
Mathematische Zeitschrift (2020) 296:239–259
https://doi.org/10.1007/s00209-019-02417-3 Mathematische Zeitschrift

Covering classes, strongly flat modules, and completions

Alberto Facchini1 · Zahra Nazemian2

Received: 5 September 2018 / Accepted: 5 October 2019 / Published online: 6 November 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We study some closely interrelated notions ofHomological Algebra: (1)We define a topology
on modules over a not-necessarily commutative ring R that coincides with the R-topology
defined by Matlis when R is commutative. (2) We consider the class SF of strongly flat
modules when R is a right Ore domain with classical right quotient ring Q. Strongly flat
modules are flat. The completion of R in its R-topology is a strongly flat R-module. (3) We
prove some results related to the question whether SF a covering class implies SF closed
under direct limits. This is a particular case of the so-called Enochs’ Conjecture (whether
covering classes are closed under direct limits). Some of our results concern right chain
domains. For instance, we show that if the class of strongly flat modules over a right chain
domain R is covering, then R is right invariant. In this case, flat R-modules are strongly flat.

Keywords Covering class · Strongly flat module · Completion · Cotorsion module ·
R-topology

Mathematics Subject Classification Primary 16E30 · 16W80; Secondary 18G15

1 Introduction

The aim of this paper is to highlight some relations between completions, strongly flat mod-
ules and perfect rings in the non-commutative case.We explore the connections between some
notions of Homological Algebra (cotorsion modules) and topological rings (completions in
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some natural topologies). These connections are well known for modules over commutative
rings, thanks to Matlis, who proved that the completion in the R-toplogy for an integral
domain R is closely related to the cotorsion completion functor Ext1R(K ,−). Here Q is
the field of fractions of R and K := Q/R [20]. We investigate these connections in the
non-commutative case, defining a suitable R-topology on any module over a not-necessarily
commutative ring R. This leads us to the study of strongly flat modules, because the com-
pletion of R in its R-topology turns out to be a strongly flat R-module (Corollary 5.13).

We consider strongly flat modules over non-commutative rings as defined in [13, Sect. 3].
The class of strongly flat modules lies between the class of projective modules and the class
of flat modules. In particular, we study when the class of strongly flat modules is covering,
because this is related to an open problem posed by Enochs, that is, whether “every covering
class is closed under direct limits” (see. for example [18, Open problem 5.4]). Since flat
modules are direct limits of projective modules, the class of strongly flat modules is closed
under direct limits if and only if flat modules are strongly flat. Bazzoni and Salce [4] gave
a complete answer to this question for modules over commutative domains, completely
determining when the class of strongly flat modules over a commutative domain is covering.
Subsequently, Bazzoni and Positselski generalised this to arbitrary commutative rings [5].
They proved that, for a commutative ring R, the class SF of strongly flat modules is covering
if and only if flat modules are strongly flat, if and only if R/aR is a perfect ring for every
regular element a ∈ R and the classical ring of quotients of R is perfect. In our Example 5.21,
we will show that there exist non-invariant chain domains R for which End(R/I ) is perfect
for every non-zero principal right or left ideal I of R, but the class of strongly flat left R-
modules is not covering. Very recent papers related to these topics are the articles [6] by
Bazzoni and Positselski and [22] by Positselski.

For a commutative ring R, the set of regular elements is always an Ore set, and if Q
denotes the classical quotient ring of R, the class of strongly flat modules is ⊥{Q⊥} [15]. The
generalisation of strongly flatmodules to non-commutative rings given in [13] depends on the
choice of the overring Q of R. More precisely, if the inclusion ϕ : R → Q is a bimorphism
in the category of rings, that is, ϕ is both a monomorphism and an epimorphism, we assume
RQ is a flat left R-module. A left R-module RM is Matlis-cotorsion if Ext1(RQ, RM) = 0
[13]. Let MC denote the class of Matlis-cotorsion left R-modules. For any class of left
R-modules A, set ⊥A := { B ∈ R − Mod | Ext1R(B, A) = 0 for every A ∈ A } and
A⊥ := { B ∈ R−Mod | Ext1R(A, B) = 0 for every A ∈ A }. A left R-module is strongly
flat if it is in ⊥MC. The class of strongly flat left R-modules will be denoted by SF . By [18,
Theorem 6.11], the cotorsion pair (SF,MC) is complete, that is, every left R-module has a
specialMC-preenvelope (or, equivalently, every left R-module has a special SF-precover).
Thus, by [18, Corollary 6.13], the class SF consists of all direct summands of modules N
such that N fits into an exact sequence of the form

0 → F → N → G → 0,

where F is a free R-module and G is {Q}-filtered. For the terminology, see [13].
Whenever R is a right Ore domain, i.e., the subset of non-zero elements is a right Ore set,

the class of strongly flat left R-modules is the class ⊥{Q⊥}, where Q is the classical right
quotient ring of R.

Several of our results about strongly flat modules are for modules over a nearly simple
chain domain. Recall that a chain domain R, that is, a not-necessarily commutative integral
domain for which the modules RR and R R are uniserial, is nearly simple if it has exactly
three two-sided ideals, necessarily R, its Jacobson radical J (R) and 0. The reason why we
concentrate on chain domains R with classical quotient ring Q is due to the fact that for
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these rings the R-module RK := Q/R is uniserial, and thus, in the study of End(RK ),
we can take advantage of our knowledge of the endomorphism rings of uniserial modules
[10–12,14,23,24]. In our Example 5.21, we also take advantage of our knowledge of the
endomorphism rings of cyclically presented modules over local rings [1].

If R is a right chain domain and the class of strongly flat R-modules is covering, then R is
right invariant, that is, aR = Ra for every a ∈ R. In this case, flat modules are strongly flat
(equivalently, the class SF of strongly flat modules is closed under direct limits). We began
this paper in September 2017, when both of us were visiting the Department of Algebra of
Charles University in Prague, and continued in March 2018 when the first named author was
visiting the IPM (Institute for Research in Fundamental Sciences) in Tehran. We are very
grateful to both institutions for their hospitality.

2 The R-topology

In Sects. 2, 3 and 4 of this paper, we suppose that we have a ring R and a multiplicatively
closed subset S of R satisfying: (1) If a, b ∈ R and ab ∈ S, then a ∈ S. (2) S is a right
Ore set in R. (3) The elements of S are regular elements of R. (4) The right ring of quotients
Q := R[S−1] of R with respect to S is a directly finite ring. That is, our setting is that of [13,
Sect. 4].

Correspondingly, we have a Gabriel topology G on R consisting of all the right ideals I of
R with I ∩ S �= ∅ (cf. [25, Sect. VI.6]). In particular, the Gabriel topology G consists of dense
right ideals of R, the canonical embedding ϕ : R → Q := R[S−1] is an epimorphism in the
category of rings, we view R as a subring of Q and ϕ as the inclusion mapping, and RQ turns
out to be a flat left R-module [25, Sect. XI.3]. There is a hereditary torsion theory (T ,F) on
Mod-R inwhich the torsion submodule of any right R-moduleMR consists of all the elements
x ∈ MR for which there exists an element s ∈ S with xs = 0. If we indicate the torsion
submodule of M by t(M), then clearly t(M) ⊗R Q = 0. A right R-module MR is in F , that
is, is torsion-free, if and only if right multiplication ρs : MR → MR by s is an abelian group
monomorphism for every s ∈ S. Dually, we will say that a right R-module MR is divisible if
right multiplication ρs : MR → MR by s is an abelian group epimorphism for every s ∈ S,
that is, if Ms = M for every s ∈ S. Every homomorphic image of a divisible right R-module
is divisible. If A is a submodule of a right R-module BR and both AR and B/A are divisible,
then BR is divisible. Any sum of divisible submodules is a divisible submodule, so that every
right R-module MR contains a greatest divisible submodule, denoted by d(MR). A right
R-module MR is reduced if d(MR) = 0. For every module MR , MR/d(MR) is reduced.

Wehave thatG = { I | I is a right ideal of R, andϕ(I )Q = Q }, andG has a basis consisting
of the principal right ideals sR, s ∈ S. LetMR be any right R-module. By [25, XI, Proposition
3.4], the kernel of the canonical right R-module morphism MR → M⊗R Q is equal to t(M).
Note that if we set K := Q/R, then RKR is an R-R-bimodule and t(MR) ∼= TorR1 (MR, RK )

(see, (15) and (16) in [13, Sect. 3]).
We now define a topology on any right R-module in the attempt of generalising the R-

topology studied by Matlis [20] for a commutative ring R. Our definition is as follows. Let
R be any ring with identity, not necessarily commutative, and S be a subset of R with the
properties written at the beginning of this section. Given any right R-module MR , the R-
topology on MR has a neighbourhood base of 0 consisting, for every non-empty finite set of
elements s1, . . . , sn ∈ S, of the submodules

U (s1, . . . , sn) := { x ∈ MR | x R ⊆ Ms1 ∩ · · · ∩ Msn }
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of MR . For the regular right module RR , the R-topology on R has a neighbourhood base of
0 consisting, for every non-empty finite set of elements s1, . . . , sn ∈ S, of the right ideals

U (s1, . . . , sn) := { x ∈ R | x R ⊆ Rs1 ∩ · · · ∩ Rsn }
of R.

Lemma 2.1 On the right R-module RR, the right ideals U (s) are two-sided ideals of R, U (s)
is the annihilator of the left R-module R/Rs, and the R-topology is a ring topology on R.

Proof Clearly, U (s) = { x ∈ R | x R ⊆ Rs } is the annihilator of the cylic left R-module
R/Rs, and hence U (s) is a two-sided ideal. Moreover, R is a right linearly topological ring
[25, p. 144], because every filter of two-sided ideals of a ring is a fundamental system of
neighbourhoods of 0 for a right and left linear topology on the ring [25, p. 144]. ��

More generally, notice that if f : MR → NR is a right R-module morphism and x ∈ MR

is such that x R ⊆ Ms1 ∩ · · · ∩ Msn , then f (x)R ⊆ f (Ms1 ∩ · · · ∩ Msn) ⊆ f (M)s1 ∩
· · · ∩ f (M)sn ⊆ Ns1 ∩ · · · ∩ Nsn , so that f induces mappings MR/UM (s1, . . . , sn) →
NR/UN (s1, . . . , sn), which form an inverse system of right R-module morphisms, hence
they define a right R-module morphism

˜MR := lim←− M/UM (s1, . . . , sn) → ˜NR := lim←− N/UN (s1, . . . , sn).

Thus the completion in the R-topology is an additive functor Mod-R → Mod-R.
We will use RR -top to denote the topological ring R with the R-topology.

Lemma 2.2 Every right R-module, with respect to its R-topology, is a linearly topological
module over the topological ring RR -top.

Proof It suffices to check property TM3 in [25, p. 144]. That is, we must prove that (UM (s) :
x) ⊇ UR(s) for every s ∈ S, x ∈ MR . Equivalently, that xUR(s) ⊆ UM (s). Now if
r ∈ UR(s), then r R ⊆ Rs, so that xr R ⊆ x Rs ⊆ Ms, i.e., r x ∈ UM (s). ��
Lemma 2.3 If the ring R is commutative, the linear topology on any right R-module M
defined by the submodules U (s), s ∈ S, coincides with the R-topology defined by Matlis in
[20].

Proof U (s) = { x ∈ M | x R ⊆ Ms } = Ms. ��
In the next proposition, we consider the behaviour of continuity of right R-module mor-

phismswhen themodules involved are endowedwith the R-topology.Recall that a submodule
M of a right R-module NR is an RD-pure submodule if Mr = M ∩ Nr for every r ∈ R
(equivalently, if the natural homomorphism M ⊗ R/Rr → N ⊗ R/Rr is injective for every
r ∈ R, or if the natural homomorphismHom(R/r R, N ) → Hom(R/r R, N/M) is surjective
for every r ∈ R.) See, [27, Proposition 2].

Proposition 2.4 (a) Every right R-module morphism f : MR → NR between two right R-
modules MR and NR endowed with their R-topologies is continuous.

(b) For every right R-module NR and every s ∈ S, the R-submodule U (s) of NR is the
largest R-submodule of NR contained in Ns.

(c) A submodule MR of a right R-module NR endowed with the R-topology is an open
submodule of NR if and only if MR ⊇ U (s) for some s ∈ S.
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Covering classes, strongly flat modules, and completions 243

(d) A right R-module morphism f : MR → NR between two right R-modules MR and NR

with their R-topologies is an open map if and only if f (MR) ⊇ U (s) for some s ∈ S.
(e) Every right R-module epimorphism f : MR → NR between two right R-modules MR

and NR is an open continuous map.
(f) Every right R-module isomorphism f : MR → NR is a homeomorphism when the two

right R-modules MR and NR are endowed with their R-topologies.
(g) If MR is an RD-pure submodule of a right R-module NR, and MR, NR are endowed with

their R-topologies, then the embedding MR ↪→ NR is a topological embedding.

The proofs are easy and we omit them.

3 The right R-module Hom(KR,M ⊗R K)

In this section, the hypotheses on R and S are the same as in the previous section. For any
right R-module MR , we will be interested in the right R-module

Hom(KR, M ⊗R K ).

Here the right R-module structure is given by the multiplication defined, for every f ∈
Hom(KR, M ⊗R K ) and r ∈ R, by ( f r)(k) = f (rk) for all k ∈ K .

For any right R-module MR , the right R-module

Hom(KR, M ⊗R K )

can be endowed with the R-topology, defined by the submodules U (s1, . . . , sn) := U (s1) ∩
· · · ∩U (sn) as a neighbourhood base of 0. But we have that:

Lemma 3.1 For the modules Hom(KR, M ⊗R K ), one has that U (s) = V (s), where, for
every element s ∈ S,

V (s) := {

f ∈ Hom(KR, M ⊗R K ) | f (Rs−1/R) = 0
}

.

Proof (⊆). Let f be an element of U (s), so that f ∈ Hom(KR, M ⊗R K ) and f R ⊆
Hom(KR, M⊗R K )s. In order to show that f ∈ V (s)we have to prove that f (Rs−1/R) = 0.
Fix r ∈ R. Then f r = gs for some g ∈ Hom(KR, M ⊗R K ). Hence f (rs−1 + R) =
( f r)(s−1 + R) = (gs)(s−1 + R) = g(ss−1 + R) = 0. Thus f (Rs−1/R) = 0.

(⊇). Suppose f ∈ V (s), so that f (Rs−1/R) = 0. In order to prove that f ∈ U (s), we
must show that, for every fixed element r ∈ R, there exists g ∈ Hom(KR, M ⊗R K ) with
f r = gs. Define g : KR → M ⊗R KR by g(q + R) = f (rs−1q + R) for all q ∈ Q. Then
g is a well defined right R-module morphism, because if q ∈ R, then f (rs−1q + R) =
f (rs−1 + R)q ∈ f (Rs−1/R)R = 0, and f r = gs. ��
We will denote by V (s1, . . . , sn) the intersection V (s1) ∩ · · · ∩ V (sn), but it is necessary

to remark that:

Lemma 3.2 For every s, s′ ∈ S, there exists t ∈ S such that V (s) ∩ V (s′) ⊇ V (t).

Proof Given s, s′ ∈ S, there exist t ∈ S and r , r ′ ∈ R with t = sr = s′r ′ [17, Lemma 4.21].
Then s−1 = r t−1, so that Rs−1 = Rrt−1 ⊆ Rt−1. Therefore V (t) ⊆ V (s), because if
f ∈ Hom(KR, M ⊗R K ) and f (Rt−1/R) = 0, then f (Rs−1/R) = 0, that is, f ∈ V (s).
Similarly, V (t) ⊆ V (s′). ��
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A right (or left) R-module MR is h-divisible if every homomorphism RR → MR extends
to an R-module morphism QR → MR [13, Sect. 2]. Any right (or left) R-module M contains
a unique largest h-divisible submodule h(M) that contains every h-divisible submodule ofM .
An R-module MR is h-reduced if h(MR) = 0, or, equivalently, if Hom(QR, MR) = 0 [13].
Obviously, h-divisible right R-modules are divisible.

Proposition 3.3 Divisible torsion-free right R-modules are Q-modules. In particular,
h(MR) = d(MR) for any torsion-free right R-module MR.

Proof Suppose MR torsion-free and divisible. Then right multiplication by s is an automor-
phism of the abelian group M for every s ∈ S. By the universal property of Q = R[S−1],
the canonical ring antihomomorphism R → EndZ(M) extends to a ring antihomomorphism
Q → EndZ(M) in a unique way. That is, there is a unique right Q-module structure on M
that extends the right R-module structure of MR . Thus M is a right Q-module. In particular,
M is an h-divisible right R-module. ��

Let MR be a right R-module. For every element x ∈ MR , there is a right R-module
morphism RR → MR , 1 �→ x . Tensoring with RK , we get a right R-module morphism

λx : KR → M ⊗R K ,

defined by λx (k) = x ⊗ k. The canonical mapping λ : MR → Hom(KR, M ⊗R K ), defined
by λ(x) = λx for every x ∈ MR , is a right R-module morphism, as is easily checked. In the
rest of this section, all R-modules are endowed with their R-topologies.

Theorem 3.4 Let MR be an h-reduced torsion-free right R-module. Then the canonical
mapping λ : MR → Hom(KR, M ⊗R K ) is an embedding of topological modules and
Hom(KR, M ⊗R K ) is complete.

Proof The canonical mapping λ : MR → Hom(KR, M ⊗R K ) is injective by [13, The-
orem 4.5]. In order to show that λ : MR → Hom(KR, M ⊗R K ) is an embedding of
topological modules, it suffices to show that λ−1(V (s1, . . . , sn)) = U (s1, . . . , sn) for every
s1, . . . , sn ∈ S. Now x ∈ λ−1(V (s1, . . . , sn)) if and only if λx ∈ V (s1, . . . , sn), that is,
if and only if x ⊗ (Rs−1

1 + . . . + Rs−1
n /R) = 0 in M ⊗R K . Equivalently, if and only if

x ⊗ (rs−1
i + R) = 0 in M ⊗R K for every r ∈ R and i = 1, 2, . . . , n. By [13, Step 3 of the

proof of Theorem 4.5], this is equivalent to xr ∈ Msi for every r ∈ R and i = 1, 2, . . . , n,
that is, if and only if x ∈ U (s1, . . . , sn).

In order to prove that Hom(KR, M ⊗R K ) is complete, we must show that every Cauchy
net converges. Let A be a directed set with order relation≤ and let { fα}α∈A be a Cauchy net in
Hom(KR, M ⊗R K ). Define a morphism f ∈ Hom(KR, M ⊗R K ) as follows. Since we are
dealing with a Cauchy net, for every s ∈ S there exists α ∈ A such that fβ − fγ ∈ V (s) for
every β, γ ∈ A, β, γ ≥ α. Set f (rs−1+R) = fα(rs−1+R) for every r ∈ R. We leave to the
reader the easy verification that f is a well definedmapping. Let us check that f (kr) = f (k)r
for every k ∈ KR and r ∈ R. We have that k = as−1+ R for some a ∈ R, s ∈ S. By the right
Ore condition, there exist r ′ ∈ R and t ∈ S such that as−1r = r ′t−1. Since A is directed,
there exists α such that f (r ′t−1 + R) = fα(r ′t−1 + R) and f (as−1 + R) = fα(as−1 + R).
Therefore f (kr) = f (k)r . It is now easily seen that f is the limit of the Cauchy net. ��

For any right R-module MR endowed with its R-topology, the (Hausdorff) completion of
MR is ˜MR := lim←− M/U (s1, . . . , sn). Notice that the set of all the submodulesU (s1, . . . , sn)

of MR is downward directed under inclusion. Here {s1, . . . , sn} ranges in the set of all non-
empty finite subsets of S. There is a canonical mapping η : M → ˜MR , whose kernel is
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Covering classes, strongly flat modules, and completions 245

the closure {0} of 0 in the R-topology of MR . Clearly, {0} = ⋂

s1,...,sn∈S U (s1, . . . , sn) =
⋂

s∈S U (s) = { x ∈ MR | x R ⊆ ⋂

s∈S Ms }.
From Lemma 2.2, we get that if MR is a right R-module, the right R-module

Hom(KR, M ⊗R K ) with the topology defined by the submodules V (s) is a topological
module over the topological ring RR -top.

Proposition 3.5 The right R-submodules V (s) of the ring End(KR) are two-sided ideals of
End(KR). The topology they define on End(KR) is a ring topology. If R is commutative, this
topology on End(KR) coincides with the topology on the completion H of R with respect to
the R-topology [20, p. 15].

Proof When we consider M = RR , then, by [13, Step 2 of the proof of Theorem 4.5], the
elements of K annihilated by right multiplications of an element s ∈ S are those of Rs−1/R.
It follows that Rs−1/R is a subgroup of K invariant under all endomorphisms of KR . From
this we get that every V (s) is a two-sided ideal of the ring End(KR).

Every filter of two-sided ideals of a ring is a fundamental system of neighbourhoods of
0 for a right and left linear topology on the ring [25, p. 144]. Thus the topology defined by
the two-sided ideals V (s) is a ring topology on End(KR). Moreover, if R is commutative,
the submodules V (s) define the R-topology on the right R-module Hom(KR, M ⊗R K )

for every module M (Lemma 2.2), which coincides with the R-topology defined by Matlis
in [20] by Lemma 2.3. Furthermore, Matlis’ R-topology on End(KR) coincides with the
topology on the completion H of R with respect to the R-topology, because the topology on
the completion H coincides with the R-topology on H . ��

4 Torsion-freemodules

In this section, we keep the same hypotheses and notations as in the previous two sections.
As we have seen, for any right R-module MR , there is a right R-module morphism

λ : MR → Hom(KR, M ⊗R K ),

defined by λ(x) = λx for every x ∈ MR , where λx : k → x ⊗ k, and there is a canonical
mapping η : M → ˜MR of MR with its R-topology into its Hausdorff completion.

Proposition 4.1 Let MR be a torsion-free right R-module. Then: (a) ker λ is the closure of 0
in the R-topology; (b) ker λ is the kernel of the canonical mapping η : M → ˜MR; and (c)
ker λ is equal to h(MR).

Proof We have already remarked that the kernel of η is the closure {0} of 0. Hence (a) ⇔ (b).
The right R-module Hom(KR, NR) is h-reduced for every right R-module NR [13, The-

orem 2.8]. Let MR be a torsion-free right R-module. Since

λ : MR → Hom(KR, M ⊗R K )

is a homomorphism into an h-reduced R-module, it follows that h(M) ⊆ ker λ.
Let us prove that ker λ ⊆ {0}. Suppose x ∈ ker λ. Fix arbitrary r ∈ R and s ∈ S. Then

x ⊗ (rs−1 + R) is equal to zero in the tensor product M ⊗ K . By [13, Theorem 3.1(1)],
there exists an element yr ,s ∈ MR such that x ⊗ rs−1 = yr ,s ⊗ 1 in M ⊗R Q. Thus
xr ⊗ 1 = yr ,ss ⊗ 1 in M ⊗R Q. Since MR is torsion-free, it follows that xr = yr ,ss in MR

by [13, Theorem 3.1(1)] again. This proves that x R ⊆ ⋂

s∈S Ms, and so ker λ ⊆ {0}.
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Conversely, {0} ⊆ ker λ, because if x ∈ {0}, then x R ⊆ Ms for every s ∈ S, that is, for
every s ∈ S and every r ∈ R there existsmr ,s ∈ M with xr = mr ,ss. Then, for every element
rs−1 + R ∈ K , we have that x ⊗ (rs−1 + R) = xr ⊗ (s−1 + R) = mr ,ss ⊗ (s−1 + R) =
mr ,s ⊗ s(s−1 + R) = 0 in M ⊗R K . Thus x ∈ ker λ. This proves that {0} = ker λ. Therefore
(a) and (b) hold.

We now show that ker λ is divisible. For every s ∈ S, s is invertible in Q, hence sQ = Q,
so sK = K . Now if x ∈ ker λ and t ∈ S, then x ∈ {0}, hence x = yt for some y ∈ MR .
We must prove that y ∈ ker λ, that is, that y ⊗ K = 0 in M ⊗ K . But y ⊗ K = y ⊗ sK =
ys⊗K = x⊗K = 0 inM⊗K . This proves that ker λ = {0} is divisible. Thus ker λ = h(M)

by Proposition 3.3. ��
Clearly, from Proposition 4.1 we have that:

Corollary 4.2 If MR is a torsion-free module, then˜MR ∼= ˜MR/h(M).

Lemma 4.3 Let M be torsion-free right R-module. Then:
(a) Every element of M ⊗R K can be written in the form x ⊗ (s−1 + R) for suitable

elements x ∈ MR and s ∈ S.
(b) Let s be an element of S. The elements y of M ⊗R K such that ys = 0 are those that

can be written in the form x ⊗ (s−1 + R) for a suitable x ∈ MR.
(c) If x ∈ MR, r ∈ R and s ∈ S, then x ⊗ (rs−1 + R) = 0 in M ⊗R K if and only if

xr ∈ Ms.
(d) The set {U (s) | s ∈ S } is downward directed.

Proof In the proof of Steps 1, 2 and 3 of [13, Theorem 4.5], we do not use the fact that M is
h-reduced. So the proofs of (a), (b) and (c) are like those of Steps 1, 2 and 3 in [13, Theorem
4.5].

(d) Assume that s, t ∈ S. Then there exist u ∈ S and r1, r2 ∈ R such that s−1 = r1u−1

and t−1 = r2u−1. If m ∈ U (u) and r ∈ R, then m ⊗ (rs−1 + R) = m ⊗ (rr1u−1 + R) = 0.
Part (c) implies that m ∈ U (s), and so U (u) ⊆ U (s). Similarly, U (u) ⊆ U (t). ��
Remark 4.4 By Lemma 4.3(d), for M torsion-free, we have that

˜M = lim←− M/U (s).

Notice that the kernel of the canonical mapping η : M → ˜M is divisible by Theorem 4.1.

Now let MR be a torsion-free right R-module, so that

λ : MR → Hom(KR, M ⊗R K )

is continuouswith respect to the R-topologies (Proposition 2.4 (a)) andHom(KR, M⊗R K ) is
Hausdorff. Notice that M⊗R K and M/h(M)⊗R K are isomorphic, so that Hom(KR, M⊗R

K ) is complete (Theorem 3.4). Thus λ extends in a unique way to a continuous morphism
˜λ : ˜M → Hom(KR, M⊗R K ). In Theorem 4.5 and Example 4.6, we see that˜λ is a continuous
monomorphism, but not necessary an isomorphism.

Theorem 4.5 Let MR be a torsion-free right R-module. Then there exists a right R-module
monomorphism˜λ : ˜M → Hom(KR, M ⊗R K ) such that λ =˜λη.

Proof Define˜λ as follows. We know that

˜M = lim←− M/U (s) ≤
∏

s∈S
M/U (s),
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so that every element of ˜M is of the form m̃ = (ms + U (s))s∈S . Set˜λ(m̃)(rs−1 + R) =
ms ⊗ (rs−1 + R) for every r ∈ R, s ∈ S. In order to prove that˜λ(m̃) : KR → M ⊗R K
is a well defined mapping and is R-linear, note first of all that if s, t ∈ S are such that
U (t) ⊆ U (s) and r ∈ R, thenms −mt ∈ U (s) implies thatms ⊗rs−1+ R = mt ⊗rs−1+ R
by Lemma 4.3 (c). From this, it is easily shown that˜λ is a well defined R-module morphism.
Also notice that λ =˜λη.

Now we prove that˜λ is a monomorphism. Suppose that m̃ = (ms +U (s))s∈S is in ker˜λ.
Then, for every r ∈ R and s ∈ S, we have thatms ⊗rs−1+R = 0 inM⊗R K . By Lemma 4.3
(c), this means that msr ∈ Ms for every r and s. Hence ms ∈ U (s) for every s ∈ S. This
shows that˜λ is injective. ��
Example 4.6 Let R be the nearly simple chain domain in [7, Example 6.5] (also see the
example after Corollary 4.3 in [24]). In that example, the R-module K = Q/R can be
chosen to be countably generated, because the group G is countable, and so is its positive
cone P . If the skew field F in that example is countable, then F[P] is countable. In order to
construct the ring R, we consider a right and left Ore subset S of F[P], which is necessarily
countable because F[P] is countable, and then we set R := F[P]S−1. Therefore if the skew
field F is countable, then R is countable, and so K is a countably generated R-module. As RR

is torsion-free, its completion is lim←− R/U (s) by Remark 4.4, and, for every non-zero element

s of J (R), U (s) = 0 because R is nearly simple. So R = lim←− R/U (s). Let us prove that

R � End(KR). The module KR is a countably generated uniserial torsion locally coherent
module (that is, every finitely generated submodule is coherent). By [24, Proposition 8.1],
the module KR is not quasi-small. Since uniserial modules with a local endomorphism ring
are quasi-small [11], the ring End(KR) cannot be isomorphic to R.

The sameargument applies to anynearly simple chain domain Rwith K = Q/R countably
generated.

Proposition 4.7 If R is a topological ring with a basis B of neighbourhoods of zero consisting
of two-sided ideals, and R/I is a local ring for every proper ideal I ∈ B, then the Hausdorff
completion of R is either 0 or a local ring.

Remark 4.8 The case of completion of R equal to zero concernes only the trivial case of
B = {R}. We will not consider this case in the proof.

Proof LetMI be themaximal ideal of R such thatMI /I is themaximal ideal of R/I for every
proper ideal I ∈ B. If I , J ∈ B, then considering the canonical projection R/I ∩ J → R/I ,
one sees that M(I∩J ) = MI . It follows that there exists a maximal ideal M of R such that
MI = M for every proper ideal I ∈ B. The completion of R is the inverse limit of the rings
R/I , which is a subring of the ring

∏

I∈B R/I , which has
∏

I∈B M/I as a two-sided ideal,
whose intersection N with the inverse limit is a two-sided ideal of the inverse limit. Let us
prove that the inverse limit is a local ring with maximal ideal N . It suffices to show that
every element of the inverse limit not in N is invertible. Let (xI + I )I∈B be an element in
the inverse limit, but not in N . Thus xI ∈ R and, for I , J ∈ B with I ⊆ J , we have that
xI − xJ ∈ J , i.e., xI + I is mapped to xJ + J via the canonical projection R/I → R/J .

Also, xI /∈ M for some proper ideal I of B. Now if J ∈ B is arbitrary, from I ∩ J ⊆ I ,
we have that xI∩J − xI ∈ I ⊆ M . But I ∩ J ⊆ J , so xI∩J − xJ ∈ J ⊆ M . Therefore
xI − xJ ∈ M . It follows that xJ /∈ M . Thus xI + I /∈ M/I for every I ∈ B, hence xI + I
is invertible in R/M . Let yI + I be the inverse of xI + I in R/I . Now the ring morphism
R/I → R/J maps inverses to inverses. This shows that (yI + I )I∈B is an element of the
inverse limit, and concludes the proof. ��
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Therefore the completion of any local ring in the R-topology is a local ring.

5 Strongly flat modules

In all this section, we consider two rings R and Q, a bimorphism ϕ : R → Q in the category
of rings, that is, ϕ is both a monomorphism and an epimorphism, and we assume that RQ
is a flat left R-module. For simplicity, we will view R as a subring of Q and ϕ : R → Q as
the inclusion. Then F = { I | I is a right ideal of R and ϕ(I )Q = Q } is a Gabriel topology
consisting of dense right ideals [13, Sect. 3].

Let us recall some properties of such an inclusion ϕ : R ↪→ Q. It is always possible to
suppose Q ⊆ Qmax(R), the maximal right ring of quotients of R [25, proof of Theorem
XI.4.1]. The inclusion ϕ : R → Q is an epimorphism in the category of rings if and only
if the canonical R-R-bimodule morphism Q ⊗R Q → Q, induced by the multiplication
· : Q × Q → Q of the ring Q, is an R-R-bimodule isomorphism [25, Proposition XI.1.2].
The family of all the subrings Q of Qmax(R) with ϕ : R ↪→ Q a bimorphism and RQ flat is
directed under inclusion [25, Lemma XI.4.2]. Its direct limit is the “maximal flat epimorphic
right ring of quotients” Qtot(R) of R (see the paragraph after the proof of Corollary 5.7). By
[13, (6) in Sect. 2], there is a torsion theory in Mod-R in which a module MR is torsion if
and only if M ⊗R Q = 0. In this section, whenever we say “torsion” or “torsion-free”, we
refer to this torsion theory. For instance, the right R-module KR := Q/R is torsion [13, (10)
in Sect. 2].

By [26, Theorem 4.8], Ext1(RM, RN ) ∼= Ext1(QM, QN ) for any pair M, N of left Q-
modules, and similarly for right Q-modules. Recall that a left R-module RD is divisible if
D = I D for every I ∈ F (equivalently, if M ⊗R D = 0 for every torsion right R-module
MR [25, Proposition VI.9.1]). For instance, K ⊗R D = 0 for every divisible left R-module
RD. We use this fact in the proof of the following lemma.

Lemma 5.1 Divisible strongly flat left R-modules are projective left Q-modules.

Proof Let RD be a divisible strongly flat module. We have just seen that K ⊗R D = 0.
Since RD is flat, we have D ∼= Q ⊗ D. Thus D is a left Q-module. For any exact sequence
0 → R(X) → D ⊕ T → Q(Y ) → 0, the corresponding exact sequence 0 → Q(X) →
D ⊕ Q ⊗ T → Q(Y ) → 0 splits. Therefore D is a projective Q-module. ��

We now pass to the study of strongly flat covers. Notice that strongly flat covers f : RS →
RM are onto mappings, because we always have an onto morphism from a free module to
the module RM and, since free modules are strongly flat, we have that f must be onto.

Recall that any left perfect ring is directly finite. The following result shows that when
RSF is covering, then Q is left perfect. Thus the results is the same as in the commutative
case, but the proof is necessarily different.

Theorem 5.2 If all left Q-modules have a strongly flat cover as left R-modules, then Q is
left perfect.

Proof Assume that QM is a left Q-module and f : RS → RM is a strongly flat cover of RM .
Then we have an epimorphism 1 ⊗ f : Q ⊗ S → M , 1 ⊗ f : q ⊗ s �→ q f (s). Since RS is
strongly flat, QQ⊗R S is a direct summand of a direct sum of copies of Q, i.e., it is a projective
left Q-module. Since projective left Q-modules are strongly flat left R-modules, the left R-
module RQ ⊗ S is strongly flat. But f is a strongly flat precover of M , so that there exists
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g : Q⊗S → S with f g = 1⊗ f . Note that RS is flat, and so S can be embedded in Q⊗S, that
is, there is a left R-module monomorphism h : RS → RQ ⊗R S, defined by h : s �→ 1 ⊗ s.
Then f (gh) = f , and thus gh is an automorphism of RS because f : RS → RM is a cover.
Thus (gh)−1gh = 1, so that e := h(gh)−1g is an idempotent endomorphism of the left R-
module RQ⊗S. Hence e is an idempotent endomorphism of the left Q-module QQ⊗S. This
shows that QQ ⊗ S is the direct sum of the image and the kernel of e, which are Q-modules.
But the image of e is the image of h. Hence the splitting monomorphism h : s �→ 1 ⊗ s
induces by corestriction a right R-module isomorphism of RS onto the Q-module Qh(S). By
[13, Sect. 2(7)], if a left R-module R A is a left Q-module Q A, then its unique left Q-module
structure is given by the canonical isomorphism Hom(RQ,R A) → R A. Therefore S has
a unique left Q-module structure that extends its left R-module structure, and as such QS
is a projective Q-module. Thus f : QS → QM is a left Q-module morphism. Note that
projective Q-modules are strongly flat, and so f : QS → QM is a projective cover of QM .
Therefore Q is left perfect. ��

The following result has a proof similar to that of [4, Proposition 2.4 ((1) and (2))]. We
give a complete proof for convenience of the reader.

Lemma 5.3 Let A be a module with a strongly flat cover and let

0 → C → M → A → 0 (1)

be a special strongly flat precover of A. Then the exact sequence (1) is a strongly flat cover
if and only if C is MC-small (i.e., for every submodule H of M, C + H = M and C ∩ H
Matlis-cotorsion imply H = M).

Proof Assume that (1) is a strongly flat cover. Let H ≤ M be such that C + H = M and
C∩H isMatlis-cotorsion. Let f denote themapM → A in (1), and let f |H be the restriction
of f to H . We have an exact sequence 0 → C ∩ H → H → A → 0. Since M is strongly
flat and C ∩ H is Matlis-cotorsion, we know that Ext1R(M,C ∩ H) = 0. Apply the functor
Hom(M,−) to the exact sequence 0 → C ∩ H → H → A → 0, getting the short exact
sequence Hom(M, H) → Hom(M, A) → Ext1R(M,C∩H) = 0. It follows that there exists
ϕ : M → H such that f |Hϕ = f . If ι : H → M is the inclusion, we obtain that f ιϕ = f .
But f is a strongly flat cover, hence ιϕ is an isomorphism. Therefore H = M .

Conversely, suppose C is MC-small in M . As we are assuming that A admits a strongly
flat cover, we can use [29, Corollary 1.2.8]. Hence it is enough to show that the module C
in the sequence (1) does not contain any non-zero summand of M . Suppose M = X ⊕ Y
with X ≤ C . Then M = C + Y and C = X ⊕ (Y ∩ C). Since the precover (1) is special,
C is Matlis-cotorsion, so its direct summand C ∩ Y is Matlis-cotorsion. But C isMC-small,
therefore X = 0. ��
Theorem 5.4 Let I be a two-sided ideal of R such that I Q = Q. If all left R/I -modules
have a strongly flat cover as left R-modules, then R/I is left perfect.

Proof It is enough to show that every left R/I -module has a projective R/I -cover. Let M
be an R/I -module and f : R A → RM be a strongly flat cover of RM . Since I M = 0,
we have that I A ⊆ ker( f ). But R A is strongly flat, so that there exists an exact sequence
0 → R R(X) → R A ⊕ RT → RQ(Y ) → 0, where X and Y are sets. Since I Q = Q, we
have R/I ⊗ Q = 0. Thus we see that A/I A is a projective left R/I -module. So f induces a
map h : A/I A → M , h : a + I A �→ f (a), and ker(h) = ker( f )/I A. We now show that h
is a projective cover for M or, equivalently, that ker( f )/I A is small in A/I A. Assume that
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T + ker( f ) = A, where T is an R-submodule of A such that I A ⊆ T . From I Q = Q, we
get that Hom(Q, ker( f )/ ker( f ) ∩ T ) = 0. On the other hand, since f : R A → RM is a
strongly flat cover of RM , the module ker( f ) is Matlis-cotorsion byWakamatsu Lemma (see
[18, Lemma 5.13]), and thus ker( f ) ∩ T is Matlis-cotorsion. Therefore T = A by Lemma
5.3. ��
Lemma 5.5 Assume that R is a local ring with Jacobson radical J . Let 0 → C → S →
M → 0 be a strongly flat cover for M. Then C ≤ J S.

Proof Assume that C � J S. Then J S �= S. Since R/J is a division ring, there exists a
proper submodule T /J S of S/J S such that T /J S + (C + J S)/J S = S/J S. Consequently
T + C = S. Consider the exact sequence 0 → T ∩ C → C → S/T → 0. Let us show that
Hom(Q, S/T ) = 0. Note that RR is essential in QR (because Q is a subring of Qmax(R)).
Thus if x ∈ Q\R, then the right ideal I := { r | xr ∈ R } is proper ideal of R, and so
I ≤ J . By [16, Theorem 3.9 (b)], I Q = Q and so J Q = Q. If f ∈ Hom(Q, S/T ) �= 0,
then f (Q) = f (J Q) ⊆ J f (Q) ⊆ J (S/T ) = 0. Therefore Hom(Q, S/T ) = 0, and so
T ∩ C ∈ Q⊥. Since C is MC-small, we have T = S, which is a contradiction. ��

It is known that if R is commutative, Q is the total ring of fractions of R, that is, the
localization with respect to the set of all regular elements of R, and RSF is covering, then
p. dim(RQ) ≤ 1 [5, Propositions 7.9 and 8.7]. We do not know what occurs in the non-
commutative case. Therefore we now study the projective dimension of RQ.

Proposition 5.6 Suppose RQ is a projective left R-module. Then RQ is a finitely generated
left R-module.

Proof Since RQ is projective, it has a dual basis [2, Exercise 11, p. 202–203], that is, there
are elements xα ∈ Q and morphisms fα : RQ → R R (α ∈ A) such that, for all x ∈ Q,
fα(x) �= 0 for only finitely many α ∈ A and x = ∑

α∈A fα(x)xα . Applying the functor

QQ ⊗R −: R−Mod → Q−Mod,

we get left Q-module morphisms 1 ⊗ fα : QQ ⊗R Q → QQ ⊗R R. Now there are left
Q-module isomorphisms Q → QQ ⊗R Q, q �→ 1 ⊗ q , and QQ ⊗R R → QQ, q ⊗ r �→
qr . Composing the mappings Q → QQ ⊗R Q, 1 ⊗ fα : QQ ⊗R Q → QQ ⊗R R and
QQ⊗R R → QQ, we get left Q-module endomorphisms QQ → QQ, which are necessarily
right multiplications ρyα by elements yα ∈ Q. That is, we have commutative diagrams

QQ ⊗R Q
1⊗ fα �� QQ ⊗R R

∼=
��

QQ ρyα

��

∼=
��

QQ.

Now, for all x ∈ Q, fα(x) �= 0 for only finitely many α ∈ A. For x = 1, we get that there
is a finite subset F of A such that fα(1) = 0 for every α ∈ A\F . Thus (1⊗ fα)(1⊗ 1) = 0
for every α ∈ A\F . It follows that right multiplication by yα maps 1 to 0, that is, yα = 0
for every α ∈ A\F . Hence 1 ⊗ fα : QQ ⊗R Q → QQ ⊗R R is the zero mapping for every
α ∈ A\F . Thus (1 ⊗ fα)(q ⊗ q ′) is the zero element of QQ ⊗R R for every q, q ′ ∈ Q.
Hence 1 ⊗ fα(q ′) is the zero element of QQ ⊗R R. It remains to show that the mapping
R R → QQ ⊗R R, r → 1 ⊗ r , is injective, which is easily seen because TorR1 (K , R) = 0.
This proves that fα = 0 for every α ∈ A\F . As a consequence, RQ is isomorphic to a direct
summand of R RF , so that RQ is a finitely generated left R-module. ��
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Corollary 5.7 Let R be a ring, S a multiplicatively closed subset of regular elements of R,
and suppose that S is a right denominator set, so that the right ring of fractions Q := R[S−1]
exists. If RQ is a projective left R-module, then Q = R, that is, all the elements of S are
invertible in R.

Proof By Proposition 5.6, there are finitely many elements r1s
−1
1 , . . . , rns−1

n that generate Q
as a left R-module. Reducing to the same denominator [17, Lemma 4.21], we find elements
r ′
i ∈ R and s ∈ S such that si r ′

i = s for every i . Multiplying by s−1 on the right and by s−1
i

on the left, we get that r ′
i s

−1 = s−1
i . Thus Q = ∑n

i=1 Rri s
−1
i ⊆ Rs−1. This proves that

Q = Rs−1. In particular, s−2 ∈ Rs−1, from which 1 ∈ Rs. Let t ∈ R be such that 1 = ts.
Then t = s−1 in Q. Thus Q = Rs−1 = Rt ⊆ R, hence Q = R. ��

On p. 235 of [25], Stenström asks for necessary and sufficient conditions for Qmax(R)

to be equal to the maximal flat epimorphic right ring of quotients Qtot(R). He shows that if
Qmax(R) is a right Kasch ring (i.e., a ring that contains a copy of its simple right modules),
then Qmax(R) = Qtot(R). If R is right hereditary right noetherian [25, Example 3, p. 235]
or commutative noetherian [25, Example 4, p. 237] or a right Goldie ring [25, Theorem XII
2.5], then Qmax(R) is known to be Kasch.

Example 5.8 Here is an example of a ring R for which Qtot(R) = Qmax(R) is a projective
right and left R-module, but R �= Qmax(R). Let R be the ring of all lower triangular 2 × 2
matrices over a field F . The ring R is right nonsingular and E(RR) = S0R = Qmax(R)

is a projective right and left R-module [16, Exercise 14 on P. 78, and Corollary 2.31] (in
Goodearl’s notation, S0A := E(A/Z(AA)), the injective envelope of A/Z(AA) for any ring
A). More precisely, Qmax(R) is the 2× 2 matrix ring over the field F , which is a semisimple
artinian ring, hence a right and left Kasch ring, and so Qmax(R) = Qtot(R) as we have seen
above.

We are now ready to consider the case of p. dim(RQ) ≤ 1. Recall that a cotorsion pair
(A,B) is said to be hereditary if ExtiR(A, B) = 0 for all i ≥ 1, A ∈ A and B ∈ B. Note that
if F is the class of flat modules and EC the class of Enochs cotorstion modules, the cotorsion
pair (F, EC) is always hereditary. Similarly to [18, Lemma 7.53], we can show that:

Lemma 5.9 The following conditions are equivalent for the pair of rings R ⊆ Q:
(a) p. dim(RQ) ≤ 1.
(b) The cotorsion pair (SF,MC) is hereditary.

Proof (a) ⇒ (b). Assume p. dim(RQ) ≤ 1. Then strongly flat modules, which are summands
of extensions of a direct sum of copies of Q by a free module, are of p. dim at most 1. Thus
the cotorsion pair (SF,MC) is hereditary.

(b) ⇒ (a). By [3, Theorem 3.5], it is enough to show that Ext1(K , M) is h-reduced
Matlis-cotorsion for any left R-module M . From the exact sequence 0 → M → E(M) →
E(M)/M → 0, we have the exact sequence

0 → A → B → Ext1(K , M) → 0,

where A = Hom(K , E(M))/Hom(K , M) and B = Hom(K , E(M)/M). Notice that, for
every left R-module N , Hom(K , N ) is Matlis-cotorsion and h-reduced [13, Theorem 2.8].
So Ext1(K , M) is h-reduced if and only if A ∈ Q⊥. Now A ∈ Q⊥ follows from the exact
sequence 0 → Hom(K , M) → Hom(K , E(M)) → A → 0 and the fact that (SF,MC)

is hereditary. As the module A is Matlis-cotorsion, from the exact sequence 0 → A →
B → Ext1(K , M) → 0 and the fact that (SF,MC) is hereditary, we get that Ext1(K , M)

is Matlis-cotorsion. ��
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As a consequence, RSF = RF implies p. dim(RQ) ≤ 1.
When R is a right Ore domain and Q is its classical right quotient ring, then QR is injective

and so, by Proposition 3.3, every torsion-free right R-module M is the direct sum of its h-
divisible part and an h-reduced submodule. In Example 5.10, we will see that in general RQ
can be not injective, but nevertheless strongly flat left R-modules still have a decomposition
into an h-divisible and an h-reduced submodule (Lemma 5.11).

Example 5.10 Let R be a right noetherian right chain domain of type > ω, i.e., such that the
noetherian linearly ordered set of non-zero right ideals of R is order antiisomorphic to an
ordinal α > ω). Then R is a right hereditary ring and R is not left Ore [7, Proposition 3.7].
Thus R R is not uniform, so that there exist non-zero left ideals I and J of R with I ∩ J = 0.
We can assume I maximal with respect to the property that I ∩ J = 0. Thus I is an essentially
closed left ideal of R, that is, if R I is essential in B, where B is a left ideal of R, then I = B.
This ideal I cannot be an annihilator ideal, so that the left and the right maximal quotient ring
of R do not coincide [16, Theorem 2.38]. Also, if Q is the maximal right quotient ring of R,
which is equal to the classical right quotient ring of R, then RQ is flat, but QR is not flat [9,
Proposition 0.8.6]. We claim that RQ is not injective. To prove the claim, notice that R R is
not uniform. Hence there exist non-zero elements x, y ∈ R with Rx ∩ Ry = 0. The left ideal
Rx ⊕ Ry of R is a free left R-module of rank 2. There is a unique left R-module morphism
f : Rx ⊕ Ry → RQ such that f (x) = x and f (y) = 0. If RQ is injective, f extends to a left
R-module morphism g : R R → RQ, which is necessarily right multiplication by an element
q ∈ Q. Thus f (x) = g(x), that is, x = xq , and f (y) = g(y), so that 0 = yq . Since Q is a
division ring, we get that q = 1 and q = 0, a contradiction. This concludes the proof of our
claim.

Lemma 5.11 Let R be a right Ore domain and Q the classical right quotient ring of R. If S
is a strongly flat left R-module, then S is the direct sum of the Q-module h(S) and a strongly
flat reduced R-submodule of S isomorphic to S/h(S).

Proof Assume that R is not a division ring. There exists an exact sequence

0 → R(X) → S ⊕ C → Q(Y ) → 0.

We claim that Hom(Q, R) = 0. Otherwise, i.e., if RQ can be embeded in R R, there exists
a monomorphism ε : RQ → R R. Then ε can be viewed as a monomorphism RQ → RQ.
This monomorphism ε is right multiplication by an element q of Q. Now ε a monomorphism
implies q �= 0, and R right Ore domain implies Q division ring. Hence q is invertible
in Q, so that R = Q, which is a contradiction. This proves our claim. Now we have the
embeddingHom(Q, S⊕C) → Hom(Q, Q(Y )). Sowe have an exact sequence 0 → R(X) →
(S⊕C)/h(S⊕C) → Q(Y )/h(S⊕C) → 0. Since h(S⊕C) is a torsion-free divisiblemodule,
it is a Q-module. But Q is division ring, so h(S⊕C) is a direct summand of Q(Y ). It follows
that S/h(S) is strongly flat.

Finally, consider the exact sequence 0 → h(S) → S → S/h(S) → 0. The module
h(S) is isomorphic to a direct sum of copies of Q, hence h(S) is a Matlis-cotorsion module.
Therefore the exact sequence splits. ��

We now consider the relation between strong flatness and completions in the R-topology.
Notice that, by Theorem 4.5 and [13, Proposition 2.6], if a module MR is torsion-free, then
˜MR is torsion-free.

Theorem 5.12 Let R be an Ore domain. Then the Hausdorff completion ˜SR of any strongly
flat right R-module SR in the R-topology is strongly flat.
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Proof Let Q be the classical quotient ring of R and K := Q/R. If S is a strongly flat right

R-module, then S/h(S) is strongly flat by Lemma 5.11, and ˜SR ∼= ˜SR/h(S) by Corollary 4.2.
Hence in the proof of the theorem we can suppose S h-reduced, and prove that if SR is an
h-reduced strongly flat right R-module, then its completion ˜SR is strongly flat. We have the
short exact sequence

0 �� SR �� Hom(KR, S ⊗R K ) �� Ext1R(RQR, SR) �� 0 (2)

[13, Theorem 4.5]. We know that ˜SR is a submodule of Hom(KR, S ⊗R K ) that contains
SR . Hence ˜SR/SR is isomorphic to a submodule of Ext1R(RQR, SR). In particular, ˜SR/SR is
torsion-free, because Ext1R(QQR, SR) is a Q-module, hence torsion-free. Let us prove that
˜SR/SR is divisible, i.e., that (˜SR/SR)r = ˜SR/SR for every non-zero r ∈ R. Equivalently,
we must prove that ˜SR ⊆ ˜SRr + SR . Now SR is dense in ˜SR , so that, for every s̃ ∈ ˜SR
and every non-zero element t of R, we have that (̃s + U (t)) ∩ SR �= ∅. In particular,
(̃s + U (r)) ∩ SR �= ∅. Notice that U (r) ⊆ ˜SRr , because, for every x ∈ U (r), we have that
x R ⊆ ˜SRr , hence x ∈ ˜SRr . It follows that (̃s + ˜SRr)∩ SR �= ∅. Thus there exist˜s′ ∈ ˜SR and
s′′ ∈ SR with s̃ + ˜s′r = s′′. Therefore s̃ = −˜s′r + s′′ ∈ ˜SRr + SR . This proves that ˜SR/SR
is divisible and torsion-free, hence a module over the division ring Q. Thus ˜SR/SR ∼= Q(X)

for some set X . From the short exact sequence

0 �� SR �� ˜SR �� Q(X) �� 0,

we have that SR strongly flat and Q(X) strongly flat imply ˜SR strongly flat. ��
Corollary 5.13 Let R be an Ore domain. Then the completion ˜PR of any projective right
R-module in the R-topology is a strongly flat right R-module. In particular, the completion
˜RR of RR is a strongly flat R-module.

Recall that a left coherent ring is a ring over which every finitely generated left ideal is
finitely presented or, equivalently, any intersection of two finitely generated left ideals is
finitely generated.

Theorem 5.14 Assume that R is a left coherent Ore domain with classical quotient ring Q. A
left ideal R I of R is a strongly flat left module if and only if R I is finitely generated projective.

Proof The result is clearly true for R a division ring, so that we can suppose R �= Q.
Assume R I a non-zero strongly flat module. We have the exact sequence of R-R-bimodules
0 → R → Q → Q/R = K → 0. Since R I is flat, we get the exact sequence of left
R-modules 0 → R⊗ I → Q⊗ I → K ⊗ I → 0. Therefore K ⊗ I ∼= (Q⊗ I )/(R⊗ I ). We
want to show that R/I embeds in K ⊗ I as a left R-module. Consider the sequence of left
R-modules 0 → R I → RQ → RQ/I → 0 and apply to it the functor Q ⊗R −. Since QR

is flat, we get to an exact sequence 0 → Q ⊗R I → Q ⊗R Q → Q ⊗R Q/I → 0. Under
the natural isomorphism f : Q ⊗R Q → Q, the image of Q ⊗ I is QI = Q, because I is
non-zero, and the image of R ⊗ I is I , and so K ⊗ I ∼= (Q ⊗ I )/(R ⊗ I ) ∼= Q/I as a left
R-module. Now R/I ≤ Q/I implies that R/I embeds in K ⊗ I as an R-module. There exists
an exact sequence 0 → R(X) → I ⊕ T → Q(Y ) → 0 with X �= ∅. Since K ⊗R Q = 0,
we conclude that K ⊗ I , and so R/I , embed in K (X) as left R-modules. Consequently,
there exists an element x ∈ RK (X) whose annihilator is equal to I . But the annihilator of an
element of K (X) is equal to the intersection of finitely many annihilators of elements of K .
If ab−1 + R ∈ RK , then ann(ab−1 + R) = R ∩ Rba−1. Note that R ∩ Rba−1 ∼= Ra ∩ Rb,
which is a finitely generated left ideal of R because R is left coherent. Thus I is a finitely
generated left ideal of R and, since it is flat, I is projective [19, Theorem 4.30]. ��
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Lemma 5.15 Let R be a right Ore domain with classical right quotient ring Q. Then the
strongly flat cover of any h-reduced flat left R-module is h-reduced.

Proof Assume that M is a flat h-reduced module and 0 → C → S → M → 0 is a strongly
flat cover of M . Since M is h-reduced, we can assume D := h(C) = h(S) and that C is
Matlis-cotorsion. So we have an exact sequence

0 → C/D → S/D → M → 0. (3)

By Lemma 5.11, S/D is strongly flat. Since C is torsion-free, D is a left Q-module. Thus
Ext2R(Q, D) = 0, and so Ext1R(Q,C/D) = 0. Hence the sequence (3) is a special strongly
flat precover for M . Let us see that C/D is MC-small in S/D. Let T be a submodule of S
that contains D and suppose that C/D + T /D = S/D and (C ∩ T )/D is Matlis-cotorsion.
Therefore C + T = S. On the other hand, D is a Q-module, so Ext1R(Q, D) = 0. From the
sequence 0 → D → C ∩ T → (C ∩ T )/D → 0, we conclude that C ∩ T must be Matlis-
cotorsion. Since 0 → C → S → M → 0 is a special strongly flat cover ofM , by Lemma 5.3
we get that C is MC-small in S, and T = S. It follows that 0 → C/D → S/D → M → 0
is a strongly flat cover of M by Lemma 5.3, and so S ∼= S/D. Therefore S is h-reduced. ��
Proposition 5.16 Assume that R is an Ore local domain with classical quotient ring Q.
Suppose that K ⊗R S is direct sum of copies of K for every strongly flat module RS. If RSF
is a covering class, then RSF = RF .

Proof Firstly, notice that left Q-modules are injective as R-modules because R is both a
right and a left Ore domain. If M is flat, then h(M) is a direct summand of M , and there-
fore M ∼= h(M) ⊕ M/h(M). Clearly, Q-modules are strongly flat, and thus it is enough to
show that any flat h-reduced module is strongly flat. Let M be an h-reduced flat left mod-
ule and 0 → C → S → M → 0 be a strongly flat cover of M . By Lemma 5.15, S is
also h-reduced, and thus C is an h-reduced flat left R-module. Assume that C �= 0, and let
0 → C ′ → S′ → C → 0 be a strongly flat cover ofC . Then S′ isMatlis-cotorsion h-reduced
strongly flat. By the left version of [13, Theorem 4.5], we have an exact sequence 0 → S′ →
Hom(RK , RK ⊗R S′) → Ext1(RQ, RS′) → 0. Thus RS′ ∼= Hom(RKR, RK ⊗R S′). Since
S′ is strongly flat, there exists an index set Z such that RK ⊗R S′ ∼= RK (Z). Thus RS′ ∼=
Hom(KR, K ⊗ S′) ∼= Hom(KR, K (Z)) ∼= Hom(KR, K ⊗ R(Z)). By [13, Theorem 4.5], we
have an exact sequence 0 → R(Z) → Hom(KR, K ⊗ R(Z)) → Ext1(RQR, R R(Z)) →
0. Since Ext1(RQR, R R(Z)) = Ext1(RQQ, R R(Z)) is a left Q-module, it follows that
R/J ⊗ Ext1(RQR, R R(Z)) = 0, where J denotes the Jacobson radical of R. Moreover,
the left Q-module Ext1(RQQ, R R(Z)) is isomorphic to a direct sum of copies of QQ, so
Ext1(RQR, R R(Z)), isomorphic to a direct sum of copies of RQ, is a flat left R-module.
Therefore R/J ⊗ R(Z) ∼= R/J ⊗ Hom(KR, K ⊗ R(Z)). Since R/J ⊗ R(Z) ∼= (R/J )(Z) is
non-zero, the module R/J ⊗Hom(KR, K ⊗ R(Z)) ∼= R/J ⊗ S′ ∼= S′/J S′ is non-zero. This
proves that J S′ �= S′.

Now themodule RM is flat, so its strongly flat cover 0 → RC → RS → RM → 0 is a pure
exact sequence. Hence the sequence 0 → R/J ⊗R C → R/J ⊗R S → R/J ⊗R M → 0
is exact. That is, the sequence 0 → C/JC → S/J S → M/JM → 0 is exact. From
Lemma 5.5, we have thatC ≤ J S, so the first monomorphism in the last short exact sequence
is the zero morphism. It follows that C/JC = 0.

The proof that JC = C follows from the fact that M is an h-reduced flat left module and
0 → C → S → M → 0 is a strongly flat cover of M . In the first paragraph of proof of this
proposition, we showed that C is also an h-reduced flat left module, and 0 → C ′ → S′ →
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C → 0 is a strongly flat cover of C . Hence the argument also holds for C , and shows that
C ′/JC ′ = 0.

The sequence 0 → C ′ → S′ → C → 0 is pure exact, so the sequence 0 → R/J⊗RC ′ →
R/J ⊗R S′ → R/J ⊗R C → 0 is exact. Equivalently, the sequence 0 → C ′/JC ′ →
S′/J S′ → C/JC → 0 is exact. But C ′/JC ′ and C/JC are both zero, so S′/J S′ = 0. It
follows that J S′ = S′, which is a contradiction. This proves that C = 0, so M is strongly
flat. ��

For any left module RM , let Add(RM) denote the class of all left R-modules isomorphic
to direct summands of direct sums of copies of RM . We will say that Add(RM) is trivial
if every direct summand of a direct sum of copies of RM is isomorphic to a direct sum of
copies of RM .

Lemma 5.17 Let R be a nearly simple chain domain and let RK be the uniserial left R-
module Q/R. Suppose Add(RK ) is not trivial. Then there exists a submodule V of RK that
is not quasismall. Moreover, all the elements of Add(RK ) are isomorphic to R-modules of
the form RK (X) ⊕ RV (Y ).

Proof See [23, Theorem 1.1(ii)]. ��
In the next proposition, we describe uniserial strongly flat modules over Ore domains.

Proposition 5.18 If R is an Ore domain with classical quotient ring Q and with a non-zero
uniserial strongly flat left R-module RU, then R is a left chain domain and RU is isomorphic
to RQ or R R.

Proof Let RU be a non-zero uniserial strongly flat left module over an Ore domain R.
Since RU is flat, considering the exact sequence 0 → R → Q, we have an embedding
U → Q ⊗R U . Hence the annihilator of every non-zero element of RU is zero, and so
cyclic submodules of RU are isomorphic to R R. In particular, the ring R is a left chain
ring. Moreover, U is the union of cyclic submodules isomorphic to R R, that is, a direct
limit of copies of R R, where the connecting homomorphisms are right multiplications by
non-zero elements of R. Applying the functor RQ ⊗R −, since tensor product commutes
with direct limits, we get that RQ ⊗R U is a direct limit of a direct system of copies of
RQ, in which the connecting isomorphisms are right multiplications by non-zero elements
of R, that is, the connecting isomorphisms are all left R-module automorphisms of RQ. Thus
RQ ⊗R U ∼= RQ. Hence there is an embedding ε : RU → RQ. If this embedding ε is onto,
then RU ∼= RQ.

Assume that ε is not onto. We claim that RU is isomorphic to a proper left ideal of R.
By Theorem 5.14, RU is cyclic, and so isomorphic to R R, which concludes the proof of the
proposition.

To prove the claim, we first show that RQ is uniserial. In fact, suppose x, x ′ ∈ RQ.
Then x = rs−1 and x ′ = r ′s′−1 for suitable r , r ′, s, s′ ∈ R, s, s′ non-zero. Reducing to the
same denominator [17, Lemma 4.21], we have that there exist elements t, t ′ ∈ R such that
st = s′t ′ �= 0. As R R is uniserial, without loss of generality we can suppose Rrt ⊆ Rr ′t ′.
Multiplying by the inverse of st = s′t ′, we get that Rrt(st)−1 ⊆ Rr ′t ′(s′t ′)−1, that is,
Rx ⊆ Rx ′. This proves that RQ is uniserial. Since the embedding ε is not onto, if y is
an element of RQ not in the image of ε, then RU is isomorphic to a proper submodule of
Ry ∼= R R, hence RU is isomorphic to a proper left ideal of R. This concludes the proof of
the claim. ��
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Lemma 5.19 Let R be a nearly simple chain domain with Jacobson radical J . If Add(RK )

is not trivial, RV is as in Lemma 5.17 and RM := Hom(K , V (X)), where X is a non-empty
set, then JM �= M. That is, RM has a maximal submodule.

Proof The module RM = Hom(RK , RV ) is a left R-module because RKR is a bimodule.
Notice that RM always has a direct summand isomorphic to Hom(RK , RV ), so that we can
suppose that X has exactly one element. By [23, Theorem 1.1(ii)], K has an endomorphism
whose image is contained in V , say ϕ : RK → RV , that is injective but not surjective. Let
us show that ϕ is in M but not in JM . For every j ∈ J and ψ ∈ Hom(RK , RV ), the left
R-module morphism jψ is not injective. In fact, jψ is right multiplication by j viewed as a
morphism RK → RK composed with ψ : RK → RV . Thus the first morphism annihilates
the element j−1 + R, so that the kernel of jψ is non-zero. (This proves that jψ is not
injective for j �= 0. But also when j = 0, jψ is not injective.) Now every element of JM is
a finite sum of elements of the form jψ, i.e., of non-injective homomorphisms, hence is not
injective because RK is uniserial, thus uniform. Therefore ϕ : RK → RV is not an element
of JM . ��

Recall that a two-sided ideal I of R is completely prime if xy ∈ I implies x ∈ I or y ∈ I
for every x, y ∈ R. A right chain domain is exceptional if it contains a prime ideal that is not
completely prime [8].

Theorem 5.20 If R is a right chain domain with classical right quotient ring Q such that
RSF is a covering class, then R is invariant and RSF = RF .

Proof Let J be the Jacobson radical of R. If I is a non-zero completely prime two-sided
ideal of R, R/I is a left perfect domain by Theorem 5.4, and so it is a division ring. Since
J/I is an ideal of R/I , we conclude that the only proper non-zero completely prime ideal
of R is J . A chain domain R is said to be of rank one if J is its only non-zero completely
prime ideal. By [8], such a ring is either invariant, i.e., aR = Ra for all a ∈ R, or it is nearly
simple, in which case 0 and J are the only proper two-sided ideals, or R is exceptional and
there exists a non-zero prime ideal P properly contained in J . In this last case,

⋂

n Pn = 0
and there are no further ideals between P and J . In the second and the third case, J is neither
right nor left finitely generated and J 2 = J . Now we break the proof in three steps.

Step 1: The ring R cannot be exceptional.
Suppose that R is an exceptional ring with a prime ideal P , 0 ⊂ P ⊂ J . The Jacobson

radical of R := R/P is J := J/P , which is not nilpotent because J 2 = J . Let us show that
J is not right T -nilpotent (the proof is similar to that of [21, Lemma 3.33]). Construct by
induction a sequence a1, a2, a3, . . . of elements of J such that Jan · · · a1 �= 0 for every n ≥ 1

as follows. Since J
2 = J �= 0, there exists an element a1 ∈ J such that Ja1 �= 0. Suppose

a1, a2, . . . , an ∈ J with Jan · · · a1 �= 0 have been constructed. Then J
2
an · · · a1 �= 0, so

that there exists an+1 ∈ J with Jan+1 an · · · a1 �= 0. This completes the construction of
the sequence by induction, and shows that J is not right T -nilpotent. Similarly, J is not left
T -nilpotent. So R := R/P is neither a right nor a left perfect ring, and therefore the class of
strongly flat left R-modules is not covering by Theorem 5.4.

Step 2: The ring R cannot be a nearly simple chain domain.
Suppose R a nearly simple chain domain. For every strongly flat module RS, K ⊗ S is

direct summand of a direct sum of copies of K , so that K ⊗ S belongs to Add(K ). We
have two cases: Add(K ) is trivial or not. If Add(K ) is trivial, then RSF covering implies
RSF = RF by Proposition 5.16. But every cyclic (=finitely generated) left ideal of R is
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flat (= projective), so R J must be flat, hence strongly flat (see for example [28, Theorem
39.12(2)]). Thus J must be finitely generated by Theorem 5.14, which is a contradiction.
Now assume that Add(K ) is not trivial. By Lemma 5.17, there exists a uniserial module V
that is not quasismall and every element in Add(K ) is of the form K (Y ) ⊕ V (X) for suitable
sets X and Y . Let 0 → C → S → J → 0 be a strongly flat cover of J . By Lemma 5.15,
S is also h-reduced, and so C is an h-reduced flat left module. Assume C �= 0, and let
0 → C ′ → S′ → C → 0 be a strongly flat cover of C . Then S′ is Matlis-cotorsion h-
reduced strongly flat. By the left version of [13, Theorem 4.5], we have an exact sequence
0 → S′ → Hom(K , K ⊗ S′) → Ext1(Q, S′) → 0. So S′ ∼= Hom(K , K ⊗ S′). Since
S′ is strongly flat, K ⊗ S′ is a direct summand of a direct sum of copies of K . Therefore
there exist sets X and Y such that K ⊗ S′ ∼= K (Y ) ⊕ V (X). Thus S′ ∼= Hom(K , K ⊗ S′) ∼=
Hom(K , K (Y ))⊕Hom(K , V (X)). Aswe saw in the proof of Theorem 5.16, if Y is non-empty,
we can consider the exact sequence 0 → RY → Hom(K , K ⊗ R(Y )) → Ext1R(Q, R(Y )) →
0, and conclude that J Hom(K , K (Y )) �= Hom(K , K (Y )). Similarly, by Lemma 5.19, if X is
non-empty, J Hom(K , V (X)) �= Hom(K , V (X)). Consequently, J S′ �= S′. By Lemma 5.5,
considering the pure exact sequence 0 → C → S → J → 0, we see that JC = C . By
Lemma 5.5 again, from the exact sequence 0 → C ′ → S′ → C → 0, we get that J S′ = S′,
which is a contradiction. This proves that C = 0, so that J is strongly flat, which contradicts
Theorem 5.14.

Step 3: The ring R is invariant and RSF = RF .
By Steps 1 and 2, the ring R must be invariant. Therefore the endomorphism ring of every

uniserial module is local (the proof is similar to the commutative case, because, like in the
proof of [14, Corollary 3], every uniserial module is unshrinkable, and so the endomorphism
ring of every uniserial module is local like in the proof of [12, Example 2.3(e)]). Thus
End(RK ) is local and every direct summand of a direct sum of copies of K is isomorphic to a
direct sum of copies of RK because RK is uniserial [10, Proposition 2.2]. Thus RSF = RF
by Proposition 5.16. ��

We conclude with an example concerning right noetherian right chain domains. In a right
noetherian right chain domain R, all right ideals are principal and two-sided [7, Lemma 3.2].
In particular, J = pR for some p ∈ R. The right noetherian right chain domain R is said to
be of type ω [7, p. 26 and Lemma 3.4] if its chain of right ideals (= two-sided ideals) is the
chain

R = p0R ⊃ J = pR ⊃ p2R ⊃ · · · ⊃ 0 =
⋂

n≥0

pn R.

Thus for every non-zero right ideal I of R, we have that End(RR/I ) ∼= R/I is a right artinian
ring, hence a perfect ring. In the next example, we show that this is also true for every non-
zero principal left ideal I of a right noetherian right chain domain R of type ω which is not
left Ore. Notice that for any right noetherian right chain domain R of type ω which is not
left Ore, the ring is not left chain (otherwise R would be left Ore) and is not left noetherian
[7, Proposition 3.7]. The main example of such a ring R can be constructed with the skew
polynomial ring with coefficients in a field F , where F has an endomorphism that is not an
automorphism.

Example 5.21 Let R be a right noetherian right chain domain of type ω which is not left Ore.
For every non-zero principal left ideal I of R, the endomorphism ring End(R R/I ) is a perfect
ring.
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Proof For every non-zero element x ∈ R, we have that x R = pn R for some n ≥ 0.
Therefore x = pnu for some invertible element u ∈ R. Right multiplication by u induces
an isomorphism R/Rpn → R/Rx . Hence it suffices to show that End(R/Rpn) is right and
left perfect for n ≥ 1. Notice that Rpn ⊆ pn R. Set S := End(R/Rpn) ∼= E/Rpn , where
E := { r ∈ R | pnr ∈ Rpn } denotes the idealizer of Rpn in R, and set K := { r ∈ R |
pnr ∈ J (R)pn }. By [1, Theorem 2.1], S has at most two maximal ideals, the ideals K/Rpn

and (J (R) ∩ E)/Rpn . Let us show that K ⊆ J (R). Assume the contrary, so that K contains
a unit u of R. Therefore pnu = rpn for some r ∈ J (R). Then r = p jv for some unit v

of R and some j ≥ 1. Thus pn = p jvpnu−1. If j ≥ n, then 1 = p j−nvpnu−1, which
implies J (R) = R, a contradiction. If j < n, then pn− j = vpnu−1. Thus pn− j belongs
to the two-sided ideal pn R of R, which is a contradiction because n − j < n. Therefore
K ⊆ J (R), so S is local with maximal ideal (J (R) ∩ E)/Rpn . We claim that if y ∈ R and
pn y ∈ E , then pn y ∈ Rpn . To prove the claim, assume that pn y ∈ E . Then there exists
s ∈ R such that pn pn y = spn . Similarly, there exists i ≥ 0 and a unit u in R such that
s = piu. If i ≥ n, then we are done, the claim is proved. Otherwise, if i < n, by supposing
that y = p jv for some unit v, we get that u−1 plv = pn , so l > n, which is a contradiction
by [1, Lemma 2.3].

Therefore (J (R) ∩ E)n ⊆ J (R)n ∩ E = pn R ∩ E ⊆ Rpn , so that the Jacobson radical
J (S) = (J (R) ∩ E)/Rpn of the local ring S is nilpotent. It follows that S = End(R/Rpn)
is a right and left perfect ring. ��
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