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Abstract The twistor construction for Riemannian manifolds is extended to the case of
manifolds endowed with generalized metrics (in the sense of generalized geometry à la
Hitchin). The generalized twistor space associated to such a manifold is defined as the bundle
of generalized complex structures on the tangent spaces of the manifold compatible with the
given generalized metric. This space admits natural generalized almost complex structures
whose integrability conditions are found in the paper. An interesting feature of the generalized
twistor spaces discussed in it is the existence of intrinsic isomorphisms.

Keywords Generalized complex structures · Twistor spaces

Mathematics Subject Classification 53D18 · 53C28

1 Introduction

The concept of generalized complex geometry has been introduced by Nigel Hitchin [19]
and further developed by his students M. Gualtieri [15], G. Cavalcanti [4], F. Witt [27]
as well as by many other mathematicians and physicists (including Hitchin himself). A
generalized almost complex structure in the sense of Hitchin [19] on a smooth manifold M is
an endomorphism J of the bundle T M ⊕ T ∗M satisfying J 2 = −I d and compatible with
the metric 〈X + α, Y + β〉 = α(Y ) + β(X). Similar to the case of a usual almost complex
structure, the integrability condition for a generalized almost complex structure J is defined
as the vanishing of its Nijenhuis tensor. However, forJ this tensor is defined by means of the
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18 J. Davidov

bracket, introduced by Courant [8], instead of the Lie bracket. If J is integrable, it is called
a generalized complex structure. Every complex and every symplectic structure determines
a generalized complex structure in a natural way. There are several examples of generalized
complex structures which are not defined by means of a complex or a symplectic structure,
to quote just a few of them [5–7,15,20]. In [3,9–11,14,23] such examples have been given
by means of the Penrose twistor construction [24,25] as developed by Atiyah, Hitchin and
Singer [1] in the framework of Riemannian geometry. While the base manifold of the twistor
space considered in [9,10] is not equipped with a metric, the base manifold in [11] is a
four-dimensional Riemannian manifold M and the one in [3,14] is a hyper-Kähler manifold.
The fiber of the twistor space in [11] consists of (linear) generalized complex structures on
the tangent spaces of the base manifold compatible with the metric on T M ⊕ T ∗M induced
by the metric of M . This construction can be placed and generalized in the framework of the
concept of a generalized metric, introduced by Gualtieri [15] and Witt [27].

A generalized metric on a vector space T is a subspace E of T ⊕ T ∗ such that dim E =
dim T and the metric 〈. , .〉 is positive definite on E . Every generalized metric is uniquely
determined by a positive definite metric g and a skew-symmetric 2-form � on T so that
E = {X + ıX g+ ıX� : X ∈ T }. It is convenient to set E ′ = E and E ′′ = E⊥, the orthogonal
complement of E with respect to 〈. , .〉. Then T ⊕ T ∗ = E ′ ⊕ E ′′ and the restrictions to E ′
and E ′′ of the projection prT : T ⊕T ∗ → T are bijective maps sending the metrics 〈. , .〉 |E ′
and 〈. , .〉 |E ′′ to g and−g. A generalized complex structureJ on T is called compatible with
E if J E = E ; in this case J E ′′ = E ′′. Define a generalized complex structure J 2 on T by
J 2 = J on E ′, J 2 = −J on E ′′, and set J 1 = J . Then (J 1,J 2) is a pair of commuting
generalized complex structures for which the metric

〈−J 1 ◦ J 2(v), w
〉 = 〈J 2(v),J 1(w)

〉

on T ⊕ T ∗ is positive definite. Recall that such a pair is called linear generalized Kähler
structure [15,17]. Conversely, for every linear generalized Kähler structure (J 1,J 2), the
+1-eigenspace of the involution −J 1J 2 is a generalized metric compatible with J 1. Note
also that if g is a positive definite metric on T , then a generalized complex structure on T is
compatible with the generalizedmetric E = {X+ıX g : X ∈ T } if and only if it is compatible
with the metric on T ⊕ T ∗ induced by g.

A generalizedmetric on amanifoldM is a subbundle E of T M⊕T ∗M such that rank E =
dim M and the metric 〈. , .〉 is positive definite on E . Given a generalized metric E , denote
by G(E) the bundle over M whose fibre at every point p ∈ M consists of all generalized
complex structures on the tangent space TpM compatible with the generalized metric Ep ,
the fibre of E at p. Equivalently, the fibre of G(E) is the set of linear generalized Kähler
structures on TpM yielding the given generalized metric Ep . We call G(E) the generalized
twistor space of the generalized Riemannian manifold (M, E). LetZ(E ′) be the bundle over
M whose fibre at p ∈ M consists of complex structures on the vector space E ′

p compatible
with the metric g′ = 〈. , .〉 |E ′. Similarly, let Z(E ′′) be the bundle of complex structures on
the spaces E ′′

p compatible with the positive definite metric g′′ = − 〈. , .〉 |E ′′. Then the bundle
G(E) is isomorphic to the product bundle Z(E ′)×Z(E ′′). Given connections D′ and D′′ on
the bundles E ′ and E ′′ one can define a generalized almost complex structure J1 on G(E)

following the general scheme of the twistor construction. This structure is an analog of the
Atiyah-Hitchin-Singer almost complex structure on the usual twistor space [1]. One can also
define three generalized almost complex structuresJi , i = 2, 3, 4, onG(E)which are analogs
of the Eells-Salamon almost complex structure [13]. As one can expect, the structures Ji are
never integrable.As far asJ1 is concerned,we discuss the integrability conditions forJ1 in the
case when the connections D′ and D′′ are determined by the generalized metric E as follows.
Using the Courant bracket one can define a metric connection D′ on the bundle E ′ = E [22].
Transferring this connection by means of the isomorphism prT M |E : E → T M we obtain
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Generalized metrics and generalized twistor spaces 19

a connection ∇ on T M compatible with the metric g whose torsion 3-form is d� , g and �

being the metric and the 2-form determined by E [ibid.]. The connection on T M ⊕ T ∗M
induced by ∇ may not preserve the bundle E ′′, so we transfer ∇ to a connection D′′ on E ′′
by means of the isomorphism (prT M |E ′′)−1 : T M → E ′′. The manifold G(E) has four
connected components and we find the integrability conditions for the restriction of J1 to
each of these components when dim M = 4k. One of the integrability conditions is d� = 0
and the others impose restrictions on the curvature of the Riemannian manifold (M, g). In
the case of an oriented four-dimensional manifold M these curvature restrictions coincide
with those found in [11] when � = 0. The reason is that if d� = 0, ∇ is the Levi-Civita
connection of (M, g) used therein to define the twistor space. Another explanation of this
fact is that if � is closed, the generalized almost complex structures corresponding to the
generalized metrics E = {X + ıX g + ıX� : X ∈ T M} and Ê = {X + ıX g : X ∈ T M} are
equivalent (see Sect. 7).

A specific property of generalized twistor spaces that the usual twistor spaces do not
possess is that the generalized twistor spaces admit naturally defined (intrinsic) isomorphisms.
One of these reflects the so-called B-transforms (the latter being an important feature of the
generalized geometry), the others come from the decomposition T M ⊕ T ∗M = E ′ ⊕ E ′′. In
particular, if E and Ê are generalized metrics on a manifold determined by the same metric
g and 2-forms �, �̂ such that the 2-form � − �̂ is closed, the natural generalized almost
complex structures on the generalized twistor spaces G(E) and G(Ê) are equivalent.

This paper is organized as follows. InSect. 2,we collect several known facts for generalized
geometry used in the paper. The generalized almost complex structures Jε, ε = 1, . . . , 4,
on G(E) mentioned above are defined in the third section. The fourth one contains technical
lemmas needed for computing the Nijenhuis tensors of the structures Jε . Coordinate-free
formulas for the Nijensuis tensors are given in Sect. 5. These formulas are used in Sect. 6
to obtain integrability conditions for Jε. Section 7 is devoted to natural isomorphisms of
generalized twistor spaces.

2 Preliminaries

2.1 Generalized complex structures on vector spaces

Let T be a n-dimensional real vector space. Suppose we are given a metric g and a complex
structure J on T . Let J ∗ : T ∗ → T ∗ be the dual map of J . Then the complex structure
J is compatible with g, i.e. g-orthogonal, if and only if J = −J ∗ under the identification
T ∼= T ∗ determined by the metric g. Replacing T by the vector space T ⊕ T ∗, note that we
have a canonical isomorphism T ⊕ T ∗ ∼= (T ⊕ T ∗)∗.
Definition A generalized complex structure on T is a complex structure J on the space
T ⊕ T ∗ such that J = −J ∗ under the identification T ⊕ T ∗ ∼= (T ⊕ T ∗)∗.

The latter isomorphism is determined by the metric 〈X + α, Y + β〉 = α(Y ) + β(X),
X, Y ∈ T , α, β ∈ T ∗, of signature (n, n). Thus the condition J = −J ∗ is equivalent to the
requirement thatJ is compatible with this metric. It turns out that it is convenient to consider
one half of that metric, so we set

〈X + α, Y + β〉 = 1

2
[α(Y ) + β(X)], X, Y ∈ T, α, β ∈ T ∗.

We note also that if a real vector space admits a generalized complex structure it is of even
dimension [15].
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20 J. Davidov

Notation. The map T → T ∗ determined by a bilinear form ϕ on T will be denoted again by
ϕ; thus ϕ(X)(Y ) = ϕ(X, Y ).

Here are some standard examples of generalized complex structures [15,16].

Examples 1. Every complex structure J on T determines a generalized complex structure
J defined by

J X = J X, J α = −J ∗α for X ∈ T, α ∈ T ∗.

2. If ω is a symplectic form on T (a non-degenerate skew-symmetric 2-form), the map
ω : T → T ∗ is an isomorphism and we set

J X = −ω(X), J α = ω−1(α).

Then J is a generalized complex structure on T .
3. Let J be a complex structure on T . Let TC = T 1,0 ⊕ T 0,1 be the decomposition of the
complexification of T into the direct sum of (1, 0) and (0, 1)-vectors with respect to J . Take
a 2-vector π ∈ 	2TC. Then, for ξ ∈ (T 1,0)∗, there is a unique vector π�(ξ) ∈ TC such that

η(π�(ξ)) = (ξ ∧ η)(π) for every η ∈ (T 1,0)∗.

In fact π�(ξ) ∈ T 1,0 and depends only on the 	2T 1,0-component of π . Then we can define
a generalized complex structure J on T setting

J X = J X + 2(Im π�)(α), J α = −J ∗α,

where (Im π�)(α) is the vector in T determined by the identity β((Im π�)(α)) = (α ∧
β)(Im π) for every β ∈ T ∗.
4. The direct sum of generalized complex structures is also a generalized complex structure.
5. Any 2-form B ∈ 	2T ∗ acts on T ⊕ T ∗ via the inclusion 	2T ∗ ⊂ 	2(T ⊕ T ∗) ∼=
so(T ⊕ T ∗); in fact this is the action X + α → B(X), X ∈ T , α ∈ T ∗. Denote the latter
map again by B. Then the invertible map eB is given by X + α → X + α + B(X) and is
an orthogonal transformation of T ⊕ T ∗ called a B-transform. Thus, given a generalized
complex structure J on T , the map eBJ e−B is also a generalized complex structure on T ,
called the B-transform of J .

We refer to [15,16] for more linear algebra of generalized complex structures on vector
spaces.

2.2 Generalized metrics on vector spaces

Let T be a n-dimensional real vector space. Every metric g on T is completely determined
by its graph E = {X + g(X) : X ∈ T } ⊂ T ⊕ T ∗. The restriction to E of the metric 〈. , .〉
on T ⊕ T ∗ is

〈X + g(X), Y + g(Y )〉 = g(X, Y ).

In particular, 〈. , .〉 |E is positive definite if g is so. This motivates the following definition
[15,27].

Definition A generalized metric on T is a subspace E of T ⊕ T ∗ such that
1. dim E = dim T
2. The restriction of the metric 〈. , .〉 to E is positive definite.
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Generalized metrics and generalized twistor spaces 21

Set

E ′ = E, E ′′ = E⊥ = {w ∈ T ⊕ T ∗ : 〈w, v〉 = 0 for every v ∈ E}.
Then T ⊕T ∗ = E ′⊕E ′′ since the bilinear form 〈. , .〉 is non-degenerate. Moreover the metric
〈. , .〉 is negative definite on E ′′.

It is easy to see that to determine a generalized metric on T is equivalent to defining an
orthogonal, self-adjoint with respect to themetric 〈. , .〉, linear operatorG : T ⊕T ∗ → T ⊕T ∗
such that 〈Gw,w〉 is positive for w ∈ T ⊕ T ∗, w �= 0. Such an operator G is an involution
different from ± the identity and the generalized metric corresponding to it is the +1-
eigenspace of G.

If E is a generalized metric, we have T ∗ ∩ E = {0} since the restriction of the metric 〈. , .〉
to T ∗ vanishes, while its restriction to E is positive definite. Thus T ⊕ T ∗ = E ⊕ T ∗ since
dim E = dim T ∗ = n. Then E is the graph of amapα : T → T ∗, E = {X+α(X) : X ∈ T }.
Let g and � be the bilinear forms on T determined by the symmetric and skew-symmetric
parts of α. Under this notation

E ′ = E = {X + g(X) + �(X) : X ∈ T }, E ′′ = {X − g(X) + �(X) : X ∈ T }. (1)

The restriction of the metric < . , . > to E is

〈X + g(X) + �(X), Y + g(Y ) + �(Y )〉 = g(X, Y ), X, Y ∈ T . (2)

Hence the bilinear form g on T is positive definite. Thus every generalized metric E is
uniquely determined by a positive definite metric g and a skew-symmetric 2-form � on T
such that E has the representation (1). Let prT : T ⊕ T ∗ → T be the natural projection. The
restriction of this projection to E is an isomorphism since E ∩ T ∗ = {0}. Identity (2) tells us
that the isomorphism prT |E : E → T is an isometry when E is equipped with the metric
< . . > |E and T with the metric g. Similarly, the map prT |E ′′ is an isometry of the metrics
〈. , .〉 |E ′′ and −g.

2.3 Generalized Hermitian structures on vector spaces

Let E = {X + g(X) : X ∈ T } be the generalized metric determined by a positive definite
metric g on T and let J be the generalized complex structure determined by a complex
structure J on T , J X = J X , J α = −J ∗α, X ∈ T , α ∈ T ∗. Then J is compatible with
g, i.e. g-orthogonal, if and only if J E ⊂ E (and so J E = E). This leads to the following
definition, see [15].

Definition A generalized complex structure J on T is said to be compatible with a gener-
alized metric E if the operator J preserves the space E .

As usual, if J is compatible with E , we shall also say that the generalized metric E is
compatible with J . A pair (E,J ) of a generalized metric and a compatible generalized
complex structure is said to be a generalized Hermitian structure.

Suppose that a generalized metric E is determined by an orthogonal, self-adjoint linear
operator G : T ⊕ T ∗ → T ⊕ T ∗ with the property that 〈Gw,w〉 is positive for w �= 0. Then
a generalized complex structure J is compatible with E if and only if the linear operators J
and G commute. In this case J 2 = G ◦ J is a compatible generalized complex structure on
T commuting with the generalized complex structure J 1 = J . Moreover, the metric

〈−J 1 ◦ J 2(v), w
〉 = 〈J 2(v),J 1(w)

〉
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22 J. Davidov

on T ⊕ T ∗ is positive definite. Recall that a pair of (J 1,J 2) of commuting generalized
complex structures such that themetric above is positive definite is called a linear generalized
Kähler structure [15,17]. Given such a structure, the operator G = −J 1 ◦ J 2 determines a
generalized metric compatible with J 1 and J 2. Thus the notion of a generalized Hermitian
structure on a vector space is equivalent to the concept of a linear generalizedKähler structure.
Tofix ageneralizedmetric Emeans to consider a linear generalizedKähler structure (J 1,J 2)

such that E is the +1-eigenspace of the involution G = −J 1 ◦ J 2.

Example 6 Let J be a complex structure on T compatible with a metric g and let ω(X, Y ) =
g(X, JY ). If J 1 and J 2 are the generalized complex structures determined by J and ω,
respectively, then (J 1,J 2) is a linear generalized Kähler structure. The generalized Hermi-
tian structure defined by (J 1,J 2) is (E,J 1), where

E = {X + α ∈ T ⊕ T ∗ : J 1(X + α) = J 2(X + α)} = {X + g(X) : X ∈ T }.
This generalized metric is determined by the operator G = −J 1 ◦J 2; it is given by G(X +
g(Y )) = Y + g(X), X, Y ∈ T .

Let (E,J ) be a generalized Hermitian structure with E = {X + g(X)+�(X) : X ∈ T }.
Then J E ′ = E ′, J E ′′ = E ′′, where, as above, E ′ = E , E ′′ = E⊥, and we can define two
complex structures on T setting

J1 = (prT |E ′) ◦ J ◦ (prT |E ′)−1, J2 = (prT |E ′′) ◦ J ◦ (prT |E ′′)−1. (3)

These structures are compatible with the metric g. Thus we can assign a positive definite
metric g, a skew-symmetric form � and two g-compatible complex structures J1 , J2 on T
to any generalized Hermitian structure (E,J ). The generalized complex structure J can be
reconstructed from the the data g,�, J1, J2 by means of an explicit formula [15].

Proposition 1 Let g be a positive definite metric, �-a skew-symmetric 2-form on T , and J1,
J2 - two complex structures compatible with the metric g. Let ωk(X, Y ) = g(X, JkY ) be
the fundamental 2-forms of the Hermitian structure (g, Jk), k = 1, 2. Then the block-matrix
representation of the generalized complex structure J determined by the data (g,�, J1, J2)
is of the form

J = 1

2

(
I 0
� I

) (
J1 + J2 ω−1

1 − ω−1
2−(ω1 − ω2) −(J ∗

1 + J ∗
2 )

) (
I 0

−� I

)
,

where I is the identity matrix and �, ω1, ω2 stand for the maps T → T ∗ determined by the
corresponding 2-forms.

This follows from the identities ω−1
k ◦ g = Jk , ωk = −g ◦ Jk , J ∗

k ◦ g = −g ◦ Jk , k = 1, 2,
and the following facts, which will be used further on:

(a) the E ′ and E ′′-components of a vector X ∈ T are

XE ′ = 1

2

{
X − (g−1 ◦ �)(X) + g(X) − (� ◦ g−1 ◦ �)(X)

}
,

XE ′′ = 1

2

{
X + (g−1 ◦ �)(X) − g(X) + (� ◦ g−1 ◦ �)(X)

} ;
(4)

the components of a 1-form α ∈ T ∗ are given by

αE ′ = 1

2

{
g−1(α) + α + (� ◦ g−1)(α)

}
,

αE ′′ = 1

2

{−g−1(α) + α − (� ◦ g−1)(α)
}
.

(5)
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(b)
J (X + g(X) + �(X)) = J1X + g(J1X) + �(J1X),

J (X − g(X) + �(X)) = J2X − g(J2X) + �(J2X).

Example 7 Let J be a complex structure on T compatible with a metric g. Then, under
the notation in the proposition above, J is the generalized complex structure defined by J
exactly when J1 = J2 = J and � = 0. The generalized complex structure defined by the
2-form ω(X, Y ) = g(X, JY ) is determined by the data (g,� = 0, J = J1 = −J2).

Remarks 1. The formsωk used here differ by a sign from those used in [15, Proposition 6.12].
2. Suppose that the generalized complex structure J is determined by the data

(g,�, J1, J2). Let G be the endomorphism of T ⊕ T ∗ corresponding to the generalized
metric defined by means of (g,�). Then the generalized complex structure J 2 = G ◦ J is
determined by the data (g,�, J1,−J2).

3. It follows from (4) and (5) that the block-matrix representation of the endomorphism
G is [15]

G =
(

I 0
� I

) (
0 g−1

g 0

) (
I 0

−� I

)
.

4. According to Proposition 1,J = e�Ie−� where I is the generalized complex structure
on T with block-matrix

I = 1

2

(
J1 + J2 ω−1

1 − ω−1
2−(ω1 − ω2) −(J ∗

1 + J ∗
2 )

)
.

The restriction to T ∗ of every B-transform of T ⊕ T ∗ is the identity map. It follows that J
preserves T ∗ exactly when J1 = J2 and J sends T ∗ into T if and only if J1 = −J2. Thus,
if J1 �= J2, the generalized complex structure J is not a B-transform of the generalized
complex structure determined by a complex structure (Example 1), or by a complex structure
and a 2-vector (Example 3). Also, if J1 �= −J2, J is not a B-transform of the generalized
complex structure determined by a symplectic form (Example 2).

Proposition 1 in [11] and the fact that to define a generalized Hermitian structure is
equivalent to defining a linear generalized Kähler structure imply the following

Proposition 2 Let g be a positive definite metric on T and g∗ the metric on T ∗ determined
by g. A generalized complex structure J on T is compatible with the generalized metric
E = {X + g(X) : X ∈ T } if and only if it is compatible with the metric g ⊕ g∗ on T ⊕ T ∗.

This can also be proved by means of (4) and (5).

2.4 Generalized almost complex structures on manifolds: the Courant bracket

A generalized almost complex structure on an even-dimensional smooth manifold M is, by
definition, an endomorphism J of the bundle T M ⊕ T ∗M with J 2 = −I d which preserves
the natural metric

〈X + α, Y + β〉 = 1

2
[α(Y ) + β(X)], X, Y ∈ T M, α, β ∈ T ∗M. (6)

Such a structure is said to be integrable or a generalized complex structure if its +i-
egensubbunle of (T M ⊕ T ∗M) ⊗ C is closed under the Courant bracket [19]. Recall that if
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24 J. Davidov

X, Y are vector fields on M and α, β are 1-forms, the Courant bracket [8] is defined by the
formula

[X + α, Y + β] = [X, Y ] + LXβ − LYα − 1

2
d(ıXβ − ıYα),

where [X, Y ] on the right hand-side is the Lie bracket, L means the Lie derivative, and ı
stands for the interior product. Note that the Courant bracket is skew-symmetric like the Lie
bracket but it does not satisfy the Jacobi identity.

Examples [15,16]. 8. The generalized complex structure defined by an almost complex
structure J on M is integrable if and only if J is integrable.

9. The generalized complex structure determined by a pre-symplectic formω is integrable
if and only if ω is symplectic, i.e. dω = 0.

10. Let J be an almost complex manifold on M and π a (smooth) section of 	2T 1,0M .
The generalized almost complex structureJ on M defined by means of J and π is integrable
if and only if the almost complex structure J is integrable and the field π is holomorphic and
Poisson.

As in the case of almost complex structures, the integrability condition for a generalized
almost complex structure J is equivalent to the vanishing of its Nijenhuis tensor N , the latter
being defined by means of the Courant bracket:

N (A, B) = −[A, B] + [J A,J B] − J [J A, B] − J [A,J B],
where A and B are sections of the bundle T M ⊕ T ∗M .

Clearly N (A, B) is skew-symmetric. That N is a tensor, i.e. N (A, f B) = f N (A, B) for
every smooth function f on M , follows from the following property of the Courant bracket
[15, Proposition 3.17].

Proposition 3 If f is a smooth function on M, then for every sections A and B of T M⊕T ∗M

[A, f B] = f [A, B] + (X f )B − 〈A, B〉 d f,
where X is the T M-component of A.

Let J be a generalized almost complex structure on a manifold M and let � be a (skew-
symmetric) smooth 2-form on M . Then, according to Example 5, e�J e−� is a generalized
almost complex structure on M . The exponential map e� is an automorphism of the Courant
bracket (i.e. [e�A, e�B] = e�[A, B]) if and only if the form � is closed. This key prop-
erty of the Courant bracket follows from the following formula given in the proof of [15,
Proposition 3.23].

Proposition 4 If � is a 2-form on M, then for every sections A = X + α and B = Y + β

of T M ⊕ T ∗M

[e�A, e�B] = e�[A, B] − ıX ıY d�.

Thus, if the form� is closed, the structure e�J e−� is integrable exactlywhen the structure
J is so.

The diffeomorphisms also give symmetries of the Courant bracket [15].

Proposition 5 If f : M → N is a diffeomorphism, then the Courant bracket is invariant
under the bundle isomorphism F = f∗ ⊕ ( f −1)∗ : T M ⊕ T ∗M → T N ⊕ T ∗N:

[F(A), F(B)] = F([A, B]), A, B ∈ T M ⊕ T ∗M.
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Generalized metrics and generalized twistor spaces 25

Thus, if J is a generalized almost complex structure on M and f : M → N is a
diffeomorphism, then F ◦ J ◦ F−1 is a generalized almost complex structure, which is
integrable if and only if J is so.

Another important property of the Courant bracket is the following formula proved in [15,
Proposition 3.18].

Proposition 6 Let A, B, C be sections of the bundle T M⊕T ∗M and X the T M-component
of A. Then

X 〈B,C〉 = 〈[A, B] + d 〈A, B〉 ,C〉 + 〈B, [A,C] + d 〈A,C〉〉 .

2.5 Connections induced by a generalized metric

By definition, a generalized metric on a manifold M is a subbundle E of T M ⊕ T ∗M such
that rank E = dim M and the restriction of the metric 〈. , .〉 to E is positive definite. Every
such a bundle E is uniquely determined by a Riemannian metric g and a 2-form � on M .
The pair (M, E) will be called a generalized Riemannian manifold.

Let E ′ = E be a generalized metric and, as above, denote E⊥ by E ′′. For X ∈ T M , set

X ′′ = (prT M |E ′′)−1(X) ∈ E ′′,

where prT M : T M ⊕ T ∗M → T M is the natural projection. It follows from Proposition 6
that if B and C are sections of the bundle E

X 〈B,C〉 = 〈[X ′′, B]E ,C
〉 + 〈

B, [X ′′,C]E
〉
,

where the subscript E means “the E-component with respect to the decomposition T M ⊕
T ∗M = E ⊕ E ′′”. The latter identity is reminiscent of the condition for a connection on the
bundle E to be compatible with the metric 〈. , .〉. In fact, we have the following statement
[21,22].

Proposition 7 If S is a section of E, then

∇E
X S = [X ′′, S]E

defines a connection preserving the metric 〈. , .〉.

Suppose that E is determined by the Riemannian metric g and the 2-form �, so that
E = {X + g(X) + �(X) : X ∈ T M}. Transferring the connection ∇E from the bundle E
to the bundle T M via the isomorphism prT M |E : E → T M we get a connection on T M
preserving the metric g. Denote this connection by ∇ and let T be its torsion. Then we have
[21,22]:

Proposition 8 The torsion T of the connection ∇ is skew-symmetric and is given by

g(T (X, Y ), Z) = d�(X, Y, Z), X, Y, Z ∈ T M.

Interchanging the roles of E and E ′′ = {X − g(X) + �(X) : X ∈ T M} we can get
a connection ∇′′ on T M preserving the Riemannian metric g and having torsion T ′′ with
g(T ′′(X, Y ), Z) = −d�(X, Y, Z).

If we set ∇′ = ∇, then 1
2 (∇′ + ∇′′) is a metric connection with vanishing torsion, so it is

the Levi-Civita connection of the Riemannian manifold (M, g).
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2.6 The space of compatible generalized complex structures

Let E be a generalized metric on the vector space T . As above, set E ′ = E and E ′′ = E⊥,
the orthogonal complement being taken with respect to the metric 〈. , .〉 on T ⊕ T ∗.

Suppose that T is of even dimension n = 2m. Denote by G(E) the set of generalized
complex structures compatible with E . Equivalently, G(E) is the set of linear generalized
Kähler structures, which determine the generalized metric E . This (non-empty) set has the
structure of an imbedded submanifold of the vector space so(n, n) of the endomorphisms
of T ⊕ T ∗, which are skew-symmetric with respect to the metric 〈. , .〉. The tangent space
of G(E) at a point J consists of the endomorphisms V of T ⊕ T ∗ anti-commuting with J ,
skew-symmetric w.r.t. 〈. , .〉 and such that V E ⊂ E . Such an endomorphism V sends also
E ′′ into itself. Note also that the smooth manifold G(E) admits a natural complex structure
J given by V → J ◦ V .

For every J ∈ G(E), the restrictions J ′ = J |E ′ and J ′′ = J |E ′′ are complex structures
on the vector spaces E ′ and E ′′ compatiblewith the positive definitemetrics g′ = 〈. , .〉 |E ′ and
g′′ = − 〈. , .〉 |E ′′, respectively. Denote by Z(E ′) and Z(E ′′) the sets of complex structures
on E ′ and E ′′ compatible with the metrics g′ and g′′. Consider these sets with their natural
structures of imbedded submanifolds of the vector spaces so(E ′, g′) and so(E ′′, g′′), where
so(E ′, g′) is, as usual, the space of g′-skew-symmetric endomorphisms of E ′, and similarly
for so(E ′′, g′′). The tangent space of Z(E ′) at J ′ is TJ ′ Z(E ′) = {V ′ ∈ so(E ′, g′) : V ′ J ′ +
J ′V ′ = 0}; similarly for the tangent space TJ ′′ Z(E ′′). Recall that the manifold Z(E ′) admits
a complex structure J′ defined by V ′ → J ′ ◦V ′; similarly V ′′ → J ′′ ◦V ′′ defines a complex
structure J′′ on Z(E ′′). The map J → (J ′, J ′′) is a diffeomorphism sending a tangent
vector V at J to the tangent vector (V ′, V ′′) where V ′ = V |E ′ and V ′′ = V |E ′′. Thus
G(E) ∼= Z(E ′) × Z(E ′′) admits four complex structure defined by

K1(V
′, V ′′) = (J ′ ◦ V ′, J ′′ ◦ V ′′), K2(V

′, V ′′) = (J ′ ◦ V ′,−J ′′ ◦ V ′′),
K3 = −K2, K4 = −K1.

Clearly, the map J → (J ′, J ′′) is biholomorphic with respect to the complex structures J
on G(E) and K1 on Z(E ′) × Z(E ′′).

Let G ′(S′
1, S

′
2) = − 1

2Traceg′ (S′
1 ◦ S′

2) be the standard metric on so(E ′, g′) induced by
g′; similarly denote by G ′′ the metric on so(E ′′, g′′) induced by g′′. Then, as is well-known,
(G ′, J′) and (G ′′, J′′) are Kähler structures on Z(E ′) and Z(E ′′), so (G = G ′ + G ′′, Kε),
ε = 1, . . . , 4, is a Kähler structure on G(E).

Let g and�be thepositive definitemetric and the skew-symmetric 2-formonT determined
by E , so that E = {X + g(X) + �(X) : X ∈ T }. Denote by Z(T, g) the manifold of all
complex structures on T compatiblewith themetric g considered as an imbedded submanifold
of the space so(g) of g-skew-symmetric endomorphisms of T . Endow Z(T, g)with its natural
complex structure and compatible metric. For J ∈ G(E), let J1 and J2 be the g-compatible
complex structures on T defined by means of J :

J1 = (prT |E ′) ◦ J ◦ (prT |E ′)−1, J2 = (prT |E ′′) ◦ J ◦ (prT |E ′′)−1.

Then the map J → (J1, J2) is an isometry of G(E) onto Z(T, g) × Z(T, g). Moreover it
sends a tangent vector V at J ∈ G(E) to the tangent vector (V1, V2), where

V1 = (prT |E ′) ◦ V ◦ (prT |E ′)−1, V2 = (prT |E ′′) ◦ V ◦ (prT |E ′′)−1.

Hence J → (J1, J2) is a biholomorphic map. The manifold Z(T, g) has the homogeneous
representation O(2m)/U (m) where 2m = dim T and the group O(2m) ∼= O(g) acts by
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conjugation. In particular, it has two connected components, each of them having the homo-
geneous representation SO(2m)/U (m). Fix an orientation on the vector space T and denote
by Z± the space of complex structures on T compatible with the metric g and yielding
± the orientation of T . Then Z+ and Z− are the connected components of Z(T, g). Thus
G(E) has four connected components biholomorphically isometric to Z+ × Z+, Z+ × Z−,
Z− × Z+, Z− × Z−. If dim T = 4k, the open subsets G+ and G− of G(E) biholomorphic
to (Z+ × Z+) ∪ (Z− × Z−) and (Z+ × Z−) ∪ (Z− × Z+) can be described in terms of the
generalized complex structures as follows. Recall first that the vector space T ⊕ T ∗ has a
canonical orientation; if {ai } is an arbitrary basis of T and {αi } is its dual basis, i = 1, . . . , n,
the orientation of the space T ⊕T ∗ defined by the basis {ai , αi } does not depend on the choice
of the basis {ai }. Let G be the endomorphism of T ⊕T ∗ determined by the generalized metric
E . Then, by [15, Remark 6.14 and Proposition 4.7], J ∈ G±(E) if and only if the complex
structures J1 = J and J2 = G ◦J1 both induce ± the canonical orientation of T ⊕ T ∗. We
also note that if dim T = 4k+2, then, by [15, Propostion 6.8], one of the complex structures
J1 = J ∈ G(E) and J2 = G ◦ J1 induces the canonical orientation of T ⊕ T ∗, while the
other one the opposite orientation.

3 Generalized twistor spaces

Let M be a smooth manifold of dimension n = 2m equipped with a generalized metric E
determined by a Riemannian metric g and a 2-form� on M . Denote by G = G(E) → M the
bundle overM whose fibre at a point p ∈ M consists of all generalized complex structures on
TpM compatible with the generalized metric Ep , the fibre of E at p. We call G generalized
twistor space of the generalized Riemannian manifold (M, E).

Set E ′ = E and E ′′ = E⊥, the orthogonal complement of E in T M ⊕ T ∗M with respect
to the metric 〈. , .〉. Denote by Z(E ′) the bundle over M whose fibre at a point p ∈ M is
constituted of all complex structures on the vector space E ′

p compatible with the positive
definite metric g′ = 〈. , .〉 |E ′. Define a bundle Z(E ′′) in a similar way, E ′′ being endowed
with themetric g′′ = − 〈. , .〉 |E ′′. ThenG is identifiedwith the product bundleZ(E ′)×Z(E ′′)
by the map Gp � J → (J |E ′

p, J |E ′′
p).

Suppose we are given metric connections D′ and D′′ on E ′ and E ′′, respectively, and let
D = D′ ⊕ D′′ be the connection on E ′ ⊕ E ′′ = T M ⊕ T ∗M determined by D′ and D′′.

The bundle Z(E ′) is a subbundle of the vector bundle A(E ′) of g′-skew-symmetric
endomorphisms of E ′, and similarly for Z(E ′′). Henceforth we shall consider the bundle
G ∼= Z(E ′) × Z(E ′′) as a subbundle of the vector bundle π : A(E ′) ⊕ A(E ′′) → M . The
connection on A(E ′) ⊕ A(E ′′) induced by the connection D = D′ ⊕ D′′ on E ′ ⊕ E ′′ will
again be denoted by D. It is easy to see that the horizontal space of A(E ′) ⊕ A(E ′′) with
respect to D at every point of G is tangent to G (cf. the next section). Thus the connection D
gives rise to a splitting V ⊕H of the tangent bundle of the bundle G into vertical and horizon-
tal parts. Then, following the standard twistor construction, we can define four generalized
almost complex structures Jε on the manifold G; when we need to indicate explicitly the
bundle E we hall write J E

ε .
The vertical space VJ of G at a point J ∈ G is the tangent space at J of the fibre through

this point. This fibre is the manifold G(Eπ(J )), which admits four complex structures Kε

defined in the preceding section. We define Jε|(VJ ⊕ V∗
J ) to be the generalized complex

structure determined by the complex structure Kε. Thus

Jε = Kε on VJ , Jε = −K ∗
ε on V∗

J , ε = 1, 2, 3, 4.
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The horizontal space HJ is isomorphic to the tangent space Tπ(J )M via the differential
π∗J . If πH is the restriction of π∗ toH, the image of every A ∈ TpM ⊕ T ∗

p M under the map

π−1
H ⊕ π∗

H will be denoted by Ah . Thus, for J ∈ G, Z ∈ Tπ(J )M and ω ∈ T ∗
π(J )M , we have

ωh
J (Z

h
J ) = ωπ(J )(Z). The elements of H∗

J , resp. V∗
J , will be considered as 1-forms on TJG

vanishing on VJ , resp. HJ .
Now we define a generalized complex structure J on the vector space HJ ⊕ H∗

J as
the lift of the endomorphism J of Tπ(J )M ⊕ T ∗

π(J )M by the isomorphism πH ⊕ (π−1
H )∗ :

HJ ⊕ H∗
J → Tπ(J )M ⊕ T ∗

π(J )M :

J Ah
J = (J A)hJ , A ∈ Tπ(J )M ⊕ T ∗

π(J )M.

Finally, we set Jε = J on H ⊕ H∗.

Remark 5 According toRemark 4, if n ≥ 2, the generalized almost complex structuresJε are
not B-transforms of generalized complex structures induced by complex or pre-symplectic
structures.

4 Technical lemmas

To compute the Nijenhuis tensor of the generalized almost complex structures Jε , ε =
1, 2, 3, 4, on the twistor space G we need some preliminary lemmas.

Let (U, x1, . . . , x2m) be a local coordinate system of M and {Q′
1, . . . , Q

′
2m}, {Q′′

1, . . . ,

Q′′
2m} orthonormal frames of E ′ and E ′′ on U, respectively. Define sections S′

i j , S
′′
i j , 1 ≤

i, j ≤ 2m, of A(E ′) and A(E ′′) by the formulas

S′
i j Q

′
k = δik Q

′
j − δk j Q

′
i , S′′

i j Q
′′
k = δik Q

′′
j − δk j Q

′′
i . (7)

Then S′
i j and S′′

i j with i < j form orthonormal frames of A(E ′) and A(E ′′) with respect to
the metrics G ′ and G ′′ defined by

G ′(a′, b′) = −1

2
Traceg′ (a′ ◦ b′)

for a′, b′ ∈ A(E ′), and similarly for G ′′.
For a = (a′, a′′) ∈ A(E ′) ⊕ A(E ′′), set

x̃i (a) = xi ◦ π(a), y′
kl(a) = G ′(a′, S′

kl ◦ π(a)), y′′
kl(a) = G ′′(a′′, S′′

kl ◦ π(a)). (8)

Then (x̃i , y′
jk, y

′′
jk), 1 ≤ i ≤ 2m, 1 ≤ j < k ≤ 2m, is a local coordinate system on the total

space of the bundle A(E ′) ⊕ A(E ′′).
Let

V =
∑

j<k

[

v′
jk

∂

∂y′
jk

(J ) + v′′
jk

∂

∂y′′
jk

(J )

]

(9)

be a vertical vector of G at a point J . It is convenient to set v′
i j = −v′

j i , v′′
i j = −v′′

j i
and y′

i j = −y′
j i , y

′′
i j = −y′′

j i for i ≥ j , 1 ≤ i, j ≤ 2m. Then the endomorphism V of
TpM ⊕ T ∗

p M , p = π(J ), is determined by

V Q′
i =

2m∑

j=1

v′
i j Q

′
j , V Q′′

i =
2m∑

j=1

v′′
i j Q

′′
j .
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Moreover

JεV = (−1)ε+1
∑

j<k

2m∑

s=1

[

±v′
js y

′
sk

∂

∂y′
jk

+ v′′
js y

′′
sk

∂

∂y′′
jk

]

, (10)

where the plus sign corresponds to ε = 1, 4 and the minus sign to ε = 2, 3.
Note also that, for every A ∈ TpM ⊕ T ∗

p M , we have

Ah =
2m∑

i=1

[
(〈A, Q′

i 〉 ◦ π)Q
′ h
i − (〈A, Q′′

i 〉 ◦ π)Q
′′ h
i

]
,

J Ah =
2m∑

i, j=1

[
(〈A, Q′

i 〉 ◦ π)y′
i j Q

′ h
j − (〈A, Q′′

i 〉 ◦ π)y′′
i j Q

′′ h
j

]
. (11)

For each vector field

X =
2m∑

i=1

Xi ∂

∂xi

on U, the horizontal lift Xh on π−1(U) is given by

Xh =
2m∑

l=1

(Xl ◦ π)
∂

∂ x̃l

−
∑

i< j

∑

k<l

[

y′
kl(G

′(DX S
′
kl , S

′
i j ) ◦ π)

∂

∂y′
i j

+ y′′
kl(G

′′(DX S
′′
kl , S

′′
i j ) ◦ π)

∂

∂y′′
i j

]

.

(12)

Let a = (a′, a′′) ∈ A(E ′) ⊕ A(E ′′). Denote by A(E ′
π(a)) the fiber of A(E ′) at the point

π(a) and similarly for A(E ′′
π(a)). Then (12) implies that, under the standard identification of

Ta(A(E ′
π(a)) ⊕ A(E ′′

π(a))) with the vector space A(E ′
π(a)) ⊕ A(E ′′

π(a)), we have

[Xh, Y h]a = [X, Y ]ha + R(X, Y )a, (13)

where R(X, Y )a = R(X, Y )a′ + R(X, Y )a′′ is the curvature of the connection D (for the
curvature tensor we adopt the following definition: R(X, Y ) = D[X,Y ] − [DX , DY ]). Note
also that (9) and (12) imply the well-known fact that

[V, Xh] is a vertical vector field. (14)

Notation. Let J ∈ G and p = π(J ). Take orthonormal bases {a′
1, . . . , a

′
2m}, {a′′

1 , . . . , a
′′
2m}

of E ′
p , E

′′
p such that a′

2l = Ja′
2l−1, a

′′
2l = Ja′′

2l−1 for l = 1, . . . ,m. Let {Q′
i }, {Q′′

i },
i = 1, . . . , 2m, be orthonormal frames of E ′, E ′′ in the vicinity of the point p such that

Q′
i (p) = a′

i , Q′′
i (p) = a′′

i and D Q′
i |p = 0, D Q′′

i |p = 0, i = 1, . . . , 2m.

Define a section S = (S′, S′′) of A(E ′) ⊕ A(E ′′) setting

S′Q′
2l−1 = Q′

2l , S′′Q′′
2l−1 = Q′′

2l , S′Q′
2l = −Q′

2l−1, S′′Q′′
2l = −Q′′

2l−1,

l = 1, . . . ,m. Then,

S(p) = J, DS|p = 0.
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In particular Xh
J = S∗X for every X ∈ TpM .

Clearly, the section S takes its values in G, hence the horizontal space of A(E ′) ⊕ A(E ′′)
with respect to the connection D at any J ∈ G is tangent to G.

Further on, given a smooth manifold M , the natural projections of T M ⊕ T ∗M onto T M
and T ∗M will be denoted by π1 and π2, respectively. The natural projections of H ⊕ H∗
onto H and H∗ will also be denoted by π1 and π2 when this will not cause confusion. Thus
if π1(A) = X for A ∈ T M ⊕ T ∗M , then π1(Ah) = Xh and similarly for π2(A) and π2(Ah).

We shall use the above notations throughout the next sections.
Note that, although DS|p = 0, Dπ1(S) and Dπ2(S) may not vanish at the point p since

the connection D may not preserve T M or T ∗M .

Lemma 1 If A and B are sections of the bundle T M ⊕ T ∗M near p, then

(i) [π1(Ah), π1(J Bh)]J = [π1(A), π1(SB)]hJ + R(π1(A), π1(J B))J.
(ii) [π1(J Ah), π1(J Bh)]J = [π1(SA), π1(SB)]hJ + R(π1(J A), π1(J B))J.

Proof Set X = π1(A). By (12), we have Xh
J = ∑2m

l=1 X
l(p) ∂

∂ x̃l
(J ) since DS′

kl |p =
DS′′

kl |p = 0, k, l = 1, . . . , 2m. Then, using (11), we get

[
Xh, π1(J Bh)

]

J
=

2m∑

i, j=1

[
〈B, Q′

i 〉p y′
i j (J )[Xh , π1(Q

′
j )
h]J +X p(〈B, Q′

i 〉)y′
i j (J )(π1(Q

′
j ))

h
J

]

−
2m∑

i, j=1

[
〈B, Q′′

i 〉p y′′
i j (J )[Xh, π1(Q

′′
i )

h]J +X p(〈B, Q′′
i 〉)y′′

i j (J )(π1(Q
′′
j ))

h
J

]
.

(15)

We also have

SB =
2m∑

i, j=1

[
〈B, Q′

i 〉(y′
i j ◦ S)Q′

j − 〈B, Q′′
i 〉(y′′

i j ◦ S)Q′′
j

]
. (16)

Therefore

[X, π1(SB)]p =
2m∑

i, j=1

[
〈B, Q′

i 〉p y′
i j (J )[X, π1(Q

′
j )]p + X p(〈B, Q′

i 〉)y′
i j (J )(π1(Q

′
j ))p

]

−
2m∑

i, j=1

[
〈B, Q′′

i 〉p y′′
i j (J )[X, π1(Q

′′
j )]p + X p(〈B, Q′′

i 〉)y′′
i j (J )(π1(Q

′′
j )]p

]
.

(17)

Now formula (i) follows from (15), (13) and (17). A similar computation gives (i i). ��
For any (local) section a = (a′, a′′) of A(E ′) ⊕ A(E ′′), denote by ã the vertical vector

field on G defined by

ãJ =
(
a′
π(J ) + (J |E ′) ◦ a′

π(J ) ◦ (J |E ′), a′′
π(J ) + (J |E ′′) ◦ a′′

π(J ) ◦ (J |E ′′)
)

. (18)

Let us note that for every J ∈ G we can find sections a1, . . . , as , s = 2(m2 − m), of
A(E ′) ⊕ A(E ′′) near the point p = π(J ) such that ã1, . . . , ãs form a basis of the vertical
vector space at each point in a neighbourhood of J .
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Lemma 2 Let J ∈ G and let a be a section of A(E ′) ⊕ A(E ′′) near the point p = π(J ).
Then, for any section A of the bundle T M ⊕ T ∗M near p, we have (for the Lie brackets)

(i) [π1(Ah), ã]J = (D̃π1(A)a)J .

(ii) [π1(Ah),Jεã]J = Kε(D̃π1(A)a)J .

(iii) [π1(J Ah), ã]J = ( ˜Dπ1(J A)a)J − (π1(̃a(A)))hJ .

(iv) [π1(J Ah),Jεã]J = Kε( ˜Dπ1(J A)a)J − (π1((Kεã)(A)))hJ .

Proof Let a′(Q′
i ) = ∑2m

j=1 a
′
i j Q

′
j , a

′′(Q′′
i ) = ∑2m

j=1 a
′′
i j Q

′′
j , i = 1, . . . , 2m. Then, in the

local coordinates of A(E ′) ⊕ A(E ′′) introduced above,

ã =
∑

i< j

[

ã′
i j

∂

∂y′
i j

+ ã′′
i j

∂

∂y′′
i j

]

,

where

ã′
i j = a′

i j ◦ π +
2m∑

k,l=1

y′
ik

(
a′
kl ◦ π

)
y′
l j , a′′

i j = a′′
i j ◦ π +

2m∑

k,l=1

y′′
ik

(
a′′
kl ◦ π

)
y′′
l j . (19)

Let us also note that for every vector field X on M near the point p, we have in view of (12)

Xh
J =

2m∑

i=1

Xi (p)
∂

∂ x̃i
(J ),

[

Xh,
∂

∂y′
i j

]

J

=
[

Xh,
∂

∂y′′
i j

]

J

= 0

since DS′
i j |p = DS′′

i j |p = 0. Moreover,

(
DXpa

′) (Q′
i ) =

2m∑

j=1

X p

(
a′
i j

)
Q′

j ,
(
DXpa

′′) (Q′′
i ) =

2m∑

j=1

X p

(
a′′
i j

)
Q′′

j (20)

since DQ′
i |p = DQ′′

i |p = 0. Now the lemma follows by simple computations making use
of (10) and (11). ��
Lemma 3 Let A and B be sections of the bundle T M ⊕ T ∗M near p, and let Z ∈ TpM,
W ∈ VJ . Then

(i) (Lπ1(Ah )π2(Bh))J = (Lπ1(A)π2(B))hJ .

(ii) (Lπ1(Ah)π2(J Bh))J = (Lπ1(A)π2(SB))hJ .

(iii) (Lπ1(J Ah)π2(Bh))J (Zh + W ) = (Lπ1(SA)π2(B))hJ (Z
h) + (π2(B))p(π1(W A)).

(iv)
(Lπ1(J Ah)π2(J Bh))J (Zh + W ) = (Lπ1(SA)π2(SB))hJ (Z

h)

+(π2(J B))p(π1(W A)).

Proof Formula (i) follows from (13) and (14); (i i) is a consequence of (i), (11) and (16).
A simple computations involving (11), (13), (14) and (16) gives formula (i i i); (iv) follows
from (i i i), (11) and (16). ��

The proofs of the next lemmas are also easy and will be omitted.

Lemma 4 Let A and B are sections of the bundle T M ⊕ T ∗M near p. Let Z ∈ TpM and
W ∈ VJ . Then
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(i) (d ıπ1(Ah)π2(Bh))J = (d ıπ1(A)π2(B))hJ .

(i i) (d ıπ1(Ah)π2(J Bh))J (Zh + W ) = (d ıπ1(A)π2(SB))hJ (Z
h) + (π2(WB))p(π1(A)).

(iii) (d ıπ1(J Ah)π2(Bh))J (Zh + W ) = (d ıπ1(SA)π2(B))hJ (Z
h) + (π2(B))p(π1(W A)).

(iv)
(d ıπ1(J Ah )π2(J Bh))J (Zh + W ) = (d ıπ1(SA)π2(SB))hJ (Zh) + (π2(WB))p(π1(J A))

+(π2(J B))p(π1(W A)).

Lemma 5 Let A be a section of the bundle T M ⊕ T ∗M and V a vertical vector field on G.
Then

(i) LVπ2(Ah) = 0; ıVπ2(Ah) = 0.
(ii) LVπ2(J Ah) = π2((V A)h); ıVπ2(J Ah) = 0.

Notation. Let J ∈ G. For any fixed ε = 1, . . . , 4, take a basis {U ε
2t−1,U

ε
2t = JεU ε

2t−1},
t = 1, . . . ,m2 − m, of the vertical space VJ . Let aε

2t−1 be sections of A(E ′) ⊕ A(E ′′) near
the point p = π(J ) such that aε

2t−1(p) = U ε
2t−1 and Daε

2t−1|p = 0. Define vertical vector
fields ãε

2t−1 by (18). Then {̃aε
2t−1,Jεãε

2t−1}, t = 1, . . . ,m2 − m, is a frame of the vertical
bundle on G near the point J . Denote by {βε

2t−1, β
ε
2t } the dual frame of the bundle V∗. Then

βε
2t = Jεβ

ε
2t−1.

Under these notations, we have the following.

Lemma 6 Let A be a section of the bundle T M ⊕ T ∗M near the point p = π(J ). Then for
every Z ∈ TpM, s, r = 1, . . . , 2(m2 − m) and ε = 1, . . . , 4, we have

(i) (Lπ1(Ah )β
ε
s )J (Z

h +U ε
r ) = −βε

s (R(π1(A), Z)J ).

(ii) (Lπ1(J Ah)β
ε
s )J (Z

h +U ε
r ) = −βε

s (R(π1(J A), Z)J ).

(iii) (Lπ1(Ah)Jεβ
ε
s )J (Z

h +U ε
r ) = −(Jεβ

ε
s )(R(π1(A), Z)J ).

(iv) (Lπ1(J Ah )Jεβ
ε
s )J (Z

h +U ε
r ) = −(Jεβ

ε
s )(R(π1(J A), Z)J ).

Proof By (13), if X = π1(A),

(Lπ1(Ah)β
ε
s

)
J

(
Zh +U ε

r

)
= −βε

s (R(X, Z)J ) − 1

2
βε
s

([
Xh, ãε

r

]

J

)
.

By Lemma 2,
[
Xh, aε

2t−1

]

J
=

(
D̃Xaε

2t−1

)

J
= 0,

[
Xh, aε

2t

]

J
=

[
Xh,Jεã

ε
2t−1

]

J
= Kε

(
D̃Xaε

2t−1

)

J
= 0

since Daε
2t−1|p = 0. This proves the first identity of the lemma. To prove the second one, we

note that if f is a smooth function on G and Y is a vector field on M , (L f Y hβε
s )J (Z

h +U ε
r ) =

f (LY hβε
s )J (Z

h + U ε
r ) since βε

s (Y
h) = 0. Now (i i) follows from (11) and the first identity

of the lemma. Identities (i i i) and (iv) are straightforward consequences from (i) and (i i),
respectively, since Jεβ

ε
2t−1 = βε

2t , Jεβ
ε
2t = −βε

2t−1, t = 1, . . . ,m2 − m. ��

5 The Nijenhuis tensor

Notation. We denote the Nijenhuis tensor of Jε by Nε, ε = 1, 2, 3, 4.
Moreover, given J ∈ G and A, B ∈ TpM ⊕ T ∗

p M , p = π(J ), we define 1-forms on VJ

setting

ωε
A,B(W ) = 〈(K1W − KεW )(A), B〉 − 〈(K1W − KεW )(B), A〉 , W ∈ VJ .
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Also, let S be a section of G in a neighbourhood of the point p = π(J ) such that S(p) = J
and DS|p = 0 (S being considered as a section of A(E ′) ⊕ A(E ′′)).

Proposition 9 Let J ∈ G, A, B ∈ Tπ(J )M ⊕ T ∗
π(J )M, V,W ∈ VJ , ϕ,ψ ∈ V∗

J . Then,
denoting the projection operators onto the horizontal and vertical components by H ⊕ H∗
and V ⊕ V∗, we have:

(i)
(H ⊕ H∗)Nε(Ah, Bh)J = (−[A, B] + [SA, SB] − S[A, SB] − S[SA, B])hJ .
(ii)

(V ⊕ V∗)Nε(A
h, Bh)J = −R(π1(A), π1(B))J + R(π1(J A), π1(J B))J

−KεR(π1(J A), π1(B))J − KεR(π1(A), π1(J B))J

−ωε
A,B .

(iii)
Nε(A

h, V )J = (−(KεV )A + (K1V )A)hJ .

(iv)

Nε(Ah, ϕ)J ∈ HJ ⊕ H∗
J and

〈π∗Nε(Ah, ϕ)J , B〉 = −1

2
ϕ(VNε(A

h, Bh)J ).

(v)

Nε(V + ϕ,W + ψ)J = 0.

Proof Formula (i) follows from identity (13) and Lemmas 1, 3, 4. Also, the vertical part of
Nε(Ah, Bh)J is equal to

VNε(A
h, Bh)J = −R(π1(A), π1(B))J + R(π1(J A), π1(J B))J

−JεR(π1(A), π1(J B))J − JεR(π1(J A), π1(B))J.

The part of Nε(Ah, Bh)J lying in V∗
J is the 1-form whose value at every vertical vectorW is

(V∗Nε(A
h, Bh)J )(W ) = −1

2
[π2(J A)(π1(WB)) + π2(WB)(π1(J A))

−π2(B) (π1((KεW )A)) − π2 ((KεW )A) (π1(B))]

+1

2
[π2(J B)(π1(W A)) + π2(W A)(π1(J B))

−π2(A) (π1((KεW )B)) − π2 ((KεW )B) (π1(A))]

= − [〈J A,WB〉 − 〈(KεW )A, B〉] + [〈J A,WB〉 − 〈(KεW )B, A〉] .
Note also that

〈J A,WB〉 = 〈JW (A), B〉 = 〈K1W (A), B〉 .

It follows that

V∗Nε(A
h, Bh)J = −ωε

A,B .

This proves (i i).
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To prove (i i i) take a section a of A(M) near the point p such that a(p) = V and∇a|p = 0.
Let ã be the vertical vector field defined by (18). Then it follows from Lemmas 2 and 5 that

Nε(A
h, V )J = 1

2
Nε(A

h, ã)J = (−(KεV )(A) + (J ◦ V )A)hJ .

To prove (iv) let us take the vertical co-frame {βε
2t−1, β

ε
2t }, t = 1, . . . ,m2 − m, defined

before the statement of Lemma 6. Set ϕ = ∑2(m2−m)
s=1 ϕε

s β
ε
s , ϕs ∈ R. Let E1, . . . , E2m be a

basis of TpM and ξ1, . . . , ξ2m its dual basis. Then, by Lemma 6, we have

Nε(A
h , ϕ)J =

2(m2−m)∑

s=1

ϕε
s Nε(A

h , βε
s )J

=
2(m2−m)∑

s=1

2m∑

k=1

ϕε
s

{[
βε
s (R(π1(A), Ek )J ) + βε

s (KεR(π1(J A), Ek )J )
]
(ξk )

h
J

+ [
βε
s (R(π1(J A), Ek )J ) − βε

s (KεR(π1(A), Ek )J )
]
(Jξk )

h
J

}
. (21)

Moreover, note that

〈ξk, B〉 = 1

2
ξk(π1(B)) and 〈Jξk, B〉 = − 〈ξk, J B〉 = −1

2
ξk(π1(J B)).

Therefore

2m∑

k=1

〈ξk, B〉 Ek = 1

2
π1(B) and

2m∑

k=1

〈Jξk, B〉 Ek = −1

2
π1(J B).

Now (iv) is an obvious consequence of (21) and formula (i i).
Finally, identity (v) follows from the fact that the generalized almost complex structure

Jε on every fibre of G is induced by a complex structure. ��

6 Integrability conditions for generalized almost complex structures on
generalized twistor spaces

Proposition 10 The generalized almost complex structures J2,J3,J4 are never integrable.

Proof Let p ∈ M and take orthonormal bases {Q′
1, . . . , Q

′
2m}, {Q′′

1, . . . , Q
′′
2m} of E ′

p and E
′′
p ,

respectively.Let J ′ and J ′′ be the complex structures on E ′
p and E

′′
p forwhich J

′Q′
2k−1 = Q′

2k
and J ′′Q′′

2k−1 = Q′′
2k , k = 1, ..,m. Then J = J ′ + J ′′ is a generalized complex structure on

the vector space TpM compatible with the generalizedmetric Ep . Define endomorphisms S′
i j

and S′′
i j by (7). Then V ′ = S′

13 + S′
42 and V ′′ = S′′

13 + S′′
42 are vertical tangent vectors of G at

the point J . By Proposition 9 (i i i), N2(Q′′h
1 , V ′′) = N4(Q′′h

1 , V ′′) = 2Q′′h
4 , N3(Q′h

1 , V ′) =
2Q′h

4 . ��
6.1 The case of the connection determined by a generalized metric

Let D′ = ∇E ′
be the connection on E ′ = E determined by the generalized metric E

(Proposition 7). The image of this connection under the isomorphism prT M |E : E → T M
will be denoted by ∇. The connection ∇ has a skew-symmetric torsion g(T (X, Y ), Z) =
d�(X, Y, Z), X, Y, Z ∈ T M .
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We define a connection D′′ on E ′′ transferring the connection ∇ on T M to E ′′ by means
of the isomorphism prT M |E ′′ : E ′′ → T M . Since this isomorphism is an isometry with
respect to the metrics g′′ = − 〈. , .〉 |E ′′ and g, we get a metric connection on E ′′. As in the
preceding section, define a connection D on T M ⊕ T ∗M setting D = D′ on E ′ = E and
D = D′′ on E ′′.

The connections induced by ∇ on the bundles obtained from T M by algebraic operations
like T ∗M , T M ⊕ T ∗M , etc. will also be denoted by ∇.

Every section of E ′ is of the form S′ = X + g(X) + �(X) for a unique vector field X
and we have

DZ S
′ = ∇Z X + g(∇Z X) + �(∇Z X), Z ∈ T M, (22)

while

∇Z S
′ = ∇Z X + g(∇Z X) + �(∇Z X) + (∇Z�)(X).

Similarly for a section S′′ = X − g(X) + �(X) of E ′′

DZ S
′′ = ∇Z X − g(∇Z X) + �(∇Z X), Z ∈ T M, (23)

and

∇Z S
′ = ∇Z X − g(∇Z X) + �(∇Z X) + (∇Z�)(X).

Thus ∇ preserves E ′ or E ′′ if and only if ∇� = 0. Of course, this condition is not satisfied
in general. For example, if � is a closed 2-form, which is not parallel with respect to the
Levi-Civita connection ∇LC , we have ∇� = ∇LC� �= 0.

It follows from (5), (22) and (23) that if α is a one form on M and Z ∈ T M ,

DZα = DZαE ′ + DZαE ′′ = g(∇Z g
−1(α)). (24)

Hence, DZα coincides with the covariant derivative of α with respect to the connection ∇
on T ∗M :

Dα = ∇α. (25)

On the other hand, if X is a vector field on M and Z ∈ T M , we have by (4), (22) and (23)

DZ X = DZ XE ′ + DZ XE ′′ = ∇Z X − g(∇Z {(g−1 ◦ �)(X)}) + �(∇Z X).

Moreover, for every vector field Y ,

g
(∇Z {(g−1 ◦ �)(X)}) (Y ) = Z

(
g((g−1 ◦ �)(X), Y )

) − g
(
(g−1 ◦ �)(X),∇ZY

)

= Z(�(X, Y )) − �(X,∇ZY ) = (∇Z�)(X, Y ) + �(∇Z X, Y ).

Thus
DZ X = ∇Z X − (∇Z�)(X). (26)

Therefore the connection D does not preserves T M in general. In particular, the connection
D on T M ⊕ T ∗M is different from the connection on this bundle induced by ∇; the two
connections coincide if and only if ∇� = 0.

Denote by Z = Z(T M, g) the bundle over M whose fibre at a point p ∈ M consists of
complex structures on TpM compatible with the metric g (the usual twistor space of (M, g)).
ConsiderZ as a submanifold of the bundle A(T M) of g-skew-symmetric endomorphisms of
T M . The projections prT M |E ′ : E ′ → T M and prT M |E ′′ : E ′′ → T M yield an isometric
bundle-isomorphism A(E ′)⊕ A(E ′′) → A(T M)⊕ A(T M) sending the connection D′ ⊕D′′
to the connection ∇ ⊕ ∇. The restriction of this map to Z(E ′) × Z(E ′′) ∼= G yields an
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isomorphism of G onto Z × Z given by G � J → (J1, J2), where J1 = (prT |E ′) ◦ J ◦
(prT |E ′)−1, J2 = (prT |E ′′) ◦ J ◦ (prT |E ′′)−1. In the case when M is oriented it identifies
the connected components of G with the four product bundlesZ± ×Z±,Z± being the bundle
over M whose sections are the almost complex structures on M compatible with the metric
and ± the orientation.

Proposition 11 (H⊕H∗)Nε(Ah, Bh)J = 0 for every J ∈ G and every A, B ∈ T M⊕T ∗M
if and only if d� = 0.

Proof Let J ∈ G and let S = (S′, S′′) be a section of G in a neighbourhood of the point
p = π(J ) with the properties that S(p) = J and DS|p = 0.

According to Proposition 9 (i), (H ⊕ H∗)Nε(Ah, Bh)J = 0 if and only if the Nijenhuis
tensor NS of the generalized almost complex structure S on M vanishes at the point p. Let
S1 and S2 be the almost complex structures on M determined by S,

S1 = (π1|E ′) ◦ S′ ◦ (π1|E ′)−1, S2 = (π1|E ′′) ◦ S′′ ◦ (π1|E ′′)−1.

These structures are compatible with the metric g and we denote their fundamental 2-forms
by �1 and �2, respectively:

�1(X, Y ) = g(X, S1Y ), �2(X, Y ) = g(X, S2Y ), X, Y ∈ T M.

Denote by K the generalized complex structure on M with the block-matrix

K = 1

2

(
S1 + S2 �−1

1 − �−1
2−(�1 − �2) −(S∗

1 + S∗
2 )

)
.

By Proposition 1, the generalized complex structure S is the B-transform of K by means of
the form �:

S = e�Ke−�.

Let NK be the Nijensuis tensor of the generalized almost complex structure K . Set

A = X + α, B = Y + β, K A = X̂ + α̂, K B = Ŷ + β̂, (27)

where X, Y, X̂ , Ŷ ∈ T M and α, β, α̂, β̂ ∈ T ∗M . Then, by Proposition 4 and the fact that
e−�|T ∗M = I d ,

NS(e
�A, e�B) = e�NK (A, B) − ıY ıXd� + ıŶ ı X̂ d�

−e�K (ıY ı X̂ d� + ıŶ ıX d�).

It follows that (H ⊕ H∗)Nε(Ah, Bh)J = 0 for every A, B ∈ T M ⊕ T ∗M if and only if at
the point p = π(J )

NK (A, B) = ıY ıXd� − ıŶ ı X̂ d� + K (ıY ı X̂ d� + ıŶ ıX d�). (28)

We have

∇S1 = (π1|E ′) ◦ (DS′) ◦ (π1|E ′)−1

since the connection ∇ on T M is obtained from the connection D|E ′ = ∇E ′
by means of

the isomorphism π1|E ′ : E ′ → T M . In particular ∇S1|p = 0. Similarly, ∇S2|p = 0. Then
∇S∗

k |p = 0, k = 1, 2, and ∇�k |p = −∇(g ◦ Sk)|p = 0, ∇�−1
k = ∇(Sk ◦ g−1)|p = 0

since ∇g = ∇g−1 = 0. It follows that ∇K |p = 0. Extend X and α to a vector field X and
a 1-form α on M such that ∇X |p = 0 and ∇α|p = 0; similarly for Y and β. In this way we
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obtain sections A = X + α and B = Y + β of T M ⊕ T ∗M such that ∇A|p = ∇B|p = 0
and ∇K A|p = ∇K B|p = 0.

In order to compute NK (A, B) we need the following simple observation: Let Z be a
vector field and ω a 1-form on M such that ∇Z |p = 0 and ∇ω|p = 0. Then, for every
Z ′ ∈ TpM ,

(LZω)(Z ′)p = (∇Zω)(Z ′)p + ω(T (Z , Z ′) = ω(T (Z , Z ′)),
(d ıZω)(Z ′)p = Z ′

p(ω(Z)) = (∇Z ′ω)(Z)p = 0,

where T (Z , Z ′) is the torsion tensor of the connection∇. For Z ∈ T M , let ıZ T : T M → T M
be the map Z ′ → T (Z , Z ′). Then, under the notation in (27), we have

NK (A, B) = T (X, Y ) − T (X̂ , Ŷ ) + α(ıY T ) − β(ıX T ) − α̂(ıŶ T ) + β̂(ı X̂ T )

+ K
[
T (X̂ , Y ) + T (X, Ŷ ) + α̂(ıY T ) − β(ı X̂ T ) + α(ıŶ T ) − β̂(ıX T )

]
. (29)

If α = g(X ′) for some (unique) X ′ ∈ T M , we have

α(ıY T ) = g(T (X ′, Y )) = ıY ıX ′d�, Y ∈ T M,

and

K (α ◦ ıY T ) = 1

2

[(
�−1

1 − �−1
2

)
ıY ıX ′d� − (S∗

1 + S∗
2 )ıY ıX ′d�

]

Moreover, g(T (X, Y )) = ıY ıXd� for every X, Y ∈ T M , hence

K (T (X, Y )) = 1

2

[(
�−1

1 + �−1
2

)
ıY ıXd� − (S∗

1 − S∗
2 )ıY ıXd�

]
.

Note also that

X̂ = 1

2
[S1(X + X ′) + S2(X − X ′)],

α̂ = 1

2
[g(S1(X + X ′) − S2(X − X ′))].

Now suppose that

(H ⊕ H∗)Nε(A
h, Bh)J = 0, A, B ∈ T M ⊕ T ∗M.

Then, by (28),

NK (g(X), g(Y )) = 1

4
ı(S1X−S2X)ı(S1Y−S2Y )d�. (30)

Therefore the tangential component of NK (g(X), g(Y )) vanishes. Hence by (29)

−T (S1X − S2X, S1Y − S2Y )

−
(
�−1

1 − �−1
2

)
ı(S1X−S2X)ıY d� +

(
�−1

1 − �−1
2

)
ı(S1Y−S2Y )ıXd� = 0.

Applying the map g to both sides of the latter identity we obtain by means of the identities
g ◦ �−1

k = −S∗
k that for every X, Y, Z ∈ TpM

d�(S1X − S2X, Y, S1Z − S2Z) + d�(X, S1Y − S2Y, S1Z − S2Z)

= −d�(S1X − S2X, S1Y − S2Y, Z). (31)
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Applying (31) for the generalized almost complex structure determined by the complex
structures (−S1, S2) on TpM and comparing the obtained identity with (31) we see that

d�(S1X, Y, S1Z) + d�(S2X, Y, S2Z) + d�(X, S1Y, S1Z) + d�(X, S2Y, S2Z)

= −d�(S1X, S1Y, Z) − d�(S2X, S2Y, Z). (32)

Computing the co-tangential component of NK (g(X), g(Y )) by means of (29), then apply-
ing identity (30) for the generalized almost complex structures determined by (S1, S2) and
(−S1, S2), we obtain

−d�(S1X, Y, S1Z) + d�(S2X, Y, S2Z) − d�(X, S1Y, S1Z) + d�(X, S2Y, S2Z)

= d�(S1X, S1Y, Z) − 3d�(S2X, S2Y, Z). (33)

It follows from (32) and (33) that

d�(S2X, Y, S2Z) + d�(X, S2Y, S2Z) = −2d�(S2X, S2Y, Z).

Hence

2d�(X, Y, Z) = d�(X, S2Y, S2Z) + d�(S2X, Y, S2Z).

The latter identity holds if and only if it holds for every X, Y, Z ∈ TpM with |X | = |Y | = 1,
X ⊥ Y . Given three tangent vectors with these properties, there exists a complex structure
S2 on TpM such that Y = S2X . It follows that

d�(X, Y, Z) = 0, X, Y, Z ∈ TpM.

Conversely, if d� = 0, then T = 0 and we have NK = 0 by (29). Thus the condition (28) is
trivially satisfied. Therefore

(H ⊕ H∗)Nε(A
h, Bh)J = 0, A, B ∈ T M ⊕ T ∗M.

��
Suppose that M is oriented and dim M = 4k. Then the above proof still holds true if we,

instead of G, consider a connected component of it. Indeed, the almost complex structures
S1 and −S1 induce the same orientation and, moreover, the complex structure S2 with the
property Y = S2X used at the end of the proof can be chosen to induce the given or the
opposite orientation of M . Thus we have the following.

Proposition 12 If M is oriented and dim M = 4k, then

(H ⊕ H∗)Nε(A
h, Bh)J = 0

for every J in a connected component of G and every A, B ∈ T M ⊕ T ∗M if and only if
d� = 0.

Considering the double orientable covering of M , if necessary, we may assume that M
itself is orientable. Fix an orientation on M . Denote by G++ the subbundle of G whose fibre
at a point p ∈ M consists of generalized complex structures J on TpM compatible with the
generalized metric Ep and such that the complex structures J1 and J2 on TpM determined by
J via (3) induce the orientation of TpM . We define subbundles G−−, G+−, G−+ in a similar
way. These are the connected components of the space G.
Convention. Henceforth we assume that M is oriented and of dimension 4k.
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Recall that if R is the curvature tensor of the Levi-Civita connection of (M, g), the cur-
vature operator R is the self-adjoint endomorphism of 	2T M defined by

g(R(X ∧ Y ), Z ∧ T ) = g(R(X, Y )Z , T ), X, Y, Z , T ∈ T M.

The metric on 	2T M used in the left-hand side of the latter identity is defined by

g(X1∧X2, X3∧X4) = g(X1, X3)g(X2, X4) − g(X1, X4)g(X3, X4).

As iswell-known, the curvature operator decomposes as (see, for example, [2, Section1G,H])

R = s

n(n − 1)
I d + B + W, (34)

where s is the scalar curvature of the manifold (M, g) and B, W correspond to its traceless
Ricci tensor andWeyl conformal tensor, respectively. If ρ : T M → T M is the Ricci operator,
g(ρ(X), Y ) = Ricci(X, Y ), the operator B is given by

B(X ∧ Y ) = 1

n − 2

[
ρ(X) ∧ Y + X ∧ ρ(Y ) − 2s

n
X ∧ Y

]
, X, Y ∈ T M. (35)

Thus, a Riemannian manifold is Einstein exactly when B = 0; it is conformally flat when
W = 0.

If the dimension of M is four, the Hodge star operator defines an involution ∗ of 	2T M
and we have the orthogonal decomposition

	2T M = 	2−T M ⊕ 	2+T M,

where 	2±T M are the subbundles of 	2T M corresponding to the (±1)-eigenvalues of the
operator ∗. Accordingly, the operatorW has an extra decompositionW = W+ +W− where
W± = W on	2±T M andW± = 0 on	2∓T M . The operatorB does not have a decomposition
of this type since it maps 	2±T M into 	2∓T M .

Recall also that a Riemannianmanifold (M, g) is called self-dual (anti-self-dual), ifW− =
0 (resp. W+ = 0).

According to Propositions 9 and 12, the restriction of the generalized almost complex
structure J1 to a connected component G̃ of G is integrable if and only if d� = 0 and for
every p ∈ M , A, B ∈ TpM , and for every generalized complex structure J ∈ G̃ on TpM

−R(π1(A), π1(B))J + R(π1(J A), π1(J B))J

−K1R(π1(J A), π1(B))J − K1R(π1(A), π1(J B))J = 0,

where R is the curvature tensor of the connection D on the bundle A(E ′)⊕ A(E ′′). If (J1, J2)
are the complex structures on TpM determined by J , the latter identity is equivalent to the
identities

−R(π1(A), π1(B))Jr + R(π1(J A), π1(J B))Jr

−Jr ◦ R(π1(J A), π1(B))Jr − Jr ◦ R(π1(A), π1(J B))Jr = 0, r = 1, 2, (36)

where R is the curvature tensor on the bundle A(T M) of skew-symmetric endomorphism of
T M induced by the connection ∇.

Assume that d� = 0. Then ∇ is the Levi-Civita connection of the Riemannian manifold
(M, g). Every A ∈ E ′

p is of the form A = X + g(X) + �(X) for some (unique) X ∈ TpM
and J A = J1X + g(J1X) + �(J1X). Similarly, if B ∈ E ′′

p , then B = Y − g(Y ) + �(Y ),
Y ∈ TpM and J B = J2Y − g(J2Y ) + �(J2Y ). It follows that the identity (36) is equivalent
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to the condition that for every X, Y, Z ,U ∈ TpM and every complex structures (J1, J2) on
TpM corresponding to a generalized complex structure J in G̃

g(R(X ∧ Y − J j X∧J lY ), Z∧U − Jr Z∧JrU )

= g(R(J j X ∧ Y + X∧J lY ), Jr Z∧U + Z∧JrU ),

j, l, r = 1, 2. (37)

The complex structures (J1, J2) in the latter identities are compatible with the metric g
and, moreover, they induce the orientation of TpM if we consider the connected component
G̃ = G++, while (J1, J2) induce the opposite orientation in the case G̃ = G−−. If G̃ = G+−,
the complex structure J1 induces the given orientation of TpM and J2 yields the opposite
one, and vice versa if G̃ = G−+.

For j = l = r identity (37) coincides with the integrability condition for the Atiyah-
Hitchin-Singer almost complex structure [1] on the positive or negative twistor space of
(M, g), the fibre bundles over M whose fibre at every point p ∈ M consists of the complex
structures on TpM compatiblewith themetric and± the orientation of TpM (see, for example,
[26, Section 5.19]). It is also well known that this integrability condition is equivalent to
(M, g) being conformally flat if dim M ≥ 6. If dim M = 4 the integrability condition
is equivalent to anti-self-duality of (M, g) in the case of positive twistor spaces and to its
self-duality when considering the negative twistor space.

Theorem 1 (I) Suppose that dim M = 4.
(a) The restriction of the generalized complex structure J1 to G++ is integrable if and

only if (M, g) is anti-self-dual and Ricci flat.
(b) The restriction J1|G−− is integrable if and only if (M, g) is self-dual and Ricci flat.
(II) If dim M = 4k ≥ 6, each of the restrictions of J1 to G++ and G−− is integrable if

and only if the manifold (M, g) is flat.

Proof Let E1, . . . , En be an oriented orthonormal basis of a tangent space TpM . It is con-
venient to set Eab = Ea ∧ Eb and ρab = Ricci(Ea, Eb), a, b = 1, . . . , n.

Suppose that the structure J1|G++ is integrable. Let J1 and J2 be complex structures on
TpM for which J1E1 = E3, J1E2 = −E4 and J2E1 = E4, J2E2 = E3. Identity (37) with
j = l = 1, r = 2, and (X, Y, Z ,U ) = (E1, E2, E3, E4) gives

g(R(E12 + E34), E12 + E34) + g(R(E14 + E23), E13 + E42) = 0. (38)

If dim M = 4, then E12 + E34, E14 + E23 ∈ 	2+TpM and W+ = 0, hence

W(E12 + E34) = W(E14 + E23) = 0.

If dim M ≥ 6, we have W = 0. Thus, in both cases by (34),

g(R(E12 + E34), E12 + E34) + g(R(E14 + E23), E13 + E42)

= 2s

n(n − 1)
+ g(B(E12 + E34), E12 + E34) + g(B(E14 + E23), E13 + E42).

By (35)

g(B(E12 + E34), E12 + E34) = 1

n − 2

[
ρ11 + ρ22 + ρ33 + ρ44 − 4s

n

]
,

g(B(E14 + E23), E13 + E42) = 0.

123



Generalized metrics and generalized twistor spaces 41

Then by (38)

2s

n(n − 1)
+ 1

n − 2

[
ρ11 + ρ22 + ρ33 + ρ44 − 4s

n

]
= 0.

In a similar way we see that

2s

n(n − 1)
+ 1

n − 2

[
ρ4i−3,4i−3 + ρ4i−2,4i−2 + ρ4i−1,4i−1 + ρ4i,4i − 4s

n

]
= 0

for i = 1, 2, . . . , k. Summing up these identities we get s = 0.
In order to show that B = 0 we apply identity (37) with j = 1, l = 2 and take J1, J2

to be the complex structures introduced above. Subtracting the identities corresponding to
X = Y = E2 and X = Y = E3, we get

g(R(E13 − E42), Z∧U − Jr Z∧JrU ) = −g(R(E12 − E34), Jr Z∧U + Z∧JrU ).

Subtraction of the identities corresponding to X = Y = E1 and X = Y = E4 gives

g(R(E13 − E42), Z∧U − Jr Z∧JrU ) = g(R(E12 − E34), Jr Z∧U + Z∧JrU ).

Thus

g(R(E13 − E42), Z∧U − Jr Z∧JrU ) = 0 = g(R(E12 − E34), Jr Z∧U + Z∧JrU ). (39)

If dim M = 4, every 2-vector of the form Z∧U − Jr Z∧JrU lies in 	2+TpM since Jr is
compatible with the metric and orientation of TpM . Therefore W(Z∧U − Jr Z∧JrU ) =
W(Jr Z∧U + Z∧JrU ) = 0. If dim M ≥ 6, this is obvious. Then the first identity in (39)
with r = 1 and (Z ,U ) = (E1, E3) gives

g(B(E13 − E42), E13 + E42) = 0.

It follows by (35) that

ρ11 − ρ22 + ρ33 − ρ44 = 0.

Applying the latter identity for the basis E1, E3, E4, E2, E5, . . . , En , we get

ρ11 − ρ22 − ρ33 + ρ44 = 0.

Therefore ρ11 = ρ22. It follows that ρ11 = ρaa for a = 1, . . . , n. This implies ρaa = 0 for
every a = 1, . . . , n since the scalar curvature vanishes. Moreover, the first identity in (39)
for r = 2 and (Z ,U ) = (E1, E2) reads as

g(B(E13 − E42), E12 + E34) = 0.

This gives −ρ14 + ρ23 = 0. Similarly, it follows from the second identity in (39) with r = 1
and (Z ,U ) = (E2, E2) that ρ14 + ρ23 = 0. Hence ρ14 = ρ23 = 0. It follows that ρab = 0,
a �= b. Therefore Ricci = 0.

Conversely, it is obvious that identity (37) is satisfied if (M, g) is flat. In the case when
s = 0 and B = W+ = 0, identity (37) is also trivially satisfied since for every X, Y ∈ TpM
and every complex structure J on TpM compatible with the metric and orientation, the
2-vector X ∧ Y − J X∧JY lies in 	2+TpM , so R(X ∧ Y − J X∧JY ) = 0.

This proves statements I (a) and I I . Statement I (b) is an obvious corollary of I (a) by
reversing the orientation of M . ��

123



42 J. Davidov

Remark 6 By a result of Hitchin [18] if M is a compact anti-self-dual, Ricci flat four-
dimensional manifold, then either M is flat or is a K3-surface, an Enriques surface or the
quotient of an Enriques surface by a free anti-holomorphic involution.

Theorem 2 Each of the restrictionsJ1|G+− andJ1|G−+ is an integrable generalized almost
complex structure if and only (M, g) is of constant sectional curvature.

Proof Suppose that J1|G+− is integrable. Then, by the preceding remarks, if dim M = 4,
(M, g) is both anti-self-dual and self-dual, henceW = 0; if dim M ≥ 6,we also haveW = 0.
Take an orthonormal oriented basis E1, . . . , En of a tangent space TpM and consider (37)
with j = 1, l = r = 2. Take for J1 and J2 the complex structures on TpM for which
J1E1 = E3, J1E4 = E2 and J2E1 = E4, J2E2 = −E3. Adding the identities corresponding
to (X, Y ) = (E1, E2) and (X, Y ) = (E3, E4), we get

g(R(E12 + E34), Z ∧U − J2Z ∧ J2U ) + g(R(E14 + E23), J2Z ∧U + Z ∧ J2U ) = 0.

For (Z ,U ) = (E1, E2), this gives

g(R(E12 + E34), E12 − E34) − g(R(E14 + E23), E13 − E42) = 0.

Then, since W = 0, we obtain by means of (35)

ρ11 + ρ22 − ρ33 − ρ44 − 2(ρ12 + ρ34) = 0.

Applying this identity for the basis (−E1, E2,−E3, E4, E5, . . . , En) we have

ρ11 + ρ22 − ρ33 + ρ44 + 2(ρ12 + ρ34) = 0.

Hence

ρ11 + ρ22 = ρ33 + ρ44, ρ12 = −ρ34.

The first of these identities imply

ρ11 + ρ22 = ρaa + ρbb for a �= b, a, b = 1, . . . , n.

It follows that

ρaa + ρbb = s

2k
, a �= b.

Applying the aboveobtained identityρ12 = −ρ34 for the basis (E2, E1,−E3, E4, E5, . . . , En)

we get ρ12 = ρ34, thus ρ12 = ρ34 = 0. It follows that

ρab = 0, a �= b.

Now we note that the condition B = 0 is equivalent to

ρaa + ρbb − 2s

n
= 0, ρab = 0, a �= b, a, b = 1, . . . , n.

Thus we can conclude that B = 0. Therefore R = s

n(n − 1)
I d , i.e. (M, g) is of constant

sectional curvature.
Conversely, if R = s

n(n − 1)
I d , a straightforward computation shows that identity (37)

is satisfied. ��
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7 Natural isomorphisms of generalized twistor spaces

(I) Let f : A(E ′) ⊕ A(E ′′) → A(E ′) ⊕ A(E ′′) be the bundle isomorphism a = (a′, a′′) →
(a′,−a′′). The differential of this isomorphism preserves the horizontal lifts, f∗Xh

a = Xh
f (a),

and if V = (V ′, V ′′) is a vertical vector, f∗V = (V ′,−V ′′). The restriction of f to the
generalized twistor space G is an automorphism of G. The automorphism F = f∗ ⊕ ( f −1)∗
of TG ⊕ T ∗G preserves the horizontal and vertical subbundles and sends the generalized
almost complex structure Jε to the structure J̄ε given by J̄εAh

J = (F−1(J )A)hJ for A ∈
Tπ(J )M ⊕ T ∗

π(J )M and J̄ε = Jε on V ⊕ V∗. By Proposition 5, J̄ε is integrable if and only
if Jε is so.
(II) Now for a = (a′, a′′) ∈ A(E ′) ⊕ A(E ′′) set

a1 = prT M |E ′ ◦ a′ ◦ (prT M |E ′)−1, a2 = prT M |E ′′ ◦ a′′ ◦ (prT M |E ′′)−1.

Let ϕ be the automorphism a → b = (b′, b′′) of A(E ′) ⊕ A(E ′′) defined by

b′ = (prT M |E ′)−1 ◦ a2 ◦ prT M |E ′, b′′ = (prT M |E ′′)−1 ◦ a1 ◦ prT M |E ′′.

The differential ϕ∗ preserves the horizontal lifts. Clearly, if J ∈ G gives rise to the complex
structures (J1, J2) on Tπ(J )M , thenϕ(J ) ∈ G is the generalized complex structure on Tπ(J )M
determined by the pair (J2, J1). Moreover, if V ∈ VJ gives rise to the tangent vector (V1, V2)
of Z(Tπ(J )M, g) × Z(Tπ(J )M, g) at (J1, J2), then ϕ∗V is the vertical vector of G at ϕ(J )

determined by (V2, V1).
(III) Let (M,J ) and (N ,K) be two generalized complex manifolds. Every diffeomorphism
f : M → N induces a bundle isomorphism F = f∗ ⊕ f∗−1 : T M ⊕ T ∗M → T N ⊕ T ∗N and
the identity F ◦ J = K ◦ F is a natural generalization of the condition for a map between
complex manifolds to be holomorphic. The diffeomorphisms are not the only symmetries
of the generalized complex structures, the B−transforms are also symmetries. Thus we say
that (M,J ) and (N ,K) are equivalent if there is a diffeomorphism f : M → N and a closed
2-form B on M such that F ◦ eBJ e−B = K◦ F (this is really an equivalence relation). Since
the form B is closed, each of two equivalent generalized almost complex structures J and
K is integrable if and only if the other one is so.

Let Ê be the B-transform of E by a 2-form � on M . Then we have a natural diffeomor-
phism β of the generalized twistor spaces G = G(E) and Ĝ = G(Ê) sending a generalized
complex structure J ∈ G to its B-transform Ĵ = e� Je−� .

Denote by D and D̂ the connections on T M⊕T ∗M determined by the generalizedmetrics
E and Ê , respectively, as in Sect. 6.1. Let J = J E

1 and Ĵ = J Ê
1 be the generalized almost

complex structures on G and Ĝ defined by means of the connections D and D̂. If the form
� is closed, these generalized almost complex structures are equivalent in a natural way.
Indeed, set E ′ = E , Ê ′ = Ê . The B-transform by � is an orthogonal transformation of
T M ⊕ T ∗M , thus it sends E ′′ = E⊥ onto Ê ′′ = Ê⊥, the orthogonal complements being
taken with respect to the metric 〈. , .〉. Let ∇ and ∇̂ be the connections on T M obtained
by transferring D′ = D|E and D̂′ = D̂|Ê . Recall that, on a Riemannian manifold (M, g),
there is a unique metric connection with a given torsion T (for an explicit formula see, for
example, [12, Sec. 3.5, formula (14)]). If the torsion 3-form T (X, Y, Z) = g(T (X, Y ), Z) is
skew-symmetric this connection can be written as ∇LC + 1

2T where ∇LC is the Levi-Civita
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connection of (M, g). Thus

∇XY = ∇LC
X Y − 1

2
g−1(ıX ıY d�),

∇̂XY = ∇LC
X Y − 1

2
g−1(ıX ıY d�) − 1

2
g−1(ıX ıY d�).

Hence

∇̂XY = ∇XY − 1

2
g−1(ıX ıY d�).

Suppose that the form � is closed, so that ∇̂XY = ∇XY . Then the B-transform e� sends
the connection D to the connection D̂ since prT M |E ′ = prT M |Ê ′ ◦ e� and prT M |E ′′ =
prT M |Ê ′′ ◦ e� .

It follows that β : L → L̂ = e�Le−� is an isometry of A(E ′) ⊕ A(E ′′) onto A(Ê ′) ⊕
A(Ê ′′) sending the connection D on A(E ′)⊕A(E ′′) induced by the connection D|E ′⊕D|E ′′
to the connection D̂′ on A(Ê ′)⊕ A(Ê ′′) induced by D̂|Ê ′ ⊕ D̂|Ê ′′. In particular, β∗ preserves
the horizontal spaces,

β∗Xh
L = Xĥ

L̂
, X ∈ T M, (40)

where Xĥ is the horizontal lift of X to T (A(Ê ′) ⊕ A(Ê ′′)).
The restriction of β to G is a diffeomorphism of G onto Ĝ whose differential preserves the

horizontal spaces. Clearly, β∗ preserves also the vertical spaces sending a vertical vector V
at J ∈ G to the vertical vector V̂ = e�Ve−� at Ĵ . Then, if α ∈ T ∗

p M , Z ∈ TpM
(
(β−1)∗αh

J

) (
Zĥ
Ĵ

)
= αh

(
β−1∗ Zĥ

Ĵ

)
= αh

J (Z
h
J ) = α(Z) = αĥ

Ĵ

(
Zĥ
Ĵ

)
,

where αĥ is the horizontal lift of α to T (A(Ê ′) ⊕ A(Ê ′′)). Also
(
(β−1)∗αh

J

)
(V̂ ) = αh (

β−1∗ V̂
) = 0 = αĥ

Ĵ
(V̂ )

for every vertical vector V̂ at Ĵ . Thus

(β−1)∗αh
J = αĥ

Ĵ
, α ∈ T ∗M. (41)

Note also that if ϒ ∈ V ∗̂
J
,

((β−1)∗ϒ)(V̂ ) = ϒ(e−� V̂ e�).

Set

B = β∗ ⊕ (β−1)∗, �̃ = π∗�,

where, as before, π is the projection to M of the bundle A(E ′) ⊕ A(E ′′) restricted to G.
Taking into account the fact that B-transforms act as the identity on 1-forms, we have

B
(
e�̃J e−�̃ (ϒ)

)
(V̂ ) = B(K ∗

1ϒ)(V̂ ) = (K ∗
1ϒ)(e−� V̂ e�) = ϒ(Je−� V̂ e�)

and

(ĴB(ϒ))(V̂ ) = B(ϒ)( Ĵ V̂ ) = ϒ(e−� Ĵ V̂ e�) = ϒ(Je−� V̂ e�).

Thus

B(e�̃J e−�̃ (ϒ)) = Ĵ (B(ϒ)).
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Also

B
(
e�̃J e−�̃ (V )

)
= B(JV ) = e� JV e−� = e� Je−�e�Ve−� = ĴB(V ) = ĴB(V )

since �̃(V ) = 0. For J ∈ G, let (J1, J2) be the complex structures on Tπ(J )M determined
by J . Let A = X + g(X) + �(X) ∈ E ′

π(J ). Noting that �̃(Xh) = (�(X))h , we have

e�̃J e−�̃ (Ah
J ) = e�̃J (X + g(X) + �(X) − �(X))hJ

= e�̃ (J1X + g(J1X) + �(J1X) − J�(X))hJ

= [J1X + g(J1X) + �(J1X) − J�(X) − �(π1(J�(X)))]hJ

= [
e� Je−�(A)

]h
J = ( Ĵ (A))hJ .

Then, by (40) and (41),

B
(
e�̃J e−�̃ (Ah

J )
)

= ( Ĵ (A))ĥ
Ĵ

= Ĵ
(
Aĥ
Ĵ

)
= Ĵ

(
B(Ah

J )
)

.

Similarly, for A = X−g(X)+�(X) ∈ E ′′
π(J ) in which case J A = J2X−g(J2X)+�(J2X).

This shows that B ◦ (e�̃J e−�̃ ) = Ĵ ◦ B where the 2-form �̃ is closed.
A similar identity holds for another closed 2-form �̄ under certain restrictions on the

curvature of M . This form is defined by

�̄(Xh, Y h)J = �(X, Y )π(J ), �̄(Xh, V ) = �̄(V, Xh) = 0,

�̄(V,W )J = G(V, K1W ),

where X, Y ∈ Tπ(J ), V,W ∈ VJ . To prove the identity B ◦ (e�̄J e−�̄ ) = Ĵ ◦ B we have

only to show that B(e�̄J e−�̄ (V )) = ĴB(V ). But this follows from the identity

e�̄J e−�̄ (V ) = K1V − K ∗
1 (�̄(V )) + �̄(K1V ) = J ◦ V − G(V ) + G(V ) = J ◦ V .

The standard formula for the differential in terms of the Lie bracket and identity (13) imply
d�̄(Xh, Y h, Zh)J = 0. Let ã, b̃ be the vertical vector fields obtained from sections a, b
of A(E ′) ⊕ A(E ′′) such that a(p) = V , b(p) = W , Da|p = Db|p = 0 for p = π(J ).
Then, by Lemma 2, d�̄(Xh, V,W )J = Xh

JG (̃a, b̃) and it is easy to see that Xh
JG (̃a, b̃) = 0

using formulas given in the proof of Lemma 2. Next, d�̄(Xh, Y h, V )J = 0 if and only if
G(R(X, Y )J, JV ) = 0. Therefore d�̄ = 0 if and only if R(X, Y )J = 0 for every J ∈ G
and X, Y ∈ Tπ(J )M . The latter condition is equivalent to

g(R(X ∧ Y ), Jk Z∧U + Z∧J kU ) = 0, k = 1, 2, X, Y, Z ,U ∈ Tπ(J )M, (42)

where (J1, J2) are the complex structures on Tπ(J )M determined by J .
Let dim M = 4. In this case, identity (42) for J running over G++ (G−−) is equivalent

to (M, g) being Ricci flat and anti-self-dual (self-dual, respectively). This identity holds on
G+− or G−+ if and only if (M, g) is flat.

If dim M ≥ 6, identity (42) is equivalent to the flatness of (M, g).
Finally, note that the complex structures on a tangent space ofM determined by J ∈ G and

Ĵ = e� Je−� via (3) are the same. Therefore the diffeomorphismβ sends the connected com-
ponents G++, . . . ,G−+ of G onto the corresponding connected components Ĝ++, . . . , Ĝ−+
of Ĝ. In the case � = −� we have Ê = {X + g(X) : X ∈ T M}. Thus if � is closed the
integrability conditions for the generalized almost complex structure J are the same as those
for Ĵ .

We summarize the considerations above as follows.
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Theorem 3 Let E and Ê be generalized metrics on a manifold M determined by the same
metric g and 2-forms� and �̂. If the 2-form�−�̂ is closed, the generalized almost complex
structures J E

1 and J Ê
1 on the generalized twistor spaces G(E) and G(Ê) are equivalent.
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