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Abstract
Let M be a real analytic manifold, F a bounded complex of constructible sheaves. We show
that the Whitney–de Rham complex associated to F is quasi-isomorphic to F .

1 Introduction

Let M be a real analytic manifold. The Poincaré Lemma implies that the de Rham com-
plex with C∞-coefficients over M is isomorphic to CM . In this paper we show that CM is
isomorphic to the de Rham complex with Whitney coefficients over M on the associated
subanalytic site. Then, using sheaf theoretical arguments we can easily prove that, given a
bounded complex of constructible sheaves F , the Whitney–de Rham complex associated
to F is quasi-isomorphic to F . As a corollary we obtain a theorem of [3]. (Another proof
was given in [4] using deep results on D-modules.) We also obtain a de Rham theorem for
Schwartz functions on open subanalytic subsets. As a further application, we extend the
results of [5] to the case of subanalytic sets. Indeed our result implies that the Whitney–de
Rham cohomology of a closed subanalytic set is isomorphic as a commutative graded algebra
to its singular cohomology with real coefficients.

Our proof uses these three known facts:

• There exists a site, the so called subanalytic site, where Whitney functions form a sheaf.
• Locally on this site, the sections of this sheaf are nothing but C∞-functions with bounded

derivatives.
• The homotopy axiom holds for de Rham cohomology with bounded derivatives.

Let us detail our arguments.
It is well known that Whitney C∞-functions on the real analytic manifold M do not

satisfy the gluing conditions on open coverings. Hence, they do not form a sheaf with the
usual topology. However, following [8], one can overcome this problem by associating to
M a Grothendieck topology by choosing as open subsets subanalytic open subsets and as
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1624 L. Prelli

coverings locally finite ones. This is the subanalytic siteMsa , and hereWhitney C∞-functions
form a (subanalytic) sheaf denoted C∞,w

M .
On Msa , one can also define the (subanalytic) sheaf of C∞-functions with bounded deriva-

tives on bounded open subanalytic subsets, and prove that the associated de Rham complex
is quasi-isomorphic to the constant sheaf on M .

C∞-functions on U with bounded derivatives coincide with Whitney C∞-functions on U
when U is a 1-regular open subset of Rn , i.e. there exists a constant C > 0 such that any
two points x and x ′ can be joined by a path of length L � C |x − x ′| (see [15]). Thanks to a
decomposition result of [11] (which uses techniques developed in [10]) one can prove that
locally on Msa the sheaf of bounded C∞-functions coincide with C∞,w

M .
Moreover, applying some (subanalytic) sheaf theoretical techniques one can link the de

Rham complex with coefficients in C∞,w
M with the one with Whitney coefficients on any

closed subanalytic subset Z of M . This is because, basically, RHom(D′
CZ , C∞,w

M ) is quasi-
isomorphic to the space of Whitney C∞-functions on Z . Here CZ denotes the constant sheaf
on Z and D′

CZ its dual RHom(CZ ,CM ). This is done thanks to the Whitney tensor product
introduced by Kashiwara-Schapira in [7]. When Z = U , with U open 1-regular relatively
compact and such that D′

CU � CZ , we obtain that RHom(D′
CZ , C∞,w

M ) is the space of
C∞-functions on U with bounded derivatives.

Thanks to these considerations, one can reduce the isomorphism between the cohomology
of Z and the Whitney de Rham complex to the quasi-isomorphism between CM and the de
Rham complex with coefficients in C∞,w

M , which is locally the homotopy axiom for de Rham
cohomology with bounded derivatives and can be obtained as in [2].

The statement still holds if we replace CZ with a bounded complex of constructible

sheaves F andWhitney C∞-functions with the Whitney tensor product F
w⊗C∞

M . This allows
to consider different kinds of de Rham theorems, as the one for Schwartz functions when
F = CU , U open subanalytic.

As a further application, one can extend the results of [5] to the case of subanalytic sets.
Indeed one can deduce that the Whitney–de Rham cohomology of a closed subanalytic set Z
is isomorphic as a commutative graded algebra (CGA for short) to its singular cohomology
with real coefficients and these isomorphisms are compatible with the CGA structures.

2 Subanalytic sheaves

The following results on subanalytic sheaves are extracted from [8] (see also [12]). We refer
to [6] for classical sheaf theory.

Let M be a real analytic manifold. Denote by Op(Msa) the category of open subanalytic
subsets ofM . One endowsOp(Msa)with the following topology: S ⊂ Op(Msa) is a covering
of U ∈ Op(Msa) if

⋃
V∈S V = U and for any compact K of M there exists a finite subset

S0 ⊂ S such that K ∩ ⋃
V∈S0 V = K ∩U . We will call Msa the subanalytic site.

Let Mod(CMsa ) (resp. D
b(CMsa )) denote the category (resp. bounded derived category)

of sheaves of C-vector spaces on Msa and let ModR-c(CM ) (resp. Db
R-c(CM )) be the abelian

category of R-constructible sheaves (resp. bounded derived category of sheaves with R-
constructible cohomology) on M .

We denote by ρ : M → Msa the natural morphism of sites. We have functors

ρ∗ : Mod(CM ) → Mod(CMsa )

ρ−1 : Mod(CMsa ) → Mod(CM )
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De Rham theorem for Whitney functions 1625

ρ! : Mod(CM ) → Mod(CMsa )

The functors ρ−1 and ρ∗ are the functors of inverse image and direct image associated to
ρ. The functor ρ! is left adjoint to ρ−1. It is fully faithful and exact. If F ∈ Mod(CMsa ), ρ!F
is the sheaf associated to the presheaf U �→ �(U ; F). The functor ρ∗ is fully faithful and
exact on ModR-c(CM ) and we identify ModR-c(CM ) with its image in Mod(CMsa ) by ρ∗.

3 Whitney tensor product

LetM be a real analyticmanifold.Wedenote byC∞
M the sheaf of complexvaluedC∞-functions

on M and byDM the sheaf of differential operators on M with coefficients in complex valued
real analytic functions.We denote byMod(DM ) (resp. Db(DM )) the category (resp. bounded
derived category) of sheaves ofDM -modules. References for Whitney functions are made to
[9] and to [7] for a complete exposition on formal cohomology.

Definition 3.1 Let Z be a closed subset of M . We denote by I∞
M,Z the sheaf of complex

valued C∞-functions on M vanishing up to infinite order on Z .

Definition 3.2 A Whitney function on a closed subset Z of M is an indexed family F =
(Fk)k∈Nn consisting of complex valued continuous functions on Z such that ∀m ∈ N, ∀k ∈
N
n , |k| � m, ∀x ∈ Z , ∀ε > 0 there exists a neighborhood U of x such that ∀y, z ∈ U ∩ Z

∣
∣
∣
∣
∣
∣
Fk(z) −

∑

| j+k|�m

(z − y) j

j ! F j+k(y)

∣
∣
∣
∣
∣
∣
� εd(y, z)m−|k|,

where d is the Euclidean distance in a local chart. We denote byW∞
M,Z the space of Whitney

C∞-functions on Z . We denote by W∞
M,Z the sheaf U �→ W∞

U ,U∩Z .

Note that, oncewe fix the closed set Z ,W∞
M,Z is a sheaf onM with its usual topology, since

continuous functions form a sheaf on Z . A result of [14] (see [9, Theorem 4.1]) asserts that,
given aWhitney function F on Z , then there exist a neighborhoodU of Z and a C∞-function
f on U such that Dk f |Z = Fk . Thanks to this result one can obtain an exact sequence of
sheaves

0 → I∞
M,Z → C∞

M → W∞
M,Z → 0.

In [7] the authors defined the functor

· w⊗ C∞
M : ModR-c(CM ) → Mod(DM )

in the following way: let U be a subanalytic open subset of M and Z = M \ U . Then

CU
w⊗ C∞

M = I∞
M,Z . As a consequence of [9, Theorem 4.1], one has CZ

w⊗ C∞
M = W∞

M,Z . The

functor · w⊗ C∞
M is exact and extends as a functor in the derived category, from Db

R-c(CM ) to

Db(DM ). Moreover, the sheaf F
w⊗ C∞

M is soft for any R-constructible sheaf F .

4 The sheaf of Whitney functions

Here, we recall the definition and some properties of the subanalytic sheaf of Whitney func-
tions. References are made to [8,12].
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1626 L. Prelli

Definition 4.1 One denotes by C∞,w
M the sheaf on Msa of Whitney C∞-functions defined as

follows:

U �→ �(M; H0D′(CU )
w⊗ C∞

M ),

where D′(·) = RHom(·,CM ).

Remark that �(U ; C∞,w
M ) is a�(U ;DM )-module for eachU ∈ Op(Msa), this implies that

C∞,w
M has a structure of ρ!DM -module.We have the following result. For each F ∈ Db

R-c(CM )

one has the isomorphism

ρ−1RHom(D′F, C∞,w
M ) � F

w⊗ C∞
M .

Let us consider a locally cohomologically trivial (l.c.t.) subanalytic open subset, i.e. U ∈
Op(Msa) satisfying D′

CU � CU so that D′
CU � CU . Then

R�(U ; C∞,w
M ) � R�(M;CU

w⊗ C∞
M )

is concentrated in degree zero. It means that C∞,w
M is the sheaf associated to the presheaf

U �→ {Whitney functions on U }. Indeed l.c.t. open subanalytic subsets form a basis for
the topology of Msa (i.e. every relatively compact subanalytic open subset has a finite cover
consisting of l.c.t. subanalytic open subsets).

5 Whitney–de Rham complexes

Let AM be the sheaf of complex valued real analytic functions on M . We denote by �
p
M

the sheaf of p-differential forms with coefficients in AM . Let F ∈ ModR-c(CM ). We intro-
duce the following two complexes: the Whitney–de Rham complex C∞,w,•

M with values in
Mod(CMsa )

C∞,w,•
M := 0 → C∞,w

M → C∞,w,1
M → · · · → C∞,w,dimM

M → 0

and the Whitney–de Rham complex F
w⊗ C∞,•

M associated to the constructible sheaf F with
values in Mod(CM )

F
w⊗ C∞,•

M := 0 → F
w⊗ C∞

M → F
w⊗ C∞,1

M → · · · → F
w⊗ C∞,dimM

M → 0.

Here C∞,w,p
M = C∞,w

M ⊗
ρ!AM

ρ!�p
M , F

w⊗ C∞,p
M = F

w⊗ C∞
M ⊗

AM

�
p
M and the arrows are induced

by the differentials d : �
p
M → �

p+1
M .

Consider the following diagram

Cb(CMsa )
Q

ρ−1

Db(CMsa )

ρ−1

Cb(CM )
Q

Db(CM ),

where Cb(CM ) (resp. Cb(CMsa ) denotes the category of bounded complexes of sheaves on
M (resp. Msa) and Q is the localization functor. One has

Q(C∞,w,•
M ) � RHomρ!DM (ρ!AM , C∞,w

M ),
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De Rham theorem for Whitney functions 1627

Q(F
w⊗ C∞,•

M ) � RHomDM (AM , F
w⊗ C∞

M ).

6 Statement and proof of themain theorem

In this section we study the cohomology of the Whitney–de Rham complex. In order to do
this we need an homotopy axiom, which can be obtained in the same way as the classical
one (see [2, Corollary 4.1.2]).

Let M be a real analytic manifold and let us consider a bounded interval (a, b) ⊂ R

containing [0, 1]. Let c ∈ (a, b) and let sc : M → M × (a, b) be the section sc(x) = (x, c).
It defines a map

s∗
c : �b(M × (a, b); C∞,•

M×(a,b)) → �b(M; C∞,•
M ),

where �b(M × (a, b); C∞,p
M×(a,b)) and �b(M; C∞,p

M ) are spaces of p-forms whose coeffcients
are bounded with bounded derivatives.

Lemma 6.1 Let c, c′ ∈ (a, b). The maps s∗
c and s∗

c′ are homotopic (s∗
c ∼ s∗

c′ for short) and
induce the same map in cohomology.

Proof Letπ : M×(a, b) → M be the projectionπ(x, t) = x . Themaps s∗
c andπ∗ are inverse

to each other in cohomology. We have trivially s∗
c ◦ π∗ = id being π ◦ sc = id. In order to

prove that π∗ ◦ s∗
c ∼ id one constructs a homotopy operator K on �b(M × (a, b); C∞,•

M×(a,b)).
We recall the construction of K . A form in M × (a, b) is a combination of forms of

this kind: (I) (π∗φ) f (x, t) and (II) (π∗φ) f (x, t)dt where φ is a form on M . The map
K : �b(M × (a, b); C∞,q

M×(a,b)) → �b(M × (a, b); C∞,q−1
M×(a,b)) is defined as follows:

(I) (π∗φ) f (x, t) �→ 0 and (II) (π∗φ) f (x, t)dt �→ (π∗φ)

∫ t

c
f (x, t)dt .

One checks that 1 − π∗ ◦ s∗
c = (−1)q−1(dK − Kd) on �b(M × (a, b); C∞,q

M×(a,b)). This
implies that π∗ ◦ s∗

c ∼ id. We refer to [2] for the proof.
Composing with s∗

c′ we have s∗
c = s∗

c′ ◦ π∗ ◦ s∗
c ∼ s∗

c′ . ��
Lemma 6.2 There is the following quasi-isomorphism

CM
∼−→ C∞,w,•

M .

In particular CM
∼−→ RHomρ!DM (ρ!AM , C∞,w

M ) in Db(CMsa ).

Proof The natural arrow CM → C∞,w
M induces a morphism of complexes

CM → C∞,w,•
M .

We have to show that the abovemorphism induces an isomorphism in cohomology. It follows
from [11, Theorem 0.3] that every relatively compact subanalytic open subset has a finite
cover consisting of contractible 1-regular open subanalytic subsets. Hence, they form a basis
for the Grothendieck topology of Msa .

A result of [15] asserts that on 1-regular open subsetsWhitney functions are bounded C∞-
functions with bounded derivatives. Then, it is enough to prove that, for any U contractible
1-regular open subanalytic subset of M ,

Hk(U ; C∞,w,•
M ) �

{
C if k = 0,

0 otherwise.
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1628 L. Prelli

This is nothing but the homotopy axiom for de Rham cohomology with bounded derivatives.
Let idU , pU : U → U be respectively the identity of U and the projection to a point of U .
Let h be a C∞-homotopy between idU and pU . We have

id∗
U = (h ◦ s0)

∗ = s∗
0 ◦ h∗ ∼ s∗

1 ◦ h∗ = (h ◦ s1)
∗ = p∗

U ,

where the homotopy s∗
0 ∼ s∗

1 follows from Lemma 6.1. ��
Theorem 6.3 Let F ∈ Db

R-c(CM ). There is the following isomorphism in Db(CM )

F
∼−→ RHomDM (AM , F

w⊗ C∞
M ).

Proof Let us apply the functor ρ−1RHom(D′F, ·) to
CM

∼−→ RHomρ!DM (ρ!AM , C∞,w
M ).

We have the chain of isomorphisms in Db(CM )

F � RHom(D′F,CM )
∼−→ρ−1RHom(D′F,RHomρ!DM (ρ!AM , C∞,w

M ))

� ρ−1RHomρ!DM (ρ!AM ,RHom(D′F, C∞,w
M ))

� RHomDM (AM , ρ−1RHom(D′F, C∞,w
M ))

� RHomDM (AM , F
w⊗ C∞

M ),

where the the first isomorphism follows from the fact that D′D′F � F if F ∈ Db
R-c(CM )

and the second one from Lemma 6.2. ��
Corollary 6.4 (i) When F ∈ ModR-c(CM ), there is the following isomorphism in Db(CM )

F
∼−→ F

w⊗ C∞,•
M .

(ii) In particular, let Z be a closed subanalytic subset of M.There is the following isomorphism
in Db(CM )

CZ
∼−→ W∞,•

M,Z

where W∞,•
M,Z denotes the de Rham complex with coefficients in W∞

M,Z , i.e. the Whitney–de
Rham complex is quasi-isomorphic to CZ .

Proof (i) When F ∈ ModR-c(CM ) one has RHomDM (AM , F
w⊗ C∞

M ) � F
w⊗ C∞,•

M . Then the
result follows from Theorem 6.3.

(ii) Since W∞
M,Z � CZ

w⊗ C∞
M , we have W∞,•

M,Z � CZ
w⊗ C∞,•

M . Then the result follows
from (i) with F = CZ . ��
Corollary 6.5 Let Z be a closed subanalytic subset of M. For each k ∈ Z there is the following
isomorphism

Hk(Z;CZ )
∼−→ Hk�(M;W∞,•

M,Z ).

Hence, the cohomology of Z is isomorphic to the cohomology of the de Rham complex with
Whitney coefficients on Z.
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De Rham theorem for Whitney functions 1629

Proof Applying R�(M; ·) to the morphism of Corollary 6.4 (ii), we have the following chain
of isomorphisms in Db(C)

R�(Z;CZ ) � R�(M;CZ ) � R�(M;W∞,•
M,Z ),

where the first isomorphism follows from the definition of direct image and the second one
follows applying R�(M; ·) to Corollary 6.4 (ii). The complex W∞,•

M,Z is a complex of soft
sheaves, which are �(M; ·)-acyclic. Hence,

R�(M;W∞,•
M,Z ) � �(M;W∞,•

M,Z )

and the result follows. ��
Corollary 6.6 LetU be an open subanalytic subset of M. For each k ∈ Z there is the following
isomorphism

Hk
c (U ;CU ) � Hk�c(M; I∞,•

M,M\U ),

where I∞,•
M,M\U denotes the de Rham complex with coefficients in I∞

M,M\U . Hence, the coho-
mology with compact support of U is isomorphic to the cohomology with compact support of
the de Rham complex with C∞-coefficients on M vanishing with all their derivatives outside
U.

Proof Applying R�c(M; ·) to the morphism of Corollary 6.4 (i) (with F = CU ), we have
the following chain of isomorphisms in Db(C)

R�c(U ;CU ) � R�c(M;CU ) � R�c(M; I∞,•
M,M\U ),

where the first isomorphism follows from the definition of proper direct image and the second
one follows applying R�c(M; ·) to Corollary 6.4 (i). The complex I∞,•

M,M\U is a complex of
soft sheaves, which are �c(M; ·)-acyclic, hence

R�c(M; I∞,•
M,M\U ) � �c(M; I∞,•

M,M\U )

and the result follows. ��
Remark 6.7 As a consequence of Corollary 6.6, we obtain a result of [1]: the cohomology
of the de Rham complex with Schwartz coefficients H•DRS(M) of a Nash manifold M is
isomorphic to the compactly supported cohomology of M . We first prove it for Rn . We can
see Rn as an open subset of Sn (the unit n-sphere). Let U be an open semialgebraic subset
of Rn . Then, for each k ∈ Z

Hk
c (U ;CU ) � Hk�(Sn; I∞,•

Sn ,Sn\U ) � HkDRS(U ).

Using the fact that a Nash manifold has a finite cover consisting of open submanifolds Nash
diffeomorphic to R

n one obtains the result.

7 A CDGA quasi-isomorphism

The aim of this section is to extend to subanalytic subsets a result proved in [5] for semi-
analytic subsets using different techniques.

Theorem 7.1 Let Z be a locally closed subanalytic subset of M. There is a canonical iso-
morphism between the Whitney–de Rham cohomology of Z and the singular cohomology of
Z with complex coefficients, as graded algebras.
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1630 L. Prelli

Proof Let Z be a closed subanalytic subset ofM and consider theWhitney–deRham complex
of sheaves

CZ
w⊗ C∞,•

M .

Let us consider a resolution of Z

0 → ⊕CU1 → · · · → ⊕CUk → CZ → 0

made by subanalytic open subsets (we may also assume they are contractible and locally

cohomologically trivial, see [13]), thenCZ
w⊗C∞,•

M is definedbya sequenceof chain complexes
whose entries are of this kind

CU
w⊗ C∞,•

M ,

with U locally cohomologically trivial. Now, by definition of C∞,w
M , we have CU

w⊗ C∞
M �

ρ−1Hom(CU , C∞,w
M ) whenU is locally cohomologically trivial. It follows from Lemma 6.2

that the chain complex of (subanalytic) sheaves

CM → C∞,w,•
M

is exact. Moreover, CM and C∞,w
M are acyclic with respect to Hom(CU , ·) (U is locally

cohomologically trivial) and ρ−1 is exact. Hence, the chain complex

CU � Hom(CU ,CM ) → ρ−1Hom(CU , C∞,w,•
M ) � CU

w⊗ C∞,•
M

is exact. This implies that the chain complex

CZ → CZ
w⊗ C∞,•

M

is exact as well. Let us consider the exact sequence of chain complexes

0 → CM\Z
w⊗ C∞,•

M → C∞,•
M → CZ

w⊗ C∞,•
M → 0

and apply the functor�(V ; ·) (V ⊆ M open). TheWhitney tensor productwith a constructible
sheaf being soft, we get an exact sequence of chain complexes

0 → �(V ;CM\Z
w⊗ C∞,•

M ) → �(V ; C∞,•
M )

J→ �(V ;CZ
w⊗ C∞,•

M ) → 0.

Remark that J is a CDGA (commutative differential graded algebra)morphism. ByCorollary
6.4 we have

�(V ;CM\Z
w⊗ C∞,•

M ) � R�(V ;CM\Z ),

�(V ; C∞,•
M ) � R�(V ;CM ),

�(V ;CZ
w⊗ C∞,•

M ) � R�(V ;CZ ).

Suppose that Z is a deformation retract of V . Then

R�(V ;CM\Z ) � 0,

R�(V ;CM ) � R�(Z;CZ ),

R�(V ;CZ ) � R�(Z;CZ ).

Hence, for such a V

�(V ; C∞,•
M )

J→ �(V ;CZ
w⊗ C∞,•

M ).
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De Rham theorem for Whitney functions 1631

is a quasi-isomorphismofCDGA.Remark that, as a consequenceof the triangulation theorem,
a locally closed subanalytic subset Z is a deformation retract of an open subanalytic subset V .
Furthermore,V is a smoothmanifold, then its deRhamcohomology and singular cohomology
are isomorphic. V is homotopy equivalent to Z , this implies that the singular cohomology
of V and the one of Z are isomorphic. ��
Remark 7.2 Since every neighborhood of a subanalytic locally closed subset Z ofM contains
a neighborhood V which has a deformation retract to Z , we get a quasi-isomorphism of
CDGA

�(M;CZ ⊗ C∞,•
M ) � lim−→

V

�(V ; C∞,•
M )

J→ lim−→
V

�(V ;CZ
w⊗ C∞,•

M ) � �(M;CZ
w⊗ C∞,•

M )

where V ranges through the family of neighborhoods having a deformation retract to Z .
Thanks to this fact one can easily prove the quasi-isomorphism of sheaves of CDGA

CZ ⊗ C∞,•
M

∼−→ CZ
w⊗ C∞,•

M .

Remark 7.3 As a further application, one can extend the results of [5] (as pointed out by
the authors in the introduction) to the case of subanalytic sets. One first remarks that all the
previous results remain valid if we consider real valued functions and sheaves of real vector
spaces. Hence, the singular cohomology of Z with real coefficients H•(Z ,R) is isomorphic
as a CGA to its Whitney–de Rham cohomology, i.e. for each k ∈ Z

Hk(Z ,R) � Hk�(M;W∞,•
M,Z ),

and these isomorphisms are compatible with the CGA structures. Then, when the set Z
is simply connected, one can prove that the de Rham complex with Whitney coefficients
�(M;W∞,•

M,Z ) determines the real homotopy type of Z . This also implies that the Hochschild
homology of the differential graded algebra �(M;W∞,•

M,Z ) is isomorphic to the cohomology
of the free loop space LZ .
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