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Abstract
In this article, we construct a genus-0 or genus-1 positive allowable Lefschetz fibration
on any minimal symplectic filling of the link of non-cyclic quotient surface singularities.
As a byproduct, we also show that any minimal symplectic filling of the link of quotient
surface singularities can be obtained from a sequence of rational blowdowns from its minimal
resolution.

Keywords Lefschetz fibration · Quotient surface singularity · Symplectic filling

Mathematics Subject Classification 57R17 · 53D05 · 14E15 · 14J17

1 Introduction

Ever since Donaldson [5] showed that any closed symplectic 4-manifold admits a Lefschetz
pencil and that a Lefschetz fibration can be obtained from a Lefschetz pencil by blowing-up
the base loci, the study of Lefschetz fibrations has become an important theme for topo-
logically understanding symplectic 4-manifolds. In fact, Lefschetz pencils and Lefschetz
fibrations have been studied extensively by algebraic geometers and topologists in the com-
plex category, and these notions can be extended to the symplectic category. It is also known
that an isomorphism class of Lefschetz fibrations is characterized by the monodromy fac-
torization, an ordered sequence of right-handed Dehn twists, up to Hurwitz equivalence and
global conjugation equivalence.

On the other hand, a main research topic in symplectic 4-manifold topology focuses
on classifying symplectic fillings of certain 3-manifolds equipped with a contact structure.
Among them, people have classified symplectic fillings of the link of a quotient surface sin-

B Jongil Park
jipark@snu.ac.kr

Hakho Choi
hakho@kias.re.kr

1 Department of Mathematical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea

2 Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-019-02387-6&domain=pdf


1184 H. Choi, J. Park

gularity. Note that the link of a quotient surface singularity admits a natural contact structure,
called the Milnor fillable contact structure. For example, Lisca [17] classified symplectic
fillings of cyclic quotient singularities whose corresponding link is a lens space, and Bhupal
and Ono [2] listed all possible symplectic fillings of non-cyclic quotient surface singular-
ities. Furthermore, the second author together with Park et al. [20] constructed an explicit
one-to-one correspondence between the minimal symplectic fillings and the Milnor fibers of
non-cyclic quotient surface singularities. Note that the last result above implies that every
minimal symplectic filling of a quotient surface singularity is in fact a Stein filling.

Although the existence of a (positive allowable) Lefschetz fibration, called briefly PALF,
on a Stein filling is well known in general [1,18], it is a somewhat different problem to find
an explicit monodromy description for the Lefschetz fibration on a given Stein filling. In
this article, we investigate the problem for minimal symplectic fillings of the link of quotient
surface singularities. Bhupal and Ozbagci [3] found an algorithm to present each minimal
symplectic filling of a cyclic quotient surface singularity as an explicit genus-0 positive
allowable Lefschetz fibration over the disk. Furthermore, they also showed that such a PALF
can be obtained topologically from the minimal resolution by monodromy substitutions
corresponding to rational blowdowns. The main goal of this article is to generalize their
result for the non-cyclic quotient surface singularity cases. Thus, we obtain the following
result.

Theorem 1.1 Every minimal symplectic filling of the link of non-cyclic quotient surface sin-
gularities admits a genus-0 or genus-1 positive allowable Lefschetz fibration over the disk.
Furthermore, each symplectic filling can be also obtained by rational blowdowns from the
minimal resolution of its singularity.

Remark 1.1 Note that a genus of the PALF in Theorem 1.1 above is determined only by the
existence of a bad vertex (refer to Sect. 2.1 for a definition) in the minimal resolution graph of
the corresponding singularity. Explicitly, a genus of the PALF is 0 if the minimal resolution
graph of a quotient surface singularity has no bad vertex, and a genus is 1 otherwise.

In order to prove Theorem 1.1 above, we first construct a PALF on the minimal resolution
graph of a non-cyclic quotient surface singularity: If there is no bad vertex in the minimal
resolution graph, we follow the idea of Gay andMark in [11], where they initially constructed
a genus-0 PALF on the minimal resolution graph. If there is a bad vertex, then we construct
a genus-1 PALF, which is a special case of open book decompositions on the boundary of
plumbings obtained by Etnyre and Ozbagci [8]. Next, we show that the induced contact
structure on the boundary is the Milnor fillable contact structure, which can be obtained
by computing the first Chern class in terms of vanishing cycles and the rotation number of
these vanishing cycles. Then, we construct a PALF on any minimal symplectic filling via
the corresponding P-resolution. Since every Milnor fiber, hence every minimal symplectic
filling, of a quotient surface singularity can be obtained topologically by rationally blowing
down the corresponding P-resolution, it is sufficient to construct a PALF on the general
fiber of P-resolutions. Finally we show that a Lefschetz fibration of any minimal symplectic
filling can be obtained by monodromy substitutions from the minimal resolution of the
corresponding singularity by adapting the same technique that Endo et al. [7].

This article is organized as follows: We briefly review some generalities on quotient sur-
face singularities, including minimal resolutions and P-resolutions, and the relation between
monodormy substitutions and rational blowdowns in Sect. 2. We introduce Lisca’s classifi-
cation result on symplectic fillings and Bhupal–Ozbagci’s algorithm for finding a PALF on
the cyclic cases in Sect. 3. We subsequently explain how to construct a genus-0 or genus-1

123



A Lefschetz fibration on minimal symplectic fillings... 1185

Lefschetz fibration on theminimal resolutions and we show that the induced contact structure
on the boundary is indeed Milnor fillable in Sect. 4. Finally, we provide an explicit algorithm
for a PALF on any minimal symplectic filling by investigating a PALF on each P-resolution
in Sect. 5.

2 Generalities on quotient surface singularities

In this section we briefly recall some basics on quotient surface singularities (refer to [20]
for details). Let (X , 0) = (C2/G, 0) be a germ of a quotient surface singularity, where G is a
finite subgroup ofGL(2,C)without reflections. Since (C2/G1, 0) is analytically isomorphic
to (C2/G2, 0) if and only if G1 is conjugate to G2, it is enough to classify finite subgroups
of GL(2,C) without reflections up to conjugation when classifying quotient surface singu-
larities (C2/G, 0). We may assume that G ⊂ U (2) because G is finite. The action of G on
C
2 then lifts to an action on the blow-up of C2 at the origin. Thus, G acts on the exceptional

divisor E ∼= CP
1, where the action is induced by G ⊂ U (2) → PU (2) ∼= SO(3). The

image of G in SO(3) is either a (finite) cyclic subgroup, a dihedral group, tetrahedral group,
octahedral group, or icosahedral group. Therefore quotient surface singularities are divided
into five classes: cyclic quotient surface singularities, dihedral singularities, tetrahedral sin-
gularities, octahedral singularities, and icosahedral singularities. We call the last four cases
non-cyclic quotient surface singularities.

2.1 Symplectic fillings andMilnor fibers

Let (X , 0) = (C2/G, 0) be a germ of a quotient surface singularity, where G is a finite
subgroup of U (2) without reflections. Assume that (X , 0) ⊂ (CN , 0), which is always
possible for a normal surface singularity. If B ⊂ C

N is a small ball centered at the origin,
then a small neighborhood X ∩ B of the singularity is homeomorphic to the cone over its
boundary L := X∩∂B. The smooth compact 3-manifold L is called the link of the singularity.
It is well known that the topology of the germ (X , 0) is completely determined by its link
L and the link L admits a natural contact structure ξst, so-called Milnor fillable contact
structure ξst = T L ∩ JT L , where J is an induced complex structure along L . A (strong)
symplectic filling of (X , 0) is a symplectic 4-manifold (W , ω), where the boundary ∂W = L
satisfies the compatibility condition ω = dαst near L , and where αst is a 1-form defining the
contact structure ξst = ker αst on L . One may also define a so-called weak symplectic filling.
However, it is known that two notions of symplectic fillings coincide in our case because the
link L is a rational homology sphere. So we simply call them symplectic fillings.

Next, we call W a Stein filling of (X , 0) if it is a Stein manifold W with L as its strictly
pseudoconvex boundary and ξst is the set of complex tangencies to L . It is clear that Stein
fillings are minimal symplectic fillings of the link L of (X , 0).

Third, we call a proper flat map π : X → � with � = {t ∈ C : |t | < ε} a smoothing
of (X , 0) if it satisfies π−1(0) = X and π−1(t) is smooth for all t �= 0. The Milnor fiber
M of a smoothing π of (X , 0) is defined as a general fiber π−1(t) (0 < t < ε). It is
known that the Milnor fiber M is a compact 4-manifold with link L as its boundary and the
diffeomorphism type depends only on the smoothing π . Furthermore, M has a natural Stein
(hence symplectic) structure, thus it provides an example of a Stein (andminimal symplectic)
filling of (L, ξst ). Recall that, as mentioned in the introduction, Park et al. [20] constructed an
explicit one-to-one correspondence between the minimal symplectic fillings and the Milnor
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fibers of quotient surface singularities. Hence, it is now a well-known fact that every minimal
symplectic filling of a quotient surface singularity is a Stein filling and a Milnor fiber of the
singularity.

2.2 Minimal resolutions

We first denote the Hirzebruch-Jung continued fraction by [c1, . . . , ct ](ci ≥ 1), which is
defined recursively as follows:

[ct ] = ct , and [ci , ci+1, . . . , ct ] = ci − 1

[ci+1, . . . , ct ] .

Since a continued fraction [c1, c2, . . . , ct ] often describes a chain of smooth rational curves
on a complex surface whose dual graph is given by

· · ·−c1 −c2 −ct−1 −ct
,

we use by analogy the term ‘blowing up’ for the following operations and the term ‘blowing
down’ for their inverses:

[c1, . . . , ci−1, ci+1, . . . , ct ] → [c1, . . . , ci−1 + 1, 1, ci+1 + 1, . . . , ct ]
[c1, . . . , ct−1] → [c1, . . . , ct−1 + 1, 1].

Now we describe the (dual graph of) the minimal resolution of quotient surface singulari-
ties. In the resolution graph, note that a vertex v corresponds to the irreducible component Ev

of the exceptional divisor E , and the edges correspond to the intersections of the irreducible
components Ev . We call the number of edges connected to the vertex v the valence of v and
the self-intersection of Ev the degree of v. If the absolute value of the degree of v is strictly
less than the valence of v, we call the vertex v a bad vertex.

Example 2.1 The following figures show the cases of minimal resolution graphs with and
without a bad vertex. A central vertex (vertex with valence 3) in the right-handed figure is a
bad vertex.

−2 −5 −3

−2

(a) No bad vertex case

−2 −2 −3

−2

(b) Bad vertex case

Cyclic singularities An,q

A cyclic quotient surface singularity (X , 0) of type 1
n (1, q)with 1 ≤ q < n and (n, q) = 1 is

a quotient surface singularity, where a cyclic group Zn acts by ζ · (x, y) = (ζ x, ζ q y). Then,
the minimal resolution graph of (X , 0) is given by

· · ·−b1 −b2 −br−1 −br
,

where
n

q
= [b1, b2, . . . , br−1, br ] with bi ≥ 2 for all i .
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Dihedral singularities Dn,q

Let (X , 0) be a dihedral singularity of type Dn,q , where 1 < q < n and (n, q) = 1. The
minimal resolution graph of (X , 0) is given by

· · ·−b −b1 −br−1 −br−2

−2

,

where
n

q
= [b, b1, . . . , br−1, br ] with b ≥ 2 and bi ≥ 2 for all i .

Other cases

For a tetrahedral, octahedral, or icosahedral singularity, the minimal resolution has a central
curve C0 with C0 · C0 = −b (b ≥ 2) and three arms, which can be divided into type (3, 1)
and type (3, 2):

· · ·−b −b1 −br−2

−3

(a) type (3, 1) (b) type (3, 2)

· · ·−b −b1 −br−2−2

−2

2.3 P-resolutions

Definition 2.1 A normal surface singularity is of class T if it is a rational double point
singularity or a cyclic quotient surface singularity of type 1

dn2
(1, dna − 1) with d ≥ 1,

n ≥ 2, 1 ≤ a < n, and (n, a) = 1. Equivalently, it is a quotient surface singularity which
admits a Q-Gorenstein one-parameter smoothing [16].

Note that one-parameterQ-Gorenstein smoothing of a singularity of class T is interpreted
topologically as a rational blowdown surgery defined by Fintushel and Stern [10], and later
extended by Park [22]. Furthermore, thanks toWahl [26], a cyclic quotient surface singularity
of class T can be recognized from its minimal resolution as follows:

Proposition 2.2 (1) The singularities
−4

and . . .−3 −2 −2 −3
are of

class T .

(2) If . . .
−b1 −b2 −br−1 −(br )

is of class T , so are

. . .−2 −b1 −br−1 −(br + 1)

and

. . .
−(b1 + 1) −b2 −br −2

(3) Every singularity of class T that is not a rational double point can be obtained directly
from one of the singularities described in (1) and by iterating through the steps described
in (2) above.
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Definition 2.3 A P-resolution f : (Y , E) → (X , 0) of a quotient surface singularity (X , 0)
is a partial resolution such that Y has at most rational double points or singularities of class
T and KY is ample relative to f .

We usually describe a P-resolution Y → X as the minimal resolution π : Z → Y
of Y with π-exceptional divisors. Note that the ampleness condition in the definition of a
P-resolution can be checked on Z : Every (−1) curve on Z must intersect two curves E1

and E2, which are exceptional for singularities of class T on Y . In addition, the sum of the
ki coefficients of Ei in the canonical divisor KZ is less than −1. According to Kollar and
Shepherd-Barron [16], there is a one-to-one correspondence between the set of all irreducible
components of the versal deformation space of a quotient surface singularity (X , 0) and the set
of all P-resolutions of (X , 0). Hence, since the Milnor fibers are invariants of the irreducible
components of the versal deformation space of (X , 0), there is a one-to-one correspondence
between theMilnor fibers and the P-resolutions. Furthermore, Stevens [25] also showed how
to find all P-resolutions of quotient surface singularities.

Example 2.2 Let (X , 0)be a dihedral singularity of type D9,2. Since 9/2 = [5, 2], theminimal
resolution of (X , 0) is given by

−2

−2

−5 −2

We have the following four P-resolutions of (X , 0): Here, a linear chain of vertices decorated
by a rectangle � denotes curves on the minimal resolution of a P-resolution, which are con-
tracted to a singularity of class T on the P-resolution. Note that there are certain symmetries
in the list of P-resolutions.

−2

−2 −5 −2

−2

−2 −5 −2

−2

−2 −5 −2

−2

−2 −5 −2

2.4 Monodromy substitutions and rational blowdowns

In [10], Fintushel and Stern introduced the following rational blowdown surgery: Let Cp be
a smooth 4-manifold obtained from plumbing disk bundles over 2-sphere according to the
following linear diagram.

· · ·−(p + 2) −2 −2 −2
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a b c

d

x

z

y

Fig. 1 Lantern relation

Then the boundary of Cp is a lens space L(p2, p − 1), which bounds a rational ball Bp ,
i.e., H∗(Bp;Q) = H∗(D4;Q). Therefore, if there exists an embedding Cp in a smooth 4-
manifold X , one can construct a new smooth 4-manifold X p by replacing Cp with Bp . This
procedure is called a rational blowdown surgery and we say that X p is obtained by rationally
blowing down X . Furthermore, Symington [23] proved that a rational blowdown 4-manifold
X p admits a symplectic structure in some cases. For example, if X is a symplectic 4-manifold
containing a configuration Cp such that all 2-spheres in Cp are symplectically embedded
and intersect positively, then the rational blowdown 4-manifold X p also admits a symplectic
structure. Later, the Fintushel–Stern’s rational blowdown surgery is generalized by Park [22]
using a configuration Cp,q obtained from plumbing disk bundles over a 2-sphere according
to the dual resolution graph of L(p2, pq − 1), which also bounds a rational ball Bp,q as
follows:

Definition 2.4 Suppose X is a smooth 4-manifold containing a configurationCp,q . Then one
can construct a new smooth 4-manifold X p,q , called a (generalized) rational blowdown of
X , by replacing Cp,q with a rational ball Bp,q . We also call this a (generalized) rational
blowdown surgery.

Next, we introduce a notion of monodromy substitution that is closely related to a rational
blowdown surgery. That is, we briefly explain how to replace a rational blowdown surgery
with a monodromy substitution in some cases.

Suppose that a symplectic 4-manifold X with a possibly non-empty boundary admits a
Lefschetz fibration characterized by a monodromy factorization WX . Assume that W and
W ′ are distinct products of right-handed Dehn twists which yield the same element as a
global monodromy in the mapping class group of the fiber. If there is a partial monodromy
factorization equal to W in the monodromy factorization WX of X , then we can obtain a
Lefschetz fibration on a new symplectic 4-manifold X ′ whosemonodromy factorizationWX ′
is obtained by replacing W with W ′. Note that the diffeomorphism types and the induced
contact structures of ∂X and ∂X ′ are the same. We call this procedure a monodromy substi-
tution. For example, a famous lantern relation yields a rational blowdown surgery involving
the lens space L(4, 1) [6]: the PALF with monodromy abcd yields a configuration C2, while
the PALF with monodromy xyz yields a rational ball B2. As another example, the daisy
relation, introduced in [7], yields a monodromy substitution for a configuration Cp and a
rational ball Bp . One can also find a monodromy substitution for a (generalized) rational
blowdown surgery in [7] (Fig. 1).

123
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3 Review for the cyclic singularity cases

Webriefly review Lisca’s classification of minimal symplectic fillings and Bhupal–Ozbagci’s
algorithm of positive allowable Lefschetz fibrations for the minimal symplectic fillings of a
cyclic quotient surface singularity in this section.

We first review Lisca’s classification (refer to [17] for details): Let (X , 0) be a cyclic quo-
tient surface singularity of type 1

n (1, q) with (n, q) = 1 whose link is the lens space L(n, q).

P. Lisca [17] parametrized all minimal symplectic fillings of (X , 0) by a set Ze

(
n

n − q

)
of

certain sequences of integers n = (n1, . . . , ne) ∈ N
e (see Definition 3.1 below). That is, he

constructed a compact oriented symplectic 4-manifold Wn,q(n) with boundary L(n, q) that

is parametrized by n ∈ Ze

(
n

n − q

)
using surgery diagrams. He also showed that Wn,q(n)

is in fact a Stein filling of L(n, q). Finally, he proved that any symplectic filling of L(n, q)

is orientation-preserving diffeomorphic to a manifold obtained by blow-ups from one of
Wn,q(n)’s. Hence, every minimal symplectic filling is diffeomorphic to one of theWn,q(n)’s.
On the other hand, Christophersen [4] and Stevens [24] parametrized all reduced irreducible

components of the versal deformation space of (X , 0) using the same set Ze

(
n

n − q

)
but

with different methods. Thus, it was a natural conjecture that every Milnor fiber of (X , 0) is

diffeomorphic to a Wn,q(n), which are parametrized by the same element in Ze

(
n

n − q

)
.

The conjecture was proven true by Nemethi and Popescu-Pampu [19].

Definition 3.1 An e-tuple of nonnegative integers (n1 . . . , ne) is called admissible if every
denominator in the continued fraction [n1 . . . , ne] is positive. It is easy to see that an admis-
sible e-tuple of nonnegative integers is either 0 or only consists of positive integers. Let
Ze be the set of all admissible e-tuples such that [n1 . . . , ne] = 0, i.e., let Ze be the set
of all e-tuples of integers which can be obtained via a sequence of blow-ups from (0). For

n

n − q
= [a1, . . . , ae], we define

Ze

(
n

n − q

)
:= {(n1, . . . , ne) ∈ Ze| 0 ≤ ni ≤ ai , for i = 1, . . . , e}.

Lisca constructed a smooth 4-manifoldWn,q(n) for each e-tuple n ∈ Ze

(
n

n − q

)
whose

boundary is diffeomorphic to the link of a cyclic singularity of type An,q , also known as the
lens space L(n, q) using a corbodism Cn,q(n) between S1 × S2 and L(n, q): First consider a
linear chain consisting of e number of unknots in S3 with framings n1, . . . , ne, respectively.
Let N (n) be a 3-manifold obtained byDehn surgery on this framed link. Since [n1, . . . , ne] =
0, it is clear that N (n) is diffeomorphic to S1 × S2. Then, using a framed link L in N (n) as
shown in Fig. 2, one can obtain a cobordismCn,q(n) by attaching 4-dimensional 2-handles to
the L ⊂ S1×S2×{1} ⊂ S1×S2×I . Finally, choosing a diffeomorphismϕ : N (n) → S1×S2

again, one can construct a desired smooth (in fact symplectic) 4-manifold

Wn,q(n) := Cn,q(n) ∪ϕ S1 × D3.

Note that, since any self-diffeomorphismϕ of S1×S2 extends to S1×D3, the diffeomorphism
type ofWn,q(n) is independent of the choice of ϕ. According to P. Lisca [17], any symplectic
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· · ·
−1−1 −1
a1 − n1

· · ·
−1−1 −1
a2 − n2

· · ·
−1−1 −1

ae−1 − ne−1

· · ·
−1−1 −1
ae − ne

· · ·

n1 n2 ne−1 ne

Fig. 2 The framed link L ⊂ N (n)

α2

1 2

α2

α2α3

1 2 3

α2 α3

xy

1 2 3

y
x

Fig. 3 PALF on S1 × D3 corresponds to (1, 1), (1, 2, 1) and (2, 1, 2)

filling of (L(n, q), ξst ) is orientation-preserving diffeomorphic to a blow-up of Wn,q(n) for

some n ∈ Ze

(
n

n − q

)
.

Next, for each n ∈ Ze

(
n

n − q

)
, M. Bhupal and B. Ozbagci constructed a genus-0 PALF

on S1×D3 so that the attaching circles of (−1)-framed 2-handles inWn,q(n) lie on a generic
fiber (refer to [3] for details).

One can construct a PALF on S1 × D3 over the disk corresponding to each n ∈
Ze

(
n

n − q

)
. Note that this depends on a blow-up sequence from (0). For each n ∈

Ze

(
n

n − q

)
, a generic fiber Fn is the disk with e holes. We may assume the holes in the disk

are ordered linearly from left to right, as shown in Fig. 3. If n ∈ Ze

(
n

n − q

)
is obtained

from n′ ∈ Ze−1 by blowing up the j th term (1 ≤ j ≤ e − 2), we construct a generic fiber
Fn to be a surface obtained from Fn′ by splitting the ( j + 1)th hole so that vanishing cycles
{xi | i = 1, 2, . . . , e − 2} for n′ are naturally extended to {x̃i | i = 1, 2, . . . , e − 2} in Fn.
The monodromy factorization subsequently changes from x1x2 . . . xe−2 to x̃1 x̃2 · · · x̃e−2β j ,
where β j is a curve on Fn that encircles the 1, . . . j , ( j + 2)-labelled holes while skipping
the ( j + 1)-labelled hole. For a blowing up of the (e − 1)th term, we just add the eth hole
to Fn′ at the right of the (e − 1)th hole and add a Dehn twist on a curve encircling the eth
hole. In this way, we obtain a genus-0 PALF on Wn,q(n) such that, if the attaching circle of
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3rd hole
splits

2nd hole
splits

−1

−1

−1

−1

∼=

2 2 1 3

−1
∪ (S1 × D3)

Fig. 4 PALF on W9,2((2, 2, 1, 3))

a (−1)-framed 2-handle h in Wn,q(n) is the meridian of a ni -framed unknot, the 2-handle h
corresponds to a Dehn twist on a curve γi encircling the first i holes. We refer to Fig. 4 below
for an example.

Bhupal and Ozbagci [3] also showed that the monodromy factorization for each minimal
symplectic filling of the lens space L(n, q) can be obtained by a sequence of monodromy
substitutions that can be interpreted as a sequence of rational blowdowns from the minimal
resolution of the corresponding singularity.

4 Lefschetz fibrations onminimal resolutions

In this section, as a first step towards proving ourmain theorem (Theorem 1.1), we construct a
genus-0 or genus-1 positive allowable Lefschetz fibarion (PALF) on each minimal resolution
of non-cyclic quotient surface singularities. Note that a genus of the PALF is determined
only by the existence of a bad vertex in the minimal resolution graph of the corresponding
singularity. That is, a genus of the PALF is 0 if the minimal resolution graph has no bad
vertex, and a genus is 1 otherwise. We subsequently check that a contact structure on the
boundary induced from the PALF is the Milnor fillable contact structure so that every PALF
obtained via monodromy substitutions is also a Stein filling of (L, ξst).
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−1

−1

−1

−1

−1
−1

−1

Fig. 5 A genus-0 PALF on minimal resolution of D8,3

4.1 No bad vertex cases

If the minimal resolution graph of a quotient surface singularity does not have a bad vertex,
then there is a well-known genus-0 PALF on the minimal resolution , as demonstrated by
Gay andMark [11]. We consider the 2-sphere�i with bi holes for each vertex vi with degree
−bi . Then the fiber surface� is obtained by gluing�i along their boundaries according to 

and the vanishing cycles are the set of curves parallel to the boundary of each �i . Note that
we end up with only one right-handed Dehn twist on the connecting neck. We refer to Fig. 5
below for an example.Note that this PALF is compatiblewith the symplectic structureω given
by a convex plumbing X of symplectic surfaces, where each vertex represents a symplectic
surface with self-intersection −bi that intersect each other ω-orthogonally according to .
Thus, the induced contact structure ξ on the boundary ∂X is compatible with the open
book decomposition coming from the aforementioned PALF. Park and Stipsicz [21] showed
that ξ is indeed the Milnor fillable contact structure. In fact, their argument holds for any
negative-definite intersection matrix of .

4.2 Bad vertex cases

If theminimal resolution graph of a non-cyclic quotient surface singularity has a bad vertex,
we now construct a genus-1 PALF on the minimal resolution  as follows: First we construct
a PALF on XL , where XL is the minimal resolution of a cyclic singularity determined by a
maximal linear subgraph L of . We consider a 4-dimensional Kirby diagram of XL , which
can be easily obtained from the PALF of XL . We could subsequently obtain a Kirby diagram
of X by adding a 2-handle h or two 2-handles {h1, h2} to that of XL , depending on which
type of arm is not in L . After introducing a cancelling 1-handle/2-handle pair, the 2-handles
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not coming from the Kirby diagram of XL can be thought of as vanishing cycles of a new
fiber F , which is obtained by attaching a 1-handle to the surface FL . Note that the new fiber
F is a genus-1 surface with holes. We refer to Fig. 6 below for an example.

Next,we check that a contact structure on the boundary induced from thePALFconstructed
above is the Milnor fillable contact structure. First, recall that, the 2-plane field ξ induces a
Spinc structure tξ on L for a contact 3-manifold (L, ξ). Furthermore, if (W , J ) is a Stein
filling of (L, ξ), then tξ is a restriction of Spinc structure S on W to ∂W = L induced by its
complex structure J on W . On the other hand, there is a theorem of Gay–Stipsicz [12] that
characterizes the contact structure on the link of a quotient surface singularity.

Theorem 4.1 [12] Suppose that a small Seifert 3-manifold M = M(s0; r1, r2, r3) satisfies
s0 ≤ −2 and M is an L-space. Then two tight contact structures ξ1, ξ2 on M are isotopic if
and only if tξ1 = tξ2 .

Theorem 4.2 The contact structure on the link of non-cyclic quotient surface singularities
induced by the PALF constructed above is Milnor fillable.

Proof First note that, since a convex plumbing X of the minimal resolution graph  of a
quotient singularity is simply connected, the Spinc structure S on X is determined by the
first Chern class c1(S). On the other hand, tξst is a restriction of S whose first Chern class
c1(S) satisfies the adjunction equality on each vertex in . Hence, according to Theorem 4.1
above, a PALF on X induces the Milnor fillable contact structure on the boundary if and
only if c1(J ) satisfies the adjunction equality for each vertex in , where J is a complex
structure coming from the Stein structure of the PALF. From the PALF on X constructed
above, we can compute the first Chern class c1(J ) in terms of vanishing cycles Ci : c1(J ) is
represented by a co-cycle whose value on the 2-handle corresponding to Ci is the rotation
number r(Ci ) [13],which can be computed oncewefix a trivialization of the tangent bundle of
a page [9]. The vertices in L satisfy the adjunction equality because the PALF for the no bad
vertex cases induces the Milnor fillable contact structure [21]. The homology classes of the
vertices not in L can be represented by new vanishing cycles together with some vanishing
cycles in L , thus we can check whether they satisfy the adjunction equality by computing
the rotation number of the vanishing cycles. Note that all non-cyclic quotient singularities
can be divided into the following three cases: Dihedral singularities, singularities of type
(3, 1), and singularities of type (3, 2).

Dihedral singularities and singularities of type (3, 2): There is only one degree −2 vertex v

which is not in L for dihedral cases. If we construct a genus-1 PALF on the minimal resolu-
tion as shown above, then the globalmonodromyof the PALF should containCredCblueC2

orange
as a subword and v is homologically equal to Cblue −Cred + 2Corange. Once we fix a trivial-
ization of the tangent bundle of fiber F as a natural extension of a trivialization of the tangent
bundle ofR2, the rotation numbers of blue, red, and orange vanishing cycles are−1,+1, and
+1, respectively. This means that the −2 vertex v satisfies the adjunction equality. The only
difference between the dihedral case and the type (3, 2) case is that there is another degree
−2 vertex v′ connected to v which is not in L for the (3, 2) case. Hence, for type (3, 2)
singularities, the global monodromy of the PALF on the minimal resolution should contain
CredC2

blueC
2
orange as a subword. The vertex v′ is also homologically Cblue − Cblue, meaning

every vertex in  satisfies the adjunction equality. See Fig. 7.

Singularities of type (3,1): Consider a maximal linear subgraph L starting with a degree
−3 vertex v. Since L starts with a degree −3 vertex v, the global monodromy of the
PALF should containCredCblueColiveCorange as a subword. A similar argument shows that the
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Fig. 6 A genus-1 PALF on the minimal resolution of D5,3
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· · · · · ·

Fig. 7 A genus-1 PALF on the minimal resolution of dihedral singularities

· · ·

· · ·

Fig. 8 A genus-1 PALF on the minimal resolution of type (3, 1) singularities

genus-1 PALF we constructed induces a Milnor fillable contact structure on the boundary.
See Fig. 8. �

5 Lefschetz fibrations onminimal symplectic fillings

As mentioned in the Introduction, Bhupal and Ono [2] listed all possible minimal symplectic
fillings for non-cyclic quotient surface singularities. In fact, they showed that each minimal
symplectic filling of a non-cyclic singularity (X , 0) is orientation-preserving diffeomorphic
to Z − ν(E∞), where E∞ is the compactifying divisor of X embedded in a rational sym-
plectic 4-manifold Z . They also found all possible pairs of (Z , E∞) for non-cyclic quotient
singularities. On the other hand, Park et al. [20] observed that the number of P-resolutions
in J. Stevens [25] and that of minimal symplectic fillings in Bhupal–Ono’s list [2] are nearly
equal. Since there is a one-to-one correspondence between Milnor fibers and P-resolutions
for quotient singularities [16], it is natural to ask whether every minimal symplectic fill-
ing of non-cyclic quotient singularities is a Milnor fiber. This was proven in [20] using the
corresponding complex model. In fact, they even constructed an explicit one-to-one cor-
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respondence between the minimal symplectic fillings and the Milnor fibers of non-cyclic
quotient surface singularities.

What follows is a strategy for proving our main theorem (Theorem 1.1). For a given P-
resolution Y of a non-cyclic quotient singularity X , we construct a PALF on the minimal
resolution of X , after appropriate monodromy substitutions, the resulting 4-manifold is dif-
feomorphic to a 4-manifold obtained by rationally blowing down all singularities of class T
in the minimal resolution Z of Y . Since any Milnor fiber of quotient surface singularities can
be obtained by rationally blowing down all singularities of class T in the minimal resolution
of the corresponding P-resolution topologically, we would be done.

Now we construct a PALF on each minimal symplectic filling of a non-cyclic quotient
singularity X via the corresponding P-resolution Y . In other words, we first construct a PALF
on the minimal resolution of X and we find a suitable monodromy substitution to obtain a
PALF on the 4-manifold obtained by rationally blowing down all singularities of class T in
Z . Let Z be the dual graph of the minimal resolution Z of Y . For the sake of convenience,
we divide all P-resolutions into the following two cases: those with and without a maximal
linear subgraph L of Z containing all singularities of class T .

5.1 Case 1

Let Y be a P-resolution of a non-cyclic quotient singularity X whose minimal resolution
graph Z has a maximal linear subgraph L containing all singularities of class T in Y .
Note that the subgraph L becomes the minimal resolution graph of a P-resolution Y ′
for some cyclic quotient singularity X ′. Then, by combining a PALF on the minimal res-
olution of X ′ and a technique developed in Section 4, we can construct a PALF on the
minimal resolution of X based on the PALF of the minimal resolution of X ′. Explicitly,
starting from a PALF (FX ′ , y1y2 . . . ym) on the minimal resolution of X ′, we obtain a PALF
(FX , x1 . . . xn ỹ1 ỹ2 . . . ỹm) on the minimal resolution of X , where the vanishing cycles ỹi ’s in
FX are natural extensions of the corresponding vanishing cycles yi ’s in FX ′ , and the vanishing
cycles {x1, . . . , xn} come from the corresponding vertices in the arm which is not contained
inL . Note that a genus of the generic fiber FX depends on the existence of a bad vertex in the
minimal resolution of X . We subsequently find a monodromy substitution that yields a PALF
on Y . Since Y ′ contains all singularities of class T lying in Y , if a monodromy substitution
of the form y1y2 . . . ym = z1z2 . . . zl yields a PALF on Y ′, then (FX , x1 . . . xn z̃1̃z2 . . . z̃l)
yields a desired PALF on Y , where the vanishing cycles z̃i ’s in FX are natural extensions of
the corresponding vanishing cycles zi ’s in FX ′ .

If the genus of generic fiber FX is 1, then a monodromy substitution of the form
ỹ1 ỹ2 . . . ỹm = z̃1̃z2 . . . z̃l still can be interpreted as a sequence of rational blowdowns.
If the genus of the generic fiber FX is 0, then there could be a vertex whose degree is
strictly less than −2 in the arm not contained in L . In this case, a monodromy substitution
of the form ỹ1 ỹ2 . . . ỹm = z̃1̃z2 . . . z̃l in FX does not correspond to a sequence of ratio-
nal blowdown surgeries because, in general, there could be more holes in FX enclosed
by ỹi and z̃ j than holes in FX ′ enclosed by yi and z j for some ỹi and z̃ j . The con-
struction of the PALF on the minimal resolution shows that there is a vanishing cycle xi
enclosing only the new hole for each new hole in FX . Thus, after adding such {xi } to
both sides, xi1xi2 . . . xik ỹ1 ỹ2 . . . ỹm = xi1xi2 . . . xik z̃1̃z2 . . . z̃l is a positive stabilization of
y1y2 . . . ym = z1z2 . . . zl which also can be interpreted as a sequence of rational blowdowns.
See Example 5.2 below.
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α1
α2 α3 α4 α5

γ4

γ5

x

y

z

w

γ3

Fig. 9 A PALF on a P-resolution Y ′

Remark 5.1 The minimal resolution graph of X shows that there is a symplectic cobordism
between a lens space determined by X ′ and the link of X . Therefore, the minimal symplectic
filling of X correponding to Y is obtained from the minimal symplectic filling of X ′ cor-
responding to Y ′ by symplectically gluing the cobordism. Since every minimal sympelctic
filling of a lens space is obtained from a sequence of rational blowdowns from the mini-
mal resolution, we can conclude that every minimal symplectic filling corresponding to a
P-resolution Y in Case 1 is obtained via a sequence of rational blowdowns from the minimal
resoluiton.

Example 5.2 Let (X , 0) be a tetrahedral singularity of type T6(5−2)+5 which has the following
P-resolution Y :

−3

−2 −5 −3

Thus, a PALF on a P-resolution Y ′ =
−2 −5 −3

of
−2 −5 −3

can be
obtained via a monodromy substitution of the form

α2
1α2α3α4α5γ4γ5 = xyzwγ3

which is shown in Fig. 9 below. Hence, we obtain a PALF β1β2 x̃ ỹ̃zw̃γ̃3 on the P-resolution
Y from a PALF β1β2α̃

2
1 α̃2α̃3α̃4α̃5γ̃4γ̃5 on the minimal resolution of X via a monodromy

substitution of the form

β2α̃
2
1 α̃2α̃3α̃4α̃5γ̃4γ̃5 = β2 x̃ ỹ̃zw̃γ̃3,

which can be topologically interpreted as a rational blowdown surgery. See Fig. 10.

5.2 Case 2

In this subsection, we address a P-resolution Y of X such that any maximal linear subgraph
L of the minimal resolution of Y cannot contain all singularities of class T lying in Y . If
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β1 β2
α1

α2

α3 α4 α5

γ4

γ5

β1 β2

x

y

z

w

γ3

Fig. 10 A PALF on P-resolution Y

Γ1 −4

−1

−2 −5 −3

Γ2

−5

−2

−1

−2 −5 −3

Γ3

−3

−3

−1

−2 −5 −3

Γ4 −4

−1

−2 −5 −4−1

Γ5 −4

−1

−2 −5 −1 −3 −3

−4

−1

−2 −5 −3 −1 −4

Γ7Γ6 −4

−1

−2 −6 −3−2

Fig. 11 Types of subgraph i

the genus of generic fiber is 0, then such a P-resolution Y contains one of the subgraphs i

shown in Fig. 11, which will be discussed in 5.2.1. If the genus is 1, then there are two such
P-resolutions, which will be discussed in 5.2.2. See [15] for the list of all P-resolutions for
non-cyclic singularities.

5.2.1 Genus-0 cases

Note that each subgraphi in Fig. 11 represents a P-resolution Yi of another quotient surface
singularity, say Xi . Since the subgraphs in Fig. 11 contain all singularities of class T in Y ,
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Γ1 −4

−1

−2 −5 −3

−4 curve
rationally blowing down

X1

−3

−2 −4 −3

α1

γ4

γ5

β

α2 α3 α4 α5

β
x

y

z

w

γ3

Fig. 12 A PALF on 1

it suffices to find an explicit PALF on Yi . Recall that the minimal symplectic filling of Xi

corresponding to the P-resolution Yi can be obtained as follows. First, we rationally blow
down all singularities of class T lying in Yi , except the one containing a central vertex. This
yields a 4-manifold diffeomorphic to the minimal resolution of Xi that can be also obtained
from Xi by blowing down all (−1)-spheres until there is no (−1)-sphere in the resulting
plumbing graph. Since the blow-ups and blow-downs can be performed in symplectic cate-
gory, the above argument implies that there is a convex plumbing of symplectic submanifolds
of codimension 0 in the minimal resolution of Xi according to the dual graph of singularities
of class T containing the central vertex of i . The desired minimal symplectic filling of
Xi is obtained by rationally blowing down the convex plumbing. Hence, in order to obtain
a PALF on Yi , we only need to find a subword representing the convex plumbing from the
monodormy factorization of theminimal resolution of Xi . This is always possible becausewe
know explicitly how vanishing cycles (i.e., 2-handles) in the PALF on the minimal resolution
of Xi correspond to vertices (i.e., embedded 2-spheres) in the minimal resolution graph of
Xi .

Example 5.3 Figure 12 shows a PALF on the minimal resolution of X1 whose monodromy
factorization is given by

α2
1α2α3α4α5βγ4γ5.

Note that the monodromy factorization without β above represents a 4-manifold diffeomor-
phic to a convex plumbing of a subgraph

−2 −5 −3

lying in 1. Hence, the right-hand side of Fig. 12 above yields a desired PALF βxyzwγ3 on
Y1.
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Y1 −2

−3 −5 −1 −2 −2 −6

Y2 −2

−4 −3 −1 −4

I30(2−2)+29 −2

−3 −2 −5

O12(2−2)+11 −2

−4 −2 −3

Fig. 13 Two genus-1 cases

y

γ5

xγ2

α2 α5α1 α4α3

Fig. 14 A genus 1-PALF on the minimal resolution of I30(2−2)+29

5.2.2 Genus-1 cases

There are two P-resolutions corresponding to genus 1 in Case 2, which come from an
icosahedral singularity of type I30(2−2)+29 and an octahedral singularity of type O12(2−2)+11.
See Fig. 13.

As shown in 5.2.1, we first rationally blow down all singularities of class T , except the
one containing a central vertex such that the resulting 4-manifold is diffeomorphic to the
minimal resolution. Since there is a bad vertex in the minimal resolution graph, we must
consider a genus-1 PALF on this minimal resolution graph.

I30(2−2)+29 case: Using the same technique yields a monodromy factorization of the
following form for the minimal resolution of I30(2−2)+29

xyγ 2
2 α1α2α3α4α5γ5,

where αi and γi are curves encircling the i th hole and th first i holes, respectively (refer
to Fig. 14). Note that, using Hurwitz moves and y = tα2(tγ2(x)), we can change the mon-
odromy factorization as follows:
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y

γ4

xγ3

α3α1 α2 α4

Fig. 15 A genus 1-PALF on the minimal resolution of O12(2−2)+11

xyγ 2
2 α1α2α3α4α5γ5

∼ xα2γ2xα3α1α4α5γ2γ5

∼ tx (α2)tx (γ2)x
2α3α1α4α5γ2γ5

∼ tx (α2)tx (γ2)t
2
x (α3)x

2α1α4α5γ2γ5

∼ t2x (α3)(t
2
x · t−1

α3
· t−1

x )(α2)(t
2
x · t−1

α3
· t−1

x )(γ2)x
2α1α4α5γ2γ5.

Now, taking a global conjugation of each monodromy with f = tx · tα3 · t−2
x and using a

braid relation tx · tα3 · tx = tα3 · tx · tα3 , we can show that the global monodromy factorization
becomes

tx (α3)α2γ2α
2
3α1α4α5 f (γ2)γ5.

Since the subword α2γ2α
2
3α1α4α5γ5 in the monodromy factorization above corresponds

to
−3 −5 −2

lying in the minimal resolution graph, we obtain a PALF on Y1 by
rationally blowing down it.

O12(2−2)+11 case: Starting from a PALF on
−4 −2 −3

, we obtain a monodromy
factorization for the minimal resolution of O12(2−2)+11 as follows (see Fig. 15 for vanishing
cycles):

xyγ 2
3 α1α2α3α4γ4

A similar computation shows that above monodromy factorization is equivalent to

tx (α4)α3γ3α
2
4α1α2 f (γ3)γ4,

where f = tx · tα4 · t−2
x . Now we can construct a PALF on Y2 because the subword

α3γ3α
2
4α1α2γ4 corresponds to

−4 −3 −2
.
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Hence, summarizing all the arguments in this section, we conclude:

Theorem 5.1 There is an explicit algorithm for a genus-0 or genus-1 PALF on any minimal
symplectic filling of the link of non-cyclic quotient surface singularities.

Recall that we divided all P-resolutions of X into two families in the construction of
PALF on each P-resolution Y : those with and without a maximal subgraph L containing
all singularities of class T in Y . The algorithm of PALF for the first family is essentially
the same algorithm for cyclic cases, which means that the Milnor fiber corresponding to a
P-resolution Y is obtained topologically via rational blowdowns from theminimal resolution
of X [3]. On the other hand, we found a subword diffeomorphic to a convex neighborhood
of a linear chain of 2-spheres in a smooth 4-manifold whose boundary is L(p2, pq − 1) for
the second family, which also can be rationally blowdown [7]. Hence we have:

Corollary 5.2 Any Milnor fiber of the link of quotient surface singularities can be obtained,
up to diffeomorphism, via a sequence of rational blowdowns from the minimal resolution of
the singularity.

Acknowledgements Jongil Park is supported by Samsung Science and Technology Foundation under Project
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