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Abstract
Arone and Lesh (J Reine Angew Math 604:73–136, 2007; Fund Math 207(1):29–70, 2010)
constructed and studied spectrum level filtrations that interpolate between connective (topo-
logical or algebraic) K -theory and the Eilenberg–MacLane spectrum for the integers. In this
paper we consider (global) equivariant generalizations of these filtrations and another closely
related class of filtrations, the modified rank filtrations of the K -theory spectra themselves.
We lift Arone and Lesh’s description of the filtration subquotients to the equivariant context
and apply it to compute algebraic filtrations on representation rings that arise on equivariant
homotopy groups. It turns out that these representation ring filtrations are considerably easier
to express in a global equivariant context than over a fixed compact Lie group. Furthermore,
they have formal similarities to the filtration on Burnside rings induced by the symmetric
products of spheres,whichwas computedbySchwede (JAmMathSoc30(3):673–711, 2017).

Keywords K-theory · Global equivariant homotopy theory · Rank filtration · Symmetric
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0 Introduction

The symmetric products of spheres are a much-studied sequence of spectra interpolating
between the sphere spectrum and the Eilenberg–MacLane spectrum HZ. In [1], Arone and
Lesh showed that this sequence is an example of a general construction of filtrations of the
form

kC = AC
0 → AC

1 → · · · → AC∞ � HZ

with kC denoting the spectrum associated to an augmented permutative category C. The
symmetric products are the special case for C the category of finite sets. This construction in
particular applies to connective topological K -theory and free algebraic K -theory of rings,
yielding interesting new filtrations of their respective 0-th Postnikov sections. Arone and
Lesh further argued that these filtrations have substantial formal similarities to the symmetric
products of spheres, especially in the case of topological K -theory. For example, the n-th
subquotients are all suspension spectra which vanish if n is not a prime power, and K (n)-
locally the filtration converges after finitely many steps. They further proved that while the
subquotients of the symmetric product filtration are related to the layers of the Goodwillie
tower of the identity, the subquotients of this new filtration are related to the layers of the
Weiss tower of the functor V �→ BU (V ).

In the later paper [2] it is shown that the filtrations of [1] are linked to filtrations

∗ = kC0 → kC1 → · · · → kC

of the K -theory spectra kC themselves, so-called modified rank filtrations. These are similar
in spirit to the stable rank filtrations of algebraic K -theory considered by Rognes in [15],
but not equivalent to them in general. The modified rank filtrations come with maps to the
symmetric products, and a suitable homotopy pushout gives the filtrations of [1], which we
from now on call complexity filtrations (based on the usage of that term in [11]). The paper
[2] also contains a study of the subquotients in the modified rank filtration, which once more
turn out to be suspension spectra.

In this paper, we set up and investigate equivariant versions of both the modified rank
and the complexity filtration, and demonstrate further similarities to the symmetric product
filtration that arise through their effect on equivariant homotopy groups. We work with the
following equivariant generalizations of the spectra involved:

• Topological K -theory is replaced by (the connective cover of) equivariant K -theory in
the sense of Segal [20], the K -theory of equivariant vector bundles. This makes sense
for all compact Lie groups, though the model we use slightly differs from the actual
K -theory spectrum for non-finite groups, as we explain in Sect. 3.4.

• Algebraic K -theory of a discrete ring R is replaced by a G-spectrum whose H -fixed
points (for H a subgroup of G) represent the direct sum K -theory of R[H ]-modules that
are finitely generated free as R-modules, so-called R[H ]-lattices. These spectra are only
defined for finite groups G.

• The Eilenberg–MacLane spectrum HZ is replaced by the Eilenberg–MacLane spectrum
for the constant Mackey functor Z. This makes sense for all compact Lie groups, though
there is again a caveat in the non-discrete case (cf. Example 1.17).

Instead of treating each compact Lie or finite group separately,wework in a global equivariant
context. The global framework packages all equivariant K -theory spectra for varying groups
G into one “global” object, trying to capture the full functoriality in G. In particular, a
consequence of working in the global category is that the equivariant homotopy groups
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Filtrations of global equivariant K -theory 163

have a richer structure than one might expect. In addition to transfer maps along inclusions,
they allow restriction maps along arbitrary group homomorphisms, not only to subgroups.
Concretely, the collectionπ0(X) = {πG

0 (X) |G compact Lie} for a global spectrum X forms
a global functor (or global Mackey-functor) in the sense of [19]. This extra functoriality is
essential for the computation of the effect of the modified rank and complexity filtrations on
π0, as we explain below. Concretely, we use orthogonal spaces (for the unstable theory) and
orthogonal spectra (for the stable theory) as our model for global homotopy, as developed
by Schwede in his book project [19]. In the case of global algebraic K -theory, which only
forms a symmetric spectrum, we use [8] for the general framework and [16] for properties
of this specific example.

We now go through the contents of this paper: after recalling some basics about global
homotopy theory, we explain global �-space models for connective topological complex
K -theory ku (or its real version ko, over which everything works analogously) and algebraic
K -theory kR as they were described in [19] and [16], respectively. These models come with
a natural global generalization of the modified rank filtration introduced in [2], which we
denote by

∗ → ku1 → ku2 → · · · → ku resp. ∗ → kR1 → kR2 → · · · → kR.

We then describe the subquotients of these filtrations. For this we let Ln denote the topo-
logical poset of proper decompositions of C

n as an orthogonal sum of subspaces, ordered
by refinement. Here, “proper” means that the trivial decomposition into one summand is
excluded. The poset carries a U (n)-action by applying the isometry to each summand in the
decomposition. Similarly, P R

n denotes the GLn(R)-poset of proper decompositions of Rn as
a direct sum of free submodules. We show:

Theorem (Subquotients in the modified rank filtration, Theorems 3.9 and 5.3) There are
global equivalences

kun/kun−1 � �∞(EglU (n)+ ∧U (n) |Ln |�)
kRn/kRn−1 � �∞(EglGLn(R)+ ∧GLn(R) |P R

n |�).
The underlying non-equivariant statement of this theorem is due toArone and Lesh (see [2,

Section 2.2] for the case of topological K -theory). The expression�∞ denotes the suspension
spectrumof a global space (in the frameworkwe use: an orthogonal space) and (−)� stands for
the unreduced suspension.Theglobal spaces that appear here are part of a general construction
that takes a based K -space X for some topological group K and produces a global space
Egl K+ ∧K X , its global homotopy orbits. Given a compact Lie group G, the underlying
G-homotopy type of this construction is EGK+ ∧K X , where EGK is a universal space for
principal K -bundles in G-spaces. In particular, the underlying non-equivariant homotopy
type agrees with the usual homotopy orbits. However, while a K -equivariant map that is a
non-equivariant weak equivalence already induces a weak equivalence on homotopy orbits,
the global version is sensitive to the isotropy of X at all compact Lie subgroups of K .
Global homotopy orbits also behave differently to their non-equivariant versions in another
regard: if K is a compact Lie group and X a finite K -CW complex, the global homotopy
orbits Egl K+ ∧K X are finite global spaces, though their underlying G-spaces often are not
compact. Via the theorem above this implies that the filtration terms kun and kRn for R
finite are compact in the global stable homotopy category, while they are not compact as
non-equivariant spectra.
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164 M. Hausmann, D. Ostermayr

Remark (Global Barratt–Priddy–Quillen Theorem, Theorem 4.2) Our methods can also be
applied to a rank filtration kF in1 → kF in2 → · · · → kF in of the global K -theory of finite
sets kF in, yielding a proof of the global Barratt–Priddy–Quillen Theorem: the subquotient
kF inn/kF inn−1 is globally equivalent to �∞((Egl�n)+ ∧�n |P�

n |�), where P�
n denotes

the poset of partitions of the set {1, . . . , n}, excluding the trivial decomposition into just one
subset. If n is at least two, this poset has a smallest element, hence its nerve is�n-equivariantly
contractible. The first stage kF in1 is easily identified with the global sphere spectrum, so one
obtains that the unit S → kF in is a global equivalence. In [15], Rognes also used his version
of the stable rank filtration to give a proof of the non-equivariant Barratt–Priddy–Quillen
theorem.

We then proceed by considering complexity filtrations

ku � Au
0 → Au

1 → · · · → Au∞ � HZ and kR � AR
0 → AR

1 → · · · → AR∞ � HZ.

We define these as suitable homotopy pushouts that involve the modified rank and symmetric
product filtration, generalizing the non-equivariant description of [2]. In [1, Corollary 8.3]
it is shown that the n-th subquotient of the complexity filtration can be non-equivariantly
described as the suspension spectrum of a classifying space for the collection of so-called
standard subgroups of U (n) (resp. GLn(R)). We denote this collection by Cn . There are
natural global equivariant generalizations of classifying spaces for collections (similarly to
the global homotopy orbits discussed above), which we explain in Sect. 1.2 and denote
by BglCn . Generalizing the non-equivariant statement in [1], we then show:

Theorem (Subquotients in the complexity filtration, Theorems 3.18 and 5.9) There is a
global equivalence

Au
n/A

u
n−1 � �∞(BglC

u
n)

�

and if R is an integral domain with 2 	= 0 also

AR
n /AR

n−1 � �∞(BglC
R
n )�.

The conditions on R were also required in [1], and in fact it can be shown that the statement
is false in full generality.

Remark It might be interesting to the reader familiar with [1,2] that the methods we use
to obtain these descriptions of the subquotients are quite different. While Arone and Lesh
perform categorical constructions, we work with an explicit �-space model for connective
K -theory and decompose it geometrically. It turns out that with this model the quotients
are in fact isomorphic to suspension spectra of global spaces. Hence the main work lies in
examining the global equivariant homotopy type of those and identifying them as geometric
models of classifying spaces or decomposition complexes.

Afterwards, we apply our global description of the filtration subquotients to show another
formal similarity between complexity filtrations and the symmetric product filtration. For this
we recall a result of Schwede [17], where he considers the global version of the symmetric
product filtration

S = Sp1 → Sp2 → · · · → Sp∞ � HZ.

On 0-th homotopy, the map S → HZ induces the augmentation from the Burnside ring
global functor A(−) ∼= π0(S) to the constant functor Z, sending a finite G-set to its number
of elements. Applying π0 to the symmetric product filtration gives a filtration
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Filtrations of global equivariant K -theory 165

π0(S) → π0(Sp
2) → · · · → π0(HZ) ∼= Z

of this augmentation. Schwede showed that this algebraic filtration allows a compact descrip-
tion when considered in the global context. For this we let τ�

n denote the tautological
n-element �n-set, thought of as an element in π

�n
0 (S) ∼= A(�n).

Theorem (Schwede, [17, Theorem 3.12]) The map π0(S) → π0(Sp
n) is surjective for all

n ∈ N, with kernel generated as a global functor by the single element (τ�
n −n ·1) ∈ π

�n
0 (S).

In particular,

π0(Sp
n) ∼= A(−)/

(
τ�
n − n · 1)

as global functors.

The �n-set τ�
n is the universal n-element G-set, in the sense that for every n-element

G-set X there is a unique up to conjugacy group homomorphism α : G → �n such that
α∗(τ�

n ) ∼= X . So quotiening out by (τ�
n − n · 1) can be loosely interpreted as forgetting

all G-actions on sets with size at most n, though it is in fact more complicated, due to the
presence of transfers.

In our case the complexity filtration induces a filtration of the augmentation from the
representation ring global functor Rep(−) (over C in the case of π0(ku) resp. over R in
the case of π0(kR)) to the constant functor with value Z, sending a G-representation to its
dimension or rank. There is a natural replacement for the universal�n-set τ�

n in this context:
the n-th unitary groupU (n) acts tautologically onC

n (respectivelyGLn(R) on Rn), and every
n-dimensional G-representation can be obtained by pulling this representation back along
a homomorphism which is unique up to conjugacy. We let these universal representations
be denoted by τCn ∈ π

U (n)
0 (ku) respectively τ R

n ∈ π
GLn(R)
0 (kR) if R is finite. Then we

have:

Theorem (Complexity filtration on π0, Theorems 3.32 and 5.12)

(1) The map π0(ku) → π0(A
u
n) is surjective for all n ∈ N, with kernel generated as a global

functor by the element (τCn − n · 1) ∈ π
U (n)
0 (ku). In particular,

π0(A
u
n)

∼= π0(ku)/(τCn − n · 1)
as global functors.

(2) Let R be a finite ring. Then the map π0(kR) → π0(A
u
n) is surjective for all n ∈ N, with

kernel generated as a global functor by the element (τ R
n − n · 1) ∈ π

GLn(R)
0 (kR). In

particular,

π0(A
R
n ) ∼= RepR(−)/(τ R

n − n · 1)
as global functors.

Remark We emphasize that this theorem (as well as Schwede’s) relies heavily on working
in the global context and having restrictions along non-injective homomorphisms available.
When working over a fixed finite group G, the kernel of πG

0 (kR) → πG
0 (AR

n ) is usually not
generated by a single element (neither as an abelian group, nor as a G-Mackey functor) and
is more complicated and less conceptual to describe.
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166 M. Hausmann, D. Ostermayr

Hence, π0(A
u
n) and π0(A

R
n ) can be interpreted as the representation ring global functor

modulo forgetting all group actions on vector spaces of dimension n (respectively free R-
modules of rank n). This theorem reduces an explicit calculation of πG

0 (Au
n) or πG

0 (AR
n ) to

an algebraic exercise in representation theory, for which we give examples in Sect. 6. The
reason why R has to be finite is that otherwise the general linear groups are not finite and so
are not part of the global theory. There is also a description of π0(A

R
n ) when R is not finite

(Proposition 5.13) but it is no longer simplified by the global framework.
Moreover, we compute an algebraic description of the filtration on the representation ring

itself that is induced from the modified rank filtration:

Theorem (Modified rank filtration on π0) The global functor π0(ku
n) (and similarly

π0(kR
n) for finite R) is the free global functor on the classes τC1 , τC2 , . . . , τCn modulo finitely

many universal relations that identify

• homotopy-theoretic sums with direct sums of representations
• transfers with induction of representations

as long as the total dimension is at most n.

A precise formulation is given in Theorems 3.22 and 5.10. The proof uses an elementary
examination of the fixed points of decomposition complexes of G-representations and the
construction of an explicit geometric representative of a certain stable map, which allows us
to identify its effect on π0. We note that this is only a filtration in the sense that the colimit
gives the representation ring, as the connecting maps are in general neither injective nor
surjective. Again there is also a description for non-finite R (Proposition 5.11), but it is in
general not finitely generated as a global functor.

In the paper we do not treat the cases of topological and algebraic K -theory in parallel.
Because the setup is technically somewhat different for the algebraic case (symmetric versus
orthogonal spectra, finite groups versus compact Lie groups), we first focus on topological
K -theory where we give all proofs in full detail (Sect. 3). Later in Sect. 5 we deal with
algebraic K -theory, leaving out the arguments that are similar to their topological version.

1 Global homotopy theory of orthogonal spaces and spectra

We begin by recalling the basic definitions of global equivariant homotopy theory as intro-
duced bySchwede in [17,19], startingwith the unstable theory of orthogonal spaces (Sect. 1.1)
togetherwith some important examples (Sects. 1.2, 1.3). In Sect. 1.4wedealwith stable global
homotopy theory via orthogonal spectra.

1.1 Orthogonal spaces

Let LR be the topological category of finite dimensional real inner product spaces with linear
isometric embeddings.

Definition 1.1 An orthogonal space is a continuous functor from LR to the category of
spaces.

All orthogonal spaces that occur in this paper have the following additional property:

Definition 1.2 An orthogonal space X is closed if for every inner product map i : V → W
the structure map X(i) : X(V ) → X(W ) is a closed embedding.
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Filtrations of global equivariant K -theory 167

Equivariance comes into play as follows: let G be a compact Lie group and V an inner
product space with a G-action through linear isometries. Then the evaluation X(V ) of any
orthogonal space X on V inherits aG-action via the homomorphismG → O(V ). Moreover,
ifW is another G-representation and i : V → W is a G-equivariant inner product map, then
the structure map X(i) : X(V ) → X(W ) is G-equivariant.

The evaluation canbe extended further to countably infinite dimensionalG-representations
via the formula

X(W ) = colim
f .d.V⊆W

X(V )

where the colimit is taken over all finite dimensional G-subrepresentations V of W . In
particular this is used to evaluate orthogonal spaces on a complete G-universe UG , a count-
ably infinite dimensional representation into which every finite dimensional representation
embeds.

An important invariant for a (global) orthogonal space X is the 0-th homotopy set functor,
i.e., the collection of the sets

πG
0 (X) = colim

f .d.V⊆UG
π0(X(V )G)

for all compact Lie groups G. Given a continuous group homomorphism α : K → G there
is an induced restriction map α∗ : πG

0 (X) → πK
0 (X) constructed as follows: every G-fixed

point x ∈ X(V ) for some V also represents a K -fixed point in X(α∗(V )), where α∗(V )

denotes the restricted representation. While α∗(V ) might not be contained in the chosen
K -universe UK , there exists a K -embedding α∗(V ) → UK which we can use to obtain
an element α∗([x]) in πK

0 (X). In [19, Prop. 1.5.8] it is shown that this element does not
depend on the chosen embedding and that, furthermore, inner automorphisms act as the
identity. In other words the assignment π0(X) : G �→ πG

0 (X) defines a functor from the
opposite of the category Rep of compact Lie groups and conjugacy classes of continuous
group homomorphisms to the category of sets.

Remark 1.3 If X is closed, πG
0 (X) can be naturally identified with π0(X(UG)G), as in this

case π0 commutes with the colimit.

Taking into account the equivariant evaluations of an orthogonal space leads to a notion of
weak equivalence, called global equivalence. It is easiest to state if the involved orthogonal
spaces are closed:

Definition 1.4 (cf. [19, Prop. 1.1.17]) A map f : X → Y of closed orthogonal spaces is
called a global equivalence if for every compact Lie group G the induced map

f (UG)G : X(UG)G → Y (UG)G

on G-fixed points is a weak equivalence of spaces.

The evaluation X(UG) should be thought of as the G-space underlying X . In this sense a
map of orthogonal spaces is a global equivalence if and only if it is an equivariant equivalence
on all underlying G-spaces.

For general orthogonal spaces the colimit defining X(UG) needs to be replaced by a
homotopy colimit, but we do not need the general notion in this paper. Details are given in
[19, Chapter 1]. There it is also shown that the class of global equivalences takes part in
several model structures and hence the localized homotopy category can be dealt with by
methods of homotopical algebra.
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168 M. Hausmann, D. Ostermayr

1.2 Global universal and classifying spaces of collections

In this section we explain a class of examples of orthogonal spaces that is central to this
paper, so-called global universal and global classifying spaces associated to a collection of
subgroups of a Lie group K .

Definition 1.5 Let K be a Lie group. A set of closed subgroups of K is called a collection if
it is closed under conjugation.

A universal space for a collection C is a cofibrant K -space EC with the property that all
isotropy groups lie in C and for every (closed) subgroup H in C the H -fixed points ECH

are contractible. Here and throughout the paper we say that a K -space is cofibrant if it is
the retract of a K -cell complex. Every collection possesses a universal space unique up to
K -homotopy equivalence. The quotient of such a universal space by the K -action is called a
classifying space of C and denoted BC.

Given a collection C of subgroups of a Lie group K together with an additional Lie group
G, the set of closed subgroups of K × G whose intersection with K × 1 lies in C also forms
a collection, which we denote by C〈G〉.
Example 1.6 An important example is the collection 1K which only contains the trivial
subgroup of K . A subgroup of K × G lies in 1K 〈G〉 if and only if it is of the form
{(ϕ(h), h) | h ∈ H} for a closed subgroup H of G and a continuous group homomorphism
ϕ : H → K .

This give rise to the following global notion:

Definition 1.7 Let C be a collection of subgroups of a Lie group K . A closed K -orthogonal
space X is called a global universal space for C if for every compact Lie groupG the (K×G)-
space X(UG) is a universal space for the collection C〈G〉. The quotient of a global universal
space by the K -action is called a global classifying space of C.

A global universal space for C will be denoted EglC, a global classifying space BglC.
The following example of a global classifying space is fundamental to global equivariant
homotopy theory:

Example 1.8 A global universal space Egl1K (resp. global classifying space Bgl1K ) associ-
ated to the collection 1K is called a global universal space (resp. global classifying space)
of K . We also use the notation Egl K (resp. Bgl K ) for this global homotopy type. If K is
compact, a model for Egl K is given by the K -orthogonal space

W �→ LR(V ,W )

for a fixed faithful K -representation V (cf. [19, Def. 1.1.27]).
The Rep-functor π0(Bgl K ) is naturally isomorphic to the one which sends a compact

Lie group G to the set of conjugacy classes of continuous group homomorphisms from G
to K , with functoriality through precomposition. This is proved in [17, Prop. 1.5.12] if K is
compact and follows fromCorollary 1.10 below in the general case. Hence, it is representable
if K is compact.

Global classifying spaces of compact Lie groups are the fundamental building blocks of
global homotopy theory. Their suspension spectra form a class of compact generators of the
triangulated stable global homotopy category [19, Thm. 4.4.3].

We will see many other examples of global universal and classifying spaces in this paper.
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1.3 Global homotopy orbits

Let K be a Lie group, X a K -space. There is an associated orthogonal space Egl K ×K X , the
global homotopy orbits of X , defined via (Egl K ×K X)(V ) = (Egl K )(V )×K X . This gives
rise to a large class of examples. To understand the underlying G-spaces of global homotopy
orbits, we need the following lemma:

Lemma 1.9 Let K and G be Lie groups of which G is compact, and Y be a (K × G)-cell
complex such that the K -action is free. Then there is a natural homeomorphism

(Y/K )G ∼=
⊔

〈α:G→K 〉
Y�(α)/C(α)

where α ranges through a set of representatives of conjugacy classes of continuous group
homomorphisms from G to K , C(α) denotes the centralizer of the image of α and �(α) ⊆
K × G is the graph of α.

Proof The statement is [19, Prop. B.17]. There the Lie group K is also required to be compact.
This is not necessary, as one only needs the space of continuous group homomorphisms from
G to K modulo conjugation to be discrete to see that the topology on the union of the
Y�(α)/C(α) is indeed that of a disjoint union. For this it suffices that the sourceG is compact
[3, Lemma 38.1]. ��

Applying this to Y = X(UG) we see:

Corollary 1.10 For K a Lie group, X a cofibrant K -space and G a compact Lie group there
is a natural homeomorphism

(Egl K ×K X)(UG)G ∼=
⊔

〈α:G→K 〉
EC(α) ×C(α) X

im(α),

where im(α) denotes the image of α.

This shows that the global homotopy orbits depend on the fixed points XH for all com-
pact subgroups H of K , or more precisely on the functor on the orbit category of compact
subgroups of K that is associated to X . This stands in contrast to the underlying space of
Egl K ×K X , the usual homotopy orbits, which only depend on X up to non-equivariant
equivalence that commutes with the K -action.

Remark 1.11 The unstable global homotopy category is equivalent to the homotopy category
of stacks, in the sense introduced in [6] (the equivalence is proved in [18]). In this language,
EglG ×G X corresponds to the quotient stack X�G.

There is also a pointed version of global homotopy orbits, defined as Egl K+ ∧K X .

1.4 Orthogonal spectra

We quickly give the relevant definitions of orthogonal spectra from the perspective of global
equivariance, for details we refer to [19, Chapter 4].

Definition 1.12 An orthogonal spectrum consists of

• a based O(n)-space Xn and
• based structure maps σn : Xn ∧ S1 → Xn+1
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170 M. Hausmann, D. Ostermayr

for every natural number n, such that all iterates σm
n : Xn∧Sm → Xn+m are (O(n)×O(m))-

equivariant. Here, O(m) acts on Sm by one-point compactification of its natural action on
R
m and the (O(n) × O(m))-action on Xn+m is via pullback of the O(n + m)-action along

the block sum embedding.

A morphism f : X → Y of orthogonal spectra is a sequence of based O(n)-maps
fn : Xn → Yn such that fn+1 ◦ σ

(X)
n = σ

(Y )
n+1 ◦ ( fn ∧ S1) as maps from Xn ∧ S1 to Yn+1.

Even though not featured in the definition, an orthogonal spectrum can be evaluated on
any finite dimensional real inner product space V via the formula

X(V ) = LR(Rn, V )+ ∧O(n) Xn,

where n is the dimension of V . In addition, one can define generalized associative structure
maps

X(V ) ∧ SW → X(V ⊕ W )

for any pair of inner product spaces V ,W and these are (O(V ) × O(W ))-equivariant (see
[19, Rem. 3.1.6]).

Example 1.13 (Suspension spectra) Any based orthogonal space X gives rise to an orthogonal
spectrum �∞X , its suspension spectrum, via

(�∞X)n = X(Rn) ∧ Sn

with diagonal O(n)-action and structure map the smash product of the map X(i : R
n →

R
n+1)with the homeomorphism Sn∧S1 ∼= Sn+1.More generally, the evaluation (�∞X)(V )

is always naturally homeomorphic to X(V ) ∧ SV .
For an unbased orthogonal space X we denote by �∞+ X the suspension spectrum of the

based orthogonal space X+. In particular, �∞+ ∗ gives the sphere spectrum S.

If V comes equipped with an action of a compact Lie group G, the evaluation X(V )

also inherits a G-action through the isometries LR(Rn, V ), just like for orthogonal spaces.
Furthermore, for any otherG-representationW the structure map X(V )∧ SW → X(V ⊕W )

becomes G-equivariant. Fixing a complete G-universe UG for every compact Lie group G,
one defines the equivariant homotopy groups of an orthogonal spectrum X via

πG
k (X) =

{
colim f .d.V⊆UG [Sk+V , X(V )]G∗ for k ≥ 0

colim f .d.V⊆UG [SV , X(R−k ⊕ V )]G∗ for k ≤ 0

where the connecting maps in the colimit system are induced by the generalized equivariant
structure maps.

It is an important feature of the global equivariant homotopy theory of orthogonal spectra
that for each fixed k ∈ N the collection of homotopy groups πk(X) = {πG

k (X)}G compact Lie

has a rich natural functoriality, it forms a so-called global functor. Concretely this means that
there are

• contravariantly functorial restriction maps ϕ∗ : πG
k (X) → πK

k (X) for every continuous
group homomorphism ϕ : K → G, and

• covariantly functorial transfer maps trGH : πH
k (X) → πG

k (X) for every closed subgroup
inclusion H ⊆ G.

123



Filtrations of global equivariant K -theory 171

The restrictions are defined in the same manner as for orthogonal spaces in Sect. 1.1. If ϕ is
the inclusion of a closed subgroup H of G, we also use the notation resGH instead of ϕ∗.

We quickly recall the construction of the transfer in the case where H is of finite index in
G, as we need it explicitly in Sect. 3.4:

Example 1.14 (Finite index transfers) Let X be an orthogonal spectrum and x ∈ πH
0 (X)

(the construction for other degrees is similar). The element x is represented by an H -map
f : SV → X(V ) for some H -representation V , which we can without loss of generality
assume to be the restriction of a G-representation which also allows an embedding of the G-
setG/H . This embedding can be extended to aG-equivariant embeddingG/H×D(V ) → V
(where D(V ) denotes the unit disc in V ). Collapsing everything outside the interiors of the
discs to a point (the “Thom–Pontryagin construction”) gives a G-map SV → G/H+ ∧ SV ,
from which one obtains a representative for the transfer trGH (x) of x by postcomposing with
the map G/H+ ∧ SV → SV sending a tuple ([g] ∧ v) to g f (g−1v).

Restrictions and transfers satisfy the double coset formula (cf. [19, Thm. 3.4.9]). Further-
more, like for orthogonal spaces, the restriction along an inner automorphism of a compact
Lie group is always the identity, and transfers along subgroup inclusions whose Weyl group
is infinite are always zero.

For every orthogonal space X , the group πG
0 (�∞+ X) can be expressed in terms of the

set πG
0 (X), in the following way: every element [x] of πG

0 (X) is represented by a point
x ∈ X(V )G for some G-representation V contained in the chosen G-universe UG and gives
rise to an element (also denoted [x]) inπG

0 (�∞+ X) represented by theG-map SV → X(V )+∧
SV , v �→ x ∧v. This construction commutes with restrictions along group homomorphisms.

Proposition 1.15 (see [19, Thm. 3.3.15]) Let G be a compact Lie group and X an orthogonal
space. Then the0-th homotopy groupπG

0 (�∞+ X) is freewith basis {trGH ([x])}, where H ranges
through conjugacy classes of subgroups of G with finite Weyl group WGH = NGH/H and
[x] ranges through a set of representatives of WGH-orbits of πH

0 (X).

Example 1.16 Applying this to X = Bgl K as in Example 1.8 we see that πG
0 (�∞+ (Bgl K ))

has a basis {trGH ([α])}, where (H , α : H → K ) ranges through G-conjugacy classes of
pairs of a subgroup of G together with a (continuous) group homomorphism to K . If K is
compact, we call π0(�

∞+ (Bgl K )) the free global functor in degree K . It is representable if
one interprets global functors as functors on the global Burnside category, cf. [19, Sec. 4.2].

We give one more example, as it soon becomes relevant:

Example 1.17 (Global Eilenberg–MacLane spectrum) The global Eilenberg–MacLane spec-
trum HZof the integers is given by (HZ)n = Z̃[Sn], the reduced linearization of Sn , equipped
with the finest topology for which the maps

(Sn)×k → Z̃[Sn], (x1, . . . , xk) �→ x1 + · · · + xk

are continuous. The structure map Z̃[Sn] ∧ S1 → Z̃[Sn+1] sends a pair (
∑

ai xi ) ∧ y to∑
ai (xi ∧ y). For G a finite group there is an isomorphism

πG
k (HZ) ∼=

{
Z k = 0

0 else
.

Under this isomorphism all restrictions are the identity and transfers are given by multi-
plication with the index (cf. [5]). In other words, on finite groups HZ is a model for an
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Eilenberg–MacLane spectrum for the constant global functor with value Z. This is not true
for compact Lie groups. Neither is πG

0 (HZ) isomorphic to Z in general, nor do higher
homotopy groups vanish (cf. [19, Constr. 5.3.8]).

Equivariant homotopy groups also give rise to the notion of global equivalence:

Definition 1.18 A morphism f : X → Y of orthogonal spectra is a global equivalence if it
induces an isomorphism on πG

k for all integers k and every compact Lie group G.

The localization of the category of orthogonal spectra at the class of global equivalences
gives rise to the global stable homotopy categoryGH. Again there are severalmodel structures
available for examining this homotopy category (cf. [19, Sec. 4.3]).

2 The symmetric product filtration/rank filtration ofHZ

Wenowbegin studyingmodified rank and complexity filtrations. The first example deals with
the symmetric product filtration which interpolates between the (global) sphere spectrum and
the (global) Eilenberg–MacLane spectrum for the integers Z. It has been much studied non-
equivariantly, in particular the homotopy type of the filtration quotients has been determined
by Lesh in [11]. As explained in the introduction, its (global) equivariant properties were
examined by Schwede in [17]. Everything we write in this section can be found there.
Nevertheless we repeat the argument here, because it is the basic example of a rank filtration
and because we need it later to introduce and study complexity filtrations.

Let n be a natural number. The n-th symmetric product Spn of the sphere spectrum is
given by

Spnk = (Sk)×n/�n .

There are inclusions Spn−1 → Spn inserting a basepoint in the last component, giving rise to
a filtration that starts with the global sphere spectrum S = Sp1 and converges to Sp∞, which
is globally equivalent to the global Eilenberg–MacLane spectrum HZ of Example 1.17 by
[19, Prop. 5.3.12].

The quotients in this filtration are given by

(Spn/Spn−1)k = (Sk)∧n/�n,

or in other words the �n-orbit space of the one-point compactification of the (�n × O(k))-
representation R

n ⊗ R
k . The natural �n-representation R

n decomposes as

R
n = Rn ⊕ R,

where Rn is the reduced natural representation of vectors whose entries sum to zero and R

the trivial diagonal copy. Using this decomposition, we see that

(Spn/Spn−1)k ∼= SR
n⊗R

k
/�n ∧ Sk ∼= S(Rn ⊗ R

k)�/�n ∧ Sk .

Here, S(−) denotes the sphere of vectors of length one in an inner product space and the
notation X� stands for the unreduced suspension of a space X equipped with the basepoint
X × 1. Moreover, under this homeomorphism the structure map (Spn/Spn−1)k ∧ S1 →
(Spn/Spn−1)k+1 corresponds to the smash product of the inclusion S(Rn ⊗ R

k)�/�n →
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S(Rn ⊗ R
k+1)�/�n and the homeomorphism Sk ∧ S1 ∼= Sk+1. In other words, Spn/Spn−1

is isomorphic (!) to the suspension spectrum of the based orthogonal space

V �→ S(Rn ⊗ V )�/�n .

LetTn denote the collection of non-transitive subgroups of�n , i.e., those subgroupswhose
tautological action on the set n is not transitive. Further we denote by C�

n the collection of
complete subgroups of �n , i.e., those conjugate to one of the form �n1 × �n2 × · · · × �nk
with n1 + n2 + · · · + nk = n, all ni ≥ 1 and k > 1. We note that a subgroup of �n is
non-transitive if and only if it is contained in a complete subgroup.

Proposition 2.1 The �n-orthogonal space S(Rn ⊗ −) is a global universal space for both
Tn and C�

n .

The notion of a global universal space for a collection is explained in Sect. 1.2.

Proof Clearly all structure maps S(Rn ⊗ V ) → S(Rn ⊗ W ) are closed. Now let G be a
compact Lie group and UG a complete G-universe. As a consequence of a theorem of Illman
(see [9]), all (�n × G)-spheres S(Rn ⊗ V ) are (�n × G)-cofibrant.

We are now going to show that the�n-isotropy of S(Rn ⊗UG) lies in complete subgroups
and that the fixed points for a subgroup H of�n×G are contractiblewhenever the intersection
H ∩ (�n × 1) is non-transitive. This implies universality for both collections. An element
of Rn ⊗ UG can be represented by an n-tuple (v1, . . . , vn) of vectors of UG which sum up
to zero, with �n acting by permuting the coordinates. Every such element defines a partition
of the set n by the equivalence relation that i ∼ j if vi = v j . Let the equivalence classes be
denoted by A1, . . . , Ak . Then a permutation in �n fixes the element (v1, . . . , vn) if and only
if it maps each Ai into itself, i.e., if and only if it lies in the subgroup �(A1) × · · · × �(Ak).
Since the vi ’s add up to zero and are of total length one, they cannot all be the same and
hence k is greater than 1 and the isotropy subgroup is complete.

Now let H be an element of C�
n 〈G〉, i.e., a subgroup of �n × G whose intersection

K := H ∩ (�n × 1) acts non-transitively. There is a short exact sequence of groups

1 → K → H → prG(H) → 1

and hence the H -fixed points of S(Rn ⊗ UG) equal the prG(H)-fixed points of

S(Rn ⊗ UG)K = S((Rn)K ⊗ UG) = S(Rn/K ⊗ UG).

The prG(H)-action on the latter representation is the tensor product of the action on Rn/K

induced from the short exact sequence above and the restricted action on UG . Since UG is a
complete prG(H)-universe, it in particular contains an infinite direct sum of copies of the dual

of Rn/K (which is again isomorphic to Rn/K ). The tensor product of any finite dimensional
representation with its dual always contains a trivial representation, so it follows that the
prH (G)-fixed points of S(Rn/K ⊗ UG) are a unit sphere in an infinite dimensional vector
space and hence contractible, and so we are done. ��

So one obtains:

Theorem 2.2 [17, Prop. 1.11] The quotient Spn/Spn−1 is globally equivalent (in fact, iso-
morphic) to the suspension spectrum of the unreduced suspension of a global classifying
space for both the collection of non-transitive and complete subgroups of �n, or in short:

Spn/Spn−1 � �∞(BglTn)� � �∞(BglC�
n )�
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3 Filtrations associated to global topological K -theory

In this section we introduce and study global equivariant versions of the modified rank
filtration and complexity filtration associated to connective complex K -theory ku. Connective
global K -theory is a global equivariant version of connective K -theory in the sense that it (at
least for finite groups G) is the connective cover of a spectrum assembling all G-equivariant
periodic K -theories into one global object. For non-finite compact Lie groups this is not
quite true, as is explained in [19, Thm. 6.3.33 and Rem. 6.3.38] and will also be dealt with
further in Sect. 3.4. The reason is that the model we use is based on equivariant �-spaces, the
theory of which is not as well-behaved over non-finite groups. We note also that this is not
equivariant connective K -theory in the sense of Greenlees [7] (even though there does exist
a global version of this, too, see [19, Constr. 6.4.32]), which is in fact not an equivariantly
connective spectrum.

3.1 Quotients in themodified rank filtration

We quickly recall the construction of connective global K -theory as it is given in [19, Constr.
6.3.9], together with the modified rank filtration. For a complex inner product space W
and a finite based set A+ we define k(W , A+) to be the space of tuples (Wa)a∈A of finite
dimensional pairwise orthogonal subspaces of W indexed on A, or in other words the space

⊔

(na∈N)a∈A

LC

(
⊕

a∈A

C
na ,W

)/∏

a∈A

U (na).

It comes with a filtration

∗ = k0(W , A+) ⊆ k1(W , A+) ⊆ · · · ⊆ kn(W , A+) ⊆ · · · ⊆ k(W , A+)

by restricting to those tuples whose dimensions add up to at most a fixed number n.
For a real inner product space V we denote by Sym(VC) the symmetric algebra on the

complexification VC, equipped with an inner product structure as described in [19, Prop.
6.3.8]. Then the assignment

(V , A) �→ k(Sym(VC), A+)

forms an orthogonal �-space (i.e., a functor from �op to orthogonal spaces) via direct sum
of subspaces. The connective global K -theory spectrum ku is defined as the realization of
this orthogonal �-space, i.e.,

ku(V ) = k(Sym(VC), SV ).

The O(V )-action on ku(V ) is the diagonal one through Sym(VC) and SV . Furthermore, the
filtration kn(Sym(VC), A+) is compatible with the orthogonal �-space structure and hence
gives rise to a filtration of orthogonal �-spaces and finally to the modified rank filtration of
orthogonal spectra

∗ = ku0
i0−→ ku1

i1−→ · · · in−1−−→ kun
in−→ · · · → ku.

Remark 3.1 The tensor product of complex vector subspaces turns ku into a strictly commuta-
tive monoid for the smash product of orthogonal spectra, an ultracommutative ring spectrum
in the language of [19, Chapter 5]. This uses the natural isometry Sym(V ) ⊗ Sym(W ) ∼=
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Sym(V ⊕W ), the main reason for the appearance of the symmetric algebra in the definition
for ku. The multiplication is compatible with the rank filtration in the sense that it restricts to
maps kum ∧kun → kum·n . In particular, each kun and also the filtration quotients kun/kun−1

becomemodules over the ultracommutative ring spectrum ku1, which is the suspension spec-
trum of a global classifying space for U (1). The description of the filtration quotients we
give below could be stated in the category of ku1-modules, but we refrain from doing so to
ease the exposition.

In the following we determine the filtration quotients kun/kun−1 of this rank filtration.We
argue in Appendix 7.1 that the maps kun−1 → kun are levelwise equivariant cofibrations,
so the strict quotient indeed has the homotopy type of the homotopy cofiber. The first step
consists of rewriting the quotient �-spaces in a slightly different way. For a complex vector
space W and a finite set A the space kn(W , A+)/kn−1(W , A+) is given by

∨

(na∈N),�na=n

(

LC

(
⊕

a∈A

C
na ,W

)
/∏

a∈A

U (na)

)

+
.

Using that composition defines a homeomorphism

LC(Cn,W )+ ∧U (n) LC

(
⊕

a∈A

C
na , C

n

)

+

∼=−→ LC

(
⊕

a∈A

C
na ,W

)

+
we obtain that this quotient is isomorphic to

LC(Cn,W )+ ∧U (n)

⎛

⎝
∨

(na∈N),�na=n

(

LC

(
⊕

a∈A

C
na , C

n

)/∏

a∈A

U (na)

)

+

⎞

⎠ .

Applying this to W = Sym(VC) we see that we have rewritten the orthogonal �-space

kn(Sym(−C),−)/kn−1(Sym(−C),−)

as a balanced smash product of two parts. The first—LC(Cn,Sym(−C))+—is constant in
the �-space direction, while the second is constant in the orthogonal space direction. This
second factor is the U (n)-�-space of decompositions of C

n into a direct sum of orthogonal
sub-vector spaces. We give it the shorter notation

L(n, A+) =
⎛

⎝
∨

(na∈N),�na=n

(

LC

(
⊕

a∈A

C
na , C

n

)/∏

a∈A

U (na)

)

+

⎞

⎠ .

Hence we can treat the two parts separately. The first is easy:

Lemma 3.2 The U (n)-orthogonal space LC(Cn,Sym(−C)) is a global universal space for
U (n).

Proof This is merely the complex version of Example 1.8, since Sym((UG)C) is a complete
complex G-universe if UG is a complete real G-universe. ��

Now we concentrate on the second part and consider the evaluation of the U (n)-�-space
L(n,−) on a representation sphere SV for some compact Lie group G and G-representation
V . Every element is represented by a tuple (Wi , xi )i∈I for some finite indexing set I , where
the Wi form an orthogonal decomposition of C

n into complex subspaces and the xi are
elements of SV . (For all non-basepoint elements of L(n, SV ) this representative becomes
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unique up to a change of labels if we require all the xi to be distinct elements of V and all
the Wi to be non-zero.) One can imagine the vector space Wi sitting on the point xi and the
topology is such that if two points approach one another the vector spaces sitting on them
are added. If a point xi with non-trivial label approaches the basepoint ∞ of SV , the whole
tuple (Wi , xi )i∈I converges to the basepoint in L(n, SV ). The action of U (n) is through the
partition, that of G through the points xi .

Sitting insideL(n, SV )we have a copy of SV (with trivialU (n)-action) as elements of the
form (Cn, x). In fact we can mimic the construction for the symmetric products to see that
SV splits off (U (n) × G)-equivariantly as a smash factor. The other factor is given by the
subspace ofL(n, SV ) consisting of elements represented by tuples (Wi , xi )i∈I (with xi ∈ V )
that satisfy the relation

∑

i∈I
(dim(Wi ) · xi ) = 0

as elements of V (this property is independent of the representing tuple), plus the basepoint.
We denote this “reduced” subspace by L(n, SV ). Then the (U (n) × G)-homeomorphism

L(n, SV )
∼=−→ L(n, SV ) ∧ SV

is given by [(Wi , xi )i∈I ] �→ [(Wi , xi − x)] ∧ x where x = 1
n

∑
i∈I (dim(Wi ) · xi ).

Under this identification, for another G-representation V ′ the structure map

L(n, SV ) ∧ SV ∧ SV
′ → L(n, SV⊕V ′

) ∧ SV⊕V ′

becomes the smash product of the canonical homeomorphism SV ∧ SV
′ ∼= SV⊕V ′

with the
inclusion L(n, SV ) → L(n, SV⊕V ′

) induced from the inclusion of V into V ⊕ V ′. Thus
we see that the orthogonal spectrum realization of L(n,−) (with induced U (n)-action) is
isomorphic to the suspension spectrum of the based U (n)-orthogonal space sending V to
L(n, SV ).

Remark 3.3 Instead of the definition as a subspace of L(n, SV ), the space L(n, SV ) can also
itself be described as a coend, namely there is a homeomorphism

L(n, SV ) ∼=
∫

A+∈�op

∨

(na∈N),�na=n

⎛

⎝
(

LC

(
⊕

a∈A

C
na , C

n

)/∏

a∈A

U (na)

)

+
∧ SV (na)

⎞

⎠ ,

where V (na) ⊂ V A is the hyperplane of tuples (va)a∈A satisfying
∑

a∈A na · va = 0.
See also the discussion in Appendix 7.2. There’s also a more compact way to describe
L(n, SV ) as a coend over the partition category Partn (which has finitely many objects)
though we do not make use of it in this paper. An object of Partn is a natural number k
together with a partition n1+· · ·+nk = n, where all ni are greater than 0. A morphism from
(k; n1, . . . , nk) to (l;m1, . . .ml) is a map of sets f : k → l such that for each j = 1, . . . , l
we have

∑
i∈ f −1( j) ni = m j . In particular, f has to be surjective. There is a covariant functor

from Partn to spaces sending (k; n1, . . . , nk) to U (n)/
∏

U (ni ), and a contravariant functor
from Partn to spaces sending (k; n1, . . . , nk) to the SV (ni ) defined above. Then L(n, SV ) is
homeomorphic to the coend of the functorU (n)/

∏
U (ni ) × SV (mi ) on Partn ×Partopn , with

the homeomorphism sending a class [(ϕ ∈ U (n), (v1, . . . , vk))] to the element in L(n, SV )

represented by the tuple (ϕ(Cni ), vi )i=1,...,k . Here, C
ni is viewed as embedded in C

n in the
way that preserves the order of the ni , i.e., C

n ∼= C
n1 ⊕ · · · ⊕ C

nk .
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Finally, like in the symmetric product filtration, this based orthogonal space is itself the
unreduced suspension of the subspace of “norm1 elements”: letL|·|=1(n, SV ) be the subspace

of L(n, SV ) consisting of those elements that are represented by a tuple (Wi , xi )i∈I (with
xi ∈ V ) satisfying the relation

∑m
i=1(dim(Wi )|xi |2) = 1. Then there is a (U (n) × G)-

homeomorphism

L(n, SV ) → L|·|=1(n, SV )
�

[(Wi , xi )i∈I ] �→ ([(Wi , xi/|x |)i∈I ], |x |/(1 + |x |)),

where |x | =
√∑m

i=1 dim(Wi )|xi |2 and the image of the basepoint is understood to be the
endpoint at 1. Hence we obtain:

Corollary 3.4 The quotient kun/kun−1 is isomorphic to the suspension spectrum of the based
orthogonal space

LC(Cn,Sym(−C))+ ∧U (n) (L|·|=1(n, S−)
�
)

It remains to determine the global homotopy type of the U (n)-orthogonal space
L|·|=1(n, S−), which we from now on abbreviate by Ln . We introduce two collections of
subgroups of U (n):

Definition 3.5 A subgroup of U (n) is called

• complete if it is conjugate to one of the formU (n1)× · · ·×U (nk) with each ni positive,
n1 + · · · + nk = n and k > 1.

• non-isotypical if its tautological action on C
n is not isotypical, i.e., if C

n is not the direct
sum of isomorphic copies of one irreducible representation.

The collection of complete subgroups is denoted by Cun , that of non-isotypical subgroups by
Iu
n .

We note that to every (unordered) decompositionC
n = ⊕

i∈I Wi into at least two pairwise
orthogonal non-trivial subspaceswe can associate a complete subgroup

∏
i∈I U (Wi ) ofU (n).

This assignment is bijective, the inverse maps a complete subgroup to the decomposition of
C
n into the isotypical components of its action. Note also that every complete subgroup is

non-isotypical. Then we have:

Proposition 3.6 The U (n)-orthogonal space Ln is a global universal space for both Cun and
Iu
n .

Proof Let G be a compact Lie group and UG a complete G-universe. In Appendix 7.2 it
is proved that Ln(UG) is (U (n) × G)-cofibrant. We now show that all U (n)-isotropy of
Ln(UG) lies in complete subgroups and that the H -fixed points are contractible whenever
H lies in Iu

n 〈G〉. Since complete subgroups are non-isotypical, this implies universality for
both collections. Any point x in Ln(UG) is represented by a tuple (Wi , xi )i∈I satisfying the
relations

∑
i∈I dim(Wi ) · xi = 0 and

∑
i∈I dim(Wi )|xi |2 = 1. Without loss of generality we

can assume that all the xi are distinct. Since an element ϕ of U (n) only acts through the Wi

and the presentation of x as such a tuple is unique up to a permutation, ϕ fixes x if and only
if it fixes each of the Wi . In other words, the isotropy group of x is the product

∏
i∈I U (Wi ).

The two relations force |I | to be larger than 1 (the only element would have to be zero by
the “reduced” condition, contradicting that the tuple has norm 1) and hence this product is
complete.
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We move on to show that the relevant fixed point spaces are contractible. First let
K ⊆ U (n) be any subgroup and denote by W1,W2, . . . ,Wk the isotypical components
of its action on C

n . Since every K -representation decomposes canonically into isotypical
subrepresentations, we see that

L(Cn, SUG )K ∼=
k∧

i=1

L(Wi , S
UG )K .

Here, the notation L(Wi , SUG ) is used to denote the evaluation of the �-space of decompo-
sitions of the complex vector space Wi on UG , i.e., L(n, SUG ) with C

n replaced by Wi .
We can perform the manipulations of this section to each smash factor separately and

obtain k smash copies of SUG , of which the diagonal corresponds to the one of L(Cn, SUG )

used as the suspension spectrum coordinate. Hence we have:

L(Cn, SUG )
K ∼= (SR

k⊗UG ) ∧
k∧

i=1

L(Wi , SUG )
K

Finally we make use of the fact that a smash product of unreduced suspensions is (based)
homeomorphic to the unreduced suspension of the join (denoted by − ∗ −) and obtain

Ln(UG)K ∼= S(Rk ⊗ UG)K ∗ L|·|=1(W1, SUG )
K ∗ · · · ∗ L|·|=1(WK , SUG )

K
.

Now let H be a subgroup ofU (n)×G such that K := H∩(U (n)×1) acts non-isotypically.
We have to show that the H -fixed points of Ln(UG) are contractible. Again we make use of
the short exact sequence

1 → K → H → prG(H) → 1

to write these H -fixed points as the prG(H)-fixed points of Ln(UG)K . But by the homeo-

morphism above, these are given (prG(H)-equivariantly) by the join of S(Rk ⊗ UG) with

another space. Here, the prG(H)-action on S(Rk ⊗UG) comes from the fact that any element
ofU (n)which normalizes H permutes its isotypical components and hence acts on the set k.
But we have seen in the proof of Proposition 2.1 that the prG(H)-fixed points of S(Rk ⊗UG)

under such an action are contractible if k > 1 and hence so is the join and we are done. ��
Putting everything together:

Theorem 3.7 (Subquotients in the modified rank filtration) There are global equivalences

kun/kun−1 � �∞(EglU (n)+ ∧U (n) (EglCun )�) � �∞(EglU (n)+ ∧U (n) (EglIu
n )�).

As explained in the introduction, the underlying non-equivariant statement of this theorem
is due to Arone and Lesh [2, Sec. 2.2].

3.2 Equivalence to decomposition complex

In this section we show that the description of the filtration quotients in the modified rank
filtration can be further simplified. The U (n)-orthogonal space Ln can be replaced by an
actual U (n)-space, the nerve of the poset Ln of non-trivial orthogonal sum decompositions
of C

n . This implies (see Proposition 3.9 below) that kun/kun−1 is globally equivalent to the
suspension spectrum of the global homotopy orbits of this poset, in the sense of Sect. 1.3.
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Definition 3.8 (Decomposition poset) Let Ln be the topological poset of orthogonal decom-
positions C

n = ⊕
i∈I Wi with |I | > 1 and all Wi 	= 0 (modulo bijections of indexing sets

I ), ordered by refinement. Concretely, a decomposition
⊕

i∈I Wi is smaller than or equal to⊕
j∈J W

′
j if for every i ∈ I there exists a j ∈ J such that Wi ⊆ W ′

j .

We think of Ln as a topological category with a U (n)-action given by

ϕ ·
(
⊕

i∈I
Wi

)

=
⊕

i∈I
ϕ(Wi ).

The topology on both the objects and the morphisms of Ln is the weakest topology such that
theU (n)-action becomes continuous, i.e., as the disjoint union of itsU (n)-orbits. We denote
the geometric realization of the topological nerve of Ln by |Ln | and call it the decomposition
complex.

As written above, our aim is to show the following:

Theorem 3.9 There is a zig-zag ofU (n)-maps betweenLn and the constant orthogonal space
|Ln | inducing a global equivalence

S1 ∧ (EglU (n) ×U (n) Ln)+ � S1 ∧ (EglU (n) ×U (n) |Ln |)+.

In particular, there is a global equivalence

kun/kun−1 � �∞(EglU (n)+ ∧U (n) |Ln |�).
To compare |Ln |withLn we define an intermediateU (n)-orthogonal space Zn , restricting

in some sense to the “regular” elements of Ln . Let Fn : Ln → {orthogonal spaces} be
the continuous functor which assigns to a decomposition C

n = ⊕
i∈I Wi and an inner

product space V the subspace of Ln(V ) represented by elements of the form (Wi , xi )i∈I
for which the xi span a subspace of dimension |I | − 1. This is the maximal dimension
possible, since by definition the xi share a linear relation. This relation also shows that the
regularity condition for an element (Wi , xi )i∈I ∈ Fn(

⊕
i∈I Wi ) is equivalent to all (|I |−1)-

element subtuples of (xi )i∈I being linearly independent. Given a refinement C
n = ⊕

i∈I Wi

of C
n = ⊕

j∈J W
′
j , the associated map Fn(

⊕
i∈I Wi ) → Fn(

⊕
j∈J W

′
j ) sends an element

(Wi , xi )i∈I to (W ′
j ,
∑

i∈I j ((dimWi/ dimW ′
j ) · xi )) j∈J , where I j ⊆ I denotes the subset of

those i for which Wi ⊆ W ′
j .

Remark 3.10 It is not hard to check that this element does indeed lie in Fn(
⊕

j∈J W
′
j ), i.e.,

that the span of the second coordinates is (|J |−1)-dimensional. In fact, any linear relation of
|J | − 1 many of the

∑
i∈I j ((dimWi/ dimW ′

j ) · xi ) directly gives a linear relation of at most
|I |−1 of the xi . In particular this keeps the span from being zero and hence allows a rescaling
to norm 1 in the sense of the previous section. The rescaling is omitted from the notation
above in favor of readability but necessary for the image to land inLn . For arbitrary elements
(Wj , x j ) j∈ j of Ln(V ) the averaging sum can be zero, making the above map ill-defined.
This is the reason for restricting to the regular elements in the definition of Fn .

Definition 3.11 We define the orthogonal space Zn as the homotopy colimit of Fn .

By the homotopy colimit we mean the (topologically enriched) bar construction applied
levelwise. The U (n)-action on Ln restricts to compatible maps

ϕ∗ : Fn
(
⊕

i∈I
Wi

)

→ Fn

(

ϕ ·
(
⊕

i∈I
Wi

))
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and hence turns Fn into a U (n)-diagram in the sense of [4,10]. Then the bar construction
inherits a U (n)-action by combining the one on the nerve of Ln and the ones on the values
of Fn (cf. [10, Prop. 2.4]), turning Zn into a U (n)-orthogonal space.

Mapping Fn to the terminal constant functor ∗ induces a U (n)-equivariant map

p : Zn → hocolim
Ln

∗ = |Ln |,

where we think of |Ln | as a constant orthogonal space.
Proposition 3.12 The morphism

EglU (n) ×U (n) p : EglU (n) ×U (n) Zn → EglU (n) ×U (n) |Ln |
is a global equivalence.

Proof In view of Lemma 1.9 we have to show that for every compact Lie group G and every
continuous group homomorphismϕ : G → U (n) themap p(UG) induces aweak equivalence
on�(ϕ)-fixed points. The�(ϕ)-fixed points of Zn are given by hocolimLim(ϕ)

n
F�(ϕ)
n . Since the

homotopy colimit is homotopical, it thus suffices to show that Fn(
⊕

i∈I Wi )
�(ϕ) is weakly

contractible for every decomposition C
n = ⊕

i∈I Wi that is fixed by im(ϕ). Given such a
decomposition, the indexing set I is acted on by G. Then the space Fn(

⊕
i∈I Wi )

�(ϕ) can be
identified with the space of linear embeddings from the reduced permutation representation
R̃[I ] into UG (via f �→ (Wi , 1/(dim(Wi )) · f (ei ))i∈I ). As UG is a complete G-universe this
space is weakly contractible and so we are done. ��

We now construct a map α : Zn → Ln by applying the universal property of the bar
construction, i.e., by giving a homotopy coherent natural transformation from Fn to the
constant functor with value Ln . On objects it is defined to be the inclusion of Fn(

⊕
i∈I Wi )

into Ln . To define α on higher simplices we introduce the following notation: Given an
element x = (Wi , xi )i∈I of Fn(

⊕
i∈I Wi ) and a subset J ⊆ I , we denote by WJ the direct

sum of all Wj with j ∈ J and by xJ the vector
∑

j∈J (dim(Wj )/ dim(WJ ) · x j ).
Now we assume given an ascending chain of decompositions starting with

⊕
i∈I Wi . We

interpret it as a chain of equivalence relations on the indexing set I . In particular, for every
i ∈ I we get an ascending chain {i} = J 0i ⊆ J 1i ⊆ · · · ⊆ J ki of subsets of I given by
those elements which are equivalent to i at the respective stage of the chain. Then the map
Fn(

⊕
i∈I Wi ) × 	k → Ln is defined via

((Wi , xi )i∈I , (t0, . . . , tk)) �→
(

Wi ,

k∑

l=0

tl · xJli
)

i∈I
plus rescaling to norm 1. It is not hard to check that this is well-defined (again using the
regularity of the xi as in Remark 3.10) and that it gives a homotopy-coherent cone over F .
It remains to show:

Proposition 3.13 After one suspension, the map α : Zn → Ln becomes a U (n)-global
equivalence, i.e., for all compact Lie groups G it induces a weak (U (n) × G)-equivalence
when evaluated on UG.

Proof Let G be a compact Lie group. We consider the following filtration on Zn(UG): given
a decomposition C

n = ⊕
i∈I Wi we denote by Ln(≥ ⊕

i∈I Wi ) the sub-poset of Ln given
by the decompositions that are refined by

⊕
i∈I Wi (and similarly by Ln(>

⊕
i∈I Wi ) those
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that are properly refined). Furthermore, byL(k)
n we denote the subposet of all decompositions

into at most k summands. This filtration on the level of posets induces a filtration {Z (k)
n } of

Zn after taking homotopy colimits. There are similar filtrations for Ln , where we say that an

element (W ′
j , x j ) j∈J (with all x j distinct) lies in Ln(≥ ⊕

i∈I Wi ), Ln(>
⊕

i∈I Wi ) or L
(k)
n

if the decomposition C
n = ⊕

j∈J W
′
j is contained in the respective sub-poset of Ln .

These filtrations are preserved by α and so we can consider the induced map on quotients.
The quotient (Z (k)

n /Z (k−1)
n )(UG) can be (U (n)×G)-equivariantly identified with the wedge

∨

n=l1+···+lk ,l1≥···≥lk

U (n) ×NU (n)(
∏k

i=1 U (li ))

(

( hocolim
(Ln)(≥⊕C

li )

Fn(UG)/ hocolim
(Ln)(>

⊕
C
li )

Fn(UG)

)

.

Likewise, Ln(UG)(k)/Ln(UG)(k−1) also decomposes as
∨

n=l1+···+lk ,l1≥···≥lk

U (n) ×NU (n)(
∏k

i=1 U (li ))

⎛

⎝Ln(UG)

⎛

⎝≥
⊕

i=1,...,k

C
li

⎞

⎠

⎞

⎠
/
⎛

⎝Ln(UG)

⎛

⎝>
⊕

i=1,...,k

C
li

⎞

⎠

⎞

⎠ .

Moreover, the map α preserves these decompositions. The space Ln(UG)(≥ ⊕
C
li ) is

(NU (n)(
∏k

i=1U (li ))×G)-homeomorphic to the unit sphere in theG-representationRk ⊗UG

(where the normalizer acts through its projection to �k). In this description, Ln(UG)(<⊕
C
li ) corresponds to the subspace of tuples (v1, . . . , vk) for which at least two of the vi

are equal. We first note:

Lemma 3.14 The restriction of α induces (WU (n)(
∏k

i=1U (li )) × G))-equivalences

hocolim
(Ln)(≥⊕C

li )

Fn(UG) � Ln(UG)

⎛

⎝≥
⊕

i=1,...,k

C
li

⎞

⎠ ∼= S(Rk ⊗ UG)

and

hocolim
(Ln)(>

⊕
C
li )

Fn(UG) � Ln(UG)

⎛

⎝>
⊕

i=1,...,k

C
li

⎞

⎠ ,

after one suspension.

Proof The product of the U (li )’s acts trivially, so it suffices to show that both maps are
(WU (n)(

∏k
i=1U (li ))×G)-equivalences. We start with the first one. The poset Ln(≥ ⊕

C
li )

has aminimal element, so it suffices to show that the embedding Fn(
⊕

C
li )(UG) ↪→ S(Rk) is

an equivariant weak equivalence. Up to rescaling, this inclusion corresponds to the inclusion
of the space of linear embeddings Rk ↪→ UG into the space of all non-zero linear maps
Rk → UG . We claim that this map is even a (�k × G)-weak equivalence. We saw in the
proof of Proposition 2.1 that the space of non-zero linear maps is a universal space for
the family C�

k 〈G〉. But Fn(⊕C
li )(UG) is also a universal space for this family, since for

every G-representation W the space of equivariant linear embeddings W ↪→ UG is weakly
contractible, aswealreadyused in the proof ofProposition3.12.Anyequivariantmapbetween
universal spaces for the same collection of subgroups is automatically an equivariant weak
equivalence, so this finishes the proof of the first statement.

123



182 M. Hausmann, D. Ostermayr

For the second statement we can again filter both sides by the number of summands.
Then, similarly to above, the subquotients are wedges of inductions of spaces of the form
(hocolim

(Ln)(>
⊕l

j=1 C
m j )

Fn(UG)) with l < k, and similarly for Ln . So, by induction we can

reduce to the first statement and are done. ��
Hence we see that α induces a (U (n) × G)-weak equivalence on the subquotients. The

inclusionmaps in both filtrations are equivariant cofibrations (which in the case ofLn follows
from the pushouts described inAppendix 7.2), so this shows thatα induces aweak equivalence
on homotopy cofibers.Hence, it induces a (U (n)×G)-weak equivalence after one suspension.

��

3.3 Quotients in the complexity filtration

In this section we describe a global version of another filtration induced by Arone and Lesh,
which we call the complexity filtration. It interpolates between ku and Sp∞ � HZ and is
constructed as follows: we first note that there is a morphism from ku to Sp∞ that sends a
complex vector space to its dimension, non-equivariantly realizing the 0-th Postnikov section.
By definition, it maps kun into Spn . Then the n-th term Au

n of the complexity filtration is
defined as the homotopy pushout

kun ku

Spn Au
n .

Concretely, we let Au
n be the spectrum ([0, 1]+ ∧ Spn)∨kun ku, where the embedding Spn →

[0, 1]+∧Spn is via the endpoint 1. Since the map kun → ku is always a level-cofibration, Au
n

could also be defined as the strict pushout, but we use the mapping cylinder construction to
ensure that the inducedmaps Au

n → Au
n+1 are level-cofibrations. Hence we obtain a sequence

of morphisms of orthogonal spectra

ku ∼= Au
0

p0−→ Au
1

p1−→ · · · → Au∞ � HZ,

since both ku0 and Sp0 are a point and the Spn’s converge to HZ.

Remark 3.15 The presentation of the complexity filtration given here is different to the way
it was originally constructed by Arone and Lesh. In [1] they associated to any augmented
permutative category C a sequence of permutative categories interpolating between C and
the category N and obtained the complexity filtration as the spectrum realization of this
categorical filtration. Later in [2] they constructed the modified rank filtration of the spectrum
of an augmented permutative category via�-spaces and showed that the complexity filtration
has this different description that we use here.

Since we know the filtration quotients of the rank filtration and the symmetric product
filtration, it is not difficult to obtain a description for the filtration quotients of the complexity
filtration. By forming termwise quotients in the pushout diagram defining Au

n , we see that
the sequence

kun/kun−1 → Spn/Spn−1 → Au
n/A

u
n−1 (1)

is a mapping cone sequence. Using the results and notation of the previous sections
we can identify the first two terms with suspension spectra of the orthogonal spaces
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LC(Cn,Sym(−C))+ ∧U (n) L
�
n respectively S(Rn ⊗ −)�/�n . Moreover, the map is induced

from themap of orthogonal spaceswhich collapses LC(Cn,Sym(−C)) to a point and sends an
element inLn represented by a tuple (Wi , xi )i∈I to the element of S(Rn⊗−)/�n represented
by

(xi1 , . . . , xi1︸ ︷︷ ︸
dimWi1

, xi2 , . . . , xi2︸ ︷︷ ︸
dimWi2

, . . . , xi j , . . . , xi j︸ ︷︷ ︸
dimWi j

)

for some enumeration i1, i2, . . . , i j of I , on which it does not depend since the �n-action is

quotiened out. In fact, the map Ln → S(Rn ⊗−)/�n induces an isomorphism Ln/U (n)
∼=−→

S(Rn ⊗ −)/�n (and in particular, the global classifying space of complete subgroups of
U (n) is globally equivalent to the global classifying space of complete subgroups of �n). In
other words, the map kun/kun−1 → Spn/Spn−1 is induced—by forming U (n)-orbits and
applying the suspension spectrum functor—from the map of U (n)-orthogonal spaces

LC(Cn,Sym(−C))+ ∧ L�
n → L�

n

that collapses LC(Cn,Sym(−C)) to a point. So we have:

Corollary 3.16 The quotient Au
n/A

u
n−1 is isomorphic to the suspension spectrum of the based

orthogonal space LC(Cn,Sym(−C))� ∧U (n) L
�
n .

Since the smash product of two unreduced suspensions is isomorphic to the unreduced
suspension of the join ∗, this based orthogonal space can be rewritten as (LC(Cn,Sym(−C))∗
Ln)

�/U (n). From Sect. 3.1 we know that the first join factor is a global universal space for
U (n) and that the second is a global universal space for the collection of complete (or non-
isotypical) subgroups of U (n).

The global homotopy type of this join is then implied by the following easy lemma:

Lemma 3.17 LetF be any collection of subgroups of a Lie group K , EglF a global universal
space for F and Egl K be a global universal space for K . Then the join EglF ∗ Egl K is a
global universal space for the collection F , i.e., F with the trivial subgroup added.

Proof This follows directly from the fact that the join commutes with taking fixed points. ��

Hence, denoting the collection of complete and trivial subgroups of U (n) by Cun and the
collection of non-isotypical and trivial subgroups by Iu

n , we obtain:

Theorem 3.18 (Subquotients in the complexity filtration) There are global equivalences

Au
n/A

u
n−1 � �∞(Bgl(C

u
n)

�) � �∞(Bgl(I
u
n)

�).

Remark 3.19 One can show that there is also a global equivalence

Au
n/A

u
n−1 � �∞(S1 ∧ (EglU (n)+ ∧U (n) (L�

n ∧ SC
n
))),

globally generalizing another description of the quotients due to Arone and Lesh. The proof
uses straightforward equivariant adaptions of the arguments in [1, Sec. 9] together with
Theorem 3.9 of this paper.
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3.4 Themodified rank filtration on 0-th homotopy

In this section we describe the effect of the modified rank filtration on the global functor π0,
the zero-th homotopy group.

For a compact Lie group G we denote by RU (G) the complex representation ring of G.
Every group homomorphism f : G → K gives rise to a restriction map f ∗ : RU (G) →
RU (K ) by pulling back the action on representations. Furthermore, if H is a finite index
subgroup of G there is an induction map IndGH : RU (H) → RU (G) which sends an H -
representation W to the G-representation IndGH W = mapH (G,W ).

This is connected to πG
0 (ku) as follows: let W be a finite dimensional complex G-

representation together with an isometric embedding ψ : W → Sym(VC) for some finite
dimensional real representation V . This data gives rise to an element [W ] in πG

0 (ku) repre-
sented by the map SV → ku(V ), v �→ (ψ(W ), v). A different way to view this assignment
W �→ [W ] is given by the following: there are maps

αn : �∞+ (LC(Cn,Sym(−C))/U (n)) → kun

which in level V send a pair (ϕ, v) to the configuration (ϕ(Cn), v). The orthogonal space
LC(Cn,Sym(−C))/U (n) is a model for a global classifying space BglU (n) of U (n) and
hence

πG
0 (LC(Cn,Sym(−C))/U (n)) ∼= Rep(G,U (n)) ∼= {isom. classes of n-dim. G-representations}

The assignment W �→ [W ] is then the composition

πG
0 (BglU (n)) → πG

0 (�∞+ BglU (n))
(αn)∗−−−→ πG

0 (ku).

In particular, this shows that [W ] only depends on the isomorphism type of W and not on
the choice of ψ .

Remark 3.20 The map W �→ [W ] is additive and induces a homomorphism RU (G) →
πG
0 (ku) which sends restrictions to homotopy-theoretic restrictions and finite index induc-

tions to homotopy-theoretic transfers. It is an isomorphism ifG is finite. The functor mapping
a compact Lie groupG to its complex representation ring does extend to a full global functor,
i.e., there also exist inductions along infinite index subgroup inclusions satisfying the double
coset formula. These are given by the smooth inductions introduced by Segal in [21]. How-
ever, they are not mapped to homotopy theoretic transfers under the map RU (G) → πG

0 (ku)

above, which can be seen as a reason for why this map is in general not an isomorphism for
non-discrete compact Lie groups. In fact, the representation ring always maps injectively into
πG
0 (ku) and the cokernel is generated by transfers of elements in πH

0 (ku), where H ranges
through all subgroups of G that have infinite index but finite Weyl group. These results are
due to Schwede, and also follow from Theorem 3.22 below.

In this section we are going to explain the intermediate groups πG
0 (kun). If m ≤ n,

the map αm : �∞+ (BglU (m)) → ku described above has image in kun and hence every
m-dimensional G-representation W already defines an element [W ] in πG

0 (kun) which only
depends on its isomorphism type. It turns out thatπG

0 (kun) is additively generated by transfers
of these elements. To understand the relations, we observe: if W is n-dimensional, the class
[W ] does not make sense in πG

0 (kun−1) yet, but it might already secretly live there in the
following sense:

• If W = W1 ⊕ W2 is (non-trivially) decomposable, then the classes [W1], [W2] already
live in πG

0 (kun−1) and hence so does their homotopy theoretic sum [W1] + [W2].
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• If W = IndGH W ′ is induced up from a proper finite index subgroup H , then [W ′]
is an element in πH

0 (kun−1) and hence one can form the homotopy theoretic transfer
trGH [W ′] ∈ πG

0 (kun−1).

We will see that both elements map to [W ] under πG
0 (kun−1) → πG

0 (kun) and that [W ] lies
in the image if and only if one of those two conditions is satisfied. Furthermore, if [W ] does
lie in the image, then it might be so for different reasons: it could both be decomposable and
induced, or it could be induced up in different ways.Wewill see that these are reflected nicely
in certain fixed points of the decomposition poset Ln and that it is exactly these different
reasons that are identified via the boundary map ∂ : πG

1 (kun/kun−1) → πG
0 (kun−1).

Example 3.21 The easiest case is that of G = Z/p for a prime p. Let ηp be a primitive p-th

root of unity in C. Then π
Z/p
0 (ku1) is free with basis {[η1p], [η2p], . . . , [ηp

p]} ∪ {trZ/p
1 [1]} (cf.

Example 1.16). The elements [ηip] also form a basis of the representation ring ofG and hence

the only difference between π
Z/p
0 (ku1) and π

Z/p
0 (ku) lies in the element trZ/p

1 [1], which is

equal to the sum of the ηip in π
Z/p
0 (ku). It will be a consequence of Theorem 3.22 that this

identification takes place in π
Z/p
0 (ku p) for the first time.

In global equivariant homotopy theory, all this can be phrased via universal examples: if an
n-dimensionalG-representationW is the direct sum of two subrepresentationsW1 andW2 of
dimensions k and l, then—up to conjugation—the associated homomorphism β : G → U (n)

factors through the embedding U (k) × U (l) → U (k + l = n). For t ≥ 1 let τ ut denote the
class of the tautological complex t-dimensional representation of U (t). Then the fact that
[W ] = [W1]+[W2] in Repu(G) is the restriction along β̃ : G → U (k)×U (l) of the relation

(resU (k+l)
U (k)×U (l))

∗(τ uk+l) = (p1)
∗(τ uk ) + (p2)

∗(τ ul ), (2)

where p1 and p2 denote the projections from U (k) × U (l) to U (k) respectively U (l). We
denote this relation by a(k, l).

Likewise, if W is the induction of a j-dimensional representation W ′ of a subgroup H
of index i , the associated group homomorphism β : G → U (n) takes image in the wreath
product�i �U ( j), i.e., the semidirect product ofU ( j)×i and�i via the permutation action on
the product coordinates. Then the relation [W ] = trGH [W ′] in the representation ring global
functor is the restriction along β̃ : G → �i �U ( j) of

resU (i · j)
�i �U ( j)(τ

u
i · j ) = tr�i �U ( j)

U ( j)×�i−1�U ( j)(p
∗(τ uj )). (3)

Here, p stands for the projection fromU ( j)× (�i−1 �U ( j)) toU ( j). Let b(i, j) denote this
relation.

In these terms the intermediate homotopy groups can be described as follows:

Theorem 3.22 The global functor π0(ku
n) is isomorphic to the free global functor generated

by the elements τ u1 , τ u2 , . . . , τ un modulo the relations a(k, l) for all k + l ≤ n and b(i, j) for
all i · j ≤ n.

We try to make clear what this means at a fixed compact Lie group G in a few examples
of these filtrations in Sect. 6. However, the result at a specific group is often a lot more
complicated than the global formula.

The remainder of this section is devoted to proving this theorem. It proceeds by comparing
the cofiber sequence kun−1 → kun → kun/kun−1 to another one with the same cofiber,
namely
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�∞+ (EglU (n) ×U (n) Ln)
p

ψn

�∞+ (BglU (n))

αn

�∞(EglU (n)+ ∧U (n) L
�
n)

∼=

kun−1
in

kun kun/kun−1,

(4)

where the vertical isomorphism on the right is the one explained in Sect. 3.1. The map ψn

could be obtained (at least as a stable map) via the triangulated structure on the homotopy
category, but we make it explicit below in order to understand its effect on π0.

The map of cofiber sequences exhibits the left square as a homotopy pushout, giving rise
to a Mayer–Vietoris sequence on homotopy groups. In particular:

Corollary 3.23 The sequence

π0(�
∞+ (EglU (n) ×U (n) Ln))

(p∗,−(ψn)∗)−−−−−−−→ π0(�
∞+ (BglU (n)))

⊕π0(ku
n−1)

((αn )∗
(in )∗ )−−−−→ π0(ku

n) → 0

is exact.

The rest of the proof is divided into the following two parts:

(1) A description of π0(�
∞+ (EglU (n) ×U (n) Ln)).

(2) Constructing ψn and determining its effect on π0.

We start with number (1). Applying Lemma 1.9 to Y = (EglU (n) ×U (n) Ln)(UG) and
K = U (n) for a compact Lie group G, we see that the G-fixed points of the quotient
decompose as

⊔

〈α:G→U (n)〉
EC(α) ×C(α) ((Ln)(UG))�(α).

A tuple (Wi , xi )i∈I ∈ Ln(UG) (with pairwise different xi ) is �(α)-fixed if and only if
each pair (α(g)(Wi ), g · xi ) is equal to some (Wj , x j ) in the tuple. Hence, any such fixed
point in particular gives rise to a non-trivial decomposition C

n = ⊕
i∈I Wi that is weakly

fixed by α(G). Here, weakly fixed means that not necessarily every Wi is fixed itself, but
they may be permuted in a way encoded by a G-action on the indexing set I . Making use
of the weak equivalence to the decomposition complex constructed in Sect. 3.2, we see that
the path-component of (Wi , xi )i∈I in the �(α)-fixed points only depend on this associated
decomposition and that every weakly fixed decomposition is realized. Furthermore, if one
decomposition refines another, the associated fixed points lie in the same path-component.
Written in a more coordinate-free way we get:

Proposition 3.24 The set πG
0 ((EglU (n) ×U (n) Ln)) stands in natural bijection to the set of

pairs
{

(W ,⊕i∈I Wi ) | W n-dim G -rep.,W =
⊕

i∈I
Wi non-trivial and weakly G-fixed

}

modulo isomorphisms of representations and refinement of decompositions.
In this description, the induced map to πG

0 (BglU (n)) ∼= {isom. classes of n-dim G-rep.}
is given by forgetting the decompositions.
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Let W = ⊕
i∈I Wi be such a weakly G-fixed partition and denote by A1, A2, . . . , Ak the

orbits of the induced G-action on I . Then the decomposition W = ⊕
j=1,...k(

⊕
i∈A j

Wi ) is
strongly fixed. It is non-trivial if I is not transitive, in which case it refines a strongly fixed
decomposition with two summands. So we see:

Corollary 3.25 Every point in πG
0 (EglU (n) ×U (n) Ln) is represented by a weakly G-fixed

decomposition of one of the following two types:

(1) W = W1 ⊕ W2 and W1,W2 are G-subrepresentations.
(2) W = W1 ⊕ · · · ⊕ Wk and the Wi are permuted transitively by the G-action.

Decompositions of the second type can be interpreted in the following way: let H be the
isotropy subgroup of W1 under the G-action on the set {Wi }i=1,...,k . Then H is a subgroup
of index k in G, W1 is an H -representation and the map IndGH (W1) → W adjoint to the
inclusion gives an isomorphism of G-representations. Vice versa, every induced representa-
tion IndGH W ′ (where H has finite index in G) possesses the weakly G-fixed decomposition
IndGH W ′ = ⊕

gH∈G/H gW ′. Hence, a general weakly G-fixed point of the decomposition
poset can be interpreted as exhibiting W as a combination of sums and transfers.

Remark 3.26 This also lets us determine πG
0 of the cone EglU (n)+ ∧U (n) L

�
n (and hence of

the quotient kun/kun−1 via Proposition 1.15) explicitly. It is given by isomorphism classes of
irreducible n-dimensional G-representations which are not the induction of a representation
from a proper finite index subgroup. The tautological U (n)-representation always has this
property, so we see that the maps π0(ku

n−1) → π0(ku
n) are never globally surjective.

The decompositions of Corollary 3.25 have universal representatives: given k, l > 0
with k + l = n, the (U (k) × U (l))-representation obtained by restricting τ un along the
embedding U (k) × U (l) ↪→ U (n) decomposes as τ uk ⊕ τ ul . We denote the element of

π
U (k)×U (l)
0 (EglU (n)×U (n) Ln) associated to this decomposition by α̃(k, l). Likewise, given

i, j ∈ N with i · j = n, the restriction of τ un along �i � U ( j) ↪→ U (n) is the transfer of
p∗(τ uj ), where p is the projection to U ( j). Hence there is an associated weakly G-fixed

decomposition of type (2) above, which we denote by β̃(i, j). We obtain:

Corollary 3.27 The Rep-functor π0((EglU (n) ×U (n) Ln)) is generated by the elements
{̃α(k, l)}k+l=n and {β̃(i, j)}i · j=n. Hence, by Proposition 1.15, so is π0(�

∞+ (EglU (n)×U (n)

Ln)) as a global functor.

So it remains to show that ψn indeed maps the α̃′ and β̃ ′s to the right hand sides of Eqs.
(2) and (3) respectively. For this we require an explicit construction of ψn , which we now
explain.

We quickly recall the objects involved: an element of EglU (n)(V ) is a linear isometric
embedding C

n → Sym(VC). Points in Ln are represented by tuples (Wi , xi )i∈I indexed on
a finite set I , where the xi are elements of V and the Wi are pairwise orthogonal subspaces
of C

n which add up to all of C
n . Furthermore, these tuples are required to satisfy the two

conditions
∑

dim(Wi ) · xi = 0 and
∑

dim(Wi )|xi |2 = 1. Finally, elements of kun(V )

are also represented by tuples (Wi , xi )i∈I , but this time the Wi are orthogonal subspaces of
Sym(VC) and the only requirement is that the sum of the dimensions is at most n.

Nowwe come to the construction ofψn .Wewould like to define each level (EglU (n)×U (n)

Ln)(V )+ ∧ SV → kun−1(V ) by sending (ϕ, (Wi , xi )i∈I , v) to the tuple (ϕ(Wi ), xi + v)i∈I .
However, even though all the Wi necessarily have smaller dimension than n, their sum is
still n-dimensional. So for fixed v this tuple does not represent an element in kun−1. The
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idea is to shrink the domain of each of the coordinate functions v �→ (ϕ(Wi ), xi + v), so
that they become equal to the basepoint outside a certain neighborhood of −xi . For this let

s : [0,∞] → [0,∞] be a map which induces a homeomorphism [0, 1/(2n2)] ∼=−→ [0,∞]
and is constant ∞ on [1/(2n2),∞]. Furthermore, given a finite tuple x = (xi )i∈I of vectors
of a (finite dimensional) real inner product space V we let px : V → 〈{xi }i∈I 〉 ⊆ V denote
the linear map defined by

px (v) =
∑

i∈I
〈v, xi 〉 · xi .

We need the following properties of this map:

Lemma 3.28 The value px (v) only depends on the orthogonal projection of v onto the span
of the xi and is an automorphism when restricted to this span. Furthermore, it satisfies the
inequality

|px (x j )| ≥ |x j |3
for every j in I .

Remark 3.29 The reason for using px instead of the orthogonal projection onto the span of the
xi is that the latter is not continuous in the xi . However, the linear homotopy from the identity
to px restricts to an isotopy on this span and hence for a fixed tuple x there is essentially no
difference.

Proof If a vector is orthogonal to each of the xi it is sent to 0 under px and hence the value
only depends on the orthogonal projection onto the span. For the other two statements we
note that the scalar product of px (v) and v is equal to the sum of the squares 〈v, xi 〉2. Hence,
if v is a non-zero vector in the span of the xi , this scalar product is non-zero and in particular
px (v) is non-zero, so the restriction of px to the span is injective. Finally, the stated inequality
follows from

|px (x j )| · |x j | ≥ 〈px (x j ), x j 〉 =
∑

i∈I
〈x j , xi 〉2 ≥ 〈x j , x j 〉2 = |x j |4,

where the first step is the Cauchy–Schwarz inequality. ��
We use this to obtain a selfmap sVx : SV → SV via the formula

sVx (v) = (s(|px (v)|) − |pxv|) · px (v) + v.

Thismap sends every vector v for which px (v) has length larger than 1/(2n2) to the basepoint
and is the identity on the orthogonal complement of the span of the xi . Finally, for an element
(ϕ, (Wi , xi )i∈I , v) of (EglU (n) ×U (n) Ln)(V ) we set

ψn(ϕ, (Wi , xi )i∈I , v) = (ϕ(Wi ), s
V
x (xi + v))i∈I .

This gives a map of orthogonal spectra: it commutes with the action of elements A of
O(V ) because of the equality A(〈v, xi 〉 · xi ) = 〈Av, Axi 〉 · Axi . Furthermore, ifW is another
vector space and w an element, then sV⊕W

x (xi + v + w) = sVx (xi + v) + w since w is
orthogonal to all the xi and henceψn also commutes with the structure map. In fact, assuring
this equality was the reason for introducing the projections into the formula.

123



Filtrations of global equivariant K -theory 189

Finally, we have to show that ψn does indeed take image in kun−1. Each component
function (v �→ (ϕ(Wi ), sVx (xi + v)) is equal to the basepoint on all points v for which px (v)

is more than 1/(2n2) away from −px (xi ). We claim that for every fixed v there is at least
one i such that this is the case. If this was not true, it would imply that all the px (xi ) are
less than 1/n2 away from each other. Now the conditions for the xi come into play. Since∑

dim(Wi )|xi |2 = 1, there is at least one j such that |x j |2 ≥ 1/n and hence, by Lemma 3.28,
we have |px (x j )| ≥ 1/n3/2 ≥ 1/n2. The equality

∑
dim(Wi ) · px (x j − xi ) +

∑
dim(Wi ) · px (xi ) = n · px (x j )

implies that
∣
∣
∣
∑

dim(Wi ) · px (xi )| ≥ n · |px (x j )
∣
∣
∣ −

∑
dim(Wi )|px (xi − x j )| > 1/n − 1/n = 0,

which contradicts the condition
∑

dim(Wi ) · xi = 0. Hence, for every (ϕ; (Wi , xi )i∈I ) the
tuple (ϕ(Wi ), sVx (xi + v))i∈I contains at least one basepoint and thus represents an element
in kun−1, as the total dimension of the remaining ϕ(Wi ) is strictly less than n.

Some justification is also needed that ψn indeed turns Diagram (4) into a map of cofiber
sequences, but we outsource this to Appendix 7.3.

Now we let (ϕ, (Wi , xi )i∈I ) be a G-fixed point of (EglU (n) ×U (n) Ln)(V ), assume that
the balls of radius 1/(2n2) around the px (xi ) are pairwise disjoint and denote the span of
the xi by V ′. As noted before, the set {xi }i∈I is permuted by the G-action. Then the induced
G-map SV → kun−1(V ) given by v �→ ψn(ϕ, (Wi , xi )i∈I , v) is equal to the composite

SV
px∧id−−−→ SV

′ ∧ SV−V ′ → ({xi }+ ∧ SV
′
) ∧ SV−V ′ ∼=

∨

i∈I
SV

∨
ϕ(Wi )−−−−−→ kun−1(V ),

where the second map is the smash product of SV−V ′
with the pinch map which collapses

everything outside the balls of radius 1/(2n2) around the xi to a point, and ϕ(Wi ) maps v to
the configuration (ϕ(Wi ), v). Up to homotopy, the first map can be replaced by the canonical
homeomorphism SV ∼= SV

′ ∧ SV−V ′
, since px is isotopic to the identity on V ′.

This lets us prove:

Proposition 3.30 If an element y ∈ πG
0 (EglU (n) ×U (n) Ln) is associated to W = W1 ⊕W2

and W1,W2 are G-fixed, then

(ψn)∗(y) = [W1] + [W2] ∈ πG
0 (kun−1).

If y is associated to W = W1 ⊕ · · · ⊕ Wk and the Wi are permuted transitively by G, then

(ψn)∗(y) = trGH [W1] ∈ πG
0 (kun−1),

where H is the subgroup of elements fixing W1. In particular,

(ψn)∗(̃α(k, l)) = p∗
1(τ

u
k ) + p∗

2(τ
u
l )

and

(ψn)∗(β̃(i, j)) = tr�i �U ( j)
�i−1�U ( j)(p

∗(τ uj )).
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Proof Without loss of generalitywe can assume thatW is equal toC
n with someG-action.We

start with the first case. Let (ϕ : C
n → Sym(VC), (W1, x1), (W2, x2)) ∈ (EglU (n) ×U (n)

Ln)(V ) be a fixed point giving rise to such a decomposition, for some finite dimensional
G-representation V . Let V ′ be the (one-dimensional) span of the xi . It carries the trivial
G-action, since the xi are fixed by assumption. Furthermore, as there are only two points it
is automatic that the intervals of radius 1/(2n2) around them (or their images under px ) are
disjoint and thus the description above shows that (ψn)∗(y) is the class of the composition

SV
′ ∧ SV−V ′ → ({x1, x2}+ ∧ SV

′
) ∧ SV−V ′ ∼= SV ∧ SV

ϕ(W1)∨ϕ(W2)−−−−−−−−→ kun−1(V ).

Since G acts trivially on the set {x1, x2}, the first map is just the usual pinch map and the
second one is the wedge of two G-equivariant maps. Hence, this composite represents their
sum [ϕ(W1)] + [ϕ(W2)] = [W1] + [W2] ∈ πG

0 (kun−1).
Now we let y correspond to a decomposition of type two, i.e., Cn = W1 ⊕ · · · ⊕ Wk and

the Wi are permuted transitively by G. Let (ϕ, (Wi , xi )i=1,...,k) be a representative for this
fixed point, chosen in a way that the xi have distance larger than 1/(n2) from each other. We
again denote by V ′ their span. Then, as seen above, (ψn)∗(y) is represented by the composite

SV ∧ SV−V ′ → ({x1, . . . , xk}+ ∧ SV
′
) ∧ SV−V ′ ∼=

∨

i=1,...,k

SV
∨

ϕ(gWi )−−−−−→ kun−1(V ).

Using that the G-set {x1, . . . , xk} is isomorphic to G/H , we see that this is precisely the
definition of the transfer of the class [ϕ(W1)] = [W1] ∈ πH

0 (kun−1) recalled in Sect. 1.4:
the first map is the “transfer pinch map” and each wedge summand of the second equals the

composite SV
g−1

−−→ SV
ϕ(W1)−−−→ kun−1 g·−→ kun−1. This finishes the proof. ��

Now we are ready for:

Proof of Theorem 3.22 We proceed by induction on n, the case n = 0 being clear. So now let
n be a positive natural number and assume the statement to be true for n − 1. Together with
the induction hypothesis and the fact that π0(�

∞+ BglU (n)) is generated by the tautological
U (n)-representation, the exact sequence

π0(�
∞+ (EglU (n) ×U (n) Ln))

(p∗,−(ψn)∗)−−−−−−−→ π0(�
∞+ BglU (n)) ⊕ π0(ku

n−1)
((αn )∗

(in )∗ )−−−−→ π0(ku
n) → 0

of Corollary 3.23 shows that the global functor π0(ku
n) is generated by the elements

τ u1 , . . . , τ un . It further shows that the relations are generated by the ones of π0(ku
n−1), which

we know by induction, and the image of π0(�
∞+ (EglU (n)×U (n)Ln)) in π0(�

∞+ BglU (n))⊕
π0(ku

n−1). By Corollary 3.27, the global functor π0(�
∞+ (EglU (n)×U (n) Ln)) is generated

by the elements {̃α(k, l)}k+l=n and {β̃(i, j)}i · j=n , which are sent to the relations α(k, l) and
β(i, j) by Proposition 3.30, so we are done. ��
Remark 3.31 The fact that for infinite compact Lie groups G the group πG

0 (ku) fails to be
the representation ring is reflected in the rank filtration: infinite index inductions of repre-
sentations do not give rise to a fixed point in the associated decomposition poset and hence
these are never identified with the homotopy theoretic transfer.

3.5 The complexity filtration on 0-th homotopy

In this section we explain the behavior of the complexity filtration on π0, again starting with
the case of ku. The method is similar to that of the last section, but shorter as we can make
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use of the constructions we made there. Also, as mentioned in the introduction, the result
can be stated more compactly. Again we denote by τ un the class of the tautological complex
U (n)-representation. Then we show:

Theorem 3.32 (Complexity filtration on π0) For all n ∈ N the map qn : ku → Au
n induces

a surjection on π0 and the kernel is generated as a global functor by the single element

τ un − n · [1] ∈ π
U (n)
0 (ku).

Remark 3.33 It turns out that if G is finite this filtration already stabilizes at πG
0 (Au

1), for
algebraic reasons closely related to Artin’s theorem that the complex representation ring is
generated by inductions of 1-dimensional representations. The fastest way to see that the
filtration stabilizes is to make use of the fact that the representation rings form a global
functor also for compact Lie groups, making use of Segal’s smooth induction mentioned in
Remark 3.20. It takes on the following two values:

IndU (n)
U (1)×U (n−1)(p

∗(τ u1 )) = τ un

IndU (n)
U (1)×U (n−1)([1]) = n · [1]

These equalities follow from the character formula (cf. [21, p. 119] and [13, Prop. 2.3]).
Hence, the class τ un − n · [1] can be obtained by applying restriction and induction to the
class τ u1 − [1] and thus lies in the global functor generated by it. Since on finite groups
πG
0 (ku) agrees with the representation ring global functor, this shows that all restrictions of

τ un − n · [1] to finite groups already lie in the global functor generated by τ u1 − [1]. This also
shows that if πG

0 (ku) was the representation ring also for infinite compact Lie groups, the
filtration would stabilize at stage 1 globally. As it stands it does not, τ un is identified with the
trivial n-dimensional representation exactly in the n-th step, since U (n) has no proper finite
index subgroups.

Using similar arguments one can also show that over R the filtration stabilizes at πG
0 (Ao

2)

for finite G. For algebraic K -theory this is usually not the case and the complexity filtration
can take arbitrarily long to stabilize on πG

0 (for example over Q or finite fields), as the
examples in Sect. 6 show.

Similarly to the previous section, the proof makes use of an exact sequence associated to
a homotopy-cocartesian square, which this time takes the form

�∞+ ((EglU (n) ∗ Ln)/U (n))
p

γn

S

i

Au
n−1

pn
Au
n,

(5)

where p is induced from the constant map ((EglU (n) ∗ Ln)/U (n) → ∗. This homotopy-
cocartesian square is established by forming the homotopy-pushout of three homotopy-
cocartesian squares:
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�∞+ (EglU (n) ×U (n) Ln)+

ψn

�∞+ (BglU (n))

αn ���������������⇒
�∞+ (Ln/U (n))

ψn

S

kun−1 in
kun Spn−1 in

Spn

�∞+ (BglU (n))
id

αn

�∞+ (BglU (n))

αn

ku
id

ku

The fact that the first square is a homotopy-pushout (and in particular the construction of
a homotopy between the two composites) is treated in Appendix 7.3. The square on the
right hand side can be dealt with by the same formulas, replacing complex subspaces by
natural numbers,making the upper double arrow a homotopy-coherent natural transformation
between the two squares. Finally, the lower square of course commutes on the nose and the
vertical double arrow can be made a homotopy-coherent transformation by using the same
homotopy as in the upper square. Hence we see that there exists a cocartesian square of the
form (5) above.

A comparison of the associated long exact sequences shows:

Corollary 3.34 There is an exact sequence of global functors

ker(p∗)
(γn)∗−−−→ π0(A

u
n−1)

(pn)∗−−−→ π0(A
u
n) → π0(A

u
n/A

u
n−1)

∼= coker(p∗) → 0.

We now consider the map kn : BglU (n) → (EglU (n) ∗ Ln)/U (n), induced by mapping
EglU (n) into the join. By the definition of γn above, it fits into the following homotopy-
commutative square:

�∞+ (BglU (n))
�∞+ kn

αn

�∞+ ((EglU (n) ∗ Ln)/U (n))

γn

ku qn−1
An−1

(6)

Furthermore, we have:

Lemma 3.35 For every compact Lie group G the induced map

πG
0 (BglU (n))

(kn)∗−−−→ πG
0 ((EglU (n) ∗ Ln)/U (n))

is surjective.

Proof Since the square

πG
0 (EglU (n) ×U (n) Ln) πG

0 (BglU (n))

πG
0 (Ln/U (n)) πG

0 ((EglU (n) ∗ Ln)/U (n))
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is a pushout of sets, it suffices to show that the projection EglU (n) ×U (n) Ln → Ln/U (n)

induces a surjection on πG
0 . An element of Ln/U (n) is represented by a tuple (Wi , xi )i∈I ,

where the xi are elements of a complete G-universe UG and the Wi form an orthogonal
decomposition of C

n (such that the equalities
∑

dimWi · xi = 0 and
∑

dimWi |xi |2 = 1
are satisfied). Since theU (n)-action is modded out, the represented element only depends on
the xi and the dimensions of the Wi . That the tuple (Wi , xi )i∈I is a G-fixed point means that
every element of G maps each xi to an element xg(i) such that dimWi = dimWg(i). Now
let α : G → U (n) be any homomorphism such that α(G) · Wi = Wg(i). For example one
can choose orthonormal bases {ai,k} of the Wi and define α(g)(ai,k) = ag(i),k . Furthermore,
let ϕ : C

n → UG be an embedding which is equivariant for the action on C
n induced by α.

Then the tuple (ϕ, (Wi , xi )i∈I ) ∈ (EglU (n) × Ln)(UG) is a fixed point for the graph �(α)

and hence a G-fixed point of the quotient. Its projection to Ln/U (n) gives back the tuple we
started with, which hence lies in the image, and so we are done. ��
Remark 3.36 Conceptually, themain input in the proof of the previous lemma is that for every
complete subgroup L of U (n) the projection NU (n)L → WU (n)L splits.

Corollary 3.37 The global functor π0(�
∞+ ((EglU (n) ∗ Ln)/U (n))) is generated by the ele-

ment (kn)∗(τ un ). Hence, the kernel of γn is generated as a global functor by the element
(kn)∗(τ un − n · [1]).

Now we are ready for:

Proof of Theorem 3.32 We make use of the exact sequence of Corollary 3.34. Since
(EglU (n) ∗ Ln)/U (n) is not the empty orthogonal space, the projection to a point splits
and hence p∗ is surjective. It follows that π0(A

u
n/A

u
n−1) is zero and we see that all

the maps (pn)∗ : π0(A
u
n−1) → π0(A

u
n) are surjective. Hence so is the composition

(qn)∗ : π0(ku) → π0(A
u
n) and we have proved the first statement.

It remains to show that the kernel of (qn)∗ : π0(ku) → π0(A
u
n) is generated by the

element τ un − n · [1] ∈ π
U (n)
0 (ku). We proceed by induction on n. For n = 0 there is

nothing to show. Now let n be a natural number and assume the statement to be proved for
n − 1. By Corollary 3.37, the kernel of π0(A

u
n−1) → π0(A

u
n) is generated by the element

(γn)∗((kn)∗(τ un − n · [1])) which by the commutativity of Square (6) above is equal to
(qn−1)∗(τ un − n · [1]). Thus, by induction hypothesis we see that the kernel of (qn)∗ is
generated as a global functor by the elements (τ un − n · [1]) and (τ un−1 − (n − 1) · [1]). But
the latter is obtained from the former by restriction along the inclusion U (n − 1) ↪→ U (n)

and it follows that (τ un − n · [1]) generates the whole kernel, so we are done. ��
Remark 3.38 (Filtrations associated to ko) Replacing C by R in the definition of Sect. 3.1,
one obtains a model ko for connective global real K -theory and an associated rank and
complexity filtration. All the proofs go through verbatim to give the analogous statements
for ko, replacing unitary groups U (n) by their orthogonal counterparts O(n).

4 The rank filtration for the category of finite sets and the global
Barratt–Priddy–Quillen theorem

In this section we describe a spectrum which represents the global K -theory of finite sets,
together with its rank filtration. The global Barratt–Priddy–Quillen Theorem states that this
spectrum is globally equivalent to the sphere spectrum and we explain how it can be derived
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directly from the description of the filtration quotients. The method of proving the non-
equivariant Barratt–Priddy–Quillen Theorem via a rank filtration was also used in [15].

For a finite pointed set A+ and a real vector space W we denote by kF in(W , A+) the
space of tuples (Ma)a∈A of pairwise orthogonal finite orthonormal systems Ma of vectors of
W , or in other words the space

⊔

(na∈N)a∈A

LR

(
⊕

a∈A

R
na ,W

)
/∏

a∈A

�na .

As in the case of ku, these spaces come with a filtration where the n-th stage kF inn(W , A+)

only contains those components where the sum
∑

a∈A na is smaller than or equal to n.
For a fixed W the spaces kF in(W , A+) carry a �-space structure by disjoint union of

subsets. Again we let W vary in order to implement equivariance and multiplicativity and
obtain an orthogonal �-space by defining

(V , A+) �→ kF in(Sym(V ), A+).

We let kF in be the realization of this orthogonal �-space. Just like for ku, the tensor product
of embeddings turns kF in into an ultracommutative ring spectrum.

Since the filtration described above is compatiblewith both the�-space and the orthogonal
structure, we again obtain a rank filtration

∗ = kF in0 → kF in1 → · · · → kF inn → · · · → kF in.

The quotient kF inn/kF inn−1 is the realization of the orthogonal �-space which sends
(V , A+) to the space

∨

(na∈N)a∈A,
∑

na=n

(

LR

(
⊕

a∈A

R
na ,Sym(V )

)/∏

a∈A

�na

)

+
which by the same trick as before is homeomorphic to

LR(Rn,Sym(V ))+ ∧�n

⎛

⎝
∨

(na∈N)a∈A,
∑

na=n

Bij

(
⊔

a∈A

na, n

)

+

⎞

⎠ .

The first smash factor L(Rn,Sym(−)) is untouched by the �-space structure. Since the
permutation representationR

n of�n is faithful, this first factor is a global universal space for
�n . The second smash factor is the �n-�-space of partitions of the set n. But this �-space
can be described in an easier way, it is isomorphic to the one that sends a finite pointed set
A+ to its n-fold smash product (A+)∧n . Hence its realization is given in level k by (Sk)∧n ,
the nth quotient of the symmetric product filtration before taking orbits under the �n-action.
By Proposition 2.1, this is the suspension spectrum of the unreduced suspension of a global
universal space for the collection of complete subgroups C�

n of �n . So we obtain:

Proposition 4.1 The quotient kF inn/kF inn−1 is globally equivalent to

�∞(Egl�n+ ∧�n (EglC�
n )�).

But for n > 1 the collection of complete subgroups of �n contains the trivial subgroup
(unlike the collection of complete subgroups ofU (n) that appeared in the filtration quotients
of ku). Hence the map from EglC�

n to a point induces a global equivalence after taking
�n-homotopy orbits. In other words, all filtration quotients kF inn/kF inn−1 are globally
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trivial. Furthermore, the spectrum kF in1 is isomorphic to the suspension spectrum of the
based orthogonal space V �→ S(Sym(V ))+. Since the unit sphere in a complete G-universe
is equivariantly contractible, we hence obtain:

Corollary 4.2 (Global Barratt–Priddy–Quillen Theorem) The unit

S → kF in

is a global equivalence of ultracommutative ring spectra.

This also shows that the complexity filtration for the global K -theory of finite sets agrees
with the symmetric product filtration (except for level 0). As explained in the introduction,
its effect on π0 is computed in [17].

5 Filtrations associated to global algebraic K -theory

In this section we explain the modified rank and complexity filtration of the global algebraic
K -theory spectrumof a discrete ring R.While the results on the filtration and also themethods
to obtain them are similar to the case of topological K -theory, the setup is a little different.
The global algebraic K -theory spectrum of a discrete ring, as introduced by Schwede in
[16], only forms a symmetric spectrum and not an orthogonal spectrum, in particular it only
represents a global homotopy type on finite groups. Likewise, the filtration quotients turn
out to be suspension spectra of I -spaces (i.e., functors from the category of finite sets and
injective maps to the category of topological spaces), the symmetric analog of orthogonal
spaces. See [19, Section I.7] for the definitions and global homotopy theory of I -spaces,
and [8] for global homotopy theory of symmetric spectra. A lot of the theory is parallel to
the orthogonal case with G-representations replaced by G-sets, with the only caveat that in
general the notion of global equivalence is more complicated. However, as explained in [8],
there is a subclass of symmetric spectra—called globally semistable—which behave very
similar to orthogonal spectra: a map between two globally semistable symmetric spectra is a
global equivalence if and only if it induces an isomorphism on equivariant homotopy groups,
and every globally semistable symmetric spectrum allows a global π∗-isomorphism to an
orthogonal spectrum. In Corollary 5.2 we argue that the symmetric spectra we encounter are
globally semistable, so we can treat them just like orthogonal spectra.

In [16], Schwede sets up amachinery which takes a category with the structure of a certain
categorical E∞-operad and produces a symmetric spectrum. We do not repeat the general
construction here, but just present the output for the case of free global algebraic K -theory
of discrete rings. In that case the machinery produces a symmetric spectrum whose G-fixed
points for a finite group G represent direct sum algebraic K -theory of those R[G]-modules
whose underlying R-module is free, so-called R[G]-lattices.

5.1 Quotients in themodified rank filtration

We describe a slight modification of the construction of [16], as explained in [8, Sec. 6.3].
From now on let R denote a discrete ring satisfying the dimension invariance property (Rm ∼=
Rn implies m = n). Let W be a free R-module and A+ a finite pointed set. We define
kR(W , A+) to be the nerve of the following category: objects are tuples of the form (Wa)a∈A

where the Wa are finite rank free R-submodules of W such that their sum
∑

a∈A Wa in W is
direct and splits off from W as a direct summand (but no such splitting is part of the data).
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Morphisms are tuples of R-module isomorphisms, again indexed by A. Another description
of this category is as the quotient category

⊔

(na)a∈A

E

(

EmbR

(
⊕

a∈A

Rna ,W

))

/
∏

a∈A

GLna (R)

where E(−) of a set is the category with objects the set and exactly one morphism between
any two objects and Emb(−,−) is the set of splittable R-module monomorphisms between
two R-modules. Again, given a natural number n, we can restrict the space kR(W , A+) to
those components where the sum of the na is at most n and obtain a filtration via spaces
kRn(W , A+).

For fixed W , the assignment A+ �→ kR(W , A+) possesses the structure of a �-space by
forming the inner direct sum of objects and morphisms. We obtain an I -�-space via

(M, A+) �→ kR(R[M], A+)

where R[M] denotes the polynomial ring with commuting variable set M . The global alge-
braic K -theory spectrum kR of R is the realization of this I -�-space, i.e.,

kR(M) = kR(R[M], SM )

with diagonal �M -action. The filtration of the spaces kR(W , A+) is compatible with the
I -�-space structure and hence we obtain the modified rank filtration

∗ → kR1 → kR2 → · · · → kRn → · · · → kR.

If R is commutative, the tensor product of modules turns kR into a strictly commutative ring
spectrumand all the kRn intomodules over kR1 (which is globally equivalent to�∞+ (Bgl R×),
as we explain below).

We proceed similarly to Sect. 3.1 to describe the filtration quotients. The n-th quotient
kRn/kRn−1 is the realization of the I -�-space that is given in level (M, A+) by

∨

(na)a∈A,
∑

na=n

(

|E
(

EmbR

(
⊕

a∈A

Rna , R[M]
))

|/
∏

a∈A

GLna R

)

+
.

We can rewrite this as

|E(EmbR(Rn, R[M]))|+ ∧GLn(R)

⎛

⎝
∨

(na)a∈A,
∑

na=n

Iso

(
⊕

a∈A

Rna , Rn

)

+

⎞

⎠ .

The first factor E(EmbR(Rn, R[−])) is constant in the �-space direction and we have:

Lemma 5.1 The GLn(R)-I -space |E(EmbR(Rn, R[−]))| is a universal space for GLn(R).

We first explain what we mean by this statement in the setting of I -spaces. In principle,
a GLn(R)-I -space X should be a universal space for GLn(R) if its evaluations X(UG) are
universal spaces for the family 1GLn(R)〈G〉, where UG is a countable G-set in which every
finite G-set embeds. The complication with I -spaces is that in general the evaluation X(UG)

has to be derived, in the sense that X has to be replaced by a GLn(R)-globally equivalent
static GLn(R)-I -space first. Here, a GLn(R)-I -space is called static, if for any finite group
G and any embedding of faithful G-sets M ↪→ N the structure map X(M) → X(N ) is a
(GLn(R)×G)-equivalence. In the proof belowwe show that E(EmbR(Rn, R[−])) is positive
static, in the sense that this condition is satisfied in all cases except for G the trivial group
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and M the empty set. This is good enough for our purposes, since the map from a positive
static GLn(R)-I -space to its static replacement induces a (GLn(R) × �n)-equivalence in
all levels n > 0. So we do not have to worry about deriving −(UG).

Proof Every structure map is a closed inclusion, since it is the realization of a functor that is
injective on objects and morphisms. Now let G be a finite group and M a non-empty faithful
finite G-set. We have to show that the fixed points |E(EmbR(Rn, R[M]))|L for a subgroup
L ⊆ GLn(R) × G are trivial if L does not lie in 1GLn(R)〈G〉 and contractible otherwise.
Since any map between universal spaces for the same family is an equivariant equivalence,
this shows both the claim that E(EmbR(Rn, R[−])) is positive static and that it is a global
universal space for GLn(R). The fixed points are homeomorphic to the nerve of the category
E(EmbR(Rn, R[M])L). Hence it suffices to show that these fixed points are empty if and
only if L contains a non-trivial element of GLn(R)×1. The “if” part is clear, since GLn(R)

acts freely on EmbR(Rn, R[M]). If L does not contain such an element, it is the graph of a
homomorphism from a subgroup H of G to GLn(R). This homomorphism defines an H -
module structure on Rn and the L-fixed points are given by the (non-equivariantly splittable)
H -equivariant embeddings of Rn into R[M].We have to show that such an embedding always
exists. Since the canonical map from induction to coinduction is an isomorphism, we obtain
an H -equivariant map

Rn ε−→ map(H , Rn)
∼=←−

⊕

H

Rn

which is R-linearly (though not R[H ]-linearly) split by the projection onto the component
of the neutral element of H . In particular, Rn allows an H -equivariant embedding into the
permutation representation

⊕
H Rn . Hence it suffices to show that this permutation repre-

sentation in turn sits inside R[M] as a direct summand. But this follows from the observation
that any monomial

∏
m∈M mim with all im pairwise different spans a free H -subset, since M

is faithful. This finishes the proof, since we assumed that M is non-empty. ��
The second factor is constant in the I -space direction and forms the GLn(R)-�-space of

partitions of Rn , we denote it by P R(n,−). Its realization even forms a GLn(R)-orthogonal
spectrum, so we see:

Corollary 5.2 The quotients kRn/kRn−1 are globally semistable symmetric spectra. Hence,
by induction, so are the kRn.

Proof Since the GLn(R)-I -space E(EmbR(Rn, R〈−〉)) is positive static, it follows that as
a G-symmetric spectrum |E(EmbR(Rn, R〈M〉))|+ ∧GLn(R) |P R(n,−)| is π∗-isomorphic
to the restriction of the G-orthogonal spectrum E(1GLn(R)〈G〉)+ ∧GLn(R) |P R(n,−)|, and
hence G-semistable. As this holds for all finite G, it follows from [8, Prop. 4.13 (i)] that the
quotient is globally semistable. ��

We proceed by examining P R(n,−). A point in the M-th level of the realization of this
�-space is represented by a tuple (Wi , xi )i∈I where the xi are elements of R

M and the Wi

are free submodules of Rn whose inner sum is direct and all of Rn . In other words, it is the
direct algebraic analog of L(n, SM ) of Sect. 3.1. Many of the arguments we used there can
also be applied here by formally replacing complex subspaces by free R-submodules. We
define two subspaces (where rk(−) denotes the rank of a free R-module):

P R(n, SV ) = {[(Wi , xi )i∈I ] |
∑

rk(Wi ) · xi = 0}
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and

P R|·|=1(n, SV ) = {[(Wi , xi )i∈I ] |
∑

rk(Wi ) · xi = 0,
∑

rk(Wi )|xi |2 = 1}.
The same arguments as in Sect. 3.1 show that the realization of P R(n,−) is GLn(R)-
isomorphic to the suspension spectrum of the unreduced suspension of the GLn(R)-I -space

P R|·|=1(n, S−), which we abbreviate by P R
n . Again we remark that this GLn(R)-I -space is in

fact the restriction of a GLn(R)-orthogonal space and hence can be examined by the means
of Sect. 1.1. It turns out that not all descriptions from Sect. 3.1 for ku can be carried over to
this setting. We start with the one that works in full generality. Let P R

n denote the poset of
proper decompositions of Rn into direct sums of free R-submodules. Then we have:

Theorem 5.3 For every discrete ring R satisfying dimension invariance, there is a zig-zag
of GLn(R)-maps between P R

n and the constant orthogonal space |P R
n |, inducing a global

equivalence

S1 ∧ (EglGLn(R) ×GLn(R) P R
n )+ � S1 ∧ (EglGLn(R) ×GLn(R) |P R

n |)+.

In particular, there is a global equivalence of symmetric spectra

kRn/kRn−1 � �∞(EglGLn(R)+ ∧GLn(R) |P R
n |�).

Proof The proof is completely analogous to the one given in Sect. 3.2. ��
We now discuss in which cases P R

n is a universal space of a collection of subgroups, for
which we have to make assumptions on the ring R. Let CR

n denote the collection of complete
subgroups of GLn(R), i.e., those that are conjugate to one of the form GLn1(R) × · · · ×
GLnk (R) with n1 + · · · + nk = n and k > 1. Then the following still holds for all rings R:

Lemma 5.4 The GLn(R)-I -space P R
n is closed and has all isotropy in complete subgroups.

Proof (Proof(cf. Proposition 3.6)) An element of GLn(R) fixes each Wi in a partition Rn =⊕
Wi if and only if it lies in the product of the GL(Wi ), which is a complete subgroup. ��
One might guess that P R

n is in fact a universal space for the collection of complete sub-
groups, but this is not true in general. The issue is the following: assume given a complete
subgroup H = ∏

GL(Wi ) and a decomposition Rn = ⊕
W ′

j that is (strongly) fixed by H .
Over the complex numbers this implied that each Wi must be contained in some W ′

j , or in
other words that the decomposition

⊕
Wi is a refinement of

⊕
W ′

j . This allowed an easy
description of the H -fixed point space and led to the proof that it is contractible. However,
for general R this is not the case, as the following example shows:

Example 5.5 Let R = F2 be the field with two elements and consider the decomposition
F
2
2 = F2 ⊕ F2. Then the associated complete subgroup of GL2(F2) is GL1(F2) ×GL1(F2)

and hence trivial. So it fixes all three decompositions of F
2
2 as a sum of two 1-dimensional

subspaces, not only the one it was associated to.

Arone and Lesh showed that this phenomenon cannot occur under the following assump-
tions on R:

Lemma 5.6 ([1, Lem. 8.8]) Let R be an integral domain with 2 	= 0, and further be given
two proper decompositions Rn = ⊕

Wi and Rn = ⊕
W ′

j into free submodules. Then the
subgroup

∏
GL(Wi ) fixes all of the W ′

j if and only if
⊕

Wi is a refinement of
⊕

W ′
j .
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Under these conditions we see:

Proposition 5.7 Let R be an integral domain with 2 	= 0. Then P R
n is a global universal

space for the collection of complete subgroups of GLn(R).

Proof We have already seen that all the GLn(R)-isotropy lies in complete subgroups. Now
let G be a finite group and UG a complete G-set universe. In Appendix 7.2 we show that
(P R

n )(UG) is a (GLn(R) × G)-cell complex. Let H ⊆ GLn(R) × G be a subgroup whose
intersectionwithGLn(R)×1 (whichwedenote by K ) is complete.Making use ofLemma5.6,
we can associate to K the unique minimal partition Rn = W1 ⊕ · · · ⊕ Wk that is fixed by it
and it follows that K = GL(W1) × · · · ×GL(Wk). We have to show that the H -fixed points
(P R

n )(UG)H are contractible. By the short exact sequence

1 → K → H → prG(H) → 1

these H -fixed points are the prG(H)-fixed points of the action on (P R
n )(UG)K which is

induced from the associated group homomorphism prG H → WGLn(R)K . By Lemma 5.6, a
partition is fixed by K if and only if it refines Rn = ⊕

Wi . Refinements of this partition stand
in bijection to partitions of the set {1, . . . , k}. Via this correspondence we see that the K -fixed
points (P R

n )(UG)K are in fact homeomorphic to the (�dimW1 ×· · ·×�dimWk )-fixed points of
S(Rn ⊗ R[UG ]). Moreover, the Weyl-groupsWGLn(R)K andW�n (�dimW1 × · · ·×�dimWk )

are canonically isomorphic and the homeomorphism is equivariant under this isomorphism.
Hence the statement follows from the fact that S(Rn ⊗ R[UG ]) is a universal space for the
collection C�

n 〈G〉, which was proved in Proposition 2.1. ��
Altogether we summarize:

Theorem 5.8 (Quotients in the modified rank filtration) Let R be a ring satisfying dimension
invariance. Then there is a global equivalence

kRn/kRn−1 � �∞(EglGLn(R)+ ∧GLn(R) |P R
n |�).

If R is in addition an integral domain with 2 	= 0, then there is also a global equivalence

kRn/kRn−1 � �∞(EglGLn(R)+ ∧GLn(R) (EglCR
n )�).

5.2 Quotients in the complexity filtration

Global algebraic K -theory kR also allows a canonical map to Sp∞, mapping the modified
rank filtration to the symmetric product filtration. On the level of �-spaces it is given by
replacing a tuple (Ma)a∈A by its dimensions (dimR(Ma))a∈A and all automorphisms by
identities. Then the analogous pushout construction as in Sect. 3.3 gives the complexity
filtration

kR = AR
0

p0−→ AR
1

p1−→ · · · → AR∞ � HZ.

Again there are cofiber sequences showing that AR
n /AR

n−1 is equivalent to the suspension
spectrum of an I -space, the homotopy cofiber of

Egl(GLn(R))+ ∧GLn(R) |P R
n |� � Egl(GLn(R))+ ∧GLn(R) (P R

n )� → (BF�
n )�

∼= (P R
n /GLn(R))�.
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This homotopy cofiber is given by the unreduced suspension of the GLn(R)-orbits of the
join of Egl(GLn(R)) and P R

n . For arbitrary R we are not aware of a direct characterization
of this global homotopy type, but under the same additional hypotheses as in the previous
section we obtain the following via Lemma 3.17.

Theorem 5.9 Let R be an integral domain with 2 	= 0. Then there is a global equivalence

AR
n /AR

n−1 � �∞ (
Bgl(C

R
n )�

)
,

where CR
n denotes the collection of complete subgroups of GLn(R) plus the trivial subgroup.

5.3 Themodified rank filtration on 0-th homotopy

Nowwe come to the behavior of these filtrations onπ0, starting with the rank filtration. Every
R[G]-moduleW which is free as an R-module gives rise to an element [W ] ofπG

0 (kR) repre-
sented by the map SM → kR(M); v �→ (ϕ(M), v), where ϕ : W → R[M] is an equivariant
embedding for some finite G-set M (which always exists, cf. the proof of Lemma 5.1). Like
for ku this element only depends on the isomorphism type of W and is independent of the
other choices. Furthermore, it is already defined in πG

0 (kRrkW ). The assignment W �→ [W ]
is additive with respect to direct sum of R[G]-modules and induces an isomorphism from
the representation ring RepR(G) of R[G]-modules that are finitely generated free as an
R-module to πG

0 (kR). Furthermore, it takes restrictions of representations to homotopy-
theoretic restrictions and inductions to homotopy-theoretic transfers.

The intermediate terms π0(kR
n) allow a similar formula as the ones for topological K -

theory. We first treat the case where R is a finite ring. Let τ R
n be the class of the tautological

GLn(R)-module of R-rank n. Then analogously to the previous section we define universal
relations a(k, l) and b(i, j) by

resGLk+l (R)

GLk (R)×GLl (R)(τ
R
n ) = p∗

1(τ
R
k ) + (p2)

∗(τ R
l ),

respectively

res
GLi · j (R)

�i �GL j (R)(τ
R
i · j ) = tr

�i �GL j (R)

GL j (R)×(�i−1�GL j (R))(p
∗(τ R

j )).

And we obtain:

Theorem 5.10 (Modified rank filtration on π0) Let R be a finite ring. Then the F in-
global functor π0(kR

n) is isomorphic to the free global functor generated by the elements
τ R
1 , . . . , τ R

n modulo the relations a(k, l) for all k + l ≤ n and b(i, j) for all i · j ≤ n.

Here, a F in-global functor is a global functor which is only defined on finite groups, also
called inflation functor in [22].

Proof The proof is analogous to that of Theorem 3.22, using the equivalence of the filtration
quotients to the global homotopy orbits of the decomposition complex of Theorem 5.3. ��

The problem with infinite R is that its general linear groups are not finite. Hence the
universal elements above do not make sense, as the theory is “not global enough” to include
infinite discrete groups. One can still give the following concrete description:

Proposition 5.11 (Description for arbitrary rings) Let R be a ring satisfying dimension
invariance. Then π0(kR

n) is generated as a F in-global functor by the elements [W ] ∈
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πG
0 (kR), where (G,W ) runs through a system of representatives of isomorphism classes of

a finite group G together with an R[G]-module that is free of rank ≤ n over R. The relations
are generated by:

• [W ⊕ W ′] = [W ] ⊕ [W ′] with dimR(W ) + dimR(W ′) ≤ n.
• [IndGH (W )] = trGH [W ] with dimR(W ) · [G : H ] ≤ n.

In this case both the generators and the relations are already closed under restrictions, so
it suffices to apply transfers to obtain the concrete value at a given finite group. In this sense
the global formula is no easier than the one for a specific group.

5.4 The complexity filtration on 0-th homotopy

We again start with the case of finite R, where formula and proof are analogous to the one
for topological K -theory.

Theorem 5.12 (Complexity filtration on π0) Let R be a finite ring and n ∈ N. Then the map
(qn)∗ : RepR(−) ∼= π0(kR) → π0(A

R
n ) is surjective with kernel generated as a F in-global

functor by the element

τ R
n − n · [1] ∈ π

GLn(R)
0 (kR) ∼= RepR(GLn(R)).

For general R these universal elements are again not part of the theory and hence there is
no such compact description. The result then reads as follows:

Proposition 5.13 (Description for arbitrary rings) Let R be a ring satisfying dimension
invariance and n ∈ N. Then the map RepR(−) : π0(kR) → π0(A

R
n ) is surjective with

kernel generated as a F in-global functor by the elements

[W ] − n · [1] ∈ πG
0 (kR) ∼= RepR(G)

where (G,W ) runs through isomorphism classes of pairs with W an n-dimensional G-
representation over R.

The proof of the two statements is the same as that of Theorem 3.32. It uses that the
inclusion Bgl(GLn(R)) ↪→ ((EglGLn(R) ∗ P R

n )/GLn(R)) induces a surjection on π0,
even if π0(BglGLn(R)) is not generated by a single element.

6 Examples

In this final sectionwe give examples for the effect onπG
0 of themodified rank and complexity

filtrations for various finite groups G and topological or discrete rings. The purpose is two-
fold: on the one hand we want to explain how one computes concrete values πG

0 (X) for
the global spectra X that appeared in this paper, using the global formulas we gave in the
previous sections. On the other hand we try to demonstrate that the behavior at a specific
group is often quite complicated, while the global formula is not.

Example 6.1 (The symmetric group�3, overC)We begin by going through the exampleG =
�3 in detail. To compute the values of the modified rank and complexity filtration for�3, we
need to know its subgroups, their complex representation rings (together with the conjugation
action) and the induction maps between them. The conjugacy classes of subgroups are given
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by the trivial group {e}, the cyclic groups C2 (represented by any transposition) and C3 (the
normal subgroup of 3-cycles), and the whole group �3. Their representation rings are:

RU ({e}) ∼= Z{[1]} RU (C2) ∼= Z{[1], [−1]}
RU (C3) ∼= Z{[1], [η3], [η23]} RU (�3) ∼= Z{[1], [sgn], [ν3]},

where ν3 is the 2-dimensional reduced natural representation and η3 is a primitive third
root of unity. The C3-representations η3 and η23 are conjugate under the Weyl-group action.
Furthermore, we have the following formulas for induction:

IndC2{e}([1]) = [1] + [−1] IndC3{e}([1]) = [1] + [η3] + [η23]
Ind�3{e}([1]) = [1] + [sgn] + 2 · [ν3]
Ind�3

C2
([1]) = [1] + [ν3] Ind�3

C2
([−1]) = [sgn] + [ν3]

Ind�3
C3

([1]) = [1] + [sgn] Ind�3
C3

([η3]) = [ν3]
To compute the first term π

�3
0 (ku1) we need to consider all transfers of 1-dimensional

representations (modulo the respective Weyl group actions) so we see that it is given by the
free abelian group

Z{[1], [sgn], tr�3
C3

([1]), tr�3
C3

([η3]), tr�3
C2

([1]), tr�3
C2

([−1]), tr�3{e}([1])}.
For the second stage we add on everything that comes from a 2-dimensional irreducible
representation (since, using the relation a(1, 1) of Theorem 3.22, we can replace a non-
irreducible representation by the homotopy-theoretic sum of its summands). In this case
there is only one 2-dimensional irreducible representation, the �3-representation ν3. Taking
into account the relation b(2, 1) we furthermore have to identify all representations that
are at most 2-dimensional and an induction over a proper subgroup with the homotopy-
theoretic transfer of that respective representation, transferred up to the whole group �3 if
necessary. Considering the formulas for induction above, this means that we have to identify
the following:

tr�3{e}([1]) = tr�3
C2

(trC2{e}([1])) ∼ tr�3
C2

([1]) + tr�3
C2

([−1])
tr�3
C3

([1]) ∼ [1] + [sgn]
tr�3
C2

([η3]) ∼ [ν3]
So we see that π

�3
0 (ku2) is a free group with basis {[1], [sgn], [ν3], tr�3

C2
([1]), tr�3

C2
([−1])}.

Since there are no irreducible representations of dimension 3 or higher for any of the sub-
groups of �3, we from now on do not add any new generators but only have to take into
account new relations. In the third step the universal relation b(3, 1) shows that tr�3

C2
([1]) is

identified with [1]+[ν3] and tr�3
C2

([−1])with [sgn]+[ν3]. Hence, π�3
0 (ku3) is isomorphic to

Z{[1], [sgn], [ν3]}, which is the representation ring of �3, and the rank filtration is constant
from then on.

For every finite group G the complexity filtration over C stabilizes (on πG
0 (−)) at stage 1,

as noted in Remark 3.33. For �3 this can be seen concretely as follows: recall that we start
with π

�3
0 (ku), the representation ring, a free group on the classes [1], [sgn] and [ν3]. As the

sign representation is one-dimensional, it is identifiedwith [1] inπ
�3
0 (Au

1). Furthermore, ν3 is
the induction of the 1-dimensional C3-representation η3. So, since [η3] is identified with the
trivial representation, application of Ind�3

C3
(−) shows that [ν3] is identified with [1] + [sgn].
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We already argued that [sgn] is identified with [1], so this shows that [ν3] becomes 2 · [1] in
π

�3
0 (Au

1), which is hence isomorphic to Z.

Example 6.2 (The symmetric group �3,over R) We again discuss the symmetric group
on 3 letters, this time over R. Though the representation rings over R and C are iso-
morphic, like for every symmetric group, the effect of the modified rank and complexity
filtrations on π

�3
0 differ, as we now see. Again we have to start with the representation

rings over all subgroups, and the only difference to the complex case is at the subgroup
C3, where RO(C3) only has rank 2 with basis [1] and the reduced regular representa-
tion [ρC3

]. Consequently, we find that π
�3
0 (ko1) has one basis element less, it is the free

group on {[1], [sgn], tr�3
C3

([1]), tr�3
C2

([1]), tr�3
C2

([−1]), tr�3{e}([1])}. In the next step the irre-

ducible representations [ν3] and tr�3
C3

[ρC3
] are added, and again tr�3{e}([1]) is identified with

tr�3
C2

([1]) + tr�3
C2

([−1)), as well as tr�3
C3

([1]) with [1] + [sgn]. This gives
π

�3
0 (ko2) ∼= Z{[1], [sgn], [ν3], tr�3

C3
[ρC3

], tr�3
C2

([1]), tr�3
C2

([−1])}.
In the third step the latter two classes are identifiedwith [1]+[ν3] and [−1]+[ν3] respectively,
hence they become algebraically dependent of the first three. Furthermore, applying tr�3

C3
(−)

to the relation trC3{e}([1]) = [1] + [ρC3
] (plus using earlier relations) shows that tr�3

C3
([ρ3])

represents the same class as 2 · [ν3], so π
�3
0 (ko3) is isomorphic to the representation ring

RO(�3).
The complexity filtration is also different to the complex one: in the first step [1] and [sgn]

are identified, but this time there are no further relations. This is because applying Ind�3
C2

to
the identification [1] ∼ [−1] contributes nothing new, and there is only one 1-dimensional
representation of C3 over R. So π

�3
0 (Ao

1)
∼= Z{[1], [ν3]}. In the second step [ν] is identified

with 2 · [1] and hence π
�3
0 (Ao

2)
∼= Z, which is true for all πG

0 (Ao
2) with G finite.

Example 6.3 (Cyclic groups of prime order) Having seen the general algorithm, we now go
back to the easiest example and use it to illustrate the behavior over various rings. Let p be
a prime and Cp the cyclic group with p elements.

Over C: the irreducible C[Cp]-representations are given by η1p, η
2
p, . . . , η

p
p , where ηp is

a primitive p-th root of unity. So we find that π
Cp
0 (kun) ∼= Z{[η1p], [η2p], . . . , [ηp

p], trZ/p
1 [1]}

for 0 < n < p and Z{[η1p], [η2p], . . . , [ηp
p]} for all n ≥ p. As mentioned before, πG

0 (Au
n) is

isomorphic to Z for all n ≥ 1 and any finite group G.
Over R: if p is 2, all complex representations are already defined over the reals, so

the filtrations are the same. If p is odd, there are (p − 1)/2 isomorphism classes of 2-
dimensional indecomposable representations, which can be expressed as the underlying real
representations of η1p, . . . , η

(p−1)/2
p , plus the trivial 1-dimensional one. So we find that

π
Cp
0 (kon) ∼=

⎧
⎪⎨

⎪⎩

Z{[1], trCp
{e} [1]} for n = 1

Z{[1], resC
R
(η1p), . . . , res

C

R
(η

(p−1)/2
p ), tr

Cp
{e} [1]} for 1 < n < p

Z{[1], resC
R
(η1p), . . . , res

C

R
(η

(p−1)/2
p )} for n ≥ p.

Furthermore, π
Cp
0 (Ao

1)
∼= π

Cp
0 (ko) ∼= RO(Cp) since there are no non-trivial one-

dimensional representations, and π
Cp
0 (Ao

n)
∼= Z for all n > 1.

Over Q: there are only two isomorphism classes of irreducible Cp-representations over
Q, the trivial 1-dimensional representation and the reduced regular representation ρCp

of
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dimension p − 1. Hence we find that

π
Cp
0 (kQ

n) ∼=

⎧
⎪⎨

⎪⎩

Z{[1], trCp
{e} [1]} for 0 < n < p − 1

Z{[1], [ρCp
], trCp

{e} [1]} for n = p − 1

Z{[1], [ρCp
]} for n ≥ p.

Furthermore, we see that

π
Cp
0 (AQ

n ) ∼=
{

Z{[1], [ρCp
]} for 0 ≤ n ≤ p − 1

Z for n ≥ p.

In particular, the complexity filtration over Q does not stabilize globally on π0.
Over Fp: unlike in characteristic 0, the group ring Fp[Cp] ∼= Fp[t]/(t p − 1) ∼=

Fp[t]/(t − 1)p ∼= Fp[t]/t p is no longer semisimple. Up to isomorphism, there is exactly
one indecomposable representation Vi in every dimension 1 ≤ i ≤ p (and none in higher
dimensions) and every representation decomposes uniquely as a sum of these. So we see that

π
Cp
0 ((kFp)

n) ∼=
{

Z{[V1], . . . , [Vn], trCp
{e} [1]} for n = 1, . . . , p − 1

Z{[V1], . . . , [Vp]} for n ≥ p,

where the cases p−1 and p are only notationally different, since the map π
Cp
0 ((kFp)

p−1) →
π
Cp
0 ((kFp)

p) sends tr
Cp
{e} [1] to [Vp]. For the complexity filtration we obtain:

π
Cp
0 (A

Fp
n ) ∼=

{
Z{[Vn+1], . . . , [Vp]} n = 0, . . . , p − 1

Z n ≥ p

Finally we compute the complexity filtration of the alternating group A5 over Q. To
achieve this we first need two preparatory examples:

Example 6.4 (Complexity filtration of the alternating group A4 over Q) The representation
ring is given by RepQ(A4) = Z{[1], [η], [ν4]}, where η is of dimension 2 and ν4 is of
dimension 3. There are two conjugacy classes ofmaximal subgroups, the alternating group A3

and the Klein four-group K , with representation rings RepQ(A3) = Z{[1], [ρA3 ] respectively
RepQ(K ) ∼= Z{[1], [ϕ1], [ϕ2], [ϕ3]}. The ϕi are all 1-dimensional and conjugate under the
action of the Weyl group in A4. We have

IndA4
K ([1]) = [1] + [η] and IndA4

K ([ϕi ]) = [ν4].

So [ν4] is identified with [1]+[η] in π
A4
0 (AQ

1 ) and this is the only relation (since A3 has only

one 1-dimensional representation). Hence π
A4
0 (AQ

1 ) ∼= Z{[1], [η], [ν4]}/([1]+[η]−[ν4]) ∼=
Z{[1], [η]}. In π

A4
0 (AQ

2 ) the representation [η] is identified with 2 · [1], so the filtration
becomes constant Z from then on.

Example 6.5 (Complexity filtration of the dihedral group D5 over Q) The representation ring
of D5 is given by RepQ(D5) ∼= Z{[1], [−1], [ψ], [(−1) · ψ]}, where [−1] is restricted from
the projection D5 → D5/C5 ∼= C2. The 4-dimensional irreducible representations [ψ] and
[(−1) · ψ] are characterized by

IndD5
C2

([1]) = [1] + [ψ] and IndD5
C2

([−1]) = [−1] + [(−1) · ψ].
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Hence we see that the kernel of RepQ(D5) → π
D5
0 (AQ

1 ) is generated by [1] − [−1] and
[1] + [ψ] − [−1] − [(−1) · ψ], which can be simplified to [1] − [−1] and [ψ] − [(−1) · ψ].
So π

D5
0 (AQ

1 ) is free of rank 2 with basis the classes of [1] and [ψ]. Since there are no 2-
or 3-dimensional irreducible representations for any subgroup of D5, this is also the case
for π

D5
0 (AQ

2 ) and π
D5
0 (AQ

3 ). In π
D5
0 (AQ

4 ) we have the relation [ψ] − 4 · [1], so the filtration
stabilizes.

Example 6.6 (Complexity filtration of the alternating group A5 over Q) The representation
ring is given by RepQ(A5) ∼= Z{[1], [ν5], [ψ], [�2ν5]}, where ν5 is the restriction of the
reduced natural �5-representation, �2ν5 is its 6-dimensional exterior square and [ψ] is 5-
dimensional. There are 3 conjugacy classes ofmaximal subgroups given by A4,�3 (generated
by (123) and (12)(45)) and D5 (generated by (1234) and (13)). We note that the rational
complexity filtration for �3 is the same as the one over R, since all real representations of
its subgroups are already defined rationally. Using the notation from the previous examples,
we have

IndA5
A4

([1]) = [1] + [ν5] IndA5
A4

([η]) = 2 · [ψ]
IndA5

A4
(ν4) = [ν5] + [ψ] + [�2ν5]

IndA5
�3

([1]) = [1] + [ν5] + [ψ] IndA5
�3

([sgn]) = [ν5] + [�2ν5]
IndA5

�3
([ν3]) = [ν5] + 2 · [ψ] + [�2ν5]

IndA5
D5

([1]) = [1] + [ψ] IndA5
D5

([−1]) = [�2ν5]
IndA5

D5
([ϕ]) = 2 · [ν5] + 2 · [ψ] + [�2ν5]

and IndA5
D5

([(−1) ·ϕ]) = 2 · [ν5]+2 · [ψ]+ [�2ν5]. From our previous calculations we know

that the relations in πG
0 (AQ

1 ) are generated by [1] + [η] − [ν4] for G = A4, by [1] − [sgn]
for G = �3 and by [1] − [−1] and [ψ] − [(−1) · ψ] for G = D5. Applying inductions to
these relations, we see that they only give the relation ([ψ] + [1] − [�2ν5]) in π

A5
0 (AQ

1 ).
From this we can read off that

π
A5
0 (AQ

1 ) ∼= RepQ(A5)/([ψ] + [1] − [�2ν5]),
hence it is free with basis [1], [ν5] and [ψ]. In step 2 we have to add the inductions of
the relations 2 · [1] − [η] for A4 and 2 · [1] − [ν3] for �3. This yields the new relation
[1] + [ν5] − [ψ], so

π
A5
0 (AQ

2 ) ∼= RepQ(A5)/([ψ] + [1] − [�2ν5], [1] + [ν5] − [ψ])
is free with basis [1] and [ν5]. In the third step nothing happens, because A5 has no 3-
dimensional irreducible representation and we have seen that there are no new relations for
any of the maximal subgroups. At step 4 the element [ν5] is identified with 4 · [1] and so
π

A5
0 (AQ

n ) ∼= Z for all n ≥ 4.
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7 Appendix

7.1 Cofibrancy properties of the rank filtration

In this appendix we show that the V -th level of the inclusions kun−1 → kun is an O(V )-
cofibration, guaranteeing that the quotient kun/kun−1 has the global homotopy type of the
homotopy cofiber. For instance, this was used in the proof of Theorem 3.22. For finite sub-
groups of O(V ) (and hence for the F in-global homotopy type of the quotient) this would
follow quite directly from the results of [14], but we need the general statement. In this and
the next appendix we repeatedly make use of a theorem due to Illman (cf. [9]) that states that
every smooth manifold equipped with a smooth action by a compact Lie group allows the
structure of an equivariant CW complex.

We recall from [12, Sec. 3] that the evaluation X(A) of a �-space X on a based space A is
naturally filtered by skeleta skm(X(A)). The m-skeleton is obtained from the (m − 1)-st by
forming a certain pushout [12, Thm. 3.10]. Furthermore, given amap i : X → Y of�-spaces,
one can define relative skeleta skm[i](A) by skm(Y (A)) ∪skm (X(A)) X(A) and it follows that
these are related by a similar pushout square. The colimit over the skm[i](A) gives back
Y (A) and the map from X(A) = sk0[i](A) agrees with i . Now let V be a finite dimensional
real inner product space. We are interested in the case where A is equal to SV and i is the
inclusion kn−1(Sym(VC),−) ↪→ kn(Sym(VC),−). There the connecting pushout takes the
form
(∨

n1+···+nm=n(LC(
⊕

C
ni , Sym(VC))/

∏
U (ni ))+) ×�m F((SV )×m) skm−1[i](SV )

(∨
n1+···+nm=n(LC(

⊕
C
ni , Sym(VC))/

∏
U (ni ))+) ×�m (SV )×m skm [i](SV ),

(7)

where the wedge is indexed over all m-tuples (n1, . . . , nm) which add up to n, with all ni
larger than 0. The notation F((SV )×m) stands for the subspace of (SV )×m of tuples which
contain two equal entries or a basepoint. It suffices to show that skm−1[i](SV ) → skm[i](SV )

is an O(V )-cofibration for all m ∈ N, since the sequential colimit of O(V )-cofibrations is
again an O(V )-cofibration. This follows from:

Lemma 7.1 The left hand vertical map in Diagram (7) is an O(V )-cofibration.

Proof We first argue that
∨

n1+···+nm=n(LC(
⊕

C
ni ,Sym(VC))/

∏
U (ni ))+ is (�m ×

O(V ))-cofibrant. This would follow directly from Illman’s theorem if we put Wk =⊕
i=0,...,k Sym

i (VC) instead of the full Sym(VC), since each LC(
⊕

C
ni ,Wk) is a

smooth manifold with a smooth action by U (Wk) × (NU (n)

∏
U (ni )). The subspace

LC(
⊕

C
ni ,Wk−1) is exactly the space ofU (Symk(VC))-fixed points under this action. Since

O(V ) fixes Symk(VC), it normalizes the subgroup U (Symk(VC)). This implies that if we
forget any (U (Wk)× (NU (n)

∏
U (ni )))-CW structure to an (O(V )× (NU (n)

∏
U (ni )))-cell

structure, the space LC(
⊕

C
ni ,Wk−1) is necessarily a subcomplex and hence the inclusion

a cofibration. By quotienting out the
∏

U (ni )-actions and passing to the colimit we see that
the wedge is (�m × O(V ))-cofibrant, as claimed.

Hence it suffices to show that F((SV )×m) → (SV )×m is a (�m×O(V ))-cofibration. Note
that SV is an O(V )-CW complex with the two 0-cells 0 and ∞ with trivial O(V )-action and
one 1-cell of the form O(V )/O(V − 1)× D1 (where V − 1 ⊂ V is a choice of a hyperplane
in V ). Then the product CW structure on (SV )×m has cells of the form
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(�m � O(V )) ��i �O(V−1)×� j �O(V )×�k �O(V ) ((D1)×i × {0}× j × {∞}×k),

where i + j + k = m. These are attached along the inclusions ∂((D1)×i ) → (D1)×i . They
do not quite define a (�n �O(V ))-equivariant CW structure, since�i acts non-trivially on the
cell (D1)×i . But after fixing a�i -equivariant CW structure on (D1)×i relative to its boundary
for all i one obtains a (�m � O(V ))-equivariant cell structure on (SV )×m . A further choice
of (�m × O(V ))-CW structure on the (�m � O(V ))-orbits then defines a (�m × O(V ))-cell
structure on (SV )×m . Now, by definition, F((SV )×m) is the union of two subspaces: the
space of tuples containing a basepoint and the space of tuples containing two equal entries.
Note that the former is a subcomplex of the (�m � O(V ))-cell structure, since the basepoint
∞ is a 0-cell, and hence also a subcomplex of the underlying (�m × O(V ))-cell structure.
But the latter is given precisely by those points that have non-trivial �m-isotropy, hence it
is an equivariant subcomplex for any (�m × O(V ))-cell structure because �m is a normal
subgroup. Thus, F((SV )×m) is the union of two (�n ×O(V ))-subcomplexes of (SV )×m and
hence itself one, and therefore the inclusion is a (�n × O(V ))-cofibration, as desired. ��

7.2 Equivariant CW structures

The content of this appendix is to show that the U (n)-orthogonal spaces Ln that appeared
in Sect. 3.1 give (U (n) × G)-cell complexes when evaluated on any G-representation V (at
most countably infinite dimensional). This property was needed in Proposition 3.6 for Ln to
be a global universal space for the family of complete/non-isotypical subgroups ofU (n). The
same proof also shows that the spaces P R

n (V ) arising in the filtrations of algebraic K -theory
are (GLn(R) × G)-cell complexes.

The proof is similar to that of the previous section. This time we consider the (absolute)
skeleta filtration for the U (n)-�-space L(n,−), where the relating pushouts take the form

∨
n1+···+nm=n(LC(

⊕
C
ni , C

n)/
∏

U (ni ))+ ×�m F((SV )×m) skm−1(L(n, SV ))

∨
n1+···+nm=n(LC(

⊕
C
ni , C

n)/
∏

U (ni ))+ ×�m (SV )×m skm(L(n, SV )).

The wedge is taken over the same indexing system as in the previous section. We recall
that the closed subspace Ln(V ) of L(n, SV ) was defined to contain those elements that
can be represented by a tuple (Wi , xi )i∈I with all xi non-equal to the basepoint and sat-
isfying the equations

∑
dim(Wi ) · xi = 0 and

∑
dim(Wi )|xi |2 = 1. Intersection with

skm(L(n, SV )) gives subspaces skm(Ln(V )) whose colimit over m is isomorphic to Ln(V ).
Likewise, for fixed n1, . . . , nm we define closed subspaces S{ni }((SV )×m) ⊆ (SV )×m as
those tuples satisfying

∑
ni · xi = 0 and

∑
ni |xi |2 = 1. With these definitions an element

of L(
⊕

C
ni , C

n)/
∏

U (ni ) × (SV )×m is mapped to skm(Ln(V )) if and only if it lies in
L(
⊕

C
ni , C

n)/
∏

U (ni ) × S{ni }((SV )×m). So we obtain a new pushout square

(⊔
n1+···+nm=n(L(

⊕
C
ni , C

n)/
∏

U (ni ))) ×�m F(S{ni }((SV )×m)) skm−1(Ln(V ))

(⊔
n1+···+nm=n(L(

⊕
C
ni , C

n)/
∏

U (ni ))) ×�m S{ni }((SV )×m) skm(Ln(V )).

(8)
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Hence it suffices to show:

Lemma 7.2 The left hand vertical map in Diagram (8) is a (U (n) × G)-cofibration.

Proof The proof is very similar to that of Lemma 7.1. Again it suffices to see that
⊔

{ni 	=0}0≤i≤m
∑

ni=n

(
L
(⊕

C
ni , C

n
)/∏

U (ni )
)

is a (U (n)×�m)-CW complex and that the map F(S{ni }((SV )×m))) → (SV )×m is a (�m ×
G)-cofibration. The former is easy to see, because each summand is U (n)-isomorphic to
U (n)/

∏
U (ni ) and these summands are permuted by the �m-action. For the latter we note

that by a transformation of variables each S{ni }((SV )×m) is homeomorphic to the usual unit
sphere S(V ⊗R

m), which—by Illman’s theorem for finite dimensional V and the same trick
as in Lemma 7.1 for the infinite case—is a (�m ×G)-CW complex. Since F(S{ni }((SV )×m))

no longer contains any basepoints, it is exactly the subspace of elements with non-trivial
�m-isotropy, and hence always a (�m × G)-subcomplex. This finishes the proof. ��

7.3 Verification of cofiber sequence

In this appendix we give the proof that the map

ψn : �∞+ (L(Cn) ×U (n) Ln) → kun−1

constructed in Sect. 3.4 makes the following diagram a morphism of triangles in the global
homotopy category:

�∞+ (L(Cn) ×U (n) Ln)

ψn

�∞+ (L(Cn)/U (n))

αn

�∞(L(Cn)+ ∧U (n) (Ln)
�)

∼=

kun−1 in−1
kun kun/kun−1

(9)

In order to establish this we turn the upper sequence into a strict quotient sequence by
replacing L(Cn)/U (n) with L(Cn) ×U (n) CLn , where CLn denotes the cone on Ln . We
construct a morphism

ψn : �∞+ (L(Cn) ×U (n) CLn) → kun

with the following three properties:

(1) The square

�∞+ (L(Cn) ×U (n) Ln)

ψn

�∞+ (L(Cn) ×U (n) CLn)

ψn

kun−1 in−1
kun

commutes.
(2) The restriction of ψn to the copy of �∞+ (L(Cn)/U (n)) at the cone point is equal to αn .
(3) The induced map

�∞(L(Cn)+ ∧ (Ln)
�) → kun/kun−1,
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obtained by quotiening out �∞+ (L(Cn) ×U (n) Ln) and kun−1, is homotopic to the iso-
morphism constructed in Sect. 3.1.

The first two properties show that ψn induces a homotopy between the two composites in
the first square of Diagram 9. The third property implies that there is a homotopy between
the two composites in the square

�∞(L(Cn)+ ∧U (n) (Ln)
�)

∼=

S1 ∧ �∞+ (L(Cn) ×U (n) Ln)

S1∧ψn

kun/kun−1 S1 ∧ (kun/kun−1)

and so we are done. The map ψn is also used in Sect. 3.5.
In order to construct ψn we quickly recall the objects involved: an element of L(Cn)(V )

is a linear isometry C
n ↪→ Sym(VC). Points in Ln(V ) are represented by tuples (Wi , xi )i∈I

where the xi are elements of V and theWi are pairwise orthogonal subspaces ofC
n which add

up to all of C
n . Furthermore, these tuples have to be reduced and of norm 1 (cf. Sect. 3.1).

Finally, elements of kun(V ) are also represented by tuples (Wi , xi )i∈I , but this time the
Wi are orthogonal subspaces of Sym(VC) and the only requirement is that the sum of the
dimensions is at most n. We recall also that the definition of ψn made use of a function
s : [0,∞] → [0,∞] which maps the interval [0, 1

2n2
] homeomorphically onto [0,∞] and is

constant on the rest. Finally, given a finite tuple of vectors x = (xi )i∈I of a real inner product
space V we defined a map px : V → 〈{xi }i∈I 〉 ⊆ V by px (v) = ∑

I 〈v, xi 〉 · xi .
Now let H : [0,∞]×[0, 1] → [0,∞] be a homotopy relative endpoints from the identity

to s. Given a real inner product space V with a finite tuple of vectors x = (xi )i∈I as above,
we define a map HV

x : SV × [0, 1] → SV via

HV
x (v, t) = (H(|pxv|, t) − |pxv|) · pxv + v.

This gives a homotopy from the identity to the map sVx used in the definition of ψn .
Now we can define ψn by the formula

(ϕ, (Wi , xi )i∈I , t) ∧ v �→
{

(ϕ(Wi ),
t

1−t · xi + v)i∈I if 0 ≤ t ≤ 1/2

(ϕ(Wi ), HV
x (xi + v, 2t − 1))i∈I if 1/2 ≤ t ≤ 1

where x is short for the tuple of the xi . Since Hx (xi +v, 0) is equal to xi +v, these two defini-
tions agree on the intersection and glue to a well-definedmap. By definition, setting t equal to
1 gives back ψn , thus property (1) is satisfied. Furthermore, the elements (ϕ, (Wi , xi )i∈I , 0)
are mapped to the tuple (ϕ(Wi ), v)i∈I , which is equal to (ϕ(Cn), v). Hence it is independent
of the Wi and xi and the induced map

�∞+ (L(Cn)/U (n)) → kun

equals αn , yielding property (2). It remains to prove property (3), i.e., that the induced map

ψ
′
n : �∞(L(Cn)+ ∧ L�

n) → kun/kun−1

obtained by quotiening out�∞+ (L(Cn)×U (n)Ln) and kun−1 is homotopic to the isomorphism
from Sect. 3.1. For t ≤ 1/2 the two maps are in fact equal and hence it suffices to construct

123



210 M. Hausmann, D. Ostermayr

a homotopy on the part where t ≥ 1/2, relative to t = 1/2. This is achieved by the formula

(ϕ, (Wi , xi )i∈I , t, s) ∧ v �→
[(

HV
x

((
(1 − s)t

1 − (1 − s)t
+ s − 1

s + 1
+ 1

)
· xi

+v, s(2t − 1)) , ϕ(Wi ))i∈I
]

for s ∈ [0, 1]. Continuity is only unclear at points for which t = 1 and s = 0, which are
mapped to the basepoint. However, by the same estimate as in Sect. 3.4 one sees that the

expression (HV
x ((

(1−s)t
1−(1−s)t + s−1

s+1 + 1) · xi + v, s(2t − 1)), ϕ(Wi ))i∈I lies in kun−1 already

for all t close enough to 1 and s close enough to 0. So the homotopy is actually constant
around s = 0 and t = 1, hence we are done.
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