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Abstract

We correct the proof of the theorem in the previous paper presented by Kikuta, which concerns
Sturm bounds for Siegel modular forms of degree 2 and of even weights modulo a prime
number dividing 2 - 3. We give also Sturm bounds for them of odd weights for any prime
numbers, and we prove their sharpness. The results cover the case where Fourier coefficients
are algebraic numbers.
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1 Introduction

Sturm [15] studied how many Fourier coefficients we need, when we want to prove that an
elliptic modular form vanishes modulo a prime ideal. Its number is so called “Sturm bound”.
We shall explain it more precisely. For a modular form f, let A be the index set of the
Fourier expansion of f. An explicitly given finite subset S of A is said to be a Sturm bound
if vanishing modulo a prime ideal of Fourier coefficients of f at S implies vanishing modulo
the prime ideal of all Fourier coefficients of f.

Poor—Yuen [11] studied initially Sturm bounds for Siegel modular forms of degree 2 for
any prime number p. After their study, in [1], Choi, Choie and Kikuta gave other type bounds
with simple descriptions for them in the case of p > 5. Moreover, Kikuta [7] attempted to
supplement the case of p | 2 - 3. However, there are some gaps in the proof (of Theorem 2.1
in Sect. 3.1, [7]). It seems that the method can only give worse bounds. Richter—Raum [13]
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gave some bounds for any p in the case of general degree and any weight. However, their
bounds seem not to be sharp in degree n > 2 excepted in the case n = 2, p > 5, and for even
weights. An improvement of their bounds depends on the case of degree 2.

In this paper, we correct the proof of Theorem 2.1 in [7] by a new method. Namely we give
sharp Sturm type bounds for Siegel modular forms of degree 2 and even weight in the case of
p = 2, 3. Moreover we give also sharp bounds for odd weight and modulo any prime number
p. It should be remarked that sharpness becomes important to confirm congruences between
two modular forms by numerical experiments, as the weights grow larger. Finally, we remark
also that our results cover the case where Fourier coefficients are algebraic numbers.

2 Statement of the results

In order to state our results, we fix notation. For a positive integer n, we define the Siegel
modular group I';, of degree n by

Iy ={y € GLon(Z) ’ Y Jny = Jn},

0, -1,
1, Oy
size n. For a positive integer N, we define the principal congruence subgroup I'(N) of

level N by
(n) _ a b EdEln mod N
r (N)_{(c d)EF"|bEcz(),, mod N |~

Here a, b, ¢, d are n x n matrices. A subgroup I' C T',, is said to be a congruence subgroup
if there exists a positive integer N such that ') (N) c T' C T',.. For a congruence subgroup
I", we define the level of I" to be

N =min{m € Z>; | T"™(m) c T}.

where J, = ( ) and 0, (resp. 1,) is the zero matrix (resp. the identify matrix) of

We define the Siegel upper half space H,, of degree n by
H, = {x +iy | x € Sym,(R), y € Sym,(R), y is positive definite} ,

where Sym,,(R) is a space of n x n symmetric matrices with entries in R. For a con-
gruence subgroup I' and k € Zs¢, a C-valued holomorphic function f on H, is said
to be a (holomorphic) Siegel modular form of degree n, of weight k and of level T if

f(@Z + b)(cZ +d)~") = det (cZ + d)* f(Z) for all (i‘ Z el.Ifn = 1, we add

the cusp condition. We denote by My (I") the space of Siegel modular forms of weight & and
of level I.
Any f in My (") has a Fourier expansion of the form

f@Zy= > apyq’, q" =T 7z eH,,
0<TeL Ay
where T runs over all positive semi-definite elements of %An, N is the level of I" and
Ay :={T = (t;j) € Sym,(Q) | t;;, 2t;j € Z }.

m r/2

1
r2 ) € y Az and also

When n = 2, for simplicity we write T = (m, r,n) for T = (
ag(m,r,n)foras(T).
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Let R be a subring of C and My (I")g C My (") the R-module of all modular forms whose
Fourier coefficients lie in R.
Let f1, f> be two formal power series of the forms f; = ZO<T€%A" ay, (T)gT with

a; € R. For an ideal I of R, we write
fi=f, mod I,

ifandonlyifay (T) = ap(T) mod I forallT € %An with T > 0.1f I = (r) is a principal
ideal, we simply denote f; = f, mod r.

Let K be an algebraic number field and O = Ok the ring of integers in K. For a prime
ideal p in O, we denote by O, the localization of O at p. Under these notation, we have

Theorem 2.1 Let k be a non-negative integer, p an any prime ideal and f € My(I'2)o,,. We
put
[%] if k is even,
b=\ rizs
[52] i kis oda.
Here [x] is the Gauss symbol of x € R, i.e, [x] ;== max{n € Z | n < x}. Forv € Z>,,
assume that ay(m,r,n) = 0 mod p” forall m, r, n € Z with

0<m,n <y,
and 4mn — r? > 0, then we have f =0mod p".

Remark2.2 1. If k is even and p 1 2 - 3, then the statement of the theorem was essentially
proved by Choi, Choie and Kikuta [1].

2. As mentioned in Sect. 1, in the case where p | 2 - 3 and k is even, Kikuta stated the same
property in [7]. However, the proof has some gaps and its method can give only larger
bounds. We give a new proof in Sect. 5.1.

We note that My (I'2) = {0} if k is odd and k < 35.
4. Other kind of bounds also were given in [8].

bl

By the arguments of [1], we can prove the following.

Corollary 2.3 Let ' C TI'y be a congruence subgroup with level N, k € Zs=o and [ €
Mk(F)@p. We puti = [Ty : T']. For v € Z>), assume that ay(m,r,n) = 0 mod p” for all
m, r, ne€ %Z with

0<m,n < by.

and 4mn — r* > 0, then we have f = 0 mod p".

In the case of level 1 (i.e., N = 1), our bounds are sharp. More precisely, the following
theorem holds.

Theorem 2.4 Let k € Z=( and p be a prime number. We assume My (I'2) # {0}. Then there
exists [ € My(I'2)z,,, with f #0 mod p such that

ag(m,r,n) =0 forallm, n < by — 1.

3 Notation

For a prime number p and a Z,)-module M, we put

M=M ®Z<p) Fp.
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For an element x € M, we denote by X the image of x in M. For a Z(py-linear map ¢ :
M — N, we denote by ¢ the induced map from Mt N by ¢.Forn € Z=1,letT be a
congruence subgroup of I';,. We define Mk(F)Z(m by M (F)Z(p> For a commutative ring
R and an R-module M, we denote by Sym*(M) C M ®g M the R-module generated by
elements m ® m for m € M. Let R be a Z()-algebra and M an R-module. We define an
R-module A>(M) by A2(M) = {x € M | x' = —x}.

Here ¢ is defined by «(m @ n) = n @ m form, n € M. Let q1, q12, g> be variables and
S =1{qV"91,95 | m,n € Zso,r € Z} be a set of Laurent monomials. We define an order on

S so that ¢{"q1,q5 < q{”/qf /zqg/ if and only if one of the following conditions holds.

1. m <m'.
2. m=m'andn <n'.
3. m=m'andn=n"andr <r'.

Let K be a field and f = Zm pndp(m,r, n)q'q1,q5 € Klqi2, ql_zl]l[ql,qz]] a formal
power series. If f £ 0, let q;"(’q]zqzo be the minimum monomial which appears in f, that is
the minimum monomial of the set {g{"q{,q5 | ayg(m,r,n) # 0}. We define the leading term
1dt(f) of f by ay(mo, ro, no)q| °q13q5°. We also define the leading term of an element of
K1lq1, g21\ {0} by the inclusion K [g1, ¢21 C K[q12, 413 1[q1, g21. We regard My (') as a

subspace of C[g12, ql_zl]llm . q2] by

> agmr,mg > Y ap(mr,mqlqigs.

T=(m,r,n)eNy m,r,n

For f € My(T';), we denote by 1dt(f) the leading term of the Fourier expansion of f. For
a field K, we regard K[¢q] ®kx Klgq] as a subspace of K[q1,¢2] by ¢ ® 1 — g1 and
1 ® g — ¢q». For a subring R of C and a subset S of C[¢1, ¢2], we put

Sg = {f = Zaf(mm)qf"qg €SS } arp(m,n) € R}.

m,n

4 Witt operators

For the proof of the main results, we use Witt operators. In this section, we define Witt
operators and introduce basic properties of them.

4.1 Elliptic modular forms

Since images of Witt operators can be expressed in terms of elliptic modular forms, we
introduce some notation for elliptic modular forms.

For k € 27 with k > 4, we denote by e, € My (I"1) the Eisenstein series of degree 1 and
weight k. We normalize e so that the constant term is equal to 1. We define Eisenstein series
e of degree 1 and weight 2 by

er(q) =1-24) o1(n)g",

n=1
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where o1 (n) is the sum of all positive divisors of n. As is well known, e; satisfies the following
identify:

o 1 12
T %er(—17 ) = —— + ex(7).
2wiT

We put A = 2-6. 3’3(@31 — eé). Then A is the Ramanujan’s delta function.

For k > 2, we define Ni(I'1) as the space of C-valued holomorphic functions f on H;
that satisfies the following three conditions:

L fx+1=f(.
2. There exists g € My_»(I"1) such that

tHf(-tTh = ;.g(r) + f(r) fort e Hj.
2mit

3. f is holomorphic at the cusp ioco.
Since f —exg/12 € My (I'y) for f as avobe, we have the following lemma.

Lemma 4.1 We have
Ni (') = Mi(T'1) @ eoMi—2(I"1).

For M = My (I"y) or N¢(I'1), we regard M as a subspace of C[¢] via the Fourier expansion.
Fork =2, 4,6, 12, we define elements of Sym2 (Nk(T'1))y as follows:

=e®e, fork=2,46 x2=AQA, yn=€®A+AQe¢. (41
We define azg € A2(M36(T'1))z by

o3 = xfz(A ® ei — ei R A).

4.2 Definition of Witt operators

For k € Z>o and f € My (I'2), we consider the following Taylor expansion
F(Z) =W, n) +2W ()T, n) Qritn) + W (f)(n, ©) Qrit)? + 0(th),

71 T12

12 T
definition, the following properties hold (see [16, Sect. 9]).

1. W/(f)=0ifkisevenand W(f) = W"(f) = 0if k is odd.

2. W(f) € Symz(Mk(Fl)) if k is even and W' (f) € /\2(Mk+1 (I'y)) if k is odd. Here we
identify g; with ¢ ® 1 and g5 with 1 ® q.

3. For f € My(I';) and g € M;(I"2), we have

W(fe) =W(HW(, W(fg)=W(HW(E) +W(HW (.

Assume k and [ are both even. Then we have

W' (fg) = W' (HW () +W(HW'(g). (4.2)
4. For f =3, . ar(m,r,nqi"q{,q5 € Mi(I'2), we have

where Z = ) € Hy. We put g1 = e(t1),q2 = e(r2) and g2 = e(r12). By

1
W) =3 apm,romal'as, W) =53 ragm,r,maql'qs,

m,r,n m,r.,n

1
W =5 D rayim,rmal'gl.

m,r,n
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1424 T. Kikuta, S. Takemori

Let k be even and f € My (I';). Then we have

1
T PW T ) = —— W () (L o)+ W) (L ),
2i
W (f)(x1, 1) = W' (f)(t2. T1).
d

Here 6, = ﬁ VT Therefore by Lemma 4.1, we have the following lemma.

Lemma4.2 Letk € 2750 and f € My(T2). Then we have W' (f) € Symz(Nk+2(F1)).
Let R be a subring of C. If k is even and f € My (I"2)g, then we have

W (f)= Y rlap(m,r,nq}'qirq5,
m,r,n

r>0

since ay(m, —r,n) = as(m, r,n). Thus we have W”(f) € Sym? (M (I'1))g. By a similar
reason, we have W/(f) € My41(T'2)g for f € My(T2) g with odd k. For k € Zs(, we define
the Witt operators as the R-linear maps induced by W, W’ and W” as follows.

Wg ok : Mo (T2) g — Sym? (Mo (T'1))r,
Wgok_1 s Mar—1(T2)g — A2 (Ma(T1))R,
Wi ok : Mok (T2) g — Sym? (Nags2(T'1)).

4.3 Igusa’s generators and their images

Let X4, X6, X10. X12 and X35 be generators of D, ., Mk (I'2) given by Igusa [4,5]. Here
X4 and Xg are Siegel-Eisenstein series of weight 4 and 6 respectively. And X9, X2 and
X35 are cusp forms of weight 10, 12 and 35 respectively. We normalize these modular forms
so that

1dt(X4) = 1dt(Xe) = 1, 1dt(X10) = 1dt(X12) = q1g15'q2,  1dt(X35) = 4741, 45

Here we note that ay,; (1, 7, n) = Oforalln, r € Z, because any weak Jacobi form of index 1
and weight 35 vanishes. We also introduce Y12 € M12(I"2)7 and X € M (I'2)7 for k = 16,
18,24, 28, 30, 36, 40, 42 and 48. Then by Igusa [6],

{Xk | k=4,6,10,12, 16, 18,24, 28, 30, 36, 40, 42, 48} U {Y,}
is a minimal set of generators of @kezz M (I';)z as a Z-algebra and we have
M (T2)z = X35My—35(I'2)7

for odd k.
Igusa [6] computed W (X4), ..., W(X4g) and W (Y12), we introduce some of them.

W(X4) = x4, W(Xe) =x6, W(Xy0) =0,
W(X12) =2%-3x12, W(Y12) = yi2, W(Xi6) = x4 - x12 (4.3)

and '
W(X12i) =dixj,, for i=1,234. 4.4)

Here x4, x6, x12 and yq, are defined by (4.1), and d; is defined by 12/gcd(12, i).
Images of W’ and W” for some of the generators are given as follows.
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Lemma 4.3 We have
W' (X35) = a36

and

W' (X10) = x12, W' (X121) = xaxly, fori=1,2,3,4.

Proof By 1dt(X35) = q{qy;'q3 and A2(Mi(T') = (A ® € — ¢} ® A)Sym*(Mi—12(T'1)),
we see that W'(X3s) is a constant multiple of a36. Since ax,s(2,r,3) = 0if r # £1, we
have W/ (X3s5) = a36. Igusa computed W”(X19) and W”(X|2) (see [6, Lemma 12]). Note
that our notation is different from his notation. We denote his W’ by W”. By this result, we
can compute W”(X12;) fori = 2, 3, 4. |

4.4 Kernel of Witt operator modulo a prime

Let p be a prime number and k even. We consider the kernel of the Witt operator modulo p:
Wz, & : My(T)z,,) — Sym*(My(P2))z,,) ®2z, Fp.
First we consider the case when p > 5. This case is easier.

Lemma 4.4 Let p be a prime number with p > 5. Then we have

P sym® (M (M), = Ziplxa, x6, x12].
ke2Zso

Proof Tt is easy to see that Sym2 (My (FI)Z(,,>) = Sym2 (M, (Fl))z(m (see the remark after
Theorem 5.12 of [11]). Since p > 5, we have @kesz Mk(l"l)z(p) = Zp)les, es] (see

[14]). We note that @kezz>o Syrn2 (Mk(rl)Z(,,)) is generated by x4, xg and ei ® e% + eé ® ei
as an algebra over Z,). Then the assertion of the lemma follows from the equation

21230, = xi —i—x% - (ei ® eg + eé ® ei).
[}

The following is a key lemma for the proof of Theorem 2.1 for p { 2 - 3. This lemma was
also used in [1].

Lemma4.5 Let p > 5 be a prime number and k € 27Z. Then we have

ker(‘x’z(,,),k) = ilOMk—IO(FZ)Z(I,y

Proof This lemma seems well-known. But for the sake of completeness, we give a proof.
The inclusion )?10]\7;(,10(1"2)2@) C ker(WZ(p),k) is obvious, because W(X19) = 0. Take
f e Mk(r2)Z(p) with WZ(,,),k(f) = 0 mod p.By (4.3) and Lemma 4.4, WZ(I,),k is surjective.
Take g € My (I‘z)z(m so that WZ(,,,,k(f) = pWZ(p)yk(g). Then by [9, Corollary 4.2], there
exists i € Mk_m(Fz)Z(p) such that f — pg = Xoh. This completes the proof. O

Remark 4.6 Since W(X13) = 12x15 and M, (") = {0}, the assertion of the lemma does not
hold if p =2, 3.

Next we consider the case where p = 2,3. We recall the structure of the ring
@kezz Mk(r2)Z<,,>-
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1426 T. Kikuta, S. Takemori

Theorem 4.7 (Nagaoka [10], Theorem 2) Let p = 2,3. For f € A?k(Fz)Z(p), there exists a
unique polynomial Q € F,[x, y, z] such that

f=0X0.Y12. X1¢).
The above Q for Igusa’s generators are given as follows.

Lemma 4.8 (Nagaoka [10], proof of Lemma 1, Lemma 2)

1. Suppose p = 2, then we have
X4=Xg=1 mod p, X112 = X110 mod p,
Xi13= X1 mod p, X24 = X10X16 mod p,
X28 = X30 = X7g mod p, X3¢ = X10X}, mod p,
X0 = Xa = X35 mod p, Xag = XTg+ X10X56 + X}o¥12 mod p,
X35 = XioYrXi6 + Xjo  mod p.

2. Suppose p = 3, then we have

Xs=Xg=1 mod p, X112 = X190 mod p,
X138 = X16 mod p, Xo4 = X10X16 mod p,
X23 = X30 = X7, mod p, X36 = X356 +2X30Y12 + X10X3 mod p,

X0 = X3g +2X3Y12 mod p,  Xu = X3¢+ Xjp¥12 mod p,
X483 = X10X%6 + 2X4110Y12 mod p,
and
X35 = 2X10Xg + X10Y X7
+2X70X{6 + Xio¥12Xi6 + 2X70Y12 X
+2X3, Y5 + X1 X} +2X], mod p.
For later use, we prove the following lemma.
Lemma4.9 Let p =2,3 and k € 2Z>¢ with 12 { k. Then we have

/Vlk(rz)Z(,,) C Mk+2(rz)z(,,)~

Proof Take f € My (I'2)z,,,. We show that there exists g € Mji12(I'2)z,,, such that f =g
mod p. We may assume f is an isobaric monomial of Igusa’s generators of even weights,
that is X4, ..., X4g and Yi2. If f = Xj with 12 ¢ k, then by Lemma 4.8, we have f €
Mk+2(r2)z(p). In fact, we have X138 = X4X16 mod p, X40 = X16X28 mod 2, X490 =
X42+Xf0Y12 mod 3and X4 = X16X23+Xf0X12Y12 mod 3.If f is anisobaric monomial
of weight k, then f contains some X; with 12 { k. Therefore we have the assertion of the
lemma. m]

Let f € Mi(T2)z,,, with p = 2,3. As we remarked before, W(f) = 0 mod p does
not imply the existence of g € Mk—lO(FZ)Z(p) such that f = Xjpg mod p. Instead of
Lemma 4.5, we have the following proposition.
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Proposition 4.10 Let p = 2,3 and k € 2Z>.
1. Suppose 12 { k. Then we have

ker(Wz,, 1) = XloMk—lo(Fz)Z<p)~

2. Suppose k = 12n withn € Zoand p = 2. For 0 <i < nwith4{i, weputi =4s +1t
witht € {1,2,3} and m; = X12;X}gY{, '. Then we have

ker(Wz, 1) = @ Fpiii & X10Mi—10(T2)z, -
0<i<n
4i
3. Suppose k = 12n withn € Z and p = 3. For0 < i < n with3 ti, weputi = 3s +1t
witht € {1,2} andm; = X1, X5,Y{5 '. Then we have

ker(Wz, ©) = €D Fpiii & X10Mi—10(T2)z, -
0<i<n

3
Moreover, if f € Mk(l"z)z(p) with 12 | k and
W(f)=Ww'(f)=0 mod p,
then there exists g € Mk—20(F2)Z(,,) such that f = X%Og mod p.

Proof Suppose 12 t k. Then by [6, Lemma 13], Wy ; is surjective. Therefore, WZ(p),k is

surjective. We can prove ker (WZ(m,k) = )?loﬁk_lo(rz)zm by a similar argument to the
proof of Lemma 4.5. Next assume k = 12n with n € Z. For simplicity, we assume p = 2.
We can prove the case when p = 3 in a similar way. Take f € Mk(FZ)Z(,,) with W(f) =0
mod p. Putd; = 12/gcd(12,17). By [6, Lemma 13], there exist a; j, b;, ¢; € Zp) such that

iy ;i S o
W= Y @ " aiyl Y bxlyiy Y adixiyyly
0<i<j<n 0<i<n 0<i<n
4(i 4i
Byxs =1 mod pand W(f) =0 mod p,wehaveq; ; =b; =0 mod p foralli, j.Here
we note that X2 and yi are algebraically independent over I ,. This is because ldt(xi2 y{z) =
qigy™ . By [6, Lemma 13], there exists f' € My (T2)z,,, such that

i} 3y ;i b . .

W(f) = Z LM(" '/)xllzyljz ‘+ Z *lxllzy?z "

0<i<j<n 0<i<n
417
By (4.4), there exists u; € Z(Xp) such that W(m;) = uid,'xizy{’{i. Therefore, there exist
a; € Zpy such that W(f — pf’ — > o<i<naim;) = 0. By [9, Corollary 4.2], there exists
i

8§ € Mg—10(I"2)z,, such that f = > i aim; + X10g. Thus we have

ker(Wz, 1) = Y Fyiii + X1oMi—10(T2)z,,- (4.5)
0<i<n
4ti

We show that the sum (4.5) is a direct sum. Let a; € Z() for 0 < i < n with 4 i and
g € Mk—10(I)z,,,- We put f = > ;aim; + X10g. By (4.2), we have

W (mi) = W (X)W (X3 Y5 ) = x5 mod p. (4.6)
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1428 T. Kikuta, S. Takemori

Here we use W(X12;) = 0 mod p fort = 1,2,3 and x, = 1 mod p. By Igusa’s
computation, images of 14 generators X4, - -- , X483 by W can be written as Z-coefficient
polynomials of x4, x¢, x12 and yj». By Lemma 4.3, we have W”(X9) = x12. Thus there
exist oty p,c,a € Z(p) such that

" b, c .d
W (X108) = x2W(Q) = D Aabcaxixex,yih,
a,b,c,d

where summation index runs over {(a, b, ¢, d) € Z 20 ‘ 4a 4+ 6b + 12¢ + 12d = k + 2}.
We assume Wi(m,k (f) = Wi/(p),k(Zi aim; + Xlog) = 0. Then by (4.6) and x4 = x¢ = 1
mod p, we have

Zalxl2y12 + Z Fab,c.dXi2 Vs = 0.
i a,b,c,d

Since 4a + 6b = 0 or 4a 4 6b > 4, the isobaric degree of ffzﬂlz is not equal to k. Therefore
we have @; = O for all i. This shows that the sum (4.5) is a direct sum. This also shows
that if f € Mk(Fz)Z(p) with 12 | k satisfies W(f) = W”(f) = 0 mod p, then there
exists h € My_10(I'2)z,,, such that f = X10h mod p. By W”(f) = 0 mod p, we have
W(h) =0 mod p. Since 12 1 k — 10, there exists i’ € My—20(I"2)z,,, such that h = Xioh'

mod p. Therefore we have f = X foh’ mod p. This completes the proof. O

Corollary 4.11 Let p = 2,3 and f € Mk(FZ)Z(,,) with 12 | k. If W(f) = 0 mod p, then
there exists g € Mk_g(l"z)z(p) such that f = X19g mod p.

Proof By Lemma 4.8, the statement for f = m; is true for all i. Then by Proposition 4.10,
we have f = X19(g + h) mod p with g € M;_ g(Fz)Z( ) and h € M;_ lO(FZ)Z(p) By
Lemma 4.9, we have our assertion.

5 Proof of the main results

In this section, we give proofs of Theorem 2.1, Corollary 2.3 and Theorem 2.4.

‘We have Mk (I‘z)@p = Mk (FZ)Z(,,) ®F, Oy /p. Therefore Theorem 2.1 is reduced to the
case of Oy = Z,), where pisaprime number. We also note that the statement of Theorem 2.1
for v > 2 is reduced to the case of v = 1 by repeatedly using the result. This method was
used in [12].

As we remarked before, the statement of Theorem 2.1 was proven in [1] for k even and
p > 5. Thus in this section, we assume k =0 mod 2, p =2,30ork =1 mod 2.

First, we introduce the following notation, which is similar to mod p diagonal vanishing
order defined by Richter and Raum [13]. Let fbe a IF ,-coefficients formal power series as
follows;

~ IUN —1/Nqr 1/N _1/N
f= Z dg(m,r,n)qy'qi,q5 € U IF,,[q/ 7‘112/ ][[q/ ’qz/ I
m,r,neQ NeZsx
m,n,dmn—r2>0
We define v,,(f) by
~ af'(M, r,n) =0,
vp(f) _SUP{A €R| forallm,r,n € QwithO <m,n < A}

By definition, we have

vp(f2) = max{v,(f), v, (@), (5.1)
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for f ge UN€Z>] F [q12 ,qlzl/N]I[ l/N, 1/N]] ‘We note that v,,(f) > A is equivalent

tods(m,r,n) =0forallm,n < A, where A € R.
For the proof of Theorem 2.1, we introduce the following three lemmas.

Lemma 5.1 Let p be a prime number and ]7 IS Mk(rz)z(p> with k € Z>o. Then we have
vp(Xl()f) = Up(f) + L and vp(XSSf) = vp(f) +2.

Proof We regard X 10 and X 35 as images in the ring of formal power series IF ,(g12)[ g1, g21.
Recall that the descriptions of X o and X35 as the Borcherds products are given by

_,2
X0 = q191292 1_[ (11— qi”qlrzqél)Can 7 )’

m,r,n€Z
(m,r,n)>0

X35 = qlanad@ — o) [] (1 —a}ahgd)? @,

m,r,nez
(m,r,n)>0

where c(M), d(M) (M € 7Z) are certain integers determined by the Fourier coefficients of
the weak Jacobi form of weight 0 with index 1. For more details, see [2,3]. By this formula
for X0, we have X]o = q1qou where u is a unit in F,(g12)[q1, g21. Similarly, we have
X35 = qlq2 (ql — g2)v for some unit v in F,(g12)[q1, g2]. The assertion of the lemma
follows from these facts. m]

Remark 5.2 1tis not easy to give an upper bound for v, (f 35 )7 )—vp (f) because of the factor
q1 — g2 in the Borcherds product of X3s.

Lemma 5.3 Let p be a prime number and

f= Z ap(m,n)qi'q; € (Mp(I'1) ® Mi(T'1))z, -

m,n>0

Ifag(m,n) = 0 mod p for all m,n < [k/12], then f = 0 mod p. In particular, for

g € My(I")z,,,, we have W(g) =0 mod p if v,(g) > [k/12] and W'(g) =0 mod p if
vp(8) > [(k+ 1)/12].

Proof By the original Sturm’s theorem [15], the map
MMz, <= Fplql/ (g™
is injective. Therefore we have the following injective map
Sym* (M (T')z,, ®z,, Fp = Sym*(Mi(T1)z,,)
— Fplql/ @) @, Fyllql/ "/,

Here we note that Symz(Mk (' )Z(p)) = Symz(Mk(Fl ))Z(p) , as we remarked in the proof of
Lemma 4.4. Since the image of fby this map vanishes, we have f =0. O

Lemma 5.4 We define fi € My (I'2)z for k = 35,39, 41,43 and 47 as follows.
f5= X35, fro=XaXss, fu1=XeX3s, fi3=X1X3s, fa7=X12X3s.
Then\dt(fi) = q1qp, @3 for k = 35,39, 41,43 and 1dt( f27) = q7q1,°45-
Proof This follows from 1dt(X4) = 1dt(Xe) = 1, ldt(X2) = qlq]_zlqz and 1dt(X3s) =
2 —1.3
914912 93 - o
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5.1 Proof of Theorem 2.1 forp = 2, 3 and even k
Letp=2,3,ke€2Z=pand f € Mk(Fz)Z(p>. We assume

vp(f) > by, (5.2)

where by is given in Theorem 2.1. We prove the statement of Theorem 2.1 by induction on
k. First, we assume k < 10. Then the statement is true because My (I'p) for k = 4,6, 8 is
one-dimensional and 1dt(X4) = 1dt(Xg) = ldt(Xf) =1.

Next, we assume k > 10 and the statement is true if the weight is strictly less than k.
By (5.2) and Lemma 5.3, we have W(f) = 0 mod p. If 12 { k, then by Proposition 4.10,
there exists g € Mi-10(T2)z,,, such that f = X1pg mod p. By (5.2) and Lemma 5.1, we
have v, (g) > by—10. By the induction hypothesis, we have g = 0 mod p. Thus we have
the assertion of Theorem 2.1 in this case. Next we assume 12 | k. Then by Corollary 4.11,
there exists g € Mk_g(rz)z(p) such that f = X0g mod p. Since br_19 > [(k — 8)/12]
for k > 10, we have W(g) =0 mod p by (5.2), Lemmas 5.1 and 5.3. Therefore W”(f) =
x12W(g) =0 mod p. By Proposition 4.10, there exists h € Mk—zo(rz)z(m such that f =
X%Oh mod p. Since v,,(%Nl) > br_20, we have h = 0 mod p by the induction hypothesis.
Thus we have f =0 mod p. This completes the proof. O

5.2 Proof of Theorem 2.1 for the casep t 2 - 3 and odd k

Let p be a prime number with p > 5Sand f € Mk(rz)Z(,,> with k odd. We assume

vp(f) > b (5.3)

We prove the theorem by induction on k. Note that My (I'») = {0} if k is odd and k < 35
or k = 37. First assume that 0 < k —35 < 10 with k # 37. Then M (I",) is one-dimensional
and spanned by f; given in Lemma 5.4. By Lemma 5.4, the assertion of the theorem holds
if k — 35 < 10.

Next we assume k — 35 > 10 and the assertion of the theorem holds if the weight is
strictly less than k. By Igusa [6], there exists g € My_35(I'2)z,,, such that f = X35g. By
Lemma 4.3, we have

W(f) =W (X35)W(g) = azs W (). (5.4)

By [(k + 1)/12] < by and Lemma 5.3, we have W/(f) = 0 mod p. Therefore, we have
W(g) = 0 mod p by (5.4). Then by Lemma 4.5, there exists g’ € Mk—45(F2)Z(,,) such that
g = X10¢' mod p. We put f/ = X3s5g’. Then we have f = Xjof' mod p. By (5.3) and
Lemma 5.1, we have v,,(f’) > by_10. By the induction hypothesis, we have f’ = 0 mod p.
Thus f = 0 mod p. This completes the proof. O

5.3 Proof of Theorem 2.1 forp = 2, 3 and odd k

In this subsection, we assume p = 2, 3 and k is odd. Since the case when k = 48 + 35 = 83
is special in our proof, we prove the following two lemmas first.

Lemma5.5 Let f € M48(F2)Z(,,) with f # 0 and ldt(f) = aqf q12q2 be the leading term
off Here o € IFX Assume WZ( ). 4g(f) = 0. Then we have a < 4 and ¢ < 4.
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Proof By Proposition 4.10, we have

ker(Wz,, 48) = P, o X10M33(T)z,,, -
i
Here i = 1,2,3if p = 2and i = 1,2,4if p = 3. For § € Mys(M)z,,,. let 0, =
Dabe Yab.cx“yPz¢ be a IF ,-coefficients polynomial such that g = Qg(flo, Y12, X16) as in
Theorem 4.7. Since o
(X5, Y X i) = i ayy a5, (.5
there existsNa Eniqlle monomial ifg?lbz)?fg With Yao.bo.co 7 O such that 1dt(g) =
ldt(yuo,bo,cOX?gY]bgXf%). We put ¢ (2) = X?ngng]C%. We define a set S’ by

{1, X16, Y12, X 10, X%, Y12X 16, ?122 X10X16, X10Y12, X%O,
)N(log%e, X10Y12X 16, )?10?122, )?%0)?16, ?N(%O?IL }N(?o} :
Then S’ forms a basis of M33(F2)Z(p). This follows from
dimg, (M3s(I)z,,)) = dime Mag(I) = 16

and Lemma 4.8. We put § = {Xj0a | a € S'}. We define the set T’ by

p - Jmmamsy o if p =2,
Ay, o, sy ifp =3,

Then SUT forms a basis of ker(WZ(p)Ag). We have ¢ (s) = s except when p = 3 ands = my
fors e SUT.If p = 3, we have @ (my) :3710 )712)?f6. Thus we see that ¢ is injective on
SUT. Therefore if f € ker(Wz,,, 4g) with f # O, then there exists a unique s € SUT such
that ldt(f) = «a 1dt(s) with o # 0. Note that degrees of monomials {¢ (s) } s € SUT} are
less than or equal to 4. Then by (5.5), we have the assertion of the lemma. O

Lemma5.6 Let k = 83, f = X358 € Mi(Ta)z,, with g € Mi_35(T2)z, and
Wz, k—35(8) = 0. Assume v, (f) > by = 7. Then we have f = 0.

Proof Assume ]7 # 0. We put 1dt(¥) = ozqfqlbzqg, where o € . Then by Lemma 5.5, we
havea, ¢ < 4. Since 1dt(X3s) = q7q;,' 3. we have ldt(f) = aq{ ¢} '¢5" . Bya+2 <6

andc +3 <7, wehave v,(f) <7. O

Let k be odd and f € Mk(rz)z<p). Assume that

vp(f) > by. (5.6)

If k < 45, then the assertion follows from Lemma 5.4. Hence we suppose that k > 45. To
apply an induction on &, suppose that the assertion is true for any weight strictly smaller than
k.

We take g € Mk_35(F2)Z(p) such that f = gX35. By (5.6), (5.4) and Lemma 5.3, we have
W(g) =0 mod p. Now we separate into four cases:

(1) If k # 11 mod 12, then there exists g’ € My—45(T"2)z,, such that g = X108
mod p, by Proposition 4.10. Then f = X35¢ = X35X10g’. If we put f' := X o8’ €
Mi—10(T'2)z,,,, then

b < vp() = vp(Xi0f) = 14 v, (f).
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This implies v,,(f/) > by_10. By the induction hypothesis, we get f/ = 0 mod p.
Therefore we have f =0 mod p.

2) If k =11 mod 12 and k = 1,5,7,9 mod 10, then we have by = br_g + 1. By
Corollary 4.11, there exists g’ € My_43 (I'2)z,, such that g = X10g' mod p. Put
= X358 € My—3(I'2)z,,,- Then we have vp(f/) = v,,(f) — 1 > bg_g. By the
induction hypothesis, we have f' =0 mod p. Therefore we have f =0 mod p.

3) If k=11 mod 12,k =3 mod 10and k < 115, then we have k = 83 because k > 45.
Then by Lemma 5.6, we have f =0 mod p.

(4) Finally, we assume k = 11 mod 12 and k > 115. To prove this case, we start with
proving the following lemma.

Lemma5.7 Let f = X358 € Mk(Fz)Z(p) withW(g) =0 mod p. Assumek =11 mod 12,
k > 115 and (5.6). Then we have W (g) =0 mod p.

Proof We show the statement only for p = 2. The case p = 3 also can be proved by a similar
argument. By Corollary 4.11, there exists g’ € My_43 (I'2)z,, such that g = X10g¢’ mod p.
Then, it follows from Lemma 4.8 that

X35 = X10X358' = ¢ Xio(Y X3 + X1p) mod p.
By Lemma 5.1 and the assumption (5.6), we have
bi+2 < vp()) +2 < vp(FX35) = vp @ X10X3s) = 3+ 0, @ TR X7 + Xo)).

This implies that o ~
vy @ (Y Xi6 + X)) > [(k — 15)/10].

On the other hand, we have
Fv2 w2 4\ _ Iv2 w2 N N2 2
W(g (Y2 X6 + Xi0) = W(g Y2 X1s) = W(g) - yip - i, mod p,

where we used (4.3) and the fact x4 = 1 mod p. By this congruence, W (g’ (?1222 fé + )N(‘l‘o))
can be regarded as of weight k — 43 448 = k + 5. By k > 115, we have

0@ V2 Xie + X)) > [(k — 15)/10] = [(k + 5)/12].
Applying Lemma 5.3, we have
W (' (Y5 Xis+ X)) = W(g)) -y - x;, =0 mod p.
This implies that
W) =W(g) -x2=0 mod p.
This completes the proof of the lemma. O

We shall return to proof of the case (4). Since W(g) =0 mod p and W”(g) =0 mod p,
there exists h € Mk—SS(FZ)Z([,) such that g = X%Oh mod p by Proposition 4.10. Note that

f= X%0X35h mod p. If we put [/ := X35h € Mk—ZO(FZ)Z(/,)s then
vp(F) = v, (Xio f) =2+ v,(f) > bx.
This means that
vp(f/) > br—20.

By the induction hypothesis, we get f/ = 0 mod p. Therefore we have f = 0 mod p.
This completes the proof. O
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5.4 Proof of Corollary 2.3

As explained in the beginning of this section, we may assume Oy, = Z,), where p is a prime
number. Let I' C I'; be a congruence subgroup of level N and f € My(I")z, . By the proof
of [1, Theorem 1.3], there exists g € Mk(,»,l)(l")z(p) such that

/8 € Mii(I'2)z,,), andg #0 mod p.
Here i = [["; : I']. We assume v,,(f) > by;. Then by (5.1), we have

v, (F2) = vp(f) > bri.

By Theorem 2.1, we have f§ = 0. Since § # 0, we have f = 0, i.e., f =0 mod p. This
completes the proof. O

5.5 Proof of the sharpness

We prove Theorem 2.4. If k is even, then we can show the assertion of the theorem by a similar
argument to [1] (Sect. 3.1, pp.135-136). For k = 35, 39, 41, 43 and 47, let f; be modular
forms given in Lemma 5.4. Then by Lemma 5.4, we have ldt(ka’iO) = q12+iq2_]_iq§+i for
k = 35,39,41, 43 and ldt(f47X’i0) = qf“q{zfiqg‘”. Thus we have the assertion of the
theorem. O
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