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Abstract
For given natural numbers d1, d2 we describe the topology of a generic polynomial mapping
F = ( f , g) : X → C

2, with deg f ≤ d1 and deg g ≤ d2. Here X is a complex plane or a
complex sphere.
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1 Introduction

Polynomialmappings F : Cn → C
n are themost classical objects in the complex analysis, yet

their topology has not been studied up till now. To the best knowledge of the authors complex
algebraic families of polynomial mappings on affine varieties have not been investigated so
far. Here we describe an idea of such study. We consider the family �Cn (d1, . . . , dm) of
polynomial mappings F = (F1, . . . , Fm) : Cn → C

m of degree bounded by (d1, . . . , dm).
For a smooth affine variety Xk ⊂ C

n we also consider the family �X (d1, . . . , dm)

= {F |X : F ∈ �Cn (d1, . . . , dm)}. In particular based on Mather Projection Theorem,
we prove that a generic member of �X (d1, . . . , dm) is transversal to the Thom–Boardman
strata in the space of multi-jets s J k(X ,Cm). Moreover, we show that a generic member of
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�X (d1, . . . , dm) is transversal to any smooth algebraic subvariety of the space of multi-jets
Jq1,...,qr (X ,Cm), at least if di ≥ ∑r

j=1 q j + r − 1 for i = 1, . . . ,m.
Let us recall that in [12] the second author proved that if M, X , Y are affine irreducible

varieties, X , Y are smooth and � : M × X → Y is an algebraic family of polynomial
mappings such that the generic element of this family is proper then two generic members of
this family are topologically equivalent. In particular if X ⊂ C

p is of dimension n andm ≥ n
then any two generic members of the family �X (d1, . . . , dm) are topologically equivalent.
For example, if X is a smooth surface then the numbers cX (d1, d2) and dX (d1, d2) of cusps
and double folds, respectively, of a genericmember of the family�X (d1, d2) arewell-defined.

Our aim is to describe effectively the topology of such generic mappings. We consider
in this paper the simplest case, when n = m = 2 and X = C

2 or X is the complex sphere
S = {(x, y, z) ∈ C

3 : x2 + y2 + z2 = 1}. In those cases we describe the topology of the set
C(F) of critical points of F and the topology of its discriminant�(F). In particular we show
that a generic polynomial mapping F ∈ �X (d1, d2) has only cusps, folds and double folds
as singularities and we compute the number cX (d1, d2) of cusps and the number dX (d1, d2)
of double folds of such generic polynomial mapping. Our ideas work well also in higher
dimensions. This paper is the first step in a study of the topology of generic polynomial
mappings F : Cn → C

n .
The problem of counting the number of cusps of a generic perturbation of a real plane-

to-plane singularity was considered by Fukuda and Ishikawa in [3]. They proved that the
number modulo 2 of cusps of a generic perturbation F of anA finitely determined map-germ
F0 : (R2, 0) → (R2, 0) is a topological invariant of F0. More recently, in [14] Krzyżanowska
and Szafraniec gave an algorithm to compute the number of cusps for sufficiently generic
fixed real polynomial mapping of the real plane.

Algebraic formulas to count the number of cusps and nodes of a generic perturbation of an
A finitely determined holomorphicmap-germ F0 : (C2, 0) → (C2, 0)were given byGaffney
and Mond in [5,6] (see also [19]). In this case any two generic perturbations F of F0 defined
on a sufficiently small neighborhood of 0 are topologically equivalent, so the numbers of
cusps and nodes of F are invariants of the map-germ F0.

Let us note that in some cases our result allows also to use local methods to study global
mappings. Indeed, in the special case when gcd(d1, d2) = 1 the numbers c(F) and d(F)

can be computed by using local methods of Gaffney and Mond [6] or Ohmoto methods [18]
based on Thom polynomials. Note that in this case the leading homogenous part Fh of a
generic mapping F = ( f , g) is A finitely determined. Moreover, we have a deformation
Ft (x) = (td1 f (t−1(x)), td2g(t−1(x))). Now we can use the fact (which is first proved in our
paper) that a generic (with respect to the Zariski topology) mapping F ∈ �X (d1, d2) has only
folds, cusps and double folds as singularities. Thus for the deformation Ft ∈ �X (d1, d2) of
F all Ft , t �= 0 are generic mappings and all cusps and nodes of Ft tend to 0 when t → 0.
In this case our formulas for c(F) and d(F) coincide with formulas of Gaffney–Mond etc.

However, in the general case these approaches do not work since any homogeneous map-
ping is not A finitely determined if gcd(d1, d2) �= 1 (Gaffney–Mond, [6]). Note that even if
a germ F isK finitely determined then in general the number of cusps and nodes depends on
a given stable perturbation Ft of F (see Sect. 8). In particular in that case the local number
of cusps or nodes cannot be defined and the methods of Gaffney–Mond and Ohmoto do not
work. If gcd(d1, d2) �= 1 our formulas do not coincide with formulas of Gaffney–Mond
and Ohmoto, or rather the latter simply do not apply. Hence in general even discrete global
invariants can not be obtained by local methods or methods based on Thom polynomials.
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Whitney theorem for complex polynomial mappings 1041

For the definitions ofMather’s groupsA andK and properties of finitely determined germs
with respect to these equivalence relations we refer to [21].

Now we will briefly describe the content of the paper. In Sect. 2 we state and prove
general theorems. In Sect. 3 we describe the topology of the set of critical points of a generic
mapping F ∈ �C2(d1, d2). Moreover we compute the number cC2(d1, d2) of cusps. In Sect. 4
we describe the topology of the discriminant �(F) and compute the number dC2(d1, d2) of
nodes of �(F). In Sect. 5 we describe the topology of the set of critical points of a generic
mapping F ∈ �S(d1, d2), and compute the number cS(d1, d2), where S ⊂ C

3 is a complex
sphere. In Sect. 6 we describe the topology of the discriminant �(F) and we compute the
number dS(d1, d2).

In Sect. 7 we introduce the notions of a generalized cusp and the index of a generalized
cusp μ (see Definitions 7.1 and 7.3). We show that if F = ( f , g) : X → C

2 is an arbitrary
polynomial mapping with deg f ≤ d1, deg g ≤ d2 and generalized cusps at points a1, . . . , ar
then

∑r
i=1 μai ≤ cX (d1, d2).

We conclude the paper with Sect. 8 which is devoted to proper stable deformations of a
given polynomial mapping F : C2 → C

2. In particular we give an example of a K finitely
determined polynomial mapping F : C2 → C

2 and its two stable deformations Ft ,Gt which
have different number of cusps at 0.

2 General polynomial mappings

Let �n(d1, . . . , dm) denote the space of polynomial mappings F : C
n → C

m of multi-
degree bounded by d1, . . . , dm . Similarly if X ⊂ C

n is a smooth affine variety we consider
the family �X (d1, . . . , dm) = {F |X : F ∈ �n(d1, . . . , dm)}. Note that �X (d1, . . . , dm) as
algebraic variety coincides with �n(d1, . . . , dm).

By Jq(Cn,Cm)wedenote the space ofq-jets of polynomialmappings F = ( f1, . . . , fm) :
C
n → C

m . We define it exactly as in [15].
If we fix coordinates in the domain and the target then we can identify Jq(Cn,Cm) with

the space Cn × C
m × (CNq )m , where CNq parameterizes coefficients of polynomials of n-

variables and of degree bounded by q with zero constant term (which correspond to suitable
Taylor polynomials). In further applications, in most cases, we treat the space Jq(Cn,Cm) in
this simple way. In particular for a given polynomial mapping F : Cn → C

m we can define
the mapping jq(F) as

jq(F) : Cn � x 	→
(

x, F(x),

(
∂ |α| fi
∂xα

(x)

)

1≤i≤m,1≤|α|≤q

)

∈ Jq(Cn,Cm).

If Xn ⊂ C
p is a smooth affine variety then the space Jq(X ,Cm) has the structure of a

smooth algebraic manifold and can be locally represented in the same simple way as above.
Indeed, locally X is a complete intersection, i.e. for every point x ∈ X there is an open
neighborhood Ux of x such that Ux = {g1 = 0, . . . , gp−n = 0} (in some open set of Cp)

and rank
[

∂gi
∂x j

]
= p−n onUx . We can assume that the mapping (x1, . . . , xn, g1, . . . , gp−n)

is biholomorphic near x . In particular we have xi = φi (x1, . . . , xn) for i > n. Hence there
exists another Zariski open neighborhood Vx of x such that in Vx we have global local
holomorphic coordinates x1, . . . , xn . In particular Jq(Vx ,C

m) can be identified with the
space Vx × C

m × (CNq )m . In local coordinates we have a mapping
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1042 M. Farnik et al.

jq(F) : Vx � z 	→
(

z, F(z),

(
∂ |α| fi
∂xα

(z)

)

1≤i≤m,1≤|α|≤q

)

∈ Jq(Vx ,C
m).

Nowwe show that the space Jq(X ,Cm) has the structure of a smooth algebraic manifold.
Let D be a sheaf of derivations on X . Since D is coherent and X is affine D is generated
by a finite number of global sections D1, . . . , Ds . For a multi-index α = (α1, . . . , αs) let
Dα = Dα1 . . . Dαs . Now let Q be the number of multi-indexes α with |α| ≤ k. Take
d1 = d2 · · · = dm = k and consider a mapping

� : X × �X (d1, . . . , dm) � (x, F) 	→ (x, F(x), (Dα(x)(F))|α≤k) ∈ X × C
m × C

Q .

It is easy to see that the mapping� is algebraic and its image is exactly the space J k(X ,Cm).
By s J q(X ,Cm) we denote the space of multi q-jets of polynomial mappings F =

( f1, . . . , fn) : X → C
m . We denote by Diag the set {(x1, . . . xs) ∈ Xs : xi = x j for

some i �= j} and for bundles πi : Wi → X we denote by DiagX the set {(w1, . . . ws) :
πi (wi ) = π j (w j ) for some i �= j}. We have s J q(X ,Cm) = (Jq(X ,Cm))s\DiagX . More
generally, we define the space of (q1, . . . , qs)-jets to be Jq1,...,qs (X ,Cm) := Jq1(X ,Cm) ×
· · ·× Jqs (X ,Cm)\DiagX and call it, if there is no danger of confusion, the space ofmulti-jets.
Again, for a given polynomial mapping F : X → C

m we have the mapping

Jq1,...,qs (F) : Xs\Diag 	→ ( jq1(F)(x1), . . . , j
qs (F)(xs)) ∈ Jq1,...,qs (X ,Cm).

In the sequel we use the Thom–Boardman manifolds 
 I (see [1,16]) which give
stratifications of the jet space J k(X ,Cm). For a mapping F : X → C

m we denote

 I (F) := (Jq(F))−1(
 I ). The sets 
i (F) consist of points where F has corank exactly
i . Moreover, if 
11,...,ik (F) is a manifold then 
11,...,ik ,ik+1(F) = 
ik+1(F |
11,...,ik (F)).
We will also use the Thom–Boardman manifolds in the space s J k(X ,Cm) of multi-jets.
We denote by diagCm the set of all multijets {(w1, . . . , ws) ∈ s J k(X ,Cm) : for all
1 ≤ i, j ≤ s : πCm (wi ) = πCm (w j )}, where πCm : J k(X ,Cm) → C

m is the pro-
jection. We denote (
 I1 , . . . , 
 Is ) := 
 I1 × · · · × 
 Is ∩ s J k(X ,Cm). Moreover let
(
 I1 , . . . , 
 Is )� := (
 I1 , . . . × 
 Is ) ∩ diagCm .

Let us state the following result of Mather (this is an analogue for algebraic varieties of
Theorem 1 in [15], which holds for smooth manifolds. As Mather remarked after stating
Theorem 6, the proof is analogous to the proof of Theorem 1 and the main change is the use
of Bertini’s theorem instead of Sard’s theorem):

Theorem 2.1 Let X ⊂ C
n be a smooth affine algebraic subvariety and let W ⊂s J q(X ,Cm)

be a modular submanifold. There exists a Zariski open non-empty subset U in the space of
all linear mappings L(Cn,Cm) such that for every L ∈ U the mapping L : X → C

m is
transversal W .

For the definition of a modular submanifold see [15, p. 228–229]. This theorem has the
following nice application (which in the real smooth case was first observed by Ichiki in [9]):

Corollary 2.2 Let X ⊂ C
n be an affine smooth algebraic subvariety, let W ⊂s J q(X ,Cm)

be a modular submanifold and let F : X → C
m be a polynomial mapping. There exists a

Zariski open non-empty subset U in the space of all linear mappings L(Cn,Cm) such that
for every L ∈ U the mapping F + L : X → C

m is transversal to W.

Proof Let G : X � x 	→ (x, F(x)) ∈ X × C
m and X̃ = graph(G) ∼= X . Apply Mather’s

theorem to the variety X̃ . We get that for a general matrix A ∈ GL(m,m) and general linear
mapping L ∈ L(Cn,Cm) the mapping H(A, L) = A(F1, . . . , Fm)T + L is transversal to
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Whitney theorem for complex polynomial mappings 1043

W . Hence also the mapping A−1 ◦ H(A, L) is transversal toW (becauseW is invariant with
respect to action of global biholomorphisms). This means that the mapping F + A−1L is
transversal to W . But we can specialize the matrix A to the identity and the mapping L to a
given linear mapping L0 ∈ L(Cn,Cm). Hence we see that there is a dense subset of linear
mappings L ∈ L(Cn,Cm) such that the mapping F + L : X → C

m is transversal to W .
However, the set of such mappings is a constructible subset of L(Cn,Cm). Since it is dense
and constructible, it must contain a non-empty Zariski open subset. 
�

Now we can state the following fundamental result (version of Mather’s Theorem):

Theorem 2.3 Let Xk ⊂ C
n be a smooth algebraic variety of dimension k and let W ⊂

s J q(X ,Cm) be an algebraic modular submanifold. Then there is a Zariski open subset
U ⊂ �X (d1, . . . , dm) such that for every F ∈ U the mapping F is transversal to W . In
particular it holds, if we take as W the Thom–Boardman manifolds (
 I1 , . . . , 
 Is ) and
(
 I1 , . . . , 
 Is )� in s J q(X ,Cm). Consequently, if m = k, then every mapping F ∈ U
satisfies the normal crossings condition in the sense of Theorem VI.5.2 in [7].

Proof Since Thom–Boardman manifolds are modular (see [15]), then also (
 I1 , . . . , 
 Is )

and (
 I1 , . . . , 
 Is )� in s J q(X ,Cm) are modular. By Corollary 2.2 the set of mappings
F ∈ �X (d1, . . . , dm) which are transversal to (
 I1 , . . . , 
 Is ) and (
 I1 , . . . , 
 Is )� is dense
in �X (d1, . . . , dm). However it is also constructible. Thus it must contain a Zariski open
subset. The last statement follows from [7], Prop. 5.6, p. 158. 
�

Note that Mather’s result does not hold for every smooth subvariety in the space of jets, it
requires the variety to be modular. In our computations we will also require a similar result
for non-modular varieties, like in Lemma 3.5. Hence wewill prove here a result in the general
direction – we omit the assumption of modularity for the price of sufficiently high degree of
the mapping.

We start with the following fact:

Lemma 2.4 For every sequence of pairwise different points c1, . . . , cs ∈ C
n, a number

i ∈ {1, . . . , s} and sequence of numbers aα , where α ranges through multiindexes α =
(α1, . . . , αn) with 0 ≤ |α| ≤ qi there is a polynomial Hi of degree bounded by D ≤∑m

j=1 q j + m − 1 for i = 1, . . . , n, such that:

(1) for every multindex α with |α| ≤ qi we have
∂αHi

∂x
α1
1 ...∂xαn

n
(ci ) = aα ,

(2) for every j �= i and every multindex β with |β| ≤ q j we have
∂β Hi

∂x
β1
1 ...∂xβn

n
(c j ) = 0.

Proof Using linear change of coordinates we can assume that ci1 �= c j1 for i �= j . By
symmetry it is enough to construct a polynomial H1. Take

H1
α =

⎛

⎝
∑

|α|≤qi

bα(x − c1)
α

⎞

⎠
m∏

i=2

(x1 − ci1)
qi+1.

We determine the coefficients bα inductively. If α = (0, . . . , 0) = 0, then b0 =
a0/

∏m
i=2(c11 − ci1)qi+1. Now we assume that we have all bβ determined for |β| = k < q1

and show how to determine bα with |α| = k + 1. We have

∂αH1

∂xα1
1 . . . ∂xαn

n
(x) = α!bα

m∏

i=2

(x1 − ci1)
qi+1 + R(x),
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1044 M. Farnik et al.

where R(c1) depends only on c1, . . . , cn and bγ where |γ | ≤ k. Hence it is enough to take
bα = (aα − R(c1))/α!∏m

i=2(c11 − ci1)qi+1. 
�
Now we can prove:

Theorem 2.5 Let Xn ⊂ C
p be a smooth affine variety of dimension n. Let S1, . . . , Sk be

locally closed smooth algebraic submanifolds of J q1,...,qr (X ,Cm). Let d1, . . . , dm be integers
such that di ≥ ∑r

j=1 q j + r − 1 for i = 1, . . . ,m. Then there is a Zariski open dense subset
U ⊂ �X (d1, . . . , dm) such that for every F ∈ U we have

jq1,...,qr (F) � Si , f or i = 1, . . . , k.

Proof First consider the case X = C
n . For simplicity we can take m = 1 (the general case

is analogous). It is enough to prove that the mapping �n(d1) × (
∏r

C
n\Diag) � (F, x) 	→

Jq1,...,qr (F)(x) ∈ Jq1,...,qr (Cn,C) is a submersion. Let us observe that if we have a mapping
G : P × Z → P ×W of the form G(p, z) = (p, g(p, z)) ∈ P ×W , then G is a submersion
if the mapping Z � z 	→ g(p, z) ∈ W is a submersion for every fixed p ∈ P . Now take
P = ∏r

C
n\Diag, Z = �n(d1) and W in such way that P × W = Jq1,...,qm (Cn,C). Put

G(p, F) = Jq1,...,qr (F)(p). From the previous statement we have that G is a submersion if
G(p, ·) is a submersion for every fixed p. But since G(p, ·) is linear for fixed p it is enough
to prove thatG(p, ·) is surjective for fixed p. Hence our statement reduces to the Lemma 2.4.

Now assume that X is a general affine smooth variety. As above we can cover X by
finite number of Zariski open subsets Ui which have global local coordinates xi1 , . . . , xin ,
i.e., for every x ∈ Ui there is an open neighborhood Ux of x such that xi1 , . . . , xin are
holomorphic coordinates inUx .Let�n(d1, . . . , dm)(xi1 , . . . , xin ) ⊂ �n(d1, . . . , dm) denote
the set of polynomial mappings, which depend only on variables xi1 , . . . , xin . Note that we
have �n(d1, . . . , dm) ∼= �n(d1, . . . , dm)(xi1 , . . . , xin ) ⊕ Wi , where mappings in Wi have
coefficients different from coefficients in �n(d1, . . . , dm) (xi1 , . . . , xin ). Note that Wi |Ui

is the subset of holomorphic mappings locally depending only on variables xi1 , . . . , xin
and which have coefficients independent from coefficients in �n(d1, . . . , dm) (xi1 , . . . , xin ).
Now we can prove as above that � : �n(d1, . . . , dm)×Ui � (F, x) 	→ jq1,...,qr (F |Ui )(x) ∈
Jq1,...,qr (Ui ,C

m) is a submersion (in the proof it is enough to use only parameters from
�n(d1, . . . , dm)(xi1 , . . . , xin )).

Fix 1 ≤ i ≤ k. By the transversality theorem with a parameter the set of polynomials
F ∈ �n(d1, . . . , dn) such that jq1,...,qr (F |X ) is transversal to Si is dense in �n(d1, . . . , dm).
On the other hand this set is constructible in �n(d1, . . . , dm).

We conclude that there is a Zariski open dense subset Vi ⊂ �n(d1, . . . , dm) such that for
every F ∈ Vi we have jq1,...,qr (F |X ) � Si . Now it is enough to take U = ⋂k

i=1 Vi . 
�
Definition 2.6 Let 
k ⊂ J 1(X ,Cn) denote the subvariety of 1-jets of corank k. Let F ∈
�X (d1, . . . , dn). We say that F is one-generic if F is proper and j1(F) � 
1.

By Corollary 2.2 the subset of one-genericmappings contains a Zariski open dense subset
of �X (d1, . . . , dn). We have the following result:

Theorem 2.7 Let X be a smooth complex manifold of dimension n. Let F : X → C
n be a

proper holomorphic one-generic mapping. Let C(F) denote the set of critical points of F.
Then there is an open and dense subset U ⊂ C(F) such that for every a ∈ U the germ
Fa : (X , a) → (Cn, F(a)) is holomorphically equivalent to a fold.

Proof Let� = F(C(F)) be the discriminant of F . TakeU = C(F)\F−1(Sing(�)). The set
U is an open dense subset ofC(F). Take a point a ∈ U and consider the germ Fa : (X , a) →
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Whitney theorem for complex polynomial mappings 1045

(Cn, F(a)). By the choice of the point a the germ of the discriminant of Fa is smooth.
Hence by [13, Corollary 1.11], the germ Fa is biholomorphically equivalent to a k-fold:
(Cn, 0) � (x1, . . . , xn) 	→ (xk1 , x2, . . . , xn) ∈ (Cn, 0). In particular corank[Fa] = 1.

Now note that J 1(Cn,Cn) ∼= C
n×C

n×M(n, n), whereM(n, n) = {[ai j ], 1 ≤ i, j ≤ n}
is the set of n×n matrices. In these coordinates the set
1 is given as {(x, y,m) : det[mi j ] =
φ(x, y,m) = 0} on the open subset {(x, y,m) : corank[mi j ] ≤ 1}. Since the mapping j1(F)

is transversal to 
1 the mapping φ ◦ j1(F) = kxk−1
1 has to be a submersion at 0. This is

possible only for k = 2. 
�

3 Planemappings

Here we will study the set �2(d1, d2). Let us denote coordinates in J 1(C2,C2) by

(x, y, f , g, fx , fy, gx , gy).

For a mapping F = ( f , g) ∈ �2(d1, d2), we have

j1(F) =
(

x, y, f (x, y), g(x, y),
∂ f

∂x
(x, y),

∂ f

∂ y
(x, y),

∂g

∂x
(x, y),

∂g

∂ y
(x, y)

)

,

which justifies our notation. The set
1 is given by the equation φ(x, y, f , g, fx , fy, gx , gy)
= fx gy − fygx = 0. Since 
1 describes elements of rank one it is easy to see that it is a
smooth (non-closed) subvariety of J 1(C2,C2).

Now we would like to describe the set 
1,1 effectively. We restrict our attention only to
sufficiently general jets. In the space J 2(C2,C2) we introduce coordinates

(x, y, f , g, fx , fy, gx , gy, fxx , fyy, fxy, gxx , gyy, gxy).

A generic mapping F satisfies rank da F ≥ 1 for every a (because codim
2 = 4). We can
assume that F = ( f , g) and ∇a f �= 0. The critical set of F is exactly the set 
1(F) and
it has a reduced equation ∂ f

∂x (x, y) ∂g
∂ y (x, y) − ∂ f

∂ y (x, y) ∂g
∂x (x, y) = 0, which we write for

simplicity as fx gy − fygx = 0. In particular the tangent line to 
1(F) is given as

( fxx gy + fx gxy − fxygx − fygxx )v + ( fxygy + fx gyy − fyygx − fygxy)w = 0.

Consequently the condition for [Fa] ∈ 
1,1 is:

fx gy − fygx = 0

and

( fxx gy + fx gxy − fxygx − fygxx ) fy − ( fxygy + fx gyy − fyygx − fygxy) fx = 0.

Let us note that the last equation contains terms gxx f 2y and gyy f 2x hence for ∇ f �= 0 these
two equations form a complete intersection. In general, if we omit the assumption ∇ f �= 0
the set 
1,1 is given in J 2(C2,C2) by three equations:

L1 := fx gy − fygx = 0,

L2 := ( fxx gy + fx gxy − fxygx − fygxx ) fy − ( fxygy + fx gyy − fyygx − fygxy) fx = 0,

and

L3 := ( fxx gy + fx gxy − fxygx − fygxx )gy − ( fxygy + fx gyy − fyygx − fygxy)gx = 0.
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1046 M. Farnik et al.

As above by symmetry the set 
1,1 is smooth and locally is given as a complete intersection
of either L1, L2 or L1, L3.

We will denote by J , J1,1, J1,2 curves given by L1 ◦ j2(F) = 0, L2 ◦ j2(F) = 0 and
L3 ◦ j2(F) = 0, respectively. We will also identify these curves with their equations.

Remark 3.1 These formulas give a description of 
1,1 also in the case of a general affine
surface X , however, it might be only locally in the Zariski topology of J 2(X ,C2).

Definition 3.2 Let F : (C2, a) → (C2, F(a)) be a holomorphic mapping. We say that F has
a fold at a if F is biholomorphically equivalent to the mapping (C2, 0) � (x, y) 	→ (x, y2) ∈
(C2, 0). Moreover, we say that F has a cusp at a if F is biholomorphically equivalent to the
mapping (C2, 0) � (x, y) 	→ (x, y3 + xy) ∈ (C2, 0).

Remark 3.3 It is well known that F has a fold at a if j2(F) � 
1 at a and j2(F)(a) ∈ 
1,0,
and F has a cusp if j2(F) � 
1, 
1,1 and j2(F) ∈ 
1,1,0.

A direct consequence of Theorem 2.3 is:

Theorem 3.4 (cf. [22]) Let X ⊂ C
n be a smooth algebraic surface, then there is a non-empty

Zariski open subset U ⊂ �X (d1, d2) such that for every F ∈ U the mapping F has only
folds and cusps as singularities and the discriminant F(C(F)) has only cusps and nodes as
singularities.

Now we compute the number of cusps of a generic polynomial mapping F ∈ �2(d1, d2).
To do this we need a series of lemmas:

Lemma 3.5 Let L∞ denote the line at infinity of C2. There is a non-empty open subset
V ⊂ �2(d1, d2) such that for all ( f , g) ∈ V :
(1)

{
∂ f
∂x = 0

}
�
{

∂ f
∂ y = 0

}
,
{

∂g
∂x = 0

}
�
{

∂g
∂ y = 0

}
,

(2)
{

∂ f
∂x = 0

}
∩
{

∂ f
∂ y = 0

}
∩ L∞ = ∅,

{
∂g
∂x = 0

}
∩
{

∂g
∂ y = 0

}
∩ L∞ = ∅.

Proof The case d1 = 1 is trivial so assume d1 > 1. Let us note that the set S ⊂ J 1(C2,C2)

given by { fx = fy = 0} is smooth. Hence (1) follows from Theorem 2.5. To prove (2) it is
enough to assume that f ∈ Hd , where Hd denotes the set of homogenous polynomials of two
variables of degree d . Let � : Hd × (C × C)\{0, 0} � ( f , x, y) 	→ (

∂ f
∂x (x, y), ∂ f

∂ y (x, y)) ∈
C
2. It is easy to see that� is a submersion. Indeed, if f = ∑

ai xd−i yi then fx := ∂ f
∂x (x, y) =

da0xd−1+· · ·+ad−1yd−1, fy := ∂ f
∂ y (x, y) = a1xd−1+· · ·+dad yd−1. Since (x, y) �= (0, 0)

we can assume by symmetry that y �= 0. Now ∂ fx
∂ad−1

= yd−1,
∂ fx
∂ad

= 0, ∂ fy
∂ad

= dyd−1. Thus
∂( fx , fy)

∂(ad−1,ad )
= dy2(d−1) �= 0.

Hence for a generic polynomial f ∈ Hd the mapping � f : (C×C)\{(0, 0)} � (x, y) 	→
(
∂ f
∂x (x, y), ∂ f

∂ y (x, y)) ∈ C
2 is transversal to the point (0, 0). In particular �−1

f (0, 0) is either
zero-dimensional or the empty set. Since f is a homogenous polynomial the first possibility

is excluded. This means that
{

∂ f
∂x = 0

}
∩
{

∂ f
∂ y = 0

}
∩ L∞ = ∅. 
�

Lemma 3.6 Let L∞ denote the line at infinity of C2. There is a non-empty open subset
V ⊂ �2(d1, d2) such that for all F = ( f , g) ∈ V :

(1) J (F) ∩ J1,1(F) ∩ L∞ = ∅,
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(2) J (F) � L∞.

Here J (F) denotes the projective closure of the set {J (F) = 0} etc.
Proof Since the case d1 = d2 = 1 is trivial we may assume that d1 > 1 or d2 > 1.
We consider the (generic) case when deg f = d1 and deg g = d2. Hence J (F) ∩ L∞
and J1,1(F) ∩ L∞ depend only on the homogeneous parts of f and g of degree d1 and
d2 respectively. Let Hd denote the set of homogeneous polynomials of degree d in two
variables. It is sufficient to show that there is an open subset V ⊂ Hd1,d2 := Hd1 × Hd2 such
that J (F) ∩ J1,1(F) ∩ L∞ = ∅ for all F = ( f , g) ∈ V .

Consider the set X = {
(p, F) ∈ P

1 × Hd1,d2 : J (F)(p) = J1,1(F)(p) = 0
}
. Note that

X is a closed subset of P1 × Hd1,d2 , and if J (F) ∩ J1,1(F) ∩ L∞ �= ∅ then F belongs to
the image of the projection of X on Hd1,d2 . So to prove (1) it is sufficient to show that X has
dimension strictly smaller than the dimension of Hd1,d2 .

Let q = (1 : 0) ∈ P
1, Y := {q} × Hd1,d2 and X0 = X ∩ Y . Note that all fibers of the

projection X → P
1 are isomorphic to X0. Thus dim(X) = dim(X0)+dim(P1) and to prove

(1) it is sufficient to show that X0 has codimension at least 2 in Y .
Let (q, F) ∈ Y and let ai and bi be the parameters in Hd1,d2 giving respectively the

coefficients of f at xd1−i yi and of g at xd2−i yi . For 0 ≤ i + j ≤ d1, we have
∂ i+ j f
∂xi y j (q) =

(d1− j)! j !
(d1−i− j)!a j (F) and similarly for g and b j .

To conclude the proof of (1) we will show that the codimension of {a0b0 = 0} ∩ X0 in Y
is at least 2 and ∇ J and ∇ J1,1 are linearly independent outside {a0b0 = 0} ∩ X0 and thus
the variety X0 has codimension 2 in Y .

Let us calculate J (p). We have J (p) = ( fx gy − fygx )(q, F) = (d1a0b1 − d2a1b0)(F).
Thus {a0 = 0} ∩ X0 ⊂ {a0 = a1b0 = 0} ∩ Y has codimension at least 2 and we may assume
in further calculations that a0(F) �= 0 and similarly b0(F) �= 0.

Let us assume that d2 > 1. We have ∂ J
∂b1

(p) = ∂(d1a0b1−d2a1b0)
∂b1

(F) = d1a0(F) and
∂ J
∂b2

(p) = 0. Now let us calculate ∂ J1,1
∂b2

(p). The coefficient b2 can only be obtained from
∂2g
∂ y2

,

which is present in J1,1 in the summand −2 ∂2g
∂ y2

(d1
∂ f
∂x )2. Thus ∂ J1,1

∂b2
(p) = ∂(−2d21b2a

2
0 )

∂b2
(F) =

−2(d1a0(F))2. So det ∂(J ,J1,1)
∂(b1,b2)

(p) = −2(d1a0(F))3 �= 0.

Similarly, if d2 = 1 and d1 > 1 then det ∂(J ,J1,1)
∂(a1,a2)

(p) = −2(d1a0(F))(d2b0(F))2 �= 0.

To prove (2) note that
{

∂ J
∂x (F) = 0

} ∩ {
∂ J
∂ y (F) = 0

} ⊂ J1,1(F), hence (1) implies (2).

�

Lemma 3.7 There is a non-empty open subset V1 ⊂ �2(d1, d2) such that for all ( f , g) ∈ V1
and every a ∈ C

2: if ∂ f
∂x (a) = 0 and ∂ f

∂ y (a) = 0, then ∂g
∂x (a) �= 0 and ∂g

∂ y (a) �= 0.

Proof Let us consider two subsets in J 1(C2,C2): R1 := {(x, y, f , g, fx , fy, gx , gy) : fx =
0, fy = 0, gx = 0} and R2 := {(x, y, f , g, fx , fy, gx , gy) : fx = 0, fy = 0, gy = 0}. By
Theorem 2.5 there is a non-empty open subset V1 ⊂ �2(d1, d2) such that for every F ∈ V1
the mapping j1(F) is transversal to R1 and R2. Since these subsets have codimension three,
we see that the image of j1(F) is disjoint with R1 and R2. 
�
Lemma 3.8 There is a non-empty open subset V2 ⊂ �2(d1, d2) such that for all ( f , g) ∈ V2
we have

{ ∂ f
∂x = 0

} ∩ { ∂ f
∂ y = 0

} ∩ J1,2( f , g) = ∅.
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Proof Let us consider the (non-closed) subvariety S ⊂ J 2(2) given by equations: fx = 0,
fy = 0, ( fxx gy + fx gxy − fxygx − fygxx )gy − ( fxygy + fx gyy − fyygx − fygxy)gx = 0,
gx �= 0, gy �= 0. It is easy to check that S is a smooth complete intersection and it has
codimension three. The set of generic mappings F which are transversal to S contains a
Zariski open dense subset V2 ⊂ �2(d1, d2). By construction for all ( f , g) ∈ V2 we have{ ∂ f

∂x = 0
} ∩ { ∂ f

∂ y = 0
} ∩ J1,2( f , g) = ∅. 
�

Lemma 3.9 There is a non-empty open subset V3 ⊂ �2(d1, d2) such that for all ( f , g) ∈ V3
the curve J ( f , g) is transversal to the curve J1,1( f , g).

Proof There is a Zariski open subset V3 which contains only generic mappings which satisfy
hypotheses of all lemmas above.We can also assume that the curves

{ ∂ f
∂x = 0

}
and

{ ∂ f
∂ y = 0

}

intersect transversally. We have to show that the curves J ( f , g) and J1,1( f , g) intersect
transversally at every point a ∈ J ( f , g) ∩ J1,1( f , g). If ∇a f �= 0 then it follows from
transversality of the mapping F to the set 
1,1. Hence we can assume ∂ f

∂x (a) = 0 and
∂ f
∂ y (a) = 0. By Lemma 3.7 we have ∂g

∂x (a) �= 0 and ∂g
∂ y (a) �= 0. Let us denote: ∂ f

∂x (x, y) =
fx ,

∂ f
∂ y (x, y) = fy , etc. It is enough to prove that in the ring O2

a we have the equality
I = ( fx gy − fygx , ( fxx gy + fx gxy − fxygx − fygxx ) fy − ( fxygy + fx gyy − fyygx −
fygxy) fx ) = ma , wherema denotes the maximal ideal ofO2

a . Put L = fx gy − fygx . Hence
I = (L, Lx fy − Ly fx ). Since gx (a) �= 0, gy(a) �= 0, we have

I = (L, gx [Lx fy − Ly fx ], gy[Lx fy − Ly fx ]) = (L, Lxgx fy − Lygx fx , Lxgy fy − Lygy fx )

= (L, Lxgy fx − Lygx fx , Lxgy fy − Lygx fy) = (L, fx [Lxgy − Lygx ], fy[Lxgy − Lygx ]).
By Lemma 3.8 we have [Lxgy − Lygx ](a) �= 0, hence I = ( fx , fy) = ma . 
�

Now we are in a position to prove:

Theorem 3.10 There is a Zariski open, dense subset U ⊂ �2(d1, d2) such that for every
mapping F ∈ U the mapping F has only folds and cusps as singularities and the number of
cusps is equal to

d21 + d22 + 3d1d2 − 6d1 − 6d2 + 7.

Moreover, if d1 > 1 or d2 > 1 then the set C(F) of critical points of F is a smooth connected

curve, which is topologically equivalent to a sphere with g = (d1+d2−3)(d1+d2−4)
2 handles

and d1 + d2 − 2 points removed.

Proof Note that by Theorem 3.4 a generic F has only folds and cusps as singularities. Let
a be a point of the intersection of curves J ( f , g) and J1,1( f , g). If ∇a f �= 0 then ∇ag
is a multiple of ∇a f , so J1,2( f , g)(a) is a multiple of J1,1( f , g)(a) = 0. Thus F has a
cusp at a. On the other hand, if ∇a f = 0 then by Lemma 3.8 a is not a cusp of F . Note
also that J ( f , g), J1,1( f , g) ∈ (

fx , fy
)
, thus all points { fx = fy = 0} belong to the

intersection of J ( f , g) and J1,1( f , g). By Lemma 3.9 the curves J ( f , g) and J1,1( f , g)
intersect transversally and by Lemma 3.6 their completions do not intersect at infinity. Thus
the number of cusps of a generic mapping is equal to the number of points in J ( f , g) ∩
J1,1( f , g) and not in { fx = fy = 0}, which by Bezout Theorem is equal to

(d1 + d2 − 2)(2d1 + d2 − 4) − (d1 − 1)2 = d21 + d22 + 3d1d2 − 6d1 − 6d2 + 7.

Finally by Lemma 3.6 we have that C(F) = 
1(F) is a smooth affine curve which is
transversal to the line at infinity. This means that C(F) is also smooth at infinity, hence it
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is a smooth projective curve of degree d = d1 + d2 − 2. Thus by the Riemmann–Roch
Theorem the curve C(F) has genus g = (d−1)(d−2)

2 . This means in particular that C(F) is

homeomorphic to a sphere with g = (d−1)(d−2)
2 handles. Moreover, by the Bezout Theorem

it has precisely d points at infinity. 
�
Remark 3.11 The curve C(F) has d1 +d2 −2 (smooth) points at infinity and at each of these
points is transversal to the line at infinity.

4 The discriminant

Here we analyze the discriminant of a generic mapping from �(d1, d2). Let us recall that
the discriminant of the mapping F : C2 → C

2 is the curve �(F) := F(C(F)), where C(F)

is the critical curve of F . From Theorem 2.3 we have:

Lemma 4.1 There is a non-empty open subset U ⊂ �2(d1, d2) such that for every mapping
F ∈ U:

(1) F|C(F) is injective outside a finite set,
(2) if p ∈ �(F) then |F−1(p) ∩ C(F)| ≤ 2,
(3) if |F−1(p) ∩ C(F)| = 2 then the curve �(F) has a normal crossing at p.

Proof By Theorem 2.3 we can find an open subset U ⊂ �(d1, d2) such that every
F ∈ U satisfies the NC (normal crossings) condition (see [7, p. 156–158]). Let F
satisfy the NC condition, p ∈ �(F) and F−1(p) ∩ C(F) = {x1, . . . , xt }. The lines
dFx1(Tx1C(F)), . . . , dFxt (Txt C(F)) are in general position in C

2, i.e., t ≤ 2 and if t = 2
then the two lines intersect transversally. 
�

Hence for a generic F the only singularities of �(F) are cusps and nodes. We showed in
Theorem 3.10 that there are exactly c(F) = d21 + d22 + 3d1d2 − 6d1 − 6d2 + 7 cusps. Now
we will compute the number d(F) of nodes of �(F).

Let us recall that δP = length(ÕP/OP ), where ÕP is the normalization of OP . We will
use the following theorem of Serre (see [17, p. 85]):

Theorem 4.2 If � is an irreducible curve of degree d and genus g in the complex projective
plane then

1

2
(d − 1)(d − 2) = g +

∑

z∈Sing(�)

δz,

where δz denotes the delta invariant of a point z.

First we compute the degree of the discriminant:

Lemma 4.3 Let F = ( f , g) ∈ �(d1, d2) be a generic mapping. If d1 ≥ d2 then deg�(F) =
d1(d1 + d2 − 2).

Proof Let L ⊂ C
2 be a generic line {ax + by + c = 0}. Then L intersects �(F) in smooth

points and deg�(F) = #L ∩ �(F). If j : C(F) → �(F) is a mapping induced by F
then #L ∩ �(F) = # j−1(L ∩ �(F)). The curve j−1(L) = {a f + bg + c = 0} has no
common points at infinitywithC(F). Hence byBezout Theoremwe have # j−1(L∩�(F)) =
(deg j−1(L))(degC(F)) = d1(d1 + d2 − 2). Consequently deg�(F) = d1(d1 + d2 − 2). 
�
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We have the following method of computing the delta invariant (see [17, p. 92–93]):

Theorem 4.4 Let V0 ⊂ C
2 be an irreducible germ of an analytic curve with the Puiseux

parametrization of the form

z1 = ta0 , z2 =
∑

i>0

λi t
ai , where λi �= 0, a1 < a2 < a3 < · · ·

Let D j = gcd(a0, a1, . . . , a j−1). Then

δ0 = 1

2

∑

j≥1

(a j − 1)(Dj − Dj+1).

If V = ⋃r
i=1 Vi has r branches then

δ(V ) =
r∑

i=1

δ(Vi ) +
∑

i< j

Vi · Vj ,

where V · W denotes multiplicity of intersection of V and W at 0.

The main result of this section will be based on the following:

Theorem 4.5 Let F ∈ �(d1, d2) be a generic mapping. Let d1 ≥ d2 and d = gcd(d1, d2).
Denote by � the projective closure of the discriminant �. Then

∑

z∈(�\�)

δz = 1

2
d1(d1 − d2)(d1 + d2 − 2)2 + 1

2
(−2d1 + d2 + d)(d1 + d2 − 2).

Proof Let f̃ (x, y, z) = zd1 f
( x
z ,

y
z

)
and g̃(x, y, z) = zd2g

( x
z ,

y
z

)
be the homogenizations

of f and g, respectively, and let f (x, z) = f̃ (x, 1, z) and g(x, z) = g̃(x, 1, z). For a generic
mapping the curves C(F) and { f = 0} have no common points at infinity (see Lemma 4.6).
Moreover we may assume that (1 : 0 : 0) /∈ C(F). Thus F extends to a neighborhood of
C(F) ∩ L∞ on which it is given by the formula

F(x, z) =
(

zd1−d2 g(x, z)

f (x, z)
,

zd1

f (x, z)

)

.

Let {P1, . . . , Pd1+d2−2} = C(F)∩ L∞, fix a point P = Pi . The curveC(F) is transversal
to the line at infinity so it has a local parametrization at P of the form γ (t) := (

∑
i ei t

i , t).
We have the following:

Lemma 4.6 If F is a generic mapping then f (P) �= 0, g(P) �= 0 and

f (γ (t)) = f (P)(1 + ct + · · · ), g(γ (t)) = g(P)(1 + dt + · · · ),
where cd �= 0 and d2c �= d1d.

Proof Let J̃ = J̃ (F) be the homogenization of J (F). Obviously J̃ = ∂ f̃
∂x

∂ g̃
∂ y − ∂ f̃

∂ y
∂ g̃
∂x .

To prove that f (P) �= 0 consider the set W = {(p, F) ∈ L∞ × �2(d1, d2) : f̃ (p) =
J̃ (p) = 0}. Clearly W has codimension 2 in L∞ × �2(d1, d2) so a general fiber of the
projection on�2(d1, d2) is empty. Hence for a genericmapping the curvesC(F) and { f = 0}
have no common points at infinity, so f (P) �= 0. Similarly we obtain g(P) �= 0.
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Now let J (x, z) = J̃ (x, 1, z). Since J (γ (t)) = 0 and ∂γ (t)
∂t |t=0 = (e1, 1) we have

f (P)c
∂ J (P)

∂x
=
(

∂ f (γ (t))

∂t

∂ J (γ (t))

∂x

)

|t=0

=
(

∂ f (γ (t))

∂x
e1

∂ J (γ (t))

∂x
+ ∂ f (γ (t))

∂z

∂ J (γ (t))

∂x

)

|t=0

=
(

−∂ f (γ (t))

∂x

∂ J (γ (t))

∂z
+ ∂ f (γ (t))

∂z

∂ J (γ (t))

∂x

)

|t=0

= ∂ f (P)

∂z

∂ J (P)

∂x
− ∂ f (P)

∂x

∂ J (P)

∂z
.

Consider the set

X =
{

(p, F) ∈ L∞ × �2(d1, d2) : J̃ (F)(p) =
(

∂ f̃

∂z

∂ J̃ (F)

∂x
− ∂ f̃

∂x

∂ J̃ (F)

∂z

)

(p) = 0

}

.

Note that if c = 0 then the fiber over F of the projection from X to�2(d1, d2) is non-empty.
Hence it suffices to prove that X has codimension at least 2.

Let p = (0 : 1 : 0) and q = (a : b : 0) ∈ L∞\{(1 : 0 : 0)}. Let T̃ (x, y, z) =
(bx − ay, y, z) so that T̃ (q) = p. Take T (x, y) = (bx − ay, y). Note that J̃ (F ◦ T ) =
( J̃ (F) ◦ T̃ )J (T̃ ) = b J̃ (F) ◦ T̃ . Furthermore

∂ f̃ ◦ T̃

∂z

∂ J̃ (F ◦ T )

∂x
− ∂ f̃ ◦ T

∂x

∂ J̃ (F ◦ T )

∂z
= b2

(
∂ f̃

∂z

∂ J̃ (F)

∂x
− ∂ f̃

∂x

∂ J̃ (F)

∂z

)

◦ T̃ .

Thus (p, F) 	→ (T−1(p), F ◦ T ) is an isomorphism of X p := X ∩ ({p} × �2(d1, d2))
and X ∩ ({q} × �2(d1, d2)). So it is enough to show that X p has codimension 2 in Yp :=
{p} × �2(d1, d2).

Let ai be the parameters in �2(d1, d2) giving the coefficients of f̃ (and of f ) at xd1−i yi

and let bi and ci describe respectively the coefficients of g̃ at xd2−i yi and xd2−i−1yi z.
The first equation of X p is d2ad1−1bd2 − d1ad1bd2−1 = 0 and the only summand of the

second containing cd2−1 is−(ad1−1)
2(d2−1)cd2−1. Clearly those equations are independent

outside the set {ad1−1 = 0}. Moreover {ad1−1 = d2ad1−1bd2 − d1ad1bd2−1 = 0} = {ad1−1 =
ad1 = 0} ∪ {ad1−1 = bd2−1 = 0}, thus X p has codimension 2 in Yp .

Finally note that if d2c = d1d then

d2g(P)

(
∂ f

∂z

∂ J

∂x
− ∂ f

∂x

∂ J

∂z

)

(P) = d1 f (P)

(
∂g

∂z

∂ J

∂x
− ∂g

∂x

∂ J

∂z

)

(P).

Hence we consider the set

Z =
{
(p, F) ∈ L∞ × �2(d1, d2) : J̃ (F)(p)

= d2 g̃(p)

(
∂ f̃

∂z

∂ J̃

∂x
− ∂ f̃

∂x

∂ J̃

∂z

)

(p) − d1 f̃ (p)

(
∂ g̃

∂z

∂ J̃

∂x
− ∂ g̃

∂x

∂ J̃

∂z

)

(p) = 0
}
.

Similarly as above one can show that it has codimension 2, which concludes the proof. 
�
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Let Cp be the branch of C(F) at P . We find the Puiseux expansion of the branch F(CP )

of �(F) at F(P). We have

F(γ (t)) =
(

td1−d2 g(γ (t))

f (γ (t))
,

td1

f (γ (t))

)

=
(

td1−d2(1 + (d − c)t + · · · ) g(P)

f (P)
,
td1(1 − ct + · · · )

f (P)

)

.

If d1 = d2 then by Lemma 4.6 we have d − c �= 0 and F(CP ) is smooth at F(P).

So assume d1 > d2. Since the function h(t) =
(

f (P)
g(P)

g(γ (t))
f (γ (t))

) 1
d1−d2 = 1 + d−c

d1−d2
t + · · ·

is invertible in t = 0 we can introduce a new variable T = th(t). We have F(γ (T )) =(
T d1−d2 g(P)

f (P)
, T d1h(t)−d1(1 − ct + · · · ) 1

f (P)

)
. Moreover

h(t)−d1(1 − ct + · · · ) =
(

1 − d1
d − c

d1 − d2
T + · · ·

)

(1 − cT + · · · )

= 1 + d2c − d1d

d1 − d2
T + · · ·

By Lemma 4.6 we have d2c − d1d �= 0 and we can apply Theorem 4.4 to compute
δ(F(CP ))F(P). Since a0 = d1 − d2, a1 = d1 and a2 = d1 + 1, we have 2δ(F(CP ))F(P) =
(d1 − 1)(d1 − d2 − d) + (d1 + 1 − 1)(d − 1) = (d1 − 1)(d1 − d2 − 1) + (d − 1), where
d = gcd(d1, d2).

To proceed further we also need:

Lemma 4.7 If F is a generic mapping then

f (Pi )
d2g(Pj )

d1 �= f (Pj )
d2g(Pi )

d1

for i, j ∈ {1, 2, . . . , d1 + d2 − 2} and i �= j .

Proof Consider the set X = {(p, q, F) ∈ L∞ × L∞ × �2(d1, d2) : p �= q, J̃ (F)(p) =
J̃ (F)(q) = f̃ (p)d2 g̃(q)d1 − f̃ (q)d2 g̃(p)d1 = 0}. Similarly as in Lemma 4.6 we will prove
that X has codimension 3, so there is a dense open subset S ⊂ �(d1, d2) such that the
projection from X has empty fibers over F ∈ S.

Indeed, take p = (1 : 0 : 0), q = (0 : 1 : 0) and Y := {(p, q)}×�2(d1, d2). It suffices to
show that X0 = X ∩Y has codimension 3 in Y . Let ai and bi be the parameters in�2(d1, d2)
giving respectively the coefficients of f̃ at xd1−i yi and of g̃ at xd2−i yi .

The three equations describing X0 are w1 = d1a0b1 − d2a1b0 = 0, w2 = d2ad1−1bd2 −
d1ad1bd2−1 = 0 and w3 = ad20 bd1d2 − ad2d1 b

d1
0 = 0. Note that X0 ∩ {a0 = 0} = {a0 = b0 =

w2 = 0} ∪ {a0 = a1 = ad1 = w2 = 0} has codimension 3. Similarly X0 ∩ {b0 = 0} and
X0 ∩ {ad1 = 0} have codimension 3, however outside the set {a0 = b0 = ad1} the three
equations are obviously independent. Thus X0 has codimension 3 in X . 
�

Nowwe are in a position to compute
∑

z∈(�\�) δz . If d1 = d2 then� has exactly d1+d2−2
smooth points at infinity and consequently

∑
z∈(�\�) δz = 0 (see the text after the proof of

Lemma 4.6). So assume d1 > d2, then � has only one point at infinity Q = (1 : 0 : 0).
In Q the curve � has exactly r = d1 + d2 − 2 branches Vi = F(CPi ). We computed
above that 2δ(Vi )Q = (d1 − 1)(d1 − d2 − 1) + (d − 1). Now we will compute Vi · Vj .
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Let ta,b(x, y) = (x + a, y + b). By the dynamical definition of intersection there exists a
neighborhood U of 0, such that for small generic a, b we have

Vi · Vj = #(U ∩ Vi ∩ ta,b(Vj )).

This means that Vi · Vj is equal to the number of solutions of the following system:

g(Pi )

f (Pi )
T d1−d2 = g(Pj )

f (Pj )
Sd1−d2 + a,

1

f (Pi )
T d1(1 + αi T + · · · ) = 1

f (Pj )
Sd1(1 + α j S + · · · ) + b,

where a, b and S, T are sufficiently small. Take

Q : (C2, 0) → (C2, 0),

Q(T , S) =
(
g(Pi )

f (Pi )
T d1−d2 − g(Pj )

f (Pj )
Sd1−d2 ,

1

f (Pi )
T d1(1 + αi T + · · · )

− 1

f (Pj )
Sd1(1 + α j S + · · · )

)

.

Thus we have Vi · Vj = mult0 Q. Note that by Lemma 4.7 the minimal homogenous
polynomials of the two components of Q have no nontrivial common zeroes, hence
Vi · Vj = d1(d1 − d2). Consequently

∑

i

δ(Vi ) +
∑

i> j

Vi · Vj = 1

2
[(d1 − 1)(d1 − d2 − 1) + (d − 1)](d1 + d2 − 2)

+ 1

2
d1(d1 − d2)(d1 + d2 − 2)(d1 + d2 − 3)

= 1

2
d1(d1 − d2)(d1 + d2 − 2)2 + 1

2
(−2d1 + d2 + d)(d1 + d2 − 2).


�
We can now prove the following:

Theorem 4.8 There is a Zariski open, dense subset U ⊂ �2(d1, d2) such that for every map-
ping F ∈ U the discriminant �(F) = F(C(F)) has only cusps and nodes as singularities.
Let d = gcd(d1, d2). Then the number of cusps is equal to

c(F) = d21 + d22 + 3d1d2 − 6d1 − 6d2 + 7

and the number of nodes is equal to

d(F) = 1

2

[
(d1d2 − 4)((d1 + d2 − 2)2 − 2) − (d − 5)(d1 + d2 − 2) − 6

]
.

Proof Let d1 ≥ d2 and D = d1 + d2 − 2. By Lemma 4.3 we have deg�(F) = d1D. From
Lemma 4.1 we know that �(F) has only cusps and nodes as singularities and is birational
with C(F). Hence �(F) has genus g = 1

2 (D − 1)(D − 2). Thus by Theorem 4.2 we have

1

2
(d1D − 1)(d1D − 2) = 1

2
(D − 1)(D − 2) + c(F) + d(F) +

∑

z∈(�\�)

δz .
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Substituting

∑

z∈(�\�)

δz = 1

2
d1(d1 − d2)D

2 + 1

2
(−2d1 + d2 + d)D

from Theorem 4.5 we obtain

2(c(F) + d(F)) = d1d2D
2 − D2 + 3D − d1D − d2D − dD = (d1d2 − 2)D2 − (d − 1)D.

Thus by Theorem 3.10 we get:

d(F) = 1

2

[
(d1d2 − 2)D2 − (d − 1)D − 2(D2 − 2D + d1d2 − 1)

]

= 1

2

[
(d1d2 − 4)(D2 − 2) − (d − 5)D − 6

]
.


�
Remark 4.9 If d1 = d2 = d then the discriminant has 2d − 2 smooth points at infinity and at
each of these points it is tangent to the line L∞ (at infinity) withmultiplicity d. If d1 > d2 then
the discriminant has only one point at infinity with d1 + d2 − 2 branches V1, . . . , Vd1+d2−2

and each of these branches has delta invariant

δ(Vi ) = (d1 − 1)(d1 − d2 − 1) + (gcd(d1, d2) − 1)

2

and Vi · L∞ = d1. Additionally Vi · Vj = d1(d1 − d2). In particular the branches Vi are
smooth if and only if d1 = d2 or d1 = d2 + 1.

5 The complex sphere

In the next two sectionswe show that ourmethod can be easily generalized to the casewhen X
is a complex sphere. Let φ = y2+2xz and let S be a complex sphere: S = {(x, y, z) : φ = 1}
(of course S is linearly equivalent with a standard sphere S′ := {(x, y, z) : x2+y2+z2 = 1}).
Here we will study the set �S(d1, d2). First we compute the critical set C(F) of a generic
mapping F = ( f , g) ∈ �S(d1, d2). Note that x ∈ C(F) if rank (∇φ,∇ f ,∇g) < 3, hence
C(F) is the intersection of S and the surface given by

J (F) =
∣
∣
∣
∣
∣
∣

z y x
fx fy fz
gx gy gz

∣
∣
∣
∣
∣
∣
= 0.

In particular we have:

Corollary 5.1 For a generic mapping F ∈ �S(d1, d2) we have degC(F) = 2(d1 + d2 − 1).

Now we describe cusps of a generic mapping F : S → C
2. Note that a tangent line to

C(F) is given by two equations:

zv1 + yv2 + xv3 = 0, J (F)xv1 + J (F)yv2 + J (F)zv3 = 0.

The mapping F has a cusp in a point (x, y, z) if

(1) (x, y, z) ∈ C(F)

(2) the line given by the kernel of d(x,y,z)F is tangent to C(F).
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First let us determine the kernel of d(x,y,z)F . If rank

∣
∣
∣
∣
z y x
fx fy fz

∣
∣
∣
∣ = 2 then the kernel is

given by the vector

v( f ) =
(∣
∣
∣
∣
y x
fy fz

∣
∣
∣
∣ ,−

∣
∣
∣
∣
z x
fx fz

∣
∣
∣
∣ ,

∣
∣
∣
∣
z y
fx fy

∣
∣
∣
∣

)

.

Otherwise it is the vector

v(g) =
(∣
∣
∣
∣
y x
gy gz

∣
∣
∣
∣ ,−

∣
∣
∣
∣
z x
gx gz

∣
∣
∣
∣ ,

∣
∣
∣
∣
z y
gx gy

∣
∣
∣
∣

)

.

Let J1,1(F) := J (F)xv1( f )+ J (F)yv2( f )+ J (F)zv3( f ) and J1,2(F) := J (F)xv1(g)+
J (F)yv2(g) + J (F)zv3(g). Let C denote the set of cusps of F , for generic F we have from
the construction:

C = {J (F) = J1,1(F) = J1,2(F) = 0}.
Furthermore, we will show in Lemma 5.2 that S∩{J1,2(F) = 0}∩{v( f ) = 0} = ∅which

gives

C = S ∩ ({J (F) = J1,1(F) = 0}\{v( f ) = 0}).
Lemma 5.2 Let L∞ denote the plane at infinity of C3. There is a non-empty open subset
V ⊂ �S(d1, d2) such that for all F = ( f , g) ∈ V :

(1) S ∩ {J1,2(F) = 0} ∩ {v( f ) = 0} = ∅, S ∩ {J1,1(F) = 0} ∩ {v(g) = 0} = ∅,
(2) S∩{J (F) = 0}∩{J1,1(F) = 0}∩ L∞ = ∅, S∩{J (F) = 0}∩{J1,2(F) = 0}∩ L∞ = ∅,
(3) S ∩ {J (F) = 0} � L∞.

Proof (1) The assertion can be proved locally. Consider the open set Uz = {p ∈ S : z �= 0}
(and similarly open setsUx ,Uy). InUz we have globally defined local coordinates x, y. Now
the proof reduces to Lemma 3.8.

(2) Similarly as in Lemma 3.6 we will show that there is an open subset V ⊂ Hd1,d2 :=
Hd1 × Hd2 such that S ∩ {J (F) = 0} ∩ {J1,1(F) = 0} ∩ L∞ = ∅ for all F = ( f , g) ∈ V .
Let φ(x, y, z) = y2 + 2xz and � := {(x, y, z) ∈ P

2 : φ(x, y, z) = 0}. Obviously � ∼= P
1.

Consider the set X = {
(p, F) ∈ � × Hd1,d2 : φ(p) = J (F)(p) = J1,1(F)(p) = 0

}
. If

{φ = 0} ∩ {J (F) = 0} ∩ {J1,1(F) = 0} ∩ L∞ �= ∅ then F belongs to the image of the
projection of X on Hd1,d2 . So to prove (1) it is sufficient to show that X has dimension
strictly smaller than the dimension of Hd1,d2 .

Let q = (1 : 0 : 0) ∈ P
2, Y := {q} × Hd1,d2 and X0 = X ∩ Y . Note that all fibers of the

projection X → � are isomorphic to X0, because the group GL(S) of linear transformations
of S acts transitively on the conic at infinity of S. Thus dim(X) = dim(X0) + dim(�) and
to prove (1) it is sufficient to show that X0 has codimension at least 2 in Y .

Let r = (q, F) ∈ Y and let ai, j and bi, j be the parameters in Hd1,d2 giving respectively
the coefficients of f at xd1−i− j yi z j and of g at xd2−i− j yi z j . For 0 ≤ i + j + k ≤ d1, we

have ∂ i+ j+k f
∂xi y j zk

(q) = (d1− j−k)! j !k!
(d1−i− j−k)! a j,k(F) and similarly for g and b j,k .

To conclude the proof of (1) we will show that the codimension of {a1,0b1,0 = 0} ∩ X0 in
Y is at least 2 and ∇ J and ∇ J1,1 are linearly independent outside {a1,0b1,0 = 0} ∩ X0 and
thus the variety X0 has codimension 2 in Y .

Let us calculate J (r). We have J (r) = ( fx gy − fygx )(q, F) = (d1a0,0b1,0 −
d2a1,0b0,0)(F). Thus {a0,0 = 0} ∩ X0 ⊂ {a0,0 = a1,0b0,0 = 0} ∩Y has codimension at least
2 and in further calculations we may assume that a0,0(F) �= 0 and similarly b0,0(F) �= 0.
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Let us assume that d2 > 1.We have ∂ J
∂b1,0

(r) = ∂(d1a0,0b1,0−d2a1,0b0,0)
∂b1,0

(F) = d1a0,0(F) and
∂ J (r)
∂b2,0

= 0. Now let us calculate ∂ J1,1
∂b2,0

(r). The coefficient b2,0 can only be obtained from
∂2g
∂ y2

,

which is present in J1,1 in the summand ∂2g
∂ y2

∣
∣
∣
∣
z x
fx fz

∣
∣
∣
∣

2

. Thus ∂ J1,1
∂b2,0

(p) = ∂(2b2,0d21a
2
0,0)

∂b2,0
(F) =

2d21a0,0(F)2. So det ∂(J ,J1,1)
∂(b1,0,b2,0)

(p) = 2d31 (a0,0(F))3 �= 0.

Similarly, if d2 = 1 and d1 > 1 then det ∂(J ,J1,1)
∂(a0,1,a0,2)

(p) = 2d32 (b1,0(F))3 �= 0.

(3) Note that
{∇ J (F)|S = 0

} ⊂ {J1,1(F) = 0}, hence (2) implies (3). 
�
Lemma 5.3 There is a non-empty open subset V1 ⊂ �S(d1, d2) such that for all ( f , g) ∈ V1
the curve S ∩ J ( f , g) is transversal to the curve S ∩ J1,1( f , g).

Proof As in Lemma 5.2 (1) we consider the sets Ux ,Uy,Uz with globally defined local
coordinates and reduce the proof to Lemmas 3.7 and 3.9. 
�
Lemma 5.4 There is a non-empty open subset V2 ⊂ Hd1 such that for all f ∈ V2 the
equations:

(1) φ(x, y, z) = 0,
(2) v( f ) = 0

have no common solutions different from (0, 0, 0).

Proof We proceed similarly as in Lemma 5.2 (2).
Let � := {(x, y, z) ∈ P

2 : φ(x, y, z) = 0} ∼= P
1. Consider the set

X = {
(p, f ) ∈ � × Hd1 : φ(p) = v1( f )(p) = v2( f )(p) = v3( f )(p) = 0

}
.

If {φ = 0} ∩ {v( f ) = 0} �= ∅ then f belongs to the image of the projection of X on Hd1 . So
to prove (1) it is sufficient to show that X has dimension strictly smaller than the dimension
of Hd1 .

Let q = (1 : 0 : 0) ∈ P
2, Y := {q} × Hd1 and X0 = X ∩ Y . As before, all fibers of the

projection X → � are isomorphic to X0, so dim(X) = dim(X0)+dim(�) and it is sufficient
to show that X0 has codimension at least 2 in Y .

But X0 is given by two equations: −a(1,0) = 0, d1a(0,0) = 0, so codim X0 = 2. 
�
Lemma 5.5 There is a non-empty open subset V3 ⊂ �S(d1, d2) such that for all ( f , g) ∈ V3
the equations:

(1) y2 + 2xz = 1,
(2) v( f ) = 0

have exactly 2(d21 − d1 + 1) common solutions.

Proof We have

v( f ) =
(∣
∣
∣
∣
y x
fy fz

∣
∣
∣
∣ ,−

∣
∣
∣
∣
z x
fx fz

∣
∣
∣
∣ ,

∣
∣
∣
∣
z y
fx fy

∣
∣
∣
∣

)

.

Note that generically the curve

{∣
∣
∣
∣
y x
fy fz

∣
∣
∣
∣ = 0

}

∩
{∣
∣
∣
∣
z x
fx fz

∣
∣
∣
∣ = 0

}

decomposes into {v( f ) = 0}
and {x = fz = 0}. Thus by the Bezout Theorem deg{v( f ) = 0} = d21 − d1 + 1 and
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S ∩ {v( f ) = 0} has 2(d21 − d1 + 1) points. We leave checking that the intersections are
transversal and there are no components at infinity to the reader. 
�

Now we are in a position to prove:

Theorem 5.6 There is a Zariski open, dense subset U ⊂ �S(d1, d2) such that for every
mapping F = ( f , g) ∈ U the mapping F has only folds and cusps as singularities and the
number of cusps is equal to

2(d21 + d22 + 3d1d2 − 3d1 − 3d2 + 1).

Moreover the set C(F) of critical points of F is a smooth connected curve, which is topo-
logically equivalent to a sphere with (d1 + d2 − 2)2 handles and 2(d1 + d2 − 1) points
removed.

Proof Note that every point a of the intersection of curves J ( f , g) and J1,1( f , g) with
v( f ) �= 0 is a cusp. Moreover for a generic mapping F points with v( f ) = 0 are not cusps
(Lemma 5.2). By Lemma 5.5 we have that in the set S ∩ {v( f ) = 0} there are exactly
2(d21 − d1 + 1) points and that the number of cusps of a generic mapping is equal to

2[(d1 + d2 − 1)(2d1 + d2 − 2) − (d21 − d1 + 1)] = 2(d21 + d22 + 3d1d2 − 3d1 − 3d2 + 1).

Moreover by Lemma 5.2 we have that C(F) = 
1(F) is a smooth affine curve which
is transversal to the plane at infinity. This means that J := C(F) is also smooth at infinity,
hence it is a smooth projective curve of degree 2(d1+d2−1). Note that Pic(S) = ZL1⊕ZL2,
where L1, L2 are lines in S such that L1.L1 = L2.L2 = 0 and L1.L2 = 1 (for details see
e.g. [20], Ex.2 p. 237). Moreover if H is a plane section then H ∼ L1 + L2. Hence in Pic(S)

we have C(F) ∼ aL1 + bL2 where a + b = 2(d1 + d2 − 1).
Take li = Li ∩ S and note that Pic(S) is generated freely by l1 or l2 with the relation

l1+l2 = 0. In particularC(F) ∼ (a−b)l1.But inPic(S)wehaveC(F) ∼ (d1+d2−1)H = 0.
Thus a = b = d1 + d2 − 1.

Suppose thatC(F) is not connected. HenceC(F) = �1+�2.We have�1 ∼ a1L1+b1L2

and �2 ∼ a2L1 + b2L2, where a1, b1, a2, b2 ≥ 0, a1 + b1 > 0 and a2 + b2 > 0. Note that
a1 + a2 = b1 + b2 = d1 + d2 − 1 > 0 thus if a1b2 = 0 then a2b1 > 0. So �1.�2 =
a1b2 +a2b1 > 0. Consequently �1 ∩�2 �= ∅ and C(F) is not smooth – a contradiction. This
implies that C(F) is connected.

Let H ⊂ P
3 be a hyperplane. The canonical divisor of S is −2H = −2(L1 + L2). Hence

KJ = (J − 2H)|J = (d1 + d2 − 3)(L1 + L2)|J and deg KJ = 2(d1 + d2 − 3)(d1 + d2 − 1).
By Riemmann–Roch Theorem J has genus deg KJ /2 + 1 = (d1 + d2 − 2)2. This means in
particular that C(F) is homeomorphic to a sphere with (d1 + d2 − 2)2 handles. Moreover,
by the Bezout Theorem it has precisely 2(d1 + d2 − 1) points at infinity. 
�
Remark 5.7 The curve C(F) has 2(d1 + d2 − 1) (smooth) points at infinity and in each of
these points it is transversal to the plane at infinity.

6 The complex sphere: the discriminant

Here we analyze the discriminant of a generic mapping from �S(d1, d2). Similarly as for
the plane Theorem 2.3 implies that for a generic F the only singularities of �(F) are cusps
and nodes. We showed in Theorem 5.6 that there are exactly c(F) = 2(d21 + d22 + 3d1d2 −
3d1 − 3d2 + 1) cusps. Now we will compute the number d(F) of nodes of �(F). First we
compute the degree of the discriminant:
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Lemma 6.1 Let F = ( f , g) ∈ �S(d1, d2) be a genericmapping. If d1 ≥ d2 then deg�(F) =
2d1(d1 + d2 − 1).

Proof Since the proof is analogous to the proof of Lemma 4.3 we skip it. 
�
The main result of this section will be based on the following:

Theorem 6.2 Let F ∈ �S(d1, d2) be a generic mapping. Let d1 ≥ d2 and d = gcd(d1, d2).
Denote by � the projective closure of the discriminant �. Then

∑

z∈(�\�)

δz = 2d1(d1 − d2)(d1 + d2 − 1)2 + (−2d1 + d2 + d)(d1 + d2 − 1).

Proof Let f̃ (x, y, z, w) = wd1 f
( x

w
,
y
w

, z
w

)
and g̃(x, y, z, w) = wd2g

( x
w

,
y
w

, z
w

)
be

the homogenizations of f and g and let f (x, y, w) = f̃ (x, y, 1, w) and g(x, y, w) =
g̃(x, y, 1, w), respectively. For a generic mapping the curves C(F) and { f = 0} have
no common points at infinity (see Lemma 6.3). Moreover since F is generic, we have
{z = 0} ∩ C(F) = ∅. Thus F extends to a neighborhood of C(F) ∩ L∞ on which it is
given by the formula

F(x, y, w) =
(

wd1−d2 g(x, y, w)

f (x, y, w)
,

wd1

f (x, y, w)

)

.

Let � = S ∩ L∞. Let {P1, . . . , P2d1+2d2−2} = C(F) ∩ �, fix a point P = Pi . The curve
C(F) is transversal to the line at infinity so it has a local parametrization at P of the form
γ (t) := (

∑
i ai t

i ,
∑

i bi t
i , t). We have the following:

Lemma 6.3 If F is a generic mapping then f (P) �= 0, g(P) �= 0 and

f (γ (t)) = f (P)(1 + ct + · · · ), g(γ (t)) = g(P)(1 + dt + · · · ),
where cd �= 0 and d2c �= d1d.

Proof Let J̃ be the homogenization of J . Obviously

J̃ (F) =
∣
∣
∣
∣
∣
∣

z y x
f̃x f̃ y f̃z
g̃x g̃y g̃z

∣
∣
∣
∣
∣
∣
.

Now let J (x, y, w) = J̃ (x, y, 1, w) and ψ(x, y, w) = 2x + y2 − w2 = φ̃(x, y, 1, w),
where φ̃ is the homogenization of φ = y2+2xz−1.We have J (γ (t)) = 0 andψ(γ (t)) = 0.
Moreover, ∂γ (t)

∂t |t=0 = (a1, b1, 1). Thus we have

∂ψ(P)

∂x
a1 + ∂ψ(P)

∂ y
b1 + ∂ψ

∂w
(P) = 0,

∂ J (P)

∂x
a1 + ∂ J (P)

∂ y
b1 + ∂ J (P)

∂w
= 0.

Consequently a1 = a1δ−1 and b1 = b1δ−1, where

a1 = ∂ψ(P)

∂w

∂ J (P)

∂ y
− ∂ψ(P)

∂ y

∂ J (P)

∂w
, b1 = ∂ψ(P)

∂x

∂ J (P)

∂w
− ∂ψ(P)

∂w

∂ J (P)

∂x
,
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δ = ∂ψ(P)

∂x

∂ J (P)

∂ y
− ∂ψ(P)

∂ y

∂ J (P)

∂x
.

Thus

f (P)cδ = ∂ f (P)

∂x
a1 + ∂ f (P)

∂ y
b1 + ∂ f (P)

∂w
δ.

Take

ã1 = ∂ψ̃(P)

∂w

∂ J̃ (P)

∂ y
− ∂ψ̃(P)

∂ y

∂ J̃ (P)

∂w
, b̃1 = ∂ψ̃(P)

∂x

∂ J̃ (P)

∂w
− ∂ψ̃(P)

∂w

∂ J̃ (P)

∂x
,

δ̃ = ∂ψ̃(P)

∂x

∂ J̃ (P)

∂ y
− ∂ψ̃(P)

∂ y

∂ J̃ (P)

∂x
.

Consider the set

X =
{

(P, F) ∈ � × �3(d1, d2) : J̃ (F)(p) = ∂ f̃ (P)

∂x
ã1 + ∂ f̃ (P)

∂ y
b̃1 + ∂ f̃ (P)

∂w
δ̃ = 0

}

.

Note that if f (P) = 0 or c = 0 then the fiber over F of the projection from X to�3(d1, d2)
is non-empty. Hence it suffices to prove that X has codimension at least 2.

Let p = (0 : 0 : 1 : 0), and q = (−a2/2 : a : 1 : 0) ∈ �. Let T̃ (x, y, z, w) =
(x+ay−a2z/2, y−az, z, w) and T (x, y, z) = (x+ay−a2z/2, y−az, z). Thus T (S) = S
and T̃ (q) = p. As in Lemma 4.6 we can show that (p, F) 	→ (T̃−1(p), F ◦ T ) is an
isomorphism of X p := X ∩ ({p} × �3(d1, d2)) and X ∩ ({q} × �3(d1, d2)). So it is enough
to show that X p has codimension 2 in Yp := {p} × �3(d1, d2).

Let ai, j,k be the parameters in�3(d1, d2) giving the coefficients of f̃ at xi y j zd1−i− j−kwk

(i.e. of f at xi y j zd1−i− j−k) and let bi, j,k describe the analogous coefficients of g̃.
The first equation of X p is w1 := d2a0,1,0b0,0,0 − d1b0,1,0a0,0,0. The second one is

w2 = a1,0,0ã1 + a0,1,0b̃1 + a0,0,1δ̃ = a0,1,0
∂ J̃ (p)

∂w
+ a0,0,1

∂ J̃ (p)

∂ y
= a0,1,0((d2 − 1)b0,0,1a0,1,0 + d2b0,0,0a0,1,1 − d1a0,0,0b0,1,1 − (d1 − 1)a0,0,1b0,1,0)

+ a0,0,1(a1,0,0b0,0,1 − a0,0,1b1,0,0 + 2d2a0,2,0b0,0,0 − 2d1a0,0,0b0,2,0
+ (d2 − 1)a0,1,0b0,1,0 − (d1 − 1)a0,1,0b0,1,0)).

By direct computation we obtain

∂w1

∂b0,0,0
= d2a0,1,0,

∂w2

∂a0,2,0
= 2d2a0,0,1b0,0,0; ∂w1

∂a0,0,0

= −d1b0,1,0,
∂w2

∂b0,2,0
= −2d1b0,0,1a0,0,0.

Thus the equations w1 = 0 and w2 = 0 are independent outside the set

{a0,1,0 = 0} ∩ {b0,1,0 = 0} ∪ ({a0,0,1 = 0} ∪ {b0,0,0 = 0}) ∩ ({b0,0,1 = 0} ∪ {a0,0,0 = 0}).

123



1060 M. Farnik et al.

So X p has codimension 2 in Yp . Finally note that if d2c = d1d then

d2g(P)

(
∂ f̃ (P)

∂x
ã1 + ∂ f̃ (P)

∂ y
b̃1 + ∂ f̃ (P)

∂w
δ̃

)

= d1 f (P)

(
∂ g̃(P)

∂x
ã1 + ∂ g̃(P)

∂ y
b̃1 + ∂ g̃(P)

∂w
δ̃

)

.

Hence we consider the set

Z =
{
(p, F) ∈ � × �3(d1, d2) : J̃ (F)(p)

= d2g(P)

(
∂ f̃ (P)

∂x
ã1 + ∂ f̃ (P)

∂ y
b̃1 + ∂ f̃ (P)

∂w
δ̃

)

= d1 f (P)

(
∂ g̃(P)

∂x
ã1 + ∂ g̃(P)

∂ y
b̃1 + ∂ g̃(P)

∂w
δ̃

)

= 0
}
.

Similarly as above one can show that it has codimension 2, which concludes the proof. 
�
LetCp be the branch ofC(F) at P . Exactly as in Sect. 4 by using the Puiseux expansionwe

can show that ifd1 = d2 then F(CP ) is smooth at F(P) and ifd1 > d2 then2δ(F(CP ))F(P) =
(d1 − 1)(d1 − d2 − d) + (d1 + 1 − 1)(d − 1) = (d1 − 1)(d1 − d2 − 1) + (d − 1), where
d = gcd(d1, d2).

To proceed further we also need:

Lemma 6.4 If F is a generic mapping then

f (Pi )
d2g(Pj )

d1 �= f (Pj )
d2g(Pi )

d1

for i, j ∈ {1, 2, . . . , 2(d1 + d2 − 1)} and i �= j .

Proof Consider the set X = {(p, q, F) ∈ � × � × �3(d1, d2) : p �= q, J̃ (F)(p) =
J̃ (F)(q) = f̃ (p)d2 g̃(q)d1 − f̃ (q)d2 g̃(p)d1 = 0}. Similarly as in Lemma 6.3 we will prove
that X has codimension 3, so there is a dense open subset U ⊂ �3(d1, d2) such that the
projection from X has empty fibers over F ∈ U .

Indeed, take p = (1 : 0 : 0 : 0), q = (0 : 0 : 1 : 0) and Y := {(p, q)} × �3(d1, d2). It
suffices to show that X0 = X∩Y has codimension 3 in Y . Let ai j and bi j be the parameters in
�3(d1, d2) giving respectively the coefficients of f̃ at xd1−i− j yi z j and of g̃ at xd2−i− j yi z j .

The three equations describing X0 are

w1 = d1a0,0b101 − d2a1,0b0,0 = 0, w2 = d2a1,d1−1b0,d2 − d1a0,d1b1,d2−1 = 0,

w3 = ad20,0b
d1
0,d2

− ad20,d1b
d1
0,0 = 0.

Note that X0 ∩ {a0,0 = 0} ⊂ {a0,0 = b0,0 = w2 = 0} ∪ {a0,0 = a0,1 = w2 = 0}
has codimension 3. Similarly X0 ∩ {b0,0 = 0} and X0 ∩ {a0,d1 = 0} have codimension
3, however outside the set {a0,0 = 0} ∪ {b0,0 = 0} ∪ {a0,d1 = 0} the three equations are
obviously independent. Thus X0 has codimension 3 in X . 
�

Now we are in a position to compute
∑

z∈(�\�) δz . If d1 = d2 then � has exactly 2(d1 +
d2 − 1) smooth points at infinity and consequently

∑
z∈(�\�) δz = 0 (see the statement after

Lemma 6.3). So assume d1 > d2, then � has only one point at infinity Q = (1 : 0 : 0). In
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Q the curve � has exactly r = 2(d1 + d2 − 1) branches Vi = F(CPi ). We have 2δ(Vi )Q =
(d1 − 1)(d1 − d2 − 1)+ (d − 1). As in Sect. 4 we have Vi · Vj = d1(d1 − d2). Consequently
∑

i

δ(Vi ) +
∑

i> j

Vi · Vj = [(d1 − 1)(d1 − d2 − 1) + (d − 1)](d1 + d2 − 1)

+ d1(d1 − d2)(d1 + d2 − 1)(2(d1 + d2 − 1) − 1)

= 2d1(d1 − d2)(d1 + d2 − 1)2 + (−2d1 + d2 + d)(d1 + d2 − 1).


�
We can now prove the following:

Theorem 6.5 There is a Zariski open, dense subset U ⊂ �S(d1, d2) such that for every map-
ping F ∈ U the discriminant �(F) = F(C(F)) has only cusps and nodes as singularities.
The number of cusps is equal to

c(F) = 2(d21 + d22 + 3d1d2 − 3d1 − 3d2 + 1)

and the number of nodes is equal to

d(F) = (2d1d2 − 3)D2 − D(d1 + d2 + d − 2) − 2(d1d2 − d1 − d2),

where D = d1 + d2 − 1 and d = gcd(d1, d2).

Proof Let d1 ≥ d2 and D = (d1 + d2 − 1). By Lemma 6.1 we have deg�(F) = 2d1D.
Since �(F) is birational with C(F) it has genus g = D(D − 2) + 1. Moreover, �(F) has
only cusps and nodes as singularities thus by Theorem 4.2 we have

1

2
(2d1D − 1)(2d1D − 2) = D(D − 2) + 1 + c(F) + d(F) +

∑

z∈(�\�)

δz .

Substituting
∑

z∈(�\�)

δz = 2d1(d1 − d2)D
2 + (−2d1 + d2 + d)D

we obtain

c(F) + d(F) = (2d1d2 − 1)D2 − D(d1 + d2 + d − 2).

Thus by Theorem 5.6 we get:

d(F) = (2d1d2 − 1)D2 − D(d1 + d2 + d − 2) − 2(d21 + d22 + 3d1d2 − 3d1 − 3d2 + 1)

= (2d1d2 − 3)D2 − D(d1 + d2 + d − 2) − 2(d1d2 − d1 − d2).


�
Remark 6.6 If d1 = d2 = d then the discriminant has 4d − 2 smooth points at infinity
and in each of these points it is tangent to the line L∞ (at infinity) with multiplicity d. If
d1 > d2 then the discriminant has only one point at infinity with 2(d1 + d2 − 1) branches
V1, . . . , V2(d1+d2−1) and each of these branches has delta invariant

δ(Vi ) = (d1 − 1)(d1 − d2 − 1) + (d − 1)

2

and Vi · L∞ = d1. Additionally Vi · Vj = d1(d1 − d2). In particular branches Vi are smooth
if and only if d1 = d2 or d1 = d2 + 1.
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7 Generalized cusps

In this section our aim is to estimate the number of cusps of non-generic mappings. We start
from:

Definition 7.1 Let F : (C2, a) → (C2, F(a)) be a germ of a holomorphic mapping. We say
that F has a generalized cusp at a if Fa is proper, the curve J (F) = 0 is reduced near a and
the discriminant of Fa is not smooth at F(a).

Remark 7.2 If Fa is proper, J (F) = 0 is reduced near a and J (F) is singular at a then it
follows from Theorem 1.14 from [13] that also the discriminant of Fa is singular at F(a)

and hence F has a generalized cusp at a.

Now we introduce the index of generalized cusp:

Definition 7.3 Let F = ( f , g) : (C2, a) → (C2, F(a)) be a germof a holomorphicmapping.
Assume that F has a generalized cusp at a point a ∈ C

2. Since the curve J (F) = 0 is reduced
near a, we have that the set {∇ f = 0} ∩ {∇g = 0} has only isolated points near a. For a
generic linear mapping T ∈ GL(2), if F ′ = ( f ′, g′) = T ◦ F then ∇ f ′ does not vanish
identically on any branch of {J (F) = 0} near a. We say that the cusp of F at a has an index
μa := dimCOa/(J (F ′), J1,1(F ′)) − dimCOa/( f ′

x , f ′
y).

Remark 7.4 We show below that the index μa is well-defined and finite. Moreover, it is easy
to see that a simple cusp has index one.

Remark 7.5 Using the exact sequence 1.7 from [5] we see that

μa = dimCOa/(J (F), J1,1(F), J1,2(F)).

Hence our index coincides with the classical local number of cusps defined e.g. in [5].

We have (compare with [4–6]):

Theorem 7.6 Let X ⊂ C
m be a smooth surface. Let F = ( f , g) ∈ �X (d1, d2). Assume that

F has a generalized cusp at a ∈ X. If Ua ⊂ X is a sufficiently small ball around a then μa

is equal to the number of simple cusps in Ua of a mapping F ′ where F ′ ∈ �X (d ′
1, d

′
2) is a

generic mapping, which is sufficiently close to F in the natural topology of�X (d ′
1, d

′
2). Here

d ′
1 ≥ d1, d ′

2 ≥ d2.

Proof We can assume that X = C
2 and ∇ f does not vanish identically on any branch of

{J (F) = 0} near a. In particular we have dimOa/( fx , fy) = dimOa/(J (F), fx , fy) < ∞.

Let Fi = ( fi , gi ) ∈ �2(d ′
1, d

′
2) be a sequence of generic mappings, which is convergent

to F . Consider the mappings� = (J (F), J1,1(F)),�i = (J (Fi ), J1,1(Fi )),� = (∇ f ) and
�i = (∇ fi ). Thus �i → � and �i → �.

Since a is a cusp of F we have �(a) = 0. Moreover da(�) < ∞, where da(�) denotes
the local topological degree of � at a. Indeed, if J1,1(F) = 0 on some branch B of the curve
J (F) = 0 then the rank of F|B would be zero and by Sard theorem F has to contract B,
which is a contradiction (Fa is proper). By the Rouche Theorem (see [2], p. 86), we have that
for large i the mapping �i has exactly da(�) zeroes in Ua and �i has exactly da(�) zeroes
in Ua (counted with multiplicities, if �(a) �= 0 we put da(�) = 0). However, the mappings
Fi are generic, in particular all zeroes of �i and �i are simple. Moreover the zeroes of �i

which are not cusps of Fi are zeroes of�i . Henceμa = da(�)−da(�) is indeed the number
of simple cusps of Fi in Ua . 
�
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Corollary 7.7 Let X be a smooth affine surface. If F = ( f , g) : X → C
2 is an arbitrary

polynomial mapping with deg f ≤ d1, deg g ≤ d2 and generalized cusps at points a1, . . . , ar
then

∑r
i=1 μai ≤ cX (d1, d2), where cX (d1, d2) is the number of cusps of a generic mapping

from �X (d1, d2).

For example we have:

Corollary 7.8 Let F ∈ �2(d1, d2). Assume that F has generalized cusps at points a1, . . . , ar .
Then

∑r
i=1 μai ≤ d21 + d22 + 3d1d2 − 6d1 − 6d2 + 7. In particular the numbers of singular

germs {Fa, a ∈ C
2} which are finitely determined and are not folds, is bounded by the

number d21 + d22 + 3d1d2 − 6d1 − 6d2 + 7.

Proof Let Fa be a singular germ which is finitely determined. Then the curve J (Fa) is
reduced. There are two possibilities:

(1) the point F(a) is a non-singular point of �(F),

(2) the point F(a) is a singular point of �(F).

In the case (1) we have by [13] that Fa is equivalent to the germ (x, y) → (xk, y) and since
J (Fa) is reduced we have k = 2, i.e. Fa is a fold.
In the case 2) Fa is a generalized cusp. Hence the number of germs Fa which are finitely
determined and are not folds is bounded by the number of generalized cusps. It follows
directly from Theorem 7.6 that the latter number is bounded by the number of cusps of a
generic mapping from �2(d1, d2). 
�
Remark 7.9 In the same way we can show that for the mapping F ∈ �S(d1, d2) the numbers
of singular germs {Fa, a ∈ S} which are finitely determined and are not folds, is bounded
by the number 2(d21 + d22 + 3d1d2 − 3d1 − 3d2 + 1).

8 Proper deformations

In previous sections we considered the family �X (d1, . . . , dm), of course we can consider
also other families of polynomial mappings and try to investigate their properties. Let F be
any algebraic family of generically-finite polynomial mappings f p : X → C

m; p ∈ F ,
where X is a smooth irreducible affine variety. We would like to know the behavior of proper
mappings in a such family. In general proper mappings do not form an algebraic subset of
F but only constructible one. However we show that there is some regular behavior in such
family. We have:

Theorem 8.1 Let P, X , Y be smooth irreducible affine algebraic varieties and let F : P ×
X → P×Y be a generically finite mapping. The mapping F induces a familyF = { f p(·) =
F(p, ·), p ∈ P}. Then either there exists a Zariski open dense subset U ⊂ P such that for
every p ∈ P the mapping f p is proper, or there exists a Zariski open dense subset V ⊂ P
such that for every p ∈ P the mapping f p is not proper.

Moreover, in the first case we have:

(a) for every non-proper mapping f p in the family F we have μ( f p) < μ(F), where μ( f )
denotes the geometric degree of f ,

(b) generic mappings inF are topologically equivalent, i.e., there exists a Zariski open dense
subset W ⊂ P such that for every p, q ∈ W the mappings f p and fq are topologically
equivalent.
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Proof First note that for every (p, x) ∈ P × X we have μ(p,x)(F) = μx ( f p) (here μx ( f )
denotes the local multiplicity of f in x). In the sequel we use the fact that a mapping
g : X → Y is proper over a point y ∈ Y if and only if

∑
g(x)=y μx (g) = μ(g) (see [10,11]).

Let S be the non-properness set of F (see e.g. [10,11]). If S = ∅, then all mappings f p
are proper. Hence we can assume that S �= ∅ and consequently S is a hypersurface. Let
π : S → P be the canonical projection. We have two possibilities:

(1) π(S) is dense in P .
(2) π(S) is not dense in P .

In the first case π(S) is dense and constructible so a generic mapping f p is not proper. In
the second case S has dimension dim P + dim X − 1 and a fiber of π has dimension at most
dim X . This immediately implies that the set π(S) is a hypersurface in P . Moreover, fibers
of π are the whole space X . This means that for all p ∈ π(S) we have μ( f p) < μ(F). Of
course outside π(S) the mappings f p are proper. Two generic mappings are topologically
equivalent by [12], Theorem 4.3. 
�

Now we state the main result of this section:

Theorem 8.2 Let X ⊂ C
n be a smooth irreducible affine variety of dimension k and let

F : X → C
m be a polynomial mapping. If m ≥ k, then there exists a Zariski open dense

subset U in the space of linear mappings L(Cn,Cm) such that:

(a) for every L ∈ U the mapping F + L is a finite mapping.
(b) for all L ∈ U the mappings F + L are topologically equivalent.
(c) for all L ∈ U the mappings F + L have only generic singularities,i.e., transversal to

Thom–Boardman strata.

Proof Let G : X � x 	→ (x, F(x)) ∈ X × C
m and X̃ = graph(G) ∼= X . Since m ≥ dim X̃

a generic linear projection π : X̃ → C
m is a proper mapping. Hence also the mapping

π ◦ G is proper. Consequently for a general matrix A ∈ GL(m,m) and general linear
mapping L ∈ L(Cn,Cm) the mapping H(A, L) = A(F1, . . . , Fm)T + L is proper. Hence
also the mapping A−1 ◦ H(A, L) is proper. This means that the mapping F + A−1L is
proper. But we can specialize the matrix A to the identity and the mapping L to a given linear
mapping L0 ∈ L(Cn,Cm). Hence we see that there is a dense subset of linear mappings
L ∈ L(Cn,Cm) such that the mapping F + L : X → C

m is proper. Consider the algebraic
family F = {F + L, L ∈ L(Cn,Cm)}. By Theorem 8.1 there exists a Zariski dense open
subset U ⊂ L(Cn,Cm) such that every mapping F + L; L ∈ U is proper and all these
mappings are topologically equivalent. Statement c) follows from Corollary 2.2. 
�

In particular for a given mapping F : C2 → C
2 we can consider the “linear” deformation

FL = F + L; L ∈ L(C2,C2). A general member of this deformation is locally stable
and proper. If F is not “sufficiently generic”, then this deformation gives a different number
of cusps and folds than a “generic” deformation considered in this paper. We give here an
example of a finitely K determined germ F which has at least two non-equivalent stable
deformations. For the definition of finitely determined map germs see for instance [21] or
[18, section 2].

Example 8.3 Take a finitely K determined germ F(x, y) = (x, y3) and consider two
deformations of F : the first one linear Ft = (x, y3 + t y) and the second one given by
Gt (x, y) = (x, y3 + t xy). The members of the first family do not have a cusp at all and the
members of the second family have exactly one cusp at 0.
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This means that (contrary to the case of A finitely determined germs) we can not define
the numbers c(F) and d(F) for F using stable deformations.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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