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Abstract
We prove a version of the Lefschetz fixed point theorem for multivalued maps F : X � X
in which X is a finite T0 space.
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1 Introduction

For over a century dynamical systems have been used to study time-evolving phenomena in
the applied sciences. Based on the fundamental assumption that the future evolution of the
system is completely determined by its initial state, dynamical systems can be divided into
two broad categories. Continuous-time dynamical systems model the evolution of an initial
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state for all times t ∈ R or t ∈ R
+
0 , while discrete-time dynamical systems are only interested

in the discrete times t ∈ Z or t ∈ N0. Once one of these four time sets T is chosen, and if
the topological space X denotes the underlying state space of the system, then a dynamical
system is a continuous map ϕ : T × X → X which satisfies

ϕ(0, x) = x and ϕ(t + s, x) = ϕ(t, ϕ(s, x)) for all t, s ∈ T , x ∈ X .

If x ∈ X denotes an initial state of the system, then ϕ(t, x) denotes the uniquely determined
state of the system at time t ∈ T.

While the concept of dynamical systems is fairly abstract, they can easily be generated
in applications. On the one hand, if we consider the state space X = R

d , then under mild
regularity assumptions on a vector field f : R

d → R
d solutions of the autonomous differen-

tial equation ẋ = f (x) give rise to a continuous-time dynamical system. On the other hand,
if X is any topological space and f : X → X is continuous, then we obtain a discrete-time
dynamical system by letting ϕ(k, x) = f k(x). In other words, discrete-time dynamical sys-
tems correspond to iterations of a fixed map. Notice that one can always choose the discrete
time set T = N0, but that the choice T = Z requires f to be a homeomorphism.

The primary focus of the theory of dynamical system is to describe the behavior of its
orbits. For any given initial state x ∈ X , the orbit through x is the image of the map ϕ(·, x).
Both in the case of ordinary differential equations and the iteration ofmaps, one usually cannot
derive explicit formulas for the state ϕ(t, x) for arbitrarily large times t , and therefore the
focus has shifted towards the development of a qualitative theory. Building on the properties
of simple orbits such as equilibria or periodic orbits, qualitative theory aims to assemble a
global picture of the dynamics of ϕ, and over the last century an impressive body of work
has been accumulated toward this goal, based to a large part on topological methods. See for
example [23] and the references therein.

Yet, is has become increasingly clear that for dynamical systems which arise in concrete
situations the application of these abstract mathematical results often poses practical chal-
lenges. For example, even for simple high-dimensional ordinary differential equations of the
form ẋ = f (x) one usually cannot determine all of its equilibrium solutions explicitly, since
they are given by the solutions of the nonlinear system f (x) = 0.With the advent of powerful
computational techniques, numerical computations have increasingly been used to analyze
the behavior of such dynamical systems, but this usually does not lead to mathematically
rigorous results. See for example the discussion in [26].

In order to overcome the challenges of concrete applications while still retaining math-
ematical rigor, a number of researchers have started to employ computer-assisted proof
techniques to study the global dynamics of a system. One promising approach is based on
discretization. Since the state space is usually an infinite Hausdorff space such as X = R

d ,
one can introduce a coarser finite representation of the space as the union X = G1∪ . . .∪GN

of certain subsets, which are usually based on a grid on X . Induced by the underlying dynam-
ical system ϕ one can then try to determine the collective behavior of all initial states in a
set Gk . Which sets can they move into? In the case of continuous-time dynamical systems,
states originating in Gk can move to a subset of the neighboring cells, while in the case of
a discrete-time dynamical system based on the map f : X → X , states from Gk can be
mapped into the cells which intersect the image f (Gk). Moreover, even if the dynamical
system is not known explicitly, one could still determine all images of the cell Gk through
approximations which include computable error bounds and lead to potentially larger target
sets. In either case, this discretization process will lead to a multivalued map, which in some
sense approximates the dynamical behavior. Despite the large loss of information inherent in
this discretization, one can often still use topological results from degree theory [33] or the
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more dynamically oriented Conley index theory [10] to transfer statements about the finite
multivalued map back to mathematical results about the underlying dynamical system. For
example, in [18] this approach was used to prove chaos in the Lorenz equations.

While the above-described procedure naturally leads to the study of multivalued maps on
a topological space, such maps have been studied extensively before in a number of other
contexts, such as for example control theory and differential inclusions [3]. These applications
have shown that one needs to be careful with the formulation of smoothness assumptions
for multivalued maps, as there is no canonical notion of continuity. In order to keep the
theory as general as possible, two notions of semicontinuity have been introduced, and these
lead to a theory of multivalued maps which in many aspects parallels the treatment of their
single-valued counterparts. For example, topological methods to establish the existence of
fixed points are developed in [14] under the assumption of semicontinuity. The majority of
these results, however, has only been developed for multivalued maps on Hausdorff spaces.

To the best of our knowledge, there is no comprehensive theory aimed at the dynamics
of multivalued maps between finite topological spaces—which are Hausdorff only under the
trivial discrete topology. In addition to the computer-assisted proof approach outlined earlier,
multivalued maps on finite topological spaces constitute a natural tool to study sampled
dynamical systems, that is systems known only from a finite sample, for example a time
series [1,11]. Another example is Forman’s theory of combinatorial vector fields [12,13].
The theory introduces an associated flow on the underlying simplicial complex which can
be viewed as a multivalued map. The dynamics of this flow map has been studied in a recent
series of papers [8,15,19]. More precisely, the authors introduce combinatorial counterparts
to the dynamical concepts of isolated invariant sets,Morse decompositions, and Conley index
in the setting of simplicial complexes and Lefschetz complexes. In addition, they establish
connections between the combinatorial theory and its classical versions. The generalization
of this work to general finite topological spaces, however, remains open.

As a first step towards such a theory, the present paper is devoted to deriving a Lefschetz
fixed point theorem formultivaluedmaps F : X � X where X is a finite T0 space. Recall that
there is an isomorphism between the category of finite T0 spaces with continuous maps and
the category of finite posets with order-preserving maps. Multivalued maps between posets
were previously investigated in [24,27,28,32]. Most of these results were aimed at studying
fixed points in the case of infinite posets. In particular in [24] and [32], multivalued maps
are used to study the problem of the fixed point property of a product of posets. The maps
considered in these articles are upper semicontinuous (usc) and/or lower semicontinuous
(lsc), and [32] used the notion of isotone maps for maps which are both usc and lsc. In the
classical fixed point theory of multivalued mappings, fixed points of usc multivalued maps
with acyclic values F : X � X between absolute neighborhood retracts are studied using
a variant of the Lefschetz fixed point theorem [14, Theorem 32.9]. We will see that there
is no hope to define Lefschetz numbers for multivalued maps F : X � X between finite
T0 spaces which are isotone and have acyclic values if we want each continuous selector
f : X → X of F to have the same Lefschetz number as F (see Proposition 7.1). Rather,
we concentrate on multivalued maps which satisfy stronger regularity properties than upper
or lower semicontinuity, which will be called strong upper and strong lower semicontinuity.
For such multivalued maps it will be possible to define an induced map in homology, and
then to establish the Lefschetz fixed point theorem.

The remainder of this paper is organized as follows. After a brief review of finite spaces
in Sect. 2, we recall the notions of upper and lower semicontinuity for multivalued maps and
introduce stronger versions of these concepts in Sect. 3. In addition, we provide a number
of equivalent characterizations for these definitions in the context of finite T0 spaces, which
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will be useful later on. In Sect. 4 we show that multivalued maps which are strongly usc
or strongly lsc and which have acyclic values induce well-defined maps in homology, and
this is used to establish the Lefschetz fixed point theorem in Sect. 5. Section 6 discusses the
fixed point property for finite T0 spaces with respect to these multivalued maps, while Sect. 7
shows that it is not possible to define a Lefschetz number for isotone maps. Finally, in Sect. 8
we present a notion of homotopy which preserves Lefschetz numbers.

2 Basics on finite spaces

We begin by recalling the basic correspondence between finite spaces and posets due to
Alexandroff and some elementary results of the homotopy theory of finite spaces originally
developed by McCord and Stong. A finite topological space is a space with finitely many
points. Many of the results of this paper can be stated for arbitrary finite spaces but we will
restrict ourselves to finite T0 spaces, that is finite spaces in which for any two different points
there exists an open set containing only one of them. If X is a finite T0 space, then for every
point x ∈ X there exists a smallest open set Ux which contains x . If we then define

x ≤ y if x ∈ Uy,

then X becomes a poset with respect to the so-defined order. One can easily show that we
also have

x ≥ y ⇔ x ∈ cl y,

where as usual cl y denotes the closure of the set {y}. Conversely, if X denotes any finite
poset, then one obtains a finite T0 space by considering all down-sets in the poset as open.
Recall that U ⊂ X is called a down-set if x ∈ U and y ≤ x implies y ∈ U . The closed
sets of this space are then the up-sets.1 This establishes a correspondence between finite T0
spaces and finite posets and from now on we will use this correspondence to treat finite T0
spaces and finite posets as the same object.

If A is any subset of a finite T0 space X , we denote byUA the smallest open set containing
A. This is exactly the set of points in X which are smaller than or equal to some point in A.

For finite T0 spaces X and Y the product topology on X × Y corresponds to the product
order given by (x, y) ≤ (x ′, y′) if x ≤ x ′ and y ≤ y′.

It is easy to prove that a single-valued function f : X → Y between finite T0 spaces
is continuous if and only if it is order-preserving, that is x ≤ x ′ implies f (x) ≤ f (x ′).
Given a finite T0 space X , we denote by Xop the finite space with the dual (opposite) order.
Therefore a map f : X → Y between finite T0 spaces is continuous if and only if the map
f op : Xop → Yop which coincides with f in the underlying sets is continuous.
If X is a finite T0 space, two points x, y ∈ X lie in the same path-component if and only

if there exists a sequence x = x0 ≤ x1 ≥ x2 ≤ . . . xn = y. Such a sequence is called a fence
from x to y. Given finite T0 spaces X and Y , the set Y X of continuous maps from X to Y
has a natural order, the pointwise order, given by f ≤ g if f (x) ≤ g(x) for every x ∈ X . If
f ≤ g then the map H : X × [0, 1] → Y defined by H(x, 0) = g(x) and H(x, t) = f (x)
for t > 0 defines a homotopy from g to f . In particular, a finite T0 space with a maximum

1 We would like to point out that while this specific correspondence seems to be the most commonly used
one, it would also be possible to define the order relation by replacing Uy by cl y. This was in fact done in
the paper [2] which first established the connection between posets and finite T0 spaces. In this convention,
down-sets in the poset correspond to closed sets, and up-sets to open sets. All of the results in the present
paper remain valid under this convention, if one reverses all poset inequalities.
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is contractible. The topology which corresponds to the pointwise order is the compact-open
topology. This fact was used by Stong [29] to give a characterization of homotopies between
maps of finite spaces: two maps f , g : X → Y are homotopic if and only if there is a
sequence f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g of continuous maps from X to Y .

In general finite spaces are not homotopy equivalent to Hausdorff spaces. However,
McCord proved that any finite space is weak homotopy equivalent to a polyhedron. Recall
that a map f : X → Y between arbitrary topological spaces is said to be a weak homo-
topy equivalence if it induces isomorphisms in all homotopy groups for any base point. One
such map induces automatically isomorphisms in all the homology groups for any coefficient
group.

Theorem 2.1 (McCord’s Theorem [16, Theorem 6]) Suppose X is any space and Y is a finite
T0 space. Let f : X → Y be a continuous map such that f −1(Uy) is weakly contractible (i.e.,
it has trivial homotopy groups) for every y ∈ Y . Then f is a weak homotopy equivalence.

In the case that X is finite as well this result can be deduced from Quillen’s Theorem A
[21]. If X is a finite T0 space, we denote byK(X) the order complex of X , that is, the simplicial
complex consisting of all chains in the poset. McCord used the result above to prove that
for any finite T0 space there exists a weak homotopy equivalence μX : K(X) → X [16,
Theorem 1]. Moreover, any continuous map f : X → Y between finite T0 spaces induces
a simplicial map K( f ) : K(X) → K(Y ) which coincides with f on vertices, and we have
f ◦ μX = μY ◦ K( f ). Note that since K(X) = K(Xop), X and Xop have isomorphic
homology groups with an isomorphism given by (μXop )∗(μX )−1∗ : Hn(X) → Hn(Xop).

In the classical setting of compact spaces the construction of homology of multivalued
maps is based on Vietoris–Begle mapping theorem [30]. In the setting of finite topologi-
cal spaces this theorem may be replaced by the following version of McCord’s result for
homology. Recall that we call a space acyclic if all its reduced homology groups with integer
coefficients are trivial.

Theorem 2.2 (McCord’s Theorem for homology) Let X be an arbitrary space and let Y be a
finite T0 space. Let f : X → Y be a continuous map such that f −1(Uy) is acyclic for every
y ∈ Y . Then f induces isomorphisms f∗ : Hn(X) → Hn(Y ) in all the homology groups
with integer coefficients.

Proof Weproceed by induction on the cardinality ofY . The result is truewhenY is empty. For
Y non-empty let y ∈ Y be amaximal point. Then f | f −1(Y�{y}) : f −1(Y�{y}) → Y�{y} and
f | f −1(Uy�{y}) : f −1(Uy�{y}) → Uy�{y} induce isomorphisms in homology by induction.

Since Uy has a maximum, it is contractible so by hypothesis f | f −1(Uy)
: f −1(Uy) → Uy

induces isomorphisms in homology as well. A Mayer-Vietoris argument together with the
five lemma shows that f : X → Y induces isomorphisms in homology. �

Other versions of this result have been studied in [6,9,22,31].

3 Semicontinuity of multivaluedmaps

We begin by recalling two fundamental regularity assumptions which can be imposed on
multivalued maps. For this, let X and Y denote topological spaces, and let F : X � Y be
an arbitrary multivalued map, that is, a map which associates a subset F(x) ⊂ Y with every
x ∈ X . In view of the standard definition of continuity for single-valued maps, one would
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like to have a notion of continuity which is based on the condition that inverse images of
open sets are again open. While in the single-valued map case this leads to a well-defined
notion, the meaning of inverse image in the case of multivalued maps is not immediately
clear. In fact, one could use either the definition

F−1(B) = {x ∈ X : F(x) ⊂ B} or F∗−1(B) = {x ∈ X : F(x) ∩ B �= ∅}
for all subsets B ⊂ Y . We refer to these two definitions as the small preimage and the
large preimage of B under F , respectively, since clearly the first is contained in the second
for multivalued maps with nonempty values. Depending on which notion is used, one then
obtains the following two continuity concepts.

Definition 3.1 (Semicontinuity) Let X and Y denote two topological spaces, and let F :
X � Y denote an arbitrary multivalued map between them. Then we say that F is upper
semicontinuous (usc) if for every open set B ⊂ Y the small preimage F−1(B) is open in X .
The multivalued map F is called lower semicontinuous (lsc) if for every open set B ⊂ Y the
large preimage F∗−1(B) is open in X .

Notice that any continuous single-valued map f : X → Y can be viewed as a multivalued
map x �→ { f (x)}, and this induced map is always usc and lsc. Thus, both of the above
definitions are natural generalizations of the continuity concept to multivalued maps, but one
can easily see that they are satisfied by different classes of maps. As was shown in [14],
depending on the specific application one or the other concept might be more appropriate.
Notice also that for usc and lsc the closedness properties of preimages of closed sets are more
delicate. Since one can easily show that

X\F∗−1(B) = F−1(Y\B) for all B ⊂ Y ,

we have the characterizations

F is usc ⇔ F∗−1(C) is closed for all closed sets C ⊂ Y ,

F is lsc ⇔ F−1(C) is closed for all closed sets C ⊂ Y ,

in which the large and small preimages are switched.

Lemma 3.2 (Semicontinuity in finite T0 spaces) Let X and Y denote two finite T0 spaces,
and let F : X � Y denote an arbitrary multivalued map between them. Then the following
four statements are pairwise equivalent.

(ua) The map F is upper semicontinuous.
(ub) For every x ∈ X we have F(Ux ) ⊂ UF(x).
(uc) For all x1, x2 ∈ X with x1 ≤ x2 we have F(x1) ⊂ UF(x2).
(ud) For all x1, x2 ∈ X with x1 ≤ x2 and for all y1 ∈ F(x1) there exists a y2 ∈ F(x2)

such that y1 ≤ y2.

For the concept of lower semicontinuity, we obtain the following four pairwise equivalent
statements.

(�a) The map F is lower semicontinuous.
(�b) For every x ∈ X we have F(cl x) ⊂ cl F(x).
(�c) For all x1, x2 ∈ X with x1 ≥ x2 we have F(x1) ⊂ cl F(x2).
(�d) For all x1, x2 ∈ X with x1 ≥ x2 and for all y1 ∈ F(x1) there exists a y2 ∈ F(x2)

such that y1 ≥ y2.
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Proof We only prove the equivalences for the case of upper semicontinuity, since lower
semicontinuity can be treated analogously. See also the discussion at the end of this section.

(ua) ⇒ (ub): The set UF(x) is open by definition, so F−1(UF(x)) ⊂ X is open. Since
x ∈ F−1(UF(x)), the smallest open set containing x , Ux , is contained in F−1(UF(x)).

(ub) ⇒ (uc): Due to x1 ≤ x2 we have x1 ∈ Ux2 . This gives F(x1) ⊂ F(Ux2) ⊂ UF(x2),
according to (ub).

(uc) ⇒ (ud ): This follows from the fact that UF(x2) ⊂ Y is the set of elements y ∈ Y
which are smaller than or equal to some element in F(x2).

(ud ) ⇒ (ua): Suppose that B ⊂ Y is open. We need to show that F−1(B) ⊂ X is
open or, equivalently, a down-set. For this, let x2 ∈ F−1(B) be arbitrary, which implies
F(x2) ⊂ B, and consider a point x1 ≤ x2. According to (ud ), for every y1 ∈ F(x1) there
exists y2 ∈ F(x2) ⊂ B such that y1 ≤ y2. Since B is a down-set, y1 ∈ B. This proves that
F(x1) ⊂ B, so x1 ∈ F−1(B). Thus, F−1(B) is a down-set. �

These characterizations equip us with a variety of ways for establishing upper or lower
semicontinuity in the case of finite T0 spaces. In fact, in the above-mentionedwork [24] upper
and lower semicontinuity were defined via properties (ud ) and (�d ), respectively.

Lemma 3.2 illustrates in a remarkable way the inherent symmetry between the concepts of
upper and lower semicontinuity in finite T0 spaces. It also shows that these concepts explicitly
depend on the topologies of both spaces X and Y . This is no longer the case for the following
two concepts, which are of central importance for the present paper.

Definition 3.3 (Strong Semicontinuity) Let X be a topological space, let Y be a set, and let
F : X � Y denote an arbitrary multivalued map between them. Then F is strongly upper
semicontinuous (susc) if for every subset B ⊂ Y the small preimage F−1(B) is open in X .
The multivalued map F is called strongly lower semicontinuous (slsc) if for every subset
B ⊂ Y the large preimage F∗−1(B) is open in X .

The above definition immediately shows that

F is susc ⇔ F is usc with respect to the discrete topology on Y

⇔ F is usc with respect to any topology on Y ,

and these equivalences remain valid if susc and usc are replaced by slsc and lsc, respec-
tively. For the case of X being a finite T0 space, strong semicontinuity has a convenient
characterization through a set-theoretic monotonicity condition.

Lemma 3.4 (Combinatorial characterization of strong semicontinuity). Let X be a finite T0
space, let Y be any set, and let F : X � Y denote an arbitrary multivalued map between
them. Then we have:

F is susc ⇔ for all x1, x2 ∈ X with x1 ≤ x2 we have F(x1) ⊂ F(x2) ,

F is slsc ⇔ for all x1, x2 ∈ X with x1 ≤ x2 we have F(x1) ⊃ F(x2) .

Proof Weonly establish the first equivalence, since the second one can be proved analogously.
Suppose that F is susc and that x1 ≤ x2 ∈ X . Then F−1(F(x2)) ⊆ X is open and since
x2 ∈ F−1(F(x2)), then x1 ∈ Ux2 ⊂ F−1(F(x2)). That is, F(x1) ⊂ F(x2).

Conversely, suppose that for all x1, x2 ∈ X with x1 ≤ x2 we have F(x1) ⊂ F(x2) and
let B ⊂ Y . Let x2 ∈ F−1(B). If x1 ≤ x2, then F(x1) ⊂ F(x2) ⊂ B. This shows that
Ux2 ⊆ F−1(B). Thus, F−1(B) is open. �
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As we will see later on, the notion of strong semicontinuity will be used to show that a
multivalued map between finite T0 spaces induces a well-defined map in homology. While
at first glance this seems to be a severe restriction, there are situations in which strong
semicontinuity is equivalent to semicontinuity. To describe this, recall that a multivalued
map F : X � Y has closed (or open) values, if for all x ∈ X the set F(x) ⊂ Y is closed (or
open) in the topological space Y . Then the following result is immediate.

Lemma 3.5 (Equivalence of strong and regular semicontinuity) Let X and Y denote two
topological spaces, and let F : X � Y denote an arbitrary multivalued map between them.
Then we have:

F is usc with open values ⇒ F is susc,

F is lsc with closed values ⇒ F is slsc.

In other words, for multivalued maps with open values upper semicontinuity is equivalent to
strong upper semicontinuity, and for multivalued maps with closed values lower semiconti-
nuity is equivalent to strong lower semicontinuity.

Proof Suppose F is usc with open values. Let B ⊂ Y be any subset. We want to show that
F−1(B) is open. Let x ∈ F−1(B). Then, F(x) ⊂ B. By hypothesis F−1(F(x)) is an open
neighborhood of x contained in F−1(B). Therefore, F−1(B) is open. The second implication
follows similarly. �

If K is a finite simplicial complex or, more generally, a finite regular CW-complex, we
denote by X (K ) the poset of closed cells of K ordered by inclusion. A simplicial map
ϕ : K → L between finite simplicial complexes induces a continuous mapX (ϕ) : X (K ) →
X (L) which maps σ ∈ X (K ) to ϕ(σ).

Example 3.6 If X is a compact polyhedron and f : X → X is a continuous map, it may
happen that f : K → K is not simplicial for any triangulation K of X . For a fixed regularCW-
structure K of X , however, f induces a multivalued map X ( f ) : X (K ) � X (K ) between
finite spaces as follows. For a closed cell e of K wedefineX ( f )(e) = {e′ ∈ K | e′∩ f (e) �= ∅}.
This multivalued map is a finite approximation of f which can be used to study the dynamics
of f . Note that if f has a fixed point, then so does X ( f ): if x is a fixed point of f lying in a
cell e, then e ∈ X ( f )(e). The converse is not true: X ( f ) could have a fixed point while f is
fixed point free. However, ifX ( f ) : X (K ) � X (K ) has a fixed point for every triangulation
K of X , then f : X → X has a fixed point.

Note that the maps X ( f ) : X (K ) � X (K ) are susc.

We close this section by observing that the notion of strong upper semicontinuity is
completely natural when working with finite spaces. Indeed, a multivalued map F : X � Y
between finite T0 spaces can be identified with a single-valued map fF : X → P(Y ),
where P(Y ) denotes the power set of Y . The set P(Y ) has a natural poset structure given
by inclusion, so it is a finite T0 space. By Lemma 3.4, F is susc if and only if fF is order-
preserving, i.e., continuous. Thus, strong upper semicontinuity of the multivalued map F
corresponds to the continuity of the associated single-valued map fF . Therefore, it could be
natural to call the strong upper semicontinuous multivalued maps simply continuous. We do
not do that for two reasons. Firstly, in the context of dynamics we need to be able to iterate
F . To do that we need the domain and codomain of F to be the same topological space. This
is not true in the case of fF even if X = Y . Secondly, in the classical theory of multivalued
maps, the term continuous is already used for a map F : X � Y which is simultaneously
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upper semicontinuous and lower semicontinuous. One can show that a multivalued map is
continuous in this sense if and only if the single-valued map fF : X → P(Y ) is continuous
with respect to a different topology onP(Y ): the so called “finite topology” [17,Definition 1.7
and Corollary 9.3].

If Y is a finite set, P(Y )op denotes the power set of Y with the order given by reverse
inclusion. If X is a finite T0 space, then a multivalued map F : X � Y is slsc if and only if
the single-valued map fF : X → P(Y )op is continuous.

Finally, we can relate strong upper to strong lower semicontinuity. If X is a finite T0
space, according to Lemma 3.4 a multivalued map F : X � Y is susc if and only if the map
F ′ : Xop � Y which coincides with F in underlying sets is slsc. For the special case Y = X
which is mainly considered in the present paper, we have that F : X � X is slsc if and only
if the map Fop : Xop � Xop which coincides with F in the underlying sets is susc. Even
more is true. One can easily see that F : X � Y is lsc if and only if Fop : Xop � Yop is usc.
This provides us with another way to explain the symmetry in the statements in Lemma 3.2.

Remark 3.7 If X is a not necessarily finite poset, then it can also be seen as a topological
space in which open sets are the down-sets. The sets Ux = {y ∈ X y ≤ x} constitute a
basis for the topology. As before, a multivalued map F : X � Y between any topological
spaces X and Y , can be identified with a single-valued map fF : X → P(Y ), where P(Y )

is the space associated to the order given by the inclusion. Now, if B ⊂ Y is any subset
F−1(B) = {x ∈ X |F(x) ⊂ B} = f −1

F (UB). Therefore F is susc if and only if fF is
continuous. This generalizes the comment made above for X , Y being finite.

4 Homomorphisms induced in homology

The natural first step towards deriving a Lefschetz fixed point theorem for multivalued maps
F : X � X between finite T0 spaces is the definition of a Lefschetz number for such maps.
This in turn requires that F induces a well-defined map in homology. While we restrict our
attention to strongly semicontinuous maps as introduced in Definition 3.3 of the last section,
we need one additional assumption. Recall that a multivalued map F is said to have acyclic
values if for every x ∈ X , F(x) is acyclic. We denote by Hn(X) the unreduced homology
groups of X with integer coefficients.

We will need the following auxiliary result, whose construction is inspired by the case of
upper semicontinuous multivalued maps with acyclic values discussed in [14, p. 160].

Lemma 4.1 Let X be a finite T0 space and let Y be any topological space. Let F : X � Y
be a susc multivalued map with acyclic values. Consider F as the subspace of X × Y which
consists of all pairs (x, y) for which y ∈ F(x). Let p1 : F → X denote the projection onto
the first coordinate. Then (p1)∗ : Hn(F) → Hn(X) is an isomorphisms for every n ≥ 0.

Proof By McCord’s Theorem for homology (Theorem 2.2) it suffices to show that p−1
1 (Ux )

⊂ X × Y is acyclic for every x ∈ X . This will be accomplished by verifying that this space
is homotopy equivalent to the image F(x) ⊂ Y .

Define i : F(x) → p−1
1 (Ux ) by i(y) = (x, y). This map is well-defined and continuous.

In addition, define r : p−1
1 (Ux ) → F(x) by r(z, y) = y for all z ∈ Ux and y ∈ F(z).

Note that z ≤ x implies F(z) ⊆ F(x) due to Lemma 3.4, and therefore the map r is well-
defined and continuous. These definitions readily show that we have both ri = 1F(x) and
ir(z, y) = (x, y) for all z ∈ Ux and y ∈ F(z), and in order to complete the proof we only
need to show that ir is homotopic to the identity 1p−1

1 (Ux )
.
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As explained in Sect. 2, there exists a homotopy H : Ux ×[0, 1] → Ux from the constant
function cx to the identity 1Ux defined by H(z, 0) = x and H(z, t) = z for all t > 0
and z ∈ Ux . Then H ′ = H × 1Y : Ux × Y × [0, 1] → Ux × Y is a homotopy from
cx × 1Y to 1Ux×Y , and its restriction to p−1

1 (Ux ) × [0, 1] gives the desired homotopy from
the composition ir to 1p−1

1 (Ux )
. Thus, the inverse image p−1

1 (Ux ) is indeed acyclic for every

x ∈ X and (p1)∗ : Hn(F) → Hn(X) is an isomorphism for each n ≥ 0. �
Definition 4.2 Let X be a finite T0 space and let Y be any topological space. If F : X � Y
is a susc multivalued map with acyclic values, we define F∗ : Hn(X) → Hn(Y ) as the
composition F∗ = (p2)∗(p1)−1∗ , where p2 : F → Y denotes the projection onto the second
coordinate.

If F : X � Y is a slsc multivalued map with acyclic values, it induces homomorphisms
in homology in the following way. The map F ′ : Xop � Y which coincides with F in the
underlying sets is susc and F ′∗ : Hn(Xop) → Hn(Y ) is already defined. Since K(Xop) =
K(X), for each n ≥ 0 there is a well-defined homomorphism F∗ = F ′∗(μXop )∗(μX )−1∗ :
Hn(X) → Hn(Y ).

Lemma 4.1 holds also for slsc maps when X and Y are both finite T0 spaces. Concretely,
if F : X � Y is a slsc multivalued map with acyclic values, then p1 : F → X induces
isomorphisms in homology. This can be proved fromLemma4.1 using that Fop : Xop � Yop

is susc. The projection pop1 : Fop → Xop induces isomorphisms in homology and then so
does p1. In this case, it can be proved that F∗ : Hn(X) → Hn(Y ) coincideswith (p2)∗(p1)−1∗ .
Therefore, for X andY finite, F∗ can be defined as the composition (p2)∗(p1)−1∗ in both cases,
for susc and slsc maps. This result will not be needed in the present article, but we include a
proof at the end of this section for future reference.

Note that if in the hypothesis of Lemma 4.1 we ask for the values F(x) of F to be
contractible subspaces of Y or, more generally, to be weakly contractible, then Theorem 2.1
(McCord’s Theorem) can be used to define F∗ : πn(X) → πn(Y ). Recall that an analogue of
the Whitehead theorem does not hold for finite spaces (there are weak equivalences which
are not homotopy equivalences) and moreover there exist weakly contractible finite spaces
which are not contractible [5, Example 4.2.1].

Our definition of the Lefschetz number is analogous to the classical case.

Definition 4.3 (Lefschetz number) Let X denote a finite T0 space, and let F : X � X be
a multivalued map with acyclic values which is susc or slsc. Let F∗ : Hn(X) → Hn(X)

denote the induced maps in homology, and for every n ≥ 0 let Tn(X) be the torsion subgroup
of Hn(X). Then the Lefschetz number L(F) of F is defined as

L(F) =
∞∑

n=0

(−1)n tr(Fn) ,

where tr(Fn) is the trace of the homomorphism Hn(X)/Tn(X) → Hn(X)/Tn(X) induced
by the homomorphism F∗ : Hn(X) → Hn(X).

If X is a finite T0 space and F : X � X is slsc with acyclic values, the definition of L(F)

depends on the susc map F ′ : Xop � X . On the other hand, Fop : Xop � Xop is also susc
and L(Fop) is defined as well. The next result shows that in fact these two numbers are the
same.

Lemma 4.4 Let X be a finite T0 space and let F : X � X be a slsc multivalued map with
acyclic values. Then L(F) = L(Fop).
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Fig. 1 The finite model X of S1 and F ⊆ X × X , which are discussed in Example 4.5

Proof We consider Fop as a subspace of Xop × Xop and call pop1 , pop2 the projections onto
the first and second coordinates. Similarly F ′ is a subspace of Xop ×X and we call p′

1, p
′
2 the

projections onto Xop and X respectively. Define a multivalued mapK◦ F : Xop → K(X) by
K◦F(x) = K(F(x)). ThenK◦F is susc with acyclic values. Once againK◦F is considered
as a subspace of Xop × K(X) and by Lemma 4.1 p1 : K ◦ F → Xop induces isomorphisms
in homology. We have the following commutative diagram

Fop

pop1

pop2
Xop

Xop K ◦ F
p1 p2

1×μXop

1×μX

K(X)

μX

μXop

F ′
p′
1

p′
2

X

Note that the maps 1 × μXop : K ◦ F → Fop and 1 × μX : K ◦ F → F ′
are well-defined. By definition Fop∗ = (pop2 )∗(pop1 )−1∗ : Hn(Xop) → Hn(Xop) and
F∗ = (p′

2)∗(p′
1)

−1∗ (μXop )∗(μX )−1∗ . By commutativity of the diagram

Fop∗ = (μXop )∗(μX )−1∗ (p′
2)∗(p′

1)
−1∗ = (μXop )∗(μX )−1∗ F∗(μX )∗(μXop )−1∗ .

Thus, Fop∗ and F∗ are conjugate so they have the same trace in each degree and then
L(Fop) = L(F). �

We provide a couple of instructive examples.

Example 4.5 Let X be the finite space of four points a, b, c, and d depicted in Fig. 1. This
space is weak homotopy equivalent to S1, since its order complex is homeomorphic to S1.
Consider the multivalued map F : X � X defined by

F(a) = {a, b, c} , F(b) = {a, b, d} , F(c) = {a} , and F(d) = {b} .

Then F is susc with acyclic values, and as before we can identify F with its graph, which is
a subset of X × X . One can easily see that the poset F ⊆ X × X has 8 points and is also
weak homotopy equivalent to S1. Therefore, the maps induced in H1 by p1 : F → X and
p2 : F → X have 1× 1 matrices and a straightforward calculation shows that with the same
choice of generators of H1(F) and H1(X) for both maps the matrices are [1] and [−1] or
vice versa. Therefore, the map F∗ : H1(X) → H1(X) is given by −1Z, and the Lefschetz
number of F can be computed as L(F) = 1 − (−1) = 2.

Example 4.6 Let X be a finite T0 space and let Y be any topological space. Let f : Y →
X be a continuous map such that f −1(Ux ) is acyclic for every x ∈ X . By Theorem 2.2
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(McCord’s Theorem for homology), the induced map on homology f∗ : Hn(Y ) → Hn(X)

is an isomorphism for every n ≥ 0. Let F : X � Y be the multivalued map defined by
F(x) = f −1(Ux ). Then F is susc with acyclic values. We observe that F∗ : Hn(X) →
Hn(Y ) is the inverse of the map f∗. If p1 : F → X and p2 : F → Y denote our earlier
projections, then f p2 ≤ p1. Therefore, the composition f p2 is homotopic to p1. Thus, we
obtain f∗(p2)∗ = (p1)∗ : Hn(F) → Hn(X), and then f∗F∗ = f∗(p2)∗(p1)−1∗ = 1Hn(X). It
follows that F∗ is the inverse of f∗, as claimed.

We close this section with a proof of the result mentioned above, that homomorphisms
induced in homology by slsc maps between finite spaces can be defined in an alternative way.
This will not be used in the following sections.

Proposition 4.7 Let X, Y be finite T0 spaces and let F : X � Y be a slsc multivalued
map with acyclic values. Then p1 : F → X induces isomorphisms in homology and F∗ :
Hn(X) → Hn(Y ) coincides with the composition (p2)∗(p1)−1∗ .

Proof The proof is a refinement of the proof of Lemma 4.4. Consider the multivalued map
K ◦ F : Xop � K(Y ) defined by K ◦ F(x) = K(F(x)). It is susc with acyclic values,
so p1 : K ◦ F ⊆ Xop × K(Y ) → Xop induces isomorphisms in homology. The maps
F ′ : Xop � Y and Fop : Xop � Yop are also susc with acyclic values, so p′

1 : F ′ → Xop

and pop1 : Fop → Xop induce isomorphisms in homology as well. On the other hand, by
applying the functor K to X ← F → Y , we obtain maps K(p1) : K(F) → K(X) and
K(p2) : K(F) → K(Y ). There is a commutative diagram

F ′

p′
2

p′
1 K ◦ F

p1

1×μYop

p2

1×μY

Xop Fop

pop1 pop2
Yop

K(X)

μXop

μX

K(F)

μFop

K(p1) K(p2)

μF

K(Y )

μY

μYop

X Fp1 p2
Y

in which the dashed arrows represent maps that induce isomorphisms in homology. Since pop1
induces isomorphisms in homology, so doesK(p1) and then p1 : F → X . By commutativity
F∗ = (p′

2)∗(p′
1)

−1∗ (μXop )∗(μX )−1∗ : Hn(X) → Hn(Y ) coincides with (p2)∗(p1)−1∗ . �

5 A fixed point theorem

We now turn our attention to proving the Lefschetz fixed point theorem for multivalued maps
on finite topological spaces. For this, suppose that X is a finite T0 space and that F : X � X
is a multivalued map. Recall that a point x ∈ X is said to be a fixed point of F if we
have x ∈ F(x). In our main theorem of this section, we will show that if F satisfies the
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assumptions of Definition 4.3 and if L( f ) �= 0, then F has a fixed point. First, however, we
need an auxiliary result.

Recall that an acyclic carrier from a simplicial complex K to another complex L is a
function � which assigns an acyclic subcomplex �(σ) ⊆ L to each simplex σ ∈ K in such
a way that σ ⊆ σ ′ implies �(σ) ⊆ �(σ ′). Note that by viewing the collection of simplices
of a finite simplicial complex K as a finite topological spaceX (K )with its topology induced
by the face relation, we may interpret an acyclic carrier between finite complexes K and L
as a susc multivalued map X (K ) � X (L) with open and acyclic values.

The Acyclic Carrier Theorem ([20, Theorem 13.3]) says that if � is an acyclic carrier
from K to L , there exists a chain map ϕ : C∗(K ) → C∗(L) such that for every oriented n-
simplex σ ∈ K the chainϕ(σ) lies inCn(�(σ)). Any suchmap is said to be carried by�. Two
chain maps carried by the acyclic carrier � are always chain homotopic. If we have L = K ,
then we can define the Lefschetz number L(�) of � as the Lefschetz number of any chain
map ϕ : C∗(K ) → C∗(K ) carried by �. By the Hopf trace theorem the Lefschetz number of
the chain map ϕ coincides with

∑
n≥0(−1)n tr(ϕn), where as usual ϕn : Cn(K ) → Cn(K ).

Lemma 5.1 (Lefschetz fixed point theorem for acyclic carriers) Let K be a finite simplicial
complex and let � be an acyclic carrier from K to itself. If L(�) �= 0, then there exists a
simplex σ ∈ K which is contained in �(σ).

Proof Let ϕ : C∗(K ) → C∗(K ) be a chain map which is carried by �. According to our
hypothesis there exists at least one number n ≥ 0 such that tr(ϕn) �= 0 and, in particular,
there is an oriented n-simplex σ such that ϕ(σ) ∈ Cn(K ) is a chain which contains σ in its
support. Since ϕ(σ) ∈ Cn(�(σ)), we deduce that σ ∈ �(σ). �

For now, we restrict our attention to multivalued maps which are susc. Thus, let X be a
finite T0 space and let F : X � X be a susc multivalued map with acyclic values. We define
an acyclic carrier �F from the order complex K(X) to itself by setting

�F (σ ) = K(F(max σ)) for all σ ∈ K(X). (1)

Note that due to the acyclicity assumption, the map �F is indeed an acyclic carrier.

Proposition 5.2 Let X be a finite T0 space and let F : X � X be a susc multivalued map
with acyclic values. Then we have L(F) = L(�F ), if �F is defined as in (1).

Proof Let ϕ : C∗(K(X)) → C∗(K(X)) be a chain map carried by �F . Once again we
identify F with a subspace of X × X . We will show that the following triangle of chain maps
commutes up to chain homotopy.

C∗(K(F))
K(p2)∗

K(p1)∗

C∗(K(X))

C∗(K(X))

ϕ

Define an acyclic carrier � : K(F) → K(X) as follows. Let σ be a simplex ofK(F), i.e.,
a chain (x0, y0) < (x1, y1) < · · · < (xn, yn) such that yi ∈ F(xi ) for i = 0, . . . , n. Then
we define �(σ) = K(F(xn)). Since we assumed that the multivalued map F is susc with
acyclic values, the map � is an acyclic carrier.

Suppose now that σ = [(x0, y0), (x1, y1), . . . , (xn, yn)] is an oriented simplex of K(F),
where (x0, y0) < (x1, y1) < · · · < (xn, yn). Note that the chain K(p2)∗(σ ) is the oriented
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simplex [y0, y1, . . . , yn] if all the yi are different, and 0 if two of them are equal. Since F is
susc, we immediately obtain yi ∈ F(xi ) ⊆ F(xn) for every i = 0, . . . , n, and therefore the
inclusion K(p2)∗(σ ) ∈ C∗(K(F(xn))) = C∗(�(σ)) is satisfied. This implies that K(p2)∗ is
carried by �. On the other hand, the chain K(p1)∗(σ ) is either equal to [x0, x1, . . . , xn], or
it is 0. Thus, we have ϕK(p1)∗(σ ) ∈ C∗(K(F(xn))). Hence, ϕK(p1)∗ is also carried by �.
On the level of homology the acyclic carrier theorem then implies the equality

ϕ∗K(p1)∗ = K(p2)∗ : Hn(K(F)) → Hn(K(X)) for every n ≥ 0 .

This in turnyields the identityϕ∗ = K(p2)∗K(p1)−1∗ . ByMcCord’s theorem,K(p2)∗K(p1)−1∗
and (p2)∗(p1)−1∗ : Hn(X) → Hn(X)merely differ in a conjugation by an isomorphism. This
finally implies the equality L(�F ) = L(ϕ) = L(F). �

After these preparations we can now deduce the Lefschetz fixed point theorem for strongly
semicontinuous multivalued maps with acyclic values between finite T0 spaces.

Theorem 5.3 (Lefschetz fixed point theorem) Let X be an arbitrary finite T0 space and let
F : X � X be a multivalued map with acyclic values which is susc or slsc. If the inequality
L(F) �= 0 holds, then F has a fixed point.

Proof We first assume that F is susc. By the previous proposition, one obtains L(�F ) �= 0,
and byLemma 5.1, there exists a simplex σ ∈ K(X) such that σ ∈ �F (σ ) = K(F(max(σ ))).
This furnishes in particular the inclusion max(σ ) ∈ F(max(σ )).

If on the other hand F is slsc, by Lemma 4.4 L(Fop) = L(F) �= 0 and by the case already
proved Fop : Xop � Xop has a fixed point, and so does F . �

If f : X → X is a continuous single-valued map on a finite T0 space, then one can
define an associated multivalued map Ff : X � X by letting Ff (x) = U f (x). This map
is clearly susc. Moreover, since for each x ∈ X the image Ff (x) has a maximum, the
map Ff has acyclic values. The Lefschetz numbers of f and Ff coincide since the chain
map K( f )∗ : C∗(K(X)) → C∗(K(X)) is carried by �Ff . Moreover, if Ff has a fixed point,
say x ∈ X , then x ∈ U f (x), so x ≤ f (x). In this case it is easy to see that f also has to have a
fixed point. Since the map f is order-preserving we have a chain x ≤ f (x) ≤ f 2(x) ≤ . . .,
and by the finiteness of X there exists an n ≥ 0 such that f n(x) is a fixed point of f .
In particular, Theorem 5.3 implies that any continuous single-valued map with non-trivial
Lefschetz number has a fixed point. Baclawski and Björner show in [4, Theorem 1.1] that in
fact L( f ) is theEuler characteristicχ(X f )of thefixedpoint set. The analogue formultivalued
maps is not true as the next example shows.

Example 5.4 Let X be the finite model of S1 which has already been considered in Figure 1.
Let F : X � X be defined by F(a) = F(b) = {a, b, c}, F(c) = {a}, as well as F(d) = {b}.
This multivalued map is susc with acyclic values. The subspace XF of fixed points is the
discrete space of two points {a, b}, and therefore we have χ(XF ) = 2. On the other hand,
the image of F is the contractible space {a, b, c}. Therefore, p2 : F → X is null-homotopic,
which in turn implies L(F) = 1.

A selector of a multivalued map F : X � Y is a single-valued map f : X → Y such that
f (x) ∈ F(x) for every x ∈ X . We would like to point out that a given susc multivalued map
F : X � X with acyclic values may not have a continuous selector, even if each value F(x)
is a contractible finite space. This is the case for the map studied in Example 4.5. However,
the following result holds for susc maps, and it can easily be adapted to the slsc case as well.
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Fig. 2 A space with a multivalued map with a fixed point, and which has a selector without fixed points. For
more details, see Example 5.6

Proposition 5.5 (Order complex selector) If X is a finite T0 space and F : X � X is a
susc multivalued map such that F(x) is weakly contractible for every x ∈ X, then there
exists a continuous map f : K(X) → K(X) such that for every simplex σ ∈ K(X) we have
f (σ ) ⊆ K(F(max(σ ))). The Lefschetz number of any such map f is L(F) and, furthermore,
if f has a fixed point, then so does F.

Proof The existence of f is guaranteed byWalker’s contractible carrier theorem [31, Lemma
2.1], sinceK(F(x)) is contractible for every x ∈ X . In addition, if f has a fixed point α which
lies in an open simplex σ ∈ K(X), then the closed simplex σ is contained in the subcomplex
K(F(max(σ ))). In particular max(σ ) is a fixed point of F .

It remains to show that the Lefschetz number of f equals the Lefschetz number of F . For
this, letψ : K(X)′ → K(X) be a simplicial approximation of f , whereK(X)′ is a subdivision
of K(X). The maps f∗ : Hn(K(X)) → Hn(K(X)) are the homomorphisms induced by the
chain map ψ∗λ : C∗(K(X)) → C∗(K(X)), where ψ∗ : C∗(K(X)′) → C∗(K(X)) is the
chain map induced by ψ and λ : C∗(K(X)) → C∗(K(X)′) is the subdivision operator [20,
Theorem 17.2]. Let ρ : K(X)′ → K(X) be a simplicial approximation to the identity and let
ϕ : C∗(K(X)) → C∗(K(X)) be a chain map carried by�F . Define one last acyclic carrier
fromK(X)′ toK(X) by(τ) = K(F(max(σ ))), where σ ∈ K(X) is the simplex of smallest
dimension containing τ . It is clear that is an acyclic carrier. Bothψ∗ andϕ∗ρ∗ are carried by
this acyclic carrier. Indeed, if τ ∈ K(X)′ and α is a point in the open simplex

◦
τ , then α ∈ ◦

σ ,
since by construction σ ∈ K(X) denotes the smallest simplex containing τ . This yields the
inclusion f (α) ∈ K(F(max(σ ))). Since ψ is an approximation of f , the image ψ(α) lies in
the same subcomplex, and thereforewe obtain the inclusionψ(τ) ∈ K(F(max(σ ))) = (τ).
Thus, the map ψ∗ is carried by . On the other hand, the inclusion ρ(τ) ⊆ σ holds, and
therefore ϕ∗ρ∗(τ ) ∈ C∗(�F (σ )) = C∗((τ)). According to the acyclic carrier theorem we
have ψ∗ � ϕ∗ρ∗, which in turn implies ψ∗λ � ϕ∗ρ∗λ � ϕ∗. This proves that on the level
of homology one has f∗ = F∗ : Hn(K(X)) → Hn(K(X)), and establishes in particular the
equality L( f ) = L(F). �

For any continuous map f : X → X on a finite T0 space X we have earlier defined the
multivalued map Ff : X � X which maps x to U f (x). Moreover, we have shown that if Ff

has a fixed point, then so does f . Of course, the map f is a selector of the map F in this case.
In general, however, it is not true that if a susc multivalued map F : X � X with acyclic
values has a fixed point, then every continuous selector has a fixed point. This is illustrated
in the following example.

Example 5.6 Let X denote the 6-point space depicted in Fig. 2. Consider the multivalued
map F : X � X defined by F(a′) = {b′}, F(b′) = {c′}, F(c′) = {a′}, F(b) = {b′, c, c′},
F(c) = {c′, a, a′}, as well as F(a) = {c′, a, a′, b, b′}. One can easily verify that the map F is
susc with acyclic values, and that the point a is a fixed point. There exists a unique continuous
selector f : X → X , a �→ b, a′ �→ b′, b �→ c, b′ �→ c′, c �→ a, c′ �→ a′, which is in fact
fixed point free.
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6 The fixed point property for multivaluedmaps

A topological space X is said to have the fixed point property (FPP) if every continuous self
map X → X has a fixed point. By the Lefschetz fixed point theorem for finite spaces [4,
Theorem 1.1], if a connected finite T0 space has trivial rational homology groups Hn(X; Q)

for every n ≥ 1 (in which case it is called a rationally acyclic space), then it has the FPP.
The FPP is a homotopy invariant of finite T0 spaces, but it is not a weak homotopy invariant.
Björner and Baclawski found in [4] examples of finite spaces which are weakly homotopy
equivalent to S2 and which have the FPP. Later, in [7], it was proved that for any compact
CW-complex there exists a finite space which is weakly homotopy equivalent and which has
the FPP.

Wewill say that a finite T0 space has the fixed point property for multivaluedmaps (MFPP)
if every susc multivalued map X � X with acyclic values has a fixed point. It is clear that
any finite T0 space X with the MFPP has the FPP for if f : X → X is a continuous map,
then the multivalued map Ff : X � X defined in the last section has a fixed point, and this
in turn implies that so does f . On the other hand Theorem 5.3 implies that any rationally
acyclic finite T0 space has the MFPP since any multivalued map X � X with acyclic values
has Lefschetz number equal to 1. Therefore we have the following two implications

rationally acyclic ⇒ MFPP ⇒ FPP.

We will now show that both of these implications are in fact strict.
Recall that a beat point in a finite T0 space X is a point x ∈ X which covers a unique

element or it is covered by a unique element, i.e., either the set X<x := {x ′ ∈ X : x ′ < x}
has a maximum or X>x := {x ′ ∈ X : x ′ > x} has a minimum. If x is a beat point of X , then
one can show that X and X�{x} are homotopy equivalent. In particular, if we can remove
beat points one by one to obtain a singleton, then the original space is contractible. In fact
the converse holds: If a finite T0 space is contractible, it is possible to remove beat points one
by one to obtain just one point [5,29].

Example 6.1 Let X be the finite T0 space with Hasse diagram depicted in Fig. 3. The order
complex K(X) of X is homeomorphic to the 2-dimensional sphere. This space has the FPP.
Indeed, if a continuous map f : X → X is a homeomorphism, then it fixes the point a —
the unique maximal point which covers two elements. If f is not a homeomorphism, then
it is not surjective. Hence, K( f ) : S2 → S2 is null-homotopic and L( f ) = L(K( f )) = 1.
This example is very similar to Example 2.4 in [4].

We now define a fixed point free multivalued susc map F : X � X with acyclic values.
For this, let F(x) = (X≥x )

c = {y ∈ X | y � x}. This map is clearly susc and, in this
particular case, it is easy to check that each value F(x) is contractible, since beat points can
be removed one by one to obtain a singleton. Obviously, F has no fixed point. Thus, X has
the FPP but not the MFPP.

Fig. 3 A space with the FPP
which does not have the MFPP.
For more details see Example 6.1
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Recall that the standard complex KP of a presentationP = 〈x1, x2, . . . , xn |r1, r2, . . . , rm〉
of a group G is the 2-dimensional CW-complex which has a unique 0-dimensional cell e0, a
1-dimensional cell e1i for each generator xi and a 2-dimensional cell e2j for each relator r j . The

attachingmap of e2j follows the 1-cells corresponding to the letters which appear in r j with the
orientation given by the exponent of each letter. The fundamental group of KP is isomorphic
to G. A subpresentation of P is a presentation Q whose generators are generators of P and
whose relators are relators of P . If Q is a subpresentation of P , then KQ is a subcomplex
of KP . The trivial presentation is the presentation 〈|〉 of the trivial group with no generators
and no relators. We identify a presentation with its standard complex, so we will say that a
presentation P is contractible if KP is contractible, and so on.

If K is a simplicial complex, then X (K ) denotes the face poset of K , i.e., the poset of
simplices of K ordered by inclusion. Note that K(X (K )) is the barycentric subdivision K ′
of K .

Proposition 6.2 Let P = 〈x1, x2, . . . , xn |r1, r2, . . . , rm〉 be a presentation of a group such
that the standard complex KP has the FPP and no nontrivial subpresentation ofP is acyclic.
Then for any triangulation K of KP , the finite space X (K ) has the MFPP.

Proof Let K be a triangulation of KP and let F : X (K ) � X (K ) be a susc multivalued map
with acyclic values. Then, for each x ∈ X (K ), the image F(x) ⊆ X (K ) is acyclic andweakly
homotopy equivalent to K(F(x)), which is a subcomplex of the barycentric subdivision K ′
of K . If we show that every acyclic subcomplex of K ′ is contractible, then F(x) is weakly
contractible for every x ∈ X (K ) and byProposition 5.5 there is an inducedmap f : K ′ → K ′
which has a fixed point by hypothesis, and then F also has a fixed point.

Let K be any triangulation of KP . We will prove that every acyclic subcomplex of K
is contractible (we do not need K to be a barycentric subdivision). Let L be an acyclic
subcomplex of K . By performing simplicial collapses we may assume L has no free faces.
Let e21, e

2
2, . . . , e

2
m denote the open 2-dimensional cells of KP , where e2j corresponds to the

relator r j . Suppose that σ is a 2-dimensional simplex of L whose interior contains a point x
of e2j for some 1 ≤ j ≤ m. Let τ be a 2-dimensional simplex of K whose interior contains a

point y of e2j . There exists a simple path γ : [0, 1] → K from x to y entirely contained in e2j
which does not pass through any vertex of K . If τ /∈ L , define Lc � K to be the subcomplex
of K generated by the 2-simplices of K which are not in L . Let t0 be the minimal t ∈ [0, 1]
for which γ (t) ∈ Lc. Then γ (t0) lies in an open 1-simplex of L which is a free face of L ,
contradicting our assumption. This proves that all of e2j is contained in L . Thus, if a closed

2-simplex of L intersects the open cell e2j , then e2j ⊆ L . We deduce that the subcomplex

L2 � L generated by the 2-simplices of L is a union of closed 2-cells e2j . Then L2 is the
standard subcomplex of a nontrivial subpresentation of P or L2 = ∅. In the first case L2 is
connected and not acyclic by hypothesis. Since L is obtained from L2 by adding 0-simplices
and 1-simplices, the complex L is not acyclic either, a contradiction. Therefore, L2 = ∅,
so L is a 1-dimensional acyclic complex and hence contractible. �

Standard complexes of presentationswith the FPPwere studied bySadofschiCosta in [25].
This leads to the following example.

Example 6.3 Consider the presentation

P = 〈x, y|x3, xyx−1yxy−1x−1y−1, x−1y−4x−1y2x−1y−1〉
given in [25, Corollary 2.7]. The standard complex KP has the FPP. It is not rationally
acyclic, since its Euler characteristic isχ(KP ) = 2. There are 11 non-trivial subpresentations
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Q1,Q2, . . . ,Q11. Their (integral) homology groups H1(KQi ; Z) of degree 1 are Z3 ⊕ Z3,
Z3 ⊕ Z, Z ⊕ Z, Z3 or Z in all the cases. Due to Proposition 6.2, for any triangulation K
of KP the finite space X (K ) is not rationally acyclic, but it does have the MFPP.

A finite T0 space is minimal if it has no beat points. Every finite topological space X is
homotopy equivalent to a minimal finite space, called the core of X . The core of X is unique
up to a homeomorphism. It is always a retract of X (see [5,29]).

Remark 6.4 If a finite T0 space X is minimal and does not have the MFPP, then any finite T0
space Y which is homotopy equivalent to X also lacks the MFPP. To show this, suppose
that F : X � X is a fixed point free susc multivalued map with acyclic values. Then the
composition i Fr : Y � Y is fixed point free with the same properties. Here, i : X → Y and
r : Y → X are continuous maps which satisfy ri = 1X , and i Fr is the composition, defined
by i Fr(y) = i(F(r(y))). This remark applies for instance to the space X in Example 6.1.

We do not know whether the MFPP is a homotopy invariant. Other connections among
fixed points, Lefschetz numbers and homotopies are discussed in Sect. 8.

7 A different class of multivaluedmaps

During the last three sections of this paper we have focused on multivalued maps between
finite T0 spaces which have acyclic values and which are either susc or slsc. For such maps
we could construct induced homomorphisms in homology, and prove a Lefschetz fixed point
theorem. These results are inspired by the classical version of this theorem for acyclic maps
of an ANR X , which can be found for example in [14, Theorem 32.9]. This result states
that if X is a compact ANR and if F : X � X is an usc map with acyclic values, then the
Lefschetz number L(F) ∈ Z is well-defined. Furthermore, if in this situation the Lefschetz
number is nonzero, then the multivalued map F has a fixed point.

It is natural to wonder whether in the setting of finite T0 spaces the assumption of strong
semicontinuity can be relaxed, or even just be replaced by another continuity assumption.
Recall that a multivalued map F : X → Y is continuous in the sense of Michael if it is usc
and lsc. Continuous maps between finite T0 spaces where studied by Walker [32]. He calls
these maps isotone relations. There is no mention in [32] of a version of the Lefschetz fixed
point theorem for isotone maps between finite T0 spaces. There is, though, a characterization
of those finite T0 spaces with the fixed point property with respect to isotone maps: they are
exactly the contractible spaces. The class of finite spaces with the MFPP seems harder to
be characterized. This class strictly contains the contractible and, moreover, the rationally
acyclic spaces, and it is in turn strictly contained in the class of spaces with the FPP.

We saw earlier in this paper that if X is a finite T0 space and F : X � X is a susc
multivalued map with acyclic values, then for every continuous selector f : X → X we
must have L( f ) = L(F), since K( f )∗ is carried by �F . If we want to define Lefschetz
numbers for a bigger class of maps, it is natural to require that every continuous selector f
of a map F in this class satisfies L( f ) = L(F). This property holds in the classical context
of usc maps between compact ANR. Recall the notion of homotopy between acyclic maps
from [14, Definition 32.5]. Two multivalued usc maps F,G : X � Y with acyclic values
are homotopic, if there exists an usc multivalued map H : X × [0, 1] � Y with acyclic
values such that H(x, 0) = F(x) and H(x, 1) = G(x) for every x ∈ X . In Corollary 32.7
of [14] it is shown that for any compact ANR X , homotopic maps F,G : X � X of this
kind have the same Lefschetz number. If X is any space and F : X � X is usc with acyclic
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values, then any continuous selector f : X → X of F is homotopic to F . Indeed, define
H : X × [0, 1] � Y by H(x, t) = { f (x)} for t < 1 and H(x, t) = F(x) for t = 1, for
every x ∈ X . Then H has acyclic values and it is usc, since for any open subset U ⊆ Y the
small preimage ofU is given by H−1(U ) = ( f −1(U )×[0, 1))∪ (F−1(U )×{1}). The latter
set is open since F−1(U ) ⊆ f −1(U ). Thus, a selector has the same Lefschetz number as the
multivalued map, also in this context.

Our next result shows that there is no way to define Lefschetz numbers of continuous
multivalued maps (isotone relations) between finite T0 spaces if we want the property above
to hold.

Proposition 7.1 There is nomap λwhich assigns an integer number λ(F) to every continuous
multivalued map with acyclic values F : X � X of finite T0 spaces, and which satisfies the
following properties:

(1) λ( f ) = L( f ) for each single-valued map,
(2) λ( f ) = λ(F) for each selector f of F.

Proof Consider the space X depicted in Fig. 1 and define the map F : X � X by setting
F(a) = F(b) = {a, b, c} and F(c) = F(d) = {a, c, d}. Then one can easily verify that F
is both usc and lsc, and that it has acyclic values. The identity 1X is a selector of F with
Lefschetz number L(1X ) equal to the Euler characteristic of X , which is 0. On the other hand,
the constant map f : X → X sending X to a is another continuous selector and L( f ) = 1.
Thus, we cannot have L(1X ) = λ(F) = L( f ). �

8 Homotopies

In this final section we discuss homotopies between multivalued maps. For the sake of
presentation, we only consider multivalued maps which are susc. Nevertheless, the results
can easily be adjusted for maps which are slsc.

Let X again denote a finite T0 space and let Y be any topological space. Two susc multival-
ued maps F,G : X � Y with acyclic values are said to be homotopic, if there exists a susc
multivalued map H : X × [0, 1] � Y with acyclic values which satisfies H(x, 0) = F(x)
and H(x, 1) = G(x) for every x ∈ X . Furthermore, for multivalued maps F,G : X � Y
we write F ≤ G if F(x) ⊆ G(x) for every x ∈ X . Then the following result holds.

Proposition 8.1 (Homotopic strongly semicontinuous maps) Let X and Y be two finite T0
spaces. Then two susc multivalued maps F,G : X � Y with acyclic values are homotopic,
if and only if there exists a sequence, also called a fence, of multivalued maps Fi : X � Y
which are susc and have acyclic values, andwhich satisfy F = F0 ≤ F1 ≥ F2 ≤ . . . Fn = G.

Proof The proof is an adaptation of Stong’s arguments in [29, Corollary 2] to our context.
A susc multivalued map H : X × [0, 1] � Y with acyclic values is a continuous single-
valued map X × [0, 1] → P(Y ) with acyclic values by Remark 3.7. By the exponential
law [29, Lemma 1] this corresponds to a continuous path γ : [0, 1] → P(Y )X in which
γt : X → P(Y ) has acyclic values for every 0 ≤ t ≤ 1. There exists one such path
from F to G if and only if F and G lie in the same path-connected component of the
subspace S ofP(Y )X givenby thosemapswith acyclic values.But the compact-open topology
inP(Y )X corresponds to the order≤ for multivaluedmaps defined above, and therefore path-
components of S are described by fences in S. �
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Corollary 8.2 If X is a finite T0 space and F,G : X � X are homotopic susc multivalued
maps with acyclic values, then F∗ = G∗ : Hn(X) → Hn(X) for every n ≥ 0. In particular,
we have L(F) = L(G).

Proof By Proposition 8.1 we may assume that F ≤ G. Let ϕ, γ : C∗(K(X)) → C∗(K(X))

be chain maps carried by �F and �G , respectively. Since F ≤ G, the chain map ϕ is also
carried by �G , and therefore we have ϕ∗ = γ∗ : Hn(X) → Hn(X) for every n. By the proof
of Proposition 5.2 the definitions of F∗ and G∗ coincide. �

If F,G : X � Y are homotopic susc multivalued maps with acyclic values between not
necessarily equal finite T0 spaces, then F and G induce the same homomorphisms in homol-
ogy. The proof is identical to the proof of Corollary 8.2 using a straightforward modification
of the proof of Proposition 5.2.

Example 8.3 If f ≥ g : X → X are comparable continuous maps between finite T0 spaces,
then f has a fixed point if and only if g does. The analogue for multivalued maps is not true.
Let F : X � X be the map in Example 5.6 and let G : X � X be the map which coincides
with F in each point but a, and for which G(a) = {a′, b, b′}. Then both F and G are susc
with acyclic values, we have F ≥ G, and the map F has a fixed point — but the map G is
fixed point free. Of course, L(F) = L(G) by the previous result, and this number therefore
has to be 0 by the Lefschetz fixed point theorem.

In the classical fixed point theory of multivalued maps many classes of maps F : X � X
admit a homotopic single-valued continuous function f : X → X . However, in the finite
space setting, the map F : X � X in Example 4.5 is not homotopic to any single-valued
map in the sense that there is no continuous map f : X → X such that Ff : X � X is
homotopic to F . In fact, if G : X � X is susc with acyclic values and satisfies G ≤ F ,
then G(c) = {a}, G(d) = {b}, {a, b} ⊆ G(a) ⊆ {a, b, c} is acyclic, so G(a) = {a, b, c}
and similarly G(b) = {a, b, d}. It is also easy to prove that if G ≥ F then G = F , so by
Proposition 8.1, the homotopy class of F contains exactly one map.
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