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Abstract
Deligne’s conjecture that �-adic sheaves on normal schemes over a finite field admit �′-
companions was proved by L. Lafforgue in the case of curves and by Drinfeld in the case
of smooth schemes. In this paper, we extend Drinfeld’s theorem to smooth Artin stacks and
deduce Deligne’s conjecture for coarse moduli spaces of smooth Artin stacks.We also extend
related theorems on Frobenius eigenvalues and traces to Artin stacks.

Mathematics Subject Classification Primary 14F20; Secondary 14G15 · 14A20 · 14D22

1 Introduction

Let Fq be a finite field and let � and �′ be prime numbers not dividing q . We let Q� denote
an algebraic closure of Q�. Deligne conjectured [11, Conjecture 1.2.10] that every lisse Q�-
sheaf on a normal scheme separated of finite type over Fq admits a lisse Q�′ -companion.
Drinfeld [14, Theorem 1.1] proved this conjecture for smooth schemes. The goal of this paper
is to extend Drinfeld’s theorem to smooth Artin stacks. We deduce that Deligne’s conjecture
holds for coarse moduli spaces of smooth Artin stacks. We also extend related theorems on
Frobenius eigenvalues and traces to Artin stacks.

For an Artin stack X of finite presentation over Fq and a Weil Q�-sheaf F on X , we let
E(F) denote the subfield ofQ� generated by the local Frobenius traces tr(Frobx ,Fx̄ ), where
x ∈ X(Fqn ) and n ≥ 1.Here Frobx = Frobqn denotes the geometric Frobenius, and x̄ denotes
a geometric point above x . Let Eλ′ be an algebraic extension ofQ�′ and let σ : E(F) → Eλ′
be a field embedding, not necessarily continuous. We say that a Weil Eλ′ -sheaf F ′ is a σ -
companion of F if for all x ∈ X(Fqn ) with n ≥ 1, we have tr(Frobx ,F ′̄

x ) = σ tr(Frobx ,Fx̄ ).
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58 W. Zheng

Our main results on Frobenius eigenvalues and traces are as follows.

Theorem 1.1 Let X be a geometrically unibranch1 Artin stack of finite presentation over Fq

and let F be a simple lisse Q�-sheaf of rank r on X such that det(F) has finite order.

(1) (Frobenius eigenvalues) Let x ∈ X(Fqn ) and let α be an eigenvalue of Frobx acting on
Fx̄ . Then α is a q-Weil number of weight 0.2 Moreover, for every valuation v on Q(α)

such that v(qn) = 1, we have |v(α)| ≤ r−1
2 .

(2) (Frobenius traces) The field E(F) is a number field (namely, a finite extension of Q).

The statement of Theorem 1.1, with a slightly weaker bound for the p-adic valuations,
is conjectured to hold for normal schemes separated of finite type over Fq by Deligne [11,
Conjecture 1.2.10(i)–(iv)]. In the case of curves, the theorem with a weaker bound is a
consequence of the Langlands correspondence for GL(n) over function fields proved by
L. Lafforgue [22, Théorème VII.6]. The improvement of the bound is due to V. Lafforgue
[23, Corollaire 2.2]. The extension from curves to schemes is stated by L. Lafforgue [22,
Proposition VII.7] for part (1), and due to Deligne [12, Théorème 3.1] for part (2).

Recently Drinfeld and Kedlaya [13, Theorem 1.3.3] proved a refinement of V. Lafforgue’s
bound forNewtonpolygons,which canbe thought of as an analogueofGriffiths transversality.
We also extend this result to stacks (Theorem 3.6).

The following is our main result on companions.

Theorem 1.2 (Companions on smooth stacks) Let X be a smooth Artin stack over Fq of finite
presentation and separated diagonal. Let F be a lisse Weil Q�-sheaf on X. Then, for every
embedding σ : E(F) → Q�′ , F admits a lisse σ -companion F ′. Moreover, if E(F) is a
number field, then there exists a finite extension E of E(F) such that for every finite place
λ′ of E not dividing q, F admits a lisse σλ′ -companion. Here σλ′ : E(F) → E → Eλ′ , and
Eλ′ denotes the completion of E at λ′.

The statements of Theorem 1.2 are conjectured to hold for normal schemes separated of
finite type over Fq by Deligne [11, Conjecture 1.2.10(v)]. In the case of curves, the first
assertion of the theorem is due to L. Lafforgue [22, Théorème VII.6], and the second to Chin
[7]. The extension from curves to smooth schemes is due to Drinfeld [14, Theorem 1.1].

As an application of Theorem 1.2, we deduce that Deligne’s conjecture holds for coarse
moduli spaces of smooth Artin stacks.

Corollary 1.3 (Companions on coarse moduli spaces) Let X be a scheme or algebraic space
that is Zariski locally the coarse moduli space of a smooth Artin stack of finite inertia and
finite presentation over Fq (e.g. when X has quotient singularities). Then the statements of
Theorem 1.2 hold for X.

The general normal case seems difficult. Drinfeld deduces his result from an equivalence
between lisse sheaves on a regular scheme X and compatible systems of lisse sheaves on
curves on X [14, Theorem 2.5]. This equivalence fails for X normal in general [14, Section 6].

For both Theorems 1.1 and 1.2, we reduce first to the case of a quotient stack [Y/G] of a
quasi-projective scheme Y by a finite groupG, and then, choosing an embeddingG → GLm ,
to the scheme Y ∧G GLm . One step of the reduction consists of showing that the assertions
can be checked on any dense open substack.

1 For a short review of the property “geometrically unibranch”, see Remark 2.5.
2 We adopt the convention that a q-Weil number of weight 0 is an algebraic number α such that for every place
λ of Q(α) not dividing q (finite or Archimedean), we have |α|λ = 1.
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Companions on Artin stacks 59

Gabber’s theorem [16] that companionship is preserved by operations on theGrothendieck
groups extends to stacks [39, Proposition 5.8]. Combining this with Theorem 1.2, one obtains
the existence of perverse companions on (not necessarily smooth) Artin stacks.

The paper is organized as follows. In Sect. 2, we establish some preliminary results on
Weil sheaves. In Sect. 3, we prove Theorems 1.1 (1) on Frobenius eigenvalues and Theorem
3.6 on Newton polygons.We deduce from Theorem 1.1 (1) that the bounded derived category
Db
c (X ,Q�) is a direct sum of twists of the derived category of weakly motivic complexes

for any Artin stack X of finite presentation over Fq . In Sect. 4, we prove Theorem 1.1 (2) on
Frobenius traces. In Sect. 5, we prove Theorem 1.2 and Corollary 1.3 on lisse companions.
We deduce results on perverse companions and companions in Grothendieck groups on Artin
stacks of finite presentation and separated diagonal over Fq . In Appendix, we prove that pure
perverse sheaves on X are geometrically semisimple, without assuming that the stabilizers
are affine, extending a result of Sun [32, Theorem 3.11].

Unless otherwise stated, all stacks are assumed to be Artin stacks of finite presentation
over Fq , not necessarily of separated diagonal, and sheaves are assumed to be constructible.
We write D(X ,Q�) for Dc(X ,Q�). We will only consider the middle perversity.

2 Weil sheaves

For problems concerning companions, it is convenient to work with Weil sheaves. In this
section, we establish some preliminary results onWeil sheaves. Themain result is Proposition
2.8 on the determinant of lisseWeilQ�-sheaves ongeometrically unibranch stacks.Wededuce
that the category ofWeilQ�-sheaves is a direct sumof the twists of the category ofQ�-sheaves
(Proposition 2.15).

Let Eλ be an algebraic extension of Q�. A Weil Eλ-sheaf on a stack X is an Eλ-sheaf
F on X ⊗Fq Fq equipped with an action of the Weil group W (Fq/Fq) lifting the action

of W (Fq/Fq) on X ⊗Fq Fq . A morphism of Weil Eλ-sheaves on X is a morphism of the

underlying Eλ-sheaves on X ⊗Fq Fq compatible with the action of W (Fq/Fq).

Remark 2.1 More formally, the category ShvW (X , Eλ) of Weil Eλ-sheaves on X is a
(pseudo)limit of the diagram (i.e. pseudofunctor) BZ → Cat given by the action of
Z 
 W (Fq/Fq) on the category Shv(X ⊗Fq Fq , Eλ), where BZ is the groupoid associ-
ated to the group Z and Cat is the 2-category of categories. If we let Cat BZ denote the
2-category of diagrams BZ → Cat , the forgetful 2-functor for : Cat BZ → Cat and the limit
2-functor lim : Cat BZ → Cat preserve limits (up to equivalences).

Remark 2.2 The functor Shv(X , Eλ) → ShvW (X , Eλ) carrying F to (F
Fq

, φ), where F
Fq

is the pullback of F to X ⊗Fq Fq and φ is the restriction of the action of Gal(Fq/Fq) to

W (Fq/Fq), is fully faithful. Moreover, its essential image is stable under extension by the
following general facts on extensions (cf. [3, Proposition 5.1.2]).

(1) Let (A, F) be an Abelian category with Z-action (i.e. a pseudofunctor from BZ to the
2-category of Abelian categories). For objects (A, φ) and (B, ψ) of the limit category
AF , we have a short exact sequence of Abelian groups (cf. [3, page 124])

0 → HomA(A, B)Z → Ext1AF ((A, φ), (B, ψ)) → Ext1A(A, B)Z → 0.

(2) LetD be a triangulated category equippedwith a t-structure.Note thatD is not necessarily
equivalent to the derived category of its heartA. Nonetheless, for A and B inA, we have
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60 W. Zheng

an isomorphism HomD(A, B[1]) 
 Ext1A(A, B) carrying f to the extension given by
completing f into a distinguished triangle (cf. [3, Remarque 3.1.17 (ii)]).

Recall from [34, Tag 06U6] that a morphism f : X → Y of Artin stacks (not necessarily
of finite presentation over Fq ) is said to be submersive if the induced continuous map is a
quotient map, and universally submersive if for every morphism of Artin stacks Y ′ → Y , the
base change X ×Y Y ′ → Y ′ of f is submersive.

Lemma 2.3 Let f : X → Y be a universally submersive morphism of stacks. Then f is of
effective descent for Weil Eλ-sheaves and for Eλ-sheaves.

The statement of the lemma means that f ∗ induces an equivalence of categories from
ShvW (Y , Eλ) to the category of descent data, which is a limit of the diagram

ShvW (X , Eλ) ShvW (X ×Y X , Eλ) ShvW (X ×Y X ×Y X , Eλ).

induced by inverse image functors. An object of the category of descent data is a Weil Eλ-
sheaf F on X endowed with an isomorphism p∗

1F 
 p∗
2F satisfying the cocycle condition.

Here p1, p2 : X ×Y X → X are the two projections. Compare with [20, Proposition 2.4].

Proof Consider the pseudofunctor F : Stk → Cat BZ carrying X to the diagram in Remark
2.1, where Stk is the 2-category of stacks. The assertion of the lemma for Weil Eλ-sheaves
is that f is of effective descent for the pseudofunctor lim ◦ F . Since lim and for preserve
limits, we may replace lim ◦ F by F , and then by for ◦ F . In other words, it suffices to show
that f ⊗Fq Fq is of effective descent for Eλ-sheaves.

Changing notation, let us show that any universally submersive morphism r : X → Y of
Artin stacks of finite presentation over Fq or Fq is of effective descent for Eλ-sheaves. Let
f : Y ′ → Y be a smooth presentation with Y ′ a scheme and let X ′ → X ×Y Y ′ be a smooth
presentation with X ′ a scheme. Consider the square

X ′ u

g

Y ′

f

X
r

Y .

By a general property of descent [17, Théorème 10.4, line 6 of the table], it suffices to show
that u, f , g, and g′ : X ′ ×Y ′ X ′ → X ×Y X are of effective descent. Note that f , g, and g′ are
representable and smooth surjective, and u is a universally submersivemorphism of schemes.
By a theorem of Voevodsky [36, Theorem 3.1.9], u is dominated by

∐
Vi → V

v−→ Y ′, where
v is a proper surjective morphism of schemes and (Vi ) is a finite Zariski open cover of V . By
general properties of descent [17, Proposition 6.25 (ii), (iii)], we are reduced to showing that
r is of effective descent in the following cases: (a) r is representable and smooth surjective;
(b) r is a proper surjective morphism of schemes. This follows from Beck’s theorem [4,
Proposition 5] (cf. [35, VIII 9.4.1]). Indeed, r∗ is exact and conservative, and the Beck–
Chevalley condition is verified by smooth base change in case (a) and proper base change in
case (b). �

A Weil Eλ-sheaf F on a stack X is called lisse if there exists a smooth presentation
f : Y → X such that the pullback of F to Y ⊗Fq Fq is isomorphic to G ⊗O Eλ for a lisse
O-sheaf G, whereO is the ring of integers of a finite extension ofQ� in Eλ. Lemma 2.3 also
holds for lisse Weil Eλ-sheaves (and lisse Eλ-sheaves). This follows from the lemma and the
following fact.
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Companions on Artin stacks 61

Lemma 2.4 Let f : X → Y be a universally submersive morphism of stacks and let F be a
Weil Eλ-sheaf on Y . Then F is lisse if and only if f ∗F is lisse.

Proof The “only if” part is trivial. To show the “if” part, by taking smooth presentations,
we are reduced to the case of schemes (over Fq ) and O-sheaves. In this case, the assertion
follows from the fact that f is of effective descent for étale morphisms [29, Theorem 5.17].

�
Remark 2.5 We say that a stack X is geometrically unibranch if for some (or, equivalently,
for every) smooth presentation Y → X , the strict localizations of Y are irreducible. Normal
stacks are geometrically unibranch. If X is geometrically unibranch, then every lisseWeil Eλ-
sheaf F satisfies j∗ j∗F 
 F ⊗ j∗Eλ 
 F for every dominant open immersion j : U → X .
It follows that the pullback of F to X ⊗Fq Fq comes from a lisse O-sheaf.

Let X be a connected stack and let x̄ → X be a geometric point. The fundamental group
π1(X , x̄) is defined in [27, Section 4], which extends to stacks not necessarily of separated
diagonal, as the group of automorphisms of the functor FEt(X) → Fin carrying Y → X
to (the underlying set of) the geometric fiber Y ×X x̄ . Here FEt(X) denotes the category
of finite3 étale morphisms over X , and Fin denotes the category of finite sets. We define
the Weil group W (X , x̄) to be the inverse image of W (Fq/Fq) under the homomorphism
π1(X , x̄) → Gal(Fq/Fq). The functor ShvWlisse(X , Eλ) → Vect(Eλ) carrying F to its stalk
Fx̄ at x̄ is conservative.

If X is connected and geometrically unibranch, then X is irreducible andWeil Eλ-sheaves
(resp. Eλ-sheaves) on X correspond to Eλ-representations of the Weil (resp. fundamental)
group of X .

Remark 2.6 Let X be a stack. For Weil Eλ-sheaves F and G on X , we have F 
 G if and
only if F ⊗Eλ Q� 
 G ⊗Eλ Q�. Similarly, for A and B in the bounded derived category
Db(X , Eλ) of Eλ-sheaves, A 
 B if and only if A ⊗Eλ Q� 
 B ⊗Eλ Q�. This follows from
Lemma 2.7 below and the fact that rational points form a Zariski dense subset of any affine
space over an infinite field (here Eλ).

Moreover, a Weil Eλ-sheaf F on X is an Eλ-sheaf if and only if the Weil Q�-sheaf
F ⊗Eλ Q� is a Q�-sheaf. Indeed, we reduce to the case of schemes by Lemma 2.3 and then
to lisse sheaves on irreducible geometrically unibranch schemes by Remark 2.2. In this case,
the assertion is clear, as the Weil group is dense in the fundamental group.

For these reasons, wewill workmostlywithWeilQ�-sheaves rather thanWeil Eλ-sheaves.

The following is a variant of [33, Lemma 2.1.3].

Lemma 2.7 Let X be a stack and let A and B be Weil Eλ-sheaves on X (resp. A, B ∈
Db(X , Eλ)). Then there exists a Zariski open subscheme U = Isom(A, B) of the affine
space Hom(A, B) over Eλ represented by the Eλ-vector space Hom(A, B) such that for
any algebraic extension E ′

λ of Eλ, the set U (E ′
λ) is the set of isomorphisms A ⊗Eλ E ′

λ

∼−→
B ⊗Eλ E ′

λ.

Note that Hom(A, B) is finite-dimensional. Indeed, we have

Hom(A, B) = Hom(A
Fq

, B
Fq

)W (Fq/Fq )

in the case of Weil sheaves, and a short exact sequence

0 → Hom(A
Fq

, B
Fq

[−1])Gal(Fq/Fq ) → Hom(A, B) → Hom(A
Fq

, B
Fq

)Gal(Fq/Fq ) → 0

3 Recall that a morphism of stacks is said to be finite if it is representable by schemes and finite.
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62 W. Zheng

in the case of Db(X , Eλ). Here A
Fq

and B
Fq

denote the pullbacks of A and B to X ⊗Fq Fq .
The proof of the lemma is the same as [33, Lemma 2.1.3], by taking a finite number of stalk
functors.

Following [11, 1.2.7], for a ∈ Q�
×
, we let Q�

(a)
denote the Weil Q�-sheaf on Spec(Fq)

of rank one such that the geometric Frobenius Frobq ∈ Gal(Fq/Fq) acts by multiplication

by a. For a stack X , we still denote π∗
XQ�

(a)
by Q�

(a)
, where πX : X → Spec(Fq) is the

projection. We put F (a) := F ⊗ Q�
(a)

.
The following is an extension to stacks of Deligne’s result on determinants [11, Proposi-

tions 1.3.4 (i), 1.3.14] (cf. [12, 0.4]).

Proposition 2.8 Let X be an irreducible geometrically unibranch stack. Then, for every lisse

Weil Q�-sheaf F on X, there exists a ∈ Q�
×
such that det(F (a)) has finite order. Moreover,

every simple lisse Weil Q�-sheaf F on X such that det(F) has finite order is a Q�-sheaf.

Note that a is unique up to multiplication by roots of unity. It follows from the proposition
that every simple lisse Weil Q�-sheaf is the twist of some Q�-sheaf.

Even if we restrict our attention to Q�-sheaves, the first part of the proposition is still
necessary for the following sections. Our proof of the proposition relies on Lemma 2.11
below, which will be used in later sections as well.

Lemma 2.9 Let f : X → Y be a universally submersive morphism of stacks with geometri-
cally connected fibers. Assume Y connected. Then X is connected and the homomorphism
π1(X) → π1(Y ) induced by f is surjective.

The case of schemes is [28, IX Corollaire 5.6].

Proof Thefirst assertion follows from the fact that for anyquotientmap X → Y of topological
spaces, if Y and the fibers are connected, then X is connected. The second assertion follows
from the first one. Indeed, for any connected finite étale cover Y ′ → Y , Y ′ ×Y X is connected
by the first assertion applied to the projection Y ′ ×Y X → Y ′. �
Lemma 2.10 Any stack X admits a dense open substack with separated diagonal.

Proof There exists a dense open substack V of X with flat inertia. Then V is a gerbe over
an algebraic space [34, Tag 06QJ]. Since any group algebraic space of finite presentation
over a field is separated (and in fact a group scheme, see [2, Proposition 5.1.1] or [34, Tags
08BH, 0B8G]), there exists a dense open substack U of V with separated inertia. Then U
has separated diagonal by fppf descent [34, Tags 0CPS, 0DN6]. �
Lemma 2.11 Let F be a lisse Weil Q�-sheaf on a stack X. Then there exists a dominant
open immersion j : U → X and a gerbe-like morphism f : U → Y , where Y is a Deligne–
Mumford stack, such that the adjunction map f ∗G → j∗F , where G := f∗ j∗F , is an
isomorphism.

Recall that any gerbe-like morphism f : U → Y of stacks is a smooth universal home-
omorphism [34, Tags 06R9, 0DN8]. Note that f ∗G 
 j∗F implies that G is a lisse Weil
Q�-sheaf, which is simple if j∗F is simple. Moreover, if X is geometrically unibranch, then
Y is geometrically unibranch, and det(F) and det(G) have the same (possibly infinite) order
by Lemma 2.9.
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Companions on Artin stacks 63

Proof By a dévissage result of Behrend [2, Propositions 5.1.11, 5.1.14], there exists a
dominant open immersion j : U → X and a gerbe-like morphism f : U → Y , where
Y is a Deligne–Mumford stack, such that the diagonal of f has connected geometric
fibers. By generic base change [20, Proposition 2.11], up to shrinking Y (and U ), we may
assume that f∗F commutes with base change. It then suffices to check that the adjunction
f ∗
y fy∗(F | Uy) → F | Uy is an isomorphism for every geometric fiber fy : Uy → y of f .

Since Uy is the classifying stack of a connected group scheme over y, any sheaf on Uy is
constant and the assertion is trivial. �
Remark 2.12 Since any gerbe over a finite field is neutral [2, Corollary 6.4.2], any point
y ∈ Y (Fqn ) lifts to a point of U (Fqn ). In particular, E(G) = E( j∗F).

Proof of Proposition 2.8 Applying Lemma 2.11, we are reduced to the case where X is a
Deligne–Mumford stack. Here for the second assertion of the proposition, we have used the
fact that F 
 j∗ j∗F . By Lemma 2.10 and [24, Corollaire 6.1.1], up to shrinking X , we may
assume X = [Y/G], where Y is a separated scheme and G is a finite group acting on Y .
Up to replacing Y by a connected component and G by the decomposition group, we may
assume that Y is irreducible. Let g : Y → X . Then g∗F corresponds to the restriction to the
open normal subgroup π1(Y ) � π1(X) of quotient G. By the case of schemes of the first
assertion [11, Proposition 1.3.4 (i)], there exists a ∈ Q�

×
such that det(g∗F (a))⊗n 
 Q� for

some n ≥ 1. Then det(F (a))⊗(n·#G) 
 Q�. This finishes the proof of the first assertion of
Proposition 2.8. Now assume that F is simple and det(F) has finite order. By Lemma 2.13
below and the case of schemes of the second assertion of Proposition 2.8 [11, Proposition
1.3.14], g∗F is a Q�-sheaf, so that the same holds for F by Lemma 2.3. �
Lemma 2.13 Let f : X → Y be a finite étale morphism of geometrically unibranch stacks
and let F be a simple lisse Weil Q�-sheaf on Y such that det(F) has finite order. Then
f ∗F 
 ⊕

i Fi is semisimple with simple factors Fi such that each det(Fi ) has finite order.

Proof We may assume that X and Y are irreducible. Since π1(X) ⊆ π1(Y ) is an open
subgroup of finite index, f ∗F 
 ⊕

i Fi is semisimple. For the assertion on simple factors,
we may assume that f is a Galois cover of group G. Fix an i0. By the first assertion of
Proposition 2.8, there exists a ∈ Q�

×
such that det(F (a)

i0
) has finite order. Since the simple

factors are permuted transitively by G, det(F (a)
i ) has finite order for each i . It follows that

det(F (a)) 
 ⊗
i det(F (a)

i ) has finite order. This implies that a is a root of unity. Therefore,
each det(Fi ) has finite order. �
Remark 2.14 (1) In the above proof of Proposition 2.8, we first reduce to the case of quotient

stacks [Y/G] by finite groups G by Lemma 2.11, and then reduce to the case of schemes.
The same strategy will be used for Theorems 1.1, 1.2, and 3.6. Another approach is to
use the generic existence of a smooth presentation with geometrically connected fibers
([24, Théorème 6.5] and Lemma 2.10) to reduce directly to the case of schemes, which
works for Proposition 2.8 and Theorems 1.1 (1) and 3.6, but fails for Theorems 1.1 (2)
and 1.2.

(2) The reduction from quotient stacks [Y/G] to schemes here and in Theorem 1.1 (1) uses
Lemma 2.13 applied to the finite étale cover Y → [Y/G]. We may replace this by
Lemma 2.9 applied to the GLm-torsor Y ∧G GLm → [Y/G], where G → GLm is a
chosen embedding, making the proofs closer to those of Theorems 1.1 (2), 1.2, and 3.6.

(3) We can also prove Proposition 2.8 directly by imitating the proof of the case of schemes.
Indeed, as in [11, Proposition 1.3.4, Variante], the first assertion follows from the case of
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64 W. Zheng

curves by joining by curves (see the proof of Proposition 3.2) and Chebotarev’s density
theorem (Proposition 5.6). As in [11, Theorem 1.3.8], this implies that the radical of G00

is unipotent, where G00 is the identity component of the geometric monodromy group,
which is a theorem of Grothendieck in the case of schemes. Finally, as in [11, Proposition
1.3.14], the second assertion follows from this and the first assertion.

Proposition 2.8 has the following consequence on the structure of Weil Q�-sheaves. For
a stack X , we let Shv(X ,Q�)

(a) ⊆ ShvW (X ,Q�) denote the full subcategory spanned by
Weil Q�-sheaves of the form F (a) with F ∈ Shv(X ,Q�). The subcategory only depends on
the class of a in Q�

×
/Z�

×
, where Z� denotes the ring of integers of Q�.

Proposition 2.15 Let X be a stack. We have a canonical decomposition:

ShvW (X ,Q�) 

⊕

a∈Q�
×

/Z�
×
Shv(X ,Q�)

(a).

Proof It suffices to show the following:

• (generation) Every object of ShvW (X ,Q�) is a successive extension of objects of
Shv(X ,Q�)

(a);
• (orthogonality) Exti (A(a), B(b)) = 0 for A, B ∈ Shv(X ,Q�), a/b /∈ Z�

×
and i = 0, 1.

The first point follows from Proposition 2.8. Let us show the orthogonality. We have
Hom(A(a), B(b)) = Hom(A(a)

Fq
, B(b)

Fq
)W (Fq/Fq ) and a short exact sequence (Remark 2.2 (1),

(2))

0 → Hom
(
A(a)

Fq
, B(b)

Fq

)

W (Fq/Fq )
→ Ext1

(
A(a), B(b)

)
→ Hom

(
A(a)

Fq
, B(b)

Fq
[1]

)W (Fq/Fq ) → 0.

The Q�-vector space Hom(A(a)

Fq
, B(b)

Fq
[i]) with W (Fq/Fq)-action can be identified with the

Weil Q�-sheaf (RiπX∗RHom(A, B))(b/a) on Spec(Fq), where πX : X → Spec(Fq). The
eigenvalues of Frobq are all in the class of b/a, so the action has no nonzero invariants or
coinvariants. Therefore, Exti (A(a), B(b)) = 0 for i = 0, 1. �

Corollary 2.16 Let X be a stack. A Weil Q�-sheaf F is a Q�-sheaf if and only if for every
x ∈ X(Fqn ), n ≥ 1, the eigenvalues of Frobx acting on Fx̄ are �-adic units.

By reducing to curves (see Proposition 3.2 below), we see that for lisseWeilQ�-sheaves, it
suffices to check the condition in the corollary for one given x in each connected component
of X .

3 Frobenius eigenvalues

In this section, we prove Theorem 1.1 (1) on Frobenius eigenvalues. We then extend the
theorem of Drinfeld and Kedlaya on Newton polygons from smooth schemes to normal
stacks (Theorem 3.6). Finally, following Drinfeld [14, Appendix B], we study the category
of weakly motivic complexes, whose cohomology sheaves have “motivic” Frobenius eigen-
values (Theorems 3.13 and 3.15).
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Notation 3.1 We let M0 denote the group of algebraic numbers α ∈ Q
×
of weight 0 relative

to q , namely, such that for every Archimedean place λ of Q(α), we have |α|λ = 1. We let
W0(q) ⊆ M0 denote the subgroup of q-Weil numbers of weight 0. For a subset S ⊆ Q of
slopes, we let WS

0 (q) ⊆ W0(q) denote the subgroup of α ∈ W0(q) of slopes in S, namely
such that for every valuation v on Q(α) satisfying v(q) = 1, we have v(α) ∈ S.

Note that W0(q) only depends on the characteristic p of Fq and that W {0}
0 (q) is simply

the set of roots of unity in Q.
In the notation above, Theorem 1.1 (1) says that the eigenvalues of Frobx acting on Fx̄

belong to W
[− r−1

2 , r−1
2 ]∩Q

0 (qn) for all x ∈ X(Fqn ) and all n ≥ 1. As mentioned earlier, we
prove this by reducing to the case of schemes. For the reduction to work, we need to show that
the statement can be checked on any dense open substack. We start by reviewing Deligne’s
argument of joining by curves [12, Proposition 1.9] and extending it to stacks.

Proposition 3.2 Let X be a connected stack. Then there exists an integer M ≥ 1 such
that, for every lisse Weil Q�-sheaf F on X of rank r ≥ 1, and for all m, n ≥ 1, x ∈
X(Fqm ), y ∈ X(Fqn ), if we let α1, . . . , αr (resp. β1, . . . , βr ) denote the eigenvalues of

Frobx (resp. Froby) acting on Fx̄ (resp. Fȳ ), then, up to reordering, we have β
1/n
i /α

1/m
i ∈

W [−M(r−1),M(r−1)]∩Q
0 (q) for 1 ≤ i ≤ r .

In the situation of the proposition, if α1, . . . , αr ∈ W0(q), then β1, . . . , βr ∈ W0(q).

Proof Let f : Y → X be a submersive morphism (for example, a flat presentation) with Y a
separated algebraic space. Consider the intersection graph 
 of the irreducible components
of Y over X . The vertices are the irreducible components of Y . There is an edge between
two vertices v and w if and only if the corresponding components Yv and Yw are such that
Yv ×X Yw is nonempty. If Yv and Yw are on the same connected component of Y , then v

and w belong to the same connected component of 
. Thus for each component V of 
,
YV := ⋃

v∈V Yv is a union of connected components of Y . It follows that f (YV ) is open and
closed, because f −1( f (YV )) = YV . Since X is connected, so is 
.

We take M − 1 to be the diameter of the graph 
. For each edge e = (v,w) of the graph,
choose a closed point xe of Yv ×X Yw. For x and y as in the statement of the proposition, let v
andw be vertices such that x̄ lifts toYv and ȳ lifts toYw . Let v = v1

e1 v2 · · · vN−1
eN−1 vN = w

be a path of length N − 1 ≤ M − 1. By Lemma 3.3 below, there exists a diagram above X

x0 → C1 ← x1 → · · · ← xN−1 → CN ← xN ,

where C j , 1 ≤ j ≤ N are irreducible smooth curves over Fq above Yv j , and x j =
Spec(Fqn j ), 0 ≤ j ≤ N such that x0 is above x , x j is above xe j for 1 ≤ j ≤ N − 1,
and xN is above y. We apply the proof of L. Lafforgue’s theorem [22, Théorème VII.6] (or
V. Lafforgue’s improvement of the bound [23, Corollaire 2.2]) to C j , 1 ≤ j ≤ N , and to the

simple factors of the pullback of F to C j . If α
( j)
1 , . . . , α

( j)
r denote the eigenvalues of Frobx j ,

then up to reordering the r values, we have (α
( j)
i )1/n j /(α

( j−1)
i )1/n j−1 ∈ W [−(r−1),(r−1)]

0 (q).
�

Lemma 3.3 Let Y be an irreducible algebraic space separated of finite type over a field k
and let x and y be closed points of Y . There exists an irreducible regular curve C and a
morphism C → Y of image containing x and y.
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Proof ByChow’s lemma [21, IVTheorem3.1], wemay assume thatY is a scheme. Replacing
Y by an irreducible component of Y ⊗k k̄, we may assume that k is algebraically closed. For
this case, see [26, Section 6]. �
Proposition 3.4 Let R be an integrally closed subring of Q�. Let j : U → X be a dominant
open immersion of stacks and letF be a lisse WeilQ�-sheaf on X such that j∗F is R-integral
(resp. inverse R-integral). Then F is R-integral (resp. inverse R-integral).

Recall that, following [38, Variante 5.13, Définition 6.1], a Weil Q�-sheaf F on X is said
to be R-integral (resp. inverse R-integral) if for all n ≥ 1 and all x ∈ X(Fqn ), the eigenvalues
(resp. inverse eigenvalues) of Frobx acting on Fx̄ are in R.

Proof Up to replacing X by a smooth presentation, we may assume that X is a scheme. Up
to replacing X by its normalization, we may further assume that X is normal. In this case,
F 
 j∗ j∗F is R-integral (resp. inverse R-integral) by [38, Théorème 2.2, Variantes 5.1,
5.13]. (The integral case is a theorem of Deligne [9, XXI Théorème 5.6] assuming resolution
of singularities.) �
Remark 3.5 Let I = [a, b]∩Q be an interval with a, b ∈ Q. It follows from the propositions
that ifF is a lisseQ�-sheaf on a stack X such that the eigenvalues of Frobx acting onFx̄ belong
toW I

0 (qn) for all n ≥ 1 and all x ∈ U (Fqn ), whereU is some dense open substack of X , then
the same holds for all x ∈ X(Fqn ). Indeed, the eigenvalues belong to W0(q) by Proposition

3.2, and F (q−a) is Z-integral and F (q−b) is inverse Z-integral (for all representatives of q−a

and q−b) by Proposition 3.4. Here Z denotes the ring of algebraic integers.

Proof of Theorem 1.1 (1) By Remark 3.5, we may shrink X . Thus, by Lemma 2.11, we are
reduced to the case ofDeligne–Mumford stacks. Up to shrinking X , wemay assume that there
exists a finite étale cover f : Y → X , where Y is a scheme. By Lemma 2.13, f ∗F 
 ⊕

i Fi ,
with Fi simple and det(Fi ) of finite order. We are thus reduced to the case where X is a
scheme. This case was stated in [22, Proposition VII.7], and the gap in the proof has been
fixed by Deligne [12, Théorème 1.6] and others. Indeed, by Remark 3.5 again, we may
assume that X is a smooth separated scheme. By a consequence of Hilbert irreducibility
([14, Proposition 2.17] or [15, Proposition B.1]), for any closed point x of X , there exists a
smooth curveC over Fq and a morphism g : C → X such that x is in the image of g and g∗F
is simple. It then suffices to apply L. Lafforgue’s theorem for curves [22, Théorème VII.6]
and V. Lafforgue’s improvement of the bound [23, Corollaire 2.2]. �

More generally V. Lafforgue proved an inequality for the Newton polygon in the case of
curves. Recently Drinfeld and Kedlaya [13, Theorem 1.3.3] gave a refinement for the lowest
Newton polygon in the case of smooth schemes. These results extend to normal stacks as
follows.

For a stack X , we let |X(Fq)| denote the set of isomorphism classes of the groupoid
X(Fq). We let |X | denote the set of orbits of Gal(Fq/Fq) acting on |X(Fq)|. If X is a
Deligne–Mumford stack, then |X | can be identified with the set of closed points of X . In
general, following [13, Lemma 5.3.4], we equip |X | with the following topology T : a subset
U ⊆ |X | is T -open if and only if for every morphism C → X from a smooth curve C to X ,
the inverse image of U under the map |C | → |X | is open for the Zariski topology on |C |.

We say that a Weil Q�-sheaf F on X is algebraic if it is Q-integral. We fix a valuation v

on Q such that v(q) = 1. For an algebraic Weil Q�-sheaf F on X and x ∈ X(Fqn ), we let
sx1 (F) ≤ · · · ≤ sxr (F) denote the images under v/n of the eigenvalues of Frobx acting on
Fx̄ . These rational numbers are called the slopes of F at x and depend on x only through the
image of x in |X |.
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Theorem 3.6 Let X be an irreducible stack. Let F be an algebraic lisse Weil Q�-sheaf of
rank r on X. Then

(1) There exist rational numbers s1(F) ≤ · · · ≤ sr (F) such that
∑i

j=1 s j (F) ≤
∑i

j=1 s
x
j (F) for all x and all i and the set Y ⊆ |X | of y satisfying syi (F) = si (F)

for all i is nonempty and T -open.
(2) If X is geometrically unibranch and F is indecomposable, then si+1(F) ≤ si (F)+1 for

all 1 ≤ i ≤ r − 1.

The numbers si (F) are the slopes of the lowest Newton polygon.

Remark 3.7 In (2), if moreover det(F) has finite order, so that
∑r

j=1 s
x
j (F) = 0, then, as in

[13, Proof of Corollary 1.1.7], the theorem implies

i∑

j=1

sxj (F) ≥
i∑

j=1

s j (F) ≥ −i(r − i)/2

for all x and all i . Taking i = 1 and i = r − 1, we recover the bounds sx1 (F) ≥ −(r − 1)/2
and sxr (F) ≤ (r − 1)/2 in Theorem 1.1 (1).

To prove the theorem, we need a couple of lemmas, extending [13, Lemmas 5.3.1, 5.3.3,
5.3.4].

Lemma 3.8 Let X be a stack and letF be an algebraic lisse WeilQ�-sheaf on X. For all i , the
function x �→ ∑i

j=1 s
x
j (F) on |X | is upper semi-continuous for the topology T , bounded,

and takes values in N−1
Z for some N.

Proof By the definition of the topology T , for the semi-continuity we may assume that X
is a smooth curve. We reduce then to the case F simple, and then to the case where det(F)

has finite order. In this case, the semi-continuity follows from Abe’s theorem on crystalline
companions [1, Theorem 4.4.1] and the corresponding statement for overconvergent F-
isocrystals. The boundedness follows from Proposition 3.2. The last assertion follows from
the fact that E(F) is a number field (Theorem 4.1) by the proof of [13, Lemma 5.3.1]. �
Lemma 3.9 Let X be an irreducible stack. Then |X | is irreducible for the topology T .
Proof If f : Y → X is a surjective morphism of stacks with Y irreducible, then | f | is a
surjection and we may replace X by Y . Thus, replacing X by its normalization, we may
assume X is normal. Next note that if X admits a Zariski open cover (Xi ) such that |Xi | is
T -irreducible for all i , then X is T -irreducible. Indeed, |Xi | ∩ |X j | �= ∅ and [18, 0 2.1.4]
applies. Let f : Y → X be a flat presentation with Y a separated scheme. Each connected
component Yi of Y is irreducible, and ( f (Yi )) is a Zariski open cover of X . We may thus
replace X by Yi , and assume that X is a separated scheme. Let U1,U2 ⊆ |X | be nonempty
T -open subsets. Let xi ∈ Ui . By Lemma 3.3, there exists a morphism g : C → X , where C
is an irreducible smooth curve, such that x1 and x2 are in the image of |g|. Then |g|−1(Ui ) is
nonempty for i = 1, 2. It follows that |g|−1(U1 ∩U2) and hence U1 ∩U2 are nonempty. �
Proof of Theorem 3.6 (1) By Lemma 3.8, the function ai : x �→ ∑i

j=1 s
x
j (F) on |X | attains

a minimum. We define s1 ≤ · · · ≤ sr so that the minimum of ai is
∑i

j=1 s j . Moreover, the

locus Yi ⊆ |X | on which ai attains the minimum is T -open. Therefore, Y = ⋂r−1
i=1 Yi is

nonempty and T -open by Lemma 3.9.
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(2) Since |X | is irreducible, we may shrink X . Thus, by Lemma 2.11, we may assume
that X is a Deligne–Mumford stack. Further shrinking X , we may assume that X = [Y/G]
is the quotient stack of a smooth affine scheme Y by a finite group G. Choose an embedding
G → GLm . Then Y ∧G GLm = (Y × GLm)/G is a GLm-torsor over [Y/G]. By Lemma
2.9, we may replace X by the smooth affine scheme Y ∧G GLm . This case is [13, Theorem
1.3.3]. �

Let ι : Q� → C be an embedding. Following [31, 2.4.3], we say that a Weil Q�-sheaf F
on a stack X is punctually ι-pure of weight w ∈ R if for every x ∈ X(Fqn ), n ≥ 1 and every
eigenvalue α of Frobx acting onFx̄ , we have |ια| = qwn/2. The results of Sun [31,32] extend
to stacks not necessarily of separated diagonal by Lemma 2.10 and to Weil Q�-sheaves by
Proposition 2.15. For w ∈ Z, we say that F is punctually pure of weight w if it is punctually
ι-pure of weight w for all ι.

Remark 3.10 By Theorem 1.1 (1) and Proposition 2.8, every simple lisse WeilQ�-sheaf on a
geometrically unibranch stack is punctually ι-pure. It follows that every Weil Q�-sheaf on a
stack is ι-mixed, namely, a successive extension of punctually ι-pure sheaves (cf. [31, Remark
2.8.1]). Similarly, a Weil Q�-sheaf F on a stack is mixed, namely, a successive extension of
punctually pure sheaves (of integral weights), if and only if for every x ∈ X(Fqn ), n ≥ 1, the
eigenvalues of Frobx acting on Fx̄ belong to M(qn). Here M(q) := ⋃

w∈Z qw/2M0. (Recall
that M0 is the group of algebraic numbers of weight 0.)

The structure of punctually ι-pure Weil Q�-sheaves can be described as follows. We let
En denote the Q�-sheaf on Spec(Fq) of stalk Q�

n
on which Frobq acts unipotently with one

Jordan block.

Proposition 3.11 Let X be a geometrically unibranch stack. Then indecomposable punctually
ι-pure lisse Weil Q�-sheaves are of the form F ⊗ π∗

XEn with F simple, where πX : X →
Spec(Fq).

In the appendix we will prove an analogue for pure perverse sheaves. The proposition still
holds with Q� replaced by a finite (or algebraic) extension of Q�.

Proof As in the case of perverse sheaves on schemes [3, Proposition 5.3.9 (i)], this follows
from the geometric semisimplicity of punctually ι-pure lisse Weil Q�-sheaves [32, Theorem
2.1 (iii)] (generalizing [11, Théorème 3.4.1 (iii)]). �

Let W (q) = ⋃
w∈Z qw/2W0(q) be the group of q-Weil numbers (of integral weights).

We say that K ∈ D(X ,Q�) is weakly motivic if for all n ≥ 1, x ∈ X(Fqn ), and i ∈
Z, the eigenvalues of Frobx acting on Hi Kx̄ belong to W (qn). We let Dmot(X ,Q�) ⊆
D(X ,Q�) denote the full subcategory spanned by weakly motivic complexes, which is a
thick subcategory. For ∗ ∈ {+,−, b}, we put D∗

mot = D∗ ∩ Dmot.

Remark 3.12 By Proposition 3.2, for a lisse Q�-sheaf F on a connected stack X and a fixed
x ∈ X(Fqn ), F is weakly motivic if and only if the eigenvalues of Frobx acting on Fx̄ are in
W (qn).

The following result generalizes [14, Theorems B.3, B.4].
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Theorem 3.13 Let f be a morphism of stacks. The six operations and Grothendieck–Verdier
duality induce

⊗: D−
mot(X ,Q�) × D−

mot(X ,Q�) → D−
mot(X ,Q�),

RHom : D−
mot(X ,Q�)

op × D+
mot(X ,Q�) → D+

mot(X ,Q�),

D : Dmot(X ,Q�)
op → Dmot(X ,Q�), f ∗, f ! : Dmot(Y ,Q�) → Dmot(X ,Q�),

f∗ : D+
mot(X ,Q�) → D+

mot(Y ,Q�), f! : D−
mot(X ,Q�) → D−

mot(Y ,Q�).

If f is relatively Deligne–Mumford, then we also have

f∗ : Dmot(X ,Q�) → Dmot(Y ,Q�), f! : Dmot(X ,Q�) → Dmot(Y ,Q�).

Proof Note that W (q) = R(q)× ∩ M(q), where R(q) is the integral closure of Z[1/q] inQ.
By [38, Variante 5.13, Section 6] (which extends easily to stacks not necessarily of separated
diagonals), complexes with R-integral (resp. inverse R-integral) cohomology sheaves are
preserved by the six operations and duality. By Remark 3.10, having Frobenius eigenvalues
in M(qn) is equivalent to being mixed, and complexes with mixed cohomology sheaves are
preserved by the operations by [31, Remark 2.12]. �

As in [3, Stabilités 5.1.7], the theorem has the following consequence.

Corollary 3.14 The perverse truncation functors on D(X ,Q�) preserve Dmot(X ,Q�) and
induce a t-structure on Dmot(X ,Q�).

Theorems 1.1 (1) and 3.13 imply the following result on the structure of Db(X ,Q�).
For a ∈ Z�

×
, we let Db

mot(X ,Q�)
(a) ⊆ Db(X ,Q�) denote the full subcategory spanned

by objects of the form K (a) with K ∈ Db
mot(X ,Q�). By definition, Db

mot(X ,Q�)
(a) only

depends on the class of a in Z�
×
/W (q).

Theorem 3.15 For any stack X, we have a canonical decomposition for the bounded derived
category of Q�-sheaves:

Db(X ,Q�) 

⊕

a∈Z�
×

/W (q)

Db
mot(X ,Q�)

(a).

The case of schemes is [14, Theorem B.7].

Proof The proof is very similar to the case of schemes and parallel to the proof of Proposition
2.15. It suffices to show the following:

• (generation) Every object of Db(X ,Q�) is a successive extension of objects of
Db
mot(X ,Q�)

(a);
• (orthogonality) Hom(A(a), B(b)) = 0 for A, B ∈ Db

mot(X ,Q�), a/b /∈ W (q).

The first point follows from Proposition 2.8 and Theorem 1.1 (1). For the orthogonality, note
that

Hom(A(a), B(b)) 
 H0(Spec(Fq), RπX∗RHom(A, B)(b/a)) = 0,

where πX : X → Spec(Fq). Here we used the fact that RπX∗RHom(A, B) is in
D+
mot(Spec(Fq),Q�) by Theorem 3.13. �

Remark 3.16 The same decomposition holds for categories of Q�-sheaves and perverse Q�-
sheaves. In particular, the subcategory of weaklymotivic perverse sheaves Pervmot(X ,Q�) ⊆
Perv(X ,Q�) is stable under subquotient.
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4 Frobenius traces

Theorem 1.1 (2) follows immediately from Theorem 1.1 (1) and the following.

Theorem 4.1 Let X be a stack and let F be a Weil Q�-sheaf on X. Then E(F) is a finitely
generated extension of Q. In particular, E(F) is a number field if and only if for all n ≥ 1
and all x ∈ X(Fqn ), the eigenvalues of Frobx acting on Fx̄ are algebraic numbers.

The case of schemes is a theorem of Deligne [12, Théorème 3.1, Remarque 3.9].

Proof To show the first assertion, by induction, we may replace X by a dense open substack.
In particular, we may assume that F is lisse. Moreover, by Lemma 2.11 and Remark 2.12
(or the fact that any sub-extension of a finitely generated field extension is finitely generated
[6, page V.113, Corollaire 3]), we may assume that X is a Deligne–Mumford stack. We may
further assume that X 
 [Y/G] for a finite group G acting on an affine scheme Y . Choose
an embedding G → GLm and take Z = Y ∧G GLm = (Y × GLm)/G. Then f : Z → X
is a GLm-torsor. We have E( f ∗F) = E(F). Indeed, any point x ∈ X(Fqn ) lifts to a point
of Z(Fqn ) by Hilbert’s Theorem 90. We then apply the case of schemes [12, Théorème 3.1,
Remarque 3.9] to f ∗F on Z . For the second assertion, it suffices to note that the Frobenius
eigenvalues are algebraic numbers if and only if the Frobenius traces are algebraic numbers.

�
Corollary 4.2 Let F be a Weil Q�-sheaf on a stack X and let G be a subquotient of F . Then
E(G) is contained in a finite extension of E(F).

Proof For each x ∈ X(Fqn ), the eigenvalues of Frobx onFx̄ are contained in a finite extension
of E(x∗F) ⊆ E(F). The assertion then follows from the theorem, which says that E(G) is
generated by the traces tr(Frobx ,Gx ) at a finite number of points x with varying n. �

For anymorphism f : X → Y of stacks and anyWeilQ�-sheafG onY , we have E( f ∗G) ⊆
E(G).

Corollary 4.3 Let f : X → Y be amorphism of stacks with X nonempty and Y connected. For
any lisseWeil Q�-sheaf G on Y , the field E(G) is a finite extension of E( f ∗G). In particular,
for any n ≥ 1 and any y ∈ Y (Fqn ), the field E(G) is a finite extension of E(y∗G) (the field
generated by tr(Frobmy ,Fȳ), m ≥ 1).

Proof For any y′ ∈ Y (Fqn′ ), the eigenvalues of Froby′ on Gy′ are contained in a finite
extension of E(y∗G) by Proposition 3.2. The second assertion then follows from the theorem,
which says that E(G) is generated by the traces tr(Froby′ ,Gy′) at a finite number of points
y′ with varying n′. For the first assertion, let x ∈ X(Fqn ) and let y = f (x). Then E(y∗G) ⊆
E( f ∗G) ⊆ E(G) and the first assertion follows from the second one. �
Corollary 4.4 Let f : X → Y be a surjective morphism of stacks. Then, for anyWeilQ�-sheaf
G on Y , the field E(G) is a finite extension of E( f ∗G).

Proof This follows from Corollary 4.3 by taking a stratification of Y by connected strata
such that the restriction of G to each stratum is lisse. �

Under additional assumptions, Corollary 4.3 admits the following refinement, which is a
consequence of Gabber’s theorem on the preservation of companionship.
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Proposition 4.5 Let f : X → Y be a dominant open immersion of smooth stacks, Y having
separated diagonal, and letG be a lisseWeilQ�-sheaf onY . Then E( f ∗G) = E(G).Moreover,
if G′ is a lisse Weil Q�′ -sheaf on Y such that f ∗G′ is a σ -companion of f ∗G for some
embedding σ : E(G) → Q�′ , then G′ is a σ -companion of G.
Proof By the existence of smooth neighborhood [24, Théorème 6.3] (here we used the
assumption that Y has separated diagonal), any point y ∈ Y (Fqn ) factorizes through a smooth
morphism Y ′ → Y , where Y ′ is a scheme.We are thus reduced to the case of schemes, which
is a special case of [39, Proposition 3.10] (case K a finite field and G = {1}), consequence
of Gabber’s theorem and purity. �

As pointed out to us by Drinfeld, another way to prove the case of schemes of the propo-
sition is to reduce by Drinfeld’s version of Hilbert irreducibility [14, Theorem 2.15] to the
case of smooth curves, which is a theorem of Deligne [10, Théorème 9.8].

5 Companions

In this section, we prove Theorem 1.2 on the existence of lisse companions on smooth stacks
of separated diagonal and Corollary 1.3 on the existence of lisse companions on coarse
moduli spaces. We then deduce the existence of perverse companions on stacks of separated
diagonal (Theorem 5.14). We also deduce that companionship induces isomorphisms among
the Grothendieck groups of Weil Q�-sheaves for varying � (Corollary 5.16).

To apply the reduction steps to Theorem 1.2, again we need to show that we may shrink
X . This is done by combining Proposition 4.5 with Drinfeld’s theorem on the existence of
companions on schemes. Let Eλ′ be an algebraic extension of Q�′ .

Proposition 5.1 Let j : U → X be a dominant open immersion of smooth stacks, X having
separated diagonal. Let F be a lisse Weil Q�-sheaf on X and let σ : E(F) → Eλ′ and
ι′ : Eλ′ → C be embeddings. Assume that j∗F admits a lisse punctually ι′-pure σ -companion
G′. Then j∗G′ is a lisse σ -companion of F .

Proof If j∗G′ is lisse, then j∗G′ is a σ -companion ofF by Proposition 4.5. It remains to show
that j∗G′ is lisse. For this wemay assume Eλ′ = Q�′ . Since any pullback ofG′ is punctually ι′-
pure, we may assume that X is a scheme. Since G′ is geometrically semisimple [11, Théoème
3.4.1 (iii)], G′

Fq

 (G′ss)

Fq
, where G′ss is the semisimplification of G′. Thus j∗G′ is lisse if and

only if j∗G′ss is lisse. By Drinfeld’s theorem, F admits a lisse σ -companion F ′, which we
may assume semisimple. By Chebotarev’s density theorem, we have G′ss 
 j∗F ′. Therefore,
j∗G′ss 
 j∗ j∗F ′ 
 F ′ is lisse. �

Assuming Theorem 1.2 on the existence of lisse companions, we have the following
consequence of Chebotarev’s density theorem.

Proposition 5.2 Let F be a lisse Weil Q�-sheaf on a geometrically unibranch stack X and
let σ : E(F) → Eλ′ be an embedding. Then lisse σ -companions of F are unique up to
semisimplification. Moreover, if F is simple, then, up to isomorphism, there exists at most
one lisse σ -companion F ′ of F , and F ′ is simple if it exists.

It is convenient to slightly extend terminology as follows. Given a Weil Q�-sheaf F on a
stack X and an embedding σ : E ′ → Eλ′ where E ′ is an extension of E(F), we will refer to
(σ | E(F))-companions of F simply as σ -companions.
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Proof The first assertion follows from Chebotarev’s density theorem (see Proposition 5.6
below). For the second assertion, it suffices to show the simplicity, as the uniqueness then
follows from the first assertion. Up to replacing X by a dense substack, we may assume
that X is smooth and of separated diagonal (Lemma 2.10). We may further assume that
Eλ′ = Q�′ . Extend σ to an isomorphism Q�

∼−→ Q�′ , which we still denote by σ . Let F ′
be a lisse σ -companion of F . Up to replacing F ′ by its semisimplification, we may assume
F ′ 
 ⊕

i F ′
i , with each F ′

i simple. By Theorem 1.2, there exists a σ−1-companion (i.e.
(σ−1 | E(F ′

i ))-companion) Fi of F ′
i . Then F is the semisimplification of

⊕
i Fi , since they

are both σ−1-companions of F ′. Thus Fi = 0 for all but one i , and the same holds for F ′
i .

Therefore, F ′ is simple. �
Proof of Theorem 1.2 By Corollary 4.2, we may assume X irreducible and F simple. In this
case, we show in addition to the statements of the theorem, that any lisse σ -companion
F ′ is punctually ι′-pure for any embedding ι′ : Q�′ → C. By Propositions 5.1 and 4.5 (or
Corollary 4.3), we may shrink X . Applying Lemma 2.11 and Remark 2.12 (or Corollary
4.4), we reduce to the case where X is a Deligne–Mumford stack. Up to shrinking X , we
may further assume that X = [Y/G], where G is a finite group acting on an affine scheme
Y . Choose an embedding G → GLm . Consider the embedding GLm → A

m2
, which is

equivariant under the action of GLm . Let p : Z = [Y ×A
m2

/G] → [Y/G] be the projection
and let s be the zero section. Note that Z is smooth. Since s∗ p∗F 
 F , p∗F is simple. It
suffices to show the assertions for (Z , p∗F). Indeed, ifG′ is a lisse σ -companion of p∗F , then
F ′ = s∗G′ is a σ -companion of s∗ p∗F 
 F . Applying Propositions 5.1 and 4.5 to the dense
open subscheme [Y ×GLm/G] of Z , we are reduced to the case of schemes. In this case, the
existence of lisse companions follows from Drinfeld’s theorem ([14, Theorem 1.1, Section
1.2] applied to a twist F (a) of F such that det(F (a)) has finite order). Moreover, if F ′ is a
lisse σ -companion ofF , thenF ′ is simple by Proposition 5.2 (which can be applied, because
Proposition 5.2 for schemes depends only on the known existence of lisse companions on
smooth schemes), hence punctually ι′-pure. �
Definition 5.3 Let f : X → Y be a morphism of stacks. We say that f creates lisse com-
panions if for every lisse Weil Q�-sheaf G on Y and every embedding σ : E(G) → Eλ′ such
that f ∗G admits a σ -companion, G admits a σ -companion.

Note that we do not ask for the existence of a companion G′ of G such that f ∗G′ is
isomorphic to a given companion of f ∗G. Morphisms creating lisse companions are stable

under composition. If X
f−→ Y

g−→ Z is a sequence of morphisms of stacks, and if g f creates
lisse companions, then g creates lisse companions.

Proposition 5.4 Let f : X → Y be a morphism of stacks. Then f creates lisse companions
if it satisfies any of the following conditions:

(1) f is a proper universal homeomorphism.
(2) f : X = ∐

i Xi → Y , where (Xi ) is a finite Zariski open cover and Y is geometrically
unibranch.

Proof Let G be a lisse WeilQ�-sheaf on Y , let σ : E(G) → Eλ′ be an embedding, and let F ′
be a lisse σ -companion of f ∗G.

(1) Let us first note that for any proper morphism f of stacks with geometrically con-
nected fibers, the adjunction map a : G → f∗ f ∗G is an isomorphism and the adjunction map
b : f ∗ f∗F ′ → F ′ is a monomorphism. Indeed, by proper base change, the stalk of a at any
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geometric point ȳ → Y can be identified with the isomorphism Gȳ → 
(X ȳ,Gȳ), and the
stalk of b at a geometric point x̄ → X above ȳ → Y can be identified with the injection

(X ȳ,F ′|X ȳ′) → F ′̄

x . Now let f be a proper universal homeomorphism. By Lemma 5.5
below, f∗F ′ is a σ -companion of f∗ f ∗G 
 G. It remains to show that f∗F ′ is lisse. We have
seen that b is a monomorphism. Both f ∗ f∗F ′ and F ′ are σ -companions of f ∗G. In other
words, for any x ∈ X(Fqn ), the characteristic polynomials of Froby acting on ( f ∗ f∗F ′)x̄ and
F ′̄
x coincide. In particular, ( f

∗ f∗F ′)x̄ andF ′̄
x have the same rank. Thus, b is an isomorphism.

By Lemma 2.4, f∗F ′ is lisse.
(2) We may assume Y irreducible and each Xi nonempty. Then U = ⋂

i Xi is nonempty.
Let j : U → Y and let G′

U be a semisimple lisse σ -companion of j∗G. Let F ′
i = F ′ | Xi .

Then G′
U 
 F ′ss

i |U , so that j∗G′
U | Xi 
 F ′ss

i . Thus j∗G′
U is a lisse σ -companion of G. �

Lemma 5.5 Let f : X → Y be a proper universal homeomorphism of stacks. Let F be a
Q�-sheaf on X and let F ′ be a σ -companion of F , where σ : E(F) → Eλ′ is an embedding.
Then E( f∗F) ⊆ E(F) and f∗F ′ is a σ -companion of f∗F .

Proof By proper base change, wemay assume that Y = Spec(Fqn ) is a point.Wemay further
assume that X is reduced. In this case, X = BG for a group scheme G over Y . Applying the

proof of Lemma 2.11, we get f = hg, where BG
g−→ B(G/G0)

h−→ Y . We have F 
 g∗g∗F
and F ′ 
 g∗g∗F ′. By Remark 2.12, E(g∗F) = E(F) and g∗F ′ is a σ -companion of g∗F .
We are thus reduced to showing that E(h∗−) ⊆ E(−) and that h∗ preserves σ -companions.
For this case, we apply [39, Proposition 5.8] recalled as part of Theorem 5.11 below (or the
trace formula [31, Theorem 4.2]). �

Proof of Corollary 1.3 By Proposition 5.4 (2), we may assume that X is the coarse moduli
space of a smooth stack Y with finite inertia. It then suffices to apply Proposition 5.4 (1) to
the proper universal homeomorphism f : Y → X and Theorem 1.2 to Y . �

In the rest of the section, we discuss companions of perverse sheaves and in Grothendieck
groups. For this, it is convenient to introduce perverse Weil sheaves. Let Eλ be an algebraic
extension ofQ�. A perverseWeil Eλ-sheaf on a stack X is a perverse Eλ-sheafP on X⊗Fq Fq

equipped with an action of the Weil group W (Fq/Fq) lifting the action of W (Fq/Fq) on
X ⊗Fq Fq . A morphism of perverse Weil Eλ-sheaves on X is a morphism of the underlying

perverse Eλ-sheaves on X ⊗Fq Fq compatible with the action ofW (Fq/Fq). As in the case of
schemes [3, Proposition 5.1.2] or Eλ-sheaves (Remark 2.2), we have a fully faithful functor
PervW (X , Eλ) → Perv(X , Eλ) and the essential image is stable under extension. Remark
2.6 on extending scalars to Q� still holds. The analogue of Proposition 2.15 holds with the
same proof:

PervW (X ,Q�) 

⊕

a∈Q�
×

/Z�
×
Perv(X ,Q�)

(a).

We let KW
lisse(X , Eλ) denote the Grothendieck group of ShvWlisse(X , Eλ), which is a free

Abelian group generated by the isomorphism classes of simple lisse Weil Eλ-sheaves on
X . We let KW (X , Eλ) denote the Grothendieck group of ShvW (X , Eλ), which is also the
Grothendieck group of PervW (X , Eλ), and is a free Abelian group generated by the isomor-
phism classes of simple perverse Weil Eλ-sheaves on X . For a Weil sheaf or Weil perverse
sheaf F , we let [F] denote its class in the Grothendieck group. We have a commutative
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diagram

KW
lisse(X , Eλ) KW (X , Eλ)

KW
lisse(X ,Q�)

sX
KW (X ,Q�)

of Abelian groups. That the vertical arrows are injections is standard (cf. [5, page VIII.191,
Théorème 1]).

We have the following Chebotarev’s density theorem, generalizing [33, Lemma 4.1.4].

Proposition 5.6 Let X be a stack.

(1) Thehomomorphism tX : KW (X ,Q�)⊗ZQ� → Q�

∐
n≥1|X(Fqn )|

sending A to tX (A) : x �→
tr(Frobx , Ax̄ ) is injective.

(2) For X irreducible andgeometrically unibranch, the homomorphismsX : KW
lisse(X ,Q�) →

KW (X ,Q�) is injective and the conjugates of the images of Frobx in the fundamental
group π1(X) form a dense subset.

Here as before |X(Fqn )| denotes the set of isomorphism classes of the groupoid X(Fqn ).
The Frobenius traces are extended to KW (X ,Q�) ⊗Z Q� by linearity: for A = ∑

i ci [Fi ]
with ci ∈ Q�, tr(Frobx , Ax̄ ) = ∑

i ci tr(Frobx , (Fi )x̄ ).

Proof We extend cohomological operations to KW (X ,Q�) ⊗Z Q� by linearity (cf. Remark
5.9 below). Let A ∈ Ker(tX ). There exists a stratification of X by geometrically unibranch
substacks jα : Xα → X such that for each α, j∗α A belongs to the image of sXα ⊗ Q�. We
have tXα ( j∗α A) = 0 and A = ∑

α jα! j∗α A and for (1) it suffices to show j∗α A = 0. Changing
notation, it suffices to show that for X irreducible and geometrically unibranch, tX (sX ⊗Q�)

is an injection. Note that this implies the injectivity of sX . (Alternatively we can apply the
reduction in the proof of [25, Théorème 1.1.2].)

For x ∈ X(Fqn ) and A ∈ K (X ,Q�)
(a), a ∈ Q�

×
, the reciprocal zeroes and roots of

det(1 − tFrobx , Ax̄ ) belong to anZ�
×
. It follows that

tX (KW (X ,Q�) ⊗Z Q�) =
⊕

a∈Q�
×

/Z�
×
tX (K (X ,Q�)

(a) ⊗Z Q�).

Thus it suffices to show that t lisseX := tX (sX ⊗Q�) is an injection on K (X ,Q�) ⊗Z Q�. This
is equivalent to the density of the conjugates of Frobx in the fundamental group π1(X) [8,
Corollary 27.13].

Since for any nonempty open substack U of X , π1(U ) → π1(X) is a surjection, we may
shrink X . We reduce to the case of Deligne–Mumford stacks as follows. Let A = ∑

i ci [Fi ]
be an element in the kernel of t lisseX withFi ∈ Shvlisse(X ,Q�) and ci ∈ Q�. We apply Lemma
2.11 to

⊕
i Fi to find, up to shrinking X , a gerbe-like morphism f : X → Y where Y is a

Deligne–Mumford stack such that f ∗ f∗Fi 
 Fi for all i . By Remark 2.12, t lisseY ( f∗A) = 0,
where f∗A = ∑

i ci [ f∗Fi ]. Thus, by Chebotarev’s density theorem for Deligne–Mumford
stacks [33, Lemmas 4.1.4, 4.1.5], we have f∗A = 0. Therefore, A = f ∗ f∗A = 0. �

The definitions of E(F) and σ -companions at the beginning of the paper extend to
elements of Grothendieck groups and to perverse Weil sheaves as follows. Given A ∈
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KW (X ,Q�), we let E(A) denote the subfield of Q� generated by tr(Frobx , Ax̄ ), where
x ∈ X(Fqn ) and n ≥ 1. Let σ : E → Eλ′ be a field embedding, where E is an extension
of E(A). We say that A′ ∈ KW (X , Eλ′) is a σ -companion of A if for all x ∈ X(Fqn ) with
n ≥ 1, we have tr(Frobx , A′̄

x ) = σ tr(Frobx , Ax̄ ). For a perverse Weil Q�-sheaf P , we write
E(P) = E([P]). By a perverse σ -companion of P , we mean a perverse Weil Eλ′ -sheaf
P ′ such that [P ′] is a σ -companion of [P]. Proposition 5.6 implies that σ -companions in
Grothendieck groups are unique and perverse σ -companions are unique up to semisimplifi-
cation.

Let Kmot(X ,Q�) denote the Grothendieck group of Pervmot(X ,Q�) (see Remark 3.16),
which is also the Grothendieck group of Db

mot(X ,Q�). Then we have

KW (X ,Q�) 

⊕

a∈Q�
×

/W (q)

Kmot(X ,Q�)
(a).

Remark 5.7 (1) Let A ∈ KW (X ,Q�) and A′ ∈ KW (X ,Q�′). Let E ⊆ Q� and let σ : E →
Q�′ be an embedding. If for every embedding τ : Q� → Q�′ extending σ , A′ is a τ -
companion of A, then E(A) ⊆ E . Indeed, if t ∈ Q� and t ′ ∈ Q�′ are such that for every
τ extending σ , we have τ(t) = t ′, then t ∈ E .

(2) Let πa : KW (X ,Q�) → Kmot(X ,Q�)
(a) be the projection and let τ : Q� → Q�′ be an

embedding. If A′ is a τ -companion of A ∈ KW (X ,Q�), then πτa A′ is a τ -companion
of πa A. Indeed, for x ∈ X(Fqn ), the set of reciprocal zeroes and roots of det(1 −
tFrobx , (πa A)x̄ ) is the intersection of anW (qn) and the set of reciprocal zeroes and roots
of det(1 − tFrobx , Ax̄ ), with the same multiplicities: if tr(Frobx , Ax̄ ) = ∑

λ mλλ, then
tr(Frobx , (πa A)x̄ ) = ∑

λ∈anW (qn) mλλ, so that

τ tr(Frobx , (πa A)x̄ ) =
∑

λ∈anW (qn)

mλτλ = tr(Frobx , (πτa A
′)x̄ ).

Proposition 5.8 Let X be a stack and let A ∈ KW (X ,Q�). The following conditions are
equivalent:

(1) E(A) is a number field.
(2) tr(Frobx , Ax̄ ) is an algebraic number for all n ≥ 1 and all x ∈ X(Fqn ).
(3) A belongs to KW

alg(X ,Q�) := ⊕
a∈Q×

/W (q)
Kmot(X ,Q�)

(a).

Thus, if we identify KW (X ,Q�) with its image under tX , then

KW
alg(X ,Q�) = Q

∐
n≥1|X(Fqn )| ∩ KW (X ,Q�).

Proof It is clear that (1) implies (2). By Theorem 4.1, (3) implies (1). Now assume that
(2) holds. Let A = B + C , where B is the projection of A in KW

alg(X ,Q�). Since det(1 −
tFrobx , Ax̄ ) ∈ Q(t), we have det(1− tFrobx ,Cx̄ ) = 1, so that tr(Frobmx ,Cx̄ ) = 0 form ≥ 1.
Thus C = 0 by Proposition 5.6. �

For w ∈ Z, let KW
w (X ,Q�) denote the Grothendieck group of perverse Weil Q�-sheaves

pure of weight w. We have, by Remark 3.10,

KW
m (X ,Q�) :=

⊕

a∈M(q)/W (q)

Kmot(X ,Q�)
(a) =

⊕

w∈Z
KW

w (X ,Q�).
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Remark 5.9 Let f : X → Y be a morphism of stacks, we have (bi)linear maps

pw : KW
m (X ,Q�) → KW

w (X ,Q�),

− ⊗ −, Hom(−,−) : KW (X ,Q�) × KW (X ,Q�) → KW (X ,Q�),

DX : KW (X ,Q�) → KW (X ,Q�),

f ∗, f ! : KW (Y ,Q�) → KW (X ,Q�),

where pw is the projection, w ∈ Z. If f is relatively Deligne–Mumford, then we have linear
maps

f∗, f! : KW (X ,Q�) → KW (Y ,Q�).

For an immersion of stacks f : X → Y , the middle extension functor f!∗ : PervW (X ,Q�) →
PervW (Y ,Q�) is not exact in general. We define a linear map

f!∗ : KW (X ,Q�) → KW (Y ,Q�)

such that f!∗[P] = [ f!∗P] for P ∈ PervW (X ,Q�) semisimple.

The definition of f!∗ on Grothendieck groups is further justified by the following fact. Let
ι : Q� → C be an embedding and letw ∈ R.We let PervWι,{w,w+1}(X ,Q�) denote the category

of perverseWeilQ�-sheaves on X , ι-mixed ofweightsw andw+1. Then f!∗[P] = [ f!∗P] for
P ∈ PervWι,{w,w+1}(X ,Q�) by the following immediate extension from the case of schemes
([37, Corollaire 2.10], [33, Lemma 4.1.8]).

Lemma 5.10 Let f : X → Y be an immersion of stacks. The functor

f!∗ : PervWι,{w,w+1}(X ,Q�) → PervWι,{w,w+1}(Y ,Q�)

is exact.

We have the following generalization of theorems of Gabber.

Theorem 5.11 Let X andY be stackswith separated diagonal. Then the operations in Remark
5.9 preserve E and σ -companions. More precisely, for any operation F in the list and
A ∈ KW (X ,Q�), E(FA) ⊆ E(A), and for any σ : E(A) → Q�′ and any σ -companion A′
of A, FA′ is a σ -companion of FA.

By biduality DX DX A = A, it follows that E(DX A) = E(A).

Proof The assertion on the six operations and duality is the case over a finite field of [39,
Proposition 5.8] (extended toWeil sheaves byRemark 5.7 or [39, Remarque 4.16]), generaliz-
ing a theorem of Gabber [16, Theorem 2]. For the assertion on pw and f!∗, where f is an open
immersion, we reduce to the case of separated schemes by the existence of smooth neighbor-
hoods [24, Théorème 6.3]. The assertion on pw is then [39, Proposition 2.7] (again extended
to Weil sheaves), a consequence of Gabber’s theorem on f!∗ on pure perverse sheaves. For
f!∗, by Remark 5.7 (1), it suffices to show that f!∗ on KW preserves τ -companions, where
τ : Q� → Q�′ is an embedding extending σ . Let A′ ∈ KW (X ,Q�′) be a τ -companion
of A ∈ KW (X ,Q�). We have A = ∑

a∈Q�
×

/W (q)
πa A, A′ = ∑

a∈Q�
×

/W (q)
πτa A′, and

πτa A′ is a τ -companion of πa A by Remark 5.7 (2). Thus, up to replacing A by (πa A)(1/a0)

and A′ by (πτa A′)(1/τa0), where a0 ∈ Q�
×

is a representative of a, we may assume
A, A′ ∈ Kmot ⊆ KW

m . Similarly, since A = ∑
w∈Z pwA, A′ = ∑

w∈Z pwA′, and pw

preserves τ -companions, up to replacing A by pwA and A′ by pwA′, we are reduced to the
case when A, A′ ∈ K are pure of weight w, which is Gabber’s theorem [16, Theorem 3]. �
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Due to cancellation in the alternating sum, the analogues of Corollaries 4.3 and 4.4 do not
hold: E(A) is not necessarily a finite extension of E( f ∗A) for f : X → Y surjective even

for A ∈ KW
lisse(Y ,Q�). For example, for f : Spec(Fq2) → Spec(Fq) and A =

[
Q�

(a)
]

−
[
Q�

(−a)
]
, we have E(A) = Q(a) but E( f ∗A) = Q.

The analogue of Proposition 4.5 holds for KW
lisse with the same proof. Moreover, Corollary

4.3 has the following refinement under additional assumptions.

Proposition 5.12 Let f : X → Y be a morphism of stacks of irreducible geometric fibers.
Let A ∈ KW (Y ,Q�). Then E( f ∗A) = E(A). Moreover, if A′ ∈ KW (Y ,Q�′) such that f ∗A′
is a σ -companion of f ∗A for some embedding σ : E(A) → Q�′ , then A′ is a σ -companion
of A.

Proof Recall that for any linear operator F on a finite-dimensional (Z/2Z)-graded vector
space and any N , tr(F) can be recovered from the numbers tr(Fn), n ≥ N linearly with
coefficients in the field generated by the latter ([37, Section 1], [19, Lemma 8.1, Remark 8.2
(3)]). Thus it suffices to show that for any y ∈ Y (Fqm ), there exists N ≥ 1 such that for every
n ≥ N , the image of y in Y (Fqnm ) lifts to X . This follows from the lemma below. �
Lemma 5.13 Let X be a geometrically irreducible stack over Fq . Then there exists an integer
N ≥ 1 such that X admits an Fqn -point for every n ≥ N.

Proof Let d be the dimension of X . Consider Hi
c = Hi

c (X ⊗Fq Fq ,Q�). Then H2d
c 


Q�(−d), and for j > 0, H2d+ j
c = 0 and H2d− j

c has weights ≤ 2d − j
2 [31, Theorem

1.4]. Let ι : Q� → C be an embedding. By [31, Theorem 4.2], Mn = ∑
α|ια|n < ∞,

where α runs through the multiset of eigenvalues of Frobq acting on H2d− j
c , j > 0. Since

Mn ≤ q(n−1)(d− 1
4 )M1, we have Mn < qdn for n � 0. By the trace formula, we then have

∑

x∈|X(Fqn )|

1

#Aut(x)
= qdn +

∑

α

(±αn) > 0.

Here |X(Fqn )| denotes the set of isomorphism classes of the groupoid X(Fqn ). �
Finally, we deduce the existence of perverse companions and companions inGrothendieck

groups.

Theorem 5.14 Let X be a stack of separated diagonal. Let P be a perverse Weil Q�-sheaf
on X. Then, for every embedding σ : E(P) → Q�′ , P admits a perverse σ -companion P ′,
unique up to semisimplification. Moreover, if E(P) is a number field, then there exists a
finite extension E of E(P) such that for every finite place λ′ of E not dividing q, P admits a
perverse σλ′ -companion. Here σλ′ : E(P) → E → Eλ′ , and Eλ′ denotes the completion of
E at λ′.

Proof The uniqueness up to semisimplification follows from Chebotarev’s density theorem
(Proposition 5.6). For the existence of companion, we extend σ to an embeddingQ� → Q�′ .
If E(P) is a number field, then E(Pi ) is a number field for every simple factor Pi of P by
Proposition 5.8. Thus, for the existence of companion in both assertions of the theorem, we
may assume that P is simple. Then P has the form j!∗(F[d]) for j : Y → X an immersion
with Y smooth, F lisse on Y , and d the locally constant dimension function on Y . The
existence of companion follows from Theorem 1.2 applied to F and the fact that j!∗ on
Grothendieck groups preserves companions (Theorem 5.11). �
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Corollary 5.15 Let X be a stack of separated diagonal. Let P be a simple perverse Weil
Q�-sheaf on X. Then, for every embedding σ : E(P) → Q�′ , there exists a unique perverse
σ -companion P ′. Moreover, P ′ is simple.

Proof It suffices to show the simplicity. The proof is the same as the end of the proof of
Proposition 5.2. We extend σ to an isomorphism Q�

∼−→ Q�′ . We may assume P ′ 
 ⊕
i P ′

i
with P ′

i simple. Then for each i there exists a Pi such that P ′
i is the σ -companion of Pi . It

follows that P 
 ⊕
i Pi , so that Pi = 0 for all but one i , and the same holds for P ′

i . �

Corollary 5.16 Let X be a stack of separated diagonal. Let σ : Q�
∼−→ Q�′ be an isomorphism.

For any A ∈ K (X ,Q�), there exists a unique σ -companion A′. The map K (X ,Q�) →
K (X ,Q�′) sending A to its σ -companion A′ is an isomorphism. Moreover, if E(A) is a
number field, then there exists a finite extension E of E(A) such that for every finite place λ′
of E not dividing q, A admits a perverse σλ′ -companion, where σλ′ is as in Theorem 5.14.

Note that if A = ∑
P nP [P], where P runs through isomorphism classes of simple

perverse Q�-sheaves, then A′ = ∑
P nP [P ′], where P ′ is the perverse σ -companion of P ,

is the σ -companion of A.

Proof The existence of σ -companion follows from Theorems 1.2 or 5.14 and the uniqueness
follows from Chebotarev’s density theorem. For the second assertion, note that sending
A′ to its σ−1-companion defines an inverse of the map. For the last assertion, note that
A = [P] − [Q] with E(P) and E(Q) being number fields by Proposition 5.8, so that it
suffices to apply the last assertion of the theorem. �

Remark 5.17 Let X be a stack of separated diagonal. The group of functions KW (X ,C) ⊆
C

∐
n≥1|X(Fqn )| of the form ι ◦ tX (A), where A belongs to KW (X ,Q�) and ι : Q�

∼−→ C is
an isomorphism, does not depend on the choice of � and ι by Corollary 5.16. Similarly, the

subgroups Kmot(X ,Q) ⊆ KW
alg(X ,Q) ⊆ Q

∐
n≥1|X(Fqn )|

, inverse images via an embedding

i : Q → Q� of the corresponding subgroups of tX (KW (X ,Q�)), do not depend on the choice
of � and i (cf. [14, Corollary 1.6]). We have

KW (X ,C) 

⊕

a∈C×/Q
×
KW
alg(X ,Q)(a), KW

alg(X ,Q) 

⊕

a∈Q×
/W (q)

Kmot(X ,Q)(a).

Remark 5.18 The support of a simple perverse Weil Q�-sheaf P on a stack X equals the
maximal reduced closed substack Y of X such that tr(Frobx ,Px̄ ) = 0 for all n ≥ 1 and
all x ∈ (X − Y )(Fqn ) by Proposition 5.6. Assume that X has separated diagonal. Then the
perverse σ -companion P ′ of P has the same support as P . Sun [30] defines the open support
of P to be the maximal smooth Zariski open of Y on which P is the shift of a lisse Weil
Q�-sheaf. As he observed, P and P ′ have the same open support by Theorem 1.2.
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Appendix: Structure of pure perverse sheaves

The goal of this appendix is to prove the geometric semisimplicity of pure perverse sheaves
(Theorem 6.1).

Let ι : Q� → C be an embedding. Let X be a stack. Letw ∈ R and let K ∈ D(X ,Q�). We
say that K has ι-weights ≤ w if the i th cohomology sheafHi K of K has punctual ι-weights
≤ w + i for all i , and K has ι-weights ≥ w if DK has ι-weights ≤ −w. We say that K is
ι-pure of weight w if it has ι-weights ≤ w and ≥ w.

Theorem 6.1 Let X be a stack and let P be an ι-pure perverse WeilQ�-sheaf on X. Then the
pullback of P to X ⊗Fq Fq is semisimple.

The case of affine stabilizers is a theorem of Sun [32, Theorem 3.11], extending the case
of schemes [3, Théorème 5.3.8]. Note that the decomposition theorem of pure complexes
[32, Theorem 3.12] does not extend to general stacks, as shown in [32, Section 1].

As in the case of schemes [3, Proposition 5.3.9], Theorem 6.1 has the following conse-
quence on the structure of pure perverse sheaves. As before we let En denote the Q�-sheaf
on Spec(Fq) of stalk Q�

n
on which Frobq acts unipotently with one Jordan block.

Corollary 6.2 Let X be a stack. The indecomposable ι-pure perverse Weil Q�-sheaves on X
are of the form P ⊗ π∗

XEn with P simple, where πX : X → Spec(Fq). Moreover, for every
simple perverse Weil Q�-sheaf P , there exists a unique m ≥ 1 such that P 
 p∗Q, where
p : X ⊗Fq Fqm → X is the projection, Q is geometrically simple (i.e. the pullback of Q to

X ⊗Fqm Fq is simple) and not isomorphic to any of its conjugates under Gal(Fqm/Fq).

The first assertion of the corollary still holds with Q� replaced by a finite (or algebraic)
extension of Q�.

The key to the proof of Theorem 6.1 is a weight estimate.

Proposition 6.3 Let X be a stack and let π : X → Spec(Fq) be the projection. Let K ∈
D≥0(X ,Q�) be a complex of ι-weights ≥ w and vanishing i-th cohomology for i < 0. Then
for all i ≥ 0, Riπ∗K has ι-weights ≥ w + � i

2�. Moreover Hi (X ⊗Fq Fq , K )Gal(Fq/Fq ) = 0
for i > 0 if w ≥ 0, and R
(X , K ) = 0 if w > 0.

The estimate is optimal. Indeed, for X = BA, where A is an Abelian variety, and a of

weight 1, Riπ∗(Q� ⊕Q�
(a)[−1]) is pure of weight � i

2�. Unlike the case of schemes or stacks
with affine stabilizers, Riπ∗K is not of ι-weights ≥ w + i in general.

Proof The second assertion follows from the first one and the short exact sequence

0 → Hi−1(X ⊗Fq Fq , K )Gal(Fq/Fq ) → Hi (X , K ) → Hi (X ⊗Fq Fq , K )Gal(Fq/Fq ) → 0.

Note that for any stratification of X into locally closed substacks ( jα : Xα → X)α such that
the closure of every stratum is a union of strata, K is a successive extension of Rjα∗Rj !αK ,
with Rj !αK ∈ D≥0 of ι-weights ≥ w. Thus we may assume that X is smooth of dimension d
and K has lisse cohomology sheaves. We may further assume K = F[−n], with F lisse of
ι-weights ≥ w + n and n ≥ 0. Then the ι-weights of (Riπ∗K )∨ 
 (R2d+n−iπ!F∨)(d) are
at most

d + 2d + n − i

2
− (w + n) − 2d = −w − i + n

2
≤ −w − i

2

by [31, Theorem 1.4]. We conclude by the fact that the ι-weights are in w + Z.
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Corollary 6.4 Let X be a stack and let P and Q be perverse Q�-sheaves on X, with P of
ι-weights ≤ w, and Q of ι-weights ≥ w. Then for i > 0, Homi (P

Fq
,Q

Fq
)Gal(Fq/Fq ) = 0,

so that the canonical map Homi (P,Q) → Homi (P
Fq

,Q
Fq

) is zero. Moreover, if Q has
ι-weights > w, then RHom(P,Q) = 0.

For perverse Weil Q�-sheaves and i = 1, the first assertion holds with Hom1 replaced by
Ext1 and Gal(Fq/Fq) replaced by W (Fq/Fq).

Proof We apply the proposition to K = RHom(P,Q) ∈ D≥0(X ,Q�), which has ι-weights
≥ 0. If Q has ι-weights > w, then K has ι-weights > 0. �

The proof of Theorem 6.1 is then identical to the proof of [3, Théorème 5.3.8], with [3,
Proposition 5.1.15] replaced by Corollary 6.4.
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