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Abstract
We re-visit the eigenvalue estimate of the Dirac operator on spin manifolds with boundary
in terms of the first eigenvalues of conformal Laplace operator as well as the conformal
mean curvature operator. These problems were studied earlier by Hijazi–Montiel–Zhang and
Raulot and we re-prove them under weaker assumption that a boundary chirality operator
exists. Moreover, on these spin manifolds with boundary, we show that any C3,α confor-
mal compactification of some Poincare–Einstein metric must be the standard hemisphere
when the first nonzero eigenvalue of the Dirac operator achieves its lowest value, and any
C3,α conformal compactification of some Poincare–Einstein metric must be the flat ball in
Euclidean space when the first positive eigenvalue of the boundary Dirac operator achieves
certain value relating to the second Yamabe invariant. In two cases the Poincare–Einstein
metrics are standard hyperbolic metric.
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1 Introduction

Let (M, g) be a closed (compactwithout boundary) n-dimensionalRiemannian spinmanifold
with the positive scalar curvature R > 0. Let λ(D) be the eigenvalue of the Dirac operator
D. In 1963, Lichnerowicz [25] firstly proved

λ2(D) >
1

4
inf
M

R. (1.1)

By modifying the Riemammian spin connection suitably, Friedrich [13] improved the Lich-
nerowicz inequality (1.1) and obtained the sharp estimate

λ2(D) ≥ n

4(n − 1)
inf
M

R. (1.2)

If the equality holds in (1.2), the manifold is Einstein. In 1986, using conformal covariance
of the Dirac operator, Hijazi [16] showed, for n ≥ 3,

λ2(D) ≥ n

4(n − 1)
μ1, (1.3)

where μ1 is the first eigenvalue of the conformal Laplace operator. If the equality holds in
(1.3), there exists the real Killing spinor and the manifold becomes Einstein.

For any n-dimensional (n ≥ 3) compact manifold M with boundary �, let {eκ }nκ=1 be the
local orthonormal frame along � such that en is a global outward normal to � and {ei }n−1

i=1 is
tangent to �. We denote by /∇ the Levi-Cività connection with respect to the induced metric
/g on the hypersurface �. The Gauss formula gives

∇i e j = /∇i e j − hi j en (1.4)

where hi j is the second fundamental form of � defined by

hi j = g(∇i en, e j ) = −g(∇i e j , en).

The mean curvature H of hypersurface � is given by

H = 1

n − 1
trgh.

The conformal Laplace operator L and the conformal mean curvature operator B are defined
as

L = −4(n − 1)

n − 2
� + R,

B = 2

n − 2
en + H .

The variational characterizations of the first eigenvalue of L and B are given by

μ1(L) = inf
f ∈C1(M), f �=0

∫
M

(
4(n−1)
n−2 |∇ f |2 + R f 2

)
dμg + 2(n − 1)

∫
�
H f 2dσg/

∫
M f 2dμg

,

ν1(B) = inf
f ∈C1(M), f �=0

∫
M

(
2

n−2 |∇ f |2 + 1
2(n−1) R f 2

)
dμg + ∫

�
H f 2dσg/

∫
�

f 2dσg/
,
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respectively. In [9,10], Escobar proved the first positive eigenfunctions always exist, i.e. there
exists a unique f > 0 satisfying

{
L f =μ1(L) f on M,

B f = 0 on �,
(1.5)

and there exists a unique f > 0 satisfying
{
L f = 0 on M,

B f = ν1(B) f on �,
(1.6)

provided ν1(B) > −∞. (It was first pointed out by Jin that ν1(B) could be −∞, and this
is the case to remove a small geodesic ball on a compact manifolds without boundary with
negative scalar curvature [10].)

For compact manifold M with boundary �, the (normalized) first and the second Yamabe
invariants are given by

Y (M, �) = inf
f ∈C1(M), f �=0

∫
M

(
4(n−1)
n−2 |∇ f |2 + R f 2

)
dμg + 2(n − 1)

∫
�
H f 2dσg/

(∫
M f

2n
n−2 dμg

) n−2
n

,

Q(M, �) = inf
f ∈C1(M), f �=0

∫
M

(
2

n−2 |∇ f |2 + 1
2(n−1) R f 2

)
dμg + ∫

�
H f 2dσg/

(∫
�

f
2(n−1)
n−2 dσg/

) n−2
n−1

,

respectively. If μ1(L) ≥ 0, ν1(B) ≥ 0, by Hölder inequality, we have

μ1(L) ≥ Y (M, �)

Vol(M)
2
n

, (1.7)

ν1(B) ≥ Q(M, �)

Vol(�)
1

n−1

. (1.8)

Equality occurs in (1.7) if and only if the corresponding eigenfunction is constant in M and
equality occurs in (1.8) if and only if the corresponding eigenfunction is constant on �.

For compact spin manifold M with boundary �, suitable boundary conditions should be
imposed in order to make the Dirac operator self-adjoint and elliptic. There exist two basic
types of boundary conditions, the global Atiyah-Patodi-Singer (APS) boundary condition
and the local boundary condition [1–3,12,14]. The Friedrich inequality was generalized to
spin manifolds with boundary under the two types of boundary conditions as well as certain
mixed boundary condition [18,20]. For conformal aspect of the Dirac operator on manifolds
with boundary, theAPS boundary condition is not conformal invariant, but the local boundary
condition can be used to generalize the Hijazi inequality to spin manifolds with boundary for
n ≥ 3 with a boundary chirality operator [18] as well as for n ≥ 2 with a chirality operator
[29]

λ21(D) ≥

⎧
⎪⎪⎨

⎪⎪⎩

n

4(n − 1)
μ1(L), n ≥ 3,

2π

Area(M2, g)
, n = 2,

(1.9)
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when μ1(L) > 0. Moreover, for internal boundary � of compact domain in a spin manifold,
the conformal integral Schrödinger–Lichnerowicz formula and local boundary condition also
yield

/λ1(D
�) ≥ n − 1

2
ν1(B) (1.10)

when ν1(B) > 0, where /λ1(D�) is the first positive eigenvalue of the Dirac operator of �

[20]. It was assumed that� is an internal hypersurface in order to use the unique continuation
property of the Dirac operator. But this property does not seem to be verified when � is the
boundary of M and the Riemannian structure and spin structure are not products near � (c.f.
Remark 8.4 in [6]).

In this paper, we re-visit and prove (1.9) and (1.10) when � equips with a boundary
chirality operator. For n ≥ 3, we also study the rigidity of (M, �, g) as a C3,α conformal
compactification of Poincaré–Einstein manifold (M̊, g+):

Ricg+ = −(n − 1)g+, in M̊

and g = ρ2g+ can be C3,α extended to the boundary �, where ρ is any smooth boundary
defining function. It is answered from different point of view when a Poincaré–Einstein
manifold is the hyperbolic space [8,26,28,30]. Here we provide a new characterization of
this rigidity in terms of the eigenvalues of Dirac operators. If

λ21(D) = n

4(n − 1)
μ1(L), (1.11)

then (M, �, g) is isometric to the standard hemisphere and g+ is isometric to the hyperbolic
space. If

/λ1(D
�) = n − 1

2

Q(M, �)

Vol(�)
1

n−1

, (1.12)

then (M, �, g) is isometric to the flat ball in Rn and g+ is isometric to the hyperbolic space.
We point out that the existence of boundary chirality operator on the boundary is weaker

than the existence of chirality operator on the whole manifold. Although it is not conformal
invariant, the boundary chirality operator yields to a local boundary condition which consists
well with the conformal integral Schrödinger–Lichnerowicz formula.

The paper is organized as follows. In Sect. 2, we recall some basic facts about spin man-
ifold, Dirac operator, local boundary condition, integral Schrödinger-Lichnerowicz formula
and conformal covariance properties of Dirac operator. In Sect. 3, we review the concepts
of a conformal compactifiction of a Poincaré–Einstein manifold and give the proofs of two
rigidity results for certain conditions for Ricci curvature and mean curvature. In Sect. 4, we
state and prove the main theorems.

2 Preliminaries

In this section, we provide some well-known facts for Dirac operators on manifold with
boundary.

2.1 Dirac operators onmanifold with boundary

Let (M, g) be an n-dimensional Riemannian spin manifold with boundary (�, /g), where /g is
the induced metric. Given a spin structure (and so a corresponding orientation) on manifold

123



Eigenvalue estimate of the Dirac operator and Rigidity of Poincare–Einstein metrics 489

M , we denote by SM the associated spinor bundle, which is a complex vector bundle of rank

2[ n+1
2 ]. Denote by γ the Clifford multiplication

γ : Cl(M) −→ EndC(SM ),

which is a fibre preserving algebra morphism. Let ∇ be the Riemannian Levi-Cività connec-
tion of M with respect to the metric g and denote also by the same symbol its corresponding
lift to the spinor bundle SM . It is well known [24] that there exists a natural Hermitian metric
〈, 〉 on the spinor bundle SM which satisfies

X 〈ψ, ϕ〉 = 〈∇Xψ, ϕ〉 + 〈ψ,∇Xϕ〉 , (2.1)

〈γ (X)ψ, γ (X)ϕ〉 = |X |2 〈ψ, ϕ〉 , (2.2)

∇X
(
γ (Y )ψ

) = γ (∇XY )ψ + γ (Y )∇Xψ, (2.3)

for any vector field X , Y ∈ �(T M), and for any spinor fields ϕ,ψ ∈ �(SM ). Let ωn be the
complex volume form defined by

ωn =
(√−1

)[ n+1
2 ]

e1 · . . . · en . (2.4)

When the dimension n of manifold M is even, the spinor bundle SM splits into the direct
sum of the subbundles

SM = S
+
M ⊕ S

−
M ,

where S±
M are the ±1-eigenspaces of the endomorphism γ (ωn).

The Dirac operator D on SM is the first order elliptic differential operator locally given
by

Dϕ =
n∑

κ=1

γ (eκ )∇κϕ

for ϕ ∈ �(SM ), where {e1, . . . , en} is a local orthonormal frame of T M . When n is even, the
Dirac operator D maps S±

M onto S
∓
M , i.e. it interchanges positive and negative spinor fields.

The unit normal vector field en of hypersurface induces a spin structure on �. Denote the
restricted spinor bundle by S� = SM |� . This S� is referred as the extrinsic spinor bundle
of �. We denote also by ∇� the spinorial connection acting on the spinor bundle S� . The
extrinsic spin connection and the extrinsic Dirac operator of � acting on S� are given by

∇� := d + 1

4
g(∇ei , e j )γ (ei )γ (e j ), (2.5)

and
D� = γ (en)γ (ei )∇�

i . (2.6)

As� equipswith the induced spin structure, there is the intrinsic spin bundle /S� on� with
induced spin connection /∇ and the Clifford multiplication /γ . The intrinsic spin connection
/∇ and the intrinsic Dirac operator /D of � acting on /S� are given by

/∇ := d + 1

4
/g(/∇ei , e j )/γ (ei )/γ (e j ), (2.7)

and
/D = /γ (ei )/∇i . (2.8)
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In general,
(
S�, D�

)
and

(
/S�, /D

)
are not equivalent. They are isomorphic to each other if

n is odd, and the dimension of S� is twice the dimension of /S� if n is even. However, they
play the same role. In particular, D� and /D have the same eigenvalues (c.f. [20]).

The restriction of the spin connection∇ on�, acting on S� , differs with∇� by the second
fundamental forms, i.e., for φ ∈ �(S�),

∇iφ = ∇�
i φ + 1

2
g(∇ei en, e j )γ (en)γ (e j )φ

= ∇�
i φ + 1

2
hi jγ (en)γ (e j )φ.

(2.9)

This is called the spinorial Gauss formula. Therefore, on �, for φ ∈ S� , direct calculation
yields

γ (en)γ (ei )∇iφ = γ (en)γ (ei )

(

∇�
i + 1

2
hi jγ (en)γ (e j )

)

φ

= D�φ − n − 1

2
Hφ.

On the other hand,

∇i (γ (en)φ) = γ (∇i en)φ + γ (en)∇iφ

= γ (en)∇iφ + hi jγ (e j )φ.

Therefore

∇�
i (γ (en)φ) = ∇i (γ (en)φ) − 1

2
g(∇i en, e j )γ (en)γ (e j )(γ (en)φ)

= γ (en)∇iφ − 1

2
hi jγ (en)γ (en)γ (e j )φ

= γ (en)∇�
i φ,

and

D�(γ (en)φ) = γ (en)γ (ei )∇�
i (γ (en)φ)

= γ (en)γ (ei )γ (en)∇�
i φ

= −γ (en)D
�φ.

These yield to the integral Schrödinger-Lichnerowicz formula
∫

M
|∇φ|2dμg =

∫

M

(

|Dφ|2 − R

4
|φ|2

)

dμg

+
∫

�

(

〈φ, D�φ〉 − (n − 1)H

2
|φ|2

)

dσg/ . (2.10)

2.2 Local boundary condition

It is straightforward to derive
∫

M
〈Dφ,ψ〉 dμg −

∫

M
〈φ, Dψ〉 dμg =

∫

�

〈γ (en)φ, ψ〉 dσg/ . (2.11)
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From (2.11), we know that D is not self-adjoint without posing suitable boundary value.
We refer to [1–6,12,14,17,18] for relevant elliptic boundary conditions. However, neither the
Dirichlet nor the Nermann boundary value makes D elliptic and self-adjoint.

As D is the first order differential operator, and acts on spinors which are vector value
functions, the standard theory of PDEs indicates vanishing of “half” vector value functions
on the boundary is elliptic boundary condition. This requires S� = S

+
� ⊕ S

−
� , where S

±
� are

two sub spinor bundles of equal dimension. Then we can take “half” part to be zero. This is
called local boundary condition. There is topological obstruction for the existence of local
boundary condition to make D self-adjoint. However, it does exist if the boundary chirality
operator exists. An operator � ∈ Hom(S�) is said to be a boundary chirality operator if it
satisfies the following conditions, for φ,ψ ∈ S�,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�2 =I d,

∇�
ei � =0,

γ (en)� = − �γ (en),

γ (ei )� =�γ (ei ),

〈�φ,�ψ〉 = 〈φ,ψ〉 .

(2.12)

If the dimension n of M is even, one can always find boundary chirality operator � :=
γ (ωn)γ (en). If M is a spacelike hypersurface with boundary � and timelike unit normal
vector e0 in a Lorentzian manifold. The boundary chirality operator is defined as � :=
γ (e0)γ (en). In both cases there exists chirality operator globally defined over M . However,
boundary chirality operator is only defined on the boundary,which isweaker that the existence
of chirality operator. Supposing the boundary chirality operator exists, we define

�loc± =
{
φ ∈ S� : P±φ = 0

}
,

where P± are pointwise projection operators acting on S� defined by

P± = 1

2

(
Id ∓ �

)
. (2.13)

It is easy to check that, for ϕ,ψ ∈ �(S�),

〈P±ϕ,P∓ψ〉 = 0. (2.14)

This implies that P+ and P− are orthogonal to each other. From (2.12), (2.13) and (2.14), we
have

D�P± = P∓ D�. (2.15)

If φ ∈ �loc± , then γ (en)φ ∈ �loc∓ . Therefore, from (2.11) and (2.13), D is self-adjoint under
the local boundary condition.

It is straightforward that, for φ,ψ ∈ �(S�),

〈γ (ei )γ (e j )φ, ψ〉 = −〈φ, γ (ei )γ (e jψ〉, for i �= j,

ei 〈φ,ψ〉 = 〈∇iφ,ψ〉 + 〈φ,∇iψ〉
= 〈∇�

i φ,ψ〉 + 〈φ,∇�
i ψ〉,

∇�
i (γ (en)γ (e j )φ) = γ (en)γ (e j )∇�

i φ.

123



492 D. Chen et al.

Using (2.10), we can obtain

ei 〈γ (en)γ (ei )φ, ψ〉 = 〈D�φ,ψ〉 − 〈φ, D�ψ〉
= 〈γ (en)γ (ei )∇iφ,ψ〉 − 〈φ, γ (en)γ (ei )∇iψ〉,

which imply that D� and γ (en)γ (ei )∇i are both self-adjoint on �, i.e., for φ,ψ ∈ �(S�),
∫

�

〈D�φ,ψ〉dσg/ =
∫

�

〈φ, D�ψ〉dσg/ ,

and ∫

�

〈γ (en)γ (ei )∇iφ,ψ〉dσg/ =
∫

�

〈φ, γ (en)γ (ei )∇iψ〉dσg/ .

The following theorem is well-known.

Theorem 2.1 Suppose M is an n-dimensional compact spinmanifold with boundary� which
equips with a boundary chirality operator (n ≥ 3). Suppose the scalar curvature R ≥ 0 and
the mean curvature H ≥ 0. Moreover, either R > 0 at some point in M \ � or H > 0 at
some point on �. Given any �0 ∈ SM, φ0 ∈ S� , there exists a unique smooth spinor � such
that {

D� = �0 in M,

P±� = P±φ0 on �.

2.3 Conformal covariance of the Dirac operator

We now recall some properties of the conformal behavior of spinors on a Riemannian spin
manifolds. For more details, we refer to [16,18,20,23]. Let u ∈ C∞(M) be a smooth function
defined on manifold M and ḡ = e2ug be a conformal change of the metric g. This yields the
bundle isometry between the two spinor bundles SM and SM , i.e.

SM −→ SM

ϕ −→ ϕ.

We can also relate the corresponding Levi-Cività connections, Clifford multiplications and
Hermitian scalar products. Denoting by∇, γ̄ and 〈, 〉ḡ the associated Levi-Cività connection,
Clifford multiplication and Hermitian inner product on sections of the bundle SM , one has

∇Xψ = ∇Xψ − 1

2
γ (X)γ (∇u)ψ − 1

2
〈X ,∇u〉ψ,

γ̄ (X)ψ = γ (X)ψ,
〈
ψ, ϕ

〉
ḡ = 〈ψ, ϕ〉 ,

for all ψ, ϕ ∈ �(SM ), X ∈ �(TM) and where X := e−u X denotes the vector field over
(Mn, ḡ). From these identifications, one has the relation between the Dirac operators D and
D̄ acting respectively on sections of SM and SM , i.e.

D ψ = e− n+1
2 u D

(
e
n−1
2 uψ

)
(2.16)

which shows that the Dirac operator is a conformally covariant differential operator.
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The conformal change of metric on M induce the corresponding change of metric on the
hypersurface �, i.e. /̄g = e2u/g. Denote by D� the hypersurface Dirac operator acting on the
spinor bundle S� := SM |� . For the Dirac operators D� and D� , we have, for ψ ∈ �(S�),

D�
(
e− n−2

2 uψ
)

= e− n
2 u D�ψ, (2.17)

which is analogous to (2.16).
Assume that the dimension n ≥ 3 and f ∈ C∞(M) is positive function satisfying

eu = f
2

n−2 . The volume forms of two metrics ḡ, g and their restriction to the boundary
� satisfy

dμḡ = f
2n
n−2 dμg, dσḡ/ = f

2(n−1)
n−2 dσg/ .

The conformal Laplace operator and conformal mean curvature operator obey the conformal
transformation laws

L̄( f −1v) = f − n+2
n−2 Lv, (2.18)

B̄( f −1v) = f − n
n−2 Bv, (2.19)

where v ∈ C∞(M). From [10], the scalar curvatures and mean curvature under conformal
change yield

R = f − n+2
n−2 L f , (2.20)

H = f − n
n−2 B f . (2.21)

Taking ψ = f − n−1
n−2 φ, by (2.16) and (2.17) we have

D ψ = f − n+1
n−2 Dφ, D�( f −1ψ) = f − n

n−2 D�φ.

The Penrose (or twistor) operator P is defined by

PXφ = ∇Xφ + 1

n
γ (X)Dφ, (2.22)

for any X ∈ �(T M) and φ ∈ �(SM ). The integral Schrödinger-Lichnerowicz formula (2.10)
can be written as

∫

�

(

〈φ, D�φ〉 − (n − 1)H

2
|φ|2

)

dσg/ =
∫

M

(

|Pφ|2 + R

4
|φ|2 − n − 1

n
|Dφ|2

)

dμg.

(2.23)
Applying (2.23) to the conformal metric ḡ and ψ ∈ �(SM ), it gives
∫

�

(

〈ψ, D� ψ〉ḡ − (n − 1)

2
H |ψ |2ḡ

)

dσḡ/ =
∫

M

(

|P ψ |2ḡ + R̄

4
|ψ |2ḡ − n − 1

n
|Dψ |2ḡ

)

dμḡ

(2.24)

Since ψ = f − n−1
n−2 φ = f − 1

n−2 f −1φ, we have

D�φ = γ̄ (ēn)γ̄ (ēi )(ēi f
− 1

n−2 ) f −1φ + f − 1
n−2 D�( f −1φ)

= − 1

n − 2
f − 2n−3

n−2 (ēi f ) γ̄ (ēn)γ̄ (ēi )φ + f − 1
n−2 f − n

n−2 D�φ.

Noting that 〈φ̄, γ̄ (ēn)γ̄ (ēi )φ̄〉ḡ is imaginary, we can obtain
∫

�

〈ψ̄, D�ψ̄〉ḡdσḡ/ =
∫

�

f − 2n
n−2 〈φ̄, D�φ〉ḡdσḡ/ =

∫

�

f − 2
n−2 〈φ, D�φ〉dσg/ .

123
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On the other hand, a direct calculation yields

H |ψ |2ḡdσḡ/ = f − n
n−2 f −1B f |φ̄|2ḡ f − 2(n−1)

n−2 dσḡ/ = f − 2
n−2 f −1B f |φ|2dσg/ ,

R̄|ψ |2ḡ = f − 2(n+1)
n−2 f −1L f |φ̄|2ḡ = f − 2(n+1)

n−2 f −1L f |φ|2,
|D ψ |2ḡ = f − 2(n+1)

n−2 |Dφ|2ḡ = f − 2(n+1)
n−2 |Dφ|2.

Finally, we obtain the conformal integral Schrödinger-Lichnerowicz formula
∫

�

f − 2
n−2

(

〈φ, D�φ〉 − (n − 1)

2
f −1B f |φ|2

)

dσg/

=
∫

M
f − 2

n−2

(

|P ψ |2ḡ f
2(n+1)
n−2 + f −1L f

4
|φ|2 − n − 1

n
|Dφ|2

)

dμg,

(2.25)

where ψ = f − n−1
n−2 φ.

3 Poincare–Einsteinmetrics and rigidity

In this section, we study the rigidity for (M, �, g) as a C3,α conformal compactification
of the Poincaré–Einstein manifolds (M̊, g+) under certain curvature assumptions. Denote
M̊ = M \ �. We assume (M̊, g+) is a n-dimensional Poincaré–Einstein manifold (n ≥ 3):

Ricg+ = −(n − 1)g+ in M̊,

and g = ρ2g+ can be C3,α extended to the boundary � for some smooth boundary defining
function ρ. Recall /g = g|� is denoted as the boundary metric, R� is denoted as the scalar
curvature of (�, /g) and Ei j is denoted as the trace free part of Ricci curvature tensor of
(M, g).

Theorem 3.1 If (M, �, g) is a C3,α conformal compactification of Poincaré–Einstein man-
ifold (M̊, g+) and satisfies

H = 0, E := Ric − R

n
g = 0,

then (M, �, g) is isometric to the half sphere (Sn+,Sn−1, gS) and hence (M̊, g+) is isometric
to the hyperbolic space Hn.

Proof First by the Gauss-Codazzi equation, R� = n−2
n R when H = 0 and E = 0. Hence

R� is a constant. Consider the transformation of scalar curvature and Ricci curvature under
conformal change g = ρ2g+, which gives

�gρ = n

2
ρ−1

(
|∇ρ|2g − 1

)
− 1

2(n − 1)
Rρ, (3.1)

∇2ρ − 1

n
(�gρ)g = − 1

n − 2
ρE = 0. (3.2)

By identifying a collar neighborhood of � with [0, ε) × �, g takes the normal form

g = dr2 + g(r)
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where g(r) is a family of metrics on � with g(0) = /g. Moreover, according to [15], ρ has
the asymptotical expansion

ρ = r + c2r
2 + c3r

3 + o(r3)

where

c2 = − 1

2(n − 1)
H = 0, c3 = 1

6(n − 2)
R� − 1

6(n − 1)
R = − 1

6n(n − 1)
R.

Let

A = n

2
ρ−1

(
|∇ρ|2g − 1

)
+ 1

2(n − 1)
Rρ.

Then direct computation shows that

A|� = 0

and

∇i A = nρ−1ρi jρ
j − n

2
ρ−2

(
|∇ρ|2g − 1

)
ρi + 1

2(n − 1)
Rρi

= ρ−1
[

�gρ − n

2
ρ−1

(
|∇ρ|2g − 1

)
+ 1

2(n − 1)
Rρ

]

ρi = 0

Hence A = A|� = 0. Thus equations (3.1) and (3.2) become

�gρ + 1

(n − 1)
Rρ = 0, (3.3)

∇2ρ + 1

n(n − 1)
Rρg = 0. (3.4)

Notice that ρ > 0 in the interior. Hence R must be a positive constant. Up to a constant
scaling, we can set R = n(n − 1).

Recall that (M, �, g) is aC3,α compactification of a Poincare–Einsteinmanifold (M̊, g+).
By the boundary regularity theorem given in [7], (M, �, g) has umbilic boundary. Since
H = 0, the boundary is actually totally geodesic. Take (M̃, g̃) to be the double of (M, g)
across its boundary and ρ̃ to be the odd extension of ρ. Then on M̃ , ρ̃ satisfies the equation

∇̃2ρ + ρ g̃ = 0. (3.5)

This is the standardObata’s equation on closedmanifold studied in [27]. Since M̃ is connected
and ρ̃ is a non-constant solution to (3.5), Obata proved that (M̃, g̃) is isometric to the standard
sphere

S
n = {z ∈ R

n+1 : |z| = 1}
and ρ̃ is the coordinate function z1 up to a rotation and constant scaling. Hence (M, �, g),
which is corresponding to ρ̃ = z1 ≥ 0, is isometric to the half sphere (Sn+,Sn−1, gS) and
(M̊, g+ = ρ−2g) is isometric to the standard hyperbolic space Hn . ��
Theorem 3.2 If (M, �, g) is a C3,α conformal compactification of Poincaré–Einstein man-
ifold (M̊, g+) and satisfies

H = C, Ric = 0,

then (M, �, g) is isometric to flat ball (Bn,Sn−1, gR) and hence (M̊, g+) is isometric to the
hyperbolic space Hn.
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Proof Notice here R� = n−1
n H2 by the Gauss-Codazzi equation and hence R� is a constant.

Consider the transformation of scalar curvature and Ricci curvature under conformal change
g = ρ2g+, which gives

�gρ = n

2
ρ−1

(
|∇ρ|2g − 1

)
, (3.6)

∇2ρ − 1

n
(�gρ)g = − 1

n − 2
ρE = 0. (3.7)

By identifying a collar neighborhood of � with [0, ε) × �, g takes the normal form

g = dr2 + g(r) (3.8)

where g(r) is a family of metrics on � with g(0) = /g. Then according to [15], ρ has the
asymptotical expansion

ρ = r + c2r
2 + c3r

3 + o(r3),

where

c2 = − 1

2(n − 1)
H , c3 = 1

6(n − 2)
R� − 1

6(n − 1)
H2 = 0.

Direct computation shows that

�gρ|� = − n

n − 1
H ,

and

∇i (�gρ) = nρ−1ρi jρ
j − n

2
ρ−2

(
|∇ρ|2g − 1

)
ρi

= ρ−1
[
�gρ − n

2
ρ−1

(
|∇ρ|2g − 1

)]
ρi = 0.

Hence all over M ,

�gρ ≡ − n

n − 1
H .

Since ρ > 0 in the interior, we have that H must be a positive constant. Up to a scaling, we
can set H = n − 1 and hence �gρ = −n. Thus equations (3.6) and (3.7) become

|∇ρ|2g − 1 + 2ρ = 0, (3.9)

∇2ρ + g = 0. (3.10)

Moreover, R� = n−2
n−1H

2 = (n − 2)(n − 1) implies that the boundary (�, /g) has positive
Yamabe constant. By [31], � is connected.

Take any normal geodesic γ (t) such that γ (0) = p ∈ �. Then γ (t) = (t, p). By Eq.
(3.10), the function f (t) = ρ(γ (t)) satisfies

f ′′(t) + 1 = 0, f (0) = 0, f ′(0) = ∂rρ|� = 1

Hence in the small colloar neighborhood,

f (t) = t − 1

2
t2, ⇒ ρ = r − 1

2
r2. (3.11)
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On each hypersurfaces �r = {r = constant} for r small, ρ|�r is a constant. Moreover, by
(3.10) ρ|�r satisfies

(∇�r )2ρ − (∂rρ)h(r) + g(r) = 0

where h(r) is the second fundamental form for each level set (�r , g(r)) w.r.t. outward unit
normal −∂r and ∇�r is the Levi-Civita connection w.r.t. (�r , g(r)). However, we know
h(r) = − 1

2 g
′(r) while taking the normal form (3.8). This implies that

(1 − r)g′(r) + 2g(r) = 0, ⇒ g(r) = (1 − r)2/g. (3.12)

Those formulae (3.11) and (3.12) hold in the collar neighborhood such that (3.8) holds. At
any point 0 < r0 < 1, if (3.12) holds, then (3.8) extends in a neighborhood [r0, r0 + ε)

and hence (3.11) and (3.12) also can be extended. The extension will not stop until arriving
r = 1. Therefore,

g = dr2 + (1 − r)2/g, 0 ≤ r < 1.

When r → 1, (�r , g(r)) shrink to one point since it is connected, which corresponds to the
unique maximum point of ρ. The maximum point is non-degenerate and smooth. Hence /g
must be the standard sphere metric on Sn−1. Therefore, by taking s = 1 − r

(M, g) = ([0, 1]s × S
n−1, g = ds2 + s2gS)

which is the flat ball of radius one in R
n . And g+ = ρ−2g with ρ = (1 − s2)/2 shows that

(M̊, g+) is the standard hyperbolic space Hn . ��

4 Main theorems

In this section, we firstly re-visit and prove the eigenvalue estimates (1.9) and (1.10) when �

equips with a boundary chirality operator. Then we prove the rigidity of Poincaré–Einstein
manifold when (1.11) or (1.12) holds.

The following two theorems were proved for n ≥ 3 with a boundary chirality operator
[18] as well as for n ≥ 2 with a chirality operator [29]. Here we provide more accurate
statements for n ≥ 2 and manifolds equip with boundary chirality operators. As boundary
chirality operator does not give information of whole manifold as chirality operator does, we
can not conclude that manifold is the half sphere when n ≥ 3 in the equality case [17].

Theorem 4.1 Let (M, g) be an n-dimensional (n ≥ 3) compact spin manifold with boundary
� which equips with a boundary chirality operator. Suppose that μ1(L) > 0. Then the
first nonzero eigenvalue λ1(D) of the Dirac operator D under the local boundary condition
satisfies

λ21(D) ≥ n

4(n − 1)
μ1(L). (4.1)

Equality holds if and only if there exists a Killing spinor on M and � is minimal.

Proof The proof follows the main argument in [18,29] and we present here for completeness.
For n ≥ 3, let f > 0 be the positive solution of (1.5). From (2.20) and (2.21), we find the

scalar and mean curvatures of the conformal metric ḡ = f
4

n−2 g satisfy

R = f − n+2
n−2 L f = μ1(L) f − 4

n−2 > 0,

H = f − n
n−2 B f = 0.
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Now we consider the following eigenvalue problem for Dirac operator with local boundary
condition {

Dφ = λ1(D)φ in M,

φ ∈�loc± on �.
(4.2)

Along the boundary �, it is easy to check that φ ∈ �loc± implies D�φ ∈ �loc∓ . This gives

〈φ, D�φ〉 = 0.

Let ψ = f − n−1
n−2 φ. The conformal integral Schrödinger-Lichnerowicz formula (2.25) shows

0 =
∫

�

f − 2
n−2

(

〈φ, D�φ〉 − (n − 1)

2
f −1B f |φ|2

)

dσg/

=
∫

M
f − 2

n−2

(

|P ψ |2ḡ f
2(n+1)
n−2 + 1

4
f −1L f |φ|2 − n − 1

n
|Dφ|2

)

dμg

≥
∫

M
f − 2

n−2

(
1

4
f −1L f |φ|2 − n − 1

n
|Dφ|2

)

dμg

=
∫

M
f − 2

n−2

(
1

4
μ1(L) − n − 1

n
λ21(D)

)

|φ|2dμg.

(4.3)

Therefore the inequality holds in (4.1). In the equality case, (4.3) gives that

PX ψ = ∇X ψ + 1

n
γ (X)D ψ = 0

for any X ∈ �(T M). Since D ψ = λ1(D) f − n
n−2 ψ , we know thatψ is a Killing spinor. Then

the standard argument indicates that f is a constant in M [16]. Thus (Mn, g) is Einstein and
� is minimal. ��

Theorem 4.2 Let (M, g) be a 2-dimensional compact oriented surface with boundary �

which equips with a boundary chirality operator. Suppose χ(M) > 0. Then the first nonzero
eigenvalue λ1(D) of the Dirac operator D under the local boundary condition satisfies

λ21(D) ≥ 2π

Area(M2, g)
. (4.4)

Equality holds if and only if (M, �, g) is the half sphere.

Proof For n = 2, that conformal changing the metric ḡ = e2ug yields the transformation
rules for sectional curvature K and geodesic curvature κ

{
e2u K = K − �u,

eu κ = κ + e2(u),
(4.5)

where e2 is the outer unit normal vector field of �. Let u be the solution of
⎧
⎪⎨

⎪⎩

�u = K − 1

Area(M2, g)

(∫

M
Kdμg +

∫

�

κdσg/

)

, in M

e2(u) = − κ, on �,

(4.6)
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Let φ be the solution of (4.2) and ψ = e− 1
2 uφ. Applying (2.23) to the conformal metric

ḡ = e2ug, we obtain
∫

�

(

eu〈ψ, D� ψ〉ḡ − 1

2
euκ|ψ |2ḡ

)

dσg/ =
∫

M

(

|P ψ |2ḡ + K

2
|ψ |2ḡ − 1

2
|Dψ |2ḡ

)

dμḡ.

(4.7)
Since 〈φ, D�φ〉 = 0, 〈ψ, γ (d�u)ψ〉 is imaginary and

∫

�

eu〈ψ, D� ψ〉ḡdσg/ = − 1

2

∫

�

〈ψ, γ (d�u)ψ〉 dσg/ +
∫

�

e−u 〈
φ, D�φ

〉
dσg/ ,

we obtain the following identity by taking the real part of (4.7)

0 =
∫

M

(

|P ψ |2ḡ + K

2
|ψ |2ḡ − 1

2
|D ψ |2ḡ

)

dμḡ

≥1

2

∫

M

(
Ke2u − λ21(D)

) |ψ |2 dμg.

By the Gauss-Bonnet formula for surfaces with boundary
∫

M
Kdμg +

∫

�

κdσg/ = 2πχ(M),

we obtain
1

2

∫

M

(
2πχ(M)

Area(M2, g)
− λ21(D)

)

|ψ |2 dμg ≥ 0.

This gives the second inequality in (4.4).
In the equality case, we deduce that u is constant. Then K is constant and the boundary �

is minimal. Moreover, K = e−2uK = e−2uλ21(D) > 0. Consider (M̃, g̃) being the double of
(M, g) across its boundary�. Since� is minimal and one dimensional, it is totally geodesic.
Thus (M̃, g̃) is a C2 closed compact manifold which has constant Gaussian curvature K .
Therefore, (M̃, g̃) is isometric to S2 up to a scaling. Since � is totally geodesic in S2, which
can only be a great circle. Therefore, (M, �, g) is the half sphere. ��

The following theorem was proved in [20] when � is an internal hypersurface in order to
use the unique continuation property of the Dirac operator. Now we prove it when � is the
(usual) boundary of M which the Riemannian structure and spin structure are not necessary
products near �.

Theorem 4.3 Let (M, g) be an n-dimensional (n ≥ 3) compact spin manifold with boundary
� which equips with a boundary chirality operator. Suppose that ν1(B) > 0. Then the first
positive eigenvalue /λ1(/D) of the intrinsic Dirac operator /D of � satisfies

/λ1(/D) ≥ n − 1

2
ν1(B). (4.8)

Equality implies that (M, g) is conformal to a Ricci flat metric.

Proof The proof follows the main argument in [20]. Let f > 0 be the positive solution of

(1.6). Let ḡ = f
4

n−2 g be a conformal change of the metric g. From (2.20) and (2.21), we
find its scalar and mean curvatures satisfy

R = f − n+2
n−2 L f = 0,

H = f − n
n−2 B f = ν1(B) f − 2

n−2 > 0.
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Let η = f − 1
n−2 φ, ψ = f − n−1

n−2 φ. The conformal integral Schrödinger-Lichnerowicz formula
(2.25) reduces to

∫

�

(

〈η, D�η〉 − n − 1

2
ν1(B)|η|2

)

dσg/

=
∫

M
f − 2

n−2

(

|Pψ̄ |2ḡ f
2(n+1)
n−2 − n − 1

n
|Dφ|2

)

dμg,

(4.9)

Assume that ϑ ∈ S� is an eigenspinor field associated to /λ1(D�) over the hypersurface
�, i.e. D�ϑ = /λ1(D�)ϑ . Now we solve the following Dirac equation with local boundary
condition {

Dφ = 0 in M,

P+φ = P+( f
1

n−2 ϑ) on �.
(4.10)

The existence of (4.10) follows by showing that ν1(B) > 0 implies the equation with

P+φ = 0 has trivial solution. Since η = f − 1
n−2 φ, we have P+η = P+ϑ along the boundary

�. From (2.15), we have D�P±ϑ = /λ1(D�)P∓ϑ . From the self-adjointness for D� , one
can get

/λ1(D
�)

∫

�

|ϑ+|2 = /λ1(D
�)

∫

�

|ϑ−|2. (4.11)

By the Cauchy–Schwartz inequality, we have
∫

�

〈
D�η, η

〉
dσ =2�

∫

�

〈
D�P+ϑ,P−η

〉
dσg/

= 2/λ1�
∫

�

〈P−ϑ,P−η〉 dσg/

≤ /λ1(D
�)

∫

�

(|P−ϑ |2 + |P−η|2) dσg/

= /λ1(D
�)

∫

�

(|P+ϑ |2 + |P−η|2) dσg/

= /λ1(D
�)

∫

�

|η|2 dσg/ ,

(4.12)

Now (1.6), (4.9), (4.10) and (4.12) indicate that

0 ≤
∫

M
|P ψ |2ḡdμḡ

≤
∫

�

(

〈D�η, η〉 − n − 1

2
ν1(B)|η|2

)

dσg/

≤
∫

�

(

/λ1(D
�) − n − 1

2
ν1(B)

)

|η|2dσg/ .

(4.13)

Since /λ1(/D) = /λ1(D�), (4.8) follows. In the equality case, ψ is a parallel spinor field with
respect to the conformal metric ḡ. Hence (M, ḡ) is Ricci flat. ��

Now we prove the following two rigidity theorems for Poincaré–Einstein manifolds.

Theorem 4.4 Let (M, g) be an n-dimensional (n ≥ 3) compact spin manifold with bound-
ary � which equips with a boundary chirality operator. If (M, �, g) is a C3,α conformal
compactification of Poincaré–Einstein manifold (M̊, g+) and satisfies
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λ21(D) = n

4(n − 1)
μ1(L),

then (M, �, g) is isometric to the half sphere (Sn+,Sn−1, gS) and hence (M̊, g+) is isometric
to the hyperbolic space Hn.

Proof It is known from Theorem 4.1 that M is Einstein and � is minimal. Then the theorem
follows from Theorem 3.1. ��
Theorem 4.5 Let (M, g) be an n-dimensional (n ≥ 3) compact spin manifold with bound-
ary � which equips with a boundary chirality operator. If (M, �, g) is a C3,α conformal
compactification of Poincaré–Einstein manifold (M̊, g+) and satisfies

/λ1(D
�) = n − 1

2

Q(M, �)

Vol(�)
1

n−1

,

then (M, �, g) is isometric to flat ball (Bn,Sn−1, gR) and hence (M̊, g+) is isometric to the
hyperbolic space Hn.

Proof The equality implies that

/λ1(D
�) = n − 1

2
ν1(B) = n − 1

2

Q(M, �)

Vol(�)
1

n−1

.

Thus, from the first equality and Theorem 4.3, we know that ḡ is Ricci flat. The second
equality implies that f is constant on �, hence H̄ is constant. Therefore the theorem follows
from Theorem 3.2. ��
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5. Bartnik, R., Chruściel, P.: Boundary value problems for Dirac-type equations. J. Reine Angew. Math.
579, 13–73 (2005)

6. Booß-Bavnvek, B., Wojciechoski, K.P.: Elliptic boundatry problems for Dirac operators. Birkhäuser,
Boston (1993)
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