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Abstract
We introduce sufficient as well as necessary conditions for a compact set K such that there is
a continuous linear extension operator from the space of restrictions C∞(K ) = {F |K : F ∈
C∞(R)} toC∞(R). This allows us to deal with examples of the form K = {an : n ∈ N}∪{0}
for an → 0 previously considered by Fefferman and Ricci as well as Vogt.

Keywords Extension operator · Spaces of smooth functions

Mathematics Subject Classification 47A57 · 46E25 · 46A63

1 Introduction

For a compact subset K of Rd we endow the space of smooth restrictions

C∞(K ) = {F |K : F ∈ C∞(Rd)}
with the quotient topology of the Fréchet space C∞(Rd), i.e., with the sequence of norms

‖| f ‖|n = inf{‖F‖n : F |K = f } where
‖F‖n = sup{|∂αF(x)| : x ∈ R

d , |α| ≤ n}.
This is a Fréchet space and the restriction operator R : C∞(Rd) → C∞(K ), F �→ F |K is
surjective.We are interested in the questionwhether there exists a continuous linear extension
operator E : C∞(K ) → C∞(Rd)which means that R ◦ E = I dC∞(K ). If this is the case we
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say that that K has the smooth extension property. Till know, very few cases are understood,
a remarkable result of [2] says that semicoherent subanalytic sets have the smooth extension
property.

One of the many difficulties with this question is that, for small K , there are no derivatives
for f ∈ C∞(K ) so that many classical analytical tools are not directly accessible. In one
dimension – and this is the case we concentrate on – one can use divided differences as
a substitute, they were used, e.g., by Merrien [13] to prove C∞(K ) = ⋂

n∈N Cn(K ) for
K ⊆ R.

This equality is no longer true in higher dimensions (for subanalytic sets K it is equivalent
to semicoherence [2,3], an elementary example can be found in [16]) so that the recent deep
result of Fefferman [5] that, for every n ∈ N, there is an extension operator En : Cn(K ) →
Cn(Rd) is not directly applicable.

Instead of C∞(K ) one can consider the space of Whitney jets

E (K ) = {(∂αF |K )α∈Nd
0

: F ∈ C∞(Rd)}

also endowedwith the quotient topology fromC∞(Rd). The corresponding questionwhether
there is a continuous linear extension operator E (K ) → C∞(Rd) (then K has the Whitney
extension property) is not completely solved but much better understood than the smooth
extension property, we refer to [9] for many sufficient and necessary conditions. It is proved
in [9, Remark 3.13] that the existence of an extension operator for E (K ) implies E (K ) =
C∞(K ) (more precisely, (∂αF |K )α∈Nd

0
�→ F |K gives an isomorphism), thus, the Whitney

extension property implies the smooth extension property. Therefore, if K is the closure of
its interior and has Lipschitz boundary [18] or, more generally, not too sharp cusps [1,17]
then it has both extension properties. The same holds for such porous sets as the Sierpiński
triangle [7]. An example with C∞(K ) = E (K ) and without extension property is the sharp
cusp {(x, y) ∈ R

2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ exp(−1/x)} in [19].
However, if C∞(K ) is different from E (K ) much less is known. The extreme case of a

singleton K has the smooth extension property (trivially, since C∞(K ) is one-dimensional)
but not the Whitney extension property [14]. The same holds for semicoherent subanalytic
sets with empty interior.

For general sets without further analytical properties a characterization of the smooth
extension property seems to be far out of reach. In this article we continue the investigation
of rather special sets K = {an : n ∈ N} ∪ {0} for real sequences an → 0 as considered by
Fefferman and Ricci [8] and Vogt [20]. In [8] it is shown that for an = nα with α < 0 the set
has the smooth extension property.

This was generalized by Vogt to decreasing sequences an → 0 such that

(a) an − an+1 is decreasing,
(b) an/an+1 is bounded, and
(c) aqn /(an − an+1) is bounded for some q ∈ N.

In particular, {e−n : n ∈ N}∪{0} has the smooth extension property. However, examples like
an = 1/ log(n), an = e−n2 , or an = e−2n are not covered by Vogt’s approach. We are going
to introduce several sufficient conditions as well as necessary ones in order to deal with such
sequences.

Whereas Fefferman and Ricci gave an explicit construction of an extension operator Vogt
as well as Bierstone andMilman used the splitting theory for short exact sequences of Fréchet
spaces and we will follow this strategy. For the ideal IK = {F ∈ C∞(Rd) : F |K = 0} we
have a short exact sequence
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Extension operators for smooth functions… 1539

0 → IK → C∞(Rd)
R→ C∞(K ) → 0

and, by definition, K has the smooth extension property if and only if the sequence splits in
the category of Fréchet spaces (the right inverses of R are precisely the extension operators).
The celebrated splitting theorem of Vogt andWagner [15, chapter 30] says that it is sufficient
to prove that IK satisfies the topological invariant (�) and C∞(K ) satisfies (DN) (has a
dominating norm, we will recall the definitions later on). If K has the smooth extension
property we can replace E( f ) by ϕE( f )where ϕ is a smooth function with compact support
and equal to 1 near K to obtain an extension operator with values in D(B) for some ball B.
Since D(B) satisfies (DN) and (�) we conclude that K has the smooth extension property if
and only if IK ∈ (�) and C∞(K ) ∈ (DN).

In Sect. 2 we will show (�) not only for IK with compact subsets of R but for every
closed ideal I in C∞(R) (the case I = {F ∈ C∞(R) : F (k)|K = 0 for all k ∈ N0} is
known and corresponds to E (K )). Therefore, K ⊆ R has the smooth extension property if
and only if C∞(K ) satisfies (DN), and we will prove a sufficient condition in section 3 and
two necessary ones in section 4. This allows us to show that K = {an : n ∈ N} ∪ {0} has the
smooth extension property for the very fast decaying sequence an = e−n2 but it does not for
extremely fast sequences like an = e−2n .

2 Closed ideals in C∞(R)

In this section we will show that every closed ideal of C∞(R) satisfies property (�) of
Vogt and Wagner [15,21]. This is possible because a simple instance of Whitney’s spectral
theorem [12,24] gives a full description of all closed ideals I: There is amultiplicity function
μ : R → N0 ∪ {∞} such that

I = { f ∈ C∞ : f ( j)(x) = 0 for all x ∈ R and 0 ≤ j < μ(x)}
(for μ(x) = 0 there is thus no condition on f (x)). We will prove (�) in the following form
(which is equivalent to the submultiplicative inequalities for the dual norms in the definition
in [15, chapter 29]): A Fréchet space X with fundamental sequence of seminorms ‖ · ‖n
satisfies (�) if

∀ n ∈ N ∃m ≥ n ∀ k ≥ m ∃ s ∈ N, c > 0 ∀ ε > 0 every x ∈ X with ‖x‖m ≤ 1

can be written as x = x − y + y such that‖x − y‖n ≤ ε and ‖y‖k ≤ cε−s .

Note that these are approximation problems with respect to the n-th norm requiring specific
bounds for the k-th norm of the approximants. We are going to solve these problems in I
for the seminorms ‖ f ‖n = sup{| f ( j)(x)| : |x | ≤ n, 0 ≤ j ≤ n} by using rather classical
approximation properties of Hermite interpolation polynomials. Below, we will explain that
the following theorem generalizes in a certain sense Merrien’s result mentioned above.

Theorem 2.1 Every closed ideal I of C∞(R) satisfies (�).

Proof We take a multiplicity function μ for I as above. For n ∈ N we will prove the (�)-
condition with m = 2n+ 1 and s = k (for given k ≥ m). Even the constants c = ck will turn
out to be independent of the ideal. In the following, c and ck always denote constants which
are independent of f and ε > 0 and may vary at different occurrences.
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We start with a partition of unity of the form
∑

�∈Z
ϕ(x − �) = 1

where ϕ is a positive smooth function with support in the interval (−1, 1) so that, for each
x ∈ R, at most two terms of the series do not vanish. Such a partition can be seen, e.g., in [11,
Theorem 1.4.6]. For ck = ‖ϕ‖k and ε > 0 the scaled functions �ε,�(x) = ϕ(x/ε − �) then
satisfy ‖�ε,�‖k ≤ ck/εk , supp �ε,� ⊆ I� = ((� − 1)ε, (� + 1)ε), and

∑
� �ε,�(x) = 1 with

again at most two non-vanishing terms. Given now f ∈ I with ‖ f ‖m ≤ 1 and ε ∈ (0, 1) (for
ε ≥ 1 there is the trivial (�)-decomposition f = f − 0+ 0) we make the following ansatz:

g =
∑

�∈Z
�ε,�g�

with polynomials g� of degree m to be chosen in a way such that �ε,�g� ∈ I, ‖ f − g‖n ≤ ε,
and ‖g‖k ≤ ckε−k .

For the choice of g� we distinguish two cases depending on the number N� of prescribed
zeroes (countedwithmultiplicities) of the ideal in I�, that is, N� = ∑

x∈I� μ(x). If N� > m+1
or |�| > (n+1)/εwe just put g� = 0.Otherwise, we increase one of theμ(x) for an arbitrarily
chosen x ∈ I� so that N� = m + 1, and take g� as the unique solution of the Hermite
interpolation problem with data {(x, f ( j)(x)) : x ∈ I�, 0 ≤ j < μ(x)}. This means that g�

is a polynomial of degree m such that g( j)
� (x) = f ( j)(x) for all x ∈ I� and 0 ≤ j < μ(x).

Since f ∈ I the polynomial g� satisfies in I� all necessary conditions for belonging to I.
Therefore, �ε,�g� ∈ I and hence g ∈ I.

We will first estimate ‖g‖k with k ≥ m for which it is enough to estimate ‖�ε,�g�‖k for
each � with g� �= 0. For j ≤ k we apply Leibniz’ rule and the inequalities for the derivatives
of �ε,� from above to get, for all x ∈ I�,

∣
∣
∣
(
�ε,�g�

)( j)
(x)

∣
∣
∣ ≤ ckε

−k sup{|g(i)
� (x)| : 0 ≤ i ≤ k}

= ckε
−k sup{|g(i)

� (x)| : 0 ≤ i ≤ m}
because g� is a polynomial of degree m. To estimate the derivatives of g� we need the
concrete form of the Hermite interpolation polynomials and, in order to be consistent with
the commonly usednotation as, e.g., in [4, chapter 4,§6],wefix anorderedvector (x0, . . . , xm)

in which each x ∈ I� appears μ(x) times. Then

g�(x) =
m∑

s=0

f [x0, . . . , xs](x − x0) · · · (x − xs−1)

with the (generalized) divided differences as coefficients. For real valued f (which we may
assume, of course) there are ξs ∈ I� such that f [x0, . . . , xs] = f (s)(ξs)/s!. Since |x − x j | ≤
2ε ≤ 2 for x ∈ I� we thus get |g( j)

� | ≤ c‖ f ‖m on I� and hence

‖g‖k ≤ ckε
−k‖ f ‖m .

It remains to show ‖ f − g‖n ≤ cε with a constant independent of ε (which afterward
can be removed by applying the obtained decomposition for ε̃ = ε/c), and because of
f − g = ∑

�ε,�( f − g�) it is again enough to estimate each term. We do this for the case
where g� �= 0, the other one is similar (and even a particular case of the following arguments
by choosing x0, . . . , xm arbitrarily among the zeroes of I in I�).
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Extension operators for smooth functions… 1541

Given x0, . . . , xm as above we write H for the linear map assigning to h ∈ Cm(I�) its
Hermite interpolation polynomial for the data {(x, h( j)(x)) : x ∈ I�, 0 ≤ j < μ(x)}. Then
H is a projector onto the subspace of polynomials up to degree m. For the midpoint y = �ε

of I� and the Taylor polynomial Tm
y f of degree m around y we thus have on I�

f − g� = f − H( f ) = ( f − Tm
y f ) + H(Tm

y f − f ).

By Taylor’s theorem, the derivatives up to order n of the first term are less than 2‖ f ‖mεm−n .
The j-th derivative of the second term is

(
H(Tm

y f − f )
)( j)

(x) =
m∑

s=0

(Tm
y f − f )[x0, . . . , xs] ((x − x0) · · · (x − xs−1))

( j)

=
m∑

s= j

(Tm
y f − f )(s)(ξs) ((x − x0) · · · (x − xs−1))

( j)

with ξs ∈ I�. On I� we thus get again by Taylor’s theorem and Leibniz’ formula a constant
c (depending only on m) with

∣
∣
∣
∣

(
H(Tm

y f − f )
)( j)

(x)

∣
∣
∣
∣ ≤ c

m∑

s= j

∣
∣
∣(Tm−s

y f (s) − f (s))(ξs)

∣
∣
∣ (2ε)s− j

≤ c
m∑

s= j

‖ f ‖mεm−s(2ε)s− j ≤ c̃εm− j‖ f ‖m ≤ c̃εm−n .

Combining this with |�( j)
ε,�(x)| ≤ cnε−n and m = 2n + 1 we finally get

‖ f − g‖n ≤ cεm−2n = cε.

In the proof above we did not use that f is smooth but only that f ∈ C2n+1(R). In
particular, we have shown for any set K ⊆ R and

In
K = { f ∈ Cn(R) : f |K = 0}

that every f ∈ I2n+1
K can be decomposed as f = f −g+g with g ∈ I∞

K and ‖ f −g‖n < ε.
(The proof even simplifies a bit because one does not need the estimate for ‖g‖k and, because
all zeroes of the ideals are simple, one can use Lagrange instead of Hermite interpolation.)
Expressed differently, the closure of I∞

K in In
K contains I2n+1

K . This reducedness of the
projective spectrum (In

K )n∈N0 allows us to apply the abstract Mittag-Leffler procedure, see,
e.g., [22, section 3.2]: For each n ∈ N0 we have a short exact sequence

0 → In
K → Cn(R) → Cn(K ) → 0

and the projective limit (with respect to the inclusions as spectral maps) of these sequences
is

0 → I∞
K → C∞(R) →

⋂

n∈N0

Cn(K ) → 0.

In general, the projective limit of exact sequences need not be exact at the last spot and the
non-exactness is measured by the first derivative of the projective limit functor. The abstract
Mittag-Leffler theorem [22, Theorem 3.2.1] now states that this first derivative vanishes for
reduced spectra. As this is case here we get that the limit is indeed exact. We have thus a new
proof of the following result from [13]:
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Theorem 2.2 (Merrien) C∞(K ) = ⋂
n∈N Cn(K ) for every set K ⊆ R.

We do not know any compact set K ⊆ R
d such that the vanishing ideal IK = { f ∈

C∞(Rd) : f |K = 0} does not satisfy (�). To be concrete, we thus state a very optimistic
conjecture:

Conjecture 2.3 Every vanishing ideal IK in C∞(Rd) satisfies (�).

3 A sufficient condition for (DN)

In this section we prove a sufficient condition for a compact set K ⊆ R such that C∞(K )

has a dominating norm.
Let us recall that for a Fréchet space X with fundamental sequence of seminorms ‖ · ‖n

the n-th seminorm is dominating if

∀m ≥ n ∃ k ≥ m, c > 0 ∀ x ∈ X

‖x‖2m ≤ c‖x‖k‖x‖n .
An equivalent condition is ∃ ϑ ∈ (0, 1) ∀m ≥ n ∃ k ≥ m, c > 0 such that ‖x‖m ≤
c‖x‖ϑ

k ‖x‖1−ϑ
n (the passage from the given ϑ to ϑ = 1/2 is done by iterating the latter

condition if ϑ > 1/2 and it is trivial for ϑ < 1/2) which is satisfied if (and only if) we have

∃ σ ≥ 1 ∀m ∈ N ∃ k ≥ m, c > 0, εk ∈ (0, 1) ∀ x ∈ X , 0 < ε < εk

‖x‖m ≤ c(ε‖x‖k + ε−σ ‖x‖n).
Indeed, by increasing the constant we get the inequality for all ε ∈ (0, 1) and minimizing
the right hand side then implies the submultiplicative inequality with ϑ = σ/(1+ σ) (and a
different constant).

Just for convenience, wewill slightlymodify (a finite number of) the seminorms ofC∞(R)

from the previous section: Given a compact set K ⊆ R we set ‖F‖n = sup{|F ( j)(x)| : 0 ≤
j ≤ n, x ∈ K ∪ [−n, n]}.

For a closed ideal withmultiplicity functionμwhose zero set Z(I) = {x ∈ R : μ(x) > 0}
is contained in K all quotient seminorms

‖| f ‖|n = inf{‖F‖n : F represents f }
(where, of course, F represents f if f is the equivalence class F + I of F) are in fact norms
on C∞(R)/I.

As mentioned in the introduction, theorem 2.1 implies that a closed ideal I is comple-
mented in C∞(R) if C∞(R)/I satisfies (DN), i.e., it has a dominating norm. Using the
specific form of closed ideals and a partition of unity one easily sees that the assumption that
Z(I) is compact is no restriction of generality.

As before, for a closed ideal I with multiplicity functionμ and I ⊆ Rwe call
∑

x∈I μ(x)
the number of zeroes of I in I .

It is quite natural to expect that (DN) for the quotient C∞(R)/I depends on the way the
points of Z(I) accumulate. The theorem below describes a kind of thickness of K near its
points which are not “very isolated” expressed in terms of a local Markov equality. Several
versions of it appeared in the context of Whitney extension operators, e.g., in [1,6,7,9,17]. A
more geometric condition will be derived afterwards.
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Theorem 3.1 Let I ⊆ C∞(R) be a closed ideal such that K = Z(I) is compact. The norm
‖| · ‖|n is dominating in C∞(R)/I provided that the following condition holds:

∃ r ≥ 1, γ ≥ 1 ∀m, k ∈ N ∃ c > 0, εk ∈ (0, 1) ∀ x ∈ K , 0 < ε < εk

either (x − εr , x + εr ) contains at most n + 1 zeroes of I or there is y ∈ K ∩ (−ε, ε) such
that

|P( j)(y)| ≤ c

εγm
sup{|P(t)| : t ∈ K ∩ (y − ε, y + ε)}

for all polynomials P of degree ≤ k and all j ∈ {0, . . . ,m}.
Proof We may assume that r and γ are integers. Given m ≥ n we set m̃ = (r + 2)m and
k = (r +1)m+γ m̃. The condition applied to m̃ and k responds with a constant c and εk > 0.
We fix f ∈ C∞(R)/I and ε ∈ (0, εk).

As in the proof of theorem 2.1 the constants below may vary from one occurrence to the
other but are always independent of ε, x ∈ K , and f . We take a partition of unity �1, . . . , �M

on K , such that supp(��) ⊆ I� = (x� − εr , x� + εr ), every x ∈ R belongs to at most two I�,
and

|�( j)
� (x)| ≤ cε−r j .

We will construct a representative F = ∑M
�=1 ��g� of f with suitable g� by distinguishing

two cases:

(i) If the number N� = ∑
x∈I� μ(x) of zeroes in I� is≤ n+1 we let g� be the polynomial of

degree N� −1 interpolating the values and derivatives of f up to orderμ(x)−1 for all in
x ∈ I� (note that this does not depend on the representative F0, i.e., f ( j)(x) = F ( j)

0 (x)
is well-defined for j < μ(x)).

(ii) Otherwise we choose G ∈ C∞(R) representing f such that ‖G‖k ≤ 2||| f |||k , which is
possible since ||| f |||k is the infimum of all such ‖G‖k (of course we only have to deal
with the case ||| f |||k �= 0). We put g� = G.

Since all g� represent f in I� and
∑M

�=1 �� = 1 on K = Z(I)we get that F = ∑N
�=1 ��g�

represents f .
We will estimate the derivatives up to order m of the terms ��g� of F .
Case (i) is similar to the proof of theorem 2.1. We put the N� zeroes of I in I� in a vector

(x0, . . . , xN ) with N = N� − 1 and write for x ∈ I�

g�(x) = f [x0] + f [x0, x1](x − x0) + · · · f [x0, x1, . . . , xN ](x − x0) · · · (x − xN−1).

Given any representative F0 of f there are ξs ∈ I� with

f [x0, x1, . . . , xs] = F (s)
0 (ξs)

s!
so that |g( j)

� (x)| ≤ C‖F0‖n for x ∈ I� and all j ≤ m (for j > n the derivative is 0 because
g� is a polynomial of degree N ≤ n). Combined with Leibniz’ rule and the estimates for the
derivatives of �� we get for x ∈ R and j ≤ m

|(��g�)
( j)(x)| ≤ cε−rm‖F0‖n .

Passing to the infimum over all representations the last term can be replaced by cε−rm‖| f ‖|n .
In case (ii) we choose a point y ∈ K ∩ (x� − ε, x� + ε) where the Markov type inequality

is satisfied for derivatives up to order m̃.
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For j ∈ {0, . . . ,m} and x ∈ I�, Taylor’s theorem gives

g( j)
� (x) = G( j)(x) =

∑

β≤m̃− j−1

G( j+β)(y)

β! (x − y)β + G(m̃)(ξ)

(m̃ − j)! (x − y)m̃− j

for some ξ between x and y. From |x − y| ≤ 2ε we then get, by the same estimate for the
derivatives of �� as above,

∣
∣
∣(��g�)

( j)(x)
∣
∣
∣ ≤ cε−rm

(

sup
0≤β≤m̃−1

|G(β)(y)| + εm̃−m‖G‖m̃
)

Applying the local Markov inequality to the Taylor polynomial T k
y G of G around y gives

for β ≤ m̃ ≤ k

|G(β)(y)| = |(T k
y G)(β)(y)| ≤ cε−γ m̃ sup

ω∈K ,|y−ω|<ε

|(T k
y G)(ω)|

≤ cε−γ m̃

(

sup
|y−ω|<ε

|(T k
y G)(ω) − G(y)| + sup

ω∈K
|G(ω)|

)

≤ cε−γ m̃
(
εk‖G‖k + ‖| f ‖|0

)

because of Taylor’s theorem and the fact that all representatives of f coincide on K .
Combining both inequalities and using m̃ − (r + 1)m = m, k − γ m̃ − rm = m, and
‖G‖m̃ ≤ ‖G‖k ≤ 2‖| f ‖|k we get

∣
∣
∣(��g�)

( j)(x)
∣
∣
∣ ≤ c

(
εk−γ m̃−rm‖G‖k + ε−γ m̃−rm‖| f ‖|0 + εm̃−m−rm‖G‖m̃

)

≤ c
(
εm‖| f ‖|k + ε−γ m̃−rm‖| f ‖|0

)
.

By the definition of m̃ = (r+2)m we get, with σ = γ (r+2)+r , in both cases the inequality
∣
∣
∣(��g�)

( j)(x)
∣
∣
∣ ≤ c

(
εm‖| f ‖|k + ε−σm‖| f ‖|0

)
.

Summing over � and taking the supremum of all x ∈ K we have thus proved

‖| f ‖|m ≤ ‖F‖m ≤ c
(
εm‖| f ‖|k + ε−σm‖| f ‖|n

)

for all ε ∈ (0, εk). Replacing ε by ε1/m we obtain

‖| f ‖|m ≤ c
(
ε‖| f ‖|k + ε−σ ‖| f ‖|n

)

for all ε ∈ (0, εmk ) which proves that ‖| · ‖|n is a dominating norm.

It is clear that the Markov type inequality cannot hold for polynomials of degree k if
K ∩ (y − ε, y + ε) has strictly less that k points. On the other hand, we will show that it
is sufficient to find k points in the intersection which are regularly distributed so that the
minimal distance between two points is comparable to the maximal distance. We thus get a
sufficient geometric condition for the smooth extension property which can be evaluated in
concrete cases.

Theorem 3.2 Let K be a compact subset of R and n ∈ N such that

∃ r ≥ 1, γ ≥ 1 ∀m ∈ N, k ∈ N ∃ c > 0, εk > 0 ∀ ε ∈ (0, εk), x ∈ K
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Extension operators for smooth functions… 1545

whenever (x − εr , x + εr ) contains strictly more than n + 1 points of K then

∃ y0, . . . , yk ∈ K ∩ (x − ε, x + ε) with
sup0≤i,ν≤k |yi − yν |k−m

inf i �=ν |yi − yν |k ≤ c

εγm
.

Then K has the smooth extension property.

Proof With the quantifiers as above, x ∈ K such that K ∩ (x − εr , x + εr ) has more than
n+ 1 points, y0, . . . , yk as above, and a polynomial P of degree k we write it with Lagrange
interpolation as

P(t) =
k∑

ν=0

P(yν)Lν(t), where Lν(t) =
∏k

i=0,i �=ν(t − yi )
∏

i �=ν(yν − yi )
.

For j ∈ {0, . . . ,m} we then have

P( j)(t) =
k∑

ν=0

P(yν)
∑

S⊂{0,...,k}\{ν},|S|=k− j

∏
i /∈S(t − yi )

∏
i �=ν(yν − yi )

.

Denoting the quotient in the statement of the proposition by q we thus get for j ∈ {0, . . . ,m}
∣
∣
∣P( j)(y0)

∣
∣
∣ ≤

n∑

ν=0

|P(yν)|cq ≤ c

εγm
sup

ω∈K , |ω−y0|<ε

|P(ω)|.

We have thus verified the required inequalities of theorem 3.1 for y = y0.

It is interesting to note that the conditions of theorems 3.1 and 3.2 are both stable under
unions, i.e., if it is satisfied for K and L with nK and nL then it is also fulfilled for K ∪ L
with n = nK + nL + 1. We do not know however if the smooth extension property is stable
under unions.

We will now apply theorem 3.2 to sets with only one accumulation point of the form
K = {0}∪ {a� : � ∈ N0} for a decreasing null sequence such that the sequence of differences
d� = a� −a�+1 is decreasing. Since this monotonicity is equivalent to a� ≤ (a�−1 +a�+1)/2
such sequences are called convex. The following proposition improves Vogt’s results [20] as
well as those of Fefferman and Ricci [8].

Proposition 3.3 Let (a�)�∈N0 be a decreasing convex null sequences such that, for every
p > 1, the sequence a p

� /a�+1 is bounded.
Then K = {0} ∪ {a� : � ∈ N0} has the smooth extension property.

Proof We will verify the condition of theorem 3.2 for n = 0, r = γ = 2, and εk = 1/4k.
Let us thus fix m, k ∈ N, ε ∈ (0, εk) and x = a� ∈ K such that (a� − ε2, a� + ε2) contains
at least two elements of K so that d� = a� − a�+1 < ε2 < ε/4k.

For the construction of y0, . . . , yk we distinguish two cases depending on whether the
limit point 0 of the sequences belongs to (a� − ε, a� + ε). If it does not not, i.e., a� > ε, we
set y0 = a� and define y1, . . . , yk recursively: If y0, . . . , yi−1 are already defined we let

�(i) = min{ j ∈ N : yi−1 − a j ≥ ε/4k} and yi = a�(i).

We have to show that y1, . . . , yk are indeed well-defined elements of K ∩ (a� − ε, a� + ε).
Since d j is decreasing we have d j ≤ d� < ε/4k, and for all �( j) which are already defined
this implies y j−1 − y j < ε/2k. Hence

y0 − yi−1 = (y0 − y1) + · · · + (yi−2 − yi−1) < (i − 1)ε/2k < ε/2
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which yields yi−1 > y0 − ε/2 > ε/2. Since a� tends to 0 we get that �(i) is well-defined.
By this construction, we have |yi − yν | ≥ ε/4k for all distinct i, ν ∈ {0, . . . , k} as well

as |y0 − yk | ≤ ε/2. This implies

sup0≤i,ν≤k |yi − yν |k−m

inf i �=ν |yi − yν |k ≤ (ε/2)k−m (4k/ε)k ≤ ckε
−m .

The condition of theorem 3.2 is thus satisfied even with γ = 1.
In the second case 0 ∈ (a� − ε, a� + ε), this neighbourhood contains all terms of the

sequence with a j < ε. We define p > 1 by the equation kp2k+1 = k + 1 and get a constant
c ≥ 2 (depending only on k) with a p

j /a j+1 ≤ c for all j ∈ N. We thus get � ∈ (0, 1/2) with

a j+1 ≥ �a p
j . We claim that we then have

∀ δ ∈ (0, a0) ∃ i ∈ N with ai ∈ [
�δ p, δ

)
.

Indeed, if i ∈ N is maximal with ai−1 ≥ δ we have ai < δ as well as ai ≥ �a p
i−1 ≥ �δ p .

Defining t0 = ε and t j+1 = �t pj , i.e., t j+1 = �p j+p j−1+···+1ε p j+1
we get a partion of

(0, ε) into subintervals [t j+1, t j ) each of which containing elements of K (of course, we may
assume ε < a0). We choose y j ∈ K from every second interval, i.e., y j ∈ [t2 j+1, t2 j ) for
j ∈ {0, . . . , k}. For 0 ≤ i < j ≤ k we then have

yi − y j ≥ y j−1 − y j ≥ t2 j−1 − t2 j = t2 j−1 − �t p2 j−1.

Since t2 j−1 < ε < 1 and p > 1, this is ≥ (1−�)t2 j−1 ≥ (1−�)t2k−1. The explicit formula
for t j thus gives a constant α > 0 (depending via � and p only on k) such that

yi − y j ≥ αε p2k−1
.

From this and the choice of p we finally get, for γ ≥ 2

sup0≤i,ν≤k |yi − yν |k−m

inf i �=ν |yi − yν |k ≤ cεk−m−kp2k+1 = cε−(m+1) ≤ cε−γm .

Below we will show in example 4.7 that we cannot replace the quantifier for all p > 1 by
a fixed p > 1. Monotonicity and convexity of the following examples are easily checked by
calculus. It is of course enough to have these properties for large �.

Example 3.4 The set K = {0} ∪ {a� : � ∈ N} has the smooth extension property in each of
the following cases:

(1) a� = log(� + 1)α/�β for α ∈ R and β > 0.
(2) a� = exp(−�α) for α > 0.
(3) a� = 1/ log(� + 1)α for α > 0.

Vogt’s resultsmentioned in the introduction yield the cases (1) and (2) forα ≤ 1 but they do
not cover the other cases. The situations in (2) and (3) exhibit extremely fast and slow decay,
respectively, so that one is tempted to believe that any set of the form K = {0}∪ {a� : � ∈ N}
with a decreasing null sequence might have the smooth extension property. As we will show
in the next sections this is not the case.
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4 Necessary conditions

4.1 A geometric necessary condition

To obtain a geometric necessary condition we will need a result of Whitney [23] describing
C∞(K ) for a compact set K ⊆ R in terms of divided differences. For f : K → R and
distinct x0, . . . , xn , the divided differences are given by f [x0] = f (x0) and

f [x0, . . . , xn] = f [x0, . . . , xn−1] − f [x1, . . . , xn]
x0 − xn

.

We define

| f |n = sup{| f [x0, . . . , x j ]| : 0 ≤ j ≤ n, x0, . . . , x j ∈ K distinct}.

Whitney’s theorem says that f : K → R belongs to Cn(K ) if and only if the n-th divided
difference map is uniformly continuous, i.e., for all ε > 0 there is δ > 0 such that for all
x ∈ K , x0, . . . , xn ∈ K ∩ (x −δ, x +δ) distinct, and y0, . . . , yn ∈ K ∩ (x −δ, x +δ) distinct
we have

| f [x0, . . . , xn] − f [y0, . . . , yn]| < ε.

From this it is easy to obtain that | · |n is a complete norm on Cn(K ). Since by Merrien’s
theorem 2.2

C∞(K ) =
⋂

n∈N
Cn(K )

this implies that the system of norms {| · |n : n ∈ N} defines the Fréchet space topology of
C∞(K ).

Theorem 4.1 If C∞(K ) has a dominating norm then there exist n ∈ N, s ∈ N such that for
all ε ∈ (0, 1/2), z ∈ K we have: If (z − εs, z + εs) contains at least n + 2 points of K then
K ∩ (z − ε, z + ε) \ (z − εs, z + εs) �= ∅.

Proof Let | · |n be a dominating norm on C∞(K ) and m = n + 1. We take k > m and c > 0
from the (DN)-condition in submultiplicative form, i.e.,

| f |2n+1 ≤ c| f |k | f |n for all f ∈ C∞(K ).

Assume that, for all s ≥ 2, there exist z = x0 ∈ K and x1, . . . , xn+1 ∈ (x0 − εs, x0 + εs)

so that K ∩ (x0 − ε, x0 + ε) \ (x0 − εs, x0 + εs) = ∅ (the dependence on s is notationally
suppressed).

We take ϕ ∈ D(R) with supp(ϕ) ⊂ (x0 − ε, x0 + ε), ϕ = 1 on the small interval
(x0 − εs, x0 + εs), and |ϕ( j)| ≤ c jε− j , where c j are absolute constants. Let P(x) =∏n

j=0(x − x j ) and f = ϕP . Then

| f |n+1 ≥ |P[x0, . . . , xn+1]| =
∣
∣
∣
∣
∣

P(n+1)(ξ)

(n + 1)!

∣
∣
∣
∣
∣
= 1.
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From f [x0, . . . , x j ] = f ( j)(ξ)/ j ! we further get
| f |k ≤ sup{| f ( j)(ξ)| : 0 ≤ j ≤ k, ξ ∈ R}

≤ ck
εk

sup
x∈(x0−ε,x0+ε)

sup
0≤ j≤k

∣
∣
∣
∣
∣
∣

∑

|S|=n− j

∏

�∈S
(x − x�)

∣
∣
∣
∣
∣
∣
≤ c̃

εk
,

the last estimate comes from |x− x�| ≤ 1 for each x ∈ (x0−ε, x0+ε) so that c̃ only depends
on k.

To estimate | f |n let us take distinct point y0, . . . , yn in K . Because of the symmetry of the
divided differences we can assume that y0 < y1 < · · · < yn . Leibniz’ rule for the product
f = ϕ f on K says

f [y0, . . . , yn] = ϕ[y0] f [y0, . . . , yn] + ϕ[y0, y1] f [y1, . . . , yn]
+ ϕ[y0, y1, y2] f [y2, . . . , yn] + · · ·

If a is the first index with ya > x0 − εs then the first a − 1 terms of this sum vanish because
ya−1 is outside (x0 − ε, x0 + ε) so that ϕ[y0, . . . , ya−1] = 0. Estimating |ϕ[y0, . . . , y j ]| =
|ϕ( j)(ξ j )/ j !| ≤ c jε− j we get

| f [y0, . . . , yn]| ≤ n
cn
εn

sup{| f [z0, . . . , z j ]| : z0, . . . , z j ∈ K ∩ (x0 − εs,∞), j ≤ n}.

In the same way we estimate | f [z0, . . . , zn]| by cnε−n times divided differences with nodes
in K ∩ (x0 − εs, x0 + εs). Since f = P in K ∩ (x0 − εs, x0 + εs) this yields

| f |n ≤ cn
ε2n

sup{| f [y0, . . . , y�]| : 0 ≤ � ≤ n, y j ∈ K ∩ (z − εs, z + εs)}
= cn

ε2n
sup{|P[y0, . . . , y�]| : 0 ≤ � ≤ n, y j ∈ K ∩ (z − εs, z + εs)}

≤ cn
ε2n

sup{|P(�)(ξ)| : 0 ≤ � ≤ n, ξ ∈ (z − εs, z + εs)} ≤ c̃n
ε2n

εs

where c̃ is another constant which only depends on n. Taking the (DN)-inequality together
with the estimates obtained for | f |n+1, | f |n and | f |k , we get for some constant c which is
independent of s that

1 ≤ cεs−2n−k .

For s → ∞ this is impossible.

Example 4.2 The set K = {0} ∪ { 1k + je−k : 0 ≤ j ≤ k, k ∈ N} does not have the smooth
extension property.

4.2 A necessary Markov type inequality

We fix ϕ ∈ D(R) such that supp(ϕ) ⊆ [−1, 1] and ϕ = 1 in [−1/2, 1/2] and write,
ϕε,y(x) = ϕ(

x−y
ε

) for y ∈ R and ε > 0.

Proposition 4.3 If |||·|||n is a dominating norm on C∞(K ) then the following holds:
∀m ∈ N ∃ r ≥ 1 ∀ k ∈ N ∃ ck > 0 such that for all polynomials P of degree ≤ k, ε > 0,
accumulation points y of K , and f ∈ C∞(R) with supp( f ) ⊆ (y−ε, y+ε) and f = ϕε,y P
on K we have
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|P(m)(y)|2 ≤ ck
εr

sup
|t−y|<ε

|P(t)| sup
|t−y|<ε, j≤n

| f ( j)(t)|

Proof The (DN)condition implies that, for all m ≥ n, there are r ≥ m and C > 0 such that
for all h ∈ C∞(K )

|||h|||2m ≤ C |||h|||r |||h|||n .
Given the situation from the proposition we set h = f |K = ϕε,y P|K . Since y is an accu-
mulation point of K we have g(m)(y) = P(m)(y) for all g ∈ C∞(R) satisfying g|K = h.
Hence

|P(m)(y)|2 ≤ |||h|||2m ≤ C‖ϕε,y P‖r‖ f ‖n .
It remains to combine the Leibniz rule for ϕε,y P with the estimate |ϕ(i)

ε,y | ≤ c/εi and the
classical Markov inequality

sup
x∈[y−ε,y+ε]

|P(�)(x)| ≤ c

ε�
sup

t∈[y−ε,y+ε]
|P(t)|.

The density I 2n+1
K ⊆ I∞

K
Cn(R)

(see the remarks after the proof of theorem 2.1) allows us
to write the n-th norm of h ∈ C∞(K ) as

|||h|||n = inf{‖ f ‖n : f ∈ C2n+1(R), f = h on K }.
In the situation of the previous proposition we can thus replace f ∈ C∞(R) by f ∈
C2n+1(R).

We now consider K = {0} ∪ {a� : � ∈ N} with a� → 0 to get examples where C∞(K )

does not satisfy the condition in proposition 4.3.

Proposition 4.4 Let K = {0} ∪ {a� : � ∈ N} with a null-sequence such that (|a�|)�∈N
decreases and |a�| < |a�−1|/2. If |||·|||n is a dominating norm for C∞(K ) then, for all s ∈ N,
there is r ≥ 1 such that, for all k ≥ s, there exists Ck > 0 such that for all d ∈ N

k−s∏

j=1

|ad+ j |4(2n+2) ≤ Ck

|ad |r |ad |2k(2n+2)|ad+k |3n+4.

(For k = s the empty set in the product of the left hand side is 1.)

Proof Specifying in proposition 4.3 m = 2s(2n + 2) and this concrete K we get: If |||·|||n is
a dominating norm on C∞(K ) then the following holds:
∀ s ∈ N ∃ r ≥ 1 ∀ k ∈ N, k ≥ s ∃ ck > 0 such that for all polynomials P of degree ≤ k,
ε > 0, and f ∈ C2n+1(R) with supp( f ) ⊆ (−ε, ε) and f = ϕε,0P on K we have

|P(2s(2n+2))(0)|2 ≤ ck
εr

sup
|t−y|<ε

|P(t)| sup
t∈R, j≤n

| f ( j)(t)|. (∗)

For fixed d ∈ N we abbreviate x j = ad+ j with the quantifiers from the proposition. We
consider ε = |x0| and the polynomial

P(x) =
k∏

j=1

(x2 − x2j )
2n+2
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of degree k̃ = 2k(2n + 2). Since ±xk are zeroes of order 2n + 2 of P the function

f (x) =
{
P(x) |x | ≤ |xk |
0 otherwise

,

is in C2n+1(R). Moreover f = ϕε,0P on K because ϕε,0(x) = 1 for |x | ≤ |xk | (as |xk | ≤
|x0|/2 = ε/2) and, for all other x ∈ K ∩ supp(ϕε,0), we have x ∈ {x1, . . . , xk} so that
f (x) = P(x) = 0.
In order to apply (∗) to f we will show the following inequalities:

(α) For m = 2s(2n + 2) we have |P(m)(0)|2 ≥ ∏k−s
j=1 |x j |4(2n+2),

(β) sup|t |≤ε |P(t)| ≤ |2x0|2k(2n+2),
(γ ) there are ck > 0 (depending only on k) such that

sup
t∈R

sup
0≤�≤n

| f (�)(t)| ≤ ck |xk |3n+4.

This will imply the proposition.
(α) P(x) is of the form P(x) = ∏N

�=−N ,��=0(x − y�) where y−� = −y�, y� ∈ {x1, . . . , xk},
N = k(2n + 2), and each ±x j appears 2n + 2 times. We have

P(m)(0) =
∑

|S|=2N−m

∏

�∈S
(−y�)

(more precisely, we sum over all subsets S of {−N , . . . , N } \ {0} with 2N − m = 2(2n +
2)(k − s) elements). We claim that all terms of the sum with non-symmetric S (i.e. −S �= S)
cancel. Indeed if S is non symmetric we replace � by −�, where |�| is minimal such that
� ∈ S, −� /∈ S to obtain S̃ with

∏
�∈S̃ y� = −∏

�∈S y�. For symmetric S all terms have

the same sign (−1)
|S|
2 and we can therefore estimate |P(m)(0)| from below by the absolute

value of any term of the sum (since k ≥ s the sum is not empty, in the extreme case k = s it
contains just one term for S = ∅). Choosing S so that {y� : � > 0, � ∈ S} = {x1, . . . , xk−s}
we obtain

|P(m)(0)| ≥
k−s∏

j=1

|x j |2(2n+2).

(β) follows from

|x2 − x2j | = |(x + x j )(x − x j )| ≤ (2x0)
2 for |x | ≤ |x0|.

(γ ) For |t | ≤ |xk | and j ≤ n we have, with the same notation as in (α),

f ( j)(t) = P( j)(t) =
∑

|S|=2N− j

∏

�∈S
(t − y�).

Since xk and −xk together appear 2(2n + 2) times in P among all y�, at least 3n + 4 appear
in each product

∏
l∈S(t − yl) which is thus in absolute value smaller than |2xk |3n+4 (the

number of terms
( 2N
2N− j

)
only depends on n and j).

Corollary 4.5 Let (a�)�∈N be a null-sequence such that (|a�|)�∈N decreases and |a�| <

|a�−1|/2. If K = {0} ∪ {a� : � ∈ N} has the smooth extension property then there is
p ≥ 1 such that a p

� /a�+1 is bounded.
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Proof Taking s = k = 1 in Proposition 4.4 we get |a p
� /a�+1| ≤ C1 for any p ≥ r−2(2n+2)

3n+4 .

From this corollary we get immediately the following example.

Example 4.6 The set K = {0}∪ {e−�! : � ∈ N} does not have the smooth extension property.

Wefinishwith an example of a convex sequence (a�) showing that boundedness ofa
p
� /a�+1

for some fixed p > 1 is not enough for the smooth extension property.

Example 4.7 K = {0} ∪ {e−p� : � ∈ N} with p > 1 does not have the smooth extension
property.

Proof Assume that |||·|||n is a dominating norm. We fix s ∈ N such that

p1−s4(2n + 2) < (3n + 4).

Proposition 4.4 gives some r ∈ N such that, for each k ∈ N, k ≥ s, the sequence

qd = ar−2k(2n+2)
d a−(3n+4)

d+k

k−s∏

j=1

a4(2n+2)
d+ j

is bounded with respect to d . We calculate

k−s∏

j=1

ad+ j = exp

⎛

⎝
k−s∑

j=1

pd+ j

⎞

⎠ = exp

(

−pd+1 p
k−s − 1

p − 1

)

,

hence

qd = exp

(

2k(2n + 2) − r)pd + (3n + 4)pd+k − 4(2n + 2)pd+1 p
k−s − 1

p − 1

)

= exp

(

pd
(

(2k(2n + 2) − r) + 4(2n + 2)
p

p − 1

+pk((3n + 4) − p1−s4(2n + 2)
))

.

For k big enough such that 2k(2n+2)−r is positive, the sequence is unbounded with respect
to d .

It is interesting to compare this example (for an integer p ≥ 3) with a result of Goncharov
[10] who proved that the somehow similar set

K̃ = {0} ∪
⋃

�∈N

[
e−p�

, e−p� − e−p�+1
]

does satisfy the Whitney (and hence also the smooth) extension property. This can be also
seen as an application of Theorem 3.1.
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