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Abstract Letπ be an irreducible cuspidal representation ofGLkn(Fq). Assume thatπ = πθ ,
corresponds to a regular character θ ofF∗

qkn
.We consider the twisted Jacquetmodule ofπ with

respect to a non-degenerate character of the unipotent radical corresponding to the partition
(n, n, . . . , n) of kn. We show that, as a GLn(Fq)-representation, this Jacquet module is
isomorphic to πθ�

F
∗
n

⊗ St⊗(k−1), where St is the Steinberg representation of GLn(Fq). This
generalizes a theorem of D. Prasad, who considered the case k = 2. We prove and rely
heavily on a formidable identity involving q-hypergeometric series and linear algebra.

1 Introduction

Let F := Fq be the finite field of size q . We fix a nontrivial character ψ0 of F. Denote by
Fm := Fqm the unique degree m field extension of F. For a positive integer r , we denote the
diagonal subgroup of (GL�(F))r by

�r (GL�(F)) := { (g, . . . , g) ∈ (GL�(F))r
∣∣ g ∈ GL�(F)

}
.

For a partition ρ = (k1, k2, . . . , ks) of �, denote by Pρ the corresponding standard parabolic
subgroup of GL�(F). Let Mρ and Nρ be the corresponding standard Levi subgroup and
unipotent radical.

Fix k ≥ 1. Let ρ = (n, n, . . . , n) be the partition of kn consisting of k parts of size n. In
this paper we denote G := GLkn(F), P := Pρ , M := Mρ and N := Nρ . We have the Levi
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610 O. Gorodetsky, Z. Hazan

decomposition P = M � N . We write U ∈ N in the form

U =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

In X1,1 X1,2 · · · X1,k−2 X1,k−1

0 In X2,2 · · · X2,k−2 X2,k−1

0 0 In · · · X3,k−2 X3,k−1
...

...
...

...
...

0 0 0 · · · In Xk−1,k−1

0 0 0 · · · 0 In

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.1)

where the matrices Xi, j (1 ≤ i ≤ j ≤ k − 1) are elements of Mn(F).

Definition 1.1 A character ψ : N → C
∗ is said to be non-degenerate if it is of the form

ψ (U ) := ψ0

(

tr

(
k−1∑

i=1

Ai Xi,i

))

=
k−1∏

i=1

ψ0
(
tr
(
Ai Xi,i

))
,

where the matrices Ai are invertible.

Letψ : N → C
∗ be a non-degenerate character. Let π be an irreducible representation of G,

acting on a space Vπ . We denote by Vπk,N ,ψ
the largest subspace of Vπ , on which N operates

through ψ , i.e.
Vπk,N ,ψ

= {v ∈ Vπ | π(U )v = ψ(U )v, ∀U ∈ N } .

This is the (N , ψ)-isotypic subspace of Vπ and it is the image of the canonical projection of
Vπ on Vπk,N ,ψ

given by

Pk,N ,ψ (v) = 1

|N |
∑

U∈N
ψ (U ) π(U )v. (1.2)

Since M normalizes N , it acts on the characters of N as follows. If m ∈ M , then for all
U ∈ N

(m · ψ)(U ) = ψ
(
m−1Um

)
.

We have, for m ∈ M ,
π(m)Vπk,N ,ψ

= Vπk,N ,m·ψ .

Let us compute the stabilizer of ψ in M . If

m =

⎛

⎜⎜⎜
⎝

B1 0 · · · 0
0 B2 · · · 0
...

...
...

0 0 · · · Bk

⎞

⎟⎟⎟
⎠

,

where Bi ∈ GLn(F) for all 1 ≤ i ≤ k, then

(m · ψ)(U ) = ψ0

(

tr

(
k−1∑

i=1

Ai B
−1
i Xi,i Bi+1

))

.

Thus, m · ψ = ψ if and only if Bi = Bi+1 for all 1 ≤ i ≤ k − 1. In other words,

stabMψ = �k (GLn(F)) ∼= GLn(F).

Therefore, Vπk,N ,ψ
is a GLn(F)-module. We denote by πk,N ,ψ the resulting representation

of GLn(F) on Vπk,N ,ψ
. It is easy to see that by conjugation with an element in the standard
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Levi subgroup, we may simply take all the Ai to be the identity matrix. The corresponding
twisted Jacquet modules are isomorphic. In the rest of the paper we assume Ai = In and fix

ψ (U ) := ψ0

(

tr

(
k−1∑

i=1

Xi,i

))

.

The goal of this paper is to calculate the character of πk,N ,ψ , and to describe it in terms of
more familiar representations, for an irreducible, cuspidal representationπ = πθ ofGLkn(F),
associated to a regular character θ of F

∗
kn . The paper generalizes Prasad’s result for the case

k = 2 stated below.

Theorem [11, Thm. 1] Let π be an irreducible cuspidal representation ofGL2n(F) obtained
from a character θ of F

∗
2n. Then

π2,N ,ψ
∼= IndGLn(F)

F∗
n

θ �F∗
n

. (1.3)

Prasad proved this theorem by an explicit calculation of the characters of π2,N ,ψ and of

the induced representation IndGLn(F)
F∗
n

θ �F∗
n
. At any element of GLn(F) the characters are the

same. Therefore, the two representations are equivalent.
The methods used in this paper are generalizations of the methods used by the second

author in his thesis [7] for the case k = 3. From the character calculation, done in Theo-
rem 3 below, we are able to describe in Theorem 4 πk,N ,ψ in terms of the representations

IndGLn(F)

F
∗
�

θ �F
∗
�
, where � | n. This reduces immediately to Prasad’s result when k = 2. Fur-

thermore, we give a compact description of πk,N ,ψ in terms of the Steinberg representation
in the following theorem.

Theorem 1 Let k ≥ 1. Letπθ be an irreducible cuspidal representation ofGLkn(F) obtained
from a character θ of F

∗
kn. Then

πk,N ,ψ
∼= πθ�

F
∗
n

⊗ St⊗(k−1),

where πθ�
F
∗
n
is the irreducible cuspidal representation of GLn(F) obtained from θ �F∗

n
, and

St⊗(k−1) is the (k − 1)-fold tensor product of the Steinberg representation of GLn(F) with
itself.

Note that for n = 1, Theorem 1 gives πk,N ,ψ
∼= θ �F∗ , which also follows from Gel’fand–

Graev [4] in case of GLk(F) (cf. [12, Ch. 8.1]).
We are currently investigating an analogous construction for a non-Archimedean local

field.

1.1 Structure of the paper

In Sect. 2 we set the background material from several topics that are needed in the paper:
linear algebra, representation theory, q-hypergeometric identities and arithmetic identities.

In Sect. 3 we calculate the dimension of πk,N ,ψ . Green’s formula allows us to express the
dimension as rather complicated sum.We use q-hypergeometric identities and linear algebra
to show that this sum admits the following compact form.

Theorem 2 Let k ≥ 2. We have

dim
(
πk,N ,ψ

) = q(k−2) n(n−1)
2

|GLn(F)|
qn − 1

.
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612 O. Gorodetsky, Z. Hazan

In Sect. 4 we compute the character of πk,N ,ψ , denoted by �k,N ,ψ . Apart from the tools
used in Theorem 2 this requires understanding of some conjugacy classes of GLn(F). When
d | m, we have an embedding F

∗
d ↪→ GLm(F) (see Sect. 2.1). The elements in GLm(F)

conjugate to an element in the image of this embedding are said to come from Fd .

Theorem 3 Let k ≥ 2. Let g = s ·u be the Jordan decomposition of an element g inGLn(F),
where s and u are the semisimple part and unipotent part, respectively.

(I) If s does not come from Fn, then

�k,N ,ψ (g) = 0.

(II) If the u 
= In, then
�k,N ,ψ (g) = 0.

(III) Assume that u = In and s comes from Fd ⊆ Fn and d | n is minimal. Let λ be an
eigenvalue of s which generates Fd over F. Then,

�k,N ,ψ (s) = (−1)k(n−d ′)q(k−2) n(d′−1)
2 ·

[
d−1∑

i=0

θ(λq
i
)

]

· |GLd ′(Fd)|
qn − 1

,

where d ′ = n/d.

In Sect. 5 we obtain from Theorem 3 and Lemma 2.10 an isomorphism of representation
relating between πk,N ,ψ and IndGLn(F)

F
∗
�

θ �F
∗
�
for all � | n. We write a|b|c for a|b and b|c. For

any � dividing n and any k ≥ 2, let

ak;n,�(q) = q� − 1

qn − 1

∑

m: �|m|n
μ
(m

�

)
(−1)k(n− n

m )q(k−2) n2 ( n
m −1), (1.4)

where μ is the Möbius function.

Theorem 4 Let k ≥ 2.

(I) If k is even or n is odd, we have

πk,N ,ψ
∼= ⊕

�|n ak;n,�(q) · IndGLn(F)

F
∗
�

θ �F
∗
�

. (1.5)

(II) If k is odd and n is even, we have

(
πk,N ,ψ ⊕

⊕

�: �|n,2�
n
�

(−ak;n,�(q))·IndGLn(F)

F
∗
�

θ �F
∗
�

)
∼=

⊕

�: �|n,2| n
�

ak;n,�(q)·IndGLn(F)

F
∗
�

θ �F
∗
�

.

(1.6)

We note that the coefficients in Theorem 4 are non-negative integers. Indeed, when k = 2, it
is easily shown (see Lemma 2.10) that a2;n,�(q) = δ�,n , which gives (1.3). If k > 2 we show
in Lemma 2.10 that ak;n,�(q) is a positive integer, except when k is odd, n is even and 2 �

n
�
,

in which case −ak;n,�(q) is a positive integer.
In Sect. 6 we deduce Theorem 1 from Theorem 3.
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2 Preliminaries

2.1 Cuspidal representations

We review the irreducible cuspidal representations of GLm(F) as in Gel’fand [3, Sect. 6]
(originally in Green [5]). Irreducible cuspidal representations of GLm(F), from which all
the other irreducible representations of GLm(F) are obtained via the process of parabolic
induction, are associated to regular characters of F

∗
m . A multiplicative character θ of F

∗
m is

called regular if, under the action of the Galois group of Fm over F, the orbit of θ consists
of m distinct characters of F

∗
m .

We denote the irreducible cuspidal representation of GLm(F) associated to a regular
character θ of F

∗
m by πθ and the character of the representation πθ by �θ .

Given a ∈ Fm , consider the map ma : Fm → Fm , defined by ma(x) = ax . The map
a �→ ma is an injective homomorphism of algebras Fm ↪→ EndF(Fm). This way, every
element of F

∗
m gives rise to a well-defined conjugacy class in GLm(F). The elements in the

conjugacy classes in GLm(F), which are so obtained from elements of F
∗
m , are said to come

from F
∗
m .

We summarize the information about the character �θ in the following theorem. We refer
to the paper [11, Thm. 2] for the statement of this theorem in this explicit form, which is
originally due to Green [5, Thm. 14] (cf. [3,14]).

Theorem 2.1 (Green [5]) Let�θ be the character of a cuspidal representationπθ ofGLm(F)

associated to a regular character θ of F
∗
m. Let g = s · u be the Jordan decomposition of

an element g in GLm(F) (s is a semisimple element, u is unipotent and s, u commute). If
�θ(g) 
= 0, then the semisimple element s must come from F

∗
m. Suppose that s comes from

F
∗
m. Let λ be an eigenvalue of s in F

∗
m, and let t = dimFm ker(g − λI ). Then

�θ(s · u) = (−1)m−1

[
d−1∑

α=0

θ(λq
α

)

]

(1 − qd)(1 − (qd)2) · · · (1 − (qd)t−1) (2.1)

where qd is the cardinality of the field generated by λ over F, and the summation is over the
various distinct Galois conjugates of λ.

Corollary 2.2 The value �θ(g) is determined by the eigenvalue of g and the number of
Jordan blocks of g, which, in turn, is determined by dimFm ker(g − λI ).

2.2 Characters induced from subfields

The following lemma summarizes the information about the character of IndGLn(F)

F
∗
�

(θ �F
∗
�
),

where � | n and θ is a character of F
∗
n .

Lemma 2.3 [7, Lem. 2.4] Let θ be a character of F
∗
n. Suppose that s ∈ GLn(F) comes from

Fd ⊆ F� (d | � is minimal). Let λ be an eigenvalue of s in F
∗
d . Then, the character �Ind�

of

IndGLn(F)

F
∗
�

(θ �F
∗
�
) at s is given by
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614 O. Gorodetsky, Z. Hazan

�Ind�
(s) = 1

q� − 1

∑

g∈GLn(F)

g−1sg∈F
∗
�

θ(g−1sg) (2.2)

= |GLd ′(Fd)|
q� − 1

[
d−1∑

i=0

θ(λq
i
)

]

, (2.3)

where d ′ = n/d, and the last sum is over the various distinct Galois conjugates of λ. The
value of the character �Ind�

at an element of GLn(F) which does not come from F� is zero.

Remark 2.4 Recall that in (2.2) F
∗
� is considered a subgroup of GLn(F) by the injective map

a �→ [ma], where [ma] is the representing matrix of ma with respect to a fixed basis of Fn

over F. Note that the choice of basis for [ma] does not affect the values of �Ind�
.

2.3 On some conjugacy classes of GLn(F)

2.3.1 Analogue of Jordan form

Let g ∈ GLn(F) and g = s · u be its Jordan decomposition. Assume that s comes from
Fd ⊆ Fn (d | n is minimal). Let λ ∈ F

∗
d be an eigenvalue of s, which generates the field Fd

over F. Denote by f the characteristic polynomial of λ (of degree d), and by L f ∈ GLd(F)

the companion matrix of f . For � ≥ 1 we denote

L f,� =

⎛

⎜⎜⎜
⎝

L f Id
L f

. . . Id
L f

⎞

⎟⎟⎟
⎠

∈ GL�·d(F).

This is an analogue of a Jordan block. As in [3,5], there exists ρ = (�1, . . . , �r ), a partition
of n

d , �1 ≥ �2 ≥ · · · ≥ �r , such that g is conjugate to

Lρ( f ) :=

⎛

⎜⎜⎜
⎝

L f,�1
L f,�2

. . .

L f,�r

⎞

⎟⎟⎟
⎠

,

i.e. there exists R ∈ GLn(F) such that

R−1gR = Lρ( f ). (2.4)

Notice that in case u = In (g is semisimple),we haveρ = (1n/d) and there exists R ∈ GLn(F)

such that R−1gR is a block diagonal matrix with d ′ = n/d times L f on the diagonal.
Otherwise, �1 > 1 and, in particular, there exists R ∈ GLn(F) such that the upper 2d × 2d
left corner of R−1gR is (

L f Id
L f

)
.

Now, s (and so g) has d different eigenvalues obtained by applying the Frobenius automor-
phism σ , which generates the Galois group Gal(Fd/F), namely

{
λ, σ (λ), . . . , σ d−1(λ)

}
=
{
λ, λq , . . . , λq

d−1
}

,
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On certain degenerate Whittaker models. . . 615

all of multiplicity d ′ = n/d in the characteristic polynomial of s. Let 0 
= v0 ∈ F
d
d

satisfy L f · v0 = λv0. So L f · σ i (v0) = λq
i
σ i (v0), for 0 ≤ i ≤ d − 1. Hence,

B = {v0, σ (v0), . . . , σ
d−1(v0)

} ⊆ F
d
d is linearly independent over Fd , since its elements are

eigenvectors of L f for different eigenvalues. Let T ∈ GLd(Fd) be the diagonalizing matrix
of L f obtained by B, i.e.

T−1L f T = D, (2.5)

where
D := diag

(
λ, . . . , λq

d−1
)

.

Denote by �d ′
(T ) the block diagonal matrix with d ′ times T on the diagonal. Explicitly, the

columns of �d ′
(T ) are the vectors of the basis

C = {v0(i, j)}0≤ j≤d ′−1
0≤i≤d−1 , (2.6)

whose ( j · d + i)-th vector is given by

v0(i, j) =
⎛

⎝
0 j ·d

σ i (v0)

0n−( j+1)·d

⎞

⎠ ∈ F
n
d ,

where 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ d ′ − 1. Thus, in case u = In

�d ′ (
T−1) R−1gR�d ′

(T ) =
⎛

⎜
⎝

D
. . .

D

⎞

⎟
⎠ .

Otherwise

�d ′ (
T−1) R−1gR�d ′

(T ) =

⎛

⎜⎜⎜⎜⎜
⎝

D Id
D

D ∗
. . . ∗

D

⎞

⎟⎟⎟⎟⎟
⎠

,

where ∗ means either Id or 0d above the diagonal. We denote

gρ := gρ,R = �d ′ (
T−1) R−1gR�d ′

(T ) . (2.7)

The matrix gρ is sometimes referred to as an analogue of the Jordan form of g [3, Sect. 0].

2.3.2 Conjugating an arbitrary matrix

We use the notation of Sect. 2.3.1. In particular, we have a fixed g ∈ GLn(F) and corre-
sponding R and T as defined in (2.4) and (2.5). Let A ∈ Mn(F). We study the following
conjugation

Aρ := Aρ,R = �d ′ (
T−1) R−1AR�d ′

(T ) ∈ Mn(Fd).

Define AR by AR = R−1AR, and so Aρ = �d ′ (
T−1

)
AR�d ′

(T ).
Let B ∈ Mn(Fd). Let us represent the vectors B · v0(0,m), for any 0 ≤ m ≤ d ′ − 1, as a

linear combination of the basis C given in (2.6):

B · v0(0,m) =
∑

0≤i≤d−1
0≤ j≤d ′−1

am,i; j · v0(i, j), am,i; j ∈ Fd .
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616 O. Gorodetsky, Z. Hazan

A necessary and sufficient condition for B ∈ Mn(F) is that for all 0 ≤ m ≤ d ′ − 1, 0 ≤ r ≤
d − 1,

B · v0 (r,m) =
∑

0≤i≤d−1
0≤ j≤d ′−1

σ r (am,i; j ) · v0 (i + r (mod d), j) . (2.8)

By taking B = AR ∈ Mn(F), we get that (2.8) holds for AR . Therefore, [AR]C = Aρ is a
d ′ × d ′ matrix with entries from Md (Fd). For 0 ≤ m, j ≤ d ′ − 1, the m-th row and j-th
column of Aρ , denoted by Am, j , is given by

Am, j = (σ r (am,i−r (mod d); j
))

0≤i,r≤d−1 , (2.9)

i.e. Am, j ∈ Md (Fd) and for 0 ≤ i, r ≤ d − 1, the i-th row and r -th column of Am, j is
σ r
(
am,i−r (mod d); j

)
. The above discussion can be summarized in the following lemma.

Lemma 2.5 In the above notations, the map A �→ Aρ induces an F-linear isomorphism

Mn(F) → Mn×d ′(Fd) ∼= [Md×d ′(Fd)
]d ′

. It is given by

A �→

⎛

⎜⎜⎜
⎝

(
a0,i; j

)
0≤i≤d−1
0≤ j≤d ′−1
...(

ad ′−1,i; j
)
0≤i≤d−1
0≤ j≤d ′−1

⎞

⎟⎟⎟
⎠

,

where the (m · d + i)-th row and j-th column of the image of A is am,i; j ∈ Fd , for 0 ≤
m, j ≤ d ′ − 1 and 0 ≤ i ≤ d − 1.

2.3.3 Trace under conjugation

For g ∈ GLn(F) and A ∈ Mn(F) we shall be interested in tr
(
g−1A

)
. We use the notation of

Sects. 2.3.1 and 2.3.2. By (2.7), we have

tr
(
g−1A

) = tr
(
g−1
ρ Aρ

)
.

The inverse of an analogue of a Jordan block of order d · � is given by
⎛

⎜⎜
⎝

⎛

⎜
⎝

D Id
. . . Id

D

⎞

⎟
⎠

−1
⎞

⎟⎟
⎠

i, j

=
{

(−1) j−i D− j+i−1, i ≤ j

0, i > j,
(2.10)

for 0 ≤ i, j ≤ �, where the LHS of (2.10) denotes the block matrix in the i-th row and j-th
column. We have

tr
(
g−1
ρ Aρ

) = ∑d ′−1
m=0 tr

(
D−1Am,m + D−2αm

(
g, D−1, Aρ

))

= tr
(∑d ′−1

m=0 D−1Am,m

)
+∑d ′−1

m=0 tr
(
D−2αm

(
g, D−1, Aρ

))
,

(2.11)

where αm
(
g, D−1, Aρ

)
, for 0 ≤ m ≤ d ′ − 1 are determined by the analogous Jordan form

of g. Notice, that in case g is semisimple, then αm
(
g, D−1, Aρ

) = 0 for all 0 ≤ m ≤ d ′ − 1.
Otherwise, for 0 ≤ m ≤ d ′ − 1, D−2αm

(
g, D−1, Aρ

)
equals to a sum of terms of the form

(−1)�D−�−1A�,m , where m < � ≤ d ′ − 1.
By (2.9) we have

D−1Am,m =
((

λ−1)qr σ r (am,i−r (mod d);m
))

1≤i,r≤d−1
.
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So the first sum in the RHS of (2.11) becomes

d ′−1∑

m=0

d−1∑

r=0

(
λ−1)qr σ r (am,0;m

) =
d−1∑

r=0

σ r

⎛

⎝λ−1
d ′−1∑

m=0

am,0;m

⎞

⎠ = TrFd/F

⎛

⎝λ−1 ·
d ′−1∑

m=0

am,0;m

⎞

⎠ .

On the other hand, for each 0 ≤ m ≤ d ′ − 1, the term tr
(
D−2αm

(
g, D−1, Aρ

))
in (2.11)

does not depend on the elements a�,0;m , where � = m. Each such term depends only on λ

and on a�,i,m where � > m. We summarize the above results in the following lemma.

Lemma 2.6 In the above notations,

tr
(
g−1A

) = TrFd/F

⎛

⎝λ−1 ·
d ′−1∑

m=0

am,0;m

⎞

⎠+
d ′−1∑

m=0

tr
(
D−2αm

(
g, D−1, Aρ

))
,

and each summand tr
(
D−2αm

(
g, D−1, Aρ

))
is independent of am,0;m appearing in the first

summand, for all 0 ≤ m ≤ d ′ − 1.
In case g = s is semisimple we have

tr
(
g−1A

) = TrFd/F

⎛

⎝λ−1 ·
d ′−1∑

m=0

am,0;m

⎞

⎠ .

2.4 q-Hypergeometric identity

In order to calculate the dimension of πk,N ,ψ , we need a combinatorial identity related to
ranks of triangular block matrices. We first prove a lemma that is a special case of a q-
analogue of the Chu–Vandermonde identity, phrased in a manner that we use in the proof of
the combinatorial identity. We recall the definition of the q-Pochhammer symbol:

(a; q)n =
n−1∏

i=0

(1 − aqi ).

Lemma 2.7 Let Rq(n,m, r) be the number of n × m matrices of rank r over the finite field
of size q (n, m may be 0, with the convention that the empty matrix has rank 0). Let a be an
integer greater or equal to n + m. Then

∑

r≥0

Rq(n,m, r)(q; q)a−r = qnm
(q; q)a−n(q; q)a−m

(q; q)a−n−m
.

Proof We start by stating a q-analogue of the Chu–Vandermonde identity [2, Eq. (1.5.2)]:

i∑

r=0

(q−i ; q)r (b; q)r

(c; q)r (q; q)r

(
cqi

b

)r
= (c/b; q)i

(c; q)i
,

where i is a non-negative integer, and b, c are complex numbers that satisfy b 
= 0 and
c /∈ {q−1, . . . , q−(i−1)}. Choosing i = n, b = q−m , c = q−a , we obtain

n∑

r=0

(q−n; q)r (q−m; q)r

(q−a; q)r (q; q)r
q(n+m−a)r = (qm−a; q)n

(q−a; q)n
. (2.12)
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We have the following formula for Rq(n,m, r) by Landsberg [9]:

Rq(n,m, r) = (−1)r (q−n; q)r (q−m; q)r q(n+m)r−(r2)

(q; q)r
.

By expressing the r -th summand of (2.12) as

(−1)r (q−n;q)r (q−m ;q)r q(n+m)r−(r2)

(q;q)r
· q−ar+(r2)

(−1)r (q−a;q)r

= Rq(n,m, r) · q−ar+(r2)

(−1)r (q−a;q)r
,

we obtain that
n∑

r=0

Rq(n,m, r)
q−ar+(r2)(−1)r

(q−a; q)r
= (qm−a; q)n

(q−a; q)n
. (2.13)

The proof is concluded by applying to (2.13) the simple identity

(q−x ; q)y = (−1)yq(y2)−xy (q; q)x

(q; q)x−y

with (x, y) ∈ {(a, n), (a − m, n), (a, r)}. ��
We now state our main combinatorial identity needed for computing the dimension. Let

k be a positive integer. We define the following family of functions.

fk,q
(
a; n1,...,nk

m1,...,mk

)
=
∑

A

(q; q)a−rkA , (2.14)

where {ni }ki=1, {m j }kj=1 are sequences of non-negative integers, a is an integer such that

a ≥ max

⎧
⎨

⎩

i∑

j=1

n j +
k∑

j=i

m j | 1 ≤ i ≤ k

⎫
⎬

⎭
(2.15)

and the sum is over all matrices A ∈ M
(
∑k

i=1 ni )×(
∑k

j=1 m j )
(F) of the form

A =

⎛

⎜⎜⎜
⎝

Y1,1 Y1,2 · · · Y1,k
0 Y2,2 · · · Y2,k
...

...
...

0 0 · · · Yk,k

⎞

⎟⎟⎟
⎠

, (2.16)

where Yi, j ∈ Mni×m j (F) for all 1 ≤ i ≤ j ≤ k.

Proposition 2.8 Let k ≥ 1. For any sequences of non-negative integers, {ni }ki=1 and
{m j }kj=1, and for any integer a satisfying (2.15), we have

fk,q
(
a; n1,...,nk

m1,...,mk

)
= q

∑

1≤i≤ j≤k
nim j ·

∏k
i=0 (q; q)a−∑k−i

j=1 n j−∑k
j=k−i+1 m j

∏k
i=1 (q; q)a−∑k−i+1

j=1 n j−∑k
j=k−i+1 m j

. (2.17)

Proof We use the following notation:

Ir,n,m =
(

Ir 0m−r

0n−r 0

)
, (r ≤ min{n,m}). (2.18)
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We prove the proposition by induction on k. Let k = 1. Then

f1,q
(
a; n

m

)
=

∑

A∈Mn×m (F)

(q; q)a−rkA =
∑

r≥0

Rq(n,m, r) (q; q)a−r .

By Lemma 2.7 we find that

f1
(
a; n

m

)
= qnm

(q; q)a−n(q; q)a−m

(q; q)a−n−m
,

as needed. We now perform the induction step, i.e. assume that (2.17) holds for k−1 in place

of k, and prove it for k. We split the sum defining fk,q
(
a; n1,...,nk

m1,...,mk

)
as follows:

fk,q
(
a; n1,...,nk

m1,...,mk

)
=

∑

Yi,i∈Mni×mi (F)

1≤i≤k

∑

Yi, j∈Mni×m j (F)

1≤i< j≤k

(q; q)a−rkA . (2.19)

In the inner sum of (2.19) the ranks of Yi,i are fixed for all 1 ≤ i ≤ k, so we set ri = rk(Yi,i ).
There exist invertible matrices Ei ,Ci such that Yi,i = Ei Iri ,ni ,mi Ci , for all 1 ≤ i ≤ k. So,
one can write A in the inner sum of (2.19) as diag (E1, . . . , Ek) · Ã · diag (C1, . . . ,Ck) ,

where

Ã =

⎛

⎜⎜⎜
⎝

Ir1,n1,m1 Ỹ1,2 · · · Ỹ1,k
0 Ir2,n2,m2 · · · Ỹ2,k
...

...
. . .

...

0 0 · · · Irk ,nk ,mk

⎞

⎟⎟⎟
⎠

(2.20)

and Ỹi, j = E−1
i Yi, jC

−1
j for all 1 ≤ i < j ≤ k. Together with the fact that rank is invariant

under elementary operations, (2.19) becomes

fk,q
(
a; n1,...,nk

m1,...,mk

)
=

∑

∀1≤i≤k:
ri≥0

k∏

i=1

Rq(ni ,mi , ri )
∑

Ã

(q; q)a−rk Ã , (2.21)

where the inner sum is over matrices Ã of the form (2.20). We can use Gaussian elimination
operations on Ỹi, j for all 1 ≤ i < j ≤ k (which do not affect the rank of Ã) as follows: the
first ri rows of each Ỹi, j are being canceled by the pivot elements in Iri ,n (using elementary
row operations) and the first r j columns of each Ỹi, j are being canceled by the pivot elements
in Ir j ,n (using elementary column operations). Formally, the composition of these elementary
operations maps the sequence of matrices {Ỹi, j }1≤i< j≤k F-linearly to a sequence of matrices

{
̂̃Y i, j =

(
0 0
0 Zi, j

)}

1≤i< j≤k
, (2.22)
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620 O. Gorodetsky, Z. Hazan

where Zi, j ∈ M(ni−ri )×(m j−r j )(F). This linear map is a projection by construction. Its kernel

is of size q
∑k−1

t=1 rt
∑k

�=t+1 m�+∑k
t=2 rt

∑t−1
�=1(n�−r�). The dimension of the kernel corresponds to

the number of elements which we canceled. Equation (2.21) becomes

fk,q
(
a; n1,...,nk

m1,...,mk

)
= ∑

∀1≤i≤k:
ri≥0

k∏

i=1
Rq(ni ,mi , ri )q

∑k−1
t=1 rt

∑k
�=t+1 m�+∑k

t=2 rt
∑t−1

�=1(n�−r�)

·∑
̂̃A

(q; q)
a−rk̂̃A ,

(2.23)
where the inner sum is over matrices of the form

̂̃A =

⎛

⎜⎜⎜⎜
⎝

Ir1,n1,m1
̂̃Y 1,2 · · · ̂̃Y 1,k

0 Ir2,n2,m2 · · · ̂̃Y 2,k
...

...
. . .

...

0 0 · · · Irk ,nk ,mk

⎞

⎟⎟⎟⎟
⎠

,

and ̂̃Y i, j are as defined in (2.22). Note that rk̂̃A =∑k
j=1 r j + rkZ , where

Z =
⎛

⎜
⎝

Z1,2 · · · Z1,k
...

. . .
...

0 · · · Zk−1,k

⎞

⎟
⎠ .

Hence, from (2.23) we obtain the following recursive relation:

fk,q
(
a; n1,...,nk

m1,...,mk

)
= ∑

∀1≤i≤k:
ri≥0

k∏

i=1
Rq(ni ,mi , ri )q

∑k−1
t=1 rt

∑k
�=t+1 m�+∑k

t=2 rt
∑t−1

�=1(n�−r�)

· fk−1,q

(
a −

k∑

j=1
r j ; n1−r1,...,nk−1−rk−1

m2−r2,...,mk−rk

)
.

(2.24)

Plugging the induction assumption in (2.24) we get that fk,q
(
a; n1,...,nk

m1,...,mk

)
equals

∑

∀1≤i≤k:
ri≥0

k∏

i=1
Rq(ni ,mi , ri )q

∑k−1
t=1 rt

∑k
�=t+1 m�+∑k

t=2 rt
∑t−1

�=1(n�−r�)

·q
∑

1≤i≤ j≤k−1(ni−ri )·(m j+1−r j+1) ·
∏k−1

i=0 (q;q)
a−∑k

j=1 r j−
∑k−1−i

j=1 (n j−r j)−∑k−1
j=k−i(m j+1−r j+1)

∏k−1
i=1 (q;q)

a−∑k
j=1 r j−

∑k−i
j=1(n j−r j )−∑k−1

j=k−i(m j+1−r j+1)
.

(2.25)
Rearranging (2.25), we see that the sum over r1, . . . , rk may be written as a product over k
sums, where the i-th sum is over ri :

fk,q
(
a; n1,...,nk

m1,...,mk

)
= q

∑
1≤i≤ j≤k−1 ni m j+1

∏k−1
i=1 (q;q)

a−∑k−i
j=1 n j−

∑k−1
j=k−i m j+1

·∏k
i=1

(∑
ri≥0 Rq(ni ,mi , ri ) (q; q)a−ri−∑i−1

j=1 n j−∑k−1
j=i m j+1

)
.

(2.26)
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Using Lemma 2.7 we substitute each inner sum of (2.26) with

qni ·mi

(q; q)a−∑i
j=1 n j−∑k−1

j=i m j+1
(q; q)s−∑i−1

j=1 n j−∑k−1
j=i−1 m j+1

(q; q)a−∑i
j=1 n j−∑k−1

j=i−1 m j+1

,

and by simplifying we complete the induction step and obtain the desired identity. ��
Remark 2.9 Solomon [13] proved a relation between the following two quantities: the num-
ber of placements of k non-attacking rooks on a n × n chessboard, counted with certain
weights depending on q , and the number of matrices in Mn×n(F) of rank k. Haglund gener-
alized Solomon’s result to any “Ferrers board” [6, Thm. 1], which means that the number of
matrices of the form (2.16) over F of rank k is related to the q-rook polynomial Rk(B, q),
where B is a certain Ferrers board associated with (2.16). For the definition of a Ferrers
board and Rk(B, q), see the introduction to the paper by Garsia and Remmel [1]. In par-
ticular, Proposition 2.8 may be deduced from a result of Garcia and Remmel on q-rook
polynomials, see [6, Cor. 2]. Our proof of Proposition 2.8 is direct and so we believe it is
more accessible. More importantly, the ideas used in the proof reappear in the proofs of
Theorems 2 and 3.

2.5 Arithmetic properties of certain polynomials

For any d dividing n and any k ≥ 2, let

ak;n,d(x) = xd − 1

xn − 1

∑

m: d|m|n
μ
(m
d

)
(−1)k(n− n

m )x (k−2) n2 ( n
m −1) ∈ Q(x), (2.27)

where μ : N → C is the Möbius function, defined by μ(1) = 1 and

μ(n) =
{
0 if p2 | n for some prime p,

(−1)m if n = p1 p2 . . . pm, where pi are distinct primes.

We recall the following properties of μ [8, Ch. 2].

• The divisor sum
∑

d|n μ(d) is given by
∑

d|n
μ(d) = δ1,n . (2.28)

• The Möbius function is multiplicative.

Lemma 2.10 Let k ≥ 2. The following hold.

(I) For any d | n, ak;n,d(x) is a polynomial in Z[x]. Furthermore, in case d /∈ {n, n
2 },

ak;n,d(x) is divisible by xd − 1. In the remaining cases we have

ak;n,d(x) =
⎧
⎨

⎩

(−1)k(n−1) if d = n,

x
(k−2)n

2 +(−1)k+1

x
n
2 +1

if d = n
2 .

(2.29)

(II) If k > 2 we have deg
(
ak;n,d

) = (n(k−2)−2d)(n−d)
2d , and ak;n,d has leading coefficient

(−1)k(n− n
d ). If k = 2, we have ak;n,d = δn,d .

(III) Assume k > 2. For any prime power q, ak;n,d(q) is a non-zero integer. Its sign equals
the sign of (−1)k(n− n

d ), i.e. it is a positive integer unless k is odd, n is even and 2 �
n
d .
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622 O. Gorodetsky, Z. Hazan

Proof We begin by proving the first part of the lemma. If d ∈ {n, n
2 }, a short calculation

reveals that (2.29) holds. From now on we assume that d /∈ {n, n
2 }. We shall show that

xn − 1 |
∑

m: d|m|n
μ
(m
d

)
(−1)k(n− n

m )x (k−2) n2 ( n
m −1) (2.30)

in Q[x], which implies that ak;n,d(x) is a polynomial divisible by xd − 1. Gauss’s lemma,
applied to (2.30), implies that ak;n,d(x) ∈ Z[x]. We now prove (2.30).

Let z be a root of unity of order dividing n. Assume first that n is odd or that k is even.
Then for all m | n we have

z(k−2) n2 ( n
m −1) = (zn)(k−2)

n
m −1
2 = 1.

Hence, using (2.28),

∑

m: d|m|n
μ
(m
d

)
(−1)k(n− n

m )z(k−2) n2 ( n
m −1) =

∑

m: d|m|n
μ
(m
d

)
=
∑

a: a| nd
μ(a) = δd,n = 0.

(2.31)
Now we assume instead that n is even and k is odd. We are led to consider two cases.

• If z
n
2 = −1 then for all m | n we have,

z(k−2) n2 ( n
m −1) = (−1)

n
m −1.

Hence, using (2.28),

∑

m: d|m|n
μ
(m
d

)
(−1)k(n− n

m )z(k−2) n2 ( n
m −1) = −

∑

m: d|m|n
μ
(m
d

)

= −
∑

a| nd
μ(a) = −δd,n = 0. (2.32)

• If z
n
2 = 1 then for all m | n we have,

z(k−2) n2 ( n
m −1) = 1.

Hence,
∑

m: d|m|n
μ
(m
d

)
(−1)k(n− n

m )z(k−2) n2 ( n
m −1)

=
∑

m: d|m|n
μ
(m
d

)
(−1)

n
m =

∑

a| nd
μ(a)(−1)

n
ad

=
∑

a| nd
2| n

ad

μ(a) −
∑

a| nd
2�

n
ad

μ(a)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 −∑a| nd μ(a) if 2 �
n
d∑

a| n
2d

μ(a) −∑a| nd
2|a

μ(2 · a
2 ) if 2 | n

d , 4 �
n
d

∑
a| n

2d
μ(a) −∑ a| nd

2�
n
ad

μ(4 · a
4 ) if 4 | n

d
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=

⎧
⎪⎨

⎪⎩

−δd,n if 2 �
n
d

δ2d,n − μ(2)δ2d,n if 2 | n
d , 4 �

n
d

δ2d,n if 4 | n
d

= 0. (2.33)

Equations (2.31), (2.32) and (2.33) show that the RHS of (2.30) vanishes on each root of the
separable polynomial xn − 1, which establishes (2.30). This concludes the proof of the first
part of the lemma.

The second part of the lemma for k > 2 follows from the observation that the numerator
of ak;n,d(x) has degree d + (k −2) n2 ( nd −1) (arising from the term corresponding tom = d)

and leading coefficient equal to (−1)k(n− n
d ), while the denominator of ak;n,d(x) has degree

n and leading coefficient equal to 1.
When k = 2, all terms in the sum in (2.27) are constants, and we have

a2;n,d(x) = xd − 1

xn − 1

∑

m: d|m|n
μ
(m
d

)
= xd − 1

xn − 1
δn,d = δn,d .

We now turn to the third part of the lemma. Since ak;n,d(x) has integer coefficients, ak;n,d(q)

is an integer.We now determine its signwhen k > 2, and in particular show that it is non-zero.
Since qd − 1, qn − 1, q

n
2 are positive, we deal with the expression

ãk;n,d(q) : = qn−1
qd−1

q(k−2) n2 · ak;n,d(q)

=∑m: d|m|n μ
(m
d

)
(−1)k(n− n

m )(q(k−2) n2 )
n
m

=∑a| nd μ(a)(−1)k(n− n
ad )(q(k−2) n2 )

n
ad ,

whose sign is the same as the sign of ak;n,d(q). If d = n then

(−1)k(n− n
d )ãk;n,d(q) = q(k−2) n2 > 0.

If d = n
2 then

(−1)k(n− n
d )ãk;n,d(q) = (q(k−2) n2 )2 + (−1)k+1q(k−2) n2 > 0.

If n
d ≥ 3, we set t = q(k−2) n2 . Then, t ≥ 2

3
2 > 2 and

(−1)k(n− n
d )ãk;n,d(q) ≥ (q(k−2) n2 )

n
d −∑1≤i≤ n

2d
(q(k−2) n2 )i ≥ (q(k−2) n2 )

n
d − (q(k−2) n2 )

n
2d

1−q−(k−2) n2

= (q(k−2) n2 )
n
2d

(
(q(k−2) n2 )

n
2d − 1

1−q−(k−2) n2

)

≥ (q(k−2) n2 )
n
2d

(
(q(k−2) n2 )

3
2 − 1

1−q−(k−2) n2

)

= (q(k−2) n2 )
n
2d

1−q−(k−2) n2

(
t
1
2 (t − 1) − 1

)
> 0.

��
Remark 2.11 The polynomials ak;n,d(x) may be expressed using the necklace polynomials
(see Moreau [10]), defined by

Mn(x) = 1

n

∑

d|n
μ(d)x

n
d .
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624 O. Gorodetsky, Z. Hazan

Indeed,

ak;n,d(x) = xd − 1

xn − 1
·
(

(−1)n

x
n
2

)k−2

· Mn
d

((
−x

n
2

)k−2
)

.

3 Calculation of the dimension of πk,N,ψ

Here we prove Theorem 2. Recall that �θ is the character of the irreducible cuspidal rep-
resentation πθ associated to a regular character θ of F

∗
n . Given U ∈ N , we write it in the

notation of (1.1). From (1.2),

dim
(
πk,N ,ψ

) = 1
|N |

∑

U∈N
�θ(U )ψ(U ) = 1

q(k2)n
2

∑

U∈N
�θ (U ) ψ (U )

= 1

q(k2)n
2

∑

Xi,i∈Mn(F)
1≤i≤k−1

∑

Xi, j∈Mn(F)

1≤i< j≤k−1

�θ (U ) ψ (U ) .

The character ψ (U ) = ψ
(
X1,1, . . . , Xk−1,k−1

)
is determined by the traces of Xi,i , 1 ≤ i ≤

k − 1. Hence,

dim
(
πk,N ,ψ

) = 1

q(k2)n
2

∑

Xi,i∈Mn(F)
1≤i≤k−1

ψ (U )
∑

Xi, j∈Mn(F)

1≤i< j≤k−1

�θ (U ) .
(3.1)

By Corollary 2.2, the value �θ(U ) is determined by dimFkn ker(U − I ) which is in turn
determined by rankFkn (U − I ). In the inner sum of (3.1) set ri = rk

(
Xi,i
)
for 1 ≤ i ≤ k−1.

We write Ir,n := Ir,n,n as defined in (2.18). There exist invertible matrices Ei ,Ci+1 such that
Xi,i = Ei Iri ,nCi+1. So, one can write U in the inner sum of (3.1) as Ikn plus

diag (E1, . . . , Ek−1, In)

⎛

⎜⎜⎜⎜⎜
⎝

0 Ir1,n · · · X̃1,k−2 X̃1,k−1

0 0 · · · X̃2,k−2 X̃2,k−1
...

...
...

...

0 0 · · · 0 Irk−1,n

0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟
⎠
diag (In,C2, . . . ,Ck) ,

where X̃i, j = E−1
i Xi, jC

−1
j+1 for all 1 ≤ i < j ≤ k − 1.Together with the fact that rank is

invariant under elementary operations, we now have

dim
(
πk,N ,ψ

) = 1

q(k2)n
2

∑

Xi,i∈Mn(F)
1≤i≤k−1

ψ (U )

· ∑

X̃i, j∈Mn(F)

1≤i< j≤k−1

�θ

⎛

⎜⎜⎜⎜⎜
⎝
Ikn +

⎛

⎜⎜⎜⎜⎜
⎝

0 Ir1,n · · · X̃1,k−2 X̃1,k−1

0 0 · · · X̃2,k−2 X̃2,k−1
...

...
...

...

0 0 · · · 0 Irk−1,n

0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟
⎠

.

(3.2)

As in the proof of Proposition 2.8, we can use Gaussian elimination operations on X̃i, j for
all 1 ≤ i < j ≤ k−1 (which do not affect the rank nor dimension of the kernel of the matrix
minus Ikn , and the number of Jordan blocks is not affected as well) in such a way that the
sequence of matrices {X̃i, j }1≤i< j≤k−1 is mapped F-linearly to a sequence of matrices

{
̂̃Xi, j =

(
0 0
0 Yi, j

)}

1≤i< j≤k−1
,
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where Yi, j ∈ M(n−ri )×(n−r j )(F). The kernel of this mapping is of size

q
∑k−2

i=1 ri (k−i−1)n+∑k−1
i=2 ri

∑i−1
j=1(n−r j ). The dimension of the kernel corresponds to the num-

ber of elements which we cancel. Equation (3.2) becomes

dim
(
πk,N ,ψ

) = 1

q(k2)n
2

∑

Xi,i∈Mn(F)
1≤i≤k−1

ψ (U ) q
∑k−2

i=1 ri (k−i−1)n+∑k−1
i=2 ri

∑i−1
j=1(n−r j )

· ∑

Yi, j∈M(n−ri )×(n−r j )(F)

1≤i< j≤k−1

�θ (g) ,
(3.3)

where

g = Ikn +

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 Ir1,n · · · ̂̃X1,k−2
̂̃X1,k−1

0 0 · · · ̂̃X2,k−2
̂̃X2,k−1

...
...

...
...

0 0 · · · 0 Irk−1,n

0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

Using the character formula (2.1), we can calculate �θ(g). In this case m = kn, g = s · u
where s = Ikn , so λ = 1 and

t = dim ker(g − I ) = kn − rk(g − I ) = kn −
k−1∑

i=1

ri − rkA,

where

A =
⎛

⎜
⎝

Y1,2 · · · Y1,k−1
...

...

0 · · · Yk−2,k−1

⎞

⎟
⎠ , 1 ≤ i < j ≤ k − 1. (3.4)

So,

�θ (g) = (−1)kn−1(1 − q)(1 − q2) · · · (1 − qkn−∑k−1
i=1 ri−rkA−1)

= (−1)kn−1(q; q)kn−∑k−1
i=1 ri−rkA−1.

Equation (3.3) can now be written as

dim
(
πk,N ,ψ

) = 1

q(k2)n
2

∑

Xi,i∈Mn(F)
1≤i≤k−1

ψ (U ) q
∑k−2

i=1 ri (k−i−1)n+∑k−1
i=2 ri

∑i−1
j=1(n−r j )

·(−1)kn−1∑

A
(q; q)kn−∑k−1

i=1 ri−rkA−1,

(3.5)

where the inner sum is over all matrices of the form (3.4) and by the definition (2.14) it is
equal to

fk−2,q

(
kn −

k−1∑

i=1

ri − 1; n−r1,...,n−rk−2
n−r2,...,n−rk−1

)
.

By applying Proposition 2.8 we replace the inner sum in (3.5) by

q

∑

1≤i≤ j≤k−2
(n−ri )·(n−r j+1) ·

∏k−2
i=0 (q; q)kn−∑k−1

j=1 r j−1−∑k−2−i
j=1 (n−r j )−∑k−2

j=k−i−1(n−r j+1)

∏k−2
i=1 (q; q)kn−∑k−1

j=1 r j−1−∑k−i−1
j=1 (n−r j )−∑k−2

j=k−i−1(n−r j+1)

,
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which equals

q

∑

1≤i≤ j≤k−2
(n−ri )·(n−r j+1) ·

∏k−1
i=1 (q; q)2n−1−ri

((q; q)n−1)
(k−2)

.

Now (3.5) becomes

dim
(
πk,N ,ψ

) = (−1)kn−1

((q; q)n−1)
(k−2) q(k−1)n2

∑

Xi,i∈Mn(F)
1≤i≤k−1

k−1∏

i=1

ψ0
(
tr
(
Xi,i
))

(q; q)2n−1−ri .

(3.6)
Changing the order of sum and product in (3.6) we get that

dim
(
πk,N ,ψ

) = (−1)kn−1

((q; q)n−1)
(k−2) q(k−1)n2

k−1∏

i=1

∑

Xi,i∈Mn(F)

ψ0
(
tr
(
Xi,i
))

(q; q)2n−1−ri .

(3.7)
From Sect. 5 of [11], each inner sum in (3.7) is equal to

∑

Xi,i∈Mn(F)

ψ0
(
tr
(
Xi,i
))

(q; q)2n−1−ri = (−1)n · qn2 · q(n2)(q; q)n−1. (3.8)

Plugging (3.8) in (3.7), we obtain

dim
(
πk,N ,ψ

) = q(k−1)(n2)(−1)n−1(q; q)n−1 = q(k−2)(n2)
|GLn(F)|
qn − 1

,

as needed. ��

4 Calculation of the character �k,N,ψ

In this section we prove Theorem 3. Namely, we calculate �k,N ,ψ . From now on we use the
following notations:

hg;U =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

g X1,1 X1,2 · · · X1,k−2 X1,k−1

0 g X2,2 · · · X2,k−2 X2,k−1

0 0 g · · · X3,k−2, X3,k−1
...

...
...

...
...

0 0 0 · · · g Xk−1,k−1

0 0 0 · · · 0 g

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

where U (and so Xi, j ) is as in (1.1). Note that hIn ,U = U . We also define

�r (g) = diag (g, . . . , g) ∈ �r (GLn(F)) , g ∈ GLn(F).

By definition,

�k,N ,ψ (g) = tr
(
πk,N ,ψ (g)

) = tr
(
π(�k(g))�Vk,N ,ψ

)

= tr
(
π(�k(g)) ◦ Pk,N ,ψ

)
. (4.1)
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Substituting (1.2) into (4.1) we have

�k,N ,ψ (g) = tr

(
1

q(k2)n
2

∑

U∈N
π
[
�k(g) ·U]ψ (U )

)

= 1

q(k2)n
2

∑

U∈N
tr
(
π
[
�k(g) ·U])ψ (U ) .

(4.2)

Now we perform the change of variables

Xi, j �→ g−1Xi, j , 1 ≤ i ≤ j ≤ k − 1

in (4.2) and obtain

�k,N ,ψ (g) = 1

q(k2)n
2

∑

U∈N
�θ

(
hg;U

)
ψ
(
g−1X1,1, . . . , g

−1Xk−1,k−1
)
. (4.3)

In parts Sects. 4.1, 4.2 and 4.3 we prove parts (I), (II) and (III) of Theorem 3, respectively.

4.1 Character at g = s · u such that the semisimple part s does not come from Fn

Let g = s ·u. Assume that the semisimple part s does not come from Fn . The semisimple part
ofhg;U is�k(s),which also does not come fromFn . ByTheorem2.1,wehave�θ

(
hg;U

) = 0.
Hence, by (4.3) �k,N ,ψ (g) = 0. ��
4.2 Character calculation at a non-semisimple element

Assume that s comes from Fd ⊆ Fn and d | n is minimal. In addition, d < n since g is not
semisimple. Let λ ∈ F

∗
d be an eigenvalue of s which generates the field Fd over F. We use

the notation of Sect. 2.3. Thus, there exist R ∈ GLn(F) and ρ a partition of d ′ = n/d such
that R−1gR = Lρ( f ). There exists �d ′

(T ) ∈ GLn(Fd) such that

gρ = �d ′ (
T−1) R−1gR�d ′

(T ) ,

the analogue of the Jordan form of g. Recall that by Lemma 2.5, the map

A �→ Aρ := Aρ,R = �d ′ (
T−1) R−1AR�d ′

(T )

induces an isomorphism. By the notation of Sect. 2.3.2 we have for each

Xa,b, ∀1 ≤ a ≤ b ≤ k − 1,

the corresponding isomorphism of Lemma 2.5

Xa,b �→ (Xa,b)ρ =

⎛

⎜⎜⎜⎜⎜
⎝

(
x (a,b)
0,i; j

)
0≤i≤d−1
0≤ j≤d ′−1
...(

x (a,b)
d ′−1,i; j

)
0≤i≤d−1
0≤ j≤d ′−1

⎞

⎟⎟⎟⎟⎟
⎠

.

Note that
�k
(
�d ′ (

T−1)
)

�k (R−1) hg;U�k (R)�k
(
�d ′

(T )
)

= hgρ ;Uρ
, (4.4)

where Uρ is the element of N with (Xa,b)ρ instead of Xa,b. From (4.4) we obtain

rk
(
hg−λIn;U

) = rk
(
hgρ−λIn;Uρ

)
.
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628 O. Gorodetsky, Z. Hazan

We prove that rk
(
hg−λIn;U

)
(which by Corollary 2.2 determines the value of �θ

(
hg;U

)
) is

independent of x (k−1,k−1)
1,0;1 ∈ Fd . The matrix hgρ−λIn;Uρ

is of the form

hgρ−λIn;Uρ
=

⎛

⎜⎜⎜⎜⎜⎜
⎝

gρ − λIn (X1,1)ρ · · · (X1,k−2)ρ (X1,k−1)ρ
0 gρ − λIn · · · (X2,k−2)ρ (X2,k−1)ρ
...

...
...

...

0 0 · · · gρ − λIn (Xk−1,k−1)ρ

0 0 · · · 0 gρ − λIn

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (4.5)

Consider the boxed block in (4.5). The 2d×2d upper left block of the boxed matrix gρ −λIn
is of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
λq − λ 1

. . . 1

λq
d−1 − λ 1
0

λq − λ

. . .

λq
d−1 − λ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.6)

Let Z := Xk−1,k−1, Zρ := (Xk−1,k−1)ρ and zm,i; j := x (k−1,k−1)
m,i; j . One can eliminate the

(d + 1)-th column in Zρ by the boxed 1 from (4.6), i.e. all the elements
{
zm,i;1

}
0≤i≤d−1
0≤m≤d ′−1

.

In particular, z1,0;1 = x (k−1,k−1)
1,0;1 is eliminated. Now, by Lemma 2.6, (4.3) can be written as

�k,N ,ψ (g) = 1

q(k2)n
2

∑

U∈N
�θ

(
hg;U

) ·∏k−2
i=1 ψ0

(
g−1Xi,i

)

· ψ0

(

TrFd/F

(

λ−1 ·
d ′−1∑

m=0
zm,0;m

)

+ tr
(
D−2α

(
g, D−1, Zρ

))
)

.
(4.7)

By Lemma 2.5, going over Z ∈ Mn(F) is equivalent to going over
(
zm,i; j

)
0≤i≤d−1

0≤ j,m≤d ′−1
,

zm,i; j ∈ Fd . We have just shown that �θ

(
hg;U

)
is independent of z1,0;1, and by Lemma 2.6

tr
(
D−2α

(
g, D−1, Zρ

))
in (4.7) is also independent of z1,0;1. Thus, we may write (4.7) as

the following double sum, where the inner sum is over z1,0;1 and the outer sum is over the
rest of the coordinates of U :

�k,N ,ψ (g) = 1

q(k2)n
2

∑

Xi, j∈N ,(i, j)
=(k−1,k−1)
zm,i; j∈Fd ,(m,i, j)
=(1,0,1)

�θ

(
hg;U

) ·
k−2∏

i=1
ψ0
(
g−1Xi,i

)

· ψ0
(
tr
(
D−2α

(
g, D−1, Zρ

))) · ψ0

⎛

⎜
⎝TrFd/F

⎛

⎜
⎝λ−1 · ∑

0≤m≤d ′−1
m 
=1

zm,0;m

⎞

⎟
⎠

⎞

⎟
⎠

· ∑

z1,0;1∈Fd

ψ0
(
TrFd/F

(
λ−1 · z1,0;1

))
.
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Since ψ0 ◦ TrFd/F is a nontrivial character, we have
∑

z1,0;1∈Fd

ψ0
(
TrFd/F

(
λ−1 · z1,0;1

)) = 0.

Thus, �k,N ,ψ (g) = 0. ��
4.3 Character calculation at a semisimple element

Here we use (4.3) to calculate the value of �k,N ,ψ (g) for g = s where s is semisimple
element which comes from a subfield of Fn (u = In). Again, we use the notation of Sect.
2.3. Thus, there exist R ∈ GLn(F), ρ a partition of n/d and �d ′

(T ) ∈ GLn(Fd) such that

sρ = �d ′ (
T−1) R−1sR�d ′

(T ) , (4.8)

the analogue of the Jordan form of s. We also use the notation of Sect. 2.3.2, and in particular
define (Xa,b)ρ as in Sect. 4.2.

Let λ ∈ F
∗
n be an eigenvalue of s. If λ ∈ F

∗ then s = λI , and we have by (4.3)

�k,N ,ψ (λI ) = 1

q(k2)n
2

∑

U∈N
�θ

(
hλI ;U

)
ψ
(
λ−1X1,1, . . . , λ

−1Xk−1,k−1
)
.

By the change of variables

Xi, j �→ λXi, j ,

we get

�k,N ,ψ (λI ) = 1

q(k2)n
2

∑

U∈N
�θ

(
λhI ;U

)
ψ
(
X1,1, . . . , Xk−1,k−1

)
.

By Theorem 2.1, we have �θ

(
λ · hI ;U

) = θ(λ)�θ

(
hI ;U

)
, and so

�k,N ,ψ (λI ) = θ(λ)�k,N ,ψ (I ) = θ(λ)dim
(
πk,N ,ψ

)
.

By Theorem 2, this proves the case λ ∈ F
∗.

If λ ∈ F
∗
d ⊆ F

∗
n is an eigenvalue of s and 1 < d | n is such that Fd is generated by λ over

F, we have by (4.3)

�k,N ,ψ (s) = 1

q(k2)n
2

∑

U∈N
�θ

(
hs;U

)
ψ
(
s−1X1,1, . . . , s

−1Xk−1,k−1
)
. (4.9)

In order to compute �θ(hs;U ), we need to find conditions for Xi, j , such that hs;U will have
a fixed number of Jordan blocks. This is equivalent to saying that hs;U − λIkn will have a
given kernel dimension, or a given rank. Rank and trace are invariant under conjugation, so

let us denote by hsρ ,Uρ , the matrix hs;U conjugated by �k(R)�k
(
�d ′

(T )
)
, where R and T

are defined by s in (4.8):

hsρ ;Uρ
:= �k

(
�d ′ (

T−1)
)

�k (R−1) hs;U�k(R)�k
(
�d ′

(T )
)

.

We have a matrix in GLkn(Fd) and our goal is to find out how many matrices of the form

hsρ ;Uρ
− λIkn = hsρ−λIn;Uρ

,

where U varies, have a given rank �.
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630 O. Gorodetsky, Z. Hazan

First, notice that by the invariance of rank under elementary row and column operations
on hsρ−λIn;Uρ

, we can use the nonzero elements on the diagonal of sρ − λIn to cancel
the corresponding elements of (Xa,b)ρ . These elementary operations map the sequence of
matrices {(Xa,b)ρ}1≤a≤b≤k−1 Fd -linearly to the sequence

⎧
⎪⎪⎨

⎪⎪⎩
(X̂a,b)ρ =

⎛

⎜⎜
⎝

x (a,b)
0,0;0 · · · x (a,b)

d ′−1,0;0
...

. . .
...

x (a,b)
0,0;d ′−1 · · · x (a,b)

d ′−1,0;d ′−1

⎞

⎟⎟
⎠ ∈ Md ′ (Fd)

⎫
⎪⎪⎬

⎪⎪⎭
1≤a≤b≤k−1

.

The dimension of the kernel of this map is
(k
2

)
(n − d ′)d ′, corresponding to the number of

elements we canceled. Hence, the number of matrices hsρ−λIn;Uρ
of rank � is (qd)(

k
2)(n−d ′)d ′

times the number of matrices of the form

A :=

⎛

⎜⎜⎜
⎝

(X̂1,1)ρ · · · (X̂1,k−2)ρ (X̂1,k−1)ρ
0 · · · (X̂2,k−2)ρ (X̂2,k−1)ρ
...

...
...

0 · · · 0 (X̂k−1,k−1)ρ

⎞

⎟⎟⎟
⎠

∈ M(k−1)d ′(Fd) (4.10)

of rank � − k(n − d ′). Using the character formula (2.1), we can calculate �θ(hs;U ). In this
case m = kn, g = hs;U and

t = dim ker(hs;U − I ) = kn − rk(hs;U − I ) = kn − k(n − d ′) − rkA = kd ′ − rkA.

Thus

�θ

(
hs;U

) = (−1)kn−1

[
d−1∑

i=0

θ(λq
i
)

]

(1 − qd)(1 − (qd)2) · · · (1 − (qd)kd
′−rkA−1)

= (−1)kn−1

[
d−1∑

i=0

θ(λq
i
)

]

(qd ; qd)kd ′−rkA−1. (4.11)

Now, by (4.11) and Lemma 2.6, (4.9) can be written as

�k,N ,ψ (s) = (−1)kn−1(qd )(
k
2)(n−d′)d′

q(k2)n
2

[
d−1∑

i=0
θ(λq

i
)

]
∑

A(qd ; qd)kd ′−rkA−1

·
k−1∏

i=1
ψ0

(

TrFd/F

(

λ−1 ·
d ′−1∑

m=0
x (i,i)
m,0;m

))

,

(4.12)

where the sum is over matrices A as in (4.10). By the character formula (2.1), the RHS of

(4.12) is (−1)k(n−d ′)
[∑d−1

i=0 θ(λq
i
)
]
times the RHS of (3.1), when one replaces n with d ′, q

with qd and ψ0 with

ψ ′
0 : Fd → C

∗, ψ ′
0(x) = ψ0

(
TrFd/F(λ−1x)

)
.

Thus, the RHS of (4.12) is equal to dim
(
πk,N ,ψ

)
(which is calculated in Theorem 2) after

the substitution of n, q, ψ0 with the relevant values. Hence,

�k,N ,ψ (s) = (−1)k(n−d ′)
[
d−1∑

i=0
θ(λq

i
)

]
(qd)(k−2) d

′(d′−1)
2

|GLd′ (Fd )|
qn−1 ,

as desired. ��
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5 Proof of Theorem 4

Notice first that by part (III) of Lemma 2.10, the coefficients in both (1.5) and (1.6) are
positive integers, unless k = 2 in which case they may also be zero.

Representations of a finite group are equivalent if the corresponding characters coincide.
Hence, both parts of the theorem are equivalent to

∀g ∈ GLn(F) : �k;N ,ψ (g) =
∑

�|n
ak;n,�(q) · �Ind�

(g), (5.1)

where �Ind�
is the character of IndGLn(F)

F
∗
�

(θ �F
∗
�
). We prove now (5.1) for any g ∈ GLn(F).

If g is not semisimple or does not come from Fn then the LHS of (5.1) is zero by parts (I)
and (II) of Theorem 3. The RHS of (5.1) is also zero on such elements by Lemma 2.3.

Let g be a semisimple element, which comes from Fd ⊆ Fn and d | n is minimal. Let λ

be an eigenvalue of s, which generates Fd over F. For such g, part (III) of Theorem 3 and
Lemma 2.3 imply that (5.1) is equivalent to

(−1)k(n−d ′)
[
d−1∑

i=0

θ(λq
i
)

]

q(k−2) n(d′−1)
2 · |GLd ′(Fd)|

qn − 1

=
∑

�: d|�|n
ak;n,�(q)

|GLd ′(Fd)|
q� − 1

[
d−1∑

i=0

θ(λq
i
)

]

, (5.2)

where d ′ = n/d . The following identity, which we now prove, establishes (5.2):

(−1)k(n−d ′)q(k−2) n(d′−1)
2

qn − 1
=
∑

�: d|�|n

ak;n,�(q)

q� − 1
. (5.3)

Using (1.4), the RHS of (5.3) is

∑

�: d|�|n

∑

m: �|m|n

μ
(m

�

)
(−1)k(n− n

m )q(k−2) n2 ( n
m −1)

qn − 1
. (5.4)

We simplify (5.4) using (2.28) as follows:

∑

�: d|�|n
∑

m: �|m|n
μ(m

� )(−1)k(n− n
m )q(k−2) n2 ( nm −1)

qn−1

= ∑

m: d|m|n
(−1)k(n− n

m )q(k−2) n2 ( nm −1)

qn−1

∑

�: d|�|m
μ
(m

�

)

= ∑

m: d|m|n
(−1)k(n− n

m ) q
(k−2) n2 ( nm −1)

qn−1 δd,m

= (−1)k(n− n
d ) q

(k−2) n2 ( nd −1)

qn−1 ,

which is the LHS of (5.3). Hence the proof is complete. ��
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6 Proof of Theorem 1

Representations of a finite group are equivalent if the corresponding characters coincide.
Hence, the theorem is equivalent to

∀g ∈ GLn(F) : �k,N ,ψ (g) = �θ�
F
∗
n
(g) · (St(g))k−1 , (6.1)

where we use the notation St also for the character of the Steinberg representation. We prove
now (6.1) for any g ∈ GLn(F).

We first prove (6.1) for k = 1. Note that N = {In} and so

Vπ1,N ,ψ
= {v ∈ Vπθ

| π(In)v = v
} = Vπθ .

Hence π1,N ,ψ (g) = πθ (g) as needed.
Now assume k ≥ 2. If the semisimple part s of g does not come from Fn , or g is not

semisimple, then �k,N ,ψ (g) = 0 by Theorem 3. From Theorem 2.1, we have �θ�
F
∗
n
(g) = 0.

Hence, (6.1) is proved in that case.
Otherwise, g = s is a semisimple element which comes from Fd ⊆ Fn and d | n is

minimal. We begin by calculating the character value St(g). For any prime p, let mp be the
p-part of m. By [[12], Thm. 6.5.9],

St(g) = εGLnεC(g)◦
∣∣∣C(g)F

∣∣∣
char(F)

,

where εG is (−1) to the power of the F-rank of G, C(g) is the centralizer of g in GLn(F),
C(g)◦ is its identity component and C(g)F is the subgroup of F-rational points in C(g). The
F-rank of GLn is n. Let ρ = (1, 1, . . . , 1), a partition of d ′ = n

d and let f be the characteristic
polynomial of s. By Sect. 2.3.1, the centralizer C(g)F is isomorphic to C(L f,ρ)F, which in
turn is isomorphic to GLd ′(Fd) (cf. [[5], Lem. 2.4] and the discussion preceding it). Thus,
εC(g)◦ = εGLd′ = (−1)d

′
and

∣∣∣C(g)F

∣∣∣ = q
∑d′

i=1 d(d ′−i)
d ′∏

k=1

(
qdk − 1

)
,

∣∣∣C(g)F

∣∣∣
char(F)

= q
n(d′−1)

2 .

The discussion shows that

St(g) = (−1)n−d ′
q

n(d′−1)
2 . (6.2)

By Theorem 2.1,

�θ�
F
∗
n
(g) = (−1)n−1

[
d−1∑

α=0

θ(λq
α

)

]

(1 − qd)(1 − (qd)2) · · · (1 − (qd)d
′−1)

= (−1)n−d ′
[
d−1∑

α=0

θ(λq
α

)

]

(qd − 1)(q2d − 1) · · · (qn−d − 1)
qn − 1

qn − 1

= (−1)n−d ′
[
d−1∑

α=0

θ(λq
α

)

]
|GLd ′(Fd)|

(qn − 1)q
n(d′−1)

2

, (6.3)

where λ is an eigenvalue of g. By Theorem 3

�k,N ,ψ (g) = (−1)k(n−d ′)q(k−2) n(d′−1)
2 ·

[
d−1∑

i=0

θ(λq
i
)

]

· |GLd ′(Fd)|
qn − 1

. (6.4)
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Multiplying (6.3) by (6.2) raised to the (k − 1)-th power, we get (6.4) as needed. ��
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