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Abstract Let be anirreducible cuspidal representation of GLg, (Fy). Assume thatm = g,
corresponds to aregular character 6 of F*, . We consider the twisted Jacquet module of & with
respect to a non-degenerate character of the unipotent radical corresponding to the partition
(n,n,...,n) of kn. We show that, as a GL, (IF,)-representation, this Jacquet module is
isomorphic to 7). ® St®*=Dwhere St is the Steinberg representation of GL,, (IF;). This
generalizes a theorem of D. Prasad, who considered the case k = 2. We prove and rely
heavily on a formidable identity involving ¢-hypergeometric series and linear algebra.

1 Introduction

Let F := F; be the finite field of size ¢g. We fix a nontrivial character v of . Denote by
F,; := Fym the unique degree m field extension of IF. For a positive integer r, we denote the
diagonal subgroup of (GL(F))" by

A" (GL¢(F)) = { (g, ..., 8) € (GL«(F)" | g € GLe(F)} .

For a partition p = (ky, k2, ..., ky) of £, denote by P, the corresponding standard parabolic
subgroup of GL,(IF). Let M, and N, be the corresponding standard Levi subgroup and
unipotent radical.

Fix k > 1. Let p = (n, n, ..., n) be the partition of kn consisting of k parts of size n. In
this paper we denote G := GLy,(F), P := P,, M := M, and N := N,. We have the Levi
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decomposition P = M x N. We write U € N in the form

I, X1 X2 - X1k X1,k-1
0 I, Xp - Xoxo X2k—1
0 0 I, o Xagp—2 o X3k
U= ) ) ) , (L.1)
0 0 o - Iy Xk—1,k—1
0 0 0 0 I,

where the matrices X; ; (1 <i < j < k — 1) are elements of M, (F).

Definition 1.1 A character ¢ : N — C* is said to be non-degenerate if it is of the form

e (o(5an))-Flmensn

i=1 i=1

where the matrices A; are invertible.

Lety : N — C* be a non-degenerate character. Let 7 be an irreducible representation of G,
acting on a space V. We denote by Vy, , , the largest subspace of V, on which N operates
through v, i.e.

Ve ny = fveVy |n(U)v =y U)v, YU € N}.

This is the (N, ¥)-isotypic subspace of V; and it is the image of the canonical projection of
Vz on Vg, given by
1

i > Y W)r ). (1.2)

UeN

Pr.ny (v) =

Since M normalizes N, it acts on the characters of N as follows. If m € M, then for all
UeN
(m-y)U) =y (m™'Um).

We have, form e M,
7 (m) vﬂk,N,V/ = Vﬂk.zv,m-w'

Let us compute the stabilizer of ¥ in M. If

Bl 0 - 0
0 B --- 0

m = . s
0 0 By,

where B; € GL,(F) forall 1 <i <k, then
k—1
(m - 4)(U) = Yo (tr (Z AiBrlx,-,,»B,-H)) :
i=1
Thus, m - ¢ = ¢ if and only if B; = B;4 forall 1 <i < k — 1. In other words,
stabyy = AF (GL, (F)) = GL, (F).

Therefore, Vr, Ny is a GL,, (I")-module. We denote by 7y y y the resulting representation
of GL, (F) on Vz, - It is easy to see that by conjugation with an element in the standard

@ Springer



On certain degenerate Whittaker models. . . 611

Levi subgroup, we may simply take all the A; to be the identity matrix. The corresponding
twisted Jacquet modules are isomorphic. In the rest of the paper we assume A; = I, and fix

k—1
¥ (U) = ¥ (tr (Z Xi,,->) :
i=1

The goal of this paper is to calculate the character of 7y x v, and to describe it in terms of
more familiar representations, for an irreducible, cuspidal representation 7 = my of GLg, (IF),
associated to a regular character 0 of I}, . The paper generalizes Prasad’s result for the case
k = 2 stated below.

Theorem [11, Thm. 1] Let 7 be an irreducible cuspidal representation of GLy, (F) obtained
from a character 6 of 5, . Then

TNy = Ind]%"m)@ Ny (1.3)

Prasad proved this theorem by an explicit calculation of the characters of 72 y y and of
the induced representation Ind%‘ n®g [F:. At any element of GL, (F) the characters are the
same. Therefore, the two representations are equivalent.

The methods used in this paper are generalizations of the methods used by the second
author in his thesis [7] for the case k = 3. From the character calculation, done in Theo-
rem 3 below, we are able to describe in Theorem 4 7y y y in terms of the representations
IndI%L" ®g I, where £ | n. This reduces immediately to Prasad’s result when k = 2. Fur-
thermore, we give a compact description of 7 y y in terms of the Steinberg representation
in the following theorem.

Theorem 1 Letk > 1. Let my be an irreducible cuspidal representation of GLy,, (F) obtained
from a character 6 of ¥, . Then

kN W = o th ® St®(k_l),

where 19 is the irreducible cuspidal representation of GL, (F) obtained from 6 [gx, and

St®«=D js the (k — 1)-fold tensor product of the Steinberg representation of GL,, (F) with
itself.

Note that for n = 1, Theorem 1 gives 7y v,y = 6 [F+, which also follows from Gel fand—
Graev [4] in case of GLy (IF) (cf. [12, Ch. 8.1]).

We are currently investigating an analogous construction for a non-Archimedean local
field.

1.1 Structure of the paper

In Sect. 2 we set the background material from several topics that are needed in the paper:
linear algebra, representation theory, g-hypergeometric identities and arithmetic identities.
In Sect. 3 we calculate the dimension of 7y v,y . Green’s formula allows us to express the
dimension as rather complicated sum. We use g-hypergeometric identities and linear algebra
to show that this sum admits the following compact form.
Theorem 2 Let k > 2. We have
ne=1) |GL, (F)]
dim (7 =gk 7
( k,N,w) q " —1
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In Sect. 4 we compute the character of 7y vy, denoted by O y y . Apart from the tools
used in Theorem 2 this requires understanding of some conjugacy classes of GL,, (). When
d | m, we have an embedding F; — GL,, () (see Sect. 2.1). The elements in GL,,(FF)
conjugate to an element in the image of this embedding are said to come from Fy.

Theorem 3 Letk > 2. Let g = s-u be the Jordan decomposition of an element g in GL,, (IF),
where s and u are the semisimple part and unipotent part, respectively.

(1) If s does not come from I, then

Ok, N,y (g) =0.

(II) If the u # I, then
Ok,n,y(g) = 0.

(IIl) Assume that u = I, and s comes from ¥y C T, and d | n is minimal. Let ) be an
eigenvalue of s which generates Fyq over F. Then,

Ok Ny (5) = (— 1)k(n d) (k— 2)n(d ) [ZG(M’ ):| |GLd/(IE‘d)|,

where d' = n/d.

In Sect. 5 we obtain from Theorem 3 and Lemma 2.10 an isomorphism of representation
relating between 7,y and Ind L@y F]FZ for all £ | n. We write a|b|c for a|b and b|c. For
(
any ¢ dividing n and any k > 2, let

Qkin, (@) = > u(F) Enfemig Gy, (1.4)

m:Llm|n
where w is the Mobius function.

Theorem 4 Let k > 2.

(I) Ifk is even or n is odd, we have
TN = Dy Whin.e(@) - Indge" 8 [y (1.5)

(II) If k is odd and n is even, we have

(nkwea D (awne@)ndg" 0 I )z D ane@-ndg" V0 I

t:Lin 2% € 0n,2[%
(1.6)

We note that the coefficients in Theorem 4 are non-negative integers. Indeed, when k = 2, it
is easily shown (see Lemma 2.10) that as.,, ¢(g) = 8¢,,, which gives (1.3). If k > 2 we show
in Lemma 2.10 that ay.,, ¢(q) is a positive integer, except when k is odd, n is even and 2 { %,
in which case —ax., ¢(g) is a positive integer.

In Sect. 6 we deduce Theorem 1 from Theorem 3.
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2 Preliminaries
2.1 Cuspidal representations

We review the irreducible cuspidal representations of GL,, (IF) as in Gel’fand [3, Sect. 6]
(originally in Green [5]). Irreducible cuspidal representations of GL,, (F), from which all
the other irreducible representations of GL,, () are obtained via the process of parabolic
induction, are associated to regular characters of I, . A multiplicative character 6 of I}, is
called regular if, under the action of the Galois group of F,, over F, the orbit of 6 consists
of m distinct characters of F},.

We denote the irreducible cuspidal representation of GL,,(IF) associated to a regular
character 6 of I, by 7g and the character of the representation 7y by ®j.

Given a € F,,, consider the map m, : F,, — F,,, defined by m,(x) = ax. The map
a +— mg is an injective homomorphism of algebras [,, < Endp([F,,). This way, every
element of I, gives rise to a well-defined conjugacy class in GL,, (F). The elements in the
conjugacy classes in GL,, ('), which are so obtained from elements of '}, are said to come
from F},.

We summarize the information about the character ® in the following theorem. We refer
to the paper [11, Thm. 2] for the statement of this theorem in this explicit form, which is
originally due to Green [5, Thm. 14] (cf. [3,14]).

Theorem 2.1 (Green [5]) Let ®g be the character of a cuspidal representation g of GL,,, (IF)
associated to a regular character 6 of F},. Let g = s - u be the Jordan decomposition of
an element g in GL,,,(F) (s is a semisimple element, u is unipotent and s, u commute). If
®g(g) # 0, then the semisimple element s must come from F,. Suppose that s comes from
.. Let A be an eigenvalue of s in Fy,, and let t = dimp,, ker(g — AI). Then

m’

d—1
Op(s -u) = (=)™ [Z 9@‘]”)} 1=gH—@Hh--a-@gH™H @D

a=0

where qd is the cardinality of the field generated by ) over F, and the summation is over the
various distinct Galois conjugates of \.

Corollary 2.2 The value ©g(g) is determined by the eigenvalue of g and the number of
Jordan blocks of g, which, in turn, is determined by dimg,, ker(g — AI).

2.2 Characters induced from subfields

GL

The following lemma summarizes the information about the character of Indp. n () () [F?)’
I3

where £ | n and 6 is a character of [F};.

Lemma 2.3 [7, Lem. 2.4] Let 6 be a character of F}:. Suppose that s € GL,,(IF) comes from
Fq € F¢ (d | £ is minimal). Let ) be an eigenvalue of s in ;. Then, the character O, of

Indl%L () (0 Iw:) at s is given by
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614 O. Gorodetsky, Z. Hazan

1

Omg, (5) = — > 6 'sg) 2.2)

g€GL, (F)

g"xge]Fl*

d—1

IGLy (Fa) ,

== | 20|, 23)

i=0

where d' = n/d, and the last sum is over the various distinct Galois conjugates of ,. The
value of the character g, at an element of GL, (F) which does not come from Iy is zero.

Remark 2.4 Recall that in (2.2) I} is considered a subgroup of GL,, (IF) by the injective map
a +— [mg], where [m,] is the representing matrix of m, with respect to a fixed basis of [,
over [F. Note that the choice of basis for [m,] does not affect the values of Oryq, .

2.3 On some conjugacy classes of GL,, (I)
2.3.1 Analogue of Jordan form

Let g € GL,(F) and g = s - u be its Jordan decomposition. Assume that s comes from
Fq € F, (d | nis minimal). Let A € F; be an eigenvalue of s, which generates the field Fy
over [F. Denote by f the characteristic polynomial of A (of degree d), and by L y € GLy(IF)
the companion matrix of f. For £ > 1 we denote

Ly Iy
Ly
Lye= _ € GLy.q(F).
. . Id
Ly
This is an analogue of a Jordan block. As in [3,5], there exists p = (¢1, ..., £,), a partition

of 7,€1 > € > --- > £,, such that g is conjugate to
Ly
Ly,
Lo(f) = ’ ,
Ly,
i.e. there exists R € GL,, (F) such that
R7'gR=L,(f). (2.4)

Notice thatin case u = I,, (g is semisimple), we have p = (1"/¢) and there exists R € GL,, (F)
such that R~'gR is a block diagonal matrix with d’ = n/d times Ly on the diagonal.
Otherwise, £1 > 1 and, in particular, there exists R € GL, (F) such that the upper 2d x 2d

left corner of R™'gR is
Ly 1y
Ly)"

Now, s (and so g) has d different eigenvalues obtained by applying the Frobenius automor-
phism o, which generates the Galois group Gal(F;/[F), namely

lA,a(X),...,ad_l()L)} = {)L,A‘f,...,)ﬂd_ll,
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all of multiplicity d’ = n/d in the characteristic polynomial of s. Let 0 # vy € IFZ
satisfy Ly - vo = Avg. So Ly - ol(vy) = Aqioi(vo), for 0 < i < d — 1. Hence,
B = {vo, o(v),...,o91 (vo)} - IFZ is linearly independent over [F4, since its elements are
eigenvectors of L ; for different eigenvalues. Let T € GL4(IF¢) be the diagonalizing matrix
of Ly obtained by B, i.e.

T7'L;T =D, (2.5)
where

D := diag (k, e }»"‘H) .

Denote by Ad (T) the block diagonal matrix with d’ times T on the diagonal. Explicitly, the
columns of A9 (T) are the vectors of the basis

. ,0<j=<d 1
C = {voli. Nozizg_y - (2.6)
whose (j - d + i)-th vector is given by
0j.a
voi, j))=| o'(vo) | ey,
Ou—(j+1)d

where0 <i <d—1and0 < j <d' — 1. Thus, incase u = I,

D
A (T RT'gRAY (T) = ,
D
Otherwise
D I,
D
Ad/ (T—l) R—lgRAd/ (T) — D k ,
' *
D
where * means either I; or O; above the diagonal. We denote
8o i=8gp.r =AY (TT') R™'gRAY (T). 2.7

The matrix g, is sometimes referred to as an analogue of the Jordan form of g [3, Sect. 0].
2.3.2 Conjugating an arbitrary matrix

We use the notation of Sect. 2.3.1. In particular, we have a fixed g € GL, (F) and corre-
sponding R and 7 as defined in (2.4) and (2.5). Let A € M, (F). We study the following
conjugation

Api=A, g =AY (TT)RTVARAY (T) € M, (Fy).

Define Ag by Ag = R~ AR, andso A, = AY (T~) AgAY (T).
Let B € M, (F,). Let us represent the vectors B - vg(0, m), forany0 <m <d' —1,asa
linear combination of the basis C given in (2.6):

B-vO.m)= > amij-voli.j),  amiyj € Fa.
0<i<d-1
0<j=<d'—1

@ Springer



616 O. Gorodetsky, Z. Hazan

A necessary and sufficient condition for B € M,,(F) isthatforall0 <m <d'—1, 0 <r <
d—1,
B-vy (r,m) = Z o (ami;j)-vo (i +r (modd), ). (2.8)
0<i<d-1
0<j<d'—1
By taking B = Ag € M, (IF), we get that (2.8) holds for Ag. Therefore, [Ar]lc = A, is a
d’ x d’ matrix with entries from My (Fy). For 0 < m, j < d’ — 1, the m-th row and j-th
column of A, denoted by A, ;, is given by

Am,j = (Ur (am,i—r (mod d);j))OSi,rsd—l s 2.9)

ie. Ay j € My (Fy) and for 0 <i,r <d — 1, the i-th row and r-th column of A, ; is
0" (am,i—r (mod d);j)- The above discussion can be summarized in the following lemma.

Lemma 2.5 In the above notations, the map A — A, induces an F-linear isomorphism
~ d L.
My (F) = Mg (Ba) = [Myxar (Fa)|* . It is given by

(aO,i;j) 0<i<d—1
0<j<d -1

(ad’—l,i;j) 0<i<d-1
0<j=d -1
where the (m - d + i)-th row and j-th column of the image of A is ay, ;;; € Fg, for 0 <
m,j<d —1land0<i <d-—1.

2.3.3 Trace under conjugation

For g € GL,(F) and A € M, (F) we shall be interested in tr (g~ A). We use the notation of
Sects. 2.3.1 and 2.3.2. By (2.7), we have

tr(g'A) =t (g;lAp) )

The inverse of an analogue of a Jordan block of order d - £ is given by

DI, \ '

o (2.10)

0, i>7,
D J

{(—1)-"‘"D""+"“, i<
i.j
for 0 < i, j < ¢, where the LHS of (2.10) denotes the block matrix in the i-th row and j-th
column. We have

(g, 4,) = Y4 5t (D7 Ay + D20t (3. D7 A))

_ _ 2.11
= (S0 D A ) + D (02 (5,070 4,), HY

where o, (g, D~ Ap), for 0 < m < d’ — 1 are determined by the analogous Jordan form

of g. Notice, that in case g is semisimple, then o, (g, D™', A,) = 0forall0 <m <d’'—1.

Otherwise, for0 <m < d' — 1, D™%a,, (g, D™', A,) equals to a sum of terms of the form

(—D)!D=1 Ay, wherem < £ < d' — 1.
By (2.9) we have

DilAm,m = (()Lil)q o (am,i—r (mod d);m)>]<i r<d-1 ’
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So the first sum in the RHS of (2.11) becomes

d'—1d-1 . d—1 d —1 d'—1

—1\4 g -1 —1
E E ()\ ) o” (am,O;m) = E o’ | A E Am,0:m | = TrIFd/IF AT E Am,0;m
m=0 r=0 r=0 m=0 m=0

On the other hand, for each 0 < m < d’ — 1, the term tr (D e, (g, D', Ap)) in (2.11)
does not depend on the elements ay (.,,, where £ = m. Each such term depends only on A
and on ay ; , where £ > m. We summarize the above results in the following lemma.

Lemma 2.6 In the above notations,

d'—1 d'—1
tr(g7'A) = Tre,m [ 27 Z am.o:m | + Z tr (D 2am (g, D71, A))),
m=0 m=0

and each summand tr (D_Zam (g, D Ap)) is independent of ap, 0., appearing in the first
summand, forall0 <m < d' — 1.
In case g = s is semisimple we have

d—1
tr (g_]A) = Trg, /¢ AL Z Am 0:m
m=0

2.4 g-Hypergeometric identity

In order to calculate the dimension of 7y n 4, we need a combinatorial identity related to
ranks of triangular block matrices. We first prove a lemma that is a special case of a g-
analogue of the Chu—Vandermonde identity, phrased in a manner that we use in the proof of
the combinatorial identity. We recall the definition of the g-Pochhammer symbol:

n—1

(@ q)n =[]0 = ag").

i=0

Lemma 2.7 Let R;(n, m, r) be the number of n x m matrices of rank r over the finite field
of size q (n, m may be 0, with the convention that the empty matrix has rank 0). Let a be an
integer greater or equal to n + m. Then

nm G Da—n(q; Pa—m
(G5 @)a—n—m

Z Ry(n,m,r)(q; Q)a—r = ¢

r>0

Proof We start by stating a g-analogue of the Chu—Vandermonde identity [2, Eq. (1.5.2)]:

'Z G r b 9)r (ccf)r _ (e/biq)i
= (g \ b e qi’
where i is a non-negative integer, and b, ¢ are complex numbers that satisfy b # 0 and
cé¢{g',...,q7 @D} Choosingi =n,b =g, c = g%, we obtain
X": @ D@ Dr imeay _ @D @.12)
@~ a)r(@; @)y @~ qn

r=0
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618 O. Gorodetsky, Z. Hazan

We have the following formula for R, (n, m, r) by Landsberg [9]:

(=1"(q" @) (g™ q)rg "= ()

Rat,m.1) = (q:9)

By expressing the r-th summand of (2.12) as

(_l)r(qfn;q)r(qu;q)rq(ner)rf(E) qfarJr(E)

¢:9r 5 G VRN
_ ) q—ar 2
= Roln.m. 1) - Sy gragy,
we obtain that ) o
—ar+(, —1y m—a.
> Rynm, SLRSSC ST ) 2.13)
= @5 ) (@5 @n
The proof is concluded by applying to (2.13) the simple identity
@55 q)y = (1) gD~ @ia):
(@ @)x—y
with (x, y) € {(a,n), (@ —m,n), (a,r)}. o

We now state our main combinatorial identity needed for computing the dimension. Let
k be a positive integer. We define the following family of functions.

g (a; ﬁ{:::::ﬁfk) = (@ Darka» (2.14)
A
where {n; }fle ,{m j}’;:] are sequences of non-negative integers, a is an integer such that
i k
azmax{Y nj+Y mj|l1<i<k (2.15)
Jj=1 Jj=i

and the sum is over all matrices A € M(zf{:1 "f>X(Z§:1 mj)(IF) of the form

iip Yo - Yig
0 Y2 - TYox

A= . . A (2.16)
0 0 - Yk

where Y; ; € Mn,-xm.,- () foralll <i < j <k.

Proposition 2.8 Let k > 1. For any sequences of non-negative integers, {n,'}ff:l and
{mj}/;.:l, and for any integer a satisfying (2.15), we have

k
> ommy [lico @ @ _yobi v
fk,q(a,,ﬁi:::::ﬁ{‘k) =q=Ts Z"f‘"" L™ o)
[Mizr @ q)“*zlj;llﬂ "j*zﬁzkfiﬂ mj
Proof We use the following notation:
Lwn = (7 "), ¢ < minfn,m)) (2.18)
ron,m — 0,_, O s r=mimn,my). .
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On certain degenerate Whittaker models. . . 619

We prove the proposition by induction on k. Let k = 1. Then

fra(@n) =2 @ Daca =D Re0rm.1) (@ @y

AeMyxm (F) r>0

By Lemma 2.7 we find that

)

o)

as needed. We now perform the induction step, i.e. assume that (2 17) holds for k — 1 in place

.....

fkq(,m,:::::%)z > Y (@ Darka- (2.19)

Yi, xEMn xmj (IF) YIJEMYI X ()
1<t<k 1<l<]<k

In the inner sum of (2.19) the ranks of Y; ; are fixed forall 1 <i <k, sowesetr; = rk(Y; ;).
There exist invertible matrices E;, C; such that Y; ; = E; I, n; m,; Ci ,for all1 <i < k. So,
one can write A in the inner sum of (2.19) as diag (Ey, ..., Ex) - A - diag (Cq, ..., Cy),
where

Irl,nl,m| ?1,2 Zl,k
az| ° femm o T2 (2.20)
0 0 e Irk,nk,mk

and 17, = E;lYi, jC;l forall 1 <i < j < k. Together with the fact that rank is invariant
under elementary operations, (2.19) becomes

fea(amm) = >0 1"[R (nl,m,,n)Z(q Dasi (2.21)

Vi<i<k:i=1

ri=0

where the inner sum is over matrices A of the form (2.20). We can use Gaussian elimination
operations on 17, jforalll <i < j <k (which do not affect the rank of K) as follows: the
first r; rows of each 17, ;j are being canceled by the pivot elements in I, , (using elementary
row operations) and the first 7; columns of each )7, j are being canceled by the pivot elements
in /;; » (using elementary column operations). Formally, the composition of these elementary
operations maps the sequence of matrices {171-’.,-}15,(.,'5;{ F-linearly to a sequence of matrices

5 00
{Y,,j - <0 Zi’j) }15i<,-5k’ 2.22)
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620 0. Gorodetsky, Z. Hazan

where Z; j € M(n;—r;)x(m;—r;)(FF). This linear map is a projection by construction. Its kernel

k—1 k k —1
is of size q2r=1 rt i me+ Yo 1t Y21 (1e=70) The dimension of the kernel corresponds to
the number of elements which we canceled. Equation (2.21) becomes

k k—1 k k -1
feal@ i) = % 11 RyOu,mi, r)gXimt 7 Zicps met Xicar X e
Vi<i<k:i=I
ri >0

LG D, 47
A

(2.23)
where the inner sum is over matrices of the form
~ ~
Irymymy Y12 - Yigk
~ 0 Ly oy my <+ ?2 k
A — 2,112,Mm?2 .’

0 0

: Irk.nk,rnk

= =
and Y; ; are as defined in (2.22). Note that rkA = Z];':1 rj +1kZ, where

o --. Zkfl,k

Hence, from (2.23) we obtain the following recursive relation:

k k—1 k k t—1
PR PR L) — — = = — -
fk,q(a,ml,...,mkk> = 2 1 Ry(ni,my, riyg 2=t 7t Rtz Mt i T s (1)
Vi<i<k:i=l
ri=0

k
LI ] —Th—
'fkfl,q(a_ 3y T e 1).
j=

my—ra,....mig—r

(2.24)
Plugging the induction assumption in (2.24) we get that fj 4 (a; ,,’2{:::;%() equals

k k=1 .k k 1
> T1 Ry iy m, rl.)qzt=1 1t Y gyt MY Tt Y gy (e —re)
Vi<i<k:i=1
ri=0

M @) k—1—i k-1
.qzlfiijsk—l(”i—ri)'(mj+l_rj+1). = S R S W G ) S S S (RS S g RRY)

=
i=1 @Dk k=i k=1
MMz a=35 =i (=) =X (1)

(2.25)
Rearranging (2.25), we see that the sum over ry, ..., ry may be written as a product over k
sums, where the i-th sum is over r;:
e\ gll=isj k=141
fk’q (a, m"""mk> T @) i k-1
i=l a=y i T i Mt

k . .
’ Hi:1 (Zrizo Ry(ni,mj,ri)(q; q)a*ri*Z',;ll "J'*Z§:} mjsi )

(2.26)
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Using Lemma 2.7 we substitute each inner sum of (2.26) with

@ Dy =yt @ Doy =yt m

ni-m;

q

3

@ q)“*ZE:l "1*21;;}_1 mj+1
and by simplifying we complete the induction step and obtain the desired identity. O

Remark 2.9 Solomon [13] proved a relation between the following two quantities: the num-
ber of placements of k non-attacking rooks on a n x n chessboard, counted with certain
weights depending on ¢, and the number of matrices in M,,», () of rank k. Haglund gener-
alized Solomon’s result to any “Ferrers board” [6, Thm. 1], which means that the number of
matrices of the form (2.16) over FF of rank k is related to the g-rook polynomial Ry (B, q),
where B is a certain Ferrers board associated with (2.16). For the definition of a Ferrers
board and Ry (B, q), see the introduction to the paper by Garsia and Remmel [1]. In par-
ticular, Proposition 2.8 may be deduced from a result of Garcia and Remmel on g-rook
polynomials, see [6, Cor. 2]. Our proof of Proposition 2.8 is direct and so we believe it is
more accessible. More importantly, the ideas used in the proof reappear in the proofs of
Theorems 2 and 3.

2.5 Arithmetic properties of certain polynomials

For any d dividing n and any k > 2, let

>on (%) (—DFE= k=226 e Q). 227

m:d|m|n

d_1

Ag;n,d(x) =

where u : N — C is the Mobius function, defined by p(1) = 1 and
- 0 if p? | n for some prime p,
n)—
H (=™ if n=pip2...pm, wWhere p; are distinct primes.
We recall the following properties of  [8, Ch. 2].
e The divisor sum Y din w(d) is given by
D uld) =i (2.28)
d|n

e The Mobius function is multiplicative.

Lemma 2.10 Let k > 2. The following hold.

(I) For any d | n, ak.,.q(x) is a polynomial in Z[x]. Furthermore, in case d ¢ {n, %},
Qk:n,d(x) is divisible by x4 — 1. In the remaining cases we have

(_l)k(n—l) lfd =n,
hn,d (X) = 1 Okt (2.29)

ifd=2%.
x%+1 f 2

> 2 we have deg (ay.;.q) = ~———57————=, and ay.,.q has leading coefficient

(Il) Ifk > 2 we have deg (aj.,, k=D 20D gnd ay,, 4 has leading
(—Dk=D), Ifk =2, we have ay.p. g = 8y.4-

(Ill) Assume k > 2. For any prime power q, ai.n.q4(q) is a non-zero integer. Its sign equals
the sign of(—l)k(”_%), i.e. it is a positive integer unless k is odd, n is even and 2 1 3
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622 O. Gorodetsky, Z. Hazan

Proof We begin by proving the first part of the lemma. If d € {n, 5}, a short calculation
reveals that (2.29) holds. From now on we assume that d ¢ {n, %}. We shall show that

m n non
n_q ( ) — RO x k=251 2.30
x | E 2 d( ) x (2.30)
m:d|m|n

in Q[x], which implies that ax., 4(x) is a polynomial divisible by x4 — 1. Gauss’s lemma,
applied to (2.30), implies that aj., 4(x) € Z[x]. We now prove (2.30).

Let z be a root of unity of order dividing n. Assume first that n is odd or that & is even.
Then for all m | n we have

nen %_1
DB (k=2 B

Hence, using (2.28),

S u (%) (—DRO-EDIGD = 3y (%) =Y p@) =b4n=0.

m:d|m|n m:d|m|n a:al%
(2.31)
Now we assume instead that » is even and k is odd. We are led to consider two cases.
° Ifz% = —1 then for all m | n we have,
LEDEGD it
Hence, using (2.28),
m n non m
M\ (k=) =25 (=1 _ _ (7)
doou (d) )] z > only
m:d|m|n m:d|mn
== @) =—84,=0. (2.32)
aly

e Ifz7 = 1 then for all m | n we have,

D560 — .

Hence,

Z u(%) (= Dk=3) =25 G5 =D)

m:d|m|n
m n n
= Y w(5)E0F =Y na@Eni
m:d|m|n a|%
=D @ =) @
aly aly
212 Uaa
0= Yy 1@ if 214
_ Za|2”—d @) = qp n2-9) i 215,447
- 2|a
Dy @) =Y p4-g) i 415
244
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“San if24n
= {02dn —0d2an if2]75,417
82d.n if 4| %
=0. (2.33)

Equations (2.31), (2.32) and (2.33) show that the RHS of (2.30) vanishes on each root of the
separable polynomial x” — 1, which establishes (2.30). This concludes the proof of the first
part of the lemma.

The second part of the lemma for k > 2 follows from the observation that the numerator
of ay;n,q(x) has degree d + (k — 2) 5 (5 — 1) (arising from the term corresponding to m = d)
and leading coefficient equal to (—1)k(”’:7’), while the denominator of ay.,, 4(x) has degree
n and leading coefficient equal to 1.

When k = 2, all terms in the sum in (2.27) are constants, and we have

d d
x4 —1 m x4 —1
aZ;n,d(x) = 1 Z 1% (g) = 75n,d = 5n,d-

X" — x"—1
m:d|m|n

We now turn to the third part of the lemma. Since ay.,_4(x) has integer coefficients, ax., 4(q)
is an integer. We now determine its sign when k > 2, and in particular show that it is non-zero.
Since g? — 1, ¢" — 1, g2 are positive, we deal with the expression

~ n_1 —_n
ic;n,d(q) © = Zflq(k 23

“Apn,d(q)
> dimin H (%) (— D= (g*=D3)m
— Za|% M(a)(_l)k(n—ﬁ)(q(kfz)j)ﬁ’

whose sign is the same as the sign of ax., 4(¢). If d = n then
(=D DG a(q) = 4723 > 0.
If d = 5 then
(DD a(@) = @ P27+ (D g4 P2 > 0,

If% >3, wesett = q(k’Z)%. Then, t > 2% > 2 and

n n

DD a(g) = @FPDE - T @4V 2 @ D - %
= (" Hu (P HE - ﬁ)
> (%2 (%23 - W)
:%(r%a—n—l) = 0.
O

Remark 2.11 The polynomials ay., 4(x) may be expressed using the necklace polynomials
(see Moreau [10]), defined by

1 n
My () = =3 p(d)x .

d|n
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624 O. Gorodetsky, Z. Hazan

d_1 —1)\*? k=2
ak;n,d(x) = i” 1 . <( %) ) M% <(—x5) )
- X

3 Calculation of the dimension of 7y v

Indeed,

Here we prove Theorem 2. Recall that ®g is the character of the irreducible cuspidal rep-
resentation 7y associated to a regular character 6 of F);. Given U € N, we write it in the
notation of (1.1). From (1.2),

dim (e, v,9) = p X OV U) = —= 3 09 ()Y (U)
UeN " yen

=7 X X 0V,
2" X i eMy(F) X; jeMy(F)
I<i<k—1 I<i<j<k—1

The character ¢ (U) = ¥ (X1.1, ..., Xx—1,k—1) is determined by the traces of X;;,1 <i <
k — 1. Hence,

dm(mevy) =5 > YW Y 0U).
2" X €My (F) X;.; €M, (F) (3.1)
1<i<k—1 I<i<j<k-1

By Corollary 2.2, the value ®¢(U) is determined by dimg,, ker(U — I) which is in turn
determined by rankg,, (U — I). In the inner sum of (3.1) setr; =rk (X;;) for1 <i <k—1.

We write I, , := I, , as defined in (2.18). There exist invertible matrices E;, C;; such that
Xii = E;iI ,Cit1.So, one can write U in the inner sum of (3.1) as I, plus
0 Inn - Xik2 Xigo
0 0 - Xop—2 Xok-i
diag (Ey, ..., Ex—1, 1) diag (I, Ca, ..., Cx),
0 0 e 0 I n
0 0 e 0 0

where fi,j = Ei*lXi,ijl forall 1 <i < j <k — 1.Together with the fact that rank is

Jj+1
invariant under elementary operations, we now have
dim (teny) =gz X V)
4P X; €M, (F)
1<i<k-1 - -

0 Irpn - Xik—2 Xik-1
0 0 - Xopo2 Xor1 (3.2)

Xi,j€My(F)

1§ij<j§k—l 0 0 e 0 Irk—l,n
o o - 0 0

As in the proof of Proposition 2.8, we can use Gaussian elimination operations on X i,j for
all1 <i < j < k— 1 (which do not affect the rank nor dimension of the kernel of the matrix
minus Ii,, and the number of Jordan blocks is not affected as well) in such a way that the
sequence of matrices {)N(,-,Q,}lfkjgk_] is mapped [F-linearly to a sequence of matrices

= 00
[Xi'j B (0 Y,-,.,-) ]1§i<j§k717
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where Y;; € M(,,_,l.)x(,,_,j)(IF). The kernel of this mapping is of size

k=2 o . k—1 i—1 . . .
g2i=t k=it 1 2521 ")) The dimension of the kernel corresponds to the num-
ber of elements which we cancel. Equation (3.2) becomes

_ k=2 i k=1 x~iel
dim (mivy) = bz X P U) g T )
g2 Xi,iEMn(]F)
1<i<k—1
== (3.3)
> O (g) »
yi,jEM(n—ri)x(n—ri)(F)
I<i<j<k—1
where - -
0 Inn - Xiko2 Xtk
~ ~
0 0 - Xokx—2 Xok-1
&=l + : :
0 0 0 L i
0 0 0 0

Using the character formula (2.1), we can calculate ®¢(g). In this case m = kn, g = s - u
where s = I, so A = 1 and

k—1
t=dimker(g —I) =kn —rtk(g — I) =kn — Y _r; — kA,
i=1

where
Yip - Yig-

A= : : , I<i<j<k-—1. (3.4)
0 - Yr2x-1
So,
o _(_1\kn—1.1 _ 2 _ kn—Z’.‘;ll ri—tkA—1
O () =D""0-g)1—=¢")---(1—¢q ' )
= (- (g Din—*1 r—rka-1-
Equation (3.3) can now be written as
Y P WU gZim i n B )

1
Gn?
q X; €M, (F)
1<i<k—1 3.5)

(= 1)kn=1 %:(q; Din—*1 r—rkA-1°

dim (JTk’N,w) =

where the inner sum is over all matrices of the form (3.4) and by the definition (2.14) it is
equal to

By applying Proposition 2.8 we replace the inner sum in (3.5) by

k=2, . .
Z (”—Vi)'(n—VjJrl) . l_[i:O (q7 q)kn_zlj(;i r]__l_zk—Z—z (”‘U)‘Zﬁ;iﬂ'q('l—rﬁl)

l<i<j<k-2 j=1
q

’

—2 ,
[Ti=i @ ‘I)knfzﬁ;i ==Y 0 )= h =i

Jj=1
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which equals
N k—1
> (1)@ rm). [1Z1 @ Dan—1—,

g'sisisk2
(g5 -2
Now (3.5) becomes
)= o e T et
dim (e, N,y ) = — Yo (tr (Xii)) (45 Dan1—, -
(@ w0 g0 T i T
I<i<k—1
(3.6)
Changing the order of sum and product in (3.6) we get that
)= o I T T et
dim (7 vy ) = — Yo (tr(Xii)) (@5 @Don—1-,; -
(@ @) 72 gD ] Xi.i €M, (F) o
3.7

From Sect. 5 of [11], each inner sum in (3.7) is equal to

Yo Vot (X)) @ Danrr = 0" gD @ uor. (B8)
X €My (F)

Plugging (3.8) in (3.7), we obtain

(k—2) (’2’) |GLn (F) |

dim (75 v,y) = ¢“ VO (1" (gs @1 = ¢ 71

3

as needed. O

4 Calculation of the character O, v,y

In this section we prove Theorem 3. Namely, we calculate Oy, . From now on we use the
following notations:

g X1 X2 - X1k X1k—1

0 g Xn -+ Xopo Xok

0 0 g - X3k, X3koi
hg;U = : . . s

0 0 0 g Xr—1k-1

0 0 0 g
where U (and so X; ;) is as in (1.1). Note that 4, y = U. We also define
A" (g) = diag(g,....8) € A" (GL,(F)), g€ GL,(®.

By definition,

Oy (@) =t (miny (@) =t (1A @)lvi, )

=t (n(Ak(g)) o Pk,N,w). (4.1)
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Substituting (1.2) into (4.1) we have

@wwngn(@ﬂijnhﬁw mwah)
q

. 4.2)
=@MZU(M@>mww»
Now we perform the change of variables
Xij>g Xy, l<i<j<k-—1
in (4.2) and obtain
O N,y (g) = () —_ Z O (hg) V¥ (g7 X110 o 8 Xem1 1) - 4.3)
q*¥" UeN

In parts Sects. 4.1, 4.2 and 4.3 we prove parts (I), (II) and (III) of Theorem 3, respectively.

4.1 Character at g = s - u such that the semisimple part s does not come from I,

Let g = s -u. Assume that the semisimple part s does not come from F,,. The semisimple part
ofhg.yis AF (s), which also does not come from [F,,. By Theorem 2.1, we have ®¢ (hg; U) =0.
Hence, by (4.3) O v,y (g) = 0. ]

4.2 Character calculation at a non-semisimple element

Assume that s comes from F; C F,, and d | n is minimal. In addition, d < n since g is not
semisimple. Let A € I, be an eigenvalue of s which generates the field F; over F. We use
the notation of Sect. 2.3. Thus, there exist R € GL,, () and p a partition of d’ = n/d such
that R~'gR = L,(f). There exists A? (T) € GL,(F,) such that

g =AY (T7Y)R7'gRAY (T),
the analogue of the Jordan form of g. Recall that by Lemma 2.5, the map
Ars Ay i=A,r =AY (T RTTARAY (T)
induces an isomorphism. By the notation of Sect. 2.3.2 we have for each
Xab, Vi<a<b<k-1,

the corresponding isomorphism of Lemma 2.5

(a,b)
X0,i:j ) 0<i<d—1

0<j=<d -1
Xa,b = (Xa,b)p = .
(a,b)
(xd’ 11])0<l<d 1
0<j<d'—1
Note that ) )
AR (AT (1)) AR (R g A (R) AR (A7 (1)) = 0, 4.4)

where U, is the element of N with (X, ;), instead of X, ;. From (4.4) we obtain

tk (hg—1,;0) = 1k (hg,-11,:0,) -
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We prove that rk (hg—;.,;¢) (which by Corollary 2.2 determines the value of O (hg:¢)) is

independent of xl(k(; ll’kfl) € Fy. The matrix hg,—,,:v, is of the form
g — My (X11)p 0 Xik—2)p  Xix=1p
0 go— My - (X2x-2)p (X2xk-1)p
hg, i1, = : : : : . 4.5)
0 0 e go— My (Xp—1k-1)p

Consider the boxed block in (4.5). The 2d x 2d upper left block of the boxed matrix g, — A1,
is of the form

0

A — 2 1

qd—l _
A A 1 (4.6)

Al — A

Let Z := Xg—14-1, Zp := (Xp—14-1)p and 2 i;j = x;flflj’k_l). One can eliminate the
(d + 1)-th column in Z,, by the boxed 1 from (4.6), i.e. all the elements {zm,i;l} 0<i<d—1 -

0<m<d'—1

In particular, z1 9.1 = xflfo_, i‘k_l) is eliminated. Now, by Lemma 2.6, (4.3) can be written as

O Ny (g) = # > O (hgv) - l_[f:]z%(g_]xi,i)
‘2" UeN

_ -1 4.7)
Yo (Tr]Fd/]F (A‘l : gozm,o;m) +tr (D% (g, D71, Zp))> .

By Lemma 2.5, going over Z € M,(IF) is equivalent to going over (Zm,i;j) 0<i<d—1 »

0<j,m<d' —1
Zm,i;j € Fq. We have just shown that ©g (hg;U) is independent of z1 o.1, and by Lemma 2.6
tr (D_zot (g, D!, Zp)) in (4.7) is also independent of z; ¢.1. Thus, we may write (4.7) as
the following double sum, where the inner sum is over zj o.1 and the outer sum is over the
rest of the coordinates of U:

k

2
O, N,y (g) = O (hg:v) llﬂo (e7'Xi4)

i

1
ky,2
4D X, jeN (i )R h—1h-1)
Zm,i;j €Fa, (m,i, j)#(1,0,1)

Y (tr (D_20‘ (g, D!, Zﬂ))) o Trr,/r At > ImOm
0<m<d'—1

o m#1
o (Itr,/r (A - 21,051)) -
> Yo (Tre,e (A )

21,0;1€Fq
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Since ¥ o Trp ,/F is a nontrivial character, we have
- -1
Y Vo(Treyr (A" - z101)) = 0.
21,0,1€Fq

Thus, Ok y,y(g) = 0. O

4.3 Character calculation at a semisimple element

Here we use (4.3) to calculate the value of Oy y y(g) for g = s where s is semisimple
element which comes from a subfield of F,, (v = I,;). Again, we use the notation of Sect.
2.3. Thus, there exist R € GL,,(F), p a partition of n/d and A? (T) € GL, (F4) such that

sp =AY (T7)RT'sRAY (T), 4.8)

the analogue of the Jordan form of s. We also use the notation of Sect. 2.3.2, and in particular
define (X4,5), as in Sect. 4.2.
Let A € F} be an eigenvalue of s. If A € F* then s = A/, and we have by (4.3)

Ok Ny (A = () 5 Z O (horv) ¥ (A7 X11, oo AT X1 k1) -
q*?

By the change of variables
Xi,j = )»X,'yj,
we get

Orn,y M) = Z Og (Ahru) ¥ (X11s - Xe—14-1) -

2
61(2) UeN
By Theorem 2.1, we have ®y (A . hl;U) =60(1L)®y (hI;U), and so
Ok N,y M) = 0N Ok N,y (I) = O(A)dim (mx, N,y ) -

By Theorem 2, this proves the case A € F*.
If & € F); C IF;; is an eigenvalue of s and 1 < d | n is such that Fy is generated by A over
IF, we have by (4.3)

> 06 (hsv) ¥ (s Xupe s Xa i) (4.9)
UeN

O, N,y (5) = q(z) —h

In order to compute ©g (hy.17), we need to find conditions for X; ;, such that i,y will have
a fixed number of Jordan blocks. This is equivalent to saying that g,y — Aly, will have a
given kernel dimension, or a given rank. Rank and trace are invariant under conjugation, so

let us denote by hs/)’yp, the matrix hy. 7 conjugated by AF (R)Ak (Ad/ (T)), where R and T
are defined by s in (4.8):

hy,0, = A (Ad’ (T’l)) AR (R hy,y AR (R) A (A"' (T)) :
We have a matrix in GL, (IF4) and our goal is to find out how many matrices of the form
hsp;Up = M = hSp*}Lln;Up7

where U varies, have a given rank ¢.
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First, notice that by the invariance of rank under elementary row and column operations
on hyg o—Al,;U,> WE can use the nonzero elements on the diagonal of 5, — AI, to cancel
the corresponding elements of (X, ),. These elementary operations map the sequence of
matrices {(X4,5)p}1<a<b<k—1 Fa-linearly to the sequence

(a,b) (a,b)
X000 7 Xar—1,0:0
Xap)p = : : € My (Fg)
(a,b) (a,b)
X000 -1 T Xar—1,0,d7—1 l<a<b<k—1

The dimension of the kernel of this map is (5)(n — d')d’, corresponding to the number of

k ’
elements we canceled. Hence, the number of matrices & o—1y:U, of rank £ is (qd)(2)(”_d/)d
times the number of matrices of the form

(X11)p - (Xl.k—Z)p (Xl,k—l),o

0 - (X2x-2)p (X2x-1)p
) . . € Mu—_na(Fq) 4.10)

0 -+ 0 Xr—14-1)p

of rank £ — k(n — d’). Using the character formula (2.1), we can calculate @ (/15.7). In this
casem = kn, g = h.y and

t =dim ker(hg.y — 1) = kn —tk(hg,y — I) = kn —k(n — d') — kA = kd’ — 1kA.
Thus

d—1 ‘ ’
O (hsv) = (=D [Z o )] 1=gH=(@gHH - (1= (gH ™4
i=0
d—1 _
= (=pf! [Z 6.9 )] @%; qDkar—a-1. (4.11)
i=0

Now, by (4.11) and Lemma 2.6, (4.9) can be written as

_ =1 gdyEym-dha’ [d=1
Oy (5) = =D [

" O | XA qDkar—rka—
q(Z)" i=0

k=1 -1 . . (4.12)
T o | Trege (271 X XZ'lo)m ;
i=1 m=0

where the sum is over matrices A as in (4.10). By the character formula (2.1), the RHS of
(4.12) is (—1)kn=d") [Z?;ol 1ok )] times the RHS of (3.1), when one replaces n with d’, ¢
with ¢¢ and o with

Vo Fa— ', yx) = vo(Trs, G 10).

Thus, the RHS of (4.12) is equal to dim (nk, N,I/,) (which is calculated in Theorem 2) after
the substitution of n, ¢, ¥ with the relevant values. Hence,

n [4=] i _5yd'@ =) |GL /(F
Oy <s)=<—1)k("—d>[z Zex )} ()42 Oy Call
i=0

as desired. O

@ Springer



On certain degenerate Whittaker models. . . 631

5 Proof of Theorem 4

Notice first that by part (III) of Lemma 2.10, the coefficients in both (1.5) and (1.6) are
positive integers, unless k = 2 in which case they may also be zero.

Representations of a finite group are equivalent if the corresponding characters coincide.
Hence, both parts of the theorem are equivalent to

Vg € GL,(F) : ®k;N,t/f(g) = Zak;n,Z(Q) : ®Ind((g)a (5.1)
Lln

where Opng, is the character of Indp. ]Fj;)~ We prove now (5.1) for any g € GL,(IF).

If g is not semisimple or does not come from F,, then the LHS of (5.1) is zero by parts (I)
and (I) of Theorem 3. The RHS of (5.1) is also zero on such elements by Lemma 2.3.

Let g be a semisimple element, which comes from Fy C F, and d | n is minimal. Let A
be an eigenvalue of s, which generates F; over F. For such g, part (IIl) of Theorem 3 and
Lemma 2.3 imply that (5.1) is equivalent to

d-1
_ykn—d') | gu2met 1GLa (Fa)l
(=D |:ZZ(‘: o )i| q o qg" —1

GLy (F
= Y aknelq )M [Zew )} (52)

¢ d)tin 0
where d’ = n/d. The following identity, which we now prove, establishes (5.2):

(—1 )k(nfd’)q(k—z)@

_ Z ak;n,K(Q). (5.3)

n _ t_
q 1 caen 1 1

Using (1.4), the RHS of (5.3) is

% (— l)k(n—ﬂ) (k=2)5 (5: =1

> X - — (5.4)
L d|lnm:Llm|n q
We simplify (5.4) using (2.28) as follows:
(m)( l)k(n—f) (k— 2)7(3—1)
> X - =
¢ deln m: €hmin "1
(_l)k(n—%)q(H)%(%ﬂ)
- q"—1 ) Z K (%)
m:d|m|n L dllim
= Y e,
m:d|m|n "1 '
k=25 (5 -1
. k(n—")q 24
= (D
which is the LHS of (5.3). Hence the proof is complete. O
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6 Proof of Theorem 1

Representations of a finite group are equivalent if the corresponding characters coincide.
Hence, the theorem is equivalent to

Vg € GL,y(F) 1 Ok .y (8) = gy (8) - (Stg) ', (6.1)

where we use the notation St also for the character of the Steinberg representation. We prove
now (6.1) for any g € GL,,(F).
We first prove (6.1) for k = 1. Note that N = {I,} and so

Viiwy = {0 € Vay | T(I)v = v} = Vg,

Hence 71 v,y (g) = mg(g) as needed.

Now assume k > 2. If the semisimple part s of g does not come from [F,, or g is not
semisimple, then Oy y (g) = 0 by Theorem 3. From Theorem 2.1, we have Oy I (g) =0.
Hence, (6.1) is proved in that case.

Otherwise, g = s is a semisimple element which comes from F; C F, and d | n is
minimal. We begin by calculating the character value St(g). For any prime p, let m, be the
p-part of m. By [[12], Thm. 6.5.9],

St(8) = ecL,ecpr |C ()|

char(F) ’

where &g is (—1) to the power of the F-rank of G, C(g) is the centralizer of g in GL, (),
C(g)° is its identity component and C(g)¥ is the subgroup of F-rational points in C(g). The
F-rank of GL,, isn.Let p = (1, 1, ..., 1), apartition of d’ = % and let f be the characteristic
polynomial of s. By Sect. 2.3.1, the centralizer C(g)¥ is isomorphic to C (L f, p)F, which in
turn is isomorphic to GLd/ (Fy) (cf. [[5], Lem. 2.4] and the discussion preceding it). Thus,
ec(g) = &L, = (— 14" and

n(d —1)
2

[c(@)F| = gZhd@=D 1 (¢ -1). |c@| =q
k=1

char(FF)

The discussion shows that

St(g) = (—1)"~ g " 6.2)
By Theorem 2.1,
d—1
Opj: (8) = (=" [Z s )} (1=¢H1 = @D A= @H"™h
o -
=7 [ 2% )] D@ =1 - DY
a=0 q" -1
“ IGLy (Fy)|
= (- [Z A1) e 6.3)
a=0 — g 7
where A is an eigenvalue of g. By Theorem 3
O (g) = (— 1)) gD =t [Z 6 (11 )} o (Fd)l (6.4)
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Multiplying (6.3) by (6.2) raised to the (k — 1)-th power, we get (6.4) as needed. O
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