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Abstract
In this paper, we begin the study of regularity of partial differential equations in the space of
global Lq Gevrey functions, recently introduced in Adwan et al. (J Geom Anal 27(3):1874–
1913, 2017) andHoepfner andRaich (IndianaUnivMath J, forthcoming) and in a generalized
andnew function space called the spaceof global Lq Denjoy–Carleman functions.Wedevelop
a wedge approach similar to Bony’s theorem (Bony in Séminaire Goulaouic–Schwartz
(1976/1977), Équations aux dérivées partielles et analyse fonctionnelle, Exp No 3. Centre
Math, École Polytech, Palaiseau, 1977) and prove three main theorems. The first establishes
the existence of boundary values of continuous functions on a wedge. Next, we borrow the
FBI transform approach from Hoepfner and Raich (forthcoming) to define global wavefront
sets and prove a relationship between the inclusion of a direction in the global wavefront set
and the existence of boundary values of sums of weighted L p functions defined in wedges.
The final result is an application in which we prove a global version of a classical result:
namely, the relationship between the global characteristic set of a partial differential operator
P and the microglobal wavefront sets of u and Pu.
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972 G. Hoepfner, A. Raich

1 Introduction

The purpose of this paper is to explore a new concept of regularity that is well suited for
the global Lq Denjoy–Carleman function spaces. These function spaces are generalized
version of the Lq Gevrey function spaces introduced and studied in [4,13,25]. In this paper,
we show that appropriate global versions of three classical results on the boundary values
of ultradistributions, wavefront sets, and characteristic sets of constant coefficient partial
differential operators hold for these global function spaces. The function classes are natural
generalizations of the global Lq -Gevrey functions that we studied in [4,25], and the majority
of results that hold for global Lq -Gevrey functions hold in this more general setting.

The origin of this study resides in the �b-heat kernel estimates of Boggess and Raich,
in which they recover exponential decay of the order e−a|t |1/β via a Fourier transform [13].
This led to their development (in our language) of the notion of global Lq Gevrey functions
and proofs of some basic implications. Although the Fourier transform is a powerful tool
to recover smoothness and/or size estimates in many circumstances, we showed that it is a
deficient tool to recover global L p smoothness estimates [25]. A very satisfying replacement
for the Fourier transform is the FBI transform. More precisely, in [25], we showed that
certain estimates of the FBI transform exactly characterize the behavior of global Lq -Gevrey
functions. The FBI transform first appeared in the work of Bros and Iagolnitzer [10] to study
local analyticity and later was shown to be the right tool to study microlocal (hypo) regularity
among many function classes, including (real) analytic, Gevrey, Denjoy–Carleman, and C∞
(see [7,9,11,16,20,21,30]).

The topic of this work is microglobal regularity and the global wavefront set. Intuitively,
microlocal analysis and the wavefront set capture directions (in the cotangent space) that
prevent regularity of a function nearby a given point. The question, then, is the appropriate
global object to capture global obstructions to regularity. For this, we take our lesson from the
Fourier transform—smoothness and decay are interchanged under the action of the transform.
Thismeans that if a function lacks smoothness at any point, then its FBI (or Fourier) transform
will lack decay. Similarly, if a function lacks decay in any direction, then its transform will
lack smoothness. Consequently, the global behavior is determined by exactlywhich directions
are in the wavefront set, regardless of where they occur. Thus, our global objects need to
record the directions which are well-behaved at every point or poorly behaved at any point,
and they need to be defined in terms of the FBI transform because of the well-documented
problems with the Fourier transform.

One of the themes of this paper, and indeed of all of our work on global Lq Denjoy–
Carleman functions, is that there are appropriate global versions tomany of the powerful local
theorems. In this paper, we prove two structure theorems and provide one application. The
first of ourmain results, Theorem 2.2, establishes that continuous functions on awedgewhich
exhibit controlled growth in L p have boundary values in the space of ultradistributions. These
ultradistributions are exactly ones that are dual to the space of global Lq Denjoy–Carleman
functions. Our second main theorem, Theorem 2.5, is a further exploration of boundary
values and the global Lq Denjoy–Carleman function spaces.We prove a relationship between
directions in the global wavefront set and boundary values of a sum of continuous functions,
each of which is defined on a specific wedge. Our final result, Theorem 2.8, is a global version
of the classical result that the wavefront set of Pu is contained in the wavefront set of u,
which in turn is contained in the union of the wavefront set of Pu and the characteristic set
of P . Here, P is a constant coefficient partial differential operator.
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Microglobal regularity and the global wavefront set 973

The local versions of our results appear in a variety of settings in the literature. For
example, in Hormander [21–24] and the references therein, there are concise and complete
proofs of the local results and their applications, including propagation of singularities,
pseudodifferential operators, and extensions of CR functions. Hörmander proved the most
classical case of Theorem 2.8 [21, Chapter 8] and versions appear more specific to Gevrey
and ultradifferentiable functions in [29] and (for example) [18]. Later development in the
local theory, such as the study the local and microlocal regularity of CR functions, solutions
of more general vector fields, and even first order (system of) nonlinear partial differential
equations appear in [1–3,6,8,8,9,12,14,15,17,20,26] and references therein.

We hope that this machinery can be used as a tool to study global PDE’s in noncompact
settings where compactness is of fundamental nature as, for instance, in the recent research
article [5].

2 Definitions and statements of themain results

2.1 Global Lq Denjoy–Carleman functions and boundary values of their duals

Let N0 = N ∪ {0} = {0, 1, 2, 3, . . .} and fix a sequence M = (M j ) j∈N0 of nonnegative
numbers. Suppose � ⊂ R

d . Define W k,q(�) as the space of k-times differentiable functions
in Lq(�). For a multiindex α = (α1, . . . , αd) of nonnegative integers, positive constants
A, β > 0, and 1 ≤ q ≤ ∞, define the seminorm �α,A,�,q,M : W |α|,q(�) → [0,∞)

�α,A,�,M (g) = �α(g) = ‖Dαg‖Lq (�)

A|α|M|α|
.

We suppress as many indices for �α as possible.

Definition 2.1 Let 1 ≤ q ≤ ∞ and M = (M j ) j∈N0 be a sequence of positive numbers. A
function g ∈ W ∞,q(�) is said to satisfy global Lq Denjoy–Carleman estimates of order M
if there exist constants A, C > 0 so that for every d-tuple of nonnegative integers α

‖Dαg‖Lq (�) ≤ C A|α|M|α|.

We say that a function that satisfies global Lq Denjoy–Carleman estimates of order M is a
global Lq Denjoy–Carleman function of order M . For a fixed A > 0, we set

Eq,M
A (�) =

{
g ∈ W ∞,q(�) : {�α,A,�,q,M (g)}|α|≥0 ∈ �q(Zd≥0)

}

and

Eq,M (�) =
⋃
A>0

Eq,M
A (�).

The choice M j = ( j !)β yields the global Lq -Gevrey functions of order β, see [4]. For a
given sequence M = (M�)�∈N0 , define the associated function M(t) by

M(t) := sup
�

log
t�

M�

(2.1)

and its Young conjugate by

M∗(s) = − log inf
�∈N

{
s�M�

�!
}

. (2.2)
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974 G. Hoepfner, A. Raich

It iswell known (seeLemma5.6 in [28]) that M∗ is comparable to the functionw∗ : [0,∞) →
[0,∞] given by w∗(r) = supt≥0{M(t) − r t}, in the sense that for every H > 1 there exists
a positive constant C such that

M∗(Hs) − C ≤ w∗(s) ≤ M∗(s), for all s > 0. (2.3)

From now on the sequences M = (M j ) j∈N0 will be assumed to satisfy the standard
conditions (A.1), (A.2), (A.3), and (A.9) andwewill refer to such M as convenient sequences.

The final piece of notation we need to state our first main theorem is that of a truncated
cone. A set � ⊂ R

d will be called a cone if x ∈ � implies t x ∈ � for all t > 0. Given
a cone � ⊂ R

d
y , we will write �δ := � ∩ Bδ(0) for the truncated cone of height δ. Let

Sd−1 := {y ∈ R
d : |y| = 1} so that �δ = {τ y′ : 0 < τ < δ and y′ ∈ � ∩ Sd−1}.

Now we are ready to state the first main theorem of this paper. This result provides
sufficient conditions to guarantee the existence of boundary values, b f , of certain continuous
functions f defined on wedges W := � × �δ ⊂ R

d
x × R

d
y .

Theorem 2.2 Let f ∈ C(W) ∩ L p(W) be a function satisfying the following: there exists a
positive constant C > 0 such that

(1) for every 1 ≤ j ≤ d and for 1
p + 1

q = 1

sup
y′∈�∩Sd−1

∫ δ

0

∥∥∂z̄ j f (· + iτ y′)
∥∥

L p(�)
dτ ≤ C < ∞; (2.4)

(2) for each x ∈ � and for all λ > 0,

sup
y′∈�∩Sn−1

∫ δ

0

{ ∥∥ f (· + iτ y′)
∥∥

L p(�)
e−M∗(τ/λ)

}
dτ ≤ C < ∞. (2.5)

Then lim�
y→0 f (· + iy) exists in Eq,M (�)′, that is

〈b f , ϕ〉 := lim
�δ
y→0

∫

�

f (x + iy)ϕ(x) dx (2.6)

exists and defines a ultradistribution in Eq,M (�)′.

2.2 Global wavefront sets and the FBI transform

As we showed [25], the Fourier transform is not suitable to characterize the global behavior
of L p functions. Rather the FBI transform serves as a fitting substitute. We use of the FBI
transform by Sjöstrand [30], as written by Christ [16].

For y ∈ R
d , set

〈y〉 =
√
1 + |y|2

and define the function α(x, ξ) and the form ω by

ω = dx1 ∧ · · · ∧ dxd ∧ d(ξ1 + i x1〈ξ 〉) ∧ · · · ∧ d(ξd + i xd〈ξ 〉)
= α(x, ξ) dx1 ∧ · · · ∧ dxd ∧ dξ1 ∧ · · · ∧ dξd

where ξ ∈ �, and � is a conic neighborhood of Rd in which 〈·〉 is a holomorphic function.
Note that

α(−x,−ξ) = (−1)dα(x, ξ). (2.7)
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Microglobal regularity and the global wavefront set 975

Given two global Lq Denjoy–Carleman function class Eq,M (�) and Eq,M ′
(�), we say

that Eq,M (�) completely contains Eq,M ′
(�) if Eq,M

A (�) ⊃ Eq,M ′
(�) for all A > 0, and we

will denote complete containment by Eq,M (�) � Eq,M ′
(�). Moreover, it is equivalent to the

following (see, for instance, [27], for the class of local L∞ Denjoy–Carleman functions)

for all ε > 0, there exists Cε > 0 such that M ′
j ≤ Cεε

j M j , ∀ j ∈ N0. (2.8)

Let Eq,M (Rd) be a global Lq Denjoy–Carleman function class that completely contains

Gq, 12 (�), the global Lq Gevrey functions of order 1
2 . Then for a distribution u ∈ Eq,M (Rd)′,

define the FBI transform of u by

F u(x, ξ) = 〈
u, ei(x−·)·ξ−〈ξ〉(x−·)2α(x − ·, ξ)

〉
.

The function F u is well defined for u ∈ Eq,M
A (Rd)′ since the exponential function e−a|x |2 is

in Eq,M
A (Rd) [4, Section 4.1]. We can extend [25, Theorem 2.2] to Eq,M (�).

Theorem 2.3 Let Eq,M (Rd) completely contain Gq, 12 (Rd). Suppose A > 0 and u ∈
Eq,M

A (Rd). Then there exist positive constants A0, a, and c that do not depend on u, and a
positive constant C so that for any multiindex J ∈ N

d
0 , and any r satisfying q ≤ r ≤ ∞,

F u(·, ξ) is in Er ,M
A0

(Rd) and satisfies the estimates

‖D J
x F u(x, ξ)‖Lr (Rd ) ≤ C A|J |

0 M|J |e− 1
c M(a|ξ |) (2.9)

for any u ∈ Eq,M
A (Rd). Conversely, to each A0 > 0, there exists A = A(A0) so that for

any u ∈ Eq,M (Rd)′ such that F u(·, ξ) ∈ Eq,β
A0

(Rd) and (2.9) holds, then u is a function and

u ∈ Eq,M
A (Rd).

Proof The proof is a straight forward adaptation of the proof of [25, Theorem 2.2]. ��
Definition 2.4 Let u ∈ Eq,M (Rd)′ and ξ0 ∈ R

d . We say that u is Eq,M -microglobal regular
at Rd × {ξ0} (or simply ξ0) if there exist a conic neighborhood �0 of ξ0 in R

d \ {0} and
constants c, C > 0 such that for each q ≤ r ≤ ∞,

‖D J
x F u(x, ξ)‖Lr (Rd ) ≤ C A|J |

0 M|J |e− 1
c M(a|ξ |), ∀ξ ∈ �0. (2.10)

We define the Eq,M -wave front set of u as the complement of the set of the directions ξ in
which u is Eq,M -microglobal regular, that is

W FEq,M (u) := {ξ ∈ R
d : u is not Eq,M -microglobal regular at ξ}.

Our second main theorem relates directions not in the global wavefront set and boundary
of certain functions in Eq,M (Rd)′.

Theorem 2.5 Suppose thatEq,M (Rd) � Gq, 12 (Rd),u ∈ Eq,M (Rd)′,and ξ0 ∈ R
d .The vector

ξ0 /∈ W FEq,M (u) if and only if there exist open and acute cones �1, . . . , �k ⊂ R
d \ {0} and

δ > 0 so that

(1) For each j ∈ {1, . . . , k}, ξ0 · � j < 0;
(2) For each j ∈ {1, . . . , k}, there exist functions f j on R

d × (� j )δ satisfying (1) from
Theorem 2.2;
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976 G. Hoepfner, A. Raich

(3) There exists a > 0 so that for all p ≤ r ≤ ∞ and all λ > 0,

sup
y∈(� j )δ

{∥∥ f j (x + iy)‖Lr (Rd )e
−aM∗(|y|/λ)

}
≤ Aλ,r , (2.11)

for some Aλ,r > 0.
(4) So that b f j exists in Eq,M (Rd)′ and

u −
k∑

j=1

b f j ∈ Eq,M (Rd).

Remark 2.6 The functions f j that we construct satisfy a much stronger estimate than (2.11).
Namely, there exist A, C > 0 so that for all multi-indices J ,

sup
y∈� j

{ ∥∥∥D J
(x,y) f j (· + iy)

∥∥∥
L p(Rd )

e−aM∗(|y|/λ)
}

≤ AC |J |+1M|J |. (2.12)

Therefore, we can think of Theorem 2.5 as a self-improving theorem. In one direction, we
start with functions and cones that satisfy (2.11) and conclude that ξ0 /∈ W FEq,M (u). Once
we have that ξ0 /∈ W FEq,M (u), we then apply Theorem 2.5 again and conclude that there
exist new functions { f j } and cones {� j } on which f j satisfies a much stronger estimate,
namely (2.12).

2.3 Application: global characteristic sets of linear partial differential operators

Let D j = 1
i

∂
∂x j

= −i ∂
∂x j

.

Definition 2.7 Let P = ∑m
�=0 P�(x, D)be a differential operatorwithC∞ coefficientswhere

each P�(x, ξ) is a polynomial of degree � in ξ and smooth in x . The characteristic set Char P
is defined to be

Char P = {(x, ξ) ∈ T ∗(X) \ {0} : Pm(x, ξ) = 0}.
The global characteristic set CharG P is defined to be

CharG P = {ξ : (x, ξ) ∈ Char P}.
Theorem 2.8 Let P be a constant coefficient differential operator of order m and M be a
sequence so that Gq,1(Rd) � Eq,M (Rd). Then

W FEq,M (Pu) ⊂ W FEq,M (u) ⊂ W FEq,M (Pu) ∪ CharG P.

3 Properties of Eq,M(Ä)

The function spaces Eq,M (�) share many properties with Gq,β(�) that can be proven by the
same techniques as in [4,25].

Proposition 3.1 Eq,M (�) is a non-quasianalytic DFS-space that is invariant under differen-
tiation and composition.

A very useful result is the characterization of the dual spaces.
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Microglobal regularity and the global wavefront set 977

Proposition 3.2 Let 1 ≤ q < ∞ and p be the dual exponent of q, i.e., 1
p + 1

q = 1. For

a convenient sequence M = (M j ) j∈N0 of nonnegative numbers, the dual of Eq,M (Rd),

Eq,M (Rd)′, can be identified with the following space
⎧
⎪⎨
⎪⎩

f =
∑

α∈Nd
0

f (α)
α : fα ∈ L p(Rd) and ∀ A > 0,

∑

α∈Nd
0

M|α|
A|α| ‖ fα‖L p(Rd ) < ∞

⎫
⎪⎬
⎪⎭

. (3.1)

Proof It is similar to the one given in the case where M j = j !s , s > 1, see [4,25]. ��

3.1 Generalized Carleman’s problem for Eq,M functions

Fix convenient sequences M = (M j ) j∈N0 and N = (N j ) j∈N0 .

Definition 3.3 Let � ⊂ R
d and U ⊂ R

n be open sets, and 1 ≤ q, q̃ ≤ ∞. We define
Eq,M

A (�; E q̃,N
A′ (U )) to be the space of functions f (x, t) ∈ C∞(� × U ) for which there exist

constants C, C ′, A, A′ > 0 so that

(1)
∥∥Dα′

t f (x, ·)∥∥Lq̃ (U )
≤ C ′(A′)|α′|N|α′|;

(2)
∥∥‖Dα

x Dα′
t f (x, ·)‖Lq̃ (U )

∥∥
Lq (�)

≤ C(A′)|α′| A|α|M|α|N|α′|.

Define

Eq,M (�; E q̃,N (U )) =
⋃

A,A′>0

Eq,M
A (�; E q̃,N

A′ (U )).

Definition 3.4 Let� ⊂ R
d be an open set and M = (M�)�∈N0 a convenient sequence. Given

f = f (x) ∈ Eq,M (�)we say that a smooth function u = u (x, y) defined in a neighborhood
� × V of � in Rd × R

d , is an Eq,M -almost analytic extension of f if the following is true:

(1) u ∈ Eq,M (�; E∞,M (V ))

(2) u(x, 0) = f (x) for all x ∈ �; and
(3) there exists a positive constant λ such that

sup
y

{ ∥∥∂z̄ j u(·, y)
∥∥

Lq (�)
eM∗(|y|/λ)

} ≤ C < ∞, ∀ j = 1, . . . , n. (3.2)

Here, we write z j = x j + iy j , ∂z j = 1
2

(
∂x j + i∂y j

)
for j = 1, ..., m as usual.

Theorem 3.5 (Almost analytic extensions, [4]) Let � ⊂ R
d be an open set and M =

(M�)�∈N0 a convenient sequence. Then every f ∈ Eq,M (�) has a Eq,M -almost analytic
extension.

Definition 3.6 Let �, V ⊂ R
d be an open sets such that 0 ∈ V and M = (M�)�∈N0 a

convenient sequence. A function F ∈ Eq,M (�; E∞,M (V )) satisfying (3.2) will be called an
Eq,M -almost analytic function.

4 Existence of traces: the proof of Theorem 2.2

Proof of Theorem 2.2 As in [19] the proof will be divided into 3 steps.
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978 G. Hoepfner, A. Raich

Step 1.We first claim that the limit in (2.6) exists along a fixed direction y′ ∈ �∩ Sn−1 when
f ∈ C(W) ∩ W 1,p(W).
Fix y′ = (y′

1, . . . , y′
d) ∈ � ∩ Sd−1 and consider the complex vector field

∂ ′ := y′
1∂z̄1 + . . . y′

n∂z̄n

and the (m + 1) dimensional submanifold

�′ := � × {τ y′} := {(x, τ y′) : x ∈ �, τ ∈ (0, 2δ)} ⊂ R
d
x × R

d
y .

Let � = � × [0, 2δ) and f ′(x, τ ) : � → C be the function defined by restricting f (x, y)

to �′, namely, f ′(x, τ ) := f (x, τ y′), 0 < τ < 2δ. Writing

∂ ′ := i∂τ +
n∑

k=1

y′
k∂xk

and observe that differentiating y = τ y′ with respect to τ gives

∂τ = y′
1∂y1 + · · · + y′

n∂yn .

Consequently,wemay regard ∂ ′ as a single globally integrable vector field in (m+1) variables
(x, τ ) ∈ �, with first integrals

Z ′(x, τ ) := (Z ′
1(x, τ ), . . . , Z ′

n(x, τ )), where Z ′
j (x, τ ) := x j + iτ y′

j , j = 1, . . . , d.

Therefore, by (2.4),

∂ ′ f ′(x, τ ) =
∑

j

y′
j (∂z̄ j f )(x, τ y′) ∈ L p(� × (0, δ)). (4.1)

For 0 < ε < δ/2, let f ′
ε(x, τ ) := f ′(x, ε + τ) then, it follows from (2.4) and (2.5) that

sup
t ′∈�∩Sn−1

∫ δ/2

0

∥∥∂ ′ f ′
ε(·, τ )

∥∥
L p(�)

dτ ≤
∑

j

sup
t ′∈�∩Sn−1

∫ δ/2

0

∥∥(∂z̄ j f )(·, (τ + ε)y′)
∥∥

L p(�)
dτ

≤
∑

j

sup
t ′∈�∩Sn−1

∫ δ

0

∥∥(∂z̄ j f )(·, τ y′)
∥∥

L p(�)
dτ

≤ C < ∞ (4.2)

and since M∗(τ/λ) is decreasing in τ > 0,

∫ δ/2

0
sup

t ′∈�∩Sn−1

∥∥ f ′
ε(·, τ )e−M∗(τ/λ)

∥∥
L p(�)

dτ

≤
∫ δ/2

0
sup

t ′∈�∩Sn−1

∥∥∥ f (·, (τ + ε)y′)e−M∗((τ+ε)/λ)
∥∥∥

L p(�)
dτ

≤
∫ δ

0
sup

t ′∈�∩Sn−1

∥∥∥ f (·, τ y′)e−M∗(τ/λ)
∥∥∥

L p(�)
dτ ≤ C < ∞ (4.3)

independently of 0 < ε < δ/2.
We will now prove the theorem, continuing our assumption that f ∈ C(W) ∩ W 1,p(W).

Fix ϕ ∈ Eq,M (�) and let �(x, y) ∈ Eq,M (�; E∞,M (V )) be the almost analytic extension
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Microglobal regularity and the global wavefront set 979

of ϕ given by Theorem 3.5 and satisfying (1)–(3) from Definition 3.4. Define � ′(x, τ ) =
�(x, τ t ′). It follows from Eq. (3.2) that

∥∥∥∂ ′� ′(·, τ )eM∗(τ/λ)
∥∥∥

Lq (�)
≤
∑

j

∥∥∥(∂z̄ j �)(·, τ y′)eM∗(τ/λ)
∥∥∥

Lq (�)

≤
∑

j

sup
y∈�δ

∥∥∥(∂z̄ j �)(·, y)eM∗(|y|/λ)
∥∥∥

Lq (�)
≤ C < ∞. (4.4)

Also, for any g(x, τ ) ∈ W 1,p(�), we have

dg(x, τ ) = ∂ ′g(x, τ ) dτ +
m∑

k, j=1

∂x j g(x, τ ) dZ ′
k(x, τ ).

Let dZ ′(x, τ ) = dZ ′
1 ∧· · ·∧dZ ′

d the volume element generated by the first integrals. Then if
g(x, τ ) = f ′

ε(x, τ )� ′(x, τ ), 0 < ε < δ/2, and ω(x, τ ) = g(x, τ ) dZ ′(x, τ ), it follows that

dω = f ′
ε(x, τ )∂ ′� ′(x, τ ) dτ ∧ dZ ′ + (∂ ′ f ′

ε)(x, τ )� ′(x, τ ) dτ ∧ dZ ′.

Using Stokes Theorem, for δ′ < δ/2, we get
∫

�

∫ δ′

0
dω(x, t) =

∫

�

ω(x, δ′) −
∫

�

ω(x, 0).

Writing things out explicitly, we obtain
∫

�

f ′(x, ε) ϕ(x) dx =
∫

�

f ′(x, δ′ + ε)� ′(x, δ′) dZ ′(x, δ′)

−
∫ δ′

0

∫

�

∂ ′ f ′
ε(x, τ )� ′(x, τ ) dτ ∧ dZ ′(x, τ )

−
∫ δ′

0

∫

�

f ′
ε(x, τ )∂ ′� ′(x, τ ) dτ ∧ dZ ′(x, τ ) (4.5)

We now show that the limit as ε → 0 exists for each of the integrals on the right-hand side
of (4.5). Since we are assuming that f is continuous, the function f ′(x, δ′ + ε) is well-
defined and the L p-assumption, a priori defined for almost all ε is actually continuous in
ε. Consequently, the integral, as a function of ε is continuous and defined on a compact set
(in ε) and hence attains its max. We can now use the Dominated Convergence Theorem to
establish the limit as ε → 0. For the first double integral on the right hand-side of (4.5) we
note that, in view of (4.2) and (1) in Definition 3.4, we have

∫ δ′

0

∣∣∣∣
∫

�

∂ ′ f ′
ε(x, τ )� ′(x, τ ) dτ ∧ dZ ′(x, τ )

∣∣∣∣

≤ C
∫ δ

0

∥∥∂ ′ f ′(·, τ )
∥∥

L p(�)
dτ · sup

y∈�

∥∥�(·, y)
∥∥

Lq (�)
≤ C ′ < ∞ (4.6)

independently of ε and t ′ and we again use the Dominated Convergence Theorem to send
ε → 0. For the second double integral on the right hand-side of (4.5) we will use Eq. (3.2)
in Definition 3.4 together (4.3) and (4.4) and observe
∣∣∣∣∣
∫ δ′

0

∫

�

f ′
ε(x, τ )∂ ′� ′(x, τ ) dτ ∧ dZ ′(x, τ )

∣∣∣∣∣
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980 G. Hoepfner, A. Raich

≤ C
∫ δ′

0

∫

�

| f ′
ε(x, τ )|eM∗(τ/λ)−M∗(τ/λ)|∂ ′� ′(x, τ )| dx dτ

≤ C
∫ δ′

0

∥∥∥ fε(·, τ y′)e−M∗(τ/λ)
∥∥∥

L p(�)
dτ · sup

y∈�

∥∥∥∂ ′� ′(·, y) eM∗(|y|/λ)
∥∥∥

Lq (�)
≤ C < ∞.

Thus, it follows that the limit when ε → 0 in the second double integral on the right hand-side
of (4.5) also exists, independently the direction t ′ and hence limε→0+

∫
�

f (x, εy′)ϕ(x) dx
exists and

lim
ε→0+

∫

�

f (x, εy′)ϕ(x) dx =
∫

�

f ′(x, δ)� ′(x, δ) dZ ′(x, δ)

−
∫ δ

0

∫

�

{
(∂ ′ f ′)� ′ + f ′(∂ ′� ′)

}
(x, τ ) dτ ∧ dZ ′(x, τ ) (4.7)

Also, it follows from the proof that
∣∣∣∣
∫

�

f (x, τ y′)ϕ(x) dx

∣∣∣∣ ≤ Cϕ. (4.8)

Step 2.Assume that f is only of class C(W)∩ L p(W). By regularizing f with a convolution
of a φ ∈ E1,M (�), with compact support and integral equal to one (see [4]), we may prove
this step using the same ideas as in [19].

Step 3. The formula (4.7) is independent of the direction t ′. In fact, fix ϕ ∈ Eq,M (�) and
consider the function

T (y) :=
∫

�

f (x, y)ϕ(x) dx, y ∈ �δ.

One can use (4.8) to show that (see step 3 in [19]) T (y) is a Lipschitz function and has a
limit as y → 0 in proper subcones of �δ . In fact, in the sense of distributions, we have

∂y j T (y) = −i
∫

�

∂z̄ j f (x, y)ϕ(x) dx − i
∫

�

f (x, y)∂x j ϕ(x) dx (4.9)

and it follows from (4.8) that T (y) is a Lipschitz function and therefore using (4.7) we have
that b f (x) is an ultradistribution in Eq,M (�)′. ��

5 Microglobal analysis: the global wavefront set

We first recall an inversion formula for the FBI transform proved in [25]. Let

uε(x) = (2π)−d
∫

|ξ |≤ε−1
F u(x, ξ)dξ. (5.1)

then [25, Theorem 2.1] (5.1) holds in Gq,β(Rd)′, for β > 1
2 . Specifically, if u ∈ Eq,M (Rd)′

and Eq,M (Rd) � Gq, 12 (Rd), then the limit defined in (5.1) converges in Eq,M (Rd)′.

Proof of Theorem 2.5 Suppose that u ∈ Eq,M (Rd)′ and let ξ0 ∈ R
d \ {0} be such that ξ0 /∈

W FEq,M (u). By Definition 2.4, there exist a conic neighborhood �0 of ξ0 in R
d \ {0} and

constants a0, A0 > 0 such that, for each q ≤ r ≤ ∞, we have

‖D J
x F u(x, ξ)‖Lr (Rd ) ≤ A|J |+1

0 M|J |e− 1
c M(a0|ξ |), ∀ξ ∈ �0. (5.2)
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Let C1, . . . , Ck open acute cones in Rd satisfying,

R
d \ �0 =

k⋃
j=1

C j , C j ∩ Ci = ∅, for all j �= i (5.3)

and, for some small positive constant c,

� j = {v ∈ R
d : ξ · v > c|ξ ||v| for all ξ ∈ C j and ξ0 · v < 0} (5.4)

are open acute and nonempty cones. Inspired by the FBI inversion formula (5.1), we define
uε

j (x) for ε > 0 and j ∈ {0, . . . , k} as

uε
0(x) = (2π)−d

∫

ξ∈�0
|ξ |≤ε−1

F u(x, ξ)dξ (5.5)

and

uε
j (x) = (2π)−d

∫

ξ∈C j

|ξ |≤ε−1

F u(x, ξ)dξ, j ∈ {1, . . . , k}. (5.6)

By [25, Theorem 2.1], we have that

u = lim
ε→0

k∑
j=0

uε
j (x), in Eq,M (Rd)′.

Next we consider, for each j ∈ {1, . . . , k},
f j (x + iy) := (2π)−d

∫

ξ∈C j

F u(x + iy, ξ)dξ, x + iy ∈ R
d + i� j . (5.7)

Note that, in view of hypothesis (5.2), we have

lim
ε→0

uε
0(x) := (2π)−d

∫

ξ∈�0

F u(x, ξ)dξ in Eq,M (Rd). (5.8)

Therefore, it follows that u0 ∈ Eq,M (Rd). Hence, the proof will be completed once we show
that for each j ∈ {1, . . . , k} the following hold true:

(1) for every p ≤ r ≤ ∞ there exist positive constants a and δ such that the function
f j (x + iy) is in the weighted space Er ,M (Rd ; E∞,M

e−aM∗(|y|) (� j )δ), meaning that for every
λ > 0 there exist positive constants C and A = A(r , λ, d) such that (2.12) holds.

(2) the function f j is of exponential M∗ growth, that is, it satisfies hypothesis (1) and (2)
from Theorem 2.2 for � = R

d and W = R
d + i� j ; and

(3) b f j = limε→0 uε
j in Eq,M (Rd)′.

In fact, fix j ∈ {1, . . . , k}.
Proof of (1) SinceFu(z, ξ) is a holomorphic function in z = x +iy, (1) will be a consequence
of Minkowski inequality for integrals and the following fact: there exists a, C > 0 and
Fj (ξ) ∈ L1(C j ) such that for all λ > 0 and p ≤ r ≤ ∞ there is a positive constant
A = A(r , λ, d) such that the following inequality holds true:

∥∥∥D J
(x,y)Fu(x + iy, ξ)

∥∥∥
Lr (Rd )

≤ AC |J |+1M|J |eaM∗(|y|/λ)Fj (ξ), ∀ J ∈ N
d
0 . (5.9)
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982 G. Hoepfner, A. Raich

First, the function −M∗(·) is an increasing function, so we only need to worry about proving
(5.9) for values of λ ∈ (0, 1). Second, note that since

d(ξ j + i x j 〈ξ 〉) = dξ j + i x j

d∑
k=1

ξk

〈ξ 〉 dξk

we see that α(x, ξ) is a sum of terms of the form (i x)β1
(

ξ
〈ξ〉

)β2 where |β1| = |β2| ≤ d .

Next, we use the decomposition for u given by (3.1), to write u = ∑
γ∈Nd

0
u(γ )

γ in

Eq,M (Rd)′, with uγ ∈ L p(Rd) and
∑

γ∈Nd
0

M|γ |
A|γ | ‖uγ ‖L p(Rd ) < ∞ for every A > 0. We

therefore, can write Fu as a sum in β1, β2, γ , (finite in β1, β2), of Uβ1,β2,γ , where

Uβ1,β2,γ (x + iy, ξ) := cγ

∫

Rd
uγ (t) Dγ

t
{
ei(x+iy−t)·ξ−〈ξ〉(x+iy−t)2(x + iy − t)β1

(
ξ

〈ξ〉
)β2} dt .

(5.10)

Since derivatives in y in (5.10) can be replaced by derivatives in x multiplying by a
constant with absolute value equals to one, to prove (2.12) it will be enough to differentiate
only in x . The same remark holds for the derivatives Dγ

t . Thus differentiating in x , J ∈ N
d
0

times, we have

D J
x Uβ1,β2,γ (x + iy, ξ)

= cγ

(
ξ

〈ξ〉
)β ∫

Rd uγ (t) (−1)|γ | D J+γ
x

{
ei(x+iy−t)·ξ−〈ξ〉(x+iy−t)2(x + iy − t)α

}
dt

= cγ (−1)|γ |( ξ
〈ξ〉

)β ∫
Rd uγ (t)

∑
L≤J+γ

(
γ+J

L

)
DL

x

{
ei(x+iy−t)·ξ−〈ξ〉(x+iy−t)2

}

×D J+γ−L
x

{
(x + iy − t)α

}
dt . (5.11)

Let

Q(t, x + iy, ξ) := iξ · (x + iy − t) − 〈ξ 〉(x + iy − t)2,

then
∣∣∣DL

x

{
eQ(t,x+iy,ξ)

}∣∣∣ ≤
∑

L1+L2=L

(
L

L1

)∣∣DL1
x

{
eiξ ·(x+iy−t)}∣∣∣∣DL2

x

{
e−〈ξ〉(x+iy−t)2}∣∣

≤
∑

L1+L2=L

(
L

L1

)
|ξ |L1e−ξ ·y · ∣∣DL2

x

{
e−〈ξ〉(x+iy−t)2}∣∣. (5.12)

Also, for any K ∈ N
d
0 with K ≤ β1, we obtain

DK
x

{
(x + iy − t)β1

} = β1!
(β1 − K )!

{
(x + iy − t)β1−K }. (5.13)

Using (5.12) and (5.13) (with K = J +γ − L ≤ β1) one can estimate D J
x Uβ1,β2,γ (x + iy, ξ)

given in (5.11) by

|D J
x Uβ1,β2,γ (x + iy, ξ)| ≤ CC |J |+|γ |e−ξ ·y ∑

L⊂γ+J
L1+L2=L

|ξ |L1

×{|uγ (·)| ∗ ∣∣(· + iy)β1+L−J−γ
(
DL2

x

{
e−〈ξ〉(·+iy)2

})∣∣}(x).

(5.14)
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Microglobal regularity and the global wavefront set 983

Now, given r ∈ [p,∞], let r̃ ≥ 1 satisfying 1
r + 1 = 1

p + 1
r̃ , we can integrate (5.14) with

respect to x ∈ R
d and apply Young’s inequality to obtain that for (t, ξ) ∈ ⋃

j (� j × C j )

‖D J
x Uβ1,β2,γ (· + iy, ξ)‖Lr (Rd ) ≤ CC |J |+|γ |e−ξ ·y‖uγ ‖L p

×
∑

L≤γ+J
L1+L2=L

|ξ |L1

∥∥∥∥(· + iy)β1+L−J−γ
(
DL2

x e−〈ξ〉(·+iy)2
)∥∥∥∥

Lr̃
.

(5.15)

Assume, without loss of generality that |ξ | ≥ 1 [the case where |ξ | ≤ 1 is similar, see
(5.19)]. Using Corollary B.4, Eq. (B.5), one can further bound the last expression by

‖D J
x Uβ1,β2,γ (· + iy, ξ)‖Lr (Rd ) ≤ CCd A|J |+|γ | e−ξ ·y+〈ξ〉|y|2‖uγ ‖L p

∑
L≤γ+J

L1+L2=L

|ξ |L1

×
∑

K1+K2=L2
0≤�≤d

(
L2

K1

)
|ξ | |K1 |

2 +|K2|− 1
2̃r − �

2 K
K1
2

1 . (5.16)

Thus, for |y| < δ sufficiently small one can use (5.4), and introducing a parameter 0 < θ < 1,
we obtain

‖D J
x Uβ1,β2,γ (· + iy, ξ)‖Lr (Rd ) ≤ CCd

( A

θ1/2

)|J |+|γ |
e− c

2 |ξ ||y|‖uγ ‖L p

∑
L≤γ+J

L1+L2=L

|ξ |L1

×
∑

K1+K2=L2

(
L2

K1

)( (θ |ξ |)|K1|

M|K1|

) 1
2 M|K1||ξ ||K2|

≤ CCd

( A

θ

)|J |+|γ |
e− c

2 |ξ ||y|e
1
2 M(θ |ξ |) ‖uγ ‖L p

∑
K1+K2=L≤γ+J

|ξ |K2 M|K1| (5.17)

Now, for a given 0 < λ < 1, fix θ = 2cλ
3 , then we can further estimate D J

x Uβ1,β2,γ by

‖D J
x Uβ1,β2,γ (· + iy, ξ)‖Lr (Rd )

≤ Cd

( 3A

2cλ

)|J |+|γ |
e
3
4

(
M(

2cλ
3 |ξ |)− 2cλ|ξ |

3
|y|
λ

)
e− 1

4 M(
2cλ
3 |ξ |) ‖uγ ‖L p

∑
K1+K2=L≤γ+J

|ξ |K2 M|K1|

≤ Cd

( 3A

2cλ

)|J |+|γ |
e
3
4 M∗( |y|

λ

)
e− 1

4 M(
2cλ
3 |ξ |) ‖uγ ‖L p

∑
K1+K2=L≤γ+J

|ξ |K2 M|K1|

≤ Cd

( 3A

2cλ

)|J |+|γ |
e
3
4 M∗( |y|

λ

)
e− 1

8 M(
2cλ
3 |ξ |) ‖uγ ‖L p M|γ |M|J | ∈ L1(Rm

ξ ) (5.18)

where the last inequality is a consequence of Lemma B.1 with � = 4, k = |L| ≤ |γ + J |
and r = |K2|. Finally, in view of (3.1), this quantity is summable in γ . This proves (5.9) for
|ξ | ≥ 1. Note that for |ξ | ≤ 1 one can rewrite estimate (5.16) as (taking into account that,
when we apply Corollary B.4, a = 〈ξ 〉 > 1)

‖D J
x Uβ1,β2,γ (· + iy, ξ)‖Lr (Rd )

≤ CCd A|J |+|γ | e−c|ξ ||y|‖uγ ‖L p

∑
L≤γ+J

L1+L2=L

|ξ ||L1|
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984 G. Hoepfner, A. Raich

×
∑

K1+K2=L2
0≤�≤d

(
L2

K1

)
〈ξ 〉|K1|/2+|K2||K1|

|K1|
2

≤ CCd

( A

θ

)|J |+|γ |
e−c|ξ ||y|e

1
2 M(θ〈ξ〉) ‖uγ ‖L p

∑
K1+K2=L≤γ+J

〈ξ 〉|K2|M|K1|

(5.19)

and we can proceed as before. This shows claim (1).

Proof of (2) Note that hypothesis (2) of Theorem 2.2 follows from (5.9), while hypothesis
(1) of Theorem 2.2 follows from the fact that f j is a holomorphic function in Rd + i� j .

Proof of (3) Note that Theorem 2.2 implies that b f j exists in Eq,M (Rd)′ for each j ∈
{1, . . . , k} and we can use Proposition 3.2, (3.1), for any ϕ ∈ Eq,M (Rd), to write

〈b f j , ϕ〉 = (2π)−d lim
� j 
y→0

∫

Rd

∫

ξ∈C j

F u(x + iy, ξ)dξ ϕ(x) dx (5.20)

= (2π)−d lim
� j 
y→0

∫

Rd

∫

ξ∈C j

〈u(t), ei(x+iy−t)·ξ−〈ξ〉(x+iy−t)2α(x + iy − t, ξ)〉dξ ϕ(x) dx

= (2π)−d lim
� j 
y→0

∑
γ

(−1)|γ |

×
∫

Rd

∫

ξ∈C j

∫

Rd
uγ (t)Dγ

t
{
ei(x+iy−t)·ξ−〈ξ〉(x+iy−t)2α(x + iy − t, ξ)

}
dt dξ ϕ(x) dx

= (2π)−d lim
� j 
y→0

∑
γ

(−1)|γ |

×
∫

ξ∈C j

∫

Rd
uγ (t)Dγ

t

{∫

Rd
ϕ(x) ei(x+iy−t)·ξ−〈ξ〉(x+iy−t)2α(x + iy − t, ξ) dx

}
dt dξ.

Let �(x + iy) be an Eq,M -almost analytic extension of ϕ granted by Proposition 3.5. Then

〈b f j , ϕ〉 = (2π)−d lim
� j 
y→0

∑
γ

(−1)|γ |

×
∫

ξ∈C j

∫

Rd
uγ (t)Dγ

t

{∫

Rd
�(x − iy) ei(x−t)·ξ−〈ξ〉(x−t)2α(x − t, ξ) dx

}
dt dξ

= (−2π)−d lim
� j 
y→0

∑
γ

(−1)|γ |
∫

ξ∈C j

∫

Rd
uγ (t)Dγ

t
{F(�(t − iy))(t,−ξ)

}
dt dξ

= (−2π)−d
∑
γ

(−1)|γ |
∫

ξ∈C j

∫

Rd
uγ (t)Dγ

t
{Fϕ(t,−ξ)

}
dt dξ (5.21)

where the last equality is a consequence of the fact that � ∈ Eq,M (Rd ; E∞,M (Rd)) and that
�(· − iy) → ϕ(·) in the topology of Eq,M (Rd) as y → 0.
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We will now treat the term uε
j (x). In view of Proposition 3.2, (3.1), we can rewrite uε

j (x),
j ∈ {1, . . . , k}, given in (5.6) as

uε
j (x) = (2π)−d

∑

γ∈Nd
0

(−1)|γ |
∫

ξ∈C j

|ξ |≤ε−1

∫

Rd
uγ (t)Dγ

t
{
ei(x−t)·ξ−〈ξ〉(x−t)2α(x − t, ξ)

}
dt dξ.

(5.22)
Now, one can use Eq. (2.7) to write, for any ϕ ∈ Eq,M (Rd),

〈uε
j , ϕ〉 = (2π)−d

∑
γ

(−1)|γ |

×
∫

Rd

∫

ξ∈C j

|ξ |≤ε−1

∫

Rd
uγ (t)Dγ

t
{
ei(x−t)·ξ−〈ξ〉(x−t)2α(x − t, ξ)

}
dt dξ ϕ(x) dx

= (−2π)−d
∑
γ

(−1)|γ |

×
∫

ξ∈C j

|ξ |≤ε−1

∫

Rd
uγ (t)

∫

Rd
ϕ(x) Dγ

t
{
ei(t−x)·(−ξ)−〈−ξ〉(t−x)2α(t − x,−ξ)

}
dx dt dξ

= (−2π)−d
∑
γ

(−1)|γ |

×
∫

ξ∈C j

|ξ |≤ε−1

∫

Rd
uγ (t)Dγ

t

{∫

Rd
ϕ(x) ei(t−x)·(−ξ)−〈−ξ〉(t−x)2α(t − x,−ξ) dx

}
dt dξ

= (−2π)−d
∑
γ

(−1)|γ |
∫

ξ∈C j

|ξ |≤ε−1

∫

Rd
uγ (t)Dγ

t
{Fϕ(t,−ξ)

}
dt dξ. (5.23)

Hence, we can use Theorem 2.3 together Proposition 3.2 to conclude that

lim
ε→0

〈uε
j , ϕ〉 = (−2π)−d

∑
γ

(−1)|γ |
∫

ξ∈C j

∫

Rd
uγ (t)Dγ

t
{Fϕ(t,−ξ)

}
dt dξ. (5.24)

Therefore, claim (3) follows from Eqs. (5.21) and (5.24).
For the converse, using the linearity of the FBI transform, it will be enough to prove the

theorem under the following simpler assumption:

If there exist an open acute cone � ⊂ R
d \ {0} such that ξ0 · � < 0, and a function

f defined on R
d × �δ satisfying (1) from Theorem 2.2 and (2.11), and u = b f in

Eq,M (Rd)′, then there exists an open acute conic neighborhood of ξ0, �0, such that
(2.10) is satisfied.

We first assume that |ξ | ≥ 1. In this case, 〈ξ 〉 ≤ √
2|ξ |. Next, we note that α(x, ξ) is a

sum of terms of the form i�xβ1
(

ξ
〈ξ〉

)β2 where |β1|, |β2| ≤ d as before. Therefore, to prove
estimate (2.9), it suffices to obtain the same bound for

uβ1β2(x, ξ) :=
〈
u, ei(x−·)·ξ−〈ξ〉(x−·)2(x − ·)β1( ξ

〈ξ〉
)β2 〉 (5.25)
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in some conic neighborhood of ξ0. To this end, we first will use the hypothesis that u = b f
to write

uβ1β2(x, ξ) = lim
�
y→0

∫

Rd
f (t + iy)ei(x−t)·ξ−〈ξ〉(x−t)2(x − t)β1

(
ξ

〈ξ〉
)β2 dt . (5.26)

Second, we may assume, without loss of generality (see the proof of Theorem 2.2), that
y = he1, for some fixed 0 < h < δ/2. We now apply Stokes Theorem in the complex
variable z1 = t1 + is to the function

f (z1 + ih, t2, . . . , td)ei(x−z1)·ξ−〈ξ〉(x−z1)2(x − z1)
β1 , t1 ∈ R, s ∈ [0, h]

and recall that for anyC1 function g, dg∧dz1 = ∂g
∂ z̄1

dz̄1∧dz1 = 2i ∂g
∂ z̄1

dt1∧ds. Additionally,

dz1 = dt1 when z1 ∈ R or R + iy. We may therefore rewrite uβ1β2(x, ξ) given in (5.26) as

uβ1β2(x, ξ)

= lim
�
y→0

{
c1

∫

Rd
f (t + i2y)ei(x−t−iy)·ξ−〈ξ〉(x−t−iy)2(x − t − iy)β1

(
ξ

〈ξ〉
)β2 dt

+ c2

∫

Rd

∫ h

0

∂ f

∂ z̄1
(t + i(s + h)e1)e

i(x−t−is)·ξ−〈ξ〉(x−t−is)2(x − t − is)β1
(

ξ
〈ξ〉

)β2 ds dt

}

(5.27)

In the first integral in the right hand-side of (5.27), we use estimates (5.12), (5.13) and (5.18),
and the fact that ξ0 ·� < 0. Note that (5.4) was fundamental to obtain (5.18) (see (5.17)), and
in this situation, its substitute is ξ · � < 0 for all ξ in a conic neighborhood �0 of ξ0 given
by the hypothesis to obtain a conic neighborhood �0 of ξ0 such that one can interchange
the derivatives in x with the integral and obtain a limits and obtain an estimate like (2.10)
independent of y. For the second integral in the right hand-side of (5.27), we use that f
satisfies (1) from Theorem 2.2 so that we can reason as in the proof of Theorem 2.2, see
(4.6), together (5.18), to obtain the desired bounds for all derivatives in x uniformly of y.
This allows us to apply D J

x to uβ1β2 , and proceed as in (5.15) (with the difference that now
γ = 0) to obtain the desired estimate. ��

6 Application: wavefront sets and constant coefficient PDE. Proof of
Theorem 2.8

Proof of Theorem 2.8 We follow the general argument of [21, Theorem 8.3.1]. The inclusion
W FEq,M (Pu) ⊂ W FEq,M (u) is a consequence of the fact thatF u(x, ξ) is defined in terms of a
convolution in x−y and (A.4). In particular,wewill show that ifu isEq,M -microglobal regular
at ξ , then so is Dκu for any fixed κ . Supposing this, the inclusionW FEq,M (Pu) ⊂ W FEq,M (u)

is immediate. Therefore, assume that u ∈ Eq,M (Rd)′ is Eq,M -microglobal regular at ξ0. Then
there exists a conic neighborhood � of ξ0 in R

d \ {0} in which (2.10) holds. Let ξ ∈ � and
observe

D J
x F{Dκu}(x, ξ) = D J

x

∫

Rd
ei(x−y)·ξ−〈ξ〉(x−y)2 Dκ

y u(y)α(x − y, ξ) dy

= (−1)|κ| D J
x

∫

Rd
u(y)Dκ

y

{
ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ)

}
dy

= D J+κ
x

∫

Rd
u(y)ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ) dy = D J+κ F u(x, ξ)
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Microglobal regularity and the global wavefront set 987

where the integration should be understood as a pairing a function with an element in its dual
space. The estimate to show that Dκu is Eq,M -microglobal regular at ξ0 now follows from
the estimate that u is Eq,M -microglobal regular at ξ0 and (A.4) (which allows us to bound
M|J |+|κ| in terms of M|J | by paying a price of increasing the geometric constant).

We now establish the second inclusion. Since P has constant coefficients, its symbol does
not depend on x , hence we may write Pm(x, ξ) = Pm(ξ). We may assume that ξ0 is such
that Pm(ξ0) �= 0. Since Pm is a homogeneous polynomial of degree m and Pm(ξ0) �= 0,
there exists an open cone �0 ⊂ R

d \ {0} that contains ξ0 and a constant C > 0 so that

|ξ |m ≤ C |Pm(ξ)| if ξ ∈ �0.

Given a suitable v, Pu = f means that

(u, Ptv) = (Pu, v) = ( f , v)

where the transpose operator, Pt , is given by

Pt =
∑

|κ|≤m

(−1)|κ|aκ Dκ .

For fixed ξ ∈ �0 large and x ∈ R
d , we want to find v so that

(u, Ptv) = F u(x, ξ) =
∫

Rd
ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ)u(y) dy.

This means we need v to satisfy

Pt
yv(y) = ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ).

Suppose that
v(y) = w(x − y)ei(x−y)·ξ /Pm(ξ). (6.1)

Then applying Pt to the expression for v defined in (6.1), shows that

1

Pm(ξ)
Pt

y

(
w(x − y)ei(x−y)·ξ )

= 1

Pm(ξ)

∑
|κ|≤m

(−1)|κ|aκ Dκ
y

(
w(x − y)ei(x−y)·ξ )

= ei(x−y)·ξw(x − y) − R̃y
{
ei(x−y)·ξw(x − y)

}
(6.2)

where

R̃y
{
ei(x−y)·ξw(x − y)

} = w(x − y)ei(x−y)·ξ − 1

Pm(ξ)

∑
|κ|≤m

(−1)|κ|aκ Dκ
y

(
w(x − y)ei(x−y)·ξ )

= ei(x−y)·ξ 1

Pm(ξ)

∑
|κ|≤m

∑
γ⊆κ

|γ |≤m−1

(
κ

γ

)
(−1)|κ|−|γ |aκ Dκ−γ

y w(x − y)ξγ

:= ei(x−y)·ξ Ryw(x − y). (6.3)

Additionally, we can write R = R1 + · · · + Rm and R j is a differential operator of order at
most j and the coefficients of R j |ξ | j are homogeneous functions of ξ of degree 0. Moreover,
we have the relationship ei(x−y)·ξ Ry = R̃yei(x−y)·ξ which means, of course, that

R j
y = e−i(x−y)·ξ R̃ j

y ei(x−y)·ξ .
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988 G. Hoepfner, A. Raich

Solving

e−〈ξ〉(x−y)2α(x − y, ξ) = w(x − y) − Ryw(x − y) = (I − R)w(x − y),

is unlikely to be straight forward since the sum
∑∞

k=0 Rk
y is unlikely to converge. Instead,

set

wN (x − y) =
N−1∑
k=0

Rk
y

{
e−〈ξ〉(x−y)2α(x − y, ξ)}.

Then

wN − RwN = e−〈ξ〉(x−y)2α(x − y, ξ) − RN{e−〈ξ〉(x−y)2α(x − y, ξ)}.
We combine this equality with Eqs. (6.2) and (6.3) (with wN replacing w) to observe that

1

Pm(ξ)
Pt(ei(x−y)·ξwN (x − y)

)

= ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ) − ei(x−y)·ξ RN{e−〈ξ〉(x−y)2α(x − y, ξ)
}

or, by rearranging,

ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ)

= 1

Pm(ξ)
Pt(ei(x−y)·ξwN (x − y)

) + R̃N{ei(x−y)·ξ e−〈ξ〉(x−y)2α(x − y, ξ)
}
.

Suppose now that u is an ultradistribution. It now follows that

F u(x, ξ) = 〈
u, R̃N{ei(x−y)·ξ e−〈ξ〉(x−y)2α(x − y, ξ)

}〉 +
〈

f ,
1

Pm(ξ)
ei(x−y)·ξwN (x − y)

〉

(6.4)

where f = Pu is Eq,M -microglobal regular at ξ0 and, without loss of generality, satisfies
(2.10) for ξ ∈ �0.

We start with the bound for the f term in (6.4), we compute

1

Pm(ξ)
〈 f , ei(x−y)·ξwN (x − y)〉 = 1

Pm(ξ)

N−1∑
k=0

〈
f , R̃k

y

{
ei(x−y)·ξ−〈ξ〉(x−y)2α(x − y, ξ)

}〉

= 1

Pm(ξ)
F f (x, ξ) +

N−1∑
k=1

S̃k
x F f (x, ξ)

where the operator S̃ = S̃1 + · · · + S̃m and S̃ j , j ∈ {1, . . . m}, is given by

S̃ j g(x, ξ) := 1

|ξ | j

∑
|κ|≤ j

a j,κ (ξ)Dκ
x

and where a j,κ (ξ) is a function that is homogeneous of degree 0 in ξ . Thus, if

A′ = max
1≤ j≤m

max|ξ |=1

∑
|κ|≤ j

|a j,κ (ξ)|
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Microglobal regularity and the global wavefront set 989

then

D J
x

1

Pm(ξ)
〈 f , ei(x−y)·ξwN (x − y)〉 = 1

Pm(ξ)

N−1∑
k=0

∑
|γ |=k

(
k

γ

)
D J

x S̃γ1
1 · · · S̃γm

m F f (x, ξ).

Consequently, for some A that may increase between every step, we use (A.9) and observe

1

Pm(ξ)

∥∥D J
x 〈 f , ei(x−y)·ξwN (x − y)〉∥∥Lr (Rd )

≤ 1

Pm(ξ)

N−1∑
k=0

∑
|γ |=k

(
k

γ

)
(A′)k

|ξ |γ · �m M|J |+γ · �me− 1
c M(a|ξ |)

≤ C A|J |M|J |e− 1
c M(a|ξ |)

N−1∑
k=0

∑
|γ |=k

(
k

γ

)
(A′)k Aγ · �m

|ξ |γ · �m Mγ · �m

≤ C A|J |M|J |e− 1
c M(a|ξ |)

(N−1)m∑
�=0

A�

|ξ |� M�

where �m is the vector �m = (1, 2, . . . , m). Since M� increases faster than �! by (A.10), it

follows that the function � �→ A�

|ξ |� M� has exactly one critical point which is a minimum (and

the function has the minimum value exp(−M(
|ξ |
A )) ≤ 1). Consequently, using (A.9) in the

final inequality and allowing A to grow as necessary (e.g., in the fourth line), we obtain (for
some H > 0 which we allow to grow later, e.g., in (6.11), if necessary)

1

Pm(ξ)

∥∥D J
x 〈 f , ei(x−y)·ξwN (x − y)〉∥∥Lr (Rd )

≤ C A|J |M|J |e− 1
c M(a|ξ |)

⎛
⎝1 + A(N−1)m

|ξ |(N−1)m
M(N−1)m

(N−1)m∑
�=0

|ξ |(N−1)m−�

A(N−1)m−�M(N−1)m−�

⎞
⎠

≤ C A|J |M|J |e− 1
c M(a|ξ |)Nm

(
1 + A(N−1)m

|ξ |(N−1)m
M(N−1)m

1

infρ∈N Aρ

|ξ |ρ Mρ

)

≤ C A|J |M|J |e− 1
c M(a|ξ |)Nm

(
1 + A(N−1)m

|ξ |(N−1)m
M(N−1)meM(

1
A |ξ |)

)

≤ C A|J |M|J |e− 1
c M(a|ξ |)+M(

1
A |ξ |)Nm

(
1 + A(N−1)m

|ξ |m(N−1)
Mm(N−1)

)

≤ C A|J |M|J |e− 1
c M(a|ξ |)+M(

1
A |ξ |)

(
Nm + Mm N

( |ξ |
A

)−Nm

|ξ |m
)

≤ C A|J |M|J |e− 1
c M(a|ξ |))

{
Nm +

[
MN

(
H

|ξ |
)N

]m

|ξ |m
}

. (6.5)

where the last inequality is obtained as a consequence of (B.3) to bound e− 1
c M(a|ξ |)eM(

|ξ |
A ) by

(possibly decreasing 1
c and increasing A) a constant times e− 1

c M(a|ξ |). Choose N to minimize
MN ( H

|ξ | )
N . The fact that M� grows faster than �!means that N is smaller than if M� were only
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990 G. Hoepfner, A. Raich

�! (which would be approximately |ξ |
H ). Plugging this information into (6.5) and recognizing

that we can absorb the m term into the constant C , Then

1

Pm(ξ)

∥∥D J
x 〈 f , ei(x−y)·ξwN (x − y)〉∥∥Lr (Rd )

≤ C A|J |M|J |e− 1
c M(a|ξ |)

( |ξ |
H

+ e− 1
c′ M(

|ξ |
A )|ξ |m

)

≤ C A|J |M|J |e− 1
c M(a|ξ |) (6.6)

with a slight decrease in 1
c , see (B.1).

We now turn to the u term in (6.4). The operator R̃y is a constant coefficient operator so

R̃N
y

{
ei(x−y)·ξ e−〈ξ〉(x−y)2α(x−y, ξ) ∈ G p,1/2(Rd) for all 1 ≤ p ≤ ∞.WeuseProposition 3.2

to express the ultradistribution u ∈ Eq,M (Rd)′ as

u =
∑

κ∈Nd
0

∂κuκ

where uκ ∈ Lq ′
(Rd), 1

q + 1
q ′ = 1. Consequently, for any multiindex J , if 1 ≤ p ≤ q and r

satisfying 1
p + 1

q ′ = 1 + 1
r , we use Young’s inequality and estimate

∥∥∥D J
x

〈
u, R̃N

y

{
ei(x−y)·ξ e−〈ξ〉(x−y)2α(x − y, ξ)

}〉∥∥∥
Lr (Rd )

≤
∑

κ∈Nd
0

‖uκ‖Lq′
(Rd )

∥∥D J ∂κ R̃N {ei(x−y)·ξ e−〈ξ〉(x−y)2α(x − y, ξ)
}∥∥

L p(Rd )
. (6.7)

Recall that R = R1 +· · ·+ Rm . We define operators S, S1, . . . , Sm so that (R j )y g(x − y) =
(S j )x g(x − y). Then for any multiindex I , set SI = SI1

1 · · · SIm
m . The operators S̃ j defined

above were defined above in an analogous manner so that (R̃ j )y g(x − y) = (S̃ j )x g(x − y)

We now compute
∣∣D J ∂κ S̃N {eix ·ξ e−〈ξ〉x2α(x, ξ)

}∣∣ = ∣∣D J ∂κeix ·ξ SN {e−〈ξ〉x2α(x, ξ)
}∣∣

≤
∑

|I |=N

∑
γ⊂J+κ

(
κ + J

γ

)(
N

I

)∣∣ξ J+κ−γ Dγ SI {e−〈ξ〉x2α(x, ξ)
}∣∣.

Observe that I has m components so that
∑

|I |=N

(N
I

) ≤ m N . Similarly
∑

γ⊂J+κ

(
κ+J

γ

) ≤
d |κ|+|J |. Next, let �m be the vector �m = (1, 2, . . . , m) as above, and recall that α(x, ξ) is a
sum of terms of the form xμ′ ξμ

〈ξ〉|μ| for multiindices μ,μ′ so that |μ′| = |μ| ≤ d . Thus, given
the form of the operator S j , there exists a constant A > 0 so that

∣∣ξ J+κ−γ Dγ SI {e−〈ξ〉x2α(x, ξ)
}∣∣ ≤ |ξ ||J |+|κ|−|γ |−I · �m ∑

0≤|μ|≤d
0≤�≤|μ|

∣∣∇�xμ
∣∣∣∣∇|γ |+I · �m−�e−〈ξ〉x2 ∣∣.

By Corollary B.3,
∥∥∥
∣∣∇�xμ

∣∣∣∣∇|γ |+I · �m−�e−〈ξ〉x2 ∣∣∥∥∥
L p(Rd )

≤ C A|γ |+I · �m−�〈ξ 〉 1
2 (|γ |+I · �m−|μ|− 1

p )
(|γ | + I · m − �)

1
2 (|γ |+I · �m−�).
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Consequently, assuming that the constants A and C can grow from line to line, we obtain

∣∣D J ∂κ S̃N {eix ·ξ e−〈ξ〉x2α(x, ξ)
}∣∣

≤
∑

|I |=N

∑
γ⊂J+κ

d |κ|+|J |m N |ξ ||J |+|κ|−|γ |−I · �m ∑
0≤|μ|≤d
0≤�≤|μ|

∥∥∥∣∣∇�xμ
∣∣∣∣∇|γ |+I · �m−�e−〈ξ〉x2 ∣∣∥∥∥

L p(Rd )

≤
∑

|I |=N

∑
γ⊂J+κ

d |κ|+|J |m N |ξ ||J |+|κ|−|γ |−I · �m

×
∑

0≤|μ|≤d
0≤�≤|μ|

A|γ |+I · �m−�〈ξ 〉 1
2 (|γ |+I · �m−|μ|− 1

p )
(|γ | + I · �m − �)

1
2 (|γ |+I · �m−�)

≤
∑

|I |=N

∑
γ⊂J+κ

d |κ|+|J |m N |ξ ||J |+|κ|− 1
2 |γ |− 1

2 I · �m− 1
2p A|γ |+I · �m(|γ | + I · �m)

1
2 (|γ |+I · �m)

≤
∑

|I |=N

AN (I · �m)
1
2 I · �m |ξ |− 1

2 I · �m− 1
2p

∑
γ⊂J+κ

A|κ|+|J ||ξ ||J |+|κ|− 1
2 |γ ||γ | |γ |

2 . (6.8)

We need to sum in κ so we decompose the sum over J + κ into two sums – one over J and
one over κ . Then (6.8) becomes

∣∣D J ∂κ S̃N {eix ·ξ e−〈ξ 〉x2α(x, ξ)
}∣∣

≤
∑

|I |=N

AN (I · �m)
1
2 I · �m |ξ |− 1

2 I · �m− 1
2p

∑
γ1⊂J

A|J ||ξ ||J |− 1
2 |γ1||γ1|

|γ1 |
2

∑
γ2⊂κ

A|κ||ξ ||κ|− 1
2 |γ2||γ2|

|γ2 |
2 .

(6.9)

We first sum in κ . Our choice of M� forces there to exist B ′ and C ′ so that

M� ≥ C ′ B ′���.

Consequently, we now recall the sum in κ from (6.7). In the estimate below, we assume
|ξ | ≥ 1 as the |ξ | ≤ 1 case is simpler. We also assume |γ | is even for simplicity, the |γ |
odd calculation requires a simple modification. For B > 1 to be chosen later and C and A
which may grow with each line (though they are required to be independent of |ξ | and |κ|)
and estimate

∑

κ⊂N
d
0

⎡
⎣‖uκ‖Lq′

(Rd )
A|κ| B|κ|M|κ||ξ ||κ| ∑

γ2⊂κ

|γ2|
|γ2 |
2

B|κ||ξ | 12 |γ2|M|κ|

⎤
⎦

<
∑

κ⊂N
d
0

⎡
⎣‖uκ‖Lq′

(Rd )
A|κ| B|κ|M|κ|

∑
γ2⊂κ

1

B
1
2 |γ2|

|ξ ||κ|− 1
2 |γ2|

B|κ|− 1
2 |γ2|M|κ|− 1

2 |γ |

⎤
⎦

<
∑

κ⊂N
d
0

⎡
⎢⎣‖uκ‖Lq′

(Rd )
A|κ| B|κ|M|κ|

∑

γ∈Nd
0

1

B
|γ |
2

(
sup
�≥0

|ξ |�
B�M�

)⎤
⎥⎦

≤ CABeM(
|ξ |
B ) (6.10)
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992 G. Hoepfner, A. Raich

where the sum is finite because B > 1 and it is geometric. Next, we investigate the behavior
in N and the sum in I and observe that since we are assuming |ξ | ≥ 1 that

∑
|I |=N

AN (I · �m)
1
2 I · �m |ξ |− 1

2 I · �m− 1
2p ≤ AN

[(
N

|ξ |
)N/2

+
(

Nm

|ξ |
) Nm

2
]

.

Recall that N was chosen to minimize MN ′( |ξ |
H )−N ′

and MN ′ ≥ N ′!. Consequently, since
m ≥ 1 and allowing A and H to grow (if need be),

AN

[(
N

|ξ |
)N/2

+
(

Nm

|ξ |
) Nm

2
]

≤
{

AN
(

N

|ξ |
)N

}1/2

+
{(

N

|ξ |m A

)N
}m/2

≤
{

MN

(
H

|ξ |
)N

}1/2

+
{

MN

(
H

|ξ |
)N

}m/2

≤ e− 1
2 M(

|ξ |
H ). (6.11)

Finally, we investigate the behavior in J . Observe that (using the same B as above, though
it we may require it to grow later)

∑
γ1⊂J

A|J ||ξ ||J |− 1
2 |γ1||γ1|

|γ1 |
2 = C A|J | B|J ||ξ ||J | ∑

γ⊂J

|γ | |γ |
2

B|J ||ξ | |γ |
2

≤ C A|J | B|J ||ξ ||J |
(

1

|B||J | + |J ||J |/2

B|J ||ξ ||J |/2

)

≤ C A|J | B|J |
( |ξ ||J |

|B||J | + |J ||J |/2|ξ ||J |/2

B|J |

)
. (6.12)

Putting together our estimates (6.10)–(6.12), and choosing B sufficiently large (but indepen-
dent of |ξ | ≥ 1, A, J , N ), there exists a > 0 so we can estimate (6.7) by

∥∥∥D J
x

〈
u, R̃N

y

{
ei(x−y)·ξ e−〈ξ〉(x−y)2α(x − y, ξ)

}〉∥∥∥
Lr (Rd )

≤ CABe− 1
c M(

|ξ |
A )

( |ξ ||J |

|B||J | + |J ||J |/2|ξ ||J |/2

B|J |

)
A|J ||ξ ||J |

≤ CABe− 1
c M(

|ξ |
A )

(
M|J |

|ξ ||J |

M|J ||B||J | + M|J |/2
|J ||J |/2M|J |/2|ξ ||J |/2

B|J |

)
A|J ||ξ ||J |

≤ CABe− 1
2 M(

|ξ |
H )eM(

|ξ |
B ) A|J |M|J |

where, as usual, A, CAB , and B only depends on A. By possibly increasing B and allowing B

to depend on H , we may use Eq. (B.3) and bound e− 1
2 M(

|ξ |
H )eM(

|ξ |
B ) ≤ Ce− 1

c M(
|ξ |
H ) for some

fixed c > 2 and C depending on C and the constants in (A.9). ��
Recall that a partial differential operator is elliptic if Pm(x, ξ) �= 0 if ξ �= 0.

Corollary 6.1 If P is an elliptic, constant coefficient differential operator and M be a sequence
so that Gq,1(Rd) ⊂ Eq,M (Rd), then

W FEq,M (Pu) = W FEq,M (u).
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Appendix A: On the sequenceM = (
Mj

)

Definition A.1 Let M = (
M j

)
be a sequence of positive real numbers satisfying the following

properties:
(Initial conditions)

M0 = M1 = 1. (A.1)

(Strong non-quasianalyticity) There exists a constant A > 1 such that for all p = 1, 2, . . . ,
we have ∞∑

j=p

M j

M j+1
≤ Ap

Mp

Mp+1
. (A.2)

(Strong logarithmic convexity) For some fixed A > 0 and for any r , with 0 ≤ r < 1/A,

if we set Pj = M j/ ( j !)r , then

the sequence

(
Pj

j Pj−1

)
is increasing. (A.3)

(Stability under ultradifferential operators) There are constants A > 1 and H > 1,
independent of n, such that for all n = 1, 2, 3, . . . , we have

Mn ≤ AHn min
0≤ j≤n

M j Mn− j . (A.4)

A.1. Some consequences

We refer to the paper [27] for consequences of the conditions listed in Definition A.1. For
instance, condition (A.3) implies: (i) the (usual) logarithmic convexity condition: For all
j = 1, 2, 3, . . .

M2
j ≤ M j−1M j+1; (A.5)

(ii) for all 0 ≤ j ≤ n, (
n

j

)
M j Mn− j ≤ Mn (A.6)

and (iii)

the sequence

(
M j

j !
)1/ j

is increasing. (A.7)

Condition (A.6) insures that the class C M (U ) is invariant under composition and, in
particular, that for all 0 ≤ j ≤ n,

M j Mn− j ≤ Mn . (A.8)

The condition (A.4) implies the (usual) Stability under differential operators condition;
i.e., There are constants A > 1 and H > 1, independent of n and j , such that for all
1 ≤ j ≤ n, we have

Mn ≤ AHn−1M j Mn− j . (A.9)

We will often replace AHn−1 with Cn .
If the sequence M satisfies conditions (A.1) and (A.3), then it satisfies the following

condition: for all n = 1, 2, 3, . . .
Mn ≥ n! (A.10)

Condition (A.10) insures that every analytic function belongs to the class C M .
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A.2. Associated functions

Definition A.2 For each sequence
(
M j

)
of positive numberswedefine itsassociated function

M (t) on (0,∞) by

M (t) = sup
j
log

t j

M j
. (A.11)

For the reader who is interested in learning more about associated functions and how each
of the conditions which we impose on the sequence can be written in terms of the associated
function, we recommend the paper by Komatsu [27]. In particular, it is not difficult to show
that if

(
M j

)
satisfies conditions (A.1) and (A.10), then for all t > 0,

log t ≤ M (t) ≤ t . (A.12)

Appendix B: Some estimates

Lemma B.1 (See [25]) If the sequence M = (M j ) j∈N satisfies (A.4) and (A.8), then for each
θ > 0 and k, r , � ∈ N such that k ≥ r ≥ 0 we have

tr Mk−r ≤ A
H �r

θr
Mk e

1
2�

M(θ t)
, for all t > 0 (B.1)

where A and H are given by (A.4).

Proof We first note that property (A.4) is equivalent to (see [27, Proposition 3.6])

M

(
t

H

)
≤ 1

2
M(t) + log

√
A (B.2)

and this implies that for every � ∈ N, the following inequality holds true

M

(
t

H �

)
≤ 1

2�
M(t) + log

√
A

�−1∑
j=0

1

2 j
≤ 1

2�
M(t) + 2 log

√
A. (B.3)

Thus if A > 0 and H > 0 are given by (A.4), and θ > 0, k, r , � ∈ N are chosen such that
k ≥ r then it follows from (A.8), (A.11) and (B.3) respectively that

tr Mk−r ≤ Hr�

θr
Mk

( θ t
H� )

r

Mr
≤ Hr�

θr
MkeM((θ t)/H�)

≤ Hr�

θr
Mk exp{ 1

2� M(θ t) + 2 log
√

A}

= A
Hr�

θr
Mke

1
2� M(θ t) (B.4)

as we wished to prove. ��
Proposition B.2 Let k ∈ N0. Then

1.

d2k

dx2k
e−ax2 = e−ax2

k∑
j=0

(−1)k+ j ak+ j x2 j b2k, j
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and

d2k+1

dx2k+1 e−ax2 = e−ax2
k∑

j=0

(−1)k+ j+1ak+ j+1x2 j+1b2k+1, j

for some constants b2k, j , b2k+1, j > 0.
2. The constants b2k, j , b2k+1, j satisfy the following (recursion) relations.

(i) b2k+1, j = 2b2k, j + 2( j + 1)b2k, j+1;
(ii) b2k+2, j = 2b2k+1, j−1 + (2 j + 1)b2k+1, j

with the understanding that b2k, j = 0 if j ≤ −1 or j ≥ �+1 and b2k+1, j = 0 if j ≤ −1
or j ≥ � + 1.

3. The constants b2k, j and b2k+1, j have the following upper bounds:
(i) b2k,k = 22k and b2k+1,k = 22k+1

(ii) There exist constants A, C > 0 so that

b2k, j ≤ C Akkk− j and b2k+1, j ≤ C Akkk− j .

Proof The proofs of 1. and 2. follow easily from induction. The only interesting part is 3.,
and this will follow from a counting argument. The number b2k+1, j is the coefficient of the

term (up to a sign and a power of a) x2 j+1e−ax2 . Viewing the coefficient b2k+1, j are part of
tree, the parents of b2k+1, j are b2k, j and b2k, j+1 since

d

dx
e−ax2 x2� = −2ae−ax2 x2�+1 + 2 je−ax2 x2�−1.

We will call b2k, j the left parent of b2k+1, j and b2k, j is the right child of b2k+1, j . Similarly,
we will call b2k, j+1 the right parent of b2k+1, j and b2k+1, j the left child of b2k, j+1. To pass
from the left parent to the child, the term is multiplied by −2a, a doubling of the coefficient
and an increase of the power of x . The pass from the right parent to the child, the polynomial
term of e−ax2 x2 j+2 is differentiated in x and consequently the child inherits a (2 j +2)b2k, j+1

summand. Visually, a tree looks like

b1,0
b2,0 b2,1

b3,0 b3,1
b4,0 b4,1 b4,2

b5,0 b5,1 b5,2
b6,0 b6,1 b6,2 b6,3

b7,0 b7,1 b7,2 b7,3
...

.

For example, the right child of b3,1 is b4,2 (down and to the right) and the left child is b4,1
(straight down). The key to understand the combinatorics is that in order to have a nonzero
right parent and hence a factorially growing term, the power of the polynomial piece must
be bigger than (in this case) 2 j + 1. Observe that if we trace through the tree to get to the
(2k + 1)st row, then it is always the case that for any path

2k = # right children + # left children

and to arrive at a nonzero term at the (2k +1)st row, at least half of the children must be right
children. Next, to arrive at b2k+1,0, exactly half of the children must be right children and half
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left children while to arrive at b2k+1,1, we need an additional right child and consequently
one less left child. As a result, to arrive at b2k+1, j , it follows there must be j +k right children
and k − j left children in the path. Consequently,

2 j = # right children − # left children.

The number of left children produce the factorially growing terms, and hence 3.ii. follows
as k − j left children mean the factorial contribution to the size of b2k+1, j is kk− j . It follows
from this observation that the only way to arrive at b2k,k or b2k+1,k is to follow the path of
all right children, hence 3.i. follows. The argument to bound the size of b2k, j is similar. ��

Corollary B.3 There exist constants C, A > 0 so that

1.

∣∣∣∣
d2k

dx2k
e−ax2

∣∣∣∣ ≤ Ce−ax2 Akak
k∑

j=0

a j x2 j kk− j

and

∣∣∣∣
d2k+1

dx2k+1 e−ax2
∣∣∣∣ ≤ e−ax2 Akak+1

k∑
j=0

a j x2 j+1kk− j

for all k ∈ N0 and a > 0.
2. If, in addition, 0 ≤ � ≤ d, then there exist constants Cd , A > 0 so that

∥∥∥∥x� dk

dxk
e−ax2

∥∥∥∥
L p(R)

≤ Cd Aka
k
2− 1

2p − �
2 k

k
2 .

Proof Part 1. of the corollary follows immediately from Proposition B.2. For the second
piece, we estimate that when k is even,

∥∥∥∥x� d2k

dx2k
e−ax2

∥∥∥∥
L p(R)

≤ C Akak
k∑

j=0

a j kk− j
∥∥x�+2 j e−ax2

∥∥
L p(R)

= C Akak
k∑

j=0

a j kk− j
(∫

R

x p(�+2 j)e−apx2 dx

)1/p

= C Akak
k∑

j=0

a j kk− j

(
�( 12 + j p + �p

2 )

2(ap)
1
2+ j p+ �p

2

)1/p

= C Akak
k∑

j=0

a j kk− j �( 12 + j p + �p
2 )1/p

2(ap)
1
2p + j+ �

2

.

By Stirling’s Formula, there exist constants C0, A0 > 0 (which may grow from line to line)
so that

�( 12 + j p + �p
2 )1/p

p
1
2p + j+ �

2

≤ C0
( j p + �p

2 )
1
2p + j+ �

2

p
1
2p + j+ �

2

≤ C0A j
0 j j ≤ C0A j

0k j .
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Similarly,

∥∥∥x� d2k+1

dx2k+1 e−ax2
∥∥∥

L p(R)
≤ C Akak

k∑
j=0

a j kk− j
∥∥x�+2 j e−ax2

∥∥
L p(R)

= C Akak
k∑

j=0

a j kk− j �( 12 + p( 12 + j + �p
2 ))1/p

2(ap)
1
2p +( 12+ j+ �

2 )
≤ C Ak

0kk .

��
Corollary B.4 Let 0 ≤ � ≤ d, a > 0 and |y| ≤ 1, then there exist constants Cd , A > 0 so
that

∥∥∥(x + iy)�∂k
x

{
e−a[x+iy]2}∥∥∥

L p
x (R)

≤ Cd eay2 Ak
∑

k1+k2=k
0≤�≤d

(
k

k1

)
a

k1
2 +k2− 1

2p − �
2 k

k1
2
1 . (B.5)

Proof First we note that, since � ≤ d and |y| ≤ 1 we have

∣∣(x + iy)�
∣∣ =

∣∣∣
�∑

j=0

(
�

j

)
x j (iy)�− j

∣∣∣ ≤ Cd

d∑
�=0

|x |�. (B.6)

Also, using Leibniz rule, the derivative of the complex exponential can be written as

∂k
x

{
e−a[x+iy]2} =

∑
k1+k2=k

(
k

k1

)(
∂k1

x

{
e−a(x2−y2)})(∂k2

x

{
e−2aixy})

= eay2
∑

k1+k2=k

(
k

k1

)(
∂k1

x

{
e−ax2})( − 2aiy

)k2e−2aixy, (B.7)

which, recalling that |y| ≤ 1, can be easily estimated by
∣∣∣∂k

x

{
e−a[x+iy]2}∣∣∣ ≤ eay2

∑
k1+k2=k

(
k

k1

)∣∣∂k1
x

{
e−ax2}∣∣∣∣2a

∣∣k2 . (B.8)

The proof now is a consequence of (B.6), (B.8) and Corollary B.3. ��
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