
ω f

)
. In particular, thanks to the Gauduchon conformal

methods [16], (see e.g., the preliminary step in the Proof of Theorem 4.1 in [3],) we can
assume that λ has a sign without loss of generality.

The sign is determined by an invariant of the conformal class as follows. In the conformal
class {ω}, choose the unique Gauduchon metric η = e f ω with unitary volume, thanks to [16,
Théorème 1]. Define the Gauduchon degree of {ω} as the degree of the anti-canonical line
bundle K −1

X with respect to the Gauduchon metric η, namely,

�X ({ω}) :=
∫

X
cBC
1 (K −1

X ) ∧ 1

(n − 1)!η
n−1 =

∫

X
SCh(η)ηn .

Note indeed that, if η is weak-(2)-Chern–Einstein with Einstein factor λη, so that ω

is weak-(2)-Chern–Einstein with Einstein factor λω = e f (λη + �Ch
η f ), then SCh(η) =

nλη = ne− f λω −�Ch
η f , where

∫
X �Ch

η f ηn = 0. In particular, if Kod X ≥ 0, (respectively,
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1714 D. Angella et al.

Kod X > 0,) then by [16], see also [17, §I.17], we get that �X ({η}) ≤ 0, (respectively,
�X ({η}) < 0,) for any conformal class {η}.

In the notation as above, the problem of finding a strong-(2)-Chern–Einstein metric in {ω}
with constant Einstein factor, reduces to solve the Liouville-type equation

�Ch
η f + 1

n
SCh(η) = λe− f (3.1)

for ( f , λ) ∈ C∞(X;R) ×R. We introduced and investigated this equation (3.1) in [3] under
the name of Chern–Yamabe equation. In particular, we proved [3, Theorems 3.1-4.1] that,
if �X ({ω}) is non-positive, then the Chern–Yamabe equation admits a unique solution up to
scaling. Summarizing:

Theorem 7 ([16], [3, Theorems 3.1-4.1]) Let (Xn, g) be a compact Hermitian manifold, and
assume that the conformal class of g is weak-(2)-Chern–Einstein. Then we can choose a
representative in the conformal class of g such that the Einstein factor has a sign, equal to
the sign of the Gauduchon degree �X ({g}).

Moreover, if �X ({g}) ≤ 0, (for example, if Kod X ≥ 0,) then we can choose a represen-
tative in the conformal class having non-positive constant Einstein factor. If one can prove
the Chern–Yamabe conjecture [3, Conjecture 2.1], then the same holds true without any
assumption on the sign of the Gauduchon degree.

Note in particular that the existence of a constant positive Einstein factor does not force
its uniqueness in the conformal class, compare [3, Section 5.5].

The possible values for the sign of weak-(2)-Chern–Einstein metrics are summarized in
the following:

Theorem 8 ([45], [49, Theorem 1.1, Theorem 3.4]) Let Xn be a compact complex manifold.
We look at the image of the application �X that associates to each Hermitian conformal class
{η} ∈ HermCon f (X), its Gauduchon degree �X ({η}) ∈ R:

• �X (HermCon f (X)) = R if and only if neither K X nor K −1
X is pseudo-effective;

• �X (HermCon f (X)) = R
>0 if and only if K −1

X is pseudo-effective and non-unitary-flat;
• �X (HermCon f (X)) = R

<0 if and only if K X is pseudo-effective and non-unitary-flat;
• �X (HermCon f (X)) = {0} if and only if K X is unitary-flat.

We recall that a holomorphic line bundle over (Xn, g) compact Hermitian manifold is
called pseudo-effective if it admits a (possibly singular) Hermitian metric with non-negative
curvature (in the sense of currents); it is called unitary-flat if it admits a smooth Hermitian
metric with zero curvature.

In particular, one gets an obstruction for the existence of weak-(2)-Chern–Einstein-flat
metrics:

Corollary 9 ([16], [49, Theorem 1.4]) Let Xn be a compact complex manifold. It admits a
weak-(2)-Chern–Einstein metric with Einstein factor λ = 0 only if:

• either: Kod X = −∞ and neither K X nor K −1
X is pseudo-effective;

• or: Kod X = −∞ and K X is unitary-flat;
• or: Kod X = 0 and K X is holomorphically-torsion (namely, there exists m ∈ N such

that K ⊗m
X is trivial; in particular, K X is unitary-flat).

Obstructions shape à la Bochner follow by [13], see also [26, Theorem at page 1] and,
more in general, [29, Theorem 1.1], give further obstructions:
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Remarks on Chern–Einstein Hermitian metrics 1715

Theorem 10 ([13,Corollaire 2 at page 124], [29,Corollary 1.2])Let Xn be a compact complex
manifold. If it admits a weak-(2)-Chern–Einstein metric with Einstein factor λ �= 0, then:

• in case λ ≥ 0, then H p,0
∂

(X) = H0(X; ∧pT ∗
X ) = 0 for any p ≥ 1. In particular, the

arithmetic genus is χ(X;OX ) = 1, by the Hirzebruch-Riemann-Roch theorem, and X
does not admit finite covers;

• in case λ ≤ 0, then H0(X; ∧pTX ) = 0 for any p ≥ 1. In particular, there are no
non-trivial holomorphic vector fields.

As for strong-(2)-Chern–Einstein metric with Einstein factor λ = 0, then any holomorphic
p-form and any holomorphic p-vector field is parallel with respect to the Chen connection.

By Theorem 7, we then know that the hypothesis of the above Theorem 10 hold depending
on the sign of the Gauduchon degree of a (2)-Chern–Einstein conformal class.

3.2 Second-Chern–Einsteinmetrics as Hermitian-Einsteinmetrics on the tangent
bundle

Another observation is that weak-(2)-Chern–Einstein metrics g yield that that the holomor-
phic tangent bundle (TX , g) isweakly-g-Hermitian-Einstein, see e.g. [23,25,33]. In particular,
one has the obstruction given by the Bogomolov-Lübke inequality [5,31], see e.g. [33, The-
orem 2.2.3]: (

(n − 1)c1(X)2 − 2nc2(X)
) ∧ ωn−1 ≤ 0, (3.2)

and the Kobayashi-Hitchin correspondence [23,24,32], see e.g. [33, Theorem 2.3.2], namely,
the holomorphic tangent bundle is g-semi-stable.

In analogy to the Kähler-Einstein/K-stable case, it seems interesting to understand if there
is amore refined version of stability of the complex manifold itself (plus some extra data, such
as the Aeppli class of the (n − 1)th power of the Gauduchon representative of a conformal
class) that characterizes existence of (2)-Chern–Einstein metrics.

Remark 11 Projectively flatmetrics on the holomorphic tangent bundle of a compact complex
manifold are a special instance of second-Chern–Einstein metrics. In [7] is given a classifi-
cation of them and is proven that each of them is strong-second-Chern–Einstein; futhermore
there is shown (see also [35]) that projectively flat metrics providing examples of negative
strong-second-Chern–Einstein metrics do not exist.

3.3 Examples of second-Chern–Einstein metrics

In this section we concentrate on examples of Chern–Einstein metrics. We begin with a first,
classical and illustrative example:

3.3.1 Hopf manifold

TheHopf surface admits a strong-(2)-Chern–EinsteinHermitianmetricwith constant positive
Einstein factor, see e.g. [49, Example 5.1], [29, Section 6], [30, Theorem 1.5].

Let X2 = (C2\0)/� be a Hopf surface, namely, a compact complex surface with universal
cover C2\0 and fundamental group isomorphic to Z. We have Kod X = −∞. The anti-
canonical bundle K −1

X is pseudo-effective, while the canonical bundle K X is not pseudo-
effective. In particular, the Gauduchon degree is positive, �X ({η}) > 0, for any conformal
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class {η}. The first Bott-Chern class is not zero, cBC
1 (X) �= 0, while its image in de Rham

cohomology is zero, c1(X) = 0. We have that h p,0(X) = 0 and H0(X; ∧pTX ) = 0 for any
p ≥ 1, and that the holomorphic tangent bundle TX is semi-stable.

Thanks to Theorem 5, the manifold X does not admit any (1)-Chern–Einstein metric,
because cBC

1 (X) �= 0 and it is not Kähler.

On the other hand, consider Hopf surfaces with � generated by

(
α 0
0 β

)
where 0 < |α| =

|β| < 1. Consider the standard locally conformally Kähler Hermitian metric induced by a
conformal change of the flat metric onC2 as belowwith r = 1: it is straightforward to see that
it is strong-(2)-Chern–Einstein with constant positive Einstein factor λ = 2 (e.g. [29, Section
6]). More concretely, looking at the diffeomorphism type X 
 S

1 × SU(2), the manifold X
is described by a coframe of global (1, 0)-forms {ϕ1, ϕ2} with structure equations

dϕ1 = √−1ϕ1 ∧ ϕ2 + √−1ϕ1 ∧ ϕ̄2, dϕ2 = −√−1ϕ1 ∧ ϕ̄1.

For the invariant metric with fundamental form

ω =
√−1

2
r2 ϕ1 ∧ ϕ̄1 +

√−1

2
r2 ϕ2 ∧ ϕ̄2,

where r ∈ R\{0}, we compute the Chern curvature: the only non-zero components are

�11̄11̄ = 1

2
r2, �11̄22̄ = −1

2
r2,

and the ones corresponding to the symmetries. In particular, the first-Chern–Ricci form is

Ric(1) = 2
√−1ϕ1 ∧ ϕ̄1

and the second-Chern–Ricci form is

Ric(2) = √−1ϕ1 ∧ ϕ̄1 + √−1ϕ2 ∧ ϕ̄2 = 2

r2
ω.

namely, the standard metric ω is strong-(2)-Chern–Einstein with constant Einstein factor
λ = 2

r2
. The Chern-scalar curvature is then SCh = 4

r2
.

We also notice that the thirdChern–Ricci tensor has the only non-zero component Ric(3)
11̄

=
1, and it gives the same third Chern-scalar curvauture S(3) = SCh .

3.3.2 Podestà examples

More examples of strong-(2)-Chern–Einstein metrics with constant positive Einstein factor
are provided by F. Podestà in [38] among C-manifolds. They are compact simply-connected
complex homogeneous spaces, given by the product of two G j -homogeneous spaces of the
form G j/L j where L j is a connected subgroup of G j that coincides with the semisimple part
of the centralizer of a torus in G j , for j ∈ {1, 2}. Manifolds in such class are T2-bundle over
the product of two compact irreducible Hermitian symmetric spaces, and can be endowed
with a two-parameter family of inequivalent invariant complex structures, which do not admit
either Kähler or balanced metrics. Examples are given by the Calabi-Eckmann manifolds. In
[38, Theorem 3], it is shown that, for any such invariant complex structure, there exists an
invariant Hermitian metric being strong-(2)-Chern–Einstein with Einstein factor equal to 1.
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3.3.3 Compact complex surfaces diffeomorphic to solvmanifolds

Other than the Kähler-Einstein case, compact complex surfaces being first-Chern–Einstein
are completely understood thanks to the condition cBC

1 (X) = 0: they include Kodaira sur-
faces beside Calabi-Yau surfaces (namely, complex 2-dimensional tori, Enriques surfaces,
bi-elliptic surfaces, K3 surfaces). In [18, Theorem 2], it is proven that the only non-Kähler
compact complex surfaces admitting second-Chern–Einstein metrics are the Hopf surfaces.
Here, we perform explicit computations on compact complex (non-Kähler) surfaces diffeo-
morphic to solvmanifolds, namely, compact quotients of solvable Lie groups, according to
[21, Theorem 1]. Besides the Kähler case (complex torus, hyperelliptic surface), we have
Inoue surfaces and Kodaira surfaces, endowed with invariant complex structures. We con-
sider invariant Hermitian metrics: in the notation above (we recall that g = ω(J_, _), and
Jα = α(J−1_) on the dual), with respect to a chosen coframe {ϕ1, ϕ2} of invariant (1, 0)-
forms, invariant Hermitian metrics are given by

ω =
√−1

2
r2ϕ1 ∧ ϕ̄1 +

√−1

2
s2ϕ2 ∧ ϕ̄2 + 1

2
uϕ1 ∧ ϕ̄2 − 1

2
uϕ2 ∧ ϕ̄1 (3.3)

varying r , s ∈ R\{0} and u ∈ C such that r2s2 − |u|2 > 0.
We give here their curvature tensors, showing by explicit computations that:

Theorem 12 On Inoue and Kodaira surfaces, seen as quotients of solvable Lie groups
endowed with invariant complex structures, there is no invariant Hermitian metric being
strong-(2)-Chern–Einstein.

Proof The proof is based on a case-by-case check.

Inoue SM The structure equations can be given as dϕ1 =
√−1
4 ϕ1 ∧ ϕ2 −√−1

4 ϕ1 ∧ ϕ̄2, dϕ2 =
√−1
2 ϕ2 ∧ ϕ̄2. The first-Chern–Ricci form is

Ric(1) = −
√−1
4 ϕ2 ∧ ϕ̄2 and the Chern-scalar curvature is SCh =

− r2

2 (r2s2−|u|2) < 0. We also report the third-Chern-scalar curvature:

S(3) = − r2 (8 r2s2+|u|2)
8 (r2s2−|u|2)2 . Looking at the second-Chern–Einstein tensor

Ric(2)(ω)−λω (whose vanishing forces λ = 1
2 SCh < 0) as for the coef-

ficient in ϕ1 ∧ ϕ̄1, we get 8λr2(r2s2 − |u|2)2 − r4(4r2s2 + 5|u|2) < 0,
so the second-Chern–Einstein equation does not have any solution.

Inoue S± The structure equations can be given as dϕ1 = 1
2
√−1

ϕ1 ∧ ϕ2 +
1

2
√−1

ϕ2 ∧ ϕ̄1 +
√−1
2 ϕ2 ∧ ϕ̄2, dϕ2 = 1

2
√−1

ϕ2 ∧ ϕ̄2. The first-Chern–

Ricci form is Ric(1) = −
√−1
2 ϕ2 ∧ ϕ̄2 and the Chern-scalar curvature

is SCh = − r2

r2s2−|u|2 < 0. In fact, recall that, by [45, Remark
4.2], it holds �X ({ω}) < 0 for any conformal class {ω}. Looking
at the second-Chern–Einstein tensor Ric(2)(ω) − λω (whose vanish-
ing forces λ = 1

2 SCh < 0) as for the coefficient in ϕ1 ∧ ϕ̄1, we
get 2λr2(r2s2 − |u|2)2 − r4(r4 + r2s2 + |u|2 + 2�u2) < 0 since
r2s2 + |u|2 + 2�u2 ≥ r2s2 + |u|2 − 2|u|2 = r2s2 − |u|2 > 0, so,
there is no second-Chern–Einstein metric on S+. In fact, S+ admits
non-trivial holomorphic vector fields by [22, Proposition 3].
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Primary Kodaira The structure equations can be given as dϕ1 = 0, dϕ2 =
√−1
2 ϕ1 ∧ ϕ̄1.

It is known that the first-Chern–Ricci form is zero: Ric(1) = 0, for any
invariant metric. The Chern-scalar curvature is then zero, too; the third-
Chern-scalar curvature is S(3) = − s6

2 (r2s2−|u|2)2 . Looking at the second-

Chern–Einstein equation Ric(2)(ω) − λω = 0 (whence λ = 1
2 SCh = 0)

as for the coefficient in ϕ1 ∧ ϕ̄2, we get u
(
2λ(r2s2 − |u|2)2 − s6

) = 0,
whence u = 0; then the coefficient in ϕ1 ∧ ϕ̄1, that is

√−1s4(r2s2 −
2|u|2), becomes

√−1r2s6, which is never zero.
Secondary Kodaira The structure equations can be given as dϕ1 = − 1

2ϕ
1 ∧ϕ2 + 1

2ϕ
1 ∧ ϕ̄2,

dϕ2 =
√−1
2 ϕ1∧ϕ̄1. Clearlywe known that the invariantmetrics are first-

Chern–Ricci-flat. In particular, SCh = 0. Looking at the second-Chern–
Einstein equation Ric(2)(ω) − λω = 0, where in fact λ = 0, as for the
coefficient in ϕ1 ∧ ϕ̄2, we get−us2

(√−1(r2s2 − |u|2) + (r4 + s4)
) =

0, whence u = 0; then the coefficient in ϕ1 ∧ ϕ̄1 becomes
√−1 s2

4r2
,

which is never zero. 
�

3.3.4 Snowmanifold S5

Herewegive an example of a non-compact strong-(2)-Chern–Einsteinmanifoldwith constant
zeroEinstein factor. It is given by an invariantHermitianmetric on a four-dimensional simply-
connected solvable real Lie group endowed with an invariant complex structure. Complex
structures on four-dimensional Lie algebras are classified by [1,36,41,42], see [37].

More precisely, we consider the Lie group S5 with structure equations [X , Y ] = Y ,
[X , W ] = �W with � �= 0 a real parameter, the other brackets being zero, with respect to a
basis {X , Y , W , Z}. The invariant complex structure is given by the coframe of (1, 0)-forms
{ϕ1, ϕ2} such that

dϕ1 = 0, dϕ2 = �

2
ϕ1 ∧ ϕ2 − �

2
ϕ2 ∧ ϕ̄1.

It is not holomorphically-parallelizable. Consider the generic Hermitian metric

ω = √−1r2ϕ1 ∧ ϕ̄1 + √−1s2ϕ2 ∧ ϕ̄2 + uϕ1 ∧ ϕ̄2 − ūϕ2 ∧ ϕ̄1

where r �= 0, s �= 0, r2s2 − |u|2 > 0. One sees that is it not Kähler. We notice that such
a metric is locally conformally Kähler if and only if u = 0, and in this case the Lee form
is θ = 1

2 �ϕ1 + 1
2 �ϕ̄1 (we recall that this means that dω = θ ∧ ω with dθ = 0). Explicit

computations show that

Ric(1) = 0,

and that the non-zero component of Ric(2) are

Ric(2)
11̄

= �2r2s2|u|2
4

(
r2s2 − |u|2)2

, Ric(2)
12̄

= −
√−1 �2r2s4u

4
(
r2s2 − |u|2)2

, Ric(2)
22̄

= �2s4|u|2
4

(
r2s2 − |u|2)2

,

and the symmetric ones. Moreover, the Chern-scalar curvatures is clearly SCh = 0. Summa-
rizing, ω is always strong-(1)-Chern–Einstein with zero Einstein factor, for any value of the
parameters r , s, u. Moreover, metrics with u = 0 are also strong-(2)-Chern–Einstein with
zero Einstein factor (in fact, they are Chern-flat).
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For the sake of completeness, we also list the non-zero component of the third Chern–Ricci

tensor: Ric(3)
12̄

= −
√−1 �2s2u

4 (r2s2−|u|2) , and the third Chern-scalar curvature S(3) = − �2s2|u|2
2 (r2s2−|u|2)2 .

We finally describe examples of complete negative Chern–Einstein metrics on Ovando
manifolds:

3.3.5 Ovando Kähler manifold r2r2

We give an example of a non-compact complete Kähler-Einstein manifold with negative
Einstein factor. It is given on the four-dimensional Lie group r2r2 = (0,−12, 0,−34) in
Salamon notation, with invariant complex structure characterized by the coframe (ϕ1, ϕ2) of
invariant (1, 0)-forms with structure equations

dϕ1 = −1

2
ϕ1 ∧ ϕ̄1, dϕ2 = −1

2
ϕ2 ∧ ϕ̄2.

We consider an invariant metric ω of the form (3.3). We compute the Chern–Ricci forms:

Ric(1)(ω) = −
√−1

2
ϕ1 ∧ ϕ̄1 −

√−1

2
ϕ2 ∧ ϕ̄2,

Ric(2)(ω) = −
√−1

(
2 r4s4 − √−1 r2|u|2ū − (−√−1 r2u2 + (

r4 + 3 r2s2
)
u
)
u
)

4
(
r2s2 − |u|4)2

ϕ1 ∧ ϕ̄1

−
√−1

(
r2s2u2 − (

r2s2u − (√−1 r2 + √−1 s2
)
u2

)
u
)

4
(
r2s2 − |u|4)2

ϕ1 ∧ ϕ̄2

+
√−1

(
r2s2|u|2 − (

r2s2 − (√−1 r2 + √−1 s2
)
u
)
u2)

4
(
r2s2 − |u|4)2

ϕ2 ∧ ϕ̄1

−
(√−1

(
2 r4s4−√−1s2|u|2ū−(−√−1 s2u2 + (

3 r2s2+s4
)
u
)
u
)

4
(
r2s2−|u|4)2

)

ϕ2 ∧ ϕ̄2.

For the Kähler diagonal metric

ωdiag =
√−1

2
ϕ1 ∧ ϕ̄1 +

√−1

2
ϕ2 ∧ ϕ̄2

corresponding to the parameters r = 1, s = 1, u = 0, we get

Ric(2)(ωdiag) = Ric(1)(ωdiag) = −
√−1

2
ϕ1 ∧ ϕ̄1 −

√−1

2
ϕ2 ∧ ϕ̄2 = −ωdiag,

that is, the diagonal metric is complete Kähler-Einstein with negative Einstein factor.

3.3.6 Ovando non-Kähler manifold r4,−1,−1

We give an example of a non-compact non-Kähler strong-(2)-Chern–Einstein manifold
with negative Einstein factor. It is given on the four-dimensional Lie group r4,α,β =
(14, α24, β34, 0) with α = β = −1, in Salamon notation, with invariant complex struc-
ture characterized by the coframe (ϕ1, ϕ2) of invariant (1, 0)-forms with structure equations

dϕ1 = −
√−1

2
ϕ1 ∧ ϕ̄1, dϕ2 = −

√−1

2
ϕ1 ∧ ϕ2 −

√−1

2
ϕ2 ∧ ϕ̄1.
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We consider an invariant metric ω of the form (3.3). By computing dω = −
√−1
2 ūϕ121̄ −

1
2 s2ϕ122̄ +

√−1
2 uϕ11̄2̄ − 1

2 s2ϕ21̄2̄, we notice that ω is never Kähler.
We compute the Chern–Ricci forms:

Ric(1)(ω) = −√−1ϕ1 ∧ ϕ̄1,

Ric(2)(ω) = −
√−1 r2s2

2
(
r2s2 − |u|2)ϕ1 ∧ ϕ̄1 − s2u

2
(
r2s2 − |u|2)ϕ1 ∧ ϕ̄2

+ s2u

2
(
r2s2 − |u|2)ϕ2 ∧ ϕ̄1 −

√−1 s4

2
(
r2s2 − |u|2)ϕ2 ∧ ϕ̄2

= − s2

r2s2 − |u|2 ·
(√−1

2
r2ϕ1 ∧ ϕ̄1 + 1

2
uϕ1 ∧ ϕ̄2 − 1

2
uϕ2 ∧ ϕ̄1

+
√−1

2
s2ϕ2 ∧ ϕ̄2

)

= 1

2
SCh · ω.

where the Chern-scalar curvature is

SCh(ω) = − 2 s2

r2s2 − |u|2 < 0.

Clearly, ω is never (1)-Chern–Einstein, and is always strong-(2)-Chern–Einstein with
negative Einstein factor.

Remark 13 Also in view of [18] in complex dimension two, it would be very interesting to
find (if any!) examples of negative compact non-Kähler (2)-Chern–Einstein metrics.
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