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Abstract
We study the extension estimates for paraboloids in d-dimensional vector spaces over finite
fields Fq with q elements. We use the connection between L2 based restriction estimates and
L p → Lr extension estimates for paraboloids. As a consequence, we improve the L2 → Lr

extension results obtained by Lewko and Lewko (Proc AmMath Soc 140:2013–2028, 2012)
in even dimensions d ≥ 6 and odd dimensions d = 4� + 3 for � ∈ N. Our results extend the
consequences for 3-D paraboloids due to Lewko (AdvMath 270(1):457–479, 2015) to higher
dimensions. We also clarifies conjectures on finite field extension problems for paraboloids.

Keywords Restriction theorem · Extension theorem · Paraboloid · Finite field

Mathematics Subject Classification 42B05

1 Introduction

Let V ⊂ R
d be a hypersurface which is endowedwith a surface measure dσ. In the Euclidean

setting, the extension problem is to determine the exponents 1 ≤ p, r ≤ ∞ such that the
following inequality holds:

‖( f dσ)∨‖Lr (Rd ) ≤ C‖ f ‖L p(V ,dσ),

where the constant C > 0 is independent of functions f ∈ L p(V , dσ). By duality, this
extension estimate is the same as the restriction estimate

‖ĝ‖L p′ (V ,dσ)
≤ C‖g‖Lr ′ (Rd )

.

Here, p′ and r ′ denote the Hölder conjugates of p and r , respectively (i.e. 1/p + 1/p′ = 1).
Therefore, the extension problem is also called the restriction problem. In 1967, E.M. Stein
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52 D. Koh

[15] introduced the restriction problem. This problem had been completely solved for the
parabola and the circle in two dimensions, and the cones in three and four dimensions (see
[1,20,21]). However, it is still open in other cases although improved results have been
obtained by harmonic analysts. We refer readers to [2,6,16–18] for further information and
recent developments on the restriction problem in the Euclidean setting. In addition, see [3,4]
for the restriction problem in the integer setting.

In 2002, Mockenhaupt and Tao [14] initially posed and studied the extension problem
for various varieties in d-dimensional vector spaces over finite fields. In order to formulate a
finite field analogue of the extension problem, the real set is replaced by finite fields.We begin
by reviewing the definition of the finite field extension problem.We denote byFq a finite field
with q elements. Throughout this paper,we shall assume thatq is a power of odd prime. LetFd

q

be a d-dimensional vector space over the finite field Fq . We endow the vector space F
d
q with

the counting measure dm. We write (Fd
q , dm) to stress that the vector space F

d
q is endowed

with the counting measure dm. Since the vector space F
d
q is isomorphic to its dual space

as an abstract group, we identify the space F
d
q with its dual space. However, a normalized

counting measure dξ is endowed with its dual space which will be denoted by (Fd
q , dξ). We

always use the variable m for an element of the vector space (Fd
q , dm). On the other hand,

the variable ξ will be an element of the dual space (Fd
q , dξ). For example, we simply write

m ∈ F
d
q and ξ ∈ F

d
q for m ∈ (Fd

q , dx) and ξ ∈ (Fd
q , dξ), respectively. For a complex valued

function g : (Fd
q , dm) → C, the Fourier transform ĝ on (Fd

q , dξ) is defined by

ĝ(ξ) =
∫

Fdq

g(m)χ(−m · ξ) dm =
∑

m∈Fdq
g(m)χ(−m · ξ)

where χ denotes a nontrivial additive character of Fq and the dot product is defined by
m · ξ = m1ξ1 + · · · + mdξd for m = (m1, . . . ,md), ξ = (ξ1, . . . , ξd) ∈ F

d
q . For a complex

valued function f : (Fd
q , dξ) → C, the inverse Fourier transform f ∨ on (Fd

q , dm) is given
by

f ∨(m) =
∫

Fdq

f (ξ)χ(ξ · m) dξ = 1

qd
∑

ξ∈Fdq
f (ξ)χ(ξ · m).

Using the orthogonality relation of the nontrivial character χ of Fq , we obtain the Plancherel
theorem:

‖ĝ‖L2(Fdq ,dξ) = ‖g‖L2(Fdq ,dm) or ‖ f ‖L2(Fdq ,dξ) = ‖ f ∨‖L2(Fdq ,dm).

Namely, the Plancherel theorem yields the following equation

1

qd
∑

ξ∈Fdq
|̂g(ξ)|2 =

∑

m∈Fdq
|g(m)|2 or

1

qd
∑

ξ∈Fdq
| f (ξ)|2 =

∑

m∈Fdq
| f ∨(m)|2.

Notice by the Plancherel theorem that if G, F ⊂ F
d
q , then we have

1

qd
∑

ξ∈Fdq
|̂G(ξ)|2 = |G| and

∑

m∈Fdq
|F∨(m)|2 = |F |

qd
,

where |E | denotes the cardinality of a set E ⊂ F
d
q . Here, and throughout this paper, we shall

identify the set E ⊂ F
d
q with the indicator function 1E on the set E . Namely, we shall write
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Conjecture and improved extension theorems for paraboloids… 53

̂E for ̂1E , which allows us to use a simple notation. Given functions g1, g2 : (Fd
q , dm) → C,

the convolution function g1 ∗ g2 on (Fd
q , dm) is defined by

g1 ∗ g2(n) =
∫

Fdq

g1(n − m)g2(m) dm =
∑

m∈Fdq
g1(n − m)g2(m).

On the other hand, if f1, f2 : (Fd
q , dξ) → C, then the convolution function f1 ∗ f2 on

(Fd
q , dξ) is given by

f1 ∗ f2(η) =
∫

Fdq

f1(η − ξ) f2(ξ) dξ = 1

qd
∑

ξ∈Fdq
f1(η − ξ) f2(ξ).

Then it is not hard to see that

ĝ1 ∗ g2 = ĝ1ĝ2 and ( f1 ∗ f2)
∨ = f ∨

1 f ∨
2 .

Given an algebraic variety V ⊂ (Fd
q , dξ), we endow V with the normalized surface

measure dσ which is defined by the relation
∫

V
f (ξ) dσ(ξ) = 1

|V |
∑

ξ∈V
f (ξ).

Notice that dσ(ξ) = qd

|V | 1V (ξ) dξ and we have

( f dσ)∨(m) =
∫

V
f (ξ)χ(m · ξ) dσ(ξ) = 1

|V |
∑

ξ∈V
f (ξ)χ(m · ξ).

For each 1 ≤ p, r ≤ ∞, we define R∗
V (p → r) as the smallest positive real number such

that the following extension estimate holds:

‖( f dσ)∨‖Lr (Fdq ,dm) ≤ R∗
V (p → r) ‖ f ‖L p(V ,dσ) for all functions f : V → C.

Byduality, R∗
V (p → r) is also the smallest positive constant such that the following restriction

estimate holds:

‖ĝ‖L p′ (V ,dσ)
≤ R∗

V (p → r) ‖g‖Lr ′ (Fdq ,dm)
for all functions g : (Fd

q , dm) → C.

The number R∗
V (p → r) may depend on q , the size of the underlying finite field Fq . The

main question on the extension problem for V ⊂ F
d
q is to determine 1 ≤ p, r ≤ ∞ such that

the number R∗
V (p → r) is independent of q. Throughout this paper, we shall use X � Y for

X , Y > 0 if there is a constant C > 0 independent of q = |Fq | such that X ≤ CY . We also
write Y � X for X � Y , and X ∼ Y means that X � Y and Y � X . In addition, we shall
use X � Y if for every ε > 0 there exists Cε > 0 such that X � CεqεY . This notation is
powers of log q. Using the notathandy for suppressing ion �, the extension problem for V
is to determine 1 ≤ p, r ≤ ∞ such that R∗

V (p → r) � 1.
Since the finite filed extension problem was addressed in 2002 by Mockenhaupt and Tao

[14], it has been studied for several algebraic varieties such as paraboloids, spheres, and cones
(see, for example, [8–11,13]). In particular, very interesting results have been recovered for
paraboloids. From now on, we restrict ourselves to the study of the extension problem for
the paraboloid P ⊂ (Fd

q , dξ) defined as

P = {ξ ∈ F
d
q : ξd = ξ21 + · · · + ξ2d−1}. (1.1)
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54 D. Koh

This paper is written to achieve two main goals. One is to address clarified conjectures on the
extension problem for paraboloids. The other is to improve the previously known L2 → Lr

extension estimates for paraboloids in higher dimensions.
In Sect. 2, we shall introduce neat necessary conditions which we may conjecture as

sufficient conditions for R∗
P (p → r) � 1. In particular, by Lemma 2.3 in Sect. 2 it is natural

to conjecture the following statement on the L2 → Lr extension problem for paraboloids.

Conjecture 1.1 Let P ⊂ F
d
q be the paraboloid defined as in (1.1). Then we have

(1) If d ≥ 2 is even, then R∗
P (2 → r) � 1 ⇐⇒ 2d+4

d ≤ r ≤ ∞
(2) If d = 4� − 1 for � ∈ N, and −1 ∈ Fq is not a square number, then we have

R∗
P (2 → r) � 1 ⇐⇒ 2d + 6

d + 1
≤ r ≤ ∞

(3) If d = 4� + 1 for � ∈ N, then R∗
P (2 → r) � 1 ⇐⇒ 2d+2

d−1 ≤ r ≤ ∞
(4) If d ≥ 3 is odd, and −1 ∈ Fq is a square number, then we have

R∗
P (2 → r) � 1 ⇐⇒ 2d + 2

d − 1
≤ r ≤ ∞.

In the conclusions of Conjecture 1.1, the statements for “�⇒” direction follow imme-
diately from Lemma 2.3 in the following section. Hence, Conjecture 1.1 can be reduced
to the following critical endpoint estimate, because R∗

P (2 → r1) ≥ R∗
P (2 → r2) for

1 ≤ r1 ≤ r2 ≤ ∞.

Conjecture 1.2 Let P ⊂ F
d
q be the paraboloid defined as in (1.1). Then we have

(1) If d ≥ 2 is even, then R∗
P

(

2 → 2d+4
d

)

� 1

(2) If d = 4�−1 for � ∈ N, and−1 ∈ Fq is not a square number, then R∗
P

(

2 → 2d+6
d+1

)

� 1

(3) If d = 4� + 1 for � ∈ N, then R∗
P

(

2 → 2d+2
d−1

)

� 1

(4) If d ≥ 3 is odd, and −1 ∈ Fq is a square number, then R∗
P

(

2 → 2d+2
d−1

)

� 1.

1.1 Statement of main results

By the Stein-Tomas argument,Mockenhaupt and Tao [14] already showed that the statements
(3), (4) in Conjecture 1.2 are true. In fact, they proved that R∗

P (2 → (2d + 2)/(d − 1)) � 1
for all dimensions d ≥ 2 without further assumptions.

The statements (1), (2) in Conjecture 1.2 are very interesting in that the conjectured results
are better than the Stein-Tomas inequality which is sharp in the Euclidean case. This is due to
number theoretic issue which we can enjoy when we study harmonic analysis in finite fields.
In dimension two, the statement (1) in Conjecture 1.2 was already proved by Mockenhaupt
and Tao [14], but it is open in higher even dimensions. For higher even dimensions d ≥ 4,
Iosevich and Koh [7] proved that R∗

P (2 → 2d2/(d2 − 2d + 2)) � 1 which improves the
Stein-Tomas inequality due to Mockenhaupt and Tao. This result was obtained by using a
connection between L p → L4 extension results and L2 → Lr extension estimates. In [13],
Lewko and Lewko improved the result of Iosevich and Koh by recovering the endpoint. They
adapted the bilinear approach to derive the improved result, R∗

P (2 → 2d2/(d2−2d+2)) � 1.
In this paper, we shall obtain further improvement in higher even dimensions d ≥ 6. Our
first main result is as follows.
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Theorem 1.3 Let P ⊂ F
d
q be the paraboloid defined as in (1.1). If the dimension d ≥ 6 is

even, then for each ε > 0 we have

R∗
P

(

2 → 6d + 8

3d − 2
+ ε

)

� 1.

Notice that if d ≥ 6, then (6d + 8)/(3d − 2) < 2d2/(d2 − 2d + 2), which implies that
Theorem 1.3 is better than the result R∗

P (2 → 2d2/(d2 − 2d + 2)) � 1 due to Lewko and
Lewko.

The statement (2) in Conjecture 1.2 has not been solved in any case. In the case when
d = 3 and q is a primewith q ≡ 3 (mod 4),Mockenhaupt and Tao [14] deduced the following
extension result: for every ε > 0,

R∗
P

(

2 → 18

5
+ ε

)

� 1. (1.2)

This was improved to R∗
P (2 → 18

5 ) � 1 by Lewko and Lewko [13] (Bennett, Carbery,
Garrigos, and Wright independently proved it in unpublished work). Recently, Lewko [11]
discovered a nice connection between the finite field extension problem and the finite field
Szemerédi-Trotter incidence problem. Using the connection with ingenious arguments, he
obtained the currently best known result on extension problems for the 3-d paraboloid. More
precisely, he proved that if the dimension d is three and −1 ∈ Fq is not a square, then there
exists an ε > 0 such that

R∗
P

(

2 → 18

5
− ε

)

� 1. (1.3)

Furthermore, assuming that q is a prime and −1 ∈ Fq is not a square, he gave the following
explicit result for d = 3:

R∗
P

(

2 → 18

5
− 1

1035
+ ε

)

� 1 for any ε > 0. (1.4)

Although this result is still far from the conjectured result, R∗
P (2 → 3) � 1, M. Lewko

provided novel ideas useful in developing the finite field extension problem and we will also
adaptmany of his methods to deduce our improved results. In specific higher odd dimensions,

Iosevich and Koh [7] proved that R∗
P (2 → 2d2

d2−2d+2
) � 1 with the assumptions of the

statement (2) in Conjecture 1.2. This result is also better than the Stein-Tomas inequality. A.
Lewko and M. Lewko [13] obtained the endpoint estimate so that the result by Iosevich and
Koh was improved to

R∗
P

(

2 → 2d2

d2 − 2d + 2

)

� 1. (1.5)

As our second result, we shall improve this result in the case when d = 4�−1 ≥ 7 for � ∈ N.

More precisely, we have the following result.

Theorem 1.4 Let P ⊂ F
d
q be the paraboloid defined as in (1.1). If d = 4�+ 3 for � ∈ N, and

−1 ∈ Fq is not a square number, then for every ε > 0, we have

R∗
P

(

2 → 6d + 10

3d − 1
+ ε

)

� 1.
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Table 1 Progress on the finite field extension problem for paraboloids in lower dimensions

Dimension d, Field Fq R∗
P (p → r) � 1 Authors

d = 2, general q p = 2, r = 4 (S-T) Mockenhaupt and Tao [14] (solution)

d = 3, −1 a square p = 2, r = 4 (S-T) Mockenhaupt and Tao [14] (sharp)

p = 2.25, r = 3.6 Lewko [12] (sharp)

p = 18−5ε
8−5ε , r = 3.6 − ε Lewko [12] (sharp)

for some ε > 0

p = 3, r = 3 (conjectured)

d = 3, −1 not a square p = 2, r > 3.6 Mockenhaupt and Tao [14]

(prime q) p > 1.6, r = 4 Mockenhaupt and Tao [14]

p = 2, r = 3.6 Lewko and Lewko [13]

p = 1.6, r = 4 Lewko and Lewko [13] (sharp)

p = 2, r > 3.6 − 1
1035 Lewko [11]

p = 2, r = 3 (conjectured)

d = 3, −1 not a square p = 2, r = 3.6 − ε Lewko [11]

for some ε > 0

p = 2, r = 3 (conjectured)

Notice that Theorem 1.4 is superior to the result (1.5) due to A. Lewko and M. Lewko. If one
could obtain the exponent in Theorem 1.4 for d = 3, we could have R∗

P (2 → 7
2 + ε) � 1,

which is much better than the best known result (1.4) due to M. Lewko. Unfortunately, our
result does not cover the case of three dimensions and it only improves the previous known
results in specific higher odd dimensions.

This paper will be organized as follows. In Sect. 2, we deduce the necessary conditions for
R∗
P (p → r) bound fromwhich wemake a conjecture on extension problems for paraboloids.

In Sect. 3, we collect several lemmaswhich are essential in proving ourmain results, Theorem
1.3 and Theorem 1.4. In the final section, we give the complete proofs of our main theorems.
In addition, we shall provide summary of progress on the finite field extension problems for
paraboloids (Tables 1, 2).

2 Conjecture on extension problems for paraboloids

In [14], Mockenhaupt and Tao observed that if |V | ∼ qd−1, then the necessary conditions
for R∗

V (p → r) � 1 are given by

r ≥ 2d

d − 1
and r ≥ pd

(p − 1)(d − 1)
. (2.1)

In particular, when the variety V contains an affine subspace � with |�| = qk for 0 ≤ k ≤
d − 1, the above necessary conditions can be improved to the conditions

r ≥ 2d

d − 1
and r ≥ p(d − k)

(p − 1)(d − 1 − k)
. (2.2)

Now, let us observe the necessary conditions for R∗
P (p → r) bound where the paraboloid

P ⊂ F
d
q is defined as in (1.1). To find more exact necessary conditions for R∗

P (p → r) � 1,
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Table 2 Progress on the finite field extension problem for paraboloids in higher dimensions

Dimension d, Field Fq R∗
P (p → r) � 1 Authors

d ≥ 4 even, general q p = 2, r = 2d+2
d−1 (S-T) Mockenhaupt and Tao [14]

p = 2, r > 2d2

d2−2d+2
Iosevich and Koh [7]

p > 4d
3d−2 , r = 4 Iosevich and Koh [7]

p = 2, r = 2d2

d2−2d+2
Lewko and Lewko [13]

p = 4d
3d−2 , r = 4 Lewko and Lewko [13] (sharp)

p = 2, r > 6d+8
3d−2 Theorem 1.4

p = 2d2

d2−d+2
, r = 2d

d−1 (conjectured)

p = 2, r = 2d+4
d (conjectured best r for p = 2)

d ≥ 5 odd, −1 a square p = 2, r = 2d+2
d−1 (S-T) Mockenhaupt and Tao [14] (sharp)

p = 2d+2
d−1 , r = 2d+2

d−1 − εd Lewko [12]

for some εd > 0

p = 2d
d−1 , r = 2d

d−1 (conjectured)

d = 4� + 1 for � ∈ N, −1 not a square p = 2, r = 2d+2
d−1 (S-T) Mockenhaupt and Tao [14] (sharp)

p = 2d
d−1 , r = 2d

d−1 (conjectured)

d = 4� + 3 for � ∈ N,−1 not a square p = 2, r = 2d+2
d−1 (S-T) Mockenhaupt and Tao [14]

p = 2, r > 2d2

d2−2d+2
Iosevich and Koh [7]

p > 4d
3d−2 , r = 4 Iosevich and Koh [7]

p = 2, r = 2d2

d2−2d+2
Lewko and Lewko [13]

p = 4d
3d−2 , r = 4 Lewko and Lewko [13]

p = 2, r > 6d+10
3d−1 Theorem 1.5

p = 2d2+2d
d2+3

, r = 2d
d−1 (conjectured)

p = 2, r = 2d+6
d+1 (conjectured best r for p = 2)

it is essential to know the size of subspaces lying on the paraboloid P ⊂ F
d
q . To this end, we

need the following lemma which is a direct consequence of Lemma 2.1 in [19].

Lemma 2.1 Let S0 = {(x1, . . . , xd−1) ∈ F
d−1
q : x21 + · · · + x2d−1 = 0} be a variety in F

d−1
q

with d ≥ 2. Denote by η the quadratic character of Fq . If W is a subspace of maximal
dimension contained in S0, then we have the following facts:

(1) If d − 1 is odd, then |W | = q
d−2
2

(2) If d − 1 is even and (η(−1))
d−1
2 = 1, then |W | = q

d−1
2

(3) If d − 1 is even and (η(−1))
d−1
2 = −1, then |W | = q

d−3
2 .

Observe from Lemma 2.1 that � := W × {0} ⊂ F
d−1
q × Fq is a subspace contained in

the paraboloid P ⊂ F
d
q . Since |�| = |W |, we have the following result from Lemma 2.1.

Corollary 2.2 Let P ⊂ F
d
q be the paraboloid. Then the following statements hold:
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(1) If d ≥ 2 is even, then the paraboloid P contains a subspace � with |�| = q
d−2
2

(2) If d = 4� − 1 for � ∈ N, and −1 ∈ Fq is not a square number, then the paraboloid P

contains a subspace � with |�| = q
d−3
2

(3) If d = 4� + 1 for � ∈ N, then the paraboloid P contains a subspace � with |�| = q
d−1
2

(4) If d ≥ 3 is odd, and −1 ∈ Fq is a square number, then the paraboloid P contains a

subspace � with |�| = q
d−1
2 .

Applying Corollary 2.2 to (2.2), the necessary conditions for R∗
P (p → r) � 1 are given

as follows:

Lemma 2.3 Let P ⊂ F
d
q be the paraboloid defined as in (1.1). Assume that R

∗
P (p → r) � 1

for 1 ≤ p, r ≤ ∞. Then the following statements are true:

(1) If d ≥ 2 is even, then (1/p, 1/r) must be contained in the convex hull of points

(1, 0), (0, 0),

(

0,
d − 1

2d

)

, and P1 :=
(

d2 − d + 2

2d2
,

d − 1

2d

)

.

(2) If d = 4� − 1 for � ∈ N, and −1 ∈ Fq is not a square number, then (1/p, 1/r) lies on
the convex hull of points

(1, 0), (0, 0),

(

0,
d − 1

2d

)

, and P2 :=
(

d2 + 3

2d2 + 2d
,

d − 1

2d

)

.

(3) If d = 4� + 1 for � ∈ N, then (1/p, 1/r) must be contained in the convex hull of points
(1, 0), (0, 0),

(

0, d−1
2d

)

, and P3 := ( d−1
2d , d−1

2d

)

.

(4) If d ≥ 3 is odd, and −1 ∈ Fq is a square number, then (1/p, 1/r) must be contained in
the convex hull of points (1, 0), (0, 0),

(

0, d−1
2d

)

, and
( d−1

2d , d−1
2d

)

.

We may conjecture that the necessary conditions for R∗
P (p → r) � 1 in Lemma 2.3 are

in fact sufficient. For this reason, we could settle the extension problem for paraboloids if we
could obtain the critical endpoints P1, P2, P3 in the statement of Lemma 2.3. In conclusion, to
solve the extension problem for paraboloids, it suffices to establish the following conjecture
on critical endpoints.

Conjecture 2.4 The following statements hold:

(1) If d ≥ 2 is even, then R∗
P

(

2d2

d2−d+2
, 2d

d−1

)

� 1

(2) If d = 4� − 1 for � ∈ N, and −1 ∈ Fq is not a square number, then

R∗
P

(

2d2+2d
d2+3

, 2d
d−1

)

� 1

(3) If d = 4� + 1 for � ∈ N, then R∗
P

(

2d
d−1 ,

2d
d−1

)

� 1

(4) If d ≥ 3 is odd, and −1 ∈ Fq is a square number, then R∗
P

(

2d
d−1 ,

2d
d−1

)

� 1.

3 Preliminary lemmas

In this section, we collect several lemmaswhich shall be used to prove ourmain results. Aswe
shall see, both Theorems 1.3 and 1.4 will be proved in terms of the restriction estimates (dual
extension estimate). Thus, we start with lemmas about the restriction operators associated
with paraboloids. We shall write RP (p → r) for R∗

P (r ′ → p′) for 1 ≤ p, r ≤ ∞. Namely,
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RP (p → r) is the smallest positive real number such that the following restriction estimate
holds:

‖ĝ‖Lr (P,dσ) ≤ RP (p → r) ‖g‖L p(Fdq ,dm) for all functions g : (Fd
q , dm) → C.

The following definition was given in [11].

Definition 3.1 Let G ⊂ F
d
q . For each a ∈ Fq , define a level set

Ga = {(m1, . . . ,md−1,md) ∈ G : md = a}.
In addition, define

LG = {a ∈ Fq : |Ga | ≥ 1}.
We say that the set G is a regular set if

|Ga |
2

≤ |Ga′ | ≤ 2 |Ga | for a, a′ ∈ LG .

Finally, the function g : F
d
q → C is called a regular function if the function g is supported

on a regular set G and 1
2 ≤ |g(m)| ≤ 1 for m ∈ G.

Notice that if G is a regular set, then |G| ∼ |Ga ||LG | for all a ∈ LG . By the the dyadic
pigeonhole principle, the following lemma was given by M. Lewko (see Lemma 14 in [11]).

Lemma 3.2 If the restriction estimate

‖ĝ‖Lr (P,dσ) ≤ RP (p → r) ‖g‖L p(Fdq ,dm)

holds for all regular functions g : (Fd
q , dm) → C, then for each ε > 0,

RP (p − ε → r) � 1.

Working on regular test functions, we lose the endpoint result but our analysis becomes
extremely simplified. When the size of the support G of a regular function g is somewhat
big, we shall invoke the following restriction estimate.

Lemma 3.3 Let g is a regular function on (Fd
q , dm) with supp(g) = G. Then we have

‖ĝ‖L2(P,dσ) ≤ q
1
2 |G| 12 .

Proof By the Plancherel theorem, we see that

‖( f dσ)∨‖L2(Fdq ,dm) = q
1
2 ‖ f ‖L2(P,dσ) for all functions f : P → C.

By duality, it is clear that

‖ĝ‖L2(P,dσ) ≤ q
1
2 ‖g‖L2(Fdq ,dm) ≤ q

1
2 ‖G‖L2(Fdq ,dm) = q

1
2 |G| 12 ,

where the last inequality follows from the property of the regular function g (namely, 1
2 ≤

|g| ≤ 1 on its support G). ��
The following result is well known in [14] (see also [7]).
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Lemma 3.4 Let dσ be the normalized surface measure on the paraboloid P ⊂ (Fd
q , dξ). For

each m = (m,md) ∈ F
d−1
q × Fq , we have

(dσ)∨(m) =

⎧

⎪

⎨

⎪

⎩

q−(d−1)χ
( ‖m‖

−4md

)

ηd−1(md)G
d−1
1 if md �= 0

0 if md = 0, m �= (0, . . . , 0)
1 if m = (0, . . . , 0).

,

where ‖m‖ := m2
1 + · · · + m2

d−1, η denotes the quadratic character of F
∗
q , and G1 denotes

the standard Gauss sum with |G1| = | ∑s �=0 η(s)χ(s)| = q
1
2 .

When a regular function g is supported on a small setG, the following result will be useful
to deduce a good L2 restriction estimate.

Lemma 3.5 If g is a regular function on (Fd
q , dm) with supp(g) = G, then we have

‖ĝ‖L2(P,dσ) � |G| 12 + q
−d+1

4 |G|.
Proof It follows that

‖ĝ‖2L2(P,dσ)
= 1

|P|
∑

ξ∈P

|̂g(ξ)|2 = 1

qd−1

∑

ξ∈P

∑

m,m′∈G
χ(ξ · (m − m′))g(m)g(m′)

= q
∑

m,m′∈G
P∨(m − m′)g(m)g(m′) ≤ q

∑

m,m′∈G
|P∨(m − m′)|

= q
∑

m∈G
|P∨(0, . . . , 0)| + q

∑

m,m′∈G:m �=m′
|P∨(m − m′)| = I + II.

Since P∨(0, . . . , 0) = |P|
qd

= 1
q ,we see that I = |G|.To estimate II, we observe fromLemma

3.4 that if w �= (0, . . . , 0),

|P∨(w)| =
∣

∣

∣

∣

1

q
(dσ)∨(w)

∣

∣

∣

∣

≤ q
−d−1

2 .

Then it is clear that II ≤ q
−d+1

2 |G|2. Putting all estimates together, we obtain the lemma. ��
The improved L p → L2 restriction estimates for paraboloids have been obtained by

extending the idea of Carbery [5] to the finite field setting. For instance, Mockenhaupt and
Tao [14] observed that the restriction operator acting on a single vertical slice of g, say ga for
a ∈ Fq , is closely related to the extension operator applied to a function h on P , which can be
identified with the slice function ga . In fact, they found the connection between the L p → L2

restriction estimate and the L p → L4 extension estimate obtained from the additive energy
estimation. Recall that the additive energy 	(E) for E ⊂ P is given by

	(E) :=
∑

x,y,z,w∈E :x+y=z+w

1. (3.1)

As a consequence, they obtained the extension result (1.2) for the 3-D paraboloid. Working
with the restriction operator applied to regular test functions, M. Lewko [11] was able to
achieve the further improved extension results for the 3-D paraboloid (see (1.3) and (1.4)).
He also employed the relation between the L p → L2 restriction estimate and the L p → L4

extension result for the 3-D paraboloid. In this paper, we develop his work to higher dimen-
sional cases. To estimate ‖ĝ‖L2(P,dσ), we will invoke not only L p → L4 extension results
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Conjecture and improved extension theorems for paraboloids… 61

but also L2 → Lr extension results for paraboloids in higher dimensions. The following
lemma can be obtained by a modification of the Mockenhaupt and Tao Machinery which
explains the relation between the L p → L2 restriction estimate and the L p → L4 extension
result for paraboloids.

Lemma 3.6 Let P ⊂ F
d
q be the paraboloid. Then the following statements hold:

(1) Let g be a regular function with the support G ⊂ (Fd
q , dm). For each a ∈ LG , let ha

be a function on the paraboloid P ⊂ (Fd
q , dξ) such that 1

2 ≤ |ha(ξ)| ≤ 1 on supp(ha)
and |supp(ha)| = |Ga |. In addition, assume that there exists a positive number U (|E |)
depending on the size of a set E ⊂ P such that |E | ∼ |supp(ha)| for all a ∈ LG and

max
a∈LG

‖(hadσ)∨‖L4(Fd
q ,dm) � U (|E |). (3.2)

Then we have

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 38 |LG | 12 q d−1
4 (U (|E |) 1

2 .

(2) If d ≥ 4 is even, or if d = 4� + 3 for � ∈ N and −1 ∈ Fq is not a square number, then

‖ĝ‖L2(P,dσ) � |G| d
2+d−1
2d2 |LG | 14

for all regular functions g on (Fd
q , dm) with supp(g) = G.

Proof By duality, it follows that

‖ĝ‖2L2(P,dσ)
= 〈g, (ĝdσ)∨〉 = 〈g, g ∗ (dσ)∨〉.

Using the Bochner–Riesz kernel K which is defined by K (m) = (dσ)∨(m) − δ0(m) for
m ∈ (Fd

q , dm), where δ0(m) = 1 if m = (0, . . . , 0) and 0 otherwise, we can write from
Hölder’s inequality that for 1 ≤ r ≤ ∞,

‖ĝ‖2L2(P,dσ)
= 〈g, g ∗ δ0〉 + 〈g, g ∗ K 〉
≤ ‖g‖2L2(Fdq ,dm)

+ ‖g‖Lr ′ (Fdq ,dm)
‖g ∗ K‖Lr (Fdq ,dm)

≤ |G| + |G| 1
r ′ ‖g ∗ K‖Lr (Fdq ,dm), (3.3)

where the last inequality follows from the property of a regular function g with 1
2 ≤ g ≤ 1

on its support G. To estimate ‖g ∗ K‖Lr (Fdq ,dm), define ga for a ∈ LG as the restriction of

g to the hyperplane {m = (m1, . . . ,md) ∈ F
d
q : md = a}. Notice that supp(ga) = Ga for

a ∈ LG . It follows that

‖g ∗ K‖Lr (Fdq ,dm) ≤
∑

a∈LG

‖ga ∗ K‖Lr (Fdq ,dm). (3.4)

By the definition of K and Lemma 3.4, we see that for each a ∈ LG ,

‖ga ∗ K‖Lr (Fdq ,dm) =
⎛

⎜

⎝

∑

m∈Fdq

∣

∣

∣

∣

∣

∣

∣

∑

n∈Fdq
ga(n)K (m − n)

∣

∣

∣

∣

∣

∣

∣

r⎞

⎟

⎠

1
r

123



62 D. Koh

= q
−d+1

2

⎛

⎜

⎝

∑

m∈Fd−1
q

∑

md �=a

∣

∣

∣

∣

∣

∣

∣

∑

n∈Fd−1
q

g(n, a) χ

( ‖m − n‖
−4(md − a)

)

∣

∣

∣

∣

∣

∣

∣

r⎞

⎟

⎠

1
r

,

wherewedefine‖m−n‖ = (m−n)·(m−n).After changingvariables by letting s = −md+a,

we use the change of variables one more by putting t = 1
4s and u = −m

2s . Then it follows that

‖ga ∗ K‖Lr (Fdq ,dm) = q
−d+1

2

⎛

⎜

⎝

∑

u∈Fd−1
q

∑

t �=0

∣

∣

∣

∣

∣

∣

∣

χ
(u · u

4t

)
∑

n∈Fd−1
q

g(n, a) χ
(

(u · n) + t n · n)
)

∣

∣

∣

∣

∣

∣

∣

r⎞

⎟

⎠

1
r

= q
−d+1

2

⎛

⎜

⎝

∑

u∈Fd−1
q

∑

t �=0

∣

∣

∣

∣

∣

∣

∣

∑

n∈Fd−1
q

g(n, a) χ
(

(u, t) · (n, n · n)
)

∣

∣

∣

∣

∣

∣

∣

r⎞

⎟

⎠

1
r

.

Now, for each a ∈ LG , define ha as a function on the paraboloid P given by

ha(n, n · n) = ga(n) = g(n, a) for n = (n, nd) ∈ F
d−1
q × Fq . (3.5)

Then we see that for each a ∈ LG ,

‖ga ∗ K‖Lr (Fdq ,dm) ≤ q
d−1
2 ‖(hadσ)∨‖Lr (Fdq ,dm).

Hence, combining this with (3.4), the inequality (3.3) implies that

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1
2r ′ q

d−1
4

⎛

⎝

∑

a∈LG

‖(hadσ)∨‖Lr (Fdq ,dm)

⎞

⎠

1
2

. (3.6)

3.1 Proof of the statement (1) in Lemma 3.6

Since g is a regular function supported on the regular set G, it is clear from the definition of
ha that 12 ≤ |ha(ξ)| ≤ 1 on supp(ha) and |supp(ha)| = |supp(ga)| = |Ga | for a ∈ LG .Thus,
using the assumption (3.2) with r = 4, the inequality (3.6) gives the desirable conclusion.

3.2 Proof of the statement (2) in Lemma 3.6

We shall appeal the following L2 → Lr extension result obtained by A. Lewko and M.
Lewko (see Theorem 2 in [13]).

Lemma 3.7 Let P be the paraboloid in (Fd
q , dξ). If d ≥ 4 is even, or if d = 4�+ 3 for � ∈ N

and −1 ∈ Fq is not a square number, then we have

R∗
P

(

2 → 2d2

d2 − 2d + 2

)

� 1.

Applying this lemma to the inequality (3.6) with r = 2d2

d2−2d+2
, it follows

‖ĝ‖L2(P,dσ) � |G| 12 + |G| d
2+2d−2
4d2 q

d−1
4

⎛

⎝

∑

a∈LG

‖ha‖L2(P,dσ)

⎞

⎠

1
2

.
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By the Cauchy-Schwarz inequality and the definition of ha given in (3.5), we conclude that

‖ĝ‖L2(P,dσ) � |G| 12 + |G| d
2+2d−2
4d2 q

d−1
4 |LG | 14

⎛

⎝

∑

a∈LG

‖ha‖2L2(P,dσ)

⎞

⎠

1
4

= |G| 12 + |G| d
2+2d−2
4d2 q

d−1
4 |LG | 14

⎛

⎝

∑

a∈LG

1

qd−1

∑

n∈P

|ha(n)|2
⎞

⎠

1
4

= |G| 12 + |G| d
2+2d−2
4d2 |LG | 14

⎛

⎜

⎝

∑

a∈LG

∑

n∈Fdq
|ga(n)|2

⎞

⎟

⎠

1
4

= |G| 12 + |G| d
2+2d−2
4d2 |LG | 14

⎛

⎜

⎝

∑

n∈Fdq
|g(n)|2

⎞

⎟

⎠

1
4

≤ |G| 12 + |G| d
2+2d−2
4d2 |LG | 14 |G| 14 � |G| d

2+d−1
2d2 |LG | 14 ,

where the last line follows because 1
2 ≤ |g(n)| ≤ 1 on its support G. ��

4 Proof of main theorems

First, let us see basic ideas to deduce our main results. We want to improve Lemma 3.7
which is the previously best known result on extension problems for paraboloids in higher
dimensions. By duality, Lemma 3.7 implies the following restriction estimate:

‖ĝ‖L2(P,dσ) � ‖g‖
L

2d2

d2+2d−2 (Fdq ,dm)

. (4.1)

Now let us only consider the regular function g on its supportG. Since ‖g‖L p(Fdq ,dm) ∼ |G| 1p ,
when |G| is much bigger than q

d2
2d−2 , Lemma 3.3 already gives us a better result than (4.1).

On the other hand, when |G| is very small, Lemma 3.5 yields very strong results. Therefore,

our main task is to obtain much better estimate than (4.1) for every set G with q
d2

2d−2−δ ≤
|G| ≤ q

d2
2d−2+ε for some δ, ε > 0. This will be successfully done by applying Lemma 3.6.

In practice, we need to find a U (|E |) in the conclusion of the first part of Lemma 3.6. To do
this, we shall invoke the following additive energy estimates due to Iosevich and Koh (see
Lemma 7, Lemma 8, and Remark 4 in [7]).

Lemma 4.1 Let P be the paraboloid in (Fd
q , dξ). Then the following statements hold:

(1) If the dimension d ≥ 4 is even and E ⊂ P, then we have

	(E) � min{|E |3, q−1|E |3 + q
d−2
4 |E | 52 + q

d−2
2 |E |2}

(2) If d = 4� + 3 for � ∈ N, and −1 ∈ Fq is not a square number, then we have

	4(E) � min{|E |3, q−1|E |3 + q
d−3
4 |E | 52 + q

d−2
2 |E |2},
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where 	(E) denotes the additive energy defined as in (3.1).

As we shall see, we only need the upper bound of 	(E) for a restricted range of E ⊂ P.

Considering the dominating value in terms of |E |, the following result is a simple corollary
of the lemma above.

Corollary 4.2 For the paraboloid P ⊂ (Fd
q , dξ), we have the following facts:

(1) If the dimension d ≥ 4 is even and E is any subset of P with q
d−2
2 ≤ |E | ≤ q

d+2
2 , then

	(E) � q
d−2
4 |E | 52

(2) Suppose that d = 4� + 3 for � ∈ N, and −1 ∈ Fq is not a square number. Then, for any

subset E of P with q
d−2
2 ≤ |E | ≤ q

d+1
2 , we have

	(E) � q
d−3
4 |E | 52 + q

d−2
2 |E |2.

Wecan deduce the following result by applyingCorollary 4.2 to the first part of Lemma3.6.

Lemma 4.3 Let g be a regular function with its support G ⊂ (Fd
q , dm). Then the following

statements are valid:

(1) If the dimension d ≥ 4 is even and q
d−2
2 � |Ga | � q

d+2
2 for a ∈ LG , then we have

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1116 |LG | 3
16 q

−3d+6
32

(2) Assume that d = 4� + 3 for � ∈ N, and −1 ∈ Fq is not a square number. Then if

q
d−2
2 � |Ga | � q

d+1
2 for a ∈ LG, we have

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1116 |LG | 3
16 q

−3d+5
32 + |G| 58 |LG | 14 q −d+2

16 .

Proof For each a ∈ LG , let ha be the function on P given in the statement (1) of Lemma
3.6. For each a ∈ LG , let Ha = supp(ha). Since 1

2 ≤ |ha | ≤ 1 on its support Ha, expanding
L4 norm of (hadσ)∨ gives

‖(hadσ)∨‖L4(Fd
q ,dm) ≤ ‖(Hadσ)∨‖L4(Fd

q ,dm) = q
−3d+4

4 (	(Ha))
1
4 .

First, let us prove the first part of Lemma 4.3. Since |Ga | = |Ha | for a ∈ LG , the first part
of Corollary 4.2 and the above inequality yield

‖(hadσ)∨‖L4(Fd
q ,dm) � q

−3d+4
4

(

q
d−2
4 |Ha | 52

) 1
4 = q

−11d+14
16 |Ha | 58 .

By the definition of a regular set G, it is obvious that |Ga | ∼ |Ga′ | for a, a′ ∈ LG . Hence,
|Ha | ∼ |Ha′ | for a, a′ ∈ LG . Thus, we can choose E ⊂ P such that |E | ∼ |Ha | for all
a ∈ LG . It follows that

max
a∈LG

‖(hadσ)∨‖L4(Fd
q ,dm) � q

−11d+14
16 |E | 58 := U (|E |).

By applying the first part of Lemma 3.6 and observing that |G| ∼ |Ga ||LG | ∼ |E ||LG | for
all a ∈ LG , we conclude that

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 38 |LG | 12 q d−1
4

(

q
−11d+14

16 |E | 58
) 1

2

∼ |G| 12 + |G| 1116 |LG | 3
16 q

−3d+6
32 ,
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which proves the first part of Lemma 4.3.
To prove the second part of Lemma 4.3, we use the same arguments as in the proof of the

first part of Lemma 4.3. In this case, we just utilize the second part of Corollary 4.2 to see
that

max
a∈LG

‖(hadσ)∨‖L4(Fd
q ,dm) � q

−3d+4
4

(

q
d−3
4 |E | 52 + q

d−2
2 |E |2

) 1
4

∼ q
−3d+4

4

(

q
d−3
16 |E | 58 + q

d−2
8 |E | 12

)

= q
−11d+13

16 |E | 58 + q
−5d+6

8 |E | 12 := U (|E |).
As before, we appeal the first part of Lemma 3.6 and use that |G| ∼ |Ga ||LG | ∼ |E ||LG |

for all a ∈ LG . Then the proof of the second part of Lemma 4.3 is complete as follows:

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 38 |LG | 12 q d−1
4

(

q
−11d+13

16 |E | 58 + q
−5d+6

8 |E | 12
) 1

2

∼ |G| 12 + |G| 38 |LG | 12 q d−1
4

(

q
−11d+13

32 |E | 5
16 + q

−5d+6
16 |E | 14

)

= |G| 12 + |G| 38 |LG | 12 q d−1
4 q

−11d+13
32 |E | 5

16 + |G| 38 |LG | 12 q d−1
4 q

−5d+6
16 |E | 14

= |G| 12 + |G| 38 |LG | 12 |E | 5
16 q

−3d+5
32 + |G| 38 |LG | 12 |E | 14 q −d+2

16

∼ |G| 12 + |G| 1116 |LG | 3
16 q

−3d+5
32 + |G| 58 |LG | 14 q −d+2

16 .

��
We are ready to complete the proof of our main theorems, Theorem 1.3 and Theorem 1.4,
which will be proved in the following subsections.

4.1 Proof of Theorem 1.3

By duality and Lemma 3.2, it is enough to prove the following statement:

Theorem 4.4 If the dimension d ≥ 6 is even, then we have

‖ĝ‖L2(P,dσ) � ‖g‖
L

6d+8
3d+10 (Fdq ,dm)

for every regular function g supported on G ⊂ (Fd
q , dm).

Proof As mentioned in the beginning of this section, it is helpful to work on three kinds of
regular functions g classified according to the following size of G = supp(g) : for some
ε, δ > 0,

(1) 1 ≤ |G| ≤ q
d2

2d−2−δ (2) q
d2

2d−2−δ ≤ |G| ≤ q
d2

2d−2+ε (3) q
d2

2d−2+ε ≤ |G| ≤ qd .

Notice that Lemma 3.2 yieldsmuch strong restriction inequalitywhenever |G| becomes lager.
Thus, Lemma 3.2 is useful for the case (3). Also observe that Lemma 3.5 gives the better
restriction inequality for smaller size of G and so it is helpful for the case (1). Thus, choosing
big ε and δ will yield good results for both the case (1) and the case (3). However, whenever ε
and δ become larger, the restriction estimate will be worse for the case (2). Hence, to deduce
desirable results for all cases, our main task is to select optimal values of ε and δ. Now, let
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us see how to find the optimal ε and δ. Let ε, δ > 0 which will be chosen later. Let g be a
regular function with its support G such that

q
d2

2d−2−δ ≤ |G| ≤ q
d2

2d−2+ε. (4.2)

Let |LG | = qα for 0 ≤ α ≤ 1. Since |G| ∼ |Ga ||LG | = |Ga |qα for a ∈ LG , it must follow
that for every a ∈ LG ,

q
d2

2d−2−δ−α � |Ga | � q
d2

2d−2+ε−α.

In order to use the first part of Lemma 4.3, we need to choose ε, δ > 0 such that

q
d−2
2 ≤ q

d2
2d−2−δ−α � |Ga | � q

d2
2d−2+ε−α ≤ q

d+2
2 .

Thus, if we select ε, δ > 0 satisfying that

δ + α ≤ 3d − 2

2d − 2
and ε − α ≤ d − 2

2d − 2
, (4.3)

then the first part of Lemma 4.3 yields

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1116 q −3d+12
32 for q

d2
2d−2−δ ≤ |G| ≤ q

d2
2d−2+ε, (4.4)

where we use the fact that |LG | ≤ q.Notice that this inequality gives worse restriction results
whenever |G| becomes lager. Thus, comparing this inequality with Lemma 3.3 which gives
better restriction inequality for big size of G, it is desirable to choose a possibly large ε > 0
such that

|G| 12 + |G| 1116 q −3d+12
32 � |G| 12 q 1

2

(

namely, |G| � q
3d+4
6

)

and |G| ≤ q
d2

2d−2+ε.

For this reason, we take ε = d−4
6d−6 which is positive for even d ≥ 6. Then we can take

δ = d
2d−2 so that the inequality (4.3) holds for all 0 ≤ α ≤ 1.Nowwe start proving Theorem

4.4.

(Case I) Assume that q
d
2 ≤ |G| ≤ q

3d+4
6 , which is the case in (4.2) for ε = d−4

6d−6 and

δ = d
2d−2 . Then, by (4.4), we see that

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1116 q −3d+12
32 for q

d
2 ≤ |G| ≤ q

3d+4
6 .

By the direct comparison, it follows that for all q
d
2 ≤ |G| ≤ q

3d+4
6 ,

|G| 12 + |G| 1116 q −3d+12
32 � |G| 3d+10

6d+8 = ‖G‖
L

6d+8
3d+10 (Fdq ,dm)

∼ ‖g‖
L

6d+8
3d+10 (Fdq ,dm)

.

Thus, the statement of Theorem 4.4 is valid for all regular functions g on (Fd
q , dm) such that

q
d
2 ≤ |supp(g)| = |G| ≤ q

3d+4
6 .

(Case II) Assume that 1 ≤ |G| ≤ q
d
2 . Applying Lemma 3.5, we obtain that

‖ĝ‖L2(P,dσ) � |G| 12 + q
−d+1

4 |G| for all 1 ≤ |G| ≤ q
d
2 .

In fact, this inequality gives much stronger restriction estimate than Theorem 4.4 for 1 ≤
|G| ≤ q

d
2 . By the direct comparison, if 1 ≤ |G| ≤ q

d
2 , then we have
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|G| 12 + q
−d+1

4 |G| � |G| d+1
2d = ‖G‖

L
2d
d+1 (Fdq ,dm)

≤ ‖G‖
L

6d+8
3d+10 (Fdq ,dm)

∼ ‖g‖
L

6d+8
3d+10 (Fdq ,dm)

.

Hence, Theorem 4.4 is proved in this case.

(Case III) Finally, assume that q
3d+4
6 ≤ |G| ≤ qd . In this case, by Lemma 3.3 and the direct

comparison, the statement of Theorem 4.4 holds: for all q
3d+4
6 ≤ |G| ≤ qd ,

‖ĝ‖L2(P,dσ) � |G| 12 q 1
2 � ‖G‖

L
6d+8
3d+10 (Fdq ,dm)

∼ ‖g‖
L

6d+8
3d+10 (Fdq ,dm)

.

We has completed the proof. ��

4.2 Proof of Theorem 1.4

Theorem 1.4 can be proved by following the same arguments as in the proof of Theorem 1.3
but we will need additional work to deal with a regular set G with middle size. The second
part of Lemma 3.6 will make a crucial role in overcoming the problem. Nowwe start proving
Theorem 1.4. By duality and Lemma 3.2, it suffices to prove the following statement:

Theorem 4.5 If d = 4� + 3 for � ∈ N, and −1 ∈ Fq is not a square number, then we have

‖ĝ‖L2(P,dσ) � ‖g‖
L

6d+10
3d+11 (Fdq ,dm)

for every regular function g supported on G ⊂ (Fd
q , dm).

Proof As in the proof of Theorem 4.4, let g be a regular function supported on the set
G ⊂ (Fd

q , dm) satisfying that

q
d2

2d−2−δ ≤ |G| ≤ q
d2

2d−2+ε (4.5)

for some ε, δ > 0 which shall be selected as constants. Let |LG | = qβ for 0 ≤ β ≤ 1. Since
|G| ∼ |Ga ||LG | = |Ga |qβ for a ∈ LG , it follows that for every a ∈ LG ,

q
d2

2d−2−δ−β � |Ga | � q
d2

2d−2+ε−β .

For such ε, δ > 0, assume that for every a ∈ LG ,

q
d−2
2 ≤ q

d2
2d−2−δ−β � |Ga | � q

d2
2d−2+ε−β ≤ q

d+1
2 .

Namely, we assume that

δ + β ≤ 3d − 2

2d − 2
and

1

2d − 2
≤ β − ε. (4.6)

Then using the second part of Lemma 4.3, we have

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1116 |LG | 3
16 q

−3d+5
32 + |G| 58 |LG | 14 q −d+2

16

≤ |G| 12 + |G| 1116 q −3d+11
32 + |G| 58 q −d+6

16 , (4.7)

where we utilized the fact that |LG | ≤ q.As before, by comparing this estimate with Lemma

3.3, we select the ε > 0 such that |G| ≤ q
3d+5
6 = q

d2
2d−2+ε. Namely, we take ε = 2d−5

6d−6 . With

this ε, if we choose 1
3 ≤ β ≤ 1 and δ = d

2d−2 , then all conditions in (4.6) hold, because
1 ≤ |LG | = qβ ≤ q.
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Remark 4.6 In conclusion, we have seen that if g is a regular function with its support G ⊂
(Fd

q , dm) such that q
d2

2d−2−δ ≤ |G| ≤ q
d2

2d−2+ε and q
1
3 ≤ |LG | ≤ q for ε = 2d−5

6d−6 and

δ = d
2d−2 , then the inequality (4.7) holds.

Now, we are ready to give the complete proof of Theorem 4.5.

(Case 1) Assume that q
d
2 ≤ |G| ≤ q

3d+5
6 which is the case in (4.5) for ε = 2d−5

6d−6 and

δ = d
2d−2 . In addition, assume that q

1
3 ≤ |LG | ≤ q. Then, by Remark 4.6 and the direct

comparison, we see that if q
d
2 ≤ |G| ≤ q

3d+5
6 and q

1
3 ≤ |LG | ≤ q, then for d ≥ 7,

‖ĝ‖L2(P,dσ) � |G| 12 + |G| 1116 q −3d+11
32 + |G| 58 q −d+6

16

� |G| 3d+11
6d+10 = ‖G‖

L
6d+10
3d+11 (Fdq ,dm)

∼ ‖g‖
L

6d+10
3d+11 (Fdq ,dm)

.

On the other hand, if 1 ≤ |LG | ≤ q
1
3 and q

d
2 ≤ |G| ≤ q

3d+5
6 , then we see from the second

part of Lemma 3.6 and the direct comparison that

‖ĝ‖L2(P,dσ) � |G| d
2+d−1
2d2 |LG | 14 ≤ |G| d

2+d−1
2d2 q

1
12 � |G| 3d

2+4d−3
6d2

= ‖G‖
L

6d2

3d2+4d−3 (Fdq ,dm)

≤ ‖G‖
L

6d+10
3d+11 (Fdq ,dm)

∼ ‖g‖
L

6d+10
3d+11 (Fdq ,dm)

.

Thus, Theorem 4.5 holds for all q
d
2 ≤ |G| ≤ q

3d+5
6 .

(Case 2) Assume that 1 ≤ |G| ≤ q
d
2 . In this case, Theorem 4.5 can be proved by using

Lemma 3.5 and the direct comparison as follows:

‖ĝ‖L2(P,dσ) � |G| 12 + q
−d+1

4 |G| � |G| 3d+11
6d+10 = ‖G‖

L
6d+10
3d+11 (Fdq ,dm)

∼ ‖g‖
L

6d+10
3d+11 (Fdq ,dm)

.

(Case 3) Assume that q
3d+5
6 ≤ |G| ≤ qd . In this case, the statement of Theorem 4.5 holds

by Lemma 3.3 and the direct comparison as follows:

‖ĝ‖L2(P,dσ) ≤ q
1
2 |G| 12 � |G| 3d+11

6d+10 = ‖G‖
L

6d+10
3d+11 (Fdq ,dm)

∼ ‖g‖
L

6d+10
3d+11 (Fdq ,dm)

.

By Cases 1, 2, and 3, the proof of Theorem 4.5 is complete. ��
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