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Abstract
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1 Introduction
1.1 Maxwell’s equations
Maxwell’s equations are fundamental in physics and play an important role for mathematical

physics itself. In a domain  C R? (open and connected set) with boundary I" these famous
equations read for the pair of the electric and magnetic field (£, H)

curl E + o;,uH = G, —curl H 4+ 0, E = F in (0,7T) x Q,
diveE = f, divuH =g in (0,T) x €,
nx E=0, n-uH =20 at (0, 7) x T,

where we have already eliminated the fields D and B by the constitutive laws D = €E
and B = puH, respectively. Moreover, physically meaningful is F = —j as current density
and G = 0 as well as f = p as charge density and g = 0. Furthermore, initial conditions
have to be imposed on E(0) and H(0) in 2. Note that in the non-stationary case the two
divergence equations are redundant by the two curl-equations and the complex property
divrot = 0. Moreover, the second normal boundary condition for wH is already given by
the first tangential boundary condition for E and the first curl-equation as n x E = 0 implies
n-curl E = 0 at (0,7) x I'. In the time-harmonic setting (all fields depend on a fixed
frequency w > 0 in a sinusodial way) we have

curl E +iopnH = G, —curl H +iweE = F in €2,
diveE = f, divuH =g in €2,
nx E=0, n-uH =20 at I,

where the divergence equations and the second boundary condition are still redundant. Finally,
the electro-magnto static equations are given by

curl E =G, curl H = —F in 2,
diveE = f, divuH =g in ,
nx E=0, n-uH =0 at I

and we emphasize that here the divergence equations and the boundary condition for H are
no longer redundant as the systems completely decouples into two separate systems, the
electro static equations for the electric field £ and the magneto static equations for magnetic
field H.

Proper solution theories in the sense of Hadamard, i.e., unique and continuous solvability,
are well known, see e.g. [12]. In the static and time-harmonic situations the essential tool is
the so-called Maxwell estimate (setting H = E and u = €)

|E|fg(9) < cmel cur1E|iz(Q) + |diveE|Ez(Q)),
see (1.2) and (1.7), being valid for all E € L?(2) with curl E € L?(Q2) and div e E € L2(2) as
well as eithern x E|r = Qorn-€ E|r = O such that E is perpendicular to the possible kernels
Hp,e(£2) or Hn,(£2), respectively, the so-called Dirichlet or Neumann fields. Of course, all
terms have to be understood in a weak way which we define below in a suitable Sobolev
setting. Obviously, the best constant ¢m ¢ resp. (1 + cﬁq’e)l/ % is the norm of the respective
bounded inverse, mapping the right hand sides to the solution E (resp. H).
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A more general situation can be considered if we assume €2 to be a Riemannan manifold of
dimension N. In particular £2 may be an open subset of R" or some N-dimensional surface
in RM . Then Maxwell’s equations can be expressed independently of special coordinates by
the calculus of differential forms using the exterior derivative d and co-derivative § = =+ % §x
as well as the Hodge star operator *. Focusing on the static equations we have for a g-from
&anda (g + 1)-form ¢

dc = ¢, inQ,
Set =6, in ,
L*é' =0, on F,

where ¢ is the canonical embedding of the boundary manifold I' into  and ¢* its pull-back.
For N = 3, g = 1 and the vector proxy E = ¢ we get back the classical electro static
formulation of vector analysis from above. For N = 3, ¢ = 2 and the vector proxy uH = ¢
(setting ¢ = p~') we get back the classical magneto static formulation. Here, the crucial
tool for a proper solution theory is the so-called generalized Maxwell estimate
2 . 2 2
¢l < eme(ld el o) + 186215 o)),
see (1.15), being valid for all ¢ € L?(Q2) withd ¢ € L2(©) and div e ¢ € L2() such that the
related boundary and kernel conditions hold in a suitable weak Sobolev sense.

1.2 The Maxwell constants

Let 2 C R3 be a bounded weak Lipschitz domain, see [3, Defintion 2.3] for an exact defini-
tion. We denote the standard Lebesgue and Sobolev spaces by L%(£2), H' (€2), which might be
scalar-, vector-, or tensor-valued, and by H(curl, €2), H(div, 2) the respective Sobolebv spaces
for the rotation curl and the divergence div. Moreover, we introduce homogeneous scalar,
tangential, and normal boundary conditions in the spaces I:|1 (), F|(cur1, Q), Ii|(div, Q),
respectively, which are defined as closures of e~ (R2)-functions, vector, or tensor fields under
the corresponding graph norms. Moreover, let € : @ — R3*3 be a symmetric, L*()-
bounded, and uniformly positive definite matrix field.

It is well known that the tangential version of Weck’s selection theorem, stating that the
embedding

A(curl, Q) N e 'H(div, Q) <> L2(Q) (1.1)

is compact, see [3,24,26,30-32], is the crucial tool of any analysis for static or time-harmonic
Maxwell equations. Especially, (1.1) implies by a standard indirect argument the following
important Maxwell estimate for tangential boundary conditions: There exists a constant

¢mt,e > 0 such that forall £ € Iil(curl, Q) Ne HWdiv, Q) N HD,G(Q)ng(m

2 . 2 1/2
El2q) < cmpe (I cur1E|L2(Q) + |d1V6E|L2(Q)) (1.2)

holds, where the kernel space of (harmonic) Dirichlet fields is denoted by
Hp.e () := {E € H(curl, Q) N e "H(div, ) : curl E =0, diveE = 0}.

Note that Hp ¢ (2) is finite dimensional by (1.1) as its unit ball is compact. We also introduce

the weighted €-L2(Q)-scalar product (-, -) (€, ) @ and the corresponding

2@ =
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1/2 |

induced weighted ¢-L%(£2)-norm | - I'—?(Q) = (-, .>L§(9) =|e'?. |L2(SZ)' If we equip L%($2)

with this weighted scalar product we write LE(Q). Moreover, L denotes orthogonality

L)
with respect to the e-L?(2)-scalar product. If € equals the identity id, it will be skipped in
2(Q) and H(£2) = Hp,ia(€2).

The fact that a compact embedding implies by an indirect argument a corresponding
Friedrichs/Poincaré type estimate, is a well known and powerful concept. Prominent examples
are the Friedrichs and Poincaré estimates itself, i.e.,

our notations, e.g., we write L

ol
Jef >0 YueH (RQ) <Cf|Vu|L2

|u||_2(Q) = (13)

@’
1
Icp >0 VveH(Q) NR @ V20 = 0l V0l (1.4)

which follow immediately using Rellich’s selection theorem, i.e., the compactness of

ol
H () c H'(Q) <> L2(). (1.5)

For the best possible constants it holds

1 1

cf2 =— < — = cg,

Al M2

where
Vul? Vol?
P )

7 2
o1 1
ueH () |u||_2(Q) veH! (NR L@ |”|Lz(9)

is the first Dirichlet resp. second Neumann eigenvalue of the negative Laplacian, see, e.g., [4]
and the literature cited there. Analogously to (1.1) and (1.2), the normal version of Weck’s
selection theorem, i.e., the compactness of the embedding

H(curl, Q) N e "H(div, ) <> L2(Q), (1.6)

shows the corresponding Maxwell estimate for normal boundary conditions: There exists a
constant cmp ¢ > 0 such that for all H € H(curl, ) Ne™! H(div, Q) N ’I-{,\Le(Q)ng“2>

2 ; 2 12
[Hlpaq) < cmne(lcurl HIG o+ diveHIE, o )7 (1.7)

where we define the finite dimensional kernel space of (harmonic) Neumann fields by
Hne () := {H € H(curl, Q) N e 'H(div, ) : curl H =0, dive H = 0}.

Similarly to the Friedrichs and Poincare constants we always assume the best constants, i.e.,

2 ; 2 2 ; 2
1 . |cur1E|L2(9)+|d1veE|L2(Q) 1 ‘ | curl H|L2(Q)+|d1V6H|L2(Q)
——=min 5 , —5—=min 5 ,
Cmt,e E |E|L§(Q) Cmn,e H |H|L§(Q)

where the first minimum is taken over E € I:|(cur1, Q) Ne Hdiv, Q) N Hp,e (Q)lﬁ(m and
the second over H € H(curl, ©) N e~ 'H(div, Q) N Hy. () 2@,

In [18-21] we have shown that for convex 2 and, provided that always the best possible
constants are chosen, the estimates

cf . diam(2) .
73 S Cmte>Cmne S Cp€ = —— €
€ T

(1.8)
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hold, where
€ := max{e, €}, (1.9)
and the lower and upper bounds €, € > 0 for € are defined by

<&|E)? (1.10)

2 -2 2
VEel*(Q) €?|E},  <(eE,E) 2@’

L2(Q) — L2(Q)
which exist by our assumptions. Note that convex domains are even strong Lipschitz, see, e.g.,
[7, Corollary 1.2.2.3] and topologically trivial, i.e., they satisfy Hp ¢ (£2) = Hn,(2) = {0}
as dim Hn, ¢ (S2) resp. dim Hp  (€2) is given by the first resp. second Betti number of €2.

The aim of the paper at hand is to generalize and improve the estimates (1.8) for the
Maxwell constants to convex domains 2 € RY. In R it is useful to work within the setting
of alternating differential forms of general order ¢ € {0, ..., N}. More precisely, let 2 ¢ RV
be a bounded weak Lipschitz domain, whose definition is easily modified from the 3D case,
see again [3, Defintion 2.3]. We denote the standard Lebesgue and Sobolev spaces by L29(Q),
and

DY(Q) := H1(d, Q) = {w € L*9(Q) : dw e L2 (@)},
A1(Q) :=HI($, Q) = {w e L*(Q) : dw e L271(Q)},
where d is the exterior derivative, § := (—1)@~DV % d« the co-derivative, and #* the

Hodge-star-operator. Moreover, we introduce so-called homogeneous tangential and normal
boundary conditions in the spaces

D) =H1d, @), A1) =H6,Q),

respectively, which are defined as before as closures of éoo’q(Q)—forms under the corre-
sponding graph norms. A vanishing derivative will always be indicated by an index zero at
the lower right corner, e.g.,

DY) :=={weD!(Q) : do =0}, A§(Q) :={we A1(Q) : $o =0}.
It holds
£D1(Q) = ANTI(Q), *A1(Q)=DV1(Q), *D'(Q) =AVN"1Q),

-q

« A1) =D" Q). (1.11)

Inner products and hence norms are defined by

(@, 8)20(g) = /QwA*E, ¢ e >(Q),
(w, ;)Dq(Q) = (w, {)Lz,q(g) + (da), d{)Lz,qul(Q), w,t € Dq(Q),
(W, L) ra(@) == (o, §>L2.q(9) + (bw, 8§'>L2,q71(9), w, . € A1(Q).

We emphasize that for g-forms o given in Cartesian coordinates (identity map/chart), i.e.,
w= Z wrd x!
1

with ordered multi-indices I = (i1, ..., iy), we have w € L>9() if and only ifwy € L2(2)
for all /. The inner product for w, ¢ € L>9(Q) is given by

<C(), §>L2~‘i(g) = /;20) A *E = Z/legl = Z(wlv ;l)LZ(Q) = <J)v Z)LZ(Q)v
1 I
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962 D. Pauly

where we introduce the vector proxy notation

= 2 N, N
o = [wr]; € L°(2; R™Y), Ny = .
q

The spaces L?"f(sz) with the inner products (-, -) €., - )LZ,q(Q) are defined in

129 =
the same way as for vector or tensor fields, where € : L>9(Q) — L>9(Q) is a symmetric,
bounded, and uniformly positive definite transformation on g-forms. Such transformations
will be called admissible. All other definitions and notations concerning € carry over to g-
forms as well, e.g., we have (1.10) and (1.9). More precisely, by the assumptions on € we
have

— 2 -2, 2 —2, 12
Je,€¢>0 Voel®1(Q) ¢ |a)|L24q(Q) < (e a),a))Lz,q(Q) <€ |a)|L2,q(Q) (1.12)
2 _ — el 2 _
and we note |w|Lf*"(s2) = (€ a),a))Lz,q(Q) = |e/w|szq(Q) as well as |e a)le,q(Q) =

|el/2a)||_ Thus, for all w € L>9(S)

29"

€ Molpag) < 10l g S €0l €0l 20q) < l€wlg) < €0l 20
(1.13)

As in the vector-valued case we can also define the Sobolev spaces HL4 () resp. |:|1'q ()
o1, . .
component-wise by defining w € H'"% () resp. € H ! (Q) if and only if w; € H'(Q) resp.

ol
w; € H () for all /. In these cases we have forn =1,..., N

Opw = Z 0p W] dx!
I

and we utilize the vector proxy notation also for the gradient, i.e.,
Vi = [0gwrlng =[...Vor ... 15 € L2(Q; RV*Nay,
Hence, for w, ¢ € HL(Q)

(o, f)HLq(Q)

N N
=, D200y T Y000, 0n8) 124(q) =/QwA*E+Z/Q<anw>A*<anE)
n=1 n=1

N
Z (/;Zwlgl + ZAanwlanZl) = Z ((wl, {1>L2(Q) + <VC{)[, V§I>L2(Q))
n=1 1

1
= (@, 8) 2y + (Y@, VE) 2y = (@ Oy
Note that
HU(Q) = HIO(Q) = DY) = «AY (@), H' @) =H""@) =D (@) =+ AV Q)
and

do = Zanwdx”, w € H(Q).
n

Like before, Weck’s selection theorem (tangential version), stating that the embedding

D (Q) Ne ' AY(Q) <> L29(Q) (1.14)
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On the Maxwell and Friedrichs/Poincaré constants in ND 963

is compact, holds, see [31] for bounded strong Lipschitz domains (strong cone property) and
[24] for bounded weak Lipschitz domains. The compact embeddings (1.1), (1.6) hold even
for bounded weak Lipschitz domains and mixed boundary conditions, see, e.g., the recent
results [3, Theorem 4.7, Theorem 4.8]. The first proof of Weck’s selection theorem (1.14)
for strong Lipschitz domains (strong/uniform cone property), even for differential forms on
Riemannian manifolds (and hence especially for & C RY), has been given by Weck in
[31]. The first proof for weak Lipschitz domains/manifolds is due to Picard and given in
[24]. More related results and generalizations can be found in [6,8,9,12,22,23,25,26,30,32].
Note that the boundedness of the underlying domain €2 is crucial, since one has to work
in polynomially weighted Sobolev spaces in unbounded (like exterior) domains, see, e.g.,
[10-12,14-17,22,26].
As we obtain the corresponding normal version

DY(Q) Ne 'AT(Q) <> L21(Q)

by applying the x-operator, see (1.11), we may concentrate on the tangential version (1.14).
Especially, (1.14) implies (again by an indirect argument) the following Maxwell type esti-

. I
mate: There exists ¢t 4, > 0 such that for all w € D’ Q) Ne'AYQ) N H‘éie(Q) 129 @

< cige(ldol 1 |8e w]? )72 (1.15)

|(0||_§ 124+ (@) 120-1()

Y‘I(Q)

holds. Here, we introduce the finite dimensional (again the unit ball is compact) kernel space
of (harmonic) Dirichlet forms by

MY () 1= Dy () Ne™ AF(R).

Throughout this paper, as already mentioned, we assume that always the best possible con-
stants are chosen, e.g., ¢t 4, > 0 are defined by
2 2
1 . | d a)lLZ.q+l(Q) + |86 w'szqfl(Q)
= min

2 9
w
| lL?"’(Q)

(1.16)

2
(’t,q,é

. 1L
where the minimum is taken over D () Ne A1) N H% (€2) 2@,
The main result of this paper is Theorem 3.6, i.e., for convex €2 and for all ¢ it holds
diam(£2)
p_—

Cf ~
g = Ctg.e = CpéE, Cp =

(1.17)

Corollary 3.7 shows that in the case of the other (normal) boundary condition, where the
boundary condition is placed on e ~'A?(2) and the corresponding constant is denoted by
Cn,q,¢» the same result holds for cp 4 ¢ as well. Especially for € = id we have for all ¢

_ diam(£2) .

Cf = Ct,0 = Cn,N = Ct,q>Cn,q < Ct,N = Cn,0 = Cp < (1.18)

/g

Here and generally throughout this contribution, we skip the index € in our notations if the case
€ = id is considered. We emphasize that (1.17) not only generalizes (1.8) to N-dimensions,
but even improves (1.8) in 3-dimensions to

cf N
= = Cmyt,er Cmn,e = Cp€. (1.19)
€

In Remark 3.12 we will present a corresponding result for a certain class of non-convex
domains, so-called one-chart or one-map domains, which are bi-Lipschitz transformations
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964 D. Pauly

of convex domains. By a standard partition of unity argument we obtain results for general
weak Lipschitz domains as well.
To prove our main result (1.17) we will only use

o the well-known Friedrichs/Gaftney regularity and estimate for bounded and convex C*°-
smooth domains  C RV, i.e., Y ()N AY(Q) and DY () N Aq(Q) are subspaces of
H'9(2) and

Yo e (5q(Q) N A7(Q)) U (D?(Q) N A1(Q))
=12 2 2
YOI g, < 140l g, + 160,16, (120)
e Weck’s selection theorem (1.14), which includes Rellich’s selection theorems as special
casesq =0org =N,
e and some fundamental results from functional analysis.
For the regularity part of (1.20) see also [10].

Using vector proxies for the respective differential forms we get back the classical case of
vector fields in R? or RV for the special choice ¢ = 1 org = N — 1. Note that without using
differential forms and vector proxies curl E of a smooth vector field E in RN may be defined
point-wise as a vector in R ~D¥/2 which is isomorphic to the skew-symmetric part of the
Jacobian of E, i.e.,

curl EZ2skwVE = VE — (VE) | e RV*V,

Finally, (1.17) and (1.18) hold for (1.2) and (1.7) in RN as well.

2 Preliminaries

Throughout this paper let 2 ¢ RY, N > 2, be a bounded weak Lipschitz domain. Hence
Weck’s selection theorem (1.14) and the Maxwell type estimate (1.15) hold true.

2.1 Functional Analysis Toolbox
Let A: D(A) C H; — Hj denote a closed and densely defined linear operator on two Hilbert
spaces Hy and H, with Hilbert space adjoint A*: D(A*) C H, — Hj. Typically, A and A*
are unbounded. The adjoint is characterized by
VxeD(A) Vye DAY  (Ax, Y, = (x, A"y, @1
Note (A*)* = A = A, i.e., (A, A*¥) is a dual pair. This shows the trivial but helpful result
D(A) = D((AN*) = {x eHi : If eH2Vy € DAY (x, A"V)n, = (f. W)} (2.2)

By the projection theorem the Helmholtz type decompositions

Hi = N(A) ®n, R(A*), Hy = N(A*) ®n, R(A) (2.3)
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On the Maxwell and Friedrichs/Poincaré constants in ND 965

hold, where we introduce the notation N for the kernel (or null space) and R for the range of
a linear operator and @ denotes orthogonality in a Hilbert space H. We define the reduced
operators

A:=Algaey : DA CRAS — RA),  D(A):=DA)N N(A)H =D(A)NR(A%),

A* = A*|gay : DAY CR(A) — R(AH),  D(A*):=D(A") N N(A®H = D(A*)NR(A),
which are also closed and densely defined linear operators. We note that A and .A* are indeed
adjoint to each other, i.e., (A, A*) is a dual pair as well. Now the inverse operators

ATV RA) > DA, (AHTH I R(AY) > D(AY)

exist and they are bijective, since .4 and .A* are injective by definition. Furthermore, by (2.3)
we have the refined Helmholtz type decompositions

D(A) = N(A) ®&n, D(A), D(A¥) = N(A") &, D(AY) 2.4

and thus we obtain for the ranges
R(A) = R(A), R(A*") = R(A"). (2.5)
Using the closed range theorem and the closed graph theorem we get the following result.

Lemma 2.1 The following assertions are equivalent:

() Jea €(0,00) ¥YxeDA)  |xly < calAxly,
(i*) Jear € (0,00) ¥y e DAY |yl < carlA%ylg,
(i) R(A) = R(A) is closed in H;.
>ii*) R(A*) = R(A*) is closed in H,.
(iii) A~ : R(A) = D(A) is continuous and bijective with norm bounded by (1 + ci)l/z.
(iii*) (A1 : R(A*) — D(A*) is continuous and bijective with norm bounded by
(1+ 30"

If one of these assertions holds true, e.g., (ii), R(A) = R(A) is closed, then
A:D(A) C R(A*) — R(A), D(A) = D(A) N R(A"),
A* : D(A") C R(A) — R(A*), D(A") = D(A*) N R(A),
and the Helmholtz type decompositions
Hi = N(A) &1, R(A), H» = N(A*) ®n, R(A), D(A) = N(A) &u, D(A),
D(A*) = N(A¥) ®n, D(A")
hold.

Throughout this paper we will assume that always the “best” Friedrichs/Poincaré type
constants are chosen, i.e., ca, ca* € (0, oo] are given by the usual Rayleigh quotients

1 op A 1 A,

= mn s = mn
cA 0#£xeD(A) |x]|H, CA* 0#£yeD(A*) | y|H,

Lemma 2.2 The Friedrichs/Poincaré type constants coincide, i.e., ca = ca* € (0, 00].

Lemma 2.3 The following assertions are equivalent:

(1) D(A) <> Hj is compact.
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966 D. Pauly

(i*) D(A*) <> H, is compact.
(i) A~': R(A) = R(A¥) is compact with norm ca.
([ii*) (A*)~!: R(A*) — R(A) is compact with norm cax = ca.

If one of these assertions holds true, e.g., (i), D(A) <> H| is compact, then [by a standard
indirect argument showing Lemma 2.1 (i)] the assertions of the latter two lemmas hold.
Especially, the Friedrichs/Poincaré type estimates hold, all ranges are closed and the inverse
operators are compact.

Now, let Ag: D(Ag) C Hy — Hy and A;: D(A1) C H; — H» be (possibly unbounded)
closed and densely defined linear operators on three Hilbert spaces Hp, Hj, and Hy with
adjoints Afj: D(A§) C Hy — Hp and AT: D(A]) C Hy — Hy as well as reduced operators
Ao, AS, and A, AT. Furthermore, we assume the sequence or complex property of Ay and
Ay, thatis, AjAg C 0, i.e.,

R(Ag) C N(A)). (2.6)

Then also AjA} C 0,i.e., R(A]) C N(Af),asforallx € D(Ao),y € R(A}) withy = AJz,
z e D(AY)

(y, Aox)n, = (Alz, Aox)H, = (2, AjAgx)H, = 0.

The Helmholtz type decompositions (2.3) for A = Ag and A = A read, e.g.,

Hi = R(Ag) @1, N(AG), Hi = N(A)) &u, R(AD), 2.7
and by the complex properties (2.6) we obtain
D(A) = R(Ag) @, (DAD N N(AY), D(AY) = (D(A§) N N(A) @, R(AD),
N(A1) = R(Ag) @1, Noi, N(A}) = No1 @n, W
where we define the cohomology group

No1:=NAp)N N(AS).

Putting things together, the general refined Helmholtz type decomposition

Hi = R(Ag) @, Noi &1, R(A]).  R(A0) = R(A)). R(A}) =R(A])  (28)
holds. The previous results of this section imply immediately the following.

Lemma 2.4 Let Ao, Ay be as introduced before with A1Ag C 0, ie., (2.6). Moreover, let
R(Ag) and R(Ay) be closed. Then, the assertions of Lemma 2.1 and Lemma 2.2 hold for Ay
and A1. Moreover, the refined Helmholtz type decompositions

Hi=R(Ao) ®H, No,1 &1, R(A]),
N(A1)=R(Ao) B, No,1. N(A§)=No,1 &, R(AT),
D(A1)=R(Ao) ®, No,1 ®r, D(A1),  D(A§)=D(Ay) @, No,i ®r, R(A]),
D(A1) N D(A)=D(Ag) ®H, No.1 BH, D(A1)

hold. Especially,

R(A) = NADNN,T',  RAD.,  RAD,  RAD=NAHNN T
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are closed, the respective inverse operators, i.e.,
Ao~": R(Ag) = D(Ay), Ai7T R(AD = D(AY),
(A9~ R(AY) — D(Ap), (AD7' D R(AT) — D(A)),

are continuous, and there exist positive constants ca,, Ca,, such that the Friedrichs/Poincaré
type estimates

Vx € D(Ap) [x1Hy < caglAox|H,, Vye D(A) [YIH < ca lA1YIH,,
Vye DAy Iyl < calAiylH. Yz e DD Izl < calATzln,

hold.

Remark 2.5 1f, e.g., D(Ap) <> Hp and D(A;) <> H; are compact, then R(Ap) and R(A;)

are closed and hence the assertions of Lemma 2.4 hold. Moreover, the respective inverse
operators, i.e.,

Ao~ R(Ag) — R(AY), A7 R(A) — R(AY),
(A~ R(AY) — R(Ap), AN R(AD) — R(A)),
are compact.

By the complex property we observe D(A;), D(A;) C D(A1) N D(A}). Utilizing the
Helmbholtz type decomposition (2.8) we immediately see the following.

Lemma 2.6 The embeddings D(Ap) <> Ho, D(A1) <> Hi, and No,1 <> Hj are compact,
if and only if the embedding D(A1) N D(A{) <> H\ is compact. In this case, No,1 has finite
dimension.

Remark 2.7 Let us consider the sequence or complex

D(Ag) C Hy — D(A}) C Hj —21 Hy. 2.9)

(i) The general assumptions on Ap and Aj are equivalent to the assumption that (2.9) is a
Hilbert complex, meaning that the operators are closed and satisfy the complex property
(2.6).

(i) The assumption that the ranges R(Ap) and R(A1) are closed is equivalent to the assump-
tion that (2.9) is a closed Hilbert complex.

(iii) The assumption that the embeddings D(Ag) <> Hp and D(A;) <> H; are compact
is equivalent to the assumption that (2.9) is a compact Hilbert complex, which is always
closed.

(iv) The assumption that the embedding D(A1) N D(Af) <> Hj is compact is equivalent to
the assumption that (2.9) is a Fredholm complex, meaning that the complex is compact
and the cohomology group Ny 1 is finite dimensional.

The strongest property (iv) is the most desirable one, and we can realize this is our applica-
tions. By the previous results, any property of the primal complex (2.9) is transferred to the
corresponding property of the dual complex

A¥ A*
Ho <—— D(A}) CH; «—— D(AY) CHy
and vise verse.

‘We can summarize.
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Theorem 2.8 Let Ay, A| be as introduced, i.e., having the complex property R(Ag) C N(A}).
Moreover, let D(A1) N D(A() <> Hy be compact. Then the assertions of Lemma 2.4 hold,
No.1 is finite dimensional and the corresponding inverse operators are continuous resp.
compact. Especially, all ranges are closed and the corresponding Friedrichs/Poincaré type
estimates hold.

Theorem 2.9 Let Ay, A be as introduced, i.e., having the complex property R(Ag) C N (A1),
and let D(A1) N D(A() <> Hy be compact. Then

Vx € D(A)) N DAH) N N(il”‘ Ix[f, < A, lAGX IR, + i, |ALX[R, -
Especially,
Vx € D(AD N DAY AN, Ixlky < max{cay, ea HIAGx R, + [Ax ()"
Proof Letx € D(A1)ND(A5N N(i T‘ . By the Helmholtz type decomposition of Lemma 2.4
we have
D(A1) N D(AJ) N N(f;'l = D(Ay) B, D(A))

and hence we can decompose

x =x0+x1 € D(Ay) ®n, D(A1),  Afx = Afxo, Aix = Ajx.
By orthogonality and the Friedrichs/Poincaré type estimates we get
Ix[f, = Ixolf, + X117, < ci,lA§x0lf, + cA, A1 R, = ¢k, |AGX IR, + cA, [A1x[G, .

completing the proof. O

Remark 2.10 In Theorem 2.9 max{ca,, ca,} = ca,.a, is the best constant (or sharp), where
1 AGx I, + AL,

—_— = inf
c2 LH
Ag,A| 0#xeD(ADNDADNN, |

2
|x||-|1

It is clear that cay, A, < max{ca,, ca,} holds by Theorem 2.9. On the other hand, looking
at the subspaces (ranges) of the Helmholtz type decompositions one obtains immediately
CAg < Cag.Ap- 1, e.g., max{cay, ca ) = ca,-

2.2 Applications to differential forms
We will apply Theorem 2.9 in our differential form setting. As closure of the exterior derivative
defined on ¢ (£2) as an unbounded operator on L2(Q) we get that
d, : 07 (@) c129(@) - 129 (@)
is a closed and densely defined linear operator with closed adjoint
&) = 84410 ATTHQ) € L2 (Q) - L29(Q).

These operators satisfy the natural complex property Elq+1 (°1q c 0,ie., R(aq) CN (aq+1),
and thus also §,68,+1 C 0, i.e., R(84+1) C N(8,). Analogously or using the *-operator we
can define closed operators for the other boundary condition, i.e.,

dg : DY(Q) C L(Q) — L2 (Q), df =8, : AT(Q) c LPTHQ) > LP(Q),
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which also satisfy the complex properties, i.e., d;+1 dy C 0 and 8°q §q+1 C 0. Note that

D@d,) =0"(Q), DW,)=DYQ), DGE,)=AUQ), DG, =A%),
N(d,) = 53(9), N(dy) =Df(Q), NGy =A%), NGy =AHQ).

By (2.1) we get trivially the rules of partial integration, i.e.,

Vo e D’ (Q) V¢ e ATTH(Q) (aq W, &) 2a+1 (g) = —(®, 8¢418)12.4(q) (2.10)
VoeDI(Q) VieAT(Q)  (dyo.0)pamg = —(0.8410) 200

(2.2) provides a useful characterization of homogeneous boundary conditions, i.e.,
b (@)
= D(dy) = D(d)*) = DG}4))
={oel>(Q) : 3¢ e PTHQ) Vg e D(y41) = ATTHQ) (0. 80110) 200
= (£ P)2ar ()
={weDIQ) : Vo e ATHQ) (0.85110)20(q) = (dg ©, 9) 20410 }-
and analogously or by the *-operator we also get
A1(Q) = {wel?(Q) : 3£ e L 1(Q) Vo e DI 1(Q)
(0. dg1 9)20(g) = (. O)20-110y }- @.11)
In the following we will skip the index ¢ on the operators and write just d, d and §, 8.
To incorporate the material law € we need to modify these operators slightly. For this, let us

fix some ¢ = 0, ..., N and let € be an admissible transformation on g-forms. Defining the
closed and densely defined linear operators

o og—1
Ag:=d:D" (@) c 29(Q) - 12(Q),

Ap=d:D'(Q) c29Q) - L2 (Q),
we see that their closed adjoints are

Af=d"=8e: e AYQ) C L21(Q) - L2 (Q),
Af=d" =15 AT Q) C L2 (@) - L29(Q).
Again these operators satisfy the complex property AjAg = dd C 0,i.e., R(d) C N(d), and

thus also A;A’f =%ee 15 CO,ie., R(e_IS) C N(8¢€). As before, analogously or using the
s-operator we can also define the closed operators

Rp:=d:DI7N(Q) c L2971 > L29Q).

A :=d:DI(Q) cL29Q) — L>(Q),
Af=d*=8e:e'A9Q) c29(Q) — > (Q),
Af=d* =15 AN @) L2 (@) - L29(Q),

which satisfy the complex properties as well.
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We will focus on the operators Ag, Aq, Aj, A]. At this point let us note that all results
of the Functional Analysis Toolbox Section 2.1 are applicable since by Weck’s selection
theorem (1.14) the embedding

D(A) N DAY =D (@) Ne 1A% (Q) «» 129(Q) = H,

is compact, see, e.g., Theorem 2.8. Especially, all ranges are closed, the inverse opera-
tors are continuous resp. compact, the corresponding Friedrichs/Poincaré type estimates and
Helmholtz type decompositions hold, and the cohomology group

Noi = N(A) NNAY =Dy ne Al (@) = Hp (Q)
has finite dimension. The corresponding reduced operators are
o og—1 o og—1

Ay =d:D" (@ NsALQ) csAl(Q) — dDT (),

* o og—1 o og—1
Ay =6e: e 'AI@NdD" (@ cdbd’ (@) — sA%(Q),
A =d: D' @ ne At (@) celsartl(Q) — dDT(Q),
A =15 A7 (@ndd (@ cdb’(@) - e lsAt (@),

o og—1
where d DY () and e 18§ A7T1(Q) have to be understood as closed subspaces of Lg Q).
In this case, Lemma 2.4 and Theorem 2.8 read as follows.

Corollary 2.11 The refined Helmholtz type decompositions

1240 =db" " (@) D20 () Hp (D) B 20, € SATH (),
D) = 4D () @ g, Hb (@),
e AL = Hp (@) @20 g, e SATT (@),
5@ = db" (@ 200y Hb (D) 20 g (07 (@) nelsartl (@),
e1A1(Q) = ('A% nad (@) B 24g) M () B 20 € '3ATTH(Q),
D@ ne ! al(@) = (7' A%@ NdD" Q) @ g, Hp (DB
x (b" (@ ne st (@)
hold, all ranges

o €L o o g— o
B nih (@ '@ =46 @ =d

(
ap' @) =d(
5AY(Q) = 8(e~' AT(@) NaD T (@),

B (@) nsat @),
bY@ nelsartl(@),

1 o o
e 'AJ (@ NHY () e = el ATtl(Q) = 715 (A7H (@) Nd D ()

are closed, the space of Dirichlet forms H% ()= 53 (ne! Ag (R2) is finite dimensional,
the respective inverse operators, i.e.,
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At =d " an" @ - 0@ nsad@).

A171 = (ci_l
A~ =) sANQ) — (At ndd! (@),
UDT=(1o e sart (@) — ATt @) ndDd! (@),

dD' (@) — Dl Q) nelsATt(Q),

are continuous, and there exist positive constants ca, = 5& tg—1.e and cay, = ¢y, 0. such
that the Friedrichs/Poincaré type estimates

ve e b’ (@ nsal@) El120-1(0) < Capgorel A€l 20 )
Yoeb'@ne'sar @ @20 q) < Ca,t,q,eldwlawm»
Voee At @ ndd’ (@ 101,24 0) < G gg1.c10€ @]201 g
vee A @ndd' (@ 12010y < Carg.ele 88120,

hold.

Remark 2.12 The corresponding corollary holds for the other boundary conditions on A-(Q)
for the operators Ao, AO, Al, A* as well.

For € = id just one constant for a single ¢ is needed. More precisely:
Lemma 2.13 Let € = id. Then for all q

ca,t,q = Ca.t,q

and the Friedrichs/Poincaré type estimates

Vo e D' (@) nsar (@) @l20(0) < Chrql d@l20+1 q),
VieArth@) ndd' (@) 12041 gy < C.0.018¢ 11200
hold. Applying the *-operator we have
Vo e AN @)ndD" 171 (Q) |@l28-g0) < €140l 2N-4-1 ()5
vi e DV Q) NSANT1(Q) 1Sl 28010y < €a.pql dE12N-0 (g

All these four Friedrichs/Poincaré type estimates hold with the same best constants cy tg

With these settings our estimate of interest (1.15), i.e.,

)"

|| < cge(ldol? + [8€ wl?

L29(Q) L2t (@) L24-1(Q)

forall w € DY () Ne A7 (Q) N HY (Q) Li“’m), reads
1 1
Vxe DANNDADNNy T Ixlw < capa, (A1xlE, + AGx[E )"
and by Theorem 2.9 and Remark 2.10 we know
Ct,g,e = CAg,A| = max{cag, ca,} = max{a&,t,q—l,e’ Ca,t,q,e}

using the notations from Corollary 2.11. More precisely, Theorem 2.9 shows:
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o 1
Corollary 2.14 Forall o € D' () N e~ 1 A9 () N Hp () 2@

|d o] +& el

<c
|w|2q(9)_ dtg.e 24+ (@) (2a-1(Q)

and hence

= Ctgq, e(|da)|

12 ~
|a)|L + |8e a)|L2,, I(Q)) s Ctge= max{cayt’q_l,e, C&,t.q,e}'

2.9 Q) = 12.q+1 (Q)

3 Main results

By Corollary 2.14 we have to find upper and lower bounds for the constants cj , g1 and

Citg.e As a first step, we take care of the dependencies on the transformation €.

Lemma 3.1 Ir holds

cy Cs

d,t,g—1 ~ d,t,q -

bl SIS . . < c-
€ — Cd,t,q—l,e = Cd,t,q—lg’ € = Cd,t,q,s — Cd,t,qe'
Moreover,
min{cs cs .}

d,t,q—1’ ~d,t,q ~ N
2 = Ctge = Max{Cq o 1 o Carg.el = MAX{Cq e, 10 Capglé-

€

Proof Leté& € IODq_l(Q) NS§AY(2). By Lemma 2.13 and (1.12), (1.13) we see
|‘i'_||_2vq—l(g) = Ca,t,q—1 | d$|L2,tI(Q) =< Ca,t,q—1§| d§|L2,q(Q)y

and hence Ea’t < Chg-1€ On the other hand, by Corollary 2.11 and (1.12), (1.13)

—-l,e —
|$|L2’CI*1(Q) =< C&,t,q—l,e' dgh_gq(g) = Ca.t,q—l,eg | dg'LZ’Q(Q)

holds, and hence by Lemma 2.13 Citg—1 = Eatq_l.eE. Now, pick o € Iqu(Q) N
e~ 15 AT (Q). According to Corollary 2.11 (with € = id) it holds

D’ (2) = Dy (R) B24(g) (D' () N6ATH ()
and we can decompose
w=wo+ws, weDH(Q), wseb(Q)NIATT(Q)
with d o = d ws. By orthogonality as well as Lemma 2.13 and (1.12), (1.13) we have

2 .
Ia)Iinq(Q) = (€w, ws)24(q) = Ca,t,q|6 CU|L2,q(Q)|dCU|L2.q+](Q)

IA

C&,t,qg |w|L2,q(Q)| dCl)|L2,q+l )

and thus Catge = Car, qe On the other hand, let w € b () N SATH(Q). According to
Corollary 2. bl 1t holds

B7(2) = D (R) ® 24, (D" (@) Ne'5A77 (@)
and we can decompose

w=wy+ws., weDh(Q), webd (Qne st (Q)
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with d o = d ws. By orthogonality as well as Corollary 2.11 and (1.12), (1.13) we have

|a)|L2q(Q) = (o, wé)ﬁfl(g) |0)||_211(Q)|0)5|L2q(9) Cdtqée |a)|L2‘1(Q)|dw|L2‘I+1(Q)7

and thus Citg < Citqg.c€ O

It remains to estimate for all g the constants cg o For this we need the following result
about regularity and Gaffney’s inequality in convex domains.

Lemma 3.2 Assume Q2 additionally to be convex. Let w € o’ Q)N AIRQ) orw e DI(Q)N
A1(Q). Then w € H-1(Q2) and

Vo), < |dol? + [8wl?

12() 129+1(Q) 12a=1@)

We will give a simple proof in Appendix A, only based on the well known corresponding
result for smooth and convex domains, see (1.20). A proof of Lemma 3.2 can also be found
in the nice paper of Mitrea [13, Theorem 5.5], see also [13, Corollary 5.6]. For N = 3, partial
and weaker results have been established earlierin [27, 1.4 Satz, 5.5 Satz], [29, Theorem 3.1],
[5, Corollary 3.6, Theorem 3.9], [1, Theorem 2.17]. Note that for all w € Izll’q (2) Gaffney’s
equation

Vo,  =|dol? + |swl? 3.1)

LZ(Q) LZ g+l Q) LZ g—1 (Q)

holds, and that for convex domains all cohomology groups are trivial, i.e., HqD () = {0}.
Now we can prove the key result for upper bounds.

Lemma 3.3 Assume 2 additionally to be convex. Then cg , g = Cp
oo o g1
Proof By Lemma 2.13 we may pick ¢ € AT*(2) ndD'(@) = A l(@) n D" ().

Hence ¢ = d w with some w € D (2). Lemma 3.2 shows ¢ € HL4+1(Q) and for alla € R
and all / it holds

(€1,a) 2 = (¢,a dx!)2gii g =a(dw, dx’) g1 g = —a (@, 8dx") 24 g, = 0.

Thus ¢; € HY(Q)N R2@ for all / and we can apply the Poincaré estimate and Lemma 3.2
to obtain

[EPp Dmm) pD Gl = GBIV o) = I8 1R gy

Hence Citg < cp. O

A proof of Lemma 3.3 can also be found in [13, Corollary 5.10], where the estimates
are equivalently formulated in terms of estimates for eigenvalues. For N = 3, the tangential
boundary condition in I:I(curl, 2), and smooth convex domains the result has also been
established in [2, Theorem 3.1]. In both papers, especially in [2], the proof is more lengthy
and complicated than our short proof.

For lower bounds we have the following.

Lemma 3.4 Assume Q additionally to be topologically trivial. Then c¢ 4 > cf.

@ Springer



974 D. Pauly

Proof As 2 is topologically trivial, all cohomology groups vanish. Therefore, for all u €
o 1 o 1, o .

H () and some I and with @ := udx! € H q(Q) - D’ (2) N A4(2) we compute by
(1.15) and (3.1)

12
2 gy = 10120 (0) = ctq(ldolh g g + Bolh, )’

= e q|Vdl 2 o) = gl Vul

() ()"

Thus ¢t < ¢t 4. O

~

Lemma 3.5 Assume Q2 additionally to be topologically trivial. Then ct 4. > —

Proof It holds ¢y, = max{cGlt 1 cdtq} and ct g = max{cdtq Le C&,t,q,e}' If ¢ty =
Citg—1> then by Lemma 3.1 and Lemma 3.4
ce
~ dtg—1 _ Ctgq _ Cf
Ctge ZCi¢, 12 —— — =— = *%-
q.€ dt.g—1l.e < < ¢
If ety = Citg then by Lemma 3.1 and Lemma 3.4
c
d,t,q Ct, Cf
Ctge = Cirq.e = =— ==,
g, € € ¢
completing the proof. O

Combining Corollary 2.14, Lemma 3.1, Lemma 3.3, Lemma 3.4, and Lemma 3.5 we can
formulate our main result.

Theorem 3.6 Assume Q2 additionally to be convex. Then for all w € b’ () Ne TA1(Q)

2 2 1.2
w <c5 w c ®
| |L?’q(9) = dtqs' |L2,q+1(9) + dtg—1,e |5e |L2q Q)
<th6(|da)|L2q+l(Q)+|560)|qu I(Q))
Moreover,
cs cs
d,t,g—1 ~ d,t,q —
T2 SCitg-le = Cng1€ = S ¢ = Ctge =€ tq€ = Cp€
as well as
cf - . diam(£2)
7 SCtge= mMax{Cy ;, i e Ci gl =CpE  Cp = Y
Especially, for e = id it holds for all q
. diam(£2)
Catg = Catg = Cp c,c<ctq:max{cdtq 1’cdtq}<cp—7n_ (3.2)

The corresponding theorem holds for the other boundary condition as well.

Corollary 3.7 Assume 2 additionally to be convex. Then for all v € DI () N e 'A1(Q)

<& ldo|?

2 2
|w|L§"1(Q) =t N—g-1p +C&,t, |56w|

24+ (Q) [2a-1(@)

2 2
< con-gu(ldolfagm g + I8¢ w|L2,q71(m),
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where u = (—1)IWN =D s e~ 1% Moreover,

CD
d,t, N—qg—1 ~ _ _
. SCq e N—g—1,u = €t N—g—1€ = CpE;
Co
d,t,N—q
T SCatN—gu = CaN—g€ = PE
as well as
cf - . diam(£2)
2 SCtN—qu = mMax{Cq ; n_g_1 0 CatN—g ) =P Cp = Y

Especially, (3.2) holds for € = id and for all q.
In the introduction we have denoted ¢t y—¢,, bY ¢n g e-

Proof Letw € DY(2)Ne ' A4(2). Then x w € AN~9(Q) and with = = (=1)9V D xe %
we have
o N—

Cimrewo=(—DIVDsecxswed 1(QNu AV 1Q).
As € is admissible, so is (—1)7N =9 « ¢ % and hence also its inverse u. Theorem 3.7 applied
to N —gq, ¢, u instead of g, w, € shows

2 2 312 ~2 2

|§|Li~”"1(sz) = Chan—gu $8I0v-arig) F G ongo1 N1

2 1 +12 2
= Ct,N—q,M(| d ;|L2'N"’+1(Q) +16p §|L2,qu71(9))~

Moreover, * € % has the same properties (1.12), (1.13) as € and hence, as inverse, p inherits
these properties with € and € interchanged. Note that, e.g.,

(T Ean-agy = (€7 L Oiaaggy =l xtlhy o) < ¥l P utlhy, o

= §2|§|fz,1qu(9)
holds by (1.13). Hence the estimates for the constants follow immediately. Plugging in

2 — —1
|§|LI2JL‘N7‘I(Q) = <,[,L ;‘, C)LZ.N—q(Q) = (—I)Q(N q)<>|<6 kk€Ew, k€ a))Lz,qu(Q)

— _ 2
= (o, Ew)LZ-q(Q) = |w|Lz"’(Q)’

| d§|Lz,qu+|(Q) =|d=xe a)||_2_qu+l(Q) = |o€ C!)|L2,¢1—1(Q),

1

|6M§|L2.N—q—l(9) =[x € * *Ewle.N—q—l(Q) = |dCU|L2.q+1(Q)

we obtain
2 2 g2 ~2 2
< ¢ <
191206y = Chen—gul®€ ON2a10) F G on—gor 4O 2an )
2 ) 2
< ct,N_q,,L(lfSe (1)|L2,q71(9) + | dw||_2.q+1(g)),
completing the proof. O

The same transformation technique or just repeating the previous arguments shows
that Corollary 2.11, especially the Friedrichs/Poincaré type estimates, Corollary 2.14 and
Lemma 3.1 hold for the other boundary condition placed on e~! A4(2) as well. More pre-
cisely, with u as before and defining the (harmonic) Neumann forms by

HY (@) :=D{ () Ne ' AY(Q)
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we have the following results.

Corollary 3.8 Forall w € DY(Q2) Ne 'A7(Q) N H‘,{,ﬁe (Q)ltf’q(m

|w|i§~‘1(g) = E?i,t,N—q—l,ul dw'éﬂ“(ﬂ) + C?i,t,N—q,,u|g€ wlflq—l(m
< etnmgu(ldolay g + o, 1 q)"
With ce N—g.u = max{Ea,t,N_q_LM, Ca,t,N—q,u}' Especially,
vE e DI (@) NSAY(Q) €121 (@) < Cagn—gpl 48120
Vo e D1(Q) Ne '§ATTH(Q) 0] 20y = Caen—g1,.] d@l2at1 ),
Vo ee 'ANQ) NdDI™(Q) |0l 20 gy < €.t N—qul5€ @l2a01(g):
V¢ e AT Q) NdDY(Q) mhm“m)gQLMﬂqﬂk—%u&%m.
Corollary 3.9 It holds
fatN—g-1 _ 5 e c  CdtN-g _ e e
P =4t N—g—1,u = “d,t, N—g—1%> z =C4t,N—q,n = “dt,N—¢%
and

mln{ca.t,N—q—l ) Ca,t,N—q}

é
S CtN—gu = mMax{Cq v g 10 CaeN—g.u)

= maX{ca,t,qufl ’ c&,r,zqu }6'

3.1 Some remarks

Remark 3.10 Our results extend also to all possibly non-convex polyhedra which allow the
Hl.g (£2)-regularity in Lemma 3.2 of the Maxwell spaces D! (Q)NAY(Q)and DI (2)N Ad ()
or to domains whose boundaries consist of combinations of convex boundary parts and
polygonal parts which allow the H'-9 (£2)-regularity. Such domains exist, depending on the
special type of the singularities, which are not allowed to by too pointy, see, e.g., [27,28]. It
is well known that (3.1) even holds for w € H-9(Q) N D’ (Q) orw € HY(Q) N A1(Q) if @
is a polyhedron, since the unit normal is piecewise constant and hence the curvature is zero.

Remark 3.11 Let 2 be additionally convex and let us recall ¢, ; = ct,n—4 and (3.2), espe-
cially
_ dlam(Q)'

Cf =Ct,0 = Cn,N = Ct,q,Cn,q = Ct,N =Cn0 = Cp = -

(i) In generell, we conjecture ¢ < ¢t g, Cng < cpforl <g <N —1.
(ii) As a byproduct, by

0 1 - 1 - 1 Y
SHM=S5 =5 =5 =M

% Cig G

we have shown a new proof of the well known fact, that the first Dirichlet eigenvalue
of the negative Laplacian A is not smaller than the second Neumann eigenvalue of

the negative Laplacian u,.
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Remark 3.12 Our results extend to a certain class of non-convex domains, so-called one-
chart domains, as well. For this, as before, let 2 C RV be a bounded weak Lipschitz domain
and let £ ¢ R" be a bounded and convex domain, e.g., the unit cube or unit ball. For
example, ©2 could be an L-shaped domain or a Fichera corner. Moreover, we assume that
there exists an orientation preserving bi-Lipschitz transformation @ : & — Q with inverse
v=0p1:Q-> &

Then for » € D’ (92) N e~ A4($2) we have

*w e D@ N AYE), wi= (—DIN"! 4 &F 5 e UF,
with
do*ew = d*dw, S ®*w = *xdd* xew = *d* xSe w, (3.3)

see Appendix C for a proof of (3.3) in the bi-Lipschitz case. By the transformation formula,
straight forward estimates, which we will carry out in Appendix B as well, and Theorem 3.6
we get

2 )1/2

9 2
|a)|L2vf1(Q) = Ct,q,e(| dw|L2,q+l(Q) + |de w|L2.q—](Q)

’

where

33 A
Ctg.e = CNCYo vy € Cp.E

and cp g is the Poincaré constant for the convex domain &, ¢y depends juston NV, and cvo, ve
just on bounds for V& and VW, see (B.4) in Appendix B for more details. These constants
can be refined, if one takes a closer look at the actual dependence on g and special algebraic
operations on V® and VW. In Appendix B.1 we will present sharper estimates for the special
case N = 3 and ¢ = 1 of vector proxy fields .

Using a partition of unity, we can even extend our results to general bounded weak Lips-
chitz domains ¢ RV.

Acknowledgements We cordially thank the anonymous referee for a very careful reading and valuable sug-
gestions for improving the paper.

Appendix A: Proof of Lemma 3.2

By the *-operator it is sufficient to discuss, e.g., w € DZ(2) N A (2). For a proof we follow
the nice book of Grisvard, see [7, Theorem 3.2.1.2, Theorem 3.2.1.3]. This proof has been
carried out in [5, Corollary 3.6, Theorem 3.9] and [1, Theorem 2.17] for the Maxwell case
and N = 3. Our proof will avoid the misleading notion of traces and solutions of second order
elliptic systems. Let us note that in [1, p. 834] the proof for X (£2) is wrong. One cannot
work in the space Vr(£2) due to the solenoidal condition. Working in the space X7 (k)
is needed, but this destroys their argument for the second order elliptic system for ¢. Our
approach corrects these inconsistencies.

Let us pick a sequence of increasing, convex, and C*°-smooth subdomains (£2,) C
converging to €, i.e.,

Qp C Ry C it C---C R, dist(R2, ) = dist(d2, 92n) — 0,
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see, e.g., [7, Lemma 3.2.1.1]. Of course, C2-smooth is also sufficient. For €2, we find ln €
DY~1(2,) such that for all ¢ € DI~ (£2,)

{Cns §0>Dq—1(gzn) = (bw, ¢)L2,q—1(Qn) + (o, d(/))LZ.q(Qn)a (A1)

which is a trivially well defined problem. Note ({n, ¢)pe-1(q,) = (fn, @)20-1(q,) T
(dn, d@) 24, Hence

(0 —dg, d‘p>|_2yq(gn) = (¢ — b, ¢>L2’q_1(9n)

forallg € DI71(Q,), showing by (2.11) that w, ;== w—d ¢, € A%(Q,) and sw, = sw— Cn-
Moreover, w, € D?(R,) with dw, = d w. By (1.20) we have w, € H9+1(,) with

IV, |dw,l} + 18w} =ldol} + 180 — &l

Lz(Q)_ L2941 (Q,) 124-1(Q,) = 24+ () 24-1(q,)"
(A2)
By setting ¢ = ¢, in (A.1) we see
|§n|Dq L@, = ($w, fn)qu L(Qn) + (o, déﬁ)ﬁq(g )
= 180l 20-1(g,)lEnl2a-1(q,) T |@l20(g,) | d tnl 120 (g,
= |w|Aq(Qn)|§n|Dq*|(Qn) (A.3)
and thus
|§n|Dq*1(QH) < |lwlare,) = lolase)- (A4)

Combining (A.2) and the equation part of (A.3) we observe

|l = |oal} + |Vl +ldol]

HI () L (€2) (@) — |“’"|qu(9) 20+ (Q,)

+ 6w — §n|iz.q71(9”)
= 10lt20q,) T 1481t q,) 1010 g )+ 18021 g ) + 16l g,
— 2w, d &) 20, — 280, ta) 20-1(g,)
= 101310800, + 16nldrca,) — 2lénlBicg,) = 1@1Di@,na0@,)
and therefore

|67)n|H1(Q ) = lolpr@nar@,) = l@lbr@nade)- (A.5)

Let us denote the extension by zero to €2 by ~. Then by (A.4) and (A.5) the sequences (Z,,),
(d¢,), and (@), (V@,) are bounded in L22-1(Q), 2.4 (R2), resp. L2(Q2) and we can extract
weakly converging subsequences, again denoted by the index #n, such that

L24-1(Q) s L@

Ly —— e 27NQ), @y — b e X(Q),
L2

2, o= L@ A 2
(d )—\éeLq(Q) Vo, — 0 € L7(Q2).

Lety € &OO(Q) and n be large enough such that suppy C 2,. Then ¢ € EOO(Q,,) and we
calculate fori = 1, ..., N and the £-th component @; of @

(d)lv 8i1//>|_2(9) < (5n,l7 8i1/f>|_2(g) = (J)n,l, 8i1//>|_2(gn)

_<8ia)n,€v W)LZ(QM) = _<ai5)n,€v W)Lz(g) i _<®i,és W>L2(Q)7
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yielding & e H!(2) and Vé = 6. Analogously we obtain for ¢ € &oo'q(Q) with ¢ €
Q) forn large enough
(¢, 8¢>|_2vqfl(9) <~ (En’ 8¢>|_2vqfl(9) = (Ln, 5(]5),_2,471(9”)
= —(d ¢, ¢>|_2v‘1(Qn) = _<d\2n’ ¢>|_2-11(Q) — —{(§, ¢>|_21!1(Q)7

showing ¢ € D/~1(Q) and d¢ = &. Moreover, for ¢ € DI1(Q) c D1(£,) we have by
(A.1)
(¢, W)Dq—l(g)
= (¢, (p>|_2vf1*1(9) +(d¢, d§0)|_2~11(g) <~ (Env ‘P)LZ#*I(Q) + ((TZ“na d(p)sz‘I(Q)
= (¢u> ‘/’)qul(gn) = (bw, §0>|_2~q*1(gzn) + {w, d‘/’>|_2yq(g2”)
— ($o, (/’>|_2,q*1(52) + (o, d§0)|_2-q(9) =0,

as w € A7(Q), where the last convergence follows by Lebesgue’s dominated convergence
theorem. For ¢ = ¢ we get I;“Iqul(Q) =0, i.e., { = 0. Furthermore, we observe by (A.5)

17 ) = (@2 B) 2y + (VO Vo2 g < (1 Bu)2(q) + (V8 Vaon) 12
= (. Bn)2q ) + (V@ Vin) 2 ) < Bl o) |Bnli g,
< |5)|H1(Q)|W|D‘1(Q)OA‘1(Q)7
showing
1Bly1 gy < l0lor@nas @) (A.6)

Finally, we have v = w,, +d ¢, in 2,, i.e.,in Q

L24()

Xlea):d)n—i_d\Zn (I)+d€=d)

On the other hand, by Lebesgue’s dominated convergence theorem we see xq,® — o in
L29(2). Thus w = ® € H"9(£2) and by (A.6)

|olya @) = @1y ) = l@lbr@nas@):

especially,
=12 2 2
|Vw|L2(Q) S |dw|L2.q+l(Q) + |8w|L2,q71(Q)'

Appendix B: Calculations for Remark 3.12

For a multi index I of length |/| = ¢ (not necessarily ordered) it holds
O dx! = " dx"" Ao Adx) = (@ dxT) A A (PFdx)
=[dP) A AdD,) =dd]

= > 9Py ...05, P, dxlt Ao Adxe =Y 0, dx’
o I71=q
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and especially
AdxN) =det(VO)dx' A+ AdxN.

d*(dxl A
For multi indices 7, J of length ¢ we have
Z 3K®13L®1de Axdx

|K|=|L|=q
DA Adx

(@ dx!)y Ax(d*dx?) =
= Z (=D g ®;ag Dydx! A

N

|K|=q

Hence for
W] i=wjod

w:Zwldxl, dJ*w:Z(Z)[dD*dxl, d)::z&)/dx,
1 I I

S = Za)lc?)[ dx! Axdx!

we compute
>|<|a)|2 =wWAx0= Za),&); dx! Axdx
1,J 1
=1&Pdx' Ao adxN
| P* 0 = *w Ax DD =Y @@, (@*dx’) Ax(@*dx)
1,J
= Z Z (=) &1 dx Drag®ydx' A AdxN,
1,J |K|=q
and thus
|5)|52(Q) = |w|L2,q(Q) =/ >|<|(’U| / |Cl)| dx A Adx
:/ 1P (dx! A Ada)
/det(vq>)|c5|2dx1/\---Ade:/ det(VdD)*lcblzzf det(VO)|o)|
D*wl?, = | 0l x| D*

L2(®) L@ =~ Jg

—Z Z( D K/w,wJach,ach]dx A-ondx

1,J |K|=q
:Z Z (—l)gKﬁ@1@13K¢13K¢J.
1.J |K|=q =
Therefore, we get
m1ndet(V<I>) Ia)Iqu( )_ IwIqu(Q) a@l x det(VO) IwIqu( =)’
2 N :

* q

| a)||_2,q(s) <N (q) mélx|V<I>| |w|L2‘1( =)’
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where the second estimate is quite rough. Combing both we see

2 2
10 0, - < cqnvolol conyo = Ne(N) Daxe VO - g )
L2z = "N L24(Q) - g ) ming det(V®)’
2 2
Wy o < convultPay o gy = N () DX VYT )
L) — "4 L@ o g ) mingdet(VW)
and with w0 = UV*d*w
|w|L2q(Q) = ¢q, N vw P w||_2q( gy |§|L2q( g = = Cq.N, vo|¥* §|L2q(Q)~

Now we calculate by Theorem 3.6

IwIqu(Q) cg.N.vw|P* wIqu( g = cq.n.vwep g 17 (]d ©* wIquH( )+ 1Bu®” ol’,- i(z)
= cq,N,v\pcp, (lfb* da)IquH( g + |D* * Se a)|L2N . ))
< cqnvucp s 2 (cqrin vol doll @ T EN—g+1,N.volde wlfz.qq(m)
< ¢¢,N,vy Max{cy4+1,N, VO, CN—q+1,N.V<I>}Cr2) = (\ da)ILZqul(Q) + |be w||_2q 1(9))

4 4 "2
= CnCyo,vw M C (| da)le atl(q) + |6€ 60|qu 1(9))
(B.3)

ie.,
<22 L
Ctg.e = CNCvo,vw K Cp,E>
with very rough constants

max [ maxg [V®|, maxq [V¥[, 1]V

min [ ming +/det(V®), ming /det(V¥), 1]

So, it remains to estimate /i. For this we estimate for ®*w € L>9(8)

) Nj2 .
ey = NN, Vo, vy =

B.4)

(n P*w, Cb*a))qu(E) =+(xd* xecw, d>*w)|_z.q(E) =+ (P xecw, * Cb*w)l_z,zqu(a)
—:I:/(CD**ew)/\(GD*(I))

::I:/ *eEW A= (€w, w)qu(Q) <e |w|qu(Q)
Q

=2
< €cy N vu|P wleq( 5

(nP*w, qD*U))B#(s) = (e w, w)LZ-q(Q) >€ |w|L2q(Q)

v

: EX%R

_ g
€2¢y, N,V L~(@)”

and observe

A < max{€,/cy N vu, €/CqN.vo} < Emax{ /Cqy N VU, \/CqN.VD)} < ECN CVO, VY.

Finally, this shows

33 .
Ctg.e = CNCyo, vy € Cp,E
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B.1. Classical vector analysis

Some of the latter estimates are very rough. Let us take a closer look at the classical case of
vector analysis, i.e., at the special case of N = 3 and g = 1. By (3.3), see also Appendix C
for more details and a rigorous proof, we know that @ in D7 (Q2) resp. by (2) implies ®*w in
DY (E) resp. I5q(E) with d ®*w = ®*dw. For N = 3 and ¢ = 1 this means for the vector

. e o1
proxy field w € H(curl, Q) = D (£2) that
—> - o o |
®*w =V®o € H(curl, E) =D (B)
with
2 Dt — D de T curl o
curl (Vo w) =dd"w = d"dw =adj (VP)curl o, (B.5)
where adj(A) denotes the adjunct matrix of A € R3*3_If A is invertible it holds adj(A) =
(det A)A™!. For g = N — 1 = 2 we have for the vector proxy field ® € H(div, ) = D*(Q)
that
o T 2 e~ 2 e
P*w =adj (V®)w € H(div, E) = D*(E)
with
. T 2 %’ ax a1 —
div(adj' (V®) @) =d d*w = " dw = det(VP)div &.
Thus for & € H(curl, ) N e~ 'H(div, ) we have

Vo & e Hcurl, 8) N 'Hdiv, ), p: adj T (V®) € adj(VD),

= det(VO)
with (B.5) and
div(uV® &) = div (adj  (V®) &) = det(VO)div € &,

Now we can compute (B.3) more carefully by

- - = 112 2
|a)|ﬁ2(m=/;2|a)|2=/;det(VCD)|a)|2§ﬁdet(V®)|(V®) N5 ve ol

. 2 = A =
|adj(V®)|" VP &) < 36|V w|iz(s)

1
- /: det(V)

~ 2412 . 2,012
< czvq)c%n%E <| curl (Vo a))|L2(E) + | div(iuvVo a))|L2(E)>
A . =2 R y)
= CZVCDCﬁ'],t,y,,E <’ ad]T(VQD)curlw’LQ(E) + ‘ det(Vd)dive a)‘l_z(s))

:5%¢cﬁ,,w’a</ﬁ|adjT(Vd>)cur1cB|2+/ﬁ‘det(V@)divei)f)
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gezv¢cﬁ]lt’w<cv¢ f det(Vo)|curl & + e /ﬁ det(VCID)ldive¢7)|2>

22
= CYoCmi e ( Vol curlwILz(Q) + cdel(Vd))' dive w|L2(9)> (B.6)
where
Cdet(Vd) ‘= mé:lx v det(VD),

: __max}adj(vq>)|
Ve =T Jdet(V o)

Therefore, we have

= max \/det(Vd>)|(V<I>)_1| < Cdet(V) max }(VGD)_1 |

Cmte < Cvo MAX{CV®, Cdet(VD) Cmt, 1, B Cmtu,E < [ Cp, &,

and it remains to estimate [t. For this we compute for @ € L2(8)

(1, é)LZ(E)=/7M3)‘§)=/det(v<1>)((vq>) “Te(va)la)- o
= ﬁdet(V@)(é Vo) la) - (Vo) o
:/Q(evwa)-vwé): (VW &, VU )5 o
and estimate
wcf),i))m 5 <€ |V\Da)|L2(Q)_e /|vww| /det(VCD)KVCD) 1&2

Ez/Hdet(VGJ)l(Vd))’llzlcbl <Ezc%¢ﬁ Bk :ezcv¢|a)|L2( 2’

(R, @)z VYOI, =€ / det(VO)|(VP) 0l

2@ -
det(VP) = €282 i
= [ Raper 2 e 168 = Saidt e,
where
v V| !
é = max = .
vo € J/det(V®)  ming %

Finally, we obtain
A < max{€vo, € Cvo} < émax{Cve, Cvao)
and hence
Cmte < Cve Max{Cva, Cdet(ve)} Max{Cva, Cvo) € Cp. g
< max{éve, éva, Cde(va ) € cp.5- (B.7)

Especially for ®(x) := r x with r > 0 we have

-2 _ -2 =
|a)|L2(Q)_/Q|a)| _fEdet(VQD)la)l _r|Vd>a)|L2( -

2.2 . 2.2
< rcﬁ,w,E <| curl(Vo “’)|L2(E) + ’ div(iuvVo a))|L2<E)>
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_rc (/ ’adj (VdD)curlw’ —|—/ ‘det(VdD)dlvea)|>

_rcmtuu< det(VO)|curl @2 + r Ldet(v¢)|divea|2>

22
=r cmtm3<|curlw|l_2(g) +r |d1vea)|L2(Q))

and
(1, 5)>L2(u) //La:)wf):/det(VdD)((V<1>)_T~(Vd>) ') - @
:r—Z/ det(VO)(E &) - &
:r*Z/(eJ))- & =r"ed, &)
(o, Do) <1 7€ 201 0, _r—zngsdet(vq>)|5| =€ |w|L2( o
(,LLC() w>|_2( )_ |w|L2( )
. R - max{r, I}A
ie., [l <max{/re, e//r} < T , which shows
r

cmte < rmax{l,rieme e < rmax{l,r}ficpz < /r max{l, r}2€6p’5.

On the other hand, (B.7) gives with cger(vao) = 172, éve = v/3r"2, éve = +/3r "2 the less
sharp estimate

cmte < 3vV3r max{l, r2p3 é Cp,z-

Appendix C: Proof of (3.3) in the Bi-Lipschitz case
C.1. Without boundary conditions

For this, let @ = Y_; w;dx! € DI(Q). We have to prove ®*w € D?(E) with d ®*w =

®*dw. Let us first assume w € C T (RV), i.e., w; € € (RV) for all I. By Appendix B we
have

dd; =) 3;0;dx,
i
Qo= " dx' =) @A) A A D),
1 1
do =Y djo/dx;) Adx".
1j

By Rademacher’s theorem we know that w; = w;o® and @ belong to co! (8) c HY(B) and

that the chain rule holds, i.e., 9;0; = Zj B/j\w/IBiQDj. As®; € HI(E) we getd®; € D(IJ(E)
by

(doj, 8¢>L2*1(E) = —(P,, 85(,0)L2,0(E) =0
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200,2 .
forall p € ¢ (Z). Thus by definition we see
dd* =Y (d@) AdP;) A AdD;,)
1
= 0@rdx) A (dDi) A A A D)
1,i
= 9018 (dx) A dPy) A A A Dy,)

1,i,j
=Y 0P A@dD;) A A A D).
1

On the other hand it holds

P dw =Y 9w (@ dx)) A (@ dx") =D /P A dPy) A A A D).
1,j 1.j

Therefore, ®*w € D?(E) with d ®*w = ®* d w. For general € D?(2) we pick ¢ €

éoo’qH (E). The first part of the proof (for w = * ¢ and & = W) shows U*x ¢ € DN—171(Q)

withd W* % ¢ = W*d*¢. As supp * W* * ¢ is a compact subset of €2, standard mollification

0 00, 1 . .
yields a sequence (®,,) C €77 (Q) with @, — * W* % ¢ in A91(Q). Then
<(D*a), 8¢)|_2-q(5)

=/ CD*a)/\*&i)::l:/ q>*qu>*xp*d*¢=if O* (0 A W* d k@)

=j:/ a)AlI/*d*d)zi/ o ANdVF % ¢ = 2w, §*x U* % P)124(q)
Q Q
P @, 8Pn) 20y = Eld @, ) 2t1(g)

| fdo, x¥* * @) 20+l () = :i:/ do AV* % ¢
Q
- :I:/ D dw AV % ¢) = :I:/ (@ dw) A% ¢ = —(O" dw, $) 2001z,

and hence ®*w € DY(8) with d d*w = ®*dw. Finally, for o € ¢ 'A7(Q) we have
cw e A1(Q) and x € w € DV 79(Q). Therefore, ®* % ew € DV 79(8) and d ®* % cw =
®*dx e w = £O* % § € w by the latter considerations. Hence

* P xfew=2%xddP" % e =25+ D" x e ) D*w
+
=+u

and u ®*w € A1(E). By (B.1) we see
|d)*w||_2»q(g) <c |w||_2~q(g), |d <D*w||_2~q+1(5) = |* dw||_2-q+1(5) <c] dw||_2~q+1(g2)
and

|8 <I>*a)||_z,q—1(3) =[d P x e wl 21 (g = c|dxe 0l 2811 ) = cld€ @] 24-1(q)-
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C.2. With boundary conditions

Let w € D'(Q) and () ¢ ¢ (Q) with w, — @ in DY(). By Appendix C.1 we
know ®*w, ®*w, € DY(E) with d ®*w, = ®*dw, as well as d P*w = ®*d w. Since
D*w, = Y ; @y 1 P* dx! holds, ®*w, has compact support in E. By standard mollification
we see P*w, € 5q(E). Moreover, ®*w, — ®*w in D?(E) as ®*w, — d*w in L>9(E)
and

do®*w, = ®*dw, - ®*dw=dd*w
in L24+1(8) by (B.1). Therefore ®*w € D’ (E) with d d*» = d*d w.
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