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Abstract
Wecorrect the proof of the theorem in the previous paper presented byKikuta,which concerns
Sturm bounds for Siegel modular forms of degree 2 and of even weights modulo a prime
number dividing 2 · 3. We give also Sturm bounds for them of odd weights for any prime
numbers, and we prove their sharpness. The results cover the case where Fourier coefficients
are algebraic numbers.
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1 Introduction

Sturm [15] studied how many Fourier coefficients we need, when we want to prove that an
elliptic modular form vanishes modulo a prime ideal. Its number is so called “Sturm bound”.
We shall explain it more precisely. For a modular form f , let � be the index set of the
Fourier expansion of f . An explicitly given finite subset S of � is said to be a Sturm bound
if vanishing modulo a prime ideal of Fourier coefficients of f at S implies vanishing modulo
the prime ideal of all Fourier coefficients of f .

Poor–Yuen [11] studied initially Sturm bounds for Siegel modular forms of degree 2 for
any prime number p. After their study, in [1], Choi, Choie and Kikuta gave other type bounds
with simple descriptions for them in the case of p ≥ 5. Moreover, Kikuta [7] attempted to
supplement the case of p | 2 · 3. However, there are some gaps in the proof (of Theorem 2.1
in Sect. 3.1, [7]). It seems that the method can only give worse bounds. Richter–Raum [13]
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gave some bounds for any p in the case of general degree and any weight. However, their
bounds seem not to be sharp in degree n ≥ 2 excepted in the case n = 2, p ≥ 5, and for even
weights. An improvement of their bounds depends on the case of degree 2.

In this paper, we correct the proof of Theorem 2.1 in [7] by a newmethod. Namely we give
sharp Sturm type bounds for Siegel modular forms of degree 2 and even weight in the case of
p = 2, 3. Moreover we give also sharp bounds for odd weight and modulo any prime number
p. It should be remarked that sharpness becomes important to confirm congruences between
two modular forms by numerical experiments, as the weights grow larger. Finally, we remark
also that our results cover the case where Fourier coefficients are algebraic numbers.

2 Statement of the results

In order to state our results, we fix notation. For a positive integer n, we define the Siegel
modular group �n of degree n by

�n = {γ ∈ GL2n(Z)
∣
∣ tγ Jnγ = Jn},

where Jn =
(

0n −1n
1n 0n

)

and 0n (resp. 1n) is the zero matrix (resp. the identify matrix) of

size n. For a positive integer N , we define the principal congruence subgroup �(n)(N ) of
level N by

�(n)(N ) =
{(

a b
c d

)

∈ �n
∣
∣
a ≡ d ≡ 1n mod N
b ≡ c ≡ 0n mod N

}

.

Here a, b, c, d are n × n matrices. A subgroup � ⊂ �n is said to be a congruence subgroup
if there exists a positive integer N such that �(n)(N ) ⊂ � ⊂ �n . For a congruence subgroup
�, we define the level of � to be

N = min{m ∈ Z≥1
∣
∣ �(n)(m) ⊂ �}.

We define the Siegel upper half space Hn of degree n by

Hn = {

x + iy
∣
∣ x ∈ Symn(R), y ∈ Symn(R), y is positive definite

}

,

where Symn(R) is a space of n × n symmetric matrices with entries in R. For a con-
gruence subgroup � and k ∈ Z≥0, a C-valued holomorphic function f on Hn is said
to be a (holomorphic) Siegel modular form of degree n, of weight k and of level � if

f ((aZ + b)(cZ + d)−1) = det (cZ + d)k f (Z) for all

(

a b
c d

)

∈ �. If n = 1, we add

the cusp condition. We denote by Mk(�) the space of Siegel modular forms of weight k and
of level �.

Any f in Mk(�) has a Fourier expansion of the form

f (Z) =
∑

0≤T∈ 1
N �n

a f (T )qT , qT := e2π i tr(T Z), Z ∈ Hn,

where T runs over all positive semi-definite elements of 1
N �n , N is the level of � and

�n := {T = (ti j ) ∈ Symn(Q) | tii , 2ti j ∈ Z }.

When n = 2, for simplicity we write T = (m, r , n) for T =
(

m r/2
r/2 n

)

∈ 1
N �2 and also

a f (m, r , n) for a f (T ).
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Sturm bounds for Siegel modular forms of degree 2 and odd weights 1421

Let R be a subring of C and Mk(�)R ⊂ Mk(�) the R-module of all modular forms whose
Fourier coefficients lie in R.

Let f1, f2 be two formal power series of the forms fi = ∑

0≤T∈ 1
N �n

a fi (T )qT with
ai ∈ R. For an ideal I of R, we write

f1 ≡ f2 mod I ,

if and only if a f1(T ) ≡ a f2(T ) mod I for all T ∈ 1
N �n with T ≥ 0. If I = (r) is a principal

ideal, we simply denote f1 ≡ f2 mod r .
Let K be an algebraic number field and O = OK the ring of integers in K . For a prime

ideal p in O, we denote by Op the localization of O at p. Under these notation, we have

Theorem 2.1 Let k be a non-negative integer, p an any prime ideal and f ∈ Mk(�2)Op . We
put

bk =
⎧

⎨

⎩

[ k
10

]

if k is even,
[
k−5
10

]

if k is odd.

Here [x] is the Gauss symbol of x ∈ R, i.e., [x] := max{n ∈ Z | n ≤ x}. For ν ∈ Z≥1,
assume that a f (m, r , n) ≡ 0 mod pν for all m, r , n ∈ Z with

0 ≤ m, n ≤ bk,

and 4mn − r2 ≥ 0, then we have f ≡ 0 mod pν .

Remark 2.2 1. If k is even and p � 2 · 3, then the statement of the theorem was essentially
proved by Choi, Choie and Kikuta [1].

2. As mentioned in Sect. 1, in the case where p | 2 · 3 and k is even, Kikuta stated the same
property in [7]. However, the proof has some gaps and its method can give only larger
bounds. We give a new proof in Sect. 5.1.

3. We note that Mk(�2) = {0} if k is odd and k < 35.
4. Other kind of bounds also were given in [8].

By the arguments of [1], we can prove the following.

Corollary 2.3 Let � ⊂ �2 be a congruence subgroup with level N , k ∈ Z≥0 and f ∈
Mk(�)Op . We put i = [�2 : �]. For ν ∈ Z≥1, assume that a f (m, r , n) ≡ 0 mod pν for all

m, r , n ∈ 1
N Z with

0 ≤ m, n ≤ bki .

and 4mn − r2 ≥ 0, then we have f ≡ 0 mod pν .

In the case of level 1 (i.e., N = 1), our bounds are sharp. More precisely, the following
theorem holds.

Theorem 2.4 Let k ∈ Z≥0 and p be a prime number. We assume Mk(�2) �= {0}. Then there
exists f ∈ Mk(�2)Z(p) with f �≡ 0 mod p such that

a f (m, r , n) = 0 for all m, n ≤ bk − 1.

3 Notation

For a prime number p and a Z(p)-module M , we put

M̃ = M ⊗Z(p) Fp.
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1422 T. Kikuta, S. Takemori

For an element x ∈ M , we denote by x̃ the image of x in M̃ . For a Z(p)-linear map ϕ :
M → N , we denote by ϕ̃ the induced map from M̃ to Ñ by ϕ. For n ∈ Z≥1, let � be a

congruence subgroup of �n . We define M̃k(�)Z(p) by ˜Mk(�)Z(p) . For a commutative ring
R and an R-module M , we denote by Sym2(M) ⊂ M ⊗R M the R-module generated by
elements m ⊗ m for m ∈ M . Let R be a Z(2)-algebra and M an R-module. We define an
R-module ∧2(M) by ∧2(M) = {x ∈ M

∣
∣ x ι = −x}.

Here ι is defined by ι(m ⊗ n) = n ⊗ m for m, n ∈ M . Let q1, q12, q2 be variables and
S = {qm1 qr12qn2

∣
∣ m, n ∈ Z≥0, r ∈ Z} be a set of Laurent monomials. We define an order on

S so that qm1 q
r
12q

n
2 ≤ qm

′
1 qr

′
12q

n′
2 if and only if one of the following conditions holds.

1. m < m′.
2. m = m′ and n < n′.
3. m = m′ and n = n′ and r ≤ r ′.

Let K be a field and f = ∑

m,r ,n a f (m, r , n)qm1 q
r
12q

n
2 ∈ K [q12, q−1

12 ][[q1, q2]] a formal
power series. If f �= 0, let qm0

1 qr012q
n0
2 be the minimum monomial which appears in f , that is

the minimum monomial of the set {qm1 qr12qn2
∣
∣ a f (m, r , n) �= 0}. We define the leading term

ldt( f ) of f by a f (m0, r0, n0)q
m0
1 qr012q

n0
2 . We also define the leading term of an element of

K [[q1, q2]] \ {0} by the inclusion K [[q1, q2]] ⊂ K [q12, q−1
12 ][[q1, q2]]. We regard Mk(�2) as a

subspace of C[q12, q−1
12 ][[q1, q2]] by
∑

T=(m,r ,n)∈�2

a f (m, r , n)qT �→
∑

m,r ,n

a f (m, r , n)qm1 q
r
12q

n
2 .

For f ∈ Mk(�2), we denote by ldt( f ) the leading term of the Fourier expansion of f . For
a field K , we regard K [[q]] ⊗K K [[q]] as a subspace of K [[q1, q2]] by q ⊗ 1 �→ q1 and
1 ⊗ q �→ q2. For a subring R of C and a subset S of C[[q1, q2]], we put

SR =
{

f =
∑

m,n

a f (m, n)qm1 q
n
2 ∈ S

∣
∣ a f (m, n) ∈ R

}

.

4 Witt operators

For the proof of the main results, we use Witt operators. In this section, we define Witt
operators and introduce basic properties of them.

4.1 Elliptic modular forms

Since images of Witt operators can be expressed in terms of elliptic modular forms, we
introduce some notation for elliptic modular forms.

For k ∈ 2Z with k ≥ 4, we denote by ek ∈ Mk(�1) the Eisenstein series of degree 1 and
weight k. We normalize ek so that the constant term is equal to 1. We define Eisenstein series
e2 of degree 1 and weight 2 by

e2(q) = 1 − 24
∞
∑

n=1

σ1(n)qn,
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Sturm bounds for Siegel modular forms of degree 2 and odd weights 1423

where σ1(n) is the sumof all positive divisors of n. As is well known, e2 satisfies the following
identify:

τ−2e2(−τ−1) = 12

2π iτ
+ e2(τ ).

We put � = 2−6 · 3−3(e34 − e26). Then � is the Ramanujan’s delta function.
For k ≥ 2, we define Nk(�1) as the space of C-valued holomorphic functions f on H1

that satisfies the following three conditions:

1. f (τ + 1) = f (τ ).
2. There exists g ∈ Mk−2(�1) such that

τ−k f (−τ−1) = 1

2π iτ
g(τ ) + f (τ ) for τ ∈ H1.

3. f is holomorphic at the cusp i∞.

Since f − e2g/12 ∈ Mk(�1) for f as avobe, we have the following lemma.

Lemma 4.1 We have
Nk(�1) = Mk(�1) ⊕ e2Mk−2(�1).

For M = Mk(�1) or Nk(�1), we regard M as a subspace of C[[q]] via the Fourier expansion.
For k = 2, 4, 6, 12, we define elements of Sym2 (Nk(�1))Z as follows:

xk = ek ⊗ ek, for k = 2, 4, 6, x12 = � ⊗ �, y12 = e34 ⊗ � + � ⊗ e34. (4.1)

We define α36 ∈ ∧2(M36(�1))Z by

α36 = x212(� ⊗ e34 − e34 ⊗ �).

4.2 Definition ofWitt operators

For k ∈ Z≥0 and f ∈ Mk(�2), we consider the following Taylor expansion

f (Z) = W ( f )(τ1, τ2) + 2W ′( f )(τ1, τ2) (2π iτ12) + W ′′( f )(τ1, τ2) (2π iτ12)
2 + O(τ 312),

where Z =
(

τ1 τ12
τ12 τ2

)

∈ H2. We put q1 = e(τ1), q2 = e(τ2) and q12 = e(τ12). By

definition, the following properties hold (see [16, Sect. 9]).

1. W ′( f ) = 0 if k is even and W ( f ) = W ′′( f ) = 0 if k is odd.
2. W ( f ) ∈ Sym2(Mk(�1)) if k is even and W ′( f ) ∈ ∧2(Mk+1(�1)) if k is odd. Here we

identify q1 with q ⊗ 1 and q2 with 1 ⊗ q .
3. For f ∈ Mk(�2) and g ∈ Ml(�2), we have

W ( f g) = W ( f )W (g), W ′( f g) = W ′( f )W (g) + W ( f )W ′(g).

Assume k and l are both even. Then we have

W ′′( f g) = W ′′( f )W (g) + W ( f )W ′′(g). (4.2)

4. For f = ∑

m,r ,n a f (m, r , n)qm1 q
r
12q

n
2 ∈ Mk(�2), we have

W ( f ) =
∑

m,r ,n

a f (m, r , n)qm1 q
n
2 , W ′( f ) = 1

2

∑

m,r ,n

ra f (m, r , n)qm1 q
n
2 ,

W ′′( f ) = 1

2

∑

m,r ,n

r2a f (m, r , n)qm1 q
n
2 .
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1424 T. Kikuta, S. Takemori

Let k be even and f ∈ Mk(�2). Then we have

τ−k−2
1 W ′′( f )(τ−1

1 , τ2) = − 1

2π i
θ2W ( f )(τ1, τ2)τ

−1
1 + W ′′( f )(τ1, τ2),

W ′′( f )(τ1, τ2) = W ′′( f )(τ2, τ1).

Here θ2 = 1
2π i

d
dτ12

. Therefore by Lemma 4.1, we have the following lemma.

Lemma 4.2 Let k ∈ 2Z≥0 and f ∈ Mk(�2). Then we have W ′′( f ) ∈ Sym2(Nk+2(�1)).

Let R be a subring of C. If k is even and f ∈ Mk(�2)R , then we have

W ′′( f ) =
∑

m,r ,n
r>0

r2a f (m, r , n)qm1 q
r
12q

n
2 ,

since a f (m,−r , n) = a f (m, r , n). Thus we have W ′′( f ) ∈ Sym2(Mk(�1))R . By a similar
reason, we haveW ′( f ) ∈ Mk+1(�2)R for f ∈ Mk(�2)R with odd k. For k ∈ Z≥0, we define
the Witt operators as the R-linear maps induced by W ,W ′ and W ′′ as follows.

WR,2k : M2k(�2)R → Sym2(M2k(�1))R,

W ′
R,2k−1 : M2k−1(�2)R → ∧2(M2k(�1))R,

W ′′
R,2k : M2k(�2)R → Sym2(N2k+2(�1))R .

4.3 Igusa’s generators and their images

Let X4, X6, X10, X12 and X35 be generators of
⊕

k∈Z
Mk(�2) given by Igusa [4,5]. Here

X4 and X6 are Siegel–Eisenstein series of weight 4 and 6 respectively. And X10, X12 and
X35 are cusp forms of weight 10, 12 and 35 respectively. We normalize these modular forms
so that

ldt(X4) = ldt(X6) = 1, ldt(X10) = ldt(X12) = q1q
−1
12 q2, ldt(X35) = q21q

−1
12 q

3
2 .

Here we note that aX35(1, r , n) = 0 for all n, r ∈ Z, because any weak Jacobi form of index 1
and weight 35 vanishes. We also introduce Y12 ∈ M12(�2)Z and Xk ∈ Mk(�2)Z for k = 16,
18, 24, 28, 30, 36, 40, 42 and 48. Then by Igusa [6],

{

Xk
∣
∣ k = 4, 6, 10, 12, 16, 18, 24, 28, 30, 36, 40, 42, 48

} ∪ {Y12}
is a minimal set of generators of

⊕

k∈2Z
Mk(�2)Z as a Z-algebra and we have

Mk(�2)Z = X35Mk−35(�2)Z

for odd k.
Igusa [6] computed W (X4), . . . ,W (X48) and W (Y12), we introduce some of them.

W (X4) = x4, W (X6) = x6, W (X10) = 0,

W (X12) = 22 · 3x12, W (Y12) = y12, W (X16) = x4 · x12 (4.3)

and
W (X12i ) = di x

i
12, for i = 1, 2, 3, 4. (4.4)

Here x4, x6, x12 and y12 are defined by (4.1), and di is defined by 12/gcd(12, i).
Images of W ′ and W ′′ for some of the generators are given as follows.
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Sturm bounds for Siegel modular forms of degree 2 and odd weights 1425

Lemma 4.3 We have
W ′(X35) = α36

and
W ′′(X10) = x12, W ′′(X12i ) = x2x

i
12, for i = 1, 2, 3, 4.

Proof By ldt(X35) = q21q
−1
12 q

3
2 and ∧2(Mk(�1)) = (� ⊗ e34 − e34 ⊗ �)Sym2(Mk−12(�1)),

we see that W ′(X35) is a constant multiple of α36. Since aX35(2, r , 3) = 0 if r �= ±1, we
have W ′(X35) = α36. Igusa computed W ′′(X10) and W ′′(X12) (see [6, Lemma 12]). Note
that our notation is different from his notation. We denote his W ′ by W ′′. By this result, we
can compute W ′′(X12i ) for i = 2, 3, 4. ��

4.4 Kernel ofWitt operator modulo a prime

Let p be a prime number and k even. We consider the kernel of the Witt operator modulo p:

W̃Z(p),k : M̃k(�2)Z(p) → Sym2(Mk(�2))Z(p) ⊗Z(p) Fp.

First we consider the case when p ≥ 5. This case is easier.

Lemma 4.4 Let p be a prime number with p ≥ 5. Then we have
⊕

k∈2Z≥0

Sym2 (Mk(�1))Z(p)
= Z(p)[x4, x6, x12].

Proof It is easy to see that Sym2(Mk(�1)Z(p) ) = Sym2 (Mk(�1))Z(p)
(see the remark after

Theorem 5.12 of [11]). Since p ≥ 5, we have
⊕

k∈2Z≥0
Mk(�1)Z(p) = Z(p)[e4, e6] (see

[14]). We note that
⊕

k∈2Z≥0
Sym2(Mk(�1)Z(p) ) is generated by x4, x6 and e34 ⊗e26 +e26 ⊗e34

as an algebra over Z(p). Then the assertion of the lemma follows from the equation

212 · 36x12 = x34 + x26 − (e34 ⊗ e26 + e26 ⊗ e34).

��
The following is a key lemma for the proof of Theorem 2.1 for p � 2 · 3. This lemma was

also used in [1].

Lemma 4.5 Let p ≥ 5 be a prime number and k ∈ 2Z≥0. Then we have

ker(W̃Z(p),k) = X̃10M̃k−10(�2)Z(p) .

Proof This lemma seems well-known. But for the sake of completeness, we give a proof.
The inclusion X̃10M̃k−10(�2)Z(p) ⊂ ker(W̃Z(p),k) is obvious, because W (X10) = 0. Take
f ∈ Mk(�2)Z(p) withWZ(p),k( f ) ≡ 0 mod p. By (4.3) and Lemma 4.4,WZ(p),k is surjective.
Take g ∈ Mk(�2)Z(p) so that WZ(p),k( f ) = pWZ(p),k(g). Then by [9, Corollary 4.2], there
exists h ∈ Mk−10(�2)Z(p) such that f − pg = X10h. This completes the proof. ��
Remark 4.6 Since W (X12) = 12x12 and M2(�2) = {0}, the assertion of the lemma does not
hold if p = 2, 3.

Next we consider the case where p = 2, 3. We recall the structure of the ring
⊕

k∈2Z
M̃k(�2)Z(p) .
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1426 T. Kikuta, S. Takemori

Theorem 4.7 (Nagaoka [10], Theorem 2) Let p = 2, 3. For f ∈ M̃k(�2)Z(p) , there exists a
unique polynomial Q ∈ Fp[x, y, z] such that

f̃ = Q(X̃10, Ỹ12, X̃16).

The above Q for Igusa’s generators are given as follows.

Lemma 4.8 (Nagaoka [10], proof of Lemma 1, Lemma 2)

1. Suppose p = 2, then we have

X4 ≡ X6 ≡ 1 mod p, X12 ≡ X10 mod p,

X18 ≡ X16 mod p, X24 ≡ X10X16 mod p,

X28 ≡ X30 ≡ X2
16 mod p, X36 ≡ X10X

2
16 mod p,

X40 ≡ X42 ≡ X3
16 mod p, X48 ≡ X4

16 + X10X
3
16 + X4

10Y12 mod p,

X2
35 ≡ X2

10Y
2
12X

2
16 + X6

10 mod p.

2. Suppose p = 3, then we have

X4 ≡ X6 ≡ 1 mod p, X12 ≡ X10 mod p,

X18 ≡ X16 mod p, X24 ≡ X10X16 mod p,

X28 ≡ X30 ≡ X2
16 mod p, X36 ≡ X3

16 + 2X3
10Y12 + X10X

2
16 mod p,

X40 ≡ X3
16 + 2X3

10Y12 mod p, X42 ≡ X3
16 + X3

10Y12 mod p,

X48 ≡ X10X
3
16 + 2X4

10Y12 mod p,

and

X2
35 ≡ 2X10X

4
16 + X10Y

2
12X

3
16

+ 2X2
10X

3
16 + X2

10Y
2
12X

2
16 + 2X3

10Y12X
2
16

+ 2X4
10Y

3
12 + X4

10X
2
16 + 2X7

10 mod p.

For later use, we prove the following lemma.

Lemma 4.9 Let p = 2, 3 and k ∈ 2Z≥0 with 12 � k. Then we have

M̃k(�2)Z(p) ⊂ M̃k+2(�2)Z(p) .

Proof Take f ∈ Mk(�2)Z(p) . We show that there exists g ∈ Mk+2(�2)Z(p) such that f ≡ g
mod p. We may assume f is an isobaric monomial of Igusa’s generators of even weights,
that is X4, . . . , X48 and Y12. If f = Xk with 12 � k, then by Lemma 4.8, we have f̃ ∈
M̃k+2(�2)Z(p) . In fact, we have X18 ≡ X4X16 mod p, X42 ≡ X16X28 mod 2, X40 ≡
X42+X3

10Y12 mod 3 and X42 ≡ X16X28+X2
10X12Y12 mod 3. If f is an isobaricmonomial

of weight k, then f contains some Xk with 12 � k. Therefore we have the assertion of the
lemma. ��

Let f ∈ Mk(�2)Z(p) with p = 2, 3. As we remarked before, W ( f ) ≡ 0 mod p does
not imply the existence of g ∈ Mk−10(�2)Z(p) such that f ≡ X10g mod p. Instead of
Lemma 4.5, we have the following proposition.

123
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Proposition 4.10 Let p = 2, 3 and k ∈ 2Z≥0.

1. Suppose 12 � k. Then we have

ker(W̃Z(p),k) = X̃10M̃k−10(�2)Z(p) .

2. Suppose k = 12n with n ∈ Z and p = 2. For 0 ≤ i ≤ n with 4 � i , we put i = 4s + t
with t ∈ {1, 2, 3} and mi = X12t Xs

48Y
n−i
12 . Then we have

ker(W̃Z(p),k) =
⊕

0≤i≤n
4�i

Fpm̃i ⊕ X̃10M̃k−10(�2)Z(p) .

3. Suppose k = 12n with n ∈ Z and p = 3. For 0 ≤ i ≤ n with 3 � i , we put i = 3s + t
with t ∈ {1, 2} and mi = X12t Xs

36Y
n−i
12 . Then we have

ker(W̃Z(p),k) =
⊕

0≤i≤n
3�i

Fpm̃i ⊕ X̃10M̃k−10(�2)Z(p) .

Moreover, if f ∈ Mk(�2)Z(p) with 12 | k and

W ( f ) ≡ W ′′( f ) ≡ 0 mod p,

then there exists g ∈ Mk−20(�2)Z(p) such that f ≡ X2
10g mod p.

Proof Suppose 12 � k. Then by [6, Lemma 13], WZ,k is surjective. Therefore, WZ(p),k is
surjective. We can prove ker

(

W̃Z(p),k
) = X̃10M̃k−10(�2)Z(p) by a similar argument to the

proof of Lemma 4.5. Next assume k = 12n with n ∈ Z. For simplicity, we assume p = 2.
We can prove the case when p = 3 in a similar way. Take f ∈ Mk(�2)Z(p) with W ( f ) ≡ 0
mod p. Put di = 12/gcd(12, i). By [6, Lemma 13], there exist ai, j , bi , ci ∈ Z(p) such that

W ( f ) =
∑

0≤i≤ j<n

ai, j x
3(n− j)
4 xi12y

j−i
12 +

∑

0≤i≤n
4|i

bi x
i
12y

n−i
12 +

∑

0≤i≤n
4�i

ci di x
i
12y

n−i
12 .

By x4 ≡ 1 mod p andW ( f ) ≡ 0 mod p, we have ai, j ≡ bi ≡ 0 mod p for all i, j . Here

we note that x̃12 and ỹ12 are algebraically independent overFp . This is because ldt(xi12y
j
12) =

qi1q
i+ j
2 . By [6, Lemma 13], there exists f ′ ∈ Mk(�2)Z(p) such that

W ( f ′) =
∑

0≤i≤ j<n

ai, j
p

x3(n− j)
4 xi12y

j−i
12 +

∑

0≤i≤n
4|i

bi
p
xi12y

n−i
12 .

By (4.4), there exists ui ∈ Z
×
(p) such that W (mi ) = uidi xi12y

n−i
12 . Therefore, there exist

ai ∈ Z(p) such that W ( f − p f ′ − ∑

0≤i≤n
4�i

aimi ) = 0. By [9, Corollary 4.2], there exists

g ∈ Mk−10(�2)Z(p) such that f̃ = ∑

i ãi m̃i + X̃10 g̃. Thus we have

ker(W̃Z(p),k) =
∑

0≤i≤n
4�i

Fpm̃i + X̃10M̃k−10(�2)Z(p) . (4.5)

We show that the sum (4.5) is a direct sum. Let ai ∈ Z(p) for 0 ≤ i ≤ n with 4 � i and
g ∈ Mk−10(�2)Z(p) . We put f = ∑

i aimi + X10g. By (4.2), we have

W ′′(mi ) ≡ W ′′(X12t )W (Xs
48Y

n−i
12 ) ≡ xi12y

n−i
12 mod p. (4.6)
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Here we use W (X12t ) ≡ 0 mod p for t = 1, 2, 3 and x2 ≡ 1 mod p. By Igusa’s
computation, images of 14 generators X4, · · · , X48 by W can be written as Z-coefficient
polynomials of x4, x6, x12 and y12. By Lemma 4.3, we have W ′′(X10) = x12. Thus there
exist αa,b,c,d ∈ Z(p) such that

W ′′(X10g) = x12W (g) =
∑

a,b,c,d

αa,b,c,d x
a
4 x

b
6 x

c
12y

d
12,

where summation index runs over {(a, b, c, d) ∈ Z
4≥0

∣
∣ 4a + 6b + 12c + 12d = k + 2}.

We assume W̃ ′′
Z(p),k

( f̃ ) = W̃ ′′
Z(p),k

(
∑

i ãi m̃i + X̃10 g̃) = 0. Then by (4.6) and x4 ≡ x6 ≡ 1
mod p, we have

∑

i

ãi x̃
i
12 ỹ

n−i
12 +

∑

a,b,c,d

α̃a,b,c,d x̃
c
12 ỹ

d
12 = 0.

Since 4a + 6b = 0 or 4a + 6b ≥ 4, the isobaric degree of x̃ c12 ỹ
d
12 is not equal to k. Therefore

we have ãi = 0 for all i . This shows that the sum (4.5) is a direct sum. This also shows
that if f ∈ Mk(�2)Z(p) with 12 | k satisfies W ( f ) ≡ W ′′( f ) ≡ 0 mod p, then there
exists h ∈ Mk−10(�2)Z(p) such that f ≡ X10h mod p. By W ′′( f ) ≡ 0 mod p, we have
W (h) ≡ 0 mod p. Since 12 � k − 10, there exists h′ ∈ Mk−20(�2)Z(p) such that h ≡ X10h′
mod p. Therefore we have f ≡ X2

10h
′ mod p. This completes the proof. ��

Corollary 4.11 Let p = 2, 3 and f ∈ Mk(�2)Z(p) with 12 | k. If W ( f ) ≡ 0 mod p, then
there exists g ∈ Mk−8(�2)Z(p) such that f ≡ X10g mod p.

Proof By Lemma 4.8, the statement for f = mi is true for all i . Then by Proposition 4.10,
we have f ≡ X10(g + h) mod p with g ∈ Mk−8(�2)Z(p) and h ∈ Mk−10(�2)Z(p) . By
Lemma 4.9, we have our assertion. ��

5 Proof of themain results

In this section, we give proofs of Theorem 2.1, Corollary 2.3 and Theorem 2.4.
We have M̃k(�2)Op = M̃k(�2)Z(p) ⊗Fp Op/p. Therefore Theorem 2.1 is reduced to the

case ofOp = Z(p), where p is a prime number.We also note that the statement of Theorem2.1
for ν ≥ 2 is reduced to the case of ν = 1 by repeatedly using the result. This method was
used in [12].

As we remarked before, the statement of Theorem 2.1 was proven in [1] for k even and
p ≥ 5. Thus in this section, we assume k ≡ 0 mod 2, p = 2, 3 or k ≡ 1 mod 2.

First, we introduce the following notation, which is similar to mod p diagonal vanishing
order defined by Richter and Raum [13]. Let f̃ be a Fp-coefficients formal power series as
follows;

f̃ =
∑

m,r ,n∈Q

m,n,4mn−r2≥0

ã f (m, r , n)qm1 q
r
12q

n
2 ∈

⋃

N∈Z≥1

Fp[q1/N12 , q−1/N
12 ][[q1/N1 , q1/N2 ]].

We define vp( f̃ ) by

vp( f̃ ) = sup

{

A ∈ R
∣
∣
ã f (m, r , n) = 0,
for all m, r , n ∈ Q with 0 ≤ m, n < A

}

.

By definition, we have
vp( f̃ g̃) ≥ max{vp( f̃ ), vp(g̃)}, (5.1)
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for f̃ , g̃ ∈ ⋃

N∈Z≥1
Fp[q1/N12 , q−1/N

12 ][[q1/N1 , q1/N2 ]]. We note that vp( f̃ ) > A is equivalent
to ã f (m, r , n) = 0 for all m, n ≤ A, where A ∈ R.

For the proof of Theorem 2.1, we introduce the following three lemmas.

Lemma 5.1 Let p be a prime number and f̃ ∈ M̃k(�2)Z(p) with k ∈ Z≥0. Then we have

vp(X̃10 f̃ ) = vp( f̃ ) + 1 and vp(X̃35 f̃ ) ≥ vp( f̃ ) + 2.

Proof We regard X̃10 and X̃35 as images in the ring of formal power series Fp(q12)[[q1, q2]].
Recall that the descriptions of X10 and X35 as the Borcherds products are given by

X10 = q1q12q2
∏

m,r ,n∈Z

(m,r ,n)>0

(1 − qm1 q
r
12q

n
2 )c(4mn−r2),

X35 = q21q12q
2
2 (q1 − q2)

∏

m,r ,n∈Z

(m,r ,n)>0

(1 − qm1 q
r
12q

n
2 )d(4mn−r2),

where c(M), d(M) (M ∈ Z) are certain integers determined by the Fourier coefficients of
the weak Jacobi form of weight 0 with index 1. For more details, see [2,3]. By this formula
for X10, we have X̃10 = q1q2u where u is a unit in Fp(q12)[[q1, q2]]. Similarly, we have
X̃35 = q21q

2
2 (q1 − q2)v for some unit v in Fp(q12)[[q1, q2]]. The assertion of the lemma

follows from these facts. ��
Remark 5.2 It is not easy to give an upper bound for vp(X̃35 f̃ )−vp( f̃ ) because of the factor
q1 − q2 in the Borcherds product of X35.

Lemma 5.3 Let p be a prime number and

f =
∑

m,n≥0

a f (m, n)qm1 q
n
2 ∈ (Mk(�1) ⊗ Mk(�1))Z(p)

.

If a f (m, n) ≡ 0 mod p for all m, n ≤ [k/12], then f ≡ 0 mod p. In particular, for
g ∈ Mk(�2)Z(p) , we have W (g) ≡ 0 mod p if vp(g̃) > [k/12] and W ′(g) ≡ 0 mod p if
vp(g̃) > [(k + 1)/12].
Proof By the original Sturm’s theorem [15], the map

M̃k(�1)Z(p) ↪→ Fp[[q]]/(q[k/12]+1)

is injective. Therefore we have the following injective map

Sym2(Mk(�1))Z(p) ⊗Z(p) Fp = Sym2(M̃k(�1)Z(p) )

↪→ Fp[[q]]/(q[k/12]+1) ⊗Fp Fp[[q]]/(q[k/12]+1).

Here we note that Sym2(Mk(�1)Z(p) ) = Sym2(Mk(�1))Z(p) , as we remarked in the proof of
Lemma 4.4. Since the image of f̃ by this map vanishes, we have f̃ = 0. ��
Lemma 5.4 We define fk ∈ Mk(�2)Z for k = 35, 39, 41, 43 and 47 as follows.

f35 = X35, f39 = X4X35, f41 = X6X35, f43 = X2
4X35, f47 = X12X35.

Then ldt( fk) = q21q
−1
12 q

3
2 for k = 35, 39, 41, 43 and ldt( f47) = q31q

−2
12 q

4
2 .

Proof This follows from ldt(X4) = ldt(X6) = 1, ldt(X12) = q1q
−1
12 q2 and ldt(X35) =

q21q
−1
12 q

3
2 . ��
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5.1 Proof of Theorem 2.1 for p = 2, 3 and even k

Let p = 2, 3, k ∈ 2Z≥0 and f ∈ Mk(�2)Z(p) . We assume

vp( f̃ ) > bk, (5.2)

where bk is given in Theorem 2.1. We prove the statement of Theorem 2.1 by induction on
k. First, we assume k < 10. Then the statement is true because Mk(�2) for k = 4, 6, 8 is
one-dimensional and ldt(X4) = ldt(X6) = ldt(X2

4) = 1.
Next, we assume k ≥ 10 and the statement is true if the weight is strictly less than k.

By (5.2) and Lemma 5.3, we have W ( f ) ≡ 0 mod p. If 12 � k, then by Proposition 4.10,
there exists g ∈ Mk−10(�2)Z(p) such that f ≡ X10g mod p. By (5.2) and Lemma 5.1, we
have vp(g̃) > bk−10. By the induction hypothesis, we have g ≡ 0 mod p. Thus we have
the assertion of Theorem 2.1 in this case. Next we assume 12 | k. Then by Corollary 4.11,
there exists g ∈ Mk−8(�2)Z(p) such that f ≡ X10g mod p. Since bk−10 ≥ [(k − 8)/12]
for k ≥ 10, we have W (g) ≡ 0 mod p by (5.2), Lemmas 5.1 and 5.3. Therefore W ′′( f ) ≡
x12W (g) ≡ 0 mod p. By Proposition 4.10, there exists h ∈ Mk−20(�2)Z(p) such that f ≡
X2
10h mod p. Since vp (̃h) > bk−20, we have h ≡ 0 mod p by the induction hypothesis.

Thus we have f ≡ 0 mod p. This completes the proof. ��

5.2 Proof of Theorem 2.1 for the case p � 2 · 3 and odd k

Let p be a prime number with p ≥ 5 and f ∈ Mk(�2)Z(p) with k odd. We assume

vp( f̃ ) > bk . (5.3)

We prove the theorem by induction on k. Note that Mk(�2) = {0} if k is odd and k < 35
or k = 37. First assume that 0 ≤ k−35 < 10 with k �= 37. Then Mk(�2) is one-dimensional
and spanned by fk given in Lemma 5.4. By Lemma 5.4, the assertion of the theorem holds
if k − 35 < 10.

Next we assume k − 35 ≥ 10 and the assertion of the theorem holds if the weight is
strictly less than k. By Igusa [6], there exists g ∈ Mk−35(�2)Z(p) such that f = X35g. By
Lemma 4.3, we have

W ′( f ) = W ′(X35)W (g) = α36W (g). (5.4)

By [(k + 1)/12] ≤ bk and Lemma 5.3, we have W ′( f ) ≡ 0 mod p. Therefore, we have
W (g) ≡ 0 mod p by (5.4). Then by Lemma 4.5, there exists g′ ∈ Mk−45(�2)Z(p) such that
g ≡ X10g′ mod p. We put f ′ = X35g′. Then we have f ≡ X10 f ′ mod p. By (5.3) and
Lemma 5.1, we have vp( f̃ ′) > bk−10. By the induction hypothesis, we have f ′ ≡ 0 mod p.
Thus f ≡ 0 mod p. This completes the proof. ��

5.3 Proof of Theorem 2.1 for p = 2, 3 and odd k

In this subsection, we assume p = 2, 3 and k is odd. Since the case when k = 48+ 35 = 83
is special in our proof, we prove the following two lemmas first.

Lemma 5.5 Let f̃ ∈ M̃48(�2)Z(p) with f̃ �= 0 and ldt( f̃ ) = αqa1 q
b
12q

c
2 be the leading term

of f̃ . Here α ∈ F
×
p . Assume W̃Z(p),48( f̃ ) = 0. Then we have a ≤ 4 and c ≤ 4.
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Proof By Proposition 4.10, we have

ker(W̃Z(p),48) =
⊕

i

Fpm̃i ⊕ X̃10M̃38(�2)Z(p) .

Here i = 1, 2, 3 if p = 2 and i = 1, 2, 4 if p = 3. For g̃ ∈ M̃48(�2)Z(p) , let Qg =
∑

a,b,c γa,b,cxa ybzc be a Fp-coefficients polynomial such that g̃ = Qg(X̃10, Ỹ12, X̃16) as in
Theorem 4.7. Since

ldt(X̃a
10Ỹ

b
12 X̃

c
16) = qa+c

1 q−a
12 qa+b+c

2 , (5.5)

there exists a unique monomial X̃a0
10Ỹ

b0
12 X̃

c0
16 with γa0,b0,c0 �= 0 such that ldt(g̃) =

ldt(γa0,b0,c0 X̃
a0
10Ỹ

b0
12 X̃

c0
16). We put φ(g̃) = X̃a0

10Ỹ
b0
12 X̃

c0
16. We define a set S′ by

{

1, X̃16, Ỹ12, X̃10, X̃
2
16, Ỹ12 X̃16, Ỹ

2
12, X̃10 X̃16, X̃10Ỹ12, X̃

2
10,

X̃10 X̃
2
16, X̃10Ỹ12 X̃16, X̃10Ỹ

2
12, X̃

2
10 X̃16, X̃

2
10Ỹ12, X̃

3
10

}

.

Then S′ forms a basis of M̃38(�2)Z(p) . This follows from

dimFp (M̃38(�2)Z(p) ) = dimC M38(�2) = 16

and Lemma 4.8. We put S = {

X̃10a
∣
∣ a ∈ S′}. We define the set T by

T =
{

{m̃1, m̃2, m̃3} if p = 2,

{m̃1, m̃2, m̃4} if p = 3.

Then S∪T forms a basis of ker(W̃Z(p),48). We have φ(s) = s except when p = 3 and s = m4

for s ∈ S ∪ T . If p = 3, we have φ(m̃4) = X̃10Ỹ12 X̃2
16. Thus we see that φ is injective on

S ∪ T . Therefore if f̃ ∈ ker(W̃Z(p),48) with f̃ �= 0, then there exists a unique s ∈ S ∪ T such
that ldt( f̃ ) = α ldt(s) with α �= 0. Note that degrees of monomials {φ(s)

∣
∣ s ∈ S ∪ T } are

less than or equal to 4. Then by (5.5), we have the assertion of the lemma. ��
Lemma 5.6 Let k = 83, f̃ = X̃35g̃ ∈ M̃k(�2)Z(p) with g ∈ M̃k−35(�2)Z(p) and

W̃Z(p),k−35(g̃) = 0. Assume vp( f̃ ) > bk = 7. Then we have f̃ = 0.

Proof Assume f̃ �= 0. We put ldt(g̃) = αqa1 q
b
12q

c
2 , where α ∈ F

×
p . Then by Lemma 5.5, we

have a, c ≤ 4. Since ldt(X̃35) = q21q
−1
12 q

3
2 , we have ldt( f̃ ) = αqa+2

1 qb−1
12 qc+3

2 . By a+2 ≤ 6
and c + 3 ≤ 7, we have vp( f̃ ) ≤ 7. ��

Let k be odd and f ∈ Mk(�2)Z(p) . Assume that

vp( f̃ ) > bk . (5.6)

If k < 45, then the assertion follows from Lemma 5.4. Hence we suppose that k ≥ 45. To
apply an induction on k, suppose that the assertion is true for any weight strictly smaller than
k.

We take g ∈ Mk−35(�2)Z(p) such that f = gX35. By (5.6), (5.4) and Lemma 5.3, we have
W (g) ≡ 0 mod p. Now we separate into four cases:

(1) If k �≡ 11 mod 12, then there exists g′ ∈ Mk−45(�2)Z(p) such that g ≡ X10g′
mod p, by Proposition 4.10. Then f = X35g = X35X10g′. If we put f ′ := X10g′ ∈
Mk−10(�2)Z(p) , then

bk < vp( f̃ ) = vp(X̃10 f̃
′) = 1 + vp( f̃

′).
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This implies vp( f̃ ′) > bk−10. By the induction hypothesis, we get f ′ ≡ 0 mod p.
Therefore we have f ≡ 0 mod p.

(2) If k ≡ 11 mod 12 and k ≡ 1, 5, 7, 9 mod 10, then we have bk = bk−8 + 1. By
Corollary 4.11, there exists g′ ∈ Mk−43(�2)Z(p) such that g ≡ X10g′ mod p. Put
f ′ = X35g′ ∈ Mk−8(�2)Z(p) . Then we have vp( f̃ ′) = vp( f̃ ) − 1 > bk−8. By the
induction hypothesis, we have f ′ ≡ 0 mod p. Therefore we have f ≡ 0 mod p.

(3) If k ≡ 11 mod 12, k ≡ 3 mod 10 and k < 115, then we have k = 83 because k ≥ 45.
Then by Lemma 5.6, we have f ≡ 0 mod p.

(4) Finally, we assume k ≡ 11 mod 12 and k ≥ 115. To prove this case, we start with
proving the following lemma.

Lemma 5.7 Let f = X35g ∈ Mk(�2)Z(p) with W (g) ≡ 0 mod p. Assume k ≡ 11 mod 12,
k ≥ 115 and (5.6). Then we have W ′′(g) ≡ 0 mod p.

Proof We show the statement only for p = 2. The case p = 3 also can be proved by a similar
argument. By Corollary 4.11, there exists g′ ∈ Mk−43(�2)Z(p) such that g ≡ X10g′ mod p.
Then, it follows from Lemma 4.8 that

f X35 ≡ X10X
2
35g

′ ≡ g′X3
10(Y

2
12X

2
16 + X4

10) mod p.

By Lemma 5.1 and the assumption (5.6), we have

bk + 2 < vp( f̃ ) + 2 ≤ vp( f̃ X̃35) = vp(g̃
′ X̃10 X̃

2
35) = 3 + vp(g̃

′(Ỹ 2
12 X̃

2
16 + X̃4

10)).

This implies that
vp(g̃

′(Ỹ 2
12 X̃

2
16 + X̃4

10)) > [(k − 15)/10].
On the other hand, we have

W (g′(Y 2
12X

2
16 + X4

10)) = W (g′Y 2
12X

2
16) ≡ W (g′) · y212 · x212 mod p,

where we used (4.3) and the fact x4 ≡ 1 mod p. By this congruence, W (g̃′(Ỹ 2
12 X̃

2
16 + X̃4

10))

can be regarded as of weight k − 43 + 48 = k + 5. By k ≥ 115, we have

vp(g̃
′(Ỹ 2

12 X̃
2
16 + X̃4

10)) > [(k − 15)/10] ≥ [(k + 5)/12].
Applying Lemma 5.3, we have

W (g′(Y 2
12X

2
16 + X4

10)) ≡ W (g′) · y212 · x212 ≡ 0 mod p.

This implies that

W ′′(g) ≡ W (g′) · x12 ≡ 0 mod p.

This completes the proof of the lemma. ��
We shall return to proof of the case (4). Since W (g) ≡ 0 mod p and W ′′(g) ≡ 0 mod p,
there exists h ∈ Mk−55(�2)Z(p) such that g ≡ X2

10h mod p by Proposition 4.10. Note that
f ≡ X2

10X35h mod p. If we put f ′ := X35h ∈ Mk−20(�2)Z(p) , then

vp( f̃ ) = vp(X̃
2
10 f̃

′) = 2 + vp( f̃
′) > bk .

This means that

vp( f̃
′) > bk−20.

By the induction hypothesis, we get f ′ ≡ 0 mod p. Therefore we have f ≡ 0 mod p.
This completes the proof. ��
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5.4 Proof of Corollary 2.3

As explained in the beginning of this section, we may assumeOp = Z(p), where p is a prime
number. Let � ⊂ �2 be a congruence subgroup of level N and f ∈ Mk(�)Z(p) . By the proof
of [1, Theorem 1.3], there exists g ∈ Mk(i−1)(�)Z(p) such that

f g ∈ Mki (�2)Z(p) , and g �≡ 0 mod p.

Here i = [�2 : �]. We assume vp( f̃ ) > bki . Then by (5.1), we have

vp( f̃ g̃) ≥ vp( f̃ ) > bki .

By Theorem 2.1, we have f̃ g̃ = 0. Since g̃ �= 0, we have f̃ = 0, i.e., f ≡ 0 mod p. This
completes the proof. ��

5.5 Proof of the sharpness

Weprove Theorem 2.4. If k is even, thenwe can show the assertion of the theorem by a similar
argument to [1] (Sect. 3.1, pp.135–136). For k = 35, 39, 41, 43 and 47, let fk be modular
forms given in Lemma 5.4. Then by Lemma 5.4, we have ldt( fk Xi

10) = q2+i
1 q−1−i

2 q3+i
3 for

k = 35, 39, 41, 43 and ldt( f47Xi
10) = q3+i

1 q−2−i
2 q4+i

3 . Thus we have the assertion of the
theorem. ��
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