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Abstract
The Unitary Dual Problem is one of mathematics’ most important open problems: classify
the irreducible unitary representations of a group. The general approach has been to clas-
sify all representations admitting non-degenerate invariant Hermitian forms, compute the
signatures of those forms, and then determine which forms are positive definite. Signature
character algorithms and formulas arising from deforming representations and analysing
changes at reducibility points, as in Adams et al. (Unitary representations of real reductive
groups (ArXiv e-prints), 2012) and Yee (Represent Theory 9:638–677, 2005), produce very
complicated formulas or algorithms from the resulting recursion. This paper shows that in
the case of irreducible Verma modules all of the complexity can be encapsulated by the affine
Hecke algebra: for compact real forms and for alcoves corresponding to translations of the
fundamental alcove by a regular weight, signature characters of irreducible Verma modules
are in fact “negatives” of Hall–Littlewood polynomial summands evaluated at q = − 1 times
a version of the Weyl denominator, establishing a simple signature character formula and
drawing an important connection between signature characters and the affine Hecke alge-
bra. Signature characters of irreducible highest weight modules are shown to be related to
Kazhdan-Lusztig basis elements. This paper also handles noncompact real forms. The cur-
rent state of the art for the unitary dual is a computer algorithm for determining if a given
representation is unitary. These results suggest the potential to move the state of the art to a
closed form classification for the entire unitary dual.

Mathematics Subject Classification Primary 22E50; Secondary 05E10

1 Introduction

In the 1930s, Gelfand introduced a programme in abstract harmonic analysis that is a grand
generalization of Fourier analysis (see the series of survey articles at the end of [8] for the
history of his work). The idea is to attach to a problem a corresponding algebraic problem
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which may be solved by decomposing it into simpler (possibly infinitely many) problems.
This permits the solution of difficult problems in diverse areas of mathematics. Realizing
Gelfand’s programme motivates the Unitary Dual Problem: classify the irreducible unitary
representations of a group. The unitary dual is known only for a limited selection of groups.

A common approach to classifying unitary representations is to first classify the Hermitian
representations (those admitting an invariant Hermitian form), then compute the signatures
of the invariant Hermitian forms on the Hermitian representations, and then determine which
of those forms are positive or negative definite. Signatures may be expressed using signature
characters, and determining if a form is positive definite is equivalent to finding if the signature
character and the character are the same. Important philosophies for computing signature
characters were developed in [28] and [29].

Standard limit representations may be constructed from one-dimensional representations
of the Cartan subalgebra by cohomological induction (see [1, Definition 8.18]). In many
cases the construction is equivalent to applying a Bernstein functor to a Verma module [14,
Theorem 0.50]. Irreducible Harish-Chandra modules are linear combinations of standard
limit representations, thus it is important to study Verma modules. While it is known that
under certain conditions in a more general setting, applying Zuckerman functors to unitary
representations preserves unitarity (see [28,29]), unitary representations may also arise from
the application of Zuckerman functors to non-unitary representations. Thus it is important
to know signature characters of non-unitary highest weight modules as well. Thus signa-
ture characters of invariant Hermitian forms on Hermitian irreducible Verma modules and
Hermitian irreducible highest weight modules were computed in [29–32].

The papers [31] and [32] show that the signature character of an invariant Hermitian form
on an irreducible highest weight module can be expressed in terms of the signature charac-
ters of invariant Hermitian forms on irreducible Vermamodules and signedKazhdan–Lusztig
polynomials which are Kazhdan–Lusztig polynomials evaluated at −1 up to a sign. Similar
formulas for Harish-Chandra modules are obtained in the impressive preprint [2]. Unfor-
tunately, signature characters of invariant Hermitian forms on irreducible Verma modules
are indexed by alcoves of the affine Weyl group and the signature character formula in [30]
depends on a choice of alcove path and appears complicated: it involves powers of 2, products
of signs, and a summation over subsets of reflections in the alcove path chosen. (Please see
Theorem 3.16.) Fortunately, the main result Theorem 7.9 of this paper simplifies the descrip-
tion of the signature character by showing that when the real form is compact and the highest
weight is regular and in a translation of the fundamental alcove, the signature character of
the invariant Hermitian form on the irreducible Verma module is equal to the “negative” of
a summand of a corresponding Hall–Littlewood polynomial evaluated at q = −1 times a
version of the Weyl denominator. For alcoves of other forms, the signature character of the
invariant Hermitian form on the irreducible Verma module can be expressed as a sum of
Hall–Littlewood polynomial summands at q = −1 times a version of the Weyl denominator.
Signature characters of invariant Hermitian forms on irreducible highest weight modules are
sums of signature characters of invariant Hermitian forms on irreducible Verma modules.
Therefore signature characters of invariant Hermitian forms on irreducible highest weight
modules can be expressed in terms of sums of “negatives” of summands of Hall–Littlewood
polynomials evaluated at q = −1 times a version of the Weyl denominator and Kazhdan–
Lusztig polynomials evaluated at−1. The signature characters of irreducible highest weight
modules are shown to be related to Kazhdan–Lusztig basis elements.

We use the following approach to prove the main theorem. First, we simplify the formula
for the signs appearing in the signature character formula for invariant Hermitian forms on
irreducible Verma modules. Then we study the formula for Hall–Littlewood polynomials in
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terms of alcove walks of Schwer and Ram [25,27]. We establish a connection between the
summands which appear in the signature character formula and the summands which appear
in the Hall–Littlewood formula by establishing that the summands that appear in the former
formula correspond to positively folded alcove walks. We then use a result from Matthew
Dyer’s thesis [6] which allows us to use R polynomials to show that the signature character
formula and the “negative” of a summand of the corresponding Hall–Littlewood polynomial
evaluated at q = −1 are the same after multiplication of the latter by a version of the Weyl
denominator.

The paper is structured as follows. We begin by introducing notation in Sect. 2. In Sect. 3,
we provide background material on signature characters of invariant Hermitian forms on
irreducible Verma modules. In Sect. 4, we simplify the signature character formula for irre-
ducible Verma modules by simplifying the signs and products of signs that appear in it.
Next, we review the affine Hecke algebra and Hall–Littlewood polynomials in Sect. 5. In
Sect. 6, we discuss Schwer and Ram’s formula for Hall–Littlewood polynomials in terms
of alcove walks and establish some basic relations to the signature character formula. In
Sect. 7, we introduce a formula of Dyer and use it to show that when the real form is com-
pact, for alcoves of the form w(−λ+dominant fundamental alcove), the signature character
formula and the “negative” of a summand of the corresponding Hall–Littlewood polyno-
mial are the same (up to multiplication by a version of the Weyl denominator). This is
accomplished by evaluating a summation of R polynomials. In Sect. 8, we express signa-
ture characters for irreducible Verma modules of highest weight corresponding to alcoves of
the form w(−λ+ x(dominant fundamental alcove)) in terms of “negatives” of summands of
Hall–Littlewood polynomials evaluated at q = −1. In Sect. 9, we discuss the case of singular
highest weight. In Sect. 10, we treat the case where the real form is noncompact. We use
the simplified formula for irreducible Verma modules to write down formulas for signature
characters for irreducible highest weight modules in Sect. 11.

2 Notation

In [30–32], the focus of the papers was signature characters and it was convenient to index
Verma modules using antidominant weights and the Weyl group and to use the antidominant
fundamental Weyl chamber and alcove. In this paper, we also discuss Hall–Littlewood poly-
nomials, where it is standard to use the dominant fundamental Weyl chamber and alcove.
Therefore we introduce notation for both choices.

Notation 2.1 We fix the following notation for this paper:

– g0 is a real semisimple Lie algebra
– θ is a Cartan involution on g0 inducing the decomposition g0 = k0 ⊕ p0
– h0 = t0 ⊕ a0 is the Cartan decomposition of a θ -stable Cartan subalgebra
– omitting the subscript 0 indicates complexification
– ·̄ applied to elements of g and h∗ denotes complex conjugation relative to the real form

g0
– b = h⊕ n is a Borel subalgebra giving positive roots �+(g, h) and g = n⊕ h⊕ n− is

the corresponding triangular decomposition
– let � = {α1, · · · , αm} be the simple roots of �+(g, h) and let α0 be the root for which

α∨0 is the sum of all the highest coroots for each simple component of g
– let si = sαi and S = {s1, . . . , sm}
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270 W. L. Yee

– �r is the root lattice and �+r is the set of non-negative integral linear combinations of
the simple roots

– � is the weight lattice and λ1, . . . , λm the fundamental weights
– ρ is one half the sum of the positive roots and ρ∨ is one half the sum of the positive

coroots
– W is the Weyl group, C0 the antidominant Weyl chamber, and C0 the dominant Weyl

chamber
– w0 is the long element of W
– for w ∈ W , �(w−1) = {α ∈ �+(g, h) : w−1α < 0}
– λ ∈ h∗ is a dominant weight
– for μ ∈ h∗, Wμ is the stabilizer of μ in W and W μ is the set of minimal length coset

representatives of W/Wμ where μ is dominant or antidominant
– for μ ∈ h∗, M(μ) = U (g) ⊗U (b) Cμ−ρ is the Verma module of highest weight μ − ρ

with canonical generator vμ−ρ

– Hα,n denotes the affine hyperplane Hα,n = {μ ∈ h∗0 : (μ, α∨) = n} where α ∈ �(g, h)

and n ∈ Z and sα,n is the corresponding affine reflection
– H+

α,n and H−
α,n denote the half-spaces H+

α,n = {μ ∈ h∗0 : (μ, α∨) > n} and H−
α,n = {μ ∈

h∗0 : (μ, α∨) < n}
– Wa is the affine Weyl group generated by the sα,n , A◦ = ∩α∈� H−

α,0 ∩ H+
α0,−1, A◦ =

∩α∈� H+
α,0∩H−

α0,1
. (It is the affineWeyl group for the dual root system�∨(g, h) = {α∨ :

α ∈ �(g, h)}.)
– ·̄ : Wa → W is the group homomorphism induced by the semidirect product structure

Wa = �r � W . Note that s̄α,n = sα .
– Sa = S ∪ {sα0,−1} and Sa = S ∪ {sα0,1}

3 Signature characters for irreducible Vermamodules

We review background on invariant Hermitian forms, signatures, and signature characters of
invariant Hermitian forms on irreducible Verma modules. A more detailed explanation of the
material in this section may be found in [30].

Definition 3.1 Given a representationV of the complex semisimpleLie algebrag, aHermitian
form 〈·, ·〉 : V × V → C is an invariant Hermitian form on V if

〈X · v,w〉 = −〈v, X̄ · w〉
for all v,w ∈ V and all X ∈ g. Note that invariance depends on the real form due to complex
conjugation with respect to the real form.

Definition 3.2 Given aweightμ ∈ h∗, define the complex conjugate μ̄ofμby μ̄(H) = μ(H̄)

for all H ∈ h. The weight μ is real if μ̄ = μ, imaginary if μ̄ = −μ, and complex if it is
neither real nor imaginary.

Definition 3.3 Given μ ∈ h∗, define θμ ∈ h∗ by (θμ)(H) = μ(θ−1(H)) for all H ∈ h.

For α ∈ �(g, h), because h0 is θ -stable, α is imaginary-valued on t0 and real-valued on
a0. Thus θμ = −μ̄ for μ ∈ �r , so imaginary roots are supported on t, real roots on a, and
complex roots on both. (See [13] for details.)

Remark 3.4 If g0 is equal rank, then hmay be chosen so that h = t so all roots are imaginary.
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Since θα = α for α imaginary, θgα = gα and we conclude that gα ⊂ k or p.

Definition 3.5 Let α be an imaginary root. It is compact if gα ⊂ k and it is noncompact if
gα ⊂ p.

Definition 3.6 Let α be an imaginary root. Define ε(α) = 1 if α is compact, and ε(α) = −1
if α is noncompact. If α, β, and α+β are roots and if α and β are imaginary, from [gα, gβ ] =
gα+β , [k, k] ⊂ k, [k, p] ⊂ p, and [p, p] ⊂ k, we see that ε(α + β) = ε(α)ε(β). Therefore ε

may be extended to a Z2-grading on the imaginary root lattice.

Proposition 3.7 [30, p. 641] The Verma module M(μ) admits a non-trivial invariant Her-
mitian form if h is maximally compact, θ(�+(g, h)) = �+(g, h) (recall we selected h to be
θ -stable), and μ is imaginary. A non-trivial invariant Hermitian form on a Verma module is
unique up to a non-zero real scalar.

If h is maximally compact, all roots are either imaginary or complex. For the rest of this
paper, we assume we are in the setting where non-trivial invariant Hermitian forms exist on
Verma modules.

We pick a canonical form on each Verma module admitting an invariant Hermitian form:

Definition 3.8 Given μ ∈ h∗, if M(μ) admits a non-trivial invariant Hermitian form, then
the unique invariant Hermitian form 〈·, ·〉μ on M(μ) for which 〈vμ−ρ, vμ−ρ〉μ = 1 is called
the Shapovalov form.

Although Verma modules are infinite dimensional, we may discuss the signature of the
Shapovalov form because we can decompose the Verma module into a direct sum of orthog-
onal finite dimensional spaces.

Proposition 3.9 [30, p. 643] If ν, ν′ ∈ �+r and −ν̄ = θ(ν) �= ν′, then by invariance
〈M(μ)μ−νρ, M(μ)μ−ν′−ρ〉μ = 0.

If ν is imaginary, then the μ− ν − ρ weight space is paired with itself. If ν is complex, then
the μ− ν − ρ weight space is paired with the μ− θ(ν)− ρ = μ+ ν̄ − ρ weight space. In
the complex case, it can be shown (see [28, Lemma 3.18] or [30, p. 644 and 645]) that the
number of positive and negative eigenvalues of a matrix representing the Shapovalov form
on M(μ)μ−ν−ρ ⊕ M(μ)μ−θ(ν)−ρ are equal. Thus we can define:

Definition 3.10 The signature character of the Shapovalov form 〈·, ·〉μ on the Vermamodule
M(μ) is the formal sum

chs M(μ) =
∑

ν∈�+r
νimaginary

(p(ν)− q(ν))eμ−ν−ρ

where a matrix representing the Shapovalov form on M(μ)μ−ν−ρ has p(ν) positive eigen-
values and q(ν) negative eigenvalues.

In order to derive signature character formulas for irreducible Verma modules, we must
understand reducibility of Verma modules. The maximal proper submodule of a Verma mod-
ule is the radical of the Shapovalov form, so a Verma module is reducible precisely when
the Shapovalov form is degenerate. By a modification of the classical (invariant bilinear)
Shapovalov determinant formula, we have:

Proposition 3.11 [30, p. 644] When ν ∈ �+r is imaginary, up to a scalar, the determinant of
a matrix representing the Shapovalov form on M(μ)μ−ν−ρ is
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272 W. L. Yee

∏

α∈�+(g,h)

∞∏

n=1

(
(μ, α∨)− n

)P(ν−nα)

where P is Kostant’s partition function.
When ν ∈ �+r is complex, up to a scalar, the determinant of a matrix representing the

Shapovalov form on M(μ)μ−ν−ρ ⊕ M(μ)μ−θν−ρ is

∏

α∈�+(g,h)

∞∏

n=1

(
(μ, α∨)− n

)P(ν−nα) (
(μ, α∨)− n

)P(θν−nα)
.

Therefore Verma modules are reducible precisely on the affine hyperplanes Hα,n where
α ∈ �+(g, h) and n ∈ Z

+. Within any connected region avoiding these reducibility hyper-
planes, the Shapovalov form remains nondegenerate so the signature of the form cannot
change. This idea was introduced in [28]. In [29], Wallach noted that there is a large region
containing the antidominantWeyl chamber where the signature of the Shapovalov form stays
constant:

(
∩α∈� H−

α,1

)
∩ H−

α0,1
.

By an asymptotic argument, Wallach obtained:

Theorem 3.12 ([29, Lemma 2.3], reformulated in [30, Theorem 2.10 and Theorem 6.12]) If
μ ∈ h∗ is imaginary and if μ ∈ (∩α∈� Hα,1

)− ∩ H−
α0,1

, then the signature character of the
Shapovalov form on M(μ) is

chs M(μ)|a = eμ|a and

chs M(μ)|t = e(μ−ρ)|t
∏

α∈�+(p,t)(1− e−α)
∏

α∈�+(k,t)(1+ e−α)
.

Because signatures are constant in regions boundedby reducibility hyperplanes Hα,n , itmakes
sense to find a formula for signature characters of invariant Hermitian forms on irreducible
Verma modules indexed by the affine Weyl group. Define:

Definition 3.13 Let R(μ) :=∑ν∈�+r cνeμ−ν−ρ where the constants cν are such that R(μ) =
chs M(μ) when μ ∈ (∩α∈� Hα,1

)− ∩ H−
α0,1

is imaginary. For an alcove A of the affine Weyl

group Wa , let R A(μ) :=∑ν∈�+r cA
ν eμ−ν−ρ be the formal sum such that R A(μ) = chs M(μ)

when μ ∈ A is imaginary.

To arrive at a formula for R A, the philosophy is as follows: first determine how signatures
change as you cross a reducibility hyperplane, then take a path from A to

(∩α∈� Hα,1
)−∩H−

α0,1
where the signature is known by Wallach’s work and apply induction on the number of
reducibility hyperplanes crossed. Specifically:

Lemma 3.14 [30, Proposition 3.2 and Lemma 4.3] Let A and A′ be adjacent alcoves sepa-
rated by the reducibility hyperplane Hα,n where α is imaginary. Then

R A(μ) = R A′(μ)+ 2ε(A, A′)R A−nα(μ− nα)

where ε(A, A′) = ±1.

This is because as you cross a reducibility hyperplane at a point not intersecting any others,
the signature changes by the signature of the radical M(μ − nα) which is the signature of
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the Shapovalov form or its opposite since invariant Hermitian forms on Verma modules are
unique up to a real scalar.

The formula for ε(A, A′) from [30] is complicated and its simplification forms the content
of the following section. Note that ε(A, A′) = −ε(A′, A).

Complex α are somewhat more complicated. Let μ ∈ h∗ be imaginary and suppose
μ ∈ Hα,n where α is complex. Then μ ∈ Hθα,n as well. Then:

Lemma 3.15 [30, Propositions 3.7 and 3.8] Let the imaginary weights be partitioned into
alcoves by the affine hyperplanes Hα,n. Let A and A′ be adjacent alcoves separated by the
reducibility hyperplane Hα,n where α is complex. Then they are also separated by Hθα,n.

If α and θα are orthogonal, then

R A(μ) = R A′(μ).

If α and θα are not orthogonal so that α + θα is a root (note that it is imaginary), then
Hα+θ(α),2n also separates A and A′ and

R A(μ) = R A′(μ)+ 2ε(A, A′)R A−2n(α+θ(α))(μ− 2n(α + θ(α))).

Thus crossing only reducibility hyperplanes corresponding to imaginary roots results in
changes to the signature character.

Using these lemmas, by induction applied to an alcove path from A to the region(∩α∈� Hα,1
)− ∩ H−

α0,1
,

Theorem 3.16 [30, Theorems 4.6 and 6.12] Let �i (g, h) be the imaginary roots of �(g, h).
Use subscripts and superscripts i to indicate that objects are associated with �i (g, h). In
this theorem, simple roots, roots, Weyl group, length, reducibility hyperplanes, fundamental
alcove, alcoves, affine Weyl group and so on are associated with the imaginary root system
(which is just the usual root system when g0 is equal rank). The alcoves are the regions
in the imaginary weights of h∗ partitioned by reducibility hyperplanes of the form Hα,n

where α ∈ �+
i (g, h) and n ∈ Z

+. Let A be an alcove of W i
a and let ·̄ : W i

a → Wi be the
homomorphism arising from the semidirect product structure W i

a = �i
r � Wi . Let w ∈ Wi be

such that A ⊂ wCi
0. Let A = C0

r1→ C1
r2→ C2

r3→ · · · r→ C = wAi◦ be a (not necessarily
reduced) alcove path (the Ci are alcoves, the ri are affine reflections, and Ci = ri Ci−1 for
1 ≤ i ≤ ). Then for imaginary μ ∈ A,

chs M(μ)|a = e(μ−ρ)|a and

chs M(μ)|t = R A(μ|t)
=

∑

I={i1<···<ik }
I⊂{1,...,}

ε(I )2|I | er̄i1 r̄i2 ···r̄ik rik ···ri2 ri1 (μ−ρ)|t
∏

α∈�+(p,t)(1− e−α)
∏

α∈�+(k,t)(1+ e−α)
.

where ε(I ) = ε(Ci1−1, Ci1)ε(r̄i1Ci2−1, r̄i1Ci2) · · · ε(r̄i1 · · · r̄ik−1Cik−1, r̄i1 · · · r̄ik−1Cik ),
ε(∅) = 1, ε(C, C ′) = 0 if the hyperplane separating the alcoves C, C ′ is not a reducibility
hyperplane and the formula for ε(C, C ′) when the alcoves are separated by a reducibility
hyperplane will be stated in Theorem 3.17.

Theorem 3.17 [30, Theorems 6.12, 5.3.4] We maintain the notation and setting of the previ-
ous theorem. Let C and C ′ be adjacent alcoves of W i

a separated by the reducibility hyperplane
Hγ,n where γ ∈ �+

i (g, h), n ∈ Z
+, C ⊂ H+

γ,n, and C ′ ⊂ H−
γ,n. Let w ∈ W be such that

C, C ′ ⊂ wCi
0. Let γ = si1 · · · sir−1αir where the αi j ∈ �i are such that ht(si j · · · sir−1αir )
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strictly decreases as j increases. Let wγ = si1 · · · sir . Recall ε the Z2-grading on the imagi-
nary root lattice. Then if γ does not form a type G2 root system with other roots:

• If θ does not fix any element of the component of � corresponding to γ , then:

ε(C, C ′) = −1.
• If θ fixes some element of the component of � corresponding to γ , then:

ε(C, C ′) = ε(nγ )× (−1)#{β∈�i (w
−1
γ ):|β|=|γ |,β �=γ, and β,sβγ∈�i (w

−1)}

×(−1)#{β∈�i (w
−1
γ ):|β|�=|γ | and β,−sβ sγ β∈�i (w

−1)}.

Let α1 and α2 be the long and short simple roots for a type G2 root system, respectively. We
have the following table of values for ε(C, C ′):

ε(C, C ′) γ

w α1 α1 + α2 2α1 + 3α2 α1 + 2α2 α1 + 3α2 α2

1 0 0 0 0 0 0
s1 ε(α1)

n 0 0 0 0 0
s1s2 ε(α1)

n ε(α1 + α2)
n 0 0 0 0

s1s2s1 ε(α1)
n −ε(α1 + α2)

n ε(2α1 + 3α2)
n 0 0 0

s1s2s1s2 ε(α1)
n −ε(α1 + α2)

n −ε(2α1 + 3α2)
n ε(α1 + 2α2)

n 0 0
s1s2s1s2s1 ε(α1)

n −ε(α1 + α2)
n ε(2α1 + 3α2)

n −ε(α1 + 2α2)
n ε(α1 + 3α2)

n 0
s1s2s1s2s1s2 ε(α1)

n −ε(α1 + α2)
n ε(2α1 + 3α2)

n ε(α1 + 2α2)
n −ε(α1 + 3α2)

n ε(α2)
n

s2s1s2s1s2 0 ε(α1 + α2)
n −ε(2α1 + 3α2)

n ε(α1 + 2α2)
n −ε(α1 + 3α2)

n ε(α2)
n

s2s1s2s1 0 0 ε(2α1 + 3α2)
n −ε(α1 + 2α2)

n −ε(α1 + 3α2)
n ε(α2)

n

s2s1s2 0 0 0 ε(α1 + 2α2)
n −ε(α1 + 3α2)

n ε(α2)
n

s2s1 0 0 0 0 ε(α1 + 3α2)
n ε(α2)

n

s2 0 0 0 0 0 ε(α2)
n

Note that in the referenced results, we have (−1)n#{noncompact αi j :|αi j |≥|γ |} as the first of three
terms in the formula for ε (second bullet point). We can replace it by ε(nγ ) by the proof of
Theorem 3.7 (2) of [32].

Note that we have to treat type G2 separately because Theorems 5.3.4 and 6.12 of [30]
hold for roots γ not forming a type G2 root system with other roots in �+

i (g, h).
See section 6 of [30] for more information on �i (g, h) and �i .
Combining Theorems 3.16 and 3.17 gives a formula for chs M(μ) when M(μ) is irre-

ducible.

4 Simplifying the formulas for "(C,C′) and "(I)

In [28], Vogan introduced the idea of computing the signature of a non-degenerate invariant
Hermitian form on a finite length (g, K )-module by studying how signatures change as you
cross reducibility points. Computing changes across reducibility points required knowledge
of a sign (ε, as in Sect. 3) which was unknown at the time. The sign was first computed in
[30]. We prove a simple formula for ε for Verma modules in this section.

We want the formula for ε to hold for as general g0 as possible, so we work in the setting
of Theorem 3.16 when we work on the formula for ε; in other words, the root system we are
working with is �i (g, h) and all attached objects and quantities are associated to that root
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system. (In the equal rank case, �i (g, h) = �(g, h), etc.) We revert to a generic Weyl group
and root system when working on definitions and lemmas that hold in general settings (i.e.
not necessarily arising from the study of signature characters).

In [30], we showed that for adjacent alcoves C, C ′, ε(C, C ′) only depends on the hyper-
plane separating the alcoves and the Weyl chamber containing the alcoves. Thus we defined:

Definition 4.1 For γ ∈ �+
i (g, h), n ∈ Z

+, define ε(Hγ,n, w) = ε(C, C ′) where C, C ′ are
adjacent alcoves separated by Hγ,n , C, C ′ ⊂ wCi

0, C ⊂ H+
γ,n and C ′ ⊂ H−

γ,n .

Remark 4.2 Note that in the definition, we require that γ hyperplanes are positive in wCi
0;

i.e. if Hγ,n intersects wCi
0, then n > 0. This is equivalent to γ ∈ �i (w

−1). See the proof of
[30, Lemma 5.2.3] for details.

To simplify the formula for ε(C, C ′) = ε(Hγ,n, w), we need to reformulate the second
and third terms in the product in Theorem 3.17. Thus we define (in a general setting):

Definition 4.3 Let γ ∈ �+(g, h) and let w ∈ W be such that γ ∈ �(w−1). Recall wγ ,
defined in Theorem 3.17. Let

S2
wγ ,w = {β ∈ �(w−1γ ) : |β| = |γ |, β �= γ, and β, sβγ ∈ �(w−1)}

and let

S3
wγ ,w = {β ∈ �(w−1γ ) : |β| �= |γ | and β,−sβsγ β ∈ �(w−1)}.

Lemma 4.4 Let γ ∈ �+(g, h) and let w ∈ W be such that γ ∈ �(w−1). Suppose γ does
not form a type G2 root system with other roots. Then:

S2
wγ ,w = {β ∈ �(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ } : |β| = |γ |}

and

S3
wγ ,w =

{
β ∈ �(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ } : |β| �= |γ |

}
.

Therefore S2
wγ,w ∪ S3

wγ,w = �(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }.
Proof Suppose β ∈ S2

wγ ,w. Since (β, γ ) > 0 by Lemma 3.2 of [32] and since |β| = |γ |,
therefore sβγ = γ − β = −sγ β. Then

sβγ = −sγ β ∈ �(w−1) ⇐⇒ β ∈ −sγ �(w−1).

If β ∈ S3
wγ ,w then, again, (β, γ ) > 0. The root sγ β is orthogonal to β, so we have−sβsγ β =

−sγ β. Then

−sβsγ β = −sγ β ∈ �(w−1) ⇐⇒ β ∈ −sγ �(w−1).

��
Then since ε(Hγ,n, w) = ε(nγ )(−1)#S2

wγ ,w (−1)#S3
wγ ,w , therefore it follows from the lemma:

Proposition 4.5 Let γ ∈ �+
i (g, h), let w ∈ Wi be such that γ is positive on wCi

0, and suppose
θ fixes some element of �. Suppose γ does not form a type G2 root system with other roots.
Then:

ε(Hγ,n, w) = (−1)#{�i (w
−1
γ )∩�i (w

−1)∩−sγ �i (w
−1)\{γ }}

where wγ is defined in Theorem 3.17.
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We wish to remove the dependence of the formula for ε on a choice of element wγ .
The next lemma holds in a general setting.

Lemma 4.6 Given γ ∈ �+(g, h), let γ = si1si2 · · · sir where ht(si j · · · sir−1αir ) strictly
decreases as j increases. Recall we defined wγ = si1si2 · · · sir . Then:

(1) wγ = si1si2 · · · sir is a reduced expression, and
(2) sγ = si1si2 · · · sir · · · si2si1 is a reduced expression.

Proof The first result can be found in the proof of Theorem 5.3.4 of [30]. To prove the second,
suppose the expression is not reduced. Then there exist indices j1 and j2 as close to k as pos-
sible such that si1 · · · sik · · · si1 = si1 · · · ŝi j1

· · · sik · · · ŝi j2
· · · si1 by the deletion condition.

The deleted terms straddle (and may include) sik since si1si2 · · · sik is a reduced expres-
sion for wγ . Without loss of generality, suppose j1 = 1. Then si1si2 · · · sik · · · si j2+1si j2

=
si2 · · · sik · · · si j2+1 so by Theorem 1.7 of [11], αi1 = si2 · · · sik sik−1 · · · si j2+1αi j2

. From the
height condition in the construction of wγ , (αi j , si j+1 · · · sik−1αik ) < 0 for j = 1, . . . , k − 1.
But then

0 > (αi1 , si2 · · · sik−1αik )

= (si2 · · · sik sik−1 · · · si j2+1αi j2
, si2 · · · sik−1αik )

= −(sik−1 · · · si j2+1αi j2
, αik )

= −(αi j2
, si j2+1 · · · sik−1αik )

> 0

—contradiction. Therefore our expression for sγ must be reduced. ��
It follows that (again, we keep the next lemma general):

Lemma 4.7 Let γ ∈ �+(g, h) and let wγ be as defined in Lemma 4.6. Then

�(sγ ) = �(w−1γ ) ∪ −sγ �(w−1γ )

where the only root common to both sets on the right hand side is γ .

Proof By the reduced expressions for wγ and sγ in Lemma4.6 and by [11, p. 14],

�(w−1γ ) = {αi1 , si1αi2 , · · · , si1 · · · sir−1αir } and

�(sγ ) = {αi1 , si1αi2 , · · · , si1 · · · sir−1αir , si1 · · · sir−1sir αir−1 , · · · , si1 · · · sir · · · si2αi1}.
Since si1 · · · sir · · · si j+1αi j = (si1 · · · sir · · · si1)si1si2 · · · si j αi j = −sγ si1 · · · si j−1αi j , there-
fore �(sγ ) = �(w−1γ ) ∪ −sγ �(w−1γ ). Since γ belongs to both sets in the right hand side
and since (sγ ) = 2(wγ )− 1, we have proved the rest of the lemma. ��
Lemma 4.8 Let γ ∈ �+(g, h) and let w ∈ W be such that γ ∈ �(w−1). Let wγ be as
defined in Lemma 4.6. Then �(sγ ) ∩ �(w−1) ∩ −sγ �(w−1) \ {γ } is the disjoint union of
two sets:

�(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }∪̇ − sγ �(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }.
Furthermore,

�(sγ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ } = �(w−1) ∩ −sγ �(w−1) \ {γ }.
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Therefore

#
{
�(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }

}
= 1

2
#
{
�(sγ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }

}

= 1

2
#
{
�(w−1) ∩ −sγ �(w−1) \ {γ }

}
.

Proof The disjoint union follows from the previous lemma.
Note thatβ ∈ �(w−1γ )∩�(w−1)∩−sγ �(w−1)\{γ } if and only if−sγ β ∈ −sγ �(w−1γ )∩

�(w−1) ∩ −sγ �(w−1) \ {γ }. Therefore

#
{
�(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }

}
= 1

2
#
{
�(sγ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }

}
.

Note that if β ∈ �(w−1)∩−sγ �(w−1) \ {γ }, then−sγ β ∈ �(w−1) ⊂ �+(g, h), therefore
sγ β < 0 so β ∈ �(sγ ). Therefore �(sγ ) ∩ �(w−1) ∩ −sγ �(w−1) \ {γ } = �(w−1) ∩
−sγ �(w−1) \ {γ }. This proves the lemma. ��

The above lemma allows us to remove dependence on a choice of wγ from the formula
for ε(Hγ,n, w).

Proposition 4.9 Let γ ∈ �+
i (g, h), w ∈ Wi be such that γ hyperplanes are positive on wCi

0,
and suppose θ fixes some element of �. Then

ε(Hγ,n, w) = ε(nγ )(−1) 1
2 #{�i (sγ )∩�i (w

−1)∩−sγ �i (w
−1)\{γ }}

= ε(nγ )(−1) 1
2 #{�i (w

−1)∩−sγ �i (w
−1)\{γ }}.

Proof The proposition is straightforward to verify for a type G2 root system. Otherwise, we
combine the previous lemma with Proposition 4.5. ��

We can simplify the formula for ε even further. For that, we need the following (general)
lemma:

Lemma 4.10 Let γ ∈ �+(g, h) and w ∈ W be such that γ ∈ �(w−1). Then

#{�(w−1) ∩ −sγ �(w−1)} = (w)− (sγ w).

Proof This is straightforward to verify for type G2, which must be treated separately since
Lemmas 3.4 and 3.6 of [32] do not apply to roots γ forming a type G2 root system with other
roots. Otherwise, we prove this result by induction on w.

For the base case, we consider when w is minimal with respect to the Bruhat order such
that γ ∈ �(w−1). (Note that such w may not be unique.) Let w = si1si2 · · · sik be a reduced
expression. Since w is minimal, therefore γ /∈ �((si1 · · · sik−1)

−1). Thus

γ ∈ �(w−1) \�((si1 · · · sik−1)
−1) = {si1si2 · · · sik−1αik }.

Let x = wsik and s = sik in Lemmas 3.4 and 3.6 of [32]. Then S2
wγ ,w = S3

wγ ,w = ∅
so �(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ } = ∅ by Lemma 4.4. Then since by Lemma 4.8

�(w−1)∩−sγ �(w−1)\{γ } is the disjoint union of�(w−1γ )∩�(w−1)∩−sγ �(w−1)\{γ } and
−sγ

(
�(w−1γ ) ∩�(w−1) ∩ −sγ �(w−1) \ {γ }

)
, therefore�(w−1)∩−sγ �(w−1)\{γ } = ∅.

Thus
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#{�(w−1) ∩ −sγ �(w−1)} = #{γ } = 1 = k − (k − 1) = (w)− (sγ w)

proving the base case.
Now suppose w is not minimal with respect to the Bruhat order such that γ ∈ �(w−1).

By induction, suppose that for all x < w such that γ ∈ �(x−1), #{�(x−1)∩−sγ �(x−1)} =
(x)− (sγ x). Take in particular x = wsα where α is simple and (x) = (w)− 1.

Case 1: γ = xα. We can apply Lemmas 3.4 and 3.6 of [32], as in the base case. Again,
we have �(w−1) ∩ −sγ �(w−1) = {γ } and #{�(w−1 ∩ −sγ �(w−1)} = 1 =
(w)− (sγ w).

Case 2: γ ∈ �(x−1) = �(w−1) \ {xα}. By induction, we have

#{�(x−1) ∩ −sγ �(x−1)} = (x)− (sγ x).

We also have

�(w−1) = �(x−1) ∪ {xα}
−sγ �(w−1) = −sγ �(x−1) ∪ {−sγ xα}.

We have (w) = (x)+ 1 and (sγ w) = (sγ xsα) = (sγ x)± 1. Therefore

(w)− (sγ w) =
{

(x)− (sγ x) if sγ xα > 0
(x)− (sγ x)+ 2 if sγ xα < 0.

(4.1)

First, we show that xα �= −sγ xα. If, by contradiction, xα = −sγ xα = −xα + 2(γ,xα)
(γ,γ )

γ ,

then 2(γ,xα)
(γ,γ )

γ = 2xα which implies that γ = xα. But {γ } = {xα} = �(w−1) \�(x−1) and
in the current case, γ ∈ �(x−1)—contradiction. Therefore xα �= −sγ xα.

Next, note that xα ∈ −sγ �(x−1) if and only if −sγ xα ∈ �(x−1). Therefore

#�(w−1) ∩ −sγ �(w−1) = #
(
�(x−1) ∪ {xα}) ∩ (−sγ �(x−1) ∪ {−sγ xα})

=
{
#�(x−1) ∩ −sγ �(x−1) if xα /∈ −sγ �(x−1)
#�(x−1) ∩ −sγ �(x−1)+ 2 if xα ∈ −sγ �(x−1)

=
{
#�(x−1) ∩ −sγ �(x−1) if − sγ xα /∈ �(x−1)
#�(x−1) ∩ −sγ �(x−1)+ 2 if − sγ xα ∈ �(x−1)

(4.2)

We prove the lemma from Eqs. (4.1) and (4.2) by showing that the case conditions of the
latter equation correspond to the case conditions of the former equation.

If −sγ xα ∈ �(x−1), then sγ xα < 0, which is the second condition in Eq. (4.1). Then
combining the Eqs. (4.1) and (4.2), we have

(w)− (sγ w) = (x)− (sγ x)+ 2 = #�(x−1) ∩ −sγ �(x−1)+ 2

= #�(w−1) ∩ −sγ �(w−1).

If−sγ xα /∈ �(x−1), then the argument is more complex.Wewant to show that sγ xα > 0,
giving us the first condition of Eq. (4.1). Suppose, by contradiction, that sγ xα < 0. Since
−sγ xα /∈ �(x−1) and −sγ xα > 0, therefore x−1sγ xα < 0. Observe that

x−1sγ xα = sx−1γ α = α − 2(α, x−1γ )

(x−1γ, x−1γ )
x−1γ

and x−1γ < 0 since γ ∈ �(x−1). Since α is simple and x−1sγ xα < 0, therefore
(α, x−1γ ) < 0.
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Now sγ xα = xα − 2(γ,xα)
(γ,γ )

γ = xα − 2(α,x−1γ )
(γ,γ )

γ > 0. But sγ xα < 0—contradiction.
Therefore we must have sγ xα > 0, which is the condition for the first case of Eq. (4.1). Thus
when −sγ xα /∈ �(x−1),

(w)− (sγ ) = (x)− (sγ x) = #�(x−1) ∩ −sγ �(x−1).

��
Finally, applying the previous lemma to Proposition 4.9 and from Theorem 3.17, we see

that:

Theorem 4.11 Let γ ∈ �+
i (g, h), n ∈ Z

+, and let w ∈ Wi be such that γ hyperplanes are
positive on wCi

0. Then

ε(Hγ,n, w) =
⎧
⎨

⎩

−1 if θ does not fix any element of the
component of � corresponding to γ

ε(nγ )(−1) 1
2 (i (w)−i (sγ w)−1) otherwise.

From this simplified formula for ε(C, C ′) = ε(Hγ,n, w), we get:

Theorem 4.12 We use the setting and notation of Theorem 3.16. Suppose g0 is such that
either θ fixes some element of each component of � or θ fixes no element of each component

of �. Let A be an alcove of W i
a and let w ∈ Wi be such that A ⊂ wCi

0. Let A = C0
r1→ C1

r2→
C2

r3→ · · · r→ C = wAi◦ be a path that stays in the Weyl chamber wCi
0. Let I = {i1 <

· · · < ik} ⊂ {1, . . . , }. Let χ(I ) = r̄i1 · · · r̄ik . Consider the translation r̄i1 · · · r̄ik rik · · · ri1 .
Let ν(I ) ∈ �r be such that μ−ν(I ) = r̄i1 · · · r̄ik rik · · · ri1μ for all μ ∈ h∗. If ε(I ) �= 0, then

ε(I ) =
{

(−1)|I | if θ does not fix any element of �

ε(ν(I ))(−1) 1
2 ((w)−(χ(I )w)−|I |) otherwise.

Proof The first case is clear, so we suppose we are in the second case. Let r j = sβ j ,N j where
β j ∈ �+

i (g, h). Then we may show by induction on k that ν(I ) = Ni1βi1+Ni2 r̄i1βi2 +· · ·+
Nik r̄i1 · · · r̄ik−1βik . Thus by Theorem 4.11,

ε(I ) = ε(Hβi1,Ni1
, w)ε(Hr̄i1βi2 ,Ni2

, r̄i1w) · · · ε(Hr̄i1 ···r̄ik−1βik ,Nik
, r̄i1 · · · r̄ik−1w)

= ε(Ni1βi1 + Ni2 r̄i1βi2 + · · · + Nik r̄i1 · · · r̄ik−1βik )

×(−1) 1
2 ((w)−(r̄i1w)−1)(−1) 1

2 ((r̄i1w)−(r̄i1 r̄i2w)−1) · · · (−1) 1
2 ((r̄i1 ···r̄ik−1w)−(r̄i1 ···r̄ik w)−1)

= ε(ν(I ))(−1) 1
2 ((w)−(χ(I )w)−|I |)

��
Corollary 4.13 We use the setting and notation of Theorems 3.16 and 4.12. Let � = �1∪�2

where �1 consists of the components of � for which θ fixes some element and �2 consists
of the components of � for which θ does not fix any element. Let g0 = g1 ⊕ g2 be the
corresponding decomposition of g0 and let W = W1 × W2. Let A be an alcove of W i

a and

let w ∈ Wi be such that A ⊂ wCi
0. Let A = C0

r1→ C1
r2→ C2

r3→ · · · r1→ C1

r1+1→ · · · r2→
C2 = wAi◦ be a path that stays in the Weyl chamber wCi

0 such that r1, . . . , r1 belong to
W1 and r1+1, . . . , r2 belong to W2. Let w = (w1, w2) ∈ W1 × W2 = W . Let I = I1 ∪ I2
where I1 = {i1 < · · · < ik1} ⊂ {1, . . . , 1} and I2 = {ik1+1 < ik1+2 < · · · < ik2} ⊂
{1 + 1, 1 + 2, · · · , 2}. If ε(I ) �= 0, then:

ε(I ) = ε(ν(I1))(−1) 1
2 ((w1)−(χ(I1)w1)−|I1|)(−1)|I2|.

123



280 W. L. Yee

Thus Theorem 3.16 becomes:

Theorem 4.14 Use the notation of Theorems 3.16 and 4.12. Suppose g0 is such that either θ

fixes some element of each component of � or θ fixes no element of each component of �.

Let A be an alcove of W i
a and let w ∈ Wi be such that A ⊂ wCi

0. Let A = C0
r1→ C1

r2→
C2

r3→ · · · r→ C = wAi◦ be an alcove path that stays in the Weyl chamber wCi
0. Then for

imaginary μ ∈ A,

chs M(μ)|a = e(μ−ρ)|a .

If θ does not fix any element of �,

chs M(μ)|t = R A(μ|t)

=

e−ρ
∑

I={i1<···<ik }⊂{1,...,}
w>r̄i1w>r̄i1 r̄i2w>···>r̄i1 ···r̄ik w

(−1)|I |2|I |eμ|t−ν(I )

∏
α∈�+(p,t)(1− e−α)

∏
α∈�+(k,t)(1+ e−α)

.

Otherwise,

chs M(μ)|t = R A(μ|t)

=

e−ρ
∑

I={i1<···<ik }⊂{1,...,}
w>r̄i1w>r̄i1 r̄i2w>···>r̄i1 ···r̄ik w

ε(ν(I ))(−1) 1
2 ((w)−(χ(I )w)−|I |)2|I |eμ|t−ν(I )

∏
α∈�+(p,t)(1− e−α)

∏
α∈�+(k,t)(1+ e−α)

.

Proof To prove our formulas, we only need to prove that the condition ε(I ) �= 0 is equivalent
to w > r̄i1w > r̄i1 r̄i2w > · · · > r̄i1 · · · r̄ik w. It clearly holds if I is empty. Otherwise,
recall ε(I ) = ε(Ci1−1, Ci1)ε(r̄i1Ci2−1, r̄i1Ci2) · · · ε(r̄i1 · · · r̄ik−1Cik−1, r̄i1 · · · r̄ik−1Cik ). Then
for ε(I ) �= 0, we need the affine hyperplane separating r̄i1 · · · r̄i j−1Ci j−1 and r̄i1 · · · r̄i j−1Ci j

to be a reducibility hyperplane for each 1 ≤ j ≤ k. The adjacent alcoves lie in the Weyl
chamber r̄i1 · · · r̄i j−1wCi

0. Let βi j ∈ �+
i (g, h) be the type of the affine hyperplane separating

the two alcoves. Thus, we need

(βi j , r̄i1 · · · r̄i j−1w(−ρi )) > 0 ⇐⇒ (r̄i1 · · · r̄i j−1w)−1βi j < 0

⇐⇒ βi j ∈ �((r̄i1 · · · r̄i j−1)w
−1)

⇐⇒ r̄i1 · · · r̄i j−1w > sβi j
r̄i1 · · · r̄i j−1w = r̄i1 · · · r̄i j−1 r̄i j w

where the last equality comes from the fact that ri j corresponds to the affine reflection
through the affine hyperplane separating Ci j−1 and Ci j , which give us the formula sβi j

=
r̄i1 · · · r̄i j−1 r̄i j r̄i j−1 · · · r̄i1 . ��
Corollary 4.15 We use the setting and notation of Theorems3.16 and 4.12. Let � = �1∪�2

where �1 consists of the components of � for which θ fixes some element and �2 consists of
the components of � for which θ does not fix any element. Let g0 = g1⊕g2 and h∗ = h∗1⊕h∗2
be the corresponding decompositions of g0 and h∗, respectively. Let W = W1 × W2 and
W i

a = (W1)
i
a×(W2)

i
a . Let subscript and superscript1’s and 2’s refer to objects corresponding

to g1 and g2, respectively. Let μ = μ1+μ2 ∈ h∗1⊕ h∗2 be imaginary with M(μ) irreducible.
Let μ1 belong to the alcove A(1) under the action of (W1)

i
a on h∗1 and μ2 belong to the

alcove A(2) under the action of (W2)
i
a on h∗2. Let A(1) ⊂ w1(C1)

i
0 and A(2) ⊂ w2(C2)

i
0. Let
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A(1) = C1
0

r (1)
1→ C1

1

r (1)
2→ C1

2

r (1)
3→ · · ·

r (1)
1→ C1

1
= w1(A1)

i◦ be an alcove path that stays in the Weyl

chamber w1(C1)
i
0. Let A(2) = C2

0

r (2)
1→ C2

1

r (2)
2→ C2

2

r (2)
3→ · · ·

r (2)
2→ C2

2
= w2(A2)

i◦ be an alcove

path that stays in the Weyl chamber w2(C2)
i
0. Then:

chs M(μ)|a = e(μ−ρ)|a

and

chs M(μ)|t =
(
chs M(μ1)|t1

) (
chs M(μ2)|t2

)

where

chs M(μ1)|t1

=

e−ρ1
∑

I={i1<···<ik }⊂{1,...,1}
w1>r̄ (1)

i1
w1>r̄ (1)

i1
r̄ (1)

i2
w1>···>r̄ (1)

i1
···r̄ (1)

ik
w1

ε(ν(I ))(−1) 1
2 ((w1)−(χ(I )w1)−|I |)2|I |eμ1|t1−ν(I )

∏
α∈�+(p1,t1)

(1− e−α)
∏

α∈�+(k1,t1)
(1+ e−α)

and

chs M(μ2)|t2 =

e−ρ2
∑

I={i1<···<ik }⊂{1,...,2}
w2>r̄ (2)

i1
w2>r̄ (2)

i1
r̄ (2)

i2
w2>···>r̄ (2)

i1
···r̄ (2)

ik
w2

(−1)|I |2|I |eμ2|t2−ν(I )

∏
α∈�+(p2,t2)

(1− e−α)
∏

α∈�+(k2,t2)
(1+ e−α)

.

5 The affine Hecke algebra and Hall–Littlewood polynomials

For μ ∈ �+, the Schur polynomial sμ is the character of the irreducible highest weight
module with highest weight μ. This family of symmetric functions played a prominent role
in early work on symmetric functions. It was important in the representation theory of the
groups Sn and GLn(C).

Subsequently (see [15]), Hall and Littlewood independently introduced a one-parameter
generalization of the Schur polynomials in [10] and [17], respectively. These polynomials
are now called Hall–Littlewood polynomials. In [9], Green drew a connection between Hall–
Littlewood polynomials and characters of finite general linear groups. In [22], Macdonald
derived an explicit formula for spherical functions of a Chevalley group generalizing the
formula for Hall–Littlewood polynomials. This generalized Hall–Littlewood polynomials to
all root systems and these polynomials are referred to as both Hall–Littlewood polynomials
and as Macdonald spherical functions.

Hall–Littlewood polynomials are a basis for the algebra of symmetric functions. At
q = 0, they are Schur functions and at q = 1, they are monomial symmetric functions
(mμ = ∑

ν∈Wμ Xν). Therefore they interpolate between two well-known bases of the ring
of symmetric functions.

Hall–Littlewood polynomials are ubiquitous in mathematics. In addition to the areas
already listed, they appear in the study of [16]: projective and modular representations of the
symmetric group, Kostka–Foulkes polynomials, unipotent classes and Springer representa-
tions, statistical physics, and representations of quantum affine algebras and affine crystals.
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We begin this section by recalling the definitions of the Hecke and affine Hecke algebras
and related objects which we will need. This material can be found in more detail in [4,6,11,
24,25,27].

Definition 5.1 Let K be the field of fractions of Z[q 1
2 , q− 1

2 ]. The Hecke algebra H is the
K-algebra with K-basis {Tw}w∈W such that for all s ∈ S and w ∈ W :

Ts Tw =
{

Tsw if (sw) > (w)

(q − 1)Tw + qTsw if (sw) < (w).

Let T̃w = q−(w)/2Tw . We get another presentation ofH: {T̃w}w∈W is a K-basis ofHwith
multiplication rules for s ∈ S and w ∈ W :

T̃s T̃w =
{

T̃sw if (sw) > (w)

T̃sw + (q
1
2 − q− 1

2 )T̃w if (sw) < (w).

From the equations, it can be seen that ifw = si1 · · · sik is a reduced expression, then Tw =
Tsi1

· · · Tsik
(similarly for T̃w), so the Ts where s ∈ S generate H. From the multiplication

rules, we have for s ∈ S:

T−1s = q−1Ts − (1− q−1)T1.

Therefore T−1
w−1 ∈ H for w ∈ W and it can be written as a linear combination of Tx where

x ≤ w. This leads to the definition of R polynomials. First:

Definition 5.2 Let · : Z[q 1
2 , q− 1

2 ] → Z[q 1
2 , q− 1

2 ] be the ring involution defined by q
1
2 =

q− 1
2 . It extends to a ring involution of H such that T w = T−1

w−1 and T̃ w = T̃−1
w−1 .

Now we define R polynomials:

Definition 5.3 [12, p. 169] For x, w ∈ W , let Rx,w = 0 if x � w. Otherwise, let Rx,w ∈ Z[q]
be the polynomials defined by

T−1
w−1 =

∑

x∈W

R̄x,wq−(x)Tx .

Definition 5.4 Let α = q− 1
2 − q

1
2 . Similarly, for x, w ∈ W define R̃x,w = 0 if x � w and

otherwise let R̃x,w ∈ Z[α] be defined by
T̃−1

w−1 =
∑

x≤w

R̃x,w(α)T̃x .

The R polynomials satisfy the recurrence formulas for s ∈ S, w ∈ W where ws < w

Rx,w =
{

Rxs,ws if xs < x
q Rxs,ws + (q − 1)Rx,ws if xs > x .

The R̃ polynomials satisfy the recurrence formulas for s ∈ S, w ∈ W where ws < w

R̃x,w =
{

R̃xs,ws if xs < x
R̃xs,ws + α R̃x,ws if xs > x .

The R and R̃ polynomials are related by the formula

R̃x,w = q
1
2 ((w)−(x)) R̄x,w.
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To discuss the affine Hecke algebra, we must discuss the extended affine Weyl group.
Elements of the Weyl group also map � to �, so we can define:

Definition 5.5 The extended affine Weyl group is

We = W � �.

The action of We on the set of alcoves is no longer free. Let � be the stabilizer of A◦
in We. Then � ∼= �/�r where the isomorphism is realized by sending g ∈ � to the coset
g(0) + �r . Furthermore, We = Wa � �. For every w ∈ We, w = vg for unique v ∈ Wa

and g ∈ �. Extend the length function from Wa to We by defining (w) = (v). (Note
that for w ∈ Wa , (w) is the number of hyperplanes Hα,n separating A◦ and wA◦ where
α ∈ �+(g, h) and n ∈ Z. It is also equal to the length of a reduced expression for w in the
generators Sa of Wa .)

Notation 5.6 For μ ∈ �, let τμ ∈ We be translation by μ: τμ(ν) = ν + μ.

We now define the affine Hecke algebra.

Definition 5.7 The affine Hecke algebra Ha is the K-algebra with K-basis {T̃w}w∈We with
the relations

T̃v T̃w = T̃vw if (vw) = (v)+ (w)

T̃ 2
s = (q

1
2 − q−

1
2 )T̃s + T̃1 for s ∈ Sa .

It is also the K-algebra with K-basis {Tw}w∈We with the relations

TvTw = Tvw if (vw) = (v)+ (w)

T 2
s = (q − 1)Ts + qT1 for s ∈ Sa .

We define the following elements of Ha .

Definition 5.8 For μ ∈ �+, let

X̃μ := T̃τμ = q−(τμ)/2Tτμ =: Xμ = q−(ρ∨,μ)Tτμ .

For μ ∈ �, there are μ1, μ2 ∈ �+ such that μ = μ1 − μ2. Let

X̃μ := X̃μ1(X̃μ2)−1 = Xμ1(Xμ2)−1 =: Xμ.

It can be shown that X̃μ X̃ν = X̃μ+ν = X̃ν X̃μ. Thus K[�] = SpanK{X̃μ : μ ∈ �} is a
subalgebra of Ha .

Proposition 5.9 [21, Prop. 3.7] Two K-bases for Ha are

{T̃−1
w−1 X̃μ : w ∈ W , μ ∈ �} and {X̃μT̃−1

w−1 : w ∈ W , μ ∈ �}.
Definition 5.10 Let

10 =
∑

w∈W

Tw = q(w0)
∑

w∈W

T−1
w−1

and let

1̃0 = 1

W0(q−1)
∑

w∈W

q−(w)/2T̃−1
w−1 =

1

W0(q)

∑

w∈W

q(w)/2T̃w

where W0(t) =∑w∈W t(w) is the Poincaré polynomial of W .
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Note that 1̃20 = 1̃0 and

T̃−1
w−1 1̃0 = q−(w)/21̃0.

There is actually a second way K[�] = SpanK{X̃μ : μ ∈ �} is a subalgebra of Ha : by
the above formula, {X̃μ1̃0 : μ ∈ �} is a basis of Ha10. The map � defined by

� : K[�] → Ha 1̃0
f �→ f 1̃0

is a vector space isomorphism.
According to a theorem of Bernstein, the centre of Ha is

Z(Ha) = K[�]W ,

the ring of symmetric functions.
The spherical Hecke algebra is 1̃0Ha 1̃0.

Theorem 5.11 The ring of symmetric functions and the spherical Hecke algebra are isomor-
phic K-algebras via

� : K[�]W = Z(Ha) → 1̃0Ha 1̃0
f �→ f 1̃0.

The isomorphism is called the Satake isomorphism.

Thus {1̃0 X̃μ1̃0 : μ ∈ �} is a basis for 1̃0Ha 1̃0. This leads us to the definition of Hall–
Littlewood polynomials.

Definition 5.12 Given μ ∈ �, recall that Wμ is the stabilizer of μ and W μ be the set of min-
imal length coset representatives of W/Wμ. The Hall–Littlewood polynomial or Macdonald
spherical function Pμ(X; q−1) ∈ K[�]W is the polynomial defined by

Pμ(X; q−1)1̃0 =
(
∑

w∈Wμ

q−(w)/2T̃−1
w−1

)
X̃μ1̃0.

In fact,

Pμ(X; q−1)1̃0 = W0(q−1)
Wμ(q−1)

1̃0 X̃μ1̃0

where Wμ(t) =∑w∈Wμ
t(w) is the Poincaré polynomial of Wμ.

According to Macdonald,

Theorem 5.13 [22, Theorem 4.1.2] For μ ∈ �,

Pμ(X; q−1) = 1

Wμ(q−1)
∑

w∈W

w

⎛

⎝Xμ
∏

α∈�+(g,h)

1− q−1X−α

1− X−α

⎞

⎠ .

Thus we can see that Hall–Littlewood polynomials interpolate between characters of irre-
ducible highest weight modules at q = 0 for dominantμ and monomial symmetric functions
at q = 1. The ultimate goal is to classify unitary representations, so we have to determine
when signature characters and characters are equal. Thus expressing signature characters in
terms of Hall–Littlewood polynomials is useful. This is the purpose of the following two
sections.
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Remark 5.14 Note that when q = −1 and Wμ is non-trivial, the denominator inMacdonald’s
formula, Wμ(q−1), is zero. The formula should be interpreted in the following way when
q = −1 (see [23, p. 259]). First, substituting μ = 0 in Macdonald’s formula gives the
formula for the Poincaré polynomial

W0(q
−1) =

∑

w∈W

w

(
1− q−1X−α

1− X−α

)

[23, p. 207]. Let �μ be the roots associated with Wμ and �+
μ = �μ ∩�+(g, h). Thus

Wμ(q−1)Pλ(X; q−1)

=
∑

w∈W

w

⎛

⎝Xμ
∏

α∈�+(g,h)

1− q−1X−α

1− X−α

⎞

⎠

=
∑

v∈Wμ

∑

w∈Wμ

Xvwμvw

⎛

⎜⎝
∏

α∈�+μ

1− q−1X−α

1− X−α

∏

α∈�+(g,h)\�+μ

1− q−1X−α

1− X−α

⎞

⎟⎠

=
∑

v∈Wμ

Xvμ

⎡

⎢⎣v
∑

w∈Wμ

w
∏

α∈�+μ

1− q−1X−α

1− X−α

⎤

⎥⎦

⎡

⎢⎣v
∏

α∈�+(g,h)\�+μ

1− q−1X−α

1− X−α

⎤

⎥⎦

since w ∈ Wμ permutes the roots in �+(g, h) \�+
μ

=
∑

v∈Wμ

Xvμ
[
vWμ(q−1)

]
⎡

⎢⎣v
∏

α∈�+(g,h)\�+μ

1− q−1X−α

1− X−α

⎤

⎥⎦

= Wμ(q−1)
∑

v∈Wμ

Xvμv
∏

α∈�+(g,h)\�+μ

1− q−1X−α

1− X−α

giving us the formula

Pλ(X; q−1) =
∑

v∈Wμ

Xvμv
∏

α∈�+(g,h)\�+μ

1− q−1X−α

1− X−α

which still holds when q = −1.

6 Alcove walks and Hall–Littlewood polynomials

Determining Kostka numbers and Littlewood-Richardson coefficients are two difficult prob-
lems in representation theory solved by Littelmann’s path model [18]. In [7], Gaussent and
Littelmann introduced galleries, a discrete version of Littelmann paths. They showed that
the gallery model and the path model are equivalent. Further work on this discrete version
of Littelmann paths appeared in [19] and [20]. (History from [27] and [16].)

In [27], Schwer developed a formula for Hall–Littlewood polynomials in terms of posi-
tively folded galleries. In [25], Ram reformulated Schwer’s formula in terms of alcove walks,
which originate fromGaussent-Littelmann andLenart–Postnikov’swork. Using Lenart’s ver-
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sion of Ram’s formula, we will relate signature characters of invariant Hermitian forms on
irreducible Verma modules and what we call summands of Hall–Littlewood polynomials.

We will discuss alcove paths, alcove walks, Ram’s alcove walk algebra, and Ram’s pre-
sentation of the affine Hecke algebra in terms of alcove walks. We show that the signature
character condition ε(I ) �= 0 corresponds with the condition of positive folding.We establish
other basic relationships between Ram’s formula for Hall–Littlewood polynomials and the
signature character formula for irreducible Verma modules.

First, we need to expand our definition of alcove. In addition to thinking of We as acting
on the alcoves in h∗0 by both translations and orientation changes, We may be thought of in
the following way. Tile � × h∗0 with alcoves. (When we are studying signature characters,
replace this with�i× the imaginary weights.) The extended affineWeyl group We acts freely
on � × h∗0 so that g−1A◦ is in the same place as A◦ except on the gth “sheet” of � × h∗0.
(Note that in the signature character work, the action of Wa chosen was w ∈ Wa acts on A◦
by wA◦. In Ram’s work, w ∈ We acts on the alcove A◦ in �× h∗0 by w−1A◦. This is so that
you can list from the left to the right the reflections corresponding to the affine hyperplanes
crossed as you take an alcove path [definition below] from A to B.)

Definition 6.1 Two distinct alcoves A and B are adjacent if they share a common alcovewall.
Lenart and Ram have two different ways of indexing alcove walls. If the separating wall is

Hβ,k , Lenart in [16] writes A
β→ B if A ⊂ H−

β,k and B ⊂ H+
β,k . Ram’s labelling of alcove

walls is We-equivariant. That is, he labels the walls of A◦ 0, 1, 2, . . . , m corresponding to
Hα0,1, Hα1,0, . . . , Hαm ,0. Then for w ∈ We, the walls of wA◦ are also labelled 0, 1, . . . , m
in a We-equivariant way. That is, if the wall F of A◦ is labelled i , then the wall wF of wA◦
is also labelled i . Another way to state this is that the wall separating A◦ and si A◦ is labelled
i . So is the wall separating wA◦ and wsi A◦ for every w ∈ We.

Definition 6.2 An alcove path from A to B is a sequence of alcoves A = A0
R1→ A1

R2→
· · · R→ A = B where for 1 ≤ i ≤ , Ai−1 and Ai are adjacent. Also, Ri is the affine
reflection corresponding to the affine hyperplane separating Ai−1 and Ai and Ai = Ri Ai−1.

We come to Ram’s definition of the alcove walk algebra from [25]. The vertices of A◦ are
labelled 0, 1, . . . , m and for g ∈ �, let λi be the image of the origin under g, i.e. in g−1A◦.
Let g(i) be the index such that gsi g−1 = sg(i).

Definition 6.3 Let the alcove walk algebra A be the K-algebra with generators g ∈ � and
for 0 ≤ i ≤ m

i
− +

..............

..............

..............

..............

.........

...................................................................................... ..............

i
− +

..............

..............

..............

..............

.........

....................................................................................................

i
− +

..............

..............

..............

..............

..............

..

................................................................................ ......................

i
− +

..............

..............

..............

..............

..............

..

......................................................................................................

positive i-crossing negative i-crossing positive i-fold negative i-fold

(0 ≤ i ≤ m)

with relations (straightening laws)

i
− +

..............

..............

..............

..............

.........

...................................................................................... .............. =
i

− +

..............

..............

..............

..............

.........

.................................................................................................... +
i

− +

..............

..............

..............

..............

..............

..

................................................................................ ...................... and

i
− +

..............

..............

..............

..............

.........

.................................................................................................... =
i

− +

..............

..............

..............

..............

.........

...................................................................................... .............. +
i

− +

..............

..............

..............

..............

..............

..

......................................................................................................

(6.1)
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and

g

⎛

⎜⎝

i
− +

..............

..............

..............

..............

.........

...................................................................................... ..............

⎞

⎟⎠ =

⎛

⎜⎜⎝

g(i)
− +

..............

..............

..............

..............

.........

...................................................................................... ..............

⎞

⎟⎟⎠ g, g

⎛

⎜⎝

i
− +

..............

..............

..............

..............

.........

....................................................................................................

⎞

⎟⎠ =

⎛

⎜⎜⎝

g(i)
− +

..............

..............

..............

..............

.........

....................................................................................................

⎞

⎟⎟⎠ g,

g

⎛

⎜⎜⎝

i
− +

..............

..............

..............

..............

..............

..

......................................................................................................

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

g(i)
− +

..............

..............

..............

..............

..............

..

......................................................................................................

⎞

⎟⎟⎟⎠ g, g

⎛

⎜⎜⎝

i
− +

..............

..............

..............

..............

..............

..

................................................................................ ......................

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎝

g(i)
− +

..............

..............

..............

..............

..............

..

................................................................................ ......................

⎞

⎟⎟⎟⎠ g.

(Graphics are from [25], used with the author’s permission.) Multiplication in the algebra
is concatenation of words in the generators. These words may be viewed as a sequence of
arrows with the first arrow having its tail in the fundamental alcove.

Definition 6.4 [25] An alcove walk is a word in the generators of A satisfying:

(a) the first step has tail in the fundamental alcove A◦
(b) at each step, the head of the arrow and the tail of the subsequent arrow are in the same

alcove.

Definition 6.5 The type of an alcove walk is the sequence of labels corresponding to the folds
and wall crossings of the walk.

Lenart formulates alcove walks as a generalization of alcove paths in the following way
in [16]. An alcove walk from A to B is a sequence (A = A0, F1, A1, F2, . . . , F, A = B)

where the Ai are alcoves and each Fi is a codimension one common face of Ai−1 and Ai .
The difference between an alcove path and an alcove walk is that Ai−1 and Ai might be

the same alcove in an alcove walk.

Definition 6.6 If in an alcove walk (A = A0, F1, A1, F2, . . . , F, A = B) from A to B
Ai−1 = Ai , then i is said to be a folding position of the walk. The fold is positive if both
Ai−1 and Ai lie on the positive side of the affine hyperplane containing Fi . It is said to be a
negative fold otherwise. If the set of folding positions is empty, then the alcove walk is said
to be unfolded.

Lenart addresses orientation changes (�) in his formulation by also specifying a weight of
a vertex of the final alcove in the alcove walk as the weight of the walk. We will use Lenart’s
formulation without specifying the alcove walk’s weight by assuming that any orientation
changes are made initially, prior to any affine reflections that take us from A to B. The
orientation of the final alcove will be clear as we will be taking paths from A◦ to λ+ A◦.

Definition 6.7 An alcove walk is positively folded if all of its folds are positive.

Definition 6.8 For an alcove path p starting in an alcove containing the origin, the weight of
p,wt(p) ∈ �, is the image of the origin under the path. The final direction of p is ϕ(p) ∈ W
where p ends in the alcove wt(p) + ϕ(p)A◦. The initial direction is ι(p) ∈ W where the
starting alcove is ι(p)A◦.
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Notation 6.9 Ram uses the notation

• c+i for a positive i-crossing,
• c−i for a negative i-crossing,
• f +i for a positive i-crossing, and
• f −i for a negative i-crossing

so that an alcove walk may be written as a string in these symbols.

Note that an arbitrary product in the above generators is not necessarily an alcove walk as
the heads of arrowsmaynotmeet tails of subsequent arrowswhen represented diagramatically
(see [25, pp. 144–145] for an example). However, its straightening (first applying relations
f ∓i = − f ±i and then working left to right applying the relations c±i = c∓i + f ±i ) is a sum
of alcove walks.

Ram proves that the set of alcove walks is a basis for the alcove walk algebra A. He also
describes the affine Hecke algebra in terms of the alcove walk algebra.

Theorem 6.10 [25, Proposition 3.2] Let HA be the quotient of the alcove walk algebra A by
the relations

i
− +

..............

..............

..............

..............

.........

...................................................................................... .............. =

⎛

⎜⎜⎝

i
− +

..............

..............

..............

..............

.........

....................................................................................................

⎞

⎟⎟⎠

−1

,

i
− +

..............

..............

..............

..............

..............

..

...................................................................................................... = −(q
1
2 − q−

1
2 ),

i
− +

..............

..............

..............

..............

..............

..

................................................................................ ...................... = (q
1
2 − q−

1
2 ),

and p = p′ if p and p′ are nonfolded walks ending in the same alcove. Then HA and Ha

are isomorphic via

T̃−1
w−1 ↔ image in HA of a minimal length alcove walk from A◦ to wA◦ and

X̃μ ↔ image in HA of a minimal length alcove walk from A◦ to μ+ A◦
for w ∈ W and μ ∈ �.

(Graphics used with modification from [25] with permission of the author.)
Ram proves the following formula for multiplication in the affine Hecke algebra in terms

of alcove walks:

Proposition 6.11 [25, Theorem 3.3] For an alcove walk p, let f −(p) be the number of
negative folds of p and f (p) be the total number of folds of p. For μ ∈ � and w ∈ W , fix a
minimal length alcove walk pw = c−i1c−i2 · · · c−ir from A◦ to wA◦ and a minimal length alcove
walk pμ = cε1

j1
cε2

j2
· · · cεs

js
from A◦ to μ+ A◦. Then

T̃−1
w−1 X̃μ =

∑

p

(−1) f −(p)(q
1
2 − q−

1
2 ) f (p) X̃wt(p)T̃−1

ϕ(p)−1 ,

where the indices p are all alcove walks of the form p = c−i1c−i2 · · · c−ir p j1 p j2 · · · p js where

p jk is cεk
jk
, c−εk

jk
, or f εk

jk
.

This gives a combinatorial formula for the transition matrix between the bases {T̃−1
w−1 X̃μ :

w ∈ W , μ ∈ �} and {X̃μT̃−1
w−1 : μ ∈ �,w ∈ W } of Ha .

Note that if μ in the proposition is dominant, then all the εi in pμ must be + and so the
only folds which appear in the straightening of pw pμ are positive folds. Thus it follows from
the proposition:
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Theorem 6.12 ([27, Theorem 5.5], as formulated in [25, Theorem 4.2]) For λ ∈ �+, let
pλ = c+i1 · · · c+i be a minimal length alcove walk from A◦ to λ+ A◦. Letting

Bq(pλ) = {positively folded alcove walks of type (i1, . . . , i) beginning at wA◦|w ∈ W λ},
Pλ(X; q−1) =

∑

p∈Bq (pλ)

q−
1
2 ((ι(p))+(ϕ(p))− f (p))(1− q−1) f (p) Xwt(p).

Note that if p begins at wA◦, then ι(p) = w.

To relate Hall–Littlewood polynomials and signature characters of invariant Hermitian
forms on irreducible Verma modules, we use Lenart’s analysis of alcove walks from [16].

Definition 6.13 Given an alcovewalk p = (A0, F1, A1, . . . , F, A), let the folding operator
φi be defined by

φi (p) = (A0, F1, A1, . . . , Ai−1, Fi , A′i , F ′i+1, A′i+1, . . . , A′)

where for j ≥ i A′j = Ri (A j ) and F ′j = Ri (Fj ) where Ri is the affine reflection corre-
sponding to the affine hyperplane through Fi . In other words, the folding operator leaves
A0, . . . , Ai−1 alone and reflects the rest of the walk through the affine hyperplane containing
Fi .

Lenart observed that any two folding operators commute.

Definition 6.14 Given an alcove walk p, let f p(p) = { j1 < j2 < · · · < js} be the set of
folding positions of p. Then the unfold operator is defined to be

unfold(p) = φ j1 · · ·φ js (p),

which produces an unfolded alcove walk.

Notation 6.15 Let A0 = A◦
R1→ A1

R2→ · · · R→ A = λ+ A◦ be a minimal length alcove path
from A◦ to λ+ A◦ where λ ∈ �+. Denote it by pλ.

For J = { j1 < · · · < js} ⊂ {1, . . . , }, define
φ(J ) = R̄ j1 · · · R̄ js ∈ W ,

μ(J ) = R j1 · · · R js (λ) ∈ �.

For w ∈ W , let wpλ be the path wA0 → wA1 → · · · → wA.

Lemma 6.16 [16, Proposition 2.5] Let Bq(pλ) be as defined in Theorem 6.12 and let J =
{ j1 < · · · < js} denote a subset of {1, . . . , }. Then:

(1) The alcove path p ∈ Bq(pλ) if and only if p = φ j1 · · ·φ js (wpλ) for some indices
j1 < · · · < js and w ∈ W λ and

w > w R̄ j1 > w R̄ j1 R̄ j2 > · · · > w R̄ j1 · · · R̄ js = wφ(J ).

(2) If p ∈ Bq(pλ), p = φ j1 · · ·φ js (wpλ), then wt(p) = wμ(J ).

(3) If p ∈ Bq(pλ), p = φ j1 · · ·φ js (wpλ), then ϕ(p) = wφ(J ).

(4) If p ∈ Bq(pλ), p = φ j1 · · ·φ js (wpλ), then ι(p) = w.

Thus Lenart reformulates Theorem 6.12 as:
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Theorem 6.17 [16, Theorem 2.7] For λ ∈ �+, let A0 = A◦
R1→ A1

R2→ · · · R→ A = λ+ A◦
denote a minimal length alcove path from A◦ to λ+A◦. Then the Hall–Littlewood polynomial
corresponding to λ may be expressed as

Pλ(X; q−1) =
∑

w∈Wλ

∑

J={ j1<···< js }⊂{1,...,}
w>w R̄ j1>···>w R̄ j1 ···R̄ js

q−
1
2 ((w)+(wφ(J ))−|J |)(1− q−1)|J | X̃wμ(J ).

Note that J = ∅ is permitted in the summation.
For the purpose of comparison to signature character formulas, we define:

Definition 6.18 Given λ ∈ �+, a summand of a Hall–Littlewood polynomial Pλ(X; q−1) is
the polynomial Pw

λ (X , q−1) ∈ Z[q 1
2 , q− 1

2 ][�] defined by
Pw

λ (X , q−1)1̃0 = q−(w)/2T̃−1
w−1 X̃λ1̃0

for w ∈ W .

Then, by Lenart’s work:

Proposition 6.19 Let λ ∈ �+ and let A0 = A◦
R1→ A1

R2→ · · · R→ A = λ + A◦ denote a
minimal length alcove path from A◦ to λ+ A◦. Then for w ∈ W λ,

Pw
λ (X; q−1) =

∑

J={ j1<···< js }⊂{1,...,}
w>w R̄ j1>···>w R̄ j1 ···R̄ js

q−
1
2 ((w)+(wφ(J ))−|J |)(1− q−1)|J | X̃wμ(J ).

We need the following results to compare summands of Hall–Littlewood polynomials and
signature characters of invariant Hermitian forms on irreducible Verma modules:

Proposition 6.20 Let λ ∈ �+ be regular and fix w ∈ W . Let

A0 = A◦
R1→ A1

R2→ · · · R→ A = λ+ A◦
be a minimal length alcove path from A◦ to λ+ A◦. From this path, define the alcove path

C0
r1→ C1

r2→ · · · r→ C

where Ci = w(−λ+ Ai ). Use the notation of 6.15 and use the notation χ(I ) and ν(I ) from
Theorem 4.12 (although the settings are different: this theorem makes general statements
about alcove paths from A◦ to λ + A◦ not necessarily arising from studying signature
characters). Then: (1) The path from A◦ to λ + A◦ may be chosen so that the final
(w0) + 1 alcoves form a path from λ + w0A◦ to λ + A◦ traversing alcoves of the form
λ + x A◦ where the x ∈ W appearing come from a reduced expression for w0. Specif-
ically, if w0 = s j1 · · · s j(w0)

is a reduced expression, let the final (w0) + 1 alcoves be
λ + s j1 · · · s j(w0)

A◦, λ + s j1 · · · s j(w0)−1 A◦, · · · , λ + s j1 A◦, λ + A◦. For the remainder of
this proposition, assume that we have fixed such a path. The affine hyperplanes crossed on
the path from A−(w0) to A are of the form {Hα,(λ,α∨)|α ∈ �+(g, h)}. That is, the affine
hyperplanes crossed all contain λ.

(2) The path from C0 to C−(w0) stays in the Weyl chamber wC0. The affine hyperplanes
crossed on the path from C−(w0) to C are {Hα,0|α ∈ �+(g, h)}.

(3) The condition

w > r̄i1w > r̄i1 r̄i2w > · · · > r̄i1 · · · r̄ik w
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holds if and only if

w > w R̄i1 > w R̄i1 R̄i2 > · · · > w R̄i1 · · · R̄ik .

(4) For I ⊂ {1, 2, . . . , − (w0)},
χ(I )w = wφ(I ).

(5) For I ⊂ {1, 2, . . . , − (w0)},
w(−λ)− ν(I ) = −wμ(I ).

(6) For J = I ∪ J̄ where I ⊂ {1, 2, . . . , −(w0)} and J̄ ⊂ {−(w0)+1, −(w0)+
2, · · · , },

wμ(I ) = wμ(J ).

Proof (1) The affine hyperplanes separating A◦ and λ+ A◦ are {Hα, j : α ∈ �+(g, h), 1 ≤
j ≤ (λ, α∨)}. The affine hyperplanes separating λ+ A◦ and λ+ w0A◦ are {Hα,(λ,α∨) :
α ∈ �+(g, h)}. Taking a reduced expression forw0 gives a minimal length path between
those alcoves. Since the affine hyperplanes separating λ+w0A◦ and A◦ are {Hα, j : α ∈
�+(g, h), 1 ≤ j ≤ (λ, α∨)− 1}, we can take a minimal length path from λ+ w0A◦ to
λ+ A◦ and extend it to a minimal length path from A◦ to λ+ A◦.

(2) We only need to show that −λ+ A0,−λ+ A1, . . . ,−λ+ A−(w0) = w0A◦ lie in C0.
Note that w0A◦ = A◦ ⊂ C0. The affine hyperplanes separating −λ + A0 and w0A◦
are {Hα, j : α ∈ �+(g, h), 1 − (λ, α∨) ≤ j ≤ −1}. Since no Weyl chamber walls are
crossed on the path from−λ+ A0 to−λ+ A−(w0) = w0A◦, therefore the path from C0

to C−(w0) stays in the Weyl chamber wC0. The path from −λ+ A−(w0) to −λ+ A

traverses alcoves of the form x A◦ where the x ∈ W come from a reduced expression for
w0. Therefore the affine hyperplanes crossed on the path from−λ+ A−(w0) to−λ+ A

are {Hα,0 : α ∈ �+(g, h)}. Sincew ∈ W sends this set of hyperplanes to itself, therefore
the affine hyperplanes crossed on the path from C−(w0) to C are {Hα,0|α ∈ �+(g, h)}.

(3) This follows from the fact that r̄ j = w R̄ jw
−1 for j = 1, . . . , .

(4) This also follows from r̄ j = w R̄ jw
−1 for j = 1, . . . , .

(5) For 1 ≤ j ≤  − (w0), let the affine hyperplane Hβ j ,N j correspond to R j where
β j ∈ �+(g, h) and N j ∈ Z

+. Let I = {i1 < · · · < ik} ⊂ {1, . . . , − (w0)}.
wμ(I ) = wRi1 Ri2 · · · Rik λ

= wRi1 · · · Rik−1(R̄ik λ+ Nik βik )

= wRi1 · · · Rik−2(R̄ik−1 R̄ik λ+ Nik R̄ik−1βik + Nik−1βik−1)

...

= w(R̄i1 · · · R̄ik λ+ Nik R̄i1 · · · R̄ik−1βik + Nik−1 R̄i1 · · · R̄ik−2βik−1 + · · · + Ni1βi1)

= (w R̄i1w
−1) · · · (w R̄ik w

−1)(wλ)+
k∑

j=1
Ni j (w R̄i1w

−1) · · · (w R̄i j−1w
−1)wβi j

For 1 ≤ j ≤  − (w0), r j corresponds to the affine hyperplane wHβ j ,N j−(λ,β∨j ) =
Hwβ j ,N j−(λ,β∨j ). Note that wβ j may not necessarily be a positive root. Let γ j = wβ j

and let M j = N j − (λ, β∨j ).
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ri1w(−λ) = r̄i1w(−λ)+ Mi1γi1

ri2ri1w(−λ) = r̄i2 r̄i1w(−λ)+ Mi1 r̄i2γi1 + Mi2γi2

...
...

rik · · · ri1w(−λ) = r̄ik · · · r̄i1w(−λ)+ Mi1 r̄ik · · · r̄i2γi1 + Mi2 r̄ik · · · r̄i3γi2 + · · · + Mik γik

Thus:

w(−λ)− ν(I ) = r̄i1 · · · r̄ik ri1 · · · rik w(−λ)

= w(−λ)+ Mi1 r̄i1γi1 + Mi2 r̄i1 r̄i2γi2 + · · · + Mik r̄i1 · · · r̄ik γik

= w(−λ)−
k∑

j=1
Mi j r̄i1 · · · r̄i j−1γi j

= r̄i1 · · · r̄ik w(−λ)+ (w(−λ)− r̄i1 · · · r̄ik w(−λ))−
k∑

j=1
Mi j r̄i1 · · · r̄i j−1γi j

Now

r̄i1 · · · r̄ik w(−λ) = r̄i1 · · · r̄ik−1(w(−λ)− (w(−λ), γ∨ik
)γik )

= r̄i1 · · · r̄ik−2 (w(−λ)− (w(−λ), γ∨ik
)r̄ik−1γik − (w(−λ), γ∨ik−1)γik−1)

...

= w(−λ)− (w(−λ), γ∨ik
)r̄i1 · · · r̄ik−1γik − (w(−λ), γ∨ik−1)r̄i1 · · · r̄ik−2γik−1

− · · · − (w(−λ), γ∨i1 )γi1 ,

so

w(−λ)− ν(I ) = r̄i1 · · · r̄ik ri1 · · · rik w(−λ)

= r̄i1 · · · r̄ik w(−λ)+
k∑

j=1
((w(−λ), γ∨i j

)− Mi j )r̄i1 · · · r̄i j−1γi j

= r̄i1 · · · r̄ik w(−λ)+
k∑

j=1
((−λ, β∨i j

)− Mi j )r̄i1 · · · r̄i j−1γi j

= −(w R̄i1w
−1) · · · (w R̄ik w−1)wλ−

k∑

j=1
Ni j (w R̄i1w

−1) · · · (w R̄i j−1w
−1)wβi j

= −wμ(I ).

(6) For j ∈ J̄ , by (1), R j corresponds to reflection through a hyperplane of the form Hα,(λ,α∨)

where α ∈ �+(g, h), so it fixes λ. Therefore if I = {i1 < · · · < ik} ⊂ {1, 2, . . . ,  −
(w0)} and J̄ = {ik+1 < . . . < ir } ⊂ {− (w0)+ 1, − (w0)+ 2, . . . , }, then

wμ(J ) = wRi1 · · · Rik Rik+1 · · · Rir (λ) = wRi1 · · · Rik (λ) = wμ(I ).

��
We observe that the path from C−(w0) to C does not cross any reducibility hyperplanes,

so these hyperplane crossings do not alter the signature character. Thus we can use the
path defined above in Theorem 4.14, although our path ends in C = wA◦ rather than
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wA◦ as required by the theorem; however, by our remark on signature characters we can
truncate the path to end in C−(w0) = wA◦. Then, instead of I ⊂ {1, . . . , } we have
I ⊂ {1, . . . , − (w0)}. Thus for μ ∈ A◦, if g0 is compact, then:

chs M(w(−λ+ μ)) = R−wλ+wA◦(−wλ+ wμ)

=

e−ρ+wμ
∑

I={i1<···<ik }⊂{1,...,−(w0)}
w>r̄i1w>r̄i1 r̄i2w>···>r̄i1 ···r̄ik w

(−1) 1
2 ((w)−(χ(I )w)−|I |)2|I |ew(−λ)−ν(I )

∏
α∈�+(g,h)(1+ e−α)

=

e−ρ+wμ
∑

I={i1<···<ik }⊂{1,...,−(w0)}
w>w R̄i1>w R̄i1 R̄i2>···>w R̄i1 ···R̄ik

(−1) 1
2 ((w)−(wφ(I ))−|I |)2|I |e−wμ(I )

∏
α∈�+(g,h)(1+ e−α)

.

Compare this with

Pw
λ (X;−1) =

∑

J=I∪ J̄ where
I={i1<···<ik }⊂{1,...,−(w0)},

J̄={ik+1<···<ir }⊂{−(w0)+1,··· ,},
w>w R̄i1>w R̄i1 R̄i2>···>w R̄i1 ···R̄ir

(−1) 12 ((w)+(wφ(J ))−|J |)2|J | X̃wμ(J )

=
∑

J=I∪ J̄⊂{1,...,}
(−1) 12 ((w)−(wφ(I ))−|I |)2|I | X̃wμ(I )(2| J̄ |(−1) 12 ((wφ(I∪ J̄ ))+(wφ(I ))−| J̄ |)

).

For all I = {i1 < · · · < ik} ⊂ {1, . . . ,  − (w0)} appearing in the two different
summations, we will prove in the following section that

∑

J̄={ik+1<···<ir }⊂{−(w0)+1,··· ,}
wφ(I )=w R̄i1 ···R̄ik >wφ(I )R̄ik+1>···>wφ(I )R̄ik+1 ···R̄ir

2| J̄ |(−1) 1
2 ((wφ(I∪ J̄ ))+(wφ(I ))−| J̄ |) = 1.

(6.2)

7 Signature characters of irreducible Vermamodules and summands of
Hall–Littlewood polynomials

Throughout this section, we assume that g0 is compact. We deal with non-compact real
forms in Sect. 10. We compare the Hall–Littlewood polynomial summand Pw

λ (X;−1) to the
signature characters of the irreducible Verma modules M(w(−λ+μ)) and M(w(−λ)−μ)

where μ ∈ A◦. We show that the signature characters correspond to the “negative” of the
Hall–Littlewood polynomial summand evaluated at q = −1 times a version of the Weyl
denominator when λ ∈ �+ is regular. To do this, we reformulate our summations using
material from Matthew Dyer’s thesis [6] on natural orderings and R polynomials.

Notation 7.1 Let T = ∪w∈W wSw−1 denote the reflections of W .

Definition 7.2 AsubgroupW ′ ofW is a reflection subgroup if it is generated by the reflections
it contains: W ′ = 〈W ′ ∩ T 〉.
Notation 7.3 Given W ′ a subgroup of W , let S(W ′) = {t ∈ T |N (t) ∩ W ′ = {t}} where
N (w) = {t ∈ T |(wt) < (w)}.
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Definition 7.4 A partial order � on T is a natural order if for every dihedral reflection
subgroup W ′ of W with S(W ′) = {r , s}, either

r ≺ rsr ≺ · · · ≺ srs ≺ s or s ≺ srs ≺ · · · ≺ rsr ≺ r .

Note that natural orders are also called reflection orders in the literature.

Proposition 7.5 [6, 6.16]

(1) A natural order is a total order on T .
(2) The reverse of a natural order is a natural order on T .
(3) t1 ≺ t2 ≺ · · · ≺ t(w0) is a natural order on T if and only if there is a reduced expression

w0 = si1 · · · si(w0)
for w0 such that t j = si1 · · · si j · · · si1 .

Definition 7.6 [6, 6.22] Fix a natural order � on T . We make the following definitions:

(1) Let C1 = {(x, y) ∈ W × W : x < y, y = xsα for some α ∈ �+(g, h)}, the edge set of
the Bruhat graph of (W , S).

(2) For n ∈ Z
+, x, y ∈ W , define

Cn(x, y) = {(x0, . . . , xn) ∈ W n+1|(xi−1, xi ) ∈ C1 for 1 ≤ i ≤ n, x0 = x, xn = y}.
In other words, Cn(x, y) corresponds to the set of paths of length n from x to y in the
Bruhat graph.

(3) For x, y ∈ W , define a polynomial r≺x,y(α) ∈ Z[α] by setting the coefficient of αn in r≺x,y
to be the cardinality of

C≺n (x, y) := {(x0, . . . , xn) ∈ Cn(x, y)|x−10 x1 ≺ x−11 x2 ≺ · · · ≺ x−1n−1xn}.

Theorem 7.7 [6, Theorem 6.23] Let � be a natural order on the reflections of W . Then for
all x, y ∈ W ,

r≺x,y(α) = R̃x,y(α).

As in Proposition 6.20, suppose λ ∈ �+ is regular and consider the paths A0 = A◦
R1→

A1
R2→ · · · R→ A = λ + A◦ and C0

r1→ C1
r2→ · · · r→ C where Ci = w(−λ + Ai ). Fix a

reduced expressionw0 = s j1 · · · s j(w0)
. Suppose from the reduced expression we constructed

a minimal length path from A−(w0) = λ+w0A◦ to A = λ+ A◦: A−(w0) = λ+w0A◦,
A−(w0)+1 = λ+si1si2 · · · si(w0)−1 A◦, …, A = λ+1A◦. The reduced expression also gives
us the natural order � on T :

R̄ ≺ R̄−1 ≺ · · · ≺ R̄−(w0)+2 ≺ R̄−(w0)+1.

Fix I = {i1 < · · · < ik} ⊂ {1, . . . , − (w0)} appearing in the two different summations
in the discussion after Proposition 6.20. The goal is to prove formula (6.2). Given some
J̄ = {ik+1 < · · · < ir } appearing in the equation, let y = x0 = w R̄i1 · · · R̄ik R̄ik+1 · · · R̄ir ,
x1 = w R̄i1 · · · R̄ik R̄ik+1 · · · R̄ir−1 , . . ., x = x|J | = wφ(I ) = w R̄i1 · · · R̄ik . Note that

x−10 x1 = R̄ir , x−11 x2 = R̄ir−1 , . . . , x−1|J |−1x|J | = R̄ik+1 .

Thus requiring ik+1 < ik+2 < · · · < ir in the summation in (6.2) is equivalent to the
requirement that x−10 x1 ≺ x−11 x2 ≺ · · · ≺ x−1|J |−1x|J | in the definition of C≺|J |(y, x).
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Let r(I ) be the left side of formula (6.2). Recall x = wφ(I ).

r(I ) =
∑

J̄={ik+1<···<ir }⊂{−(w0)+1,··· ,}
wφ(I )=w R̄i1 ···R̄ik >wφ(I )R̄ik+1>···>wφ(I )R̄ik+1 ···R̄ir

2| J̄ |(−1) 1
2 ((wφ(I∪ J̄ ))+(wφ(I ))−| J̄ |)

=
∑

J̄={ik+1<···<ir }⊂{−(w0)+1,··· ,}
wφ(I )=w R̄i1 ···R̄ik >wφ(I )R̄ik+1>···>wφ(I )R̄ik+1 ···R̄ir

(−2i)| J̄ |(−1) 1
2 ((wφ(I∪ J̄ ))+(wφ(I ))

=
∑

y≤x

∑

n≥0

∑

(x0,x1,...,xn)∈C≺n (y,x)

(−2i)ni(x)+(y)

=
∑

y≤x

r≺y,x (−2i)i(x)+(y)

=
∑

y≤x

R̃y,x (−2i)i(x)+(y) (7.1)

by Theorem 7.7.

Lemma 7.8 Let x ∈ W . Then
∑

y≤x

R̃y,x (−2i)i(x)+(y) = 1.

(Note that we are evaluating the R̃y,x at α = −2i . Recall that α = q− 1
2 − q

1
2 , so this is

equivalent to evaluation at q = −1.)

Proof We prove this result by induction on x . When x = 1, the formula holds. Assume, by
induction, that for x ∈ W ,

∑

y≤x

R̃y,x (−2i)i(x)+(y) = 1.

Consider xs > x where s ∈ S.
∑

y≤xs

R̃y,xs(−2i)i(xs)+(y) =
∑

y≤x

R̃y,xs(−2i)i(xs)+(y) +
∑

y�x
y≤xs

R̃y,xs(−2i)i(xs)+(y).

By Property Z (see [5]), for y appearing in the second sum on the right hand side, y > ys
and ys ≤ x . Thus:
∑

y≤xs

R̃y,xs(−2i)i(xs)+(y) =
∑

y≤x
ys<y

R̃ys,x (−2i)i(x)+(ys)+2

+
∑

y≤x
y<ys

(
R̃ys,x (−2i)i(x)+(ys) − 2i R̃y,x (−2i)i(x)+(y)+1)

+
∑

y�x
y≤xs

(so y>ys,ys≤x)

R̃ys,x (−2i)i(x)+(ys)+2
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Combining the first and last sums on the right hand side:
∑

y≤xs

R̃y,xs(−2i)i(xs)+(y) =
∑

y≤x
y<ys

R̃y,x (−2i)i(x)+(y)(−1)

+
∑

y≤x
y<ys

(
R̃ys,x (−2i)i(x)+(ys) + 2R̃y,x (−2i)i(x)+(y)

)

=
∑

y≤x,y<ys

(
R̃ys,x (−2i)i(x)+(ys) + R̃y,x (−2i)i(x)+(y)

)

=
∑

y≤x

R̃y,x (−2i)i(x)+(y)

where the final equality comes from R̃ys,x = 0 if ys > x . Thus, by induction, for all x ∈ W ,

∑

y≤x

R̃y,x (−2i)i(x)+(y) = 1.

��

It follows fromTheorem4.14, Propositions6.19, 6.20, the discussion following that propo-
sition, the discussion around formula (7.1) and Lemma 7.8:

Theorem 7.9 Suppose g0 is compact, λ ∈ �+ is regular, and w ∈ W . Then for all μ ∈ A◦:

chs M(w(−λ+ μ)) = Rw(−λ+A◦)(w(−λ+ μ))

= ewμ−ρ

∏
α∈�+(g,h)(1+ e−α)

�(Pw
λ (X;−1))

where �(X̃ν) = e−ν for ν ∈ �. Recall that Pw
λ (X; q−1)1̃0 = q−(w)/2T̃−1

w−1 X̃λ1̃0 is a
Hall–Littlewood polynomial summand. Also,

chs M(w(−λ)− μ) = e−μ−wμchs M(w(−λ+ μ)) = e−μ−ρ

∏
α∈�+(g,h)(1+ e−α)

�(Pw
λ (X;−1)).

Proof The only thing left to discuss is the final equation. w(−λ)− μ belongs to the alcove
−wλ+w0A◦ while w(−λ+μ) belongs to the alcove−wλ+wA◦. The alcoves−wλ+ A◦
and −wλ + wA◦ are separated by hyperplanes of the form Hα,n where α ∈ �(w−1). The
only β ∈ �+(g, h) such that β hyperplanes are positive in wC0 are β ∈ �(w−1). Therefore
there are no reducibility hyperplanes separating the alcoves−wλ+w0A◦ and−wλ+wA◦,
so the signatures are the same for weights in those alcoves. ��

Example 7.10 Let g0 = su(2), �(g, h) = {±α1}, � = Zλ1. Let λ = nλ1 where n ∈ Z
+.

Then A0 = A◦
sα1,1→ A1

sα1,2→ · · · sα1,n→ An = λ+ A◦ is a minimal length alcove path from A◦
to λ+ A◦.

When w = 1, the only set appearing in the summation of Proposition 6.19 is J = ∅. Thus
P1

λ (X; q−1) = X̃λ. It follows from Theorem 7.9 that for μ ∈ A◦:

chs M(−λ+ μ) = e−λ+μ−ρ

1+ e−α1
and chs M(−λ− μ) = e−λ−μ−ρ

1+ e−α1
.
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By Proposition 6.19,

Ps1
λ (X; q−1) =

n∑

i=1
(1− q−1)1 X̃ s1sα1,i λ + q−1 X̃ s1λ

=
n∑

i=1
(1− q−1)1 X̃λ−iα1 + q−1 X̃ s1λ

so Ps1
λ (X;−1) = X̃ s1λ+2X̃ s1λ+α1 +2X̃ s1λ+2α1 +· · ·+2X̃ s1λ+(n−1)α1 , so by Theorem 7.9

chs M(s1(−λ+ μ)) = es1μ−ρ

1+ e−α1

(
e−s1λ + 2e−s1λ−α1 + 2e−s1λ−2α1 + · · · + 2e−s1λ−(n−1)α1

)

and

chs M(s1(−λ)− μ)) = e−μ−ρ

1+ e−α1

(
e−s1λ + 2e−s1λ−α1 + 2e−s1λ−2α1 + · · · + 2e−s1λ−(n−1)α1

)
.

8 The signature character for alcoves that are not translations of the
fundamental alcove

In the previous section, we saw that signature characters for weights in alcoves of the form
w(−λ+ A◦) are “negatives” of Hall–Littlewood polynomial summands evaluated at q = −1
times a version of theWeyl denominator. In this section, we show how for weights in alcoves
of the formw(−λ+x A◦) the signature characters are sums of “negatives” of Hall–Littlewood
polynomial summands evaluated at q = −1 times a version of the Weyl denominator.

Again, throughout this section, g0 is compact.

Theorem 8.1 Suppose g0 is compact, λ ∈ �+ is regular, and w, x ∈ W . Then for μ ∈ A◦:

chs M(w(−λ+ xμ)) = ewxμ−ρ

∏
β∈�+(g,h)(1+ e−β)

∑

y∈W

cw
y,x�(P y

λ (X;−1))

where the constants cw
y,x ∈ Z are defined by

(1) cw
y,1 = δw,y

(2) cw
y,xs = cw

y,x if xs > x and w < wxsx−1 where s ∈ S.

(3) cw
y,xs = cw

y,x + 2(−1) 1
2 ((w)−(wxsx−1)−1)cwxsx−1

y,x if xs > x and w > wxsx−1 where
s ∈ S.

Proof The proof of formulas (1), (2), and (3) shows that chs M(w(−λ + xμ)) is a sum of
“negatives” of Hall–Littlewood polynomial summands evaluated at q = −1 times the Weyl
denominator.

(1) is just Theorem 7.9.
Suppose x < xs where s ∈ S. We get a path for computing the signature character of

M(w(−λ + xsμ)) by concatenating a minimal length path from xs A◦ to A◦ (where the
first alcove crossing is from xs A◦ to x A◦) and a minimal length path from A◦ to λ + A◦,
translating by −λ, and then multiplying by w.

Recall that for adjacent alcoves A and A′, R A = R A′ if the hyperplane separating A and A′
is not a reducibility hyperplane. Applying this to A = w(−λ+xs A◦) and A′ = w(−λ+x A◦)
gives (2).
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Suppose w(−λ+ xs A◦) and w(−λ+ x A◦) are separated by the reducibility hyperplane
Hγ,n . Then by Lemma 3.14, for μ ∈ A◦,

chs M(w(−λ+ xsμ)) = ewxsμ−wxμchs M(w(−λ+ xμ))

+2ε(Hγ,n, w)ewxsμ−wxsμchs M(w(−λ+ xsμ)− nγ )

= ewxsμ−wxμchs M(w(−λ+ xμ))

+2ε(Hγ,n, w)ewxsμ−wxsμchs M(wxsx−1(−λ)+ wxsμ)

= ewxsμ−wxμchs M(w(−λ+ xμ))

+2(−1) 1
2 ((w)−(wxsx−1)−1)ewxsμ−wxsμchs M(wxsx−1(−λ+ xμ))

This gives (3). ��

9 The singular case

In the case of type A2, all alcoves of the formw(−λ+ x A◦)where λ ∈ �+ is regular include
all alcoves except those of the form wA◦. Signature characters for the latter alcoves are
known since they fall in the region for which Wallach determined a formula. Therefore for
type A2, a signature character formula for w(−λ+ x A◦) where λ is singular does not matter.
However, this is not true in general. Consider type A3 and consider the alcove −aλ1 + A◦
for some a ∈ Z

+. The alcove is in the antidominant Weyl chamber. If −aλ1 + A◦ is of
the form w(−λ + x A◦) where λ ∈ �+ is regular, then w = 1. Then −λ is a vertex of
−aλ1 + A◦. But those vertices are −aλ1, (−a + 1)λ1,−aλ1 + λ2,−aλ1 + λ3, none of
which are regular. Therefore in general, we need to know signature characters for alcoves of
the form w(−λ+ x A◦) where λ ∈ �+ is singular in order to know R A for every alcove A.

Computations done using a computer program written by Dan Ursu suggest that if λ is
singular then Theorem 7.9 still holds. The singular case is important because, according to
Salamanca-Riba [26], it is known that any irreducible unitary Harish-Chandra module with
strongly regular infinitesimal character must be isomorphic to some Aq(λ). Thus to classify
unitary representations wemust classify those of singular infinitesimal character. For alcoves
of the form w(−λ+ A◦), one starting point would be on the Hall–Littlewood side to take a
minimal length alcove path from A◦ to λ+ A◦ ending with an alcove path from λ+wλ

0w0A◦
to λ+ A◦ where wλ

0 is the long element of the stabilizer Wλ.

10 The noncompact case

We obtain formulas for the noncompact case from the compact case as follows.
Recall ε : �i

r → {±1} the Z2-grading on the imaginary root lattice. We extend it to the
formal series Z[[�i

r ]]:
Notation 10.1 Let ξ =∑μ∈�i

r
aμeμ ∈ Z[[�i

r ]]. Then

ε(ξ) :=
∑

μ∈�i
r

ε(μ)aμeμ.

Theorem 10.2 Let � = �1 ∪ �2 where �1 consists of the components of � for which θ

fixes some element and �2 consists of the components of � for which θ does not fix any
element. Let g0 = g1 ⊕ g2 and h∗ = h∗1 ⊕ h∗2 be the corresponding decompositions of
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g0 and h∗, respectively. Let Wi = W 1
i × W 2

i and W i
a = (W1)

i
a × (W2)

i
a . Let subscript

and superscript 1’s and 2’s refer to objects corresponding to g1 and g2, respectively. Let
λ = λ(1)+ λ(2) ∈ �+1 ∩ (C1)

i
0⊕�+2 ∩ (C2)

i
0 be regular and imaginary, and let μ1 ∈ (A1)

i◦,
μ2 ∈ (A2)

i◦ be imaginary and μ = μ1 + μ2. Let w = (w1, w2) ∈ Wi = W 1
i ×W 2

i .
Let w2(λ(2) +μ2) belong to the alcove A(2) under the action of (W2)

i
a on h∗2. Let A(2) =

C2
0

r (2)
1→ C2

1

r (2)
2→ C2

2

r (2)
3→ · · ·

r (2)
2→ C2

2
= w2(A2)

i◦ be an alcove path that stays in the Weyl

chamber w2(C2)
i
0. Then:

chs M(w(−λ+ μ))|a = e(w(−λ+μ)−ρ)|a

and

chs M(w(−λ+ μ))|t =
(
chs M(w1(−λ(1) + μ1))|t1

) (
chs M(w2(−λ(2) + μ2))|t2

)

where

chs M(w1(−λ(1) + μ1))|t1=ew1(−λ(1)+μ1)−ρ1ε

(
ew1λ(1)

∏
α∈�+(g1,t1)

(1+ e−α)
�(Pw1

λ(1)
(X;−1))

)

and

chs M(w2(−λ(2) + μ2))|t2

=

e−ρ2
∑

I={i1<···<ik }⊂{1,...,2}
w2>r̄ (2)

i1
w2>r̄ (2)

i1
r̄ (2)

i2
w2>···>r̄ (2)

i1
···r̄ (2)

ik
w2

(−1)|I |2|I |e(w2(−λ(2)+μ2))|t2−ν(I )

∏
α∈�+(p2,t2)

(1− e−α)
∏

α∈�+(k2,t2)
(1+ e−α)

.

Proof This follows from Theorems 4.14 and 7.9. ��

Theorem 10.3 Use the notation and setting of Theorem10.2. Let w, x = (x1, x2) ∈ Wi . Let

w2(λ(2)+x2μ2) belong to the alcove A(2) under the action of (W2)
i
a on h∗2. Let A(2) = C2

0

r (2)
1→

C2
1

r (2)
2→ C2

2

r (2)
3→ · · ·

r (2)
2→ C2

2
= w2(A2)

i◦ be an alcove path that stays in the Weyl chamber

w2(C2)
i
0. Then:

chs M(w(−λ+ xμ))|a = e(w(−λ+xμ)−ρ)|a

and

chs M(w(−λ+ xμ))|t =
(
chs M(w1(−λ(1) + x1μ1))|t1

) (
chs M(w2(−λ(2) + x2μ2))|t2

)

where

chs M(w1(−λ(1) + x1μ1))|t1
= ew1x1μ1−ρ1

∑

y∈W 1
i

cw1
y,x1e−yλ(1) ε

(
eyλ(1)

∏
β∈�+(g1,t1)

(1+ e−β)
�(P y

λ(1)
(X;−1))

)

(the constants cw1
y,x1 are defined in Theorem8.1) and
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chs M(w2(−λ(2) + x2μ2))|t2

=

e−ρ2
∑

I={i1<···<ik }⊂{1,...,2}
w2>r̄ (2)

i1
w2>r̄ (2)

i1
r̄ (2)

i2
w2>···>r̄ (2)

i1
···r̄ (2)

ik
w2

(−1)|I |2|I |e(w2(−λ(2)+x2μ2))|t2−ν(I )

∏
α∈�+(p2,t2)

(1− e−α)
∏

α∈�+(k2,t2)
(1+ e−α)

.

11 Signature characters for irreducible highest weight modules

In this section, we assume that g0 is equal rank.
Webegin this section by discussing the theory of signature characters and signedKazhdan–

Lusztig polynomials for irreducible highest weight modules. Note that this material is only
required for the proofs of the results in this section and not their statements. For more details,
see [31].

Definition 11.1 For t ∈ (−δ, δ), let 〈·, ·〉t be an analytic family of invariant Hermitian forms
on a finite-dimensional vector space V where the forms are non-degenerate for t �= 0. The
Jantzen filtration is

V = V 〈0〉 ⊃ V 〈1〉 ⊃ · · · ⊃ V 〈N 〉 = {0}
where V 〈 j〉 consists of vectors v for which there exists an analytic map γv : (−ε, ε) → V
for some small ε > 0 such that

(1) γv(0) = v, and
(2) for every u ∈ V , 〈γv(t), u〉t vanishes at least to order j at t = 0.

Then

〈u, v〉 j := lim
t→0+

1

t j
〈γu(t), γv(t)〉t ∀u, v ∈ V

is an invariant Hermitian form on V 〈 j〉 with radical V 〈 j+1〉. Thus this descends naturally to
a non-degenerate Hermitian form 〈·, ·〉 j on V 〈 j〉/V 〈 j+1〉. We refer to this quotient as the j th

level of the Jantzen filtration. Levels of the Jantzen filtration are semisimple [3].

Definition 11.2 Given λ ∈ h∗, the integral Weyl group is

W[λ] := {w ∈ W : wλ− λ ∈ �r }.
Let w0

λ denote the long element of W[λ]. Let the integral root system of λ be

�[λ] := {α ∈ �(g, h) : (λ, α∨)) ∈ Z}.
The multiplicity of composition factors in a given level of the Jantzen filtration of a Verma

module is given by coefficients of Kazhdan–Lusztig polynomials:

Theorem 11.3 [3] Jantzen’s Conjecture: Let λ be regular antidominant and x, y belong to
the integral Weyl group W[λ]. Then

[M(xλ)〈 j〉 : L(yλ)] = coefficient of q((x)−(y)− j)/2 in Pw0
λw,w0

λ y(q).

The Jantzen filtration may also be used to study signatures of invariant Hermitian forms.
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Lemma 11.4 [28, Proposition 3.3] We use the notation defined in Definition 11.1. Letting
(p j , q j ) be the signature of 〈·, ·〉 j ,

the signature of 〈·, ·〉t is
{

(
∑

j p j ,
∑

j q j ) if t > 0
(
∑

j even p j +∑ j odd q j ,
∑

j odd p j +∑ j even q j ) if t < 0.

This leads to the definition of signed Kazhdan–Lusztig polynomials. Where the coeffi-
cients of classical Kazhdan–Lusztig polynomials record composition factor multiplicity in
a given level of the Jantzen filtration, the coefficients of signed Kazhdan–Lusztig polyno-
mials record the contribution to the signature character of a particular type of composition
factor to a given level of the Jantzen filtration. Note that composition factor multiplicities in
levels of the Jantzen filtration do not depend on the filtration chosen or the highest weight,
but these choices affect signatures, so signed Kazhdan–Lusztig polynomials have additional
parameters.

Definition 11.5 Given λ regular antidominant and x, y ∈ W[λ], consider an analytic path
equal to xλ at t = 0 whose direction as t → 0+ is δ ∈ h∗, where δ ∈ wC0. Consider the
invariant Hermitian forms 〈·, ·〉 j on the levels of the Jantzen filtration on M(xλ) arising from
that analytic path.

chs〈·, ·〉 j =
∑

y≤x

aλ,w

w0
λx,w0

λ y, j
chs L(yλ)

for some integers aλ,w

w0
λx,w0

λ y, j
and we define signed Kazhdan–Lusztig polynomials by

Pλ,w

w0
λx,w0

λ y
(q) :=

∑

j≥0
aλ,w

w0
λx,w0

λ y, j
q((x)−(y)− j)/2.

Thus by Lemma 11.4:

Proposition 11.6 [31, p. 175] For λ regular antidominant, x ∈ W[λ], w ∈ W , μ ∈ A◦,

e−wμchs M(xλ+ wμ) =
∑

y≤x

Pλ,w

w0
λx,w0

λ y
(1)chs L(yλ).

For certain values of w ∈ W , signed Kazhdan–Lusztig polynomials and classical
Kazhdan–Lusztig polynomials are related in a simple way:

Theorem 11.7 [32, Theorem 4.6 and Remark 4.7] Let λ be regular antidominant, and let
x, y ∈ W[λ]. Then

Pλ,w0
x,y (q) = ε(w0

λ(xλ− yλ))Px,y(−q)

and

Pλ,1
x,y (q) = (−1)(x)−(y)ε(w0

λ(xλ− yλ))Px,y(−q).

Using this formula for signed Kazhdan–Lusztig polynomials, the formula of Proposi-
tion 11.6 may be inverted to give:

Theorem 11.8 [32, Theorem 5.1] Let λ ∈ h∗ be regular antidominant, and let x ∈ W[λ].
Then

chs L(xλ) = e−μ
∑

y≤x

(−1)(x)−(y) Pλ,w0
y,x (1)chs M(yλ+ μ)
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= e−μ
∑

y≤x

(−1)(x)−(y)ε(w0
λ(xλ− yλ))Py,x (−1)chs M(yλ+ μ)

and

chs L(xλ) = eμ
∑

y≤x

(−1)(x)−(y) Pλ,1
y,x (1)chs M(yλ− μ)

= eμ
∑

y≤x

ε(w0
λ(xλ− yλ))Py,x (−1)chs M(yλ− μ)

where μ ∈ A◦.

Proof The first set of equations is Theorem 5.1 of [32] along with Theorem 11.7. We need
the second set of equations as well to apply the results of this paper since we have a simple
formula for chs M(xλ − μ). An adaptation of the proof of Theorem 5.1 of [32] along with
Theorem 11.7 prove the second set of equations. ��
This concludes our recollection of the theory of signature characters of irreducible highest
weight modules and signed Kazhdan–Lusztig polynomials.

From Theorems 11.7 and 11.8, it follows:

Theorem 11.9 Let λ ∈ �+ be regular and x ∈ W . If g0 is compact, then:

chs L(−xλ) =
∑

y≤x

Py,x (−1) e−ρ

∏
α∈�+(g,h)(1+ e−α)

�(P y
λ (X;−1)).

If g0 is equal rank, recalling the definition of ε from Notation 10.1, then:

chs L(−xλ) =
∑

y≤x

ε(w0(xλ− yλ))Py,x (−1)e−yλ−ρ

×ε

(
eyλ

∏
α∈�+(g,h)(1+ e−α)

�(P y
λ (X;−1))

)
.

Recall the Kazhdan–Lusztig basis element [12]

C ′x = q−(x)/2
∑

y≤x

Py,x Ty .

.

Notation 11.10 Let C ′λ,x (X; q−1) ∈ Z[q 1
2 , q− 1

2 ][�] be the polynomial satisfying

C ′λ,x (X; q−1)1̃0 = C ′x X̃λ1̃0.

Theorem 11.11 Let λ ∈ �+ be regular and x ∈ W . If g0 is compact, then:

chs L(−xλ) = (−1)−(x)/2 e−ρ

∏
α∈�+(g,h)(1+ e−α)

�(C ′λ,x (X;−1)).

If g0 is equal rank, recalling the definition of ε from Notation 10.1, then:

chs L(−xλ) = (−1)−(x)/2e−xλ−ρε

(
exλ

∏
α∈�+(g,h)(1+ e−α)

�(C ′λ,x (X;−1))
)

.
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Proof The Kazhdan–Lusztig basis element C ′x satisfies C̄ ′x = C ′x . Thus

C ′x = q(x)/2
∑

y≤x

P̄y,x T−1
y−1

= q(x)/2
∑

y≤x

P̄y,x q−
(y)
2 T̃−1

y−1 .

The result now follows from the definition of P y
λ , Theorem11.9, and the fact that Py,w(−1) =

P̄y,w(−1). ��
Finally, we deal with non-integral regular λ.

Theorem 11.12 Recall that g0 is equal rank. Let λ be regular dominant. For x ∈ W[λ], choose
μ ∈ A◦ imaginary such that no affine hyperplanes of the form Hα,n where α ∈ �+(g, h)

and n ∈ Z cross the interiors of the line segments joining x(−λ) and x(−λ) ± μ. Suppose
either there exists λ′ ∈ �+ regular, z′ ∈ W , and μ′ ∈ A◦ such that λ − λ′ ∈ {ν ∈
h∗ : ν ∈ Hα,0 ∀α ∈ �[λ]} and x(−λ) − μ = x(−λ′ + z′μ′); or there exists λ0 ∈ �+
regular, z0 ∈ W , and μ0 ∈ A◦ such that λ − λ0 ∈ {ν ∈ h∗ : ν ∈ Hα,0 ∀α ∈ �[λ]} and
x(−λ0)+μ = x(−λ0+ z0μ0). (Please see the diagram that accompanies the proof.) Then:

chs L(−xλ) =
∑

y≤x

ε(w0
λ(xλ− yλ))Py,x (−1)

×
(
∑

w∈W

cy
w,y−1xz′e

−yλ′−ρε

(
eyλ′

∏
β∈�+(g,h)(1+ e−β)

�(P y
λ′(X;−1))

))

in the first case, and in the second,

chs L(−xλ) =
∑

y≤x

(−1)(x)−(y)ε(w0
λ(xλ− yλ))Py,x (−1)

×
(
∑

w∈W

cy
w,y−1xz0

e−yλ0−ρε

(
eyλ0

∏
β∈�+(g,h)(1+ e−β)

�(P y
λ0

(X;−1))
))

.
Proof
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•
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..............................................................................................................................................................................................................
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We prove only the first equation as the proof of the second is similar. We begin by proving
that if x(−λ) − μ = x(−λ′ + z′μ′), then y(−λ) − μ = y(−λ′ + y−1xz′μ′). The interior
of the line segment joining x(−λ) and x(−λ) − μ lies in the interior of an alcove, as does
the interior of the line segment joining x(−λ′) and x(−λ′)+ xz′μ′ = x(−λ)−μ. Therefore
there is a path from x(−λ) to x(−λ′) such that the interior lies in the interior of an alcove.
Thus x(−λ) − x(−λ′) ∈ A◦ ∩ {ν ∈ h∗ : ν ∈ Hα,0 ∀α ∈ �[λ]}. Since yx−1 ∈ W[λ],
therefore x(−λ)− x(−λ′) = y(−λ)− y(−λ′) = μ+ xz′μ′ = μ+ y(y−1xz′μ′). Therefore
y(−λ)− μ = y(−λ′ + y−1xz′μ′). Thus:

chs L(−xλ) =
∑

y≤x

ε(w0
λ(xλ− yλ))eμ Py,x (−1)chs M(−yλ− μ)

=
∑

y≤x

ε(w0
λ(xλ− yλ))eμ Py,x (−1)chs M(y(−λ′ + y−1xz′μ′))

=
∑

y≤x

ε(w0
λ(xλ− yλ))eμ Py,x (−1)

×
(
∑

w∈W

cy
w,y−1xz′e

−yλ′−xz′μ′−ρε

(
eyλ′

∏
β∈�+(g,h)(1+ e−β)

�(P y
λ′(X;−1))

))

=
∑

y≤x

ε(w0
λ(xλ− yλ))eμ−xz′μ′ Py,x (−1)

×
(
∑

w∈W

cy
w,y−1xz′e

−yλ′−ρε

(
eyλ′

∏
β∈�+(g,h)(1+ e−β)

�(P y
λ′(X;−1))

))
.

��
Remark 11.13 Note thatwedeformed x(−λ) in directions so that the signedKazhdan–Lusztig
polynomials would be easy to evaluate, but then we needed the constants cw

y,x in order to
rewrite chs M(y(−λ′ + y−1xz′μ′)) in our formula for chs L(−xλ). We could have chosen the
deformation direction so that z′ = x−1 so that all of the signature characters appearing are
of the form chs M(y(−λ′ + y−1xz′μ′)) = chs M(yλ′ − μ′) in the formula for chs L(−xλ)

which can be expressed without the constants cw
y,x . However, we would then have had in our

formula Pλ,w
y,x evaluated atw not necessarily equal to 1 orw0, for which at the moment we do

not have a simple formula. This suggests that the constants cw
y,x and signed Kazhdan–Lusztig

polynomials are related in some way.
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