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Abstract We study the Galois descent of semi-affinoid non-archimedean analytic spaces.
These are the non-archimedean analytic spaces which admit an affine special formal scheme
as model over a complete discrete valuation ring, such as for example open or closed poly-
discs or polyannuli. Using Weil restrictions and Galois fixed loci for semi-affinoid spaces
and their formal models, we describe a formal model of a K -analytic space X , provided that
X ⊗K L is semi-affinoid for some finite tamely ramified extension L of K . As an application,
we study the forms of analytic annuli that are trivialized by a wide class of Galois exten-
sions that includes totally tamely ramified extensions. In order to do so, we first establish a
Weierstrass preparation result for analytic functions on annuli, and use it to linearize finite
order automorphisms of annuli. Finally, we explain how from these results one can deduce
a non-archimedean analytic proof of the existence of resolutions of singularities of surfaces
in characteristic zero.

1 Introduction

Let K be a field which is complete with respect to a non-archimedean absolute value, and let
R be its valuation ring. In this paper we study the Galois descent of semi-affinoid K -analytic
spaces, that are those non-archimedean K -analytic spaces that admit as a model a formal
R-scheme that is affine and special (that is, formally topologically of finite type). Roughly
speaking, they correspond to the analytic spaces that are bounded (without necessarily being
compact), such as open polydiscs and their closed subspaces. The underlying idea is that
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semi-affinoid spaces have enough bounded analytic functions to be determined by them, and
that they are simpler to study via their R-algebras of bounded functions, rather than via the
whole K -algebra of analytic functions, which for example may not be noetherian.

Let K ′|K be a finite extension and let R′|R be the corresponding extension of valuation
rings. We are interested in how one can determine a formal R-model of a K -analytic space
X , knowing an affine formal R′-modelX of the base change X ⊗K K ′ and the action of the
Galois group of K ′|K on the latter. We are able to describe the situation completely in the
case when K ′ is a finite tamely ramified Galois extension of K . More precisely, we prove
that X is itself semi-affinoid, and has as R-model the Galois-fixed locus of the (dilated) Weil
restriction of X to R; this is the content of Theorem 5.1.

This is inspired by work of Edixhoven [13], who used this technique to study the behavior
of Néron models of abelian varieties under totally tamely ramified base field extensions. To
carry out these constructions in our setting, we need to study the problem of the representabil-
ity of the Weil restrictions of semi-affinoid spaces and their models, building on results of
Bertapelle [3], and define the dilated Weil restriction, a variant of the Weil restriction of spe-
cial formal R-schemes. While being merely a computational tool, the dilatedWeil restriction
allows us to describe explicitly and in a simple way a formal model of the Weil restriction of
a semi-affinoid space under a tame extension, which proves to be very useful in practice. This
can be thought of as a correction to the fact that, for ramified extensions, the Weil restriction
to R of a special formal R′-scheme X is not a model of the Weil restriction to K of the
K ′-analytic space associated with X .

Semi-affinoid K -analytic spaces appear naturally as fibers of closed points of the spe-
cialization map that goes from a K -analytic space X to the special fiber of an R-model (for
example a semi-stable or, more generally, a strict normal crossing model) of X . If X is a
smooth and proper K -analytic curve and X is a semi-stable R-model of X , then all those
fibers are open discs and open annuli. This relation between the structure of non-archimedean
analytic curves and their semi-stable reduction goes back towork of Bosch and Lütkebohmert
[5], where it was used to give a non-archimedean analytic proof of the semi-stable reduction
theorem of Deligne and Mumford. Since in general semi-stable models of a curve exist only
after a finite separable base change K ′|K , it is natural to study the K -forms of K ′-analytic
discs and annuli, that are those (strictly) K -analytic spaces which become isomorphic to a
disc or to an annulus over K ′.

Tamely ramified forms of discs are well understood. Ducros [11] proved that if K ′|K is
tamely ramified and V is a K -analytic space such that V ⊗K K ′ is an open (poly)disc, then
V is itself a (poly)disc, while the analogous result for (one dimensional) closed discs was
proven by Schmidt [23]. As an application of our descent machinery, we devote our attention
to the study of forms of annuli, both open and closed. Unlike the case of discs, annuli admit
tamely ramified forms that are not themselves annuli. In fact, for some K -forms V that
become annuli under a quadratic extension K ′|K , the Galois group Gal(K ′|K ) may switch
the branches of the annulus V ⊗K K ′, that means exchange the two irreducible components of
its canonical reduction, but this can only happen if V is not an annulus itself. In Theorem 8.3
we show that this is indeed possible, and classify these forms up to isomorphism. On the
other hand, we prove in Theorem 8.1 that if the extension K ′|K is Galois and reasonably well
behaved (that is, its residue characteristic does not divide [K ′ : K ], its residual extension is
solvable, and K contains the [K ′ : K ur]-th roots of unity) and Gal(K ′|K ) does not switch
the branches of V ⊗K K ′, then V is an annulus. Combining the two results, when K ′|K
is a quadratic extension we obtain a complete description of the K -forms of a K ′-annulus
X ; or in other words we determine the set H1

(
Gal(K ′|K ),AutK ′(X)

)
arising from group

cohomology.
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The results of Theorem 8.1 for all tamely ramified extensions of complete valued fields
have been independently proven byChapuis in [9],where he also treats the cases of polyannuli
and closed polydiscs. Note that our tools also allow to retrieve the results of Ducros (in
dimension one) and Schmidt, provided that the extension turning the K -forms into discs
is well-behaved in the sense discussed above. We believe that this is interesting in itself,
since our techniques are quite different from those of Ducros, Schmidt, and Chapuis, which
are all based on Temkin’s theory of graded reduction and on the graded counterparts of
several classical algebra results. Note that their use of graded reductions allows them to
work over non-discretely valued fields and to also treat non-strict discs and annuli. While
our techniques do not apply in those cases, they are much more effective to study non-trivial
forms, as Theorem 8.3 shows.

Two K -analytic discs are isomorphic over K if and only if their radii differ by an element
of the value group |K | of K . The moduli space of K -annuli is a bit richer : we describe it in
Theorem 7.4. As a consequence, we can completely classify up to isomorphisms the forms
we obtain in Theorem 8.1.

To prove the results on forms of Sect. 8, we compute explicitly the Galois-fixed locus of
the Weil restriction of an affine R-formal model X of an annulus V ⊗K K ′. An essential
ingredient in these computations is a complete description of the possible Galois actions on
annuli. To achieve this, using techniques reminiscent of the theory of Newton polygons we
establish aWeierstrass preparation result for functions on both open and closed annuli (Propo-
sition 6.5), and then deduce some linearization results for tame finite order automorphisms of
the algebras of annuli (Propositions 6.8 and 6.9). The idea of obtaining a linearization result
via the Weierstrass preparation theorem is already present in work of Henrio [15,16], but we
are able to generalize his results by allowing closed annuli and a much more general class of
automorphisms. We are convinced that these results are of independent interest besides the
applications in the present paper.

The reason we grew interested in the study of forms of annuli was in relation with the
first author’s previous work [14]. There, he developed a theory of non-archimedean links
that provides a solid bridge between the birational geometry of surfaces over k and the
theory of semi-stable reduction for curves over k((t)). At the end of the paper we explain
how our results on forms of annuli, combined with the techniques of [14], yield a proof of
the existence of resolution of singularities for surfaces over an algebraically closed field of
characteristic zero (Theorem 8.6), a classical result of Zariski [27]. This new proof, which is
completely non-archimedean analytic in spirit, is inspired by the existing analytic proofs of
the semi-stable reduction theorem, as for example in [12].

Semi-affinoid spaces and their forms appear naturally also in arithmetic geometry. Let R
be be the valuation ring of a p-adic field and let Fq be its residue field. It is a central problem
in the p-adic local Langlands program to study the modularity of the liftings of a Galois
representation ρ : Gal(Qalg

p |Qp) → GL2(Fq) to a representation with values in GL2(R).
The rings of deformations of such liftings can be studied with the help of a Fq -variety, the
Kisin variety of ρ, and the deformations associated with a given closed point of the Kisin
variety admit a canonical semi-affinoid structure. Since this study is generally simpler after
passing to a finite and totally tamely ramified Galois extension (see for example [8]), it would
be interesting to describe the forms of such semi-affinoid spaces.

Let us now give a short overview of the content of the paper. In Sect. 2, we introduce semi-
affinoid spaces and describe their basic properties. In Sect. 3, we discuss the Weil restriction
functor and its representability for semi-affinoid spaces and their models. The dilated Weil
restriction of an affine special formal scheme is also studied there, while the G-fixed locus
functors are treated in Sect. 4. Section 5 contains the main descent result, Theorem 5.1, which
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describes a formal model of a K -form of a semi-affinoid K ′-analytic space X in terms of
the G-fixed locus of the dilated Weil restriction of a model of X . We then move to the study
of annuli, which are defined in Sect. 6, where we also prove the Weiestrass preparation for
functions on annuli (Proposition 6.5), and use it to deduce linearization results for the tame
automorphisms of annuli (Propositions 6.8 and 6.9). In Sect. 7we define annuliwith fractional
moduli, and describe their moduli space. Finally, Sect. 8 is devoted to the study of forms of
annuli: the triviality in the case of forms with fixed branches is proven in Theorem 8.1, while
the case of switched branches is addressed in Theorem 8.3.

Notation

Throughout the paper, we denote by K a fieldwhich is complete with respect to a (non-trivial)
discrete valuation, by R its valuation ring, by π a uniformizer of R, and by k = R/πR the
residue field of K . We denote by K ′ a finite extension of K , by R′ its valuation ring, by � a
uniformizer of R′, and by k′ = R′/� R′ the residue field of K ′.
We use straight letters, such as X , to denote non-archimedean analytic spaces (over K or
K ′), while curly letters, such as X , will be reserved for formal schemes (over R or R′).
All the affinoid algebras and affinoid spaces that we consider are strict. In particular, all our
results can be interpreted in the framework of rigid geometry or in any of the other languages
of non-archimedean analytic geometry. That said, the authors are partial to Berkovich theory,
and so the text contains a few remarks about the geometry of the Berkovich spaces underlying
the analytic spaces considered.

2 Semi-affinoid analytic spaces

Let R be a complete discrete valuation ring, K its fraction field, π a uniformizer of R, and
k = R/πR the residue field of K . In this section we recall the notions of special R-algebras
and their associated K -analytic spaces.

A topological ring A is called a noetherian adic ring if A is noetherian, separated and
complete and there exists an ideal J of A such that the set of powers {J �}�>0 of J is a
fundamental system of neighborhoods of 0 in A. Any ideal J as above is called an ideal of
definition of A. Note that an ideal of definition of A is not unique; for example if J is an ideal
of definition then so is Jn for n ≥ 1. However, there is a largest ideal of definition of A, the
ideal generated by those elements of A which are topologically nilpotent in A, i.e. nilpotent
in A/J for some (and thus for every) ideal of definition J of A. A topological R-algebra A
is called a special R-algebra if it is a noetherian adic ring and A/J is of finite type over k
for some ideal of definition J of A.

Recall that R{X1, . . . , Xm} = lim←−�≥1

(
R/(π�)

)[X1, . . . , Xm] is the sub-algebra of the
R-algebra R[[X1, . . . , Xm]] consisting of those power series in the variables (X1, . . . , Xm)

whose coefficients tend to zero in a π -adic norm. By [1, 1.2], the special R-algebras are
exactly the adic R-algebras of the form

R{X1, . . . , Xm}[[Y1, . . . , Yn]]
I

∼= R[[Y1, . . . , Yn]]{X1, . . . , Xm}
I

,

with ideal of definition generated byπ and by the Yi ’s. Observe that all special R-algebras are
excellent: this follows from [24, Proposition 7] when the the characteristic of K is positive
and from [25, Theorem 9] when it is zero.
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Galois descent of semi-affinoid spaces 1089

An affine special formal R -scheme X is the formal spectrum of a special R-algebra A,
that is

X = Spf(A) = lim−→
J

Spec
(
A
/
J
)
,

where the limit is taken over all the ideals of definition J of A. While this definition can
be easily globalized, in this paper we content ourselves with the affine case, mostly as a
convenient way to keep track of special R-algebras, and we do not make use of any deep
results about formal schemes. The interested reader can find a more thorough introduction
to the theory of noetherian formal schemes in [7].

We now recall how to associate a K -analytic space X � with an affine special formal
R-scheme X . This construction was introduced for rigid spaces by [2]; we refer the reader
to that paper as well as to [10, Sect. 7] and [1] for more detailed expositions.

If X is the formal spectrum of the special R-algebra R{X1, . . . , Xm}[[Y1, . . . , Yn]]/
( f1, . . . , fr ), then the associated K -analytic space is

X � = V ( f1, . . . , fr ) ⊂ Dm
K ×K (D−

K )n ⊂ A
m+n,an
K ,

where Dm
K = {

x ∈ A
m,an
K

∣
∣ |Xi (x)| ≤ 1 for all i = 1, . . . ,m

}
is the m-dimensional closed

unit disc in A
m,an
K , (D−

K )n = {
x ∈ A

n,an
K

∣∣ |Yi (x)| < 1 for all i = 1, . . . , n
}
is the n-

dimensional open unit disc inA
n,an
K , and V ( f1, . . . , fr ) denotes the zero locus of the analytic

functions fi .
A more intrinsic definition of the analytic spaceX � that also has the advantage of being

clearly independent of the choice of a presentation of the special R-algebra OX (X ) is the
following. Let A be a special R-algebra and let I be the largest ideal of definition of A.
For every n > 0, denote by A

[
I n/π

]
the subring of A ⊗R K generated by A and by the

elements of the form i/π for i ∈ I n , and write Bn for the I -adic completion of A
[
I n/π

]
.

Finally, set Cn = Bn ⊗R K . Then the algebras Cn are affinoid over K and the canonical
morphisms Cn+1 → Cn identify M(Cn) to an affinoid domain of M(Cn+1) and (Spf A)�

to the increasing union of the affinoid spaces M(Cn).

Remark 2.1 The construction ofX � is functorial, sending an open immersion to an embed-
ding of a closed subdomain, therefore it globalizes to general special formal R-schemes by
gluing. If X is of finite type over R then X � is compact, and this construction coincides
with the classical one by Raynaud (see [22] or [7, §7.4]).

We say that a K -analytic space X is semi-affinoid if it is of the formX � for some affine
special formal R-scheme X , and call model of X any flat affine special formal R-scheme
whose associated K -analytic space is isomorphic to X . The terminology semi-affinoid K -
analytic space is used in [20]; those should not be confused with the semi-affinoid K -spaces
from [17]. Every (strictly) affinoid K -analytic space is semi-affinoid, admitting a model
which is of finite type over R.

LetX = Spf(A) be a flat affine special formal R-scheme. By [10, 7.1.9], the K -analytic
spaceX � depends only on the K -algebra A⊗R K (such a K -algebra is called semi-affinoid
in [17]). In particular, if Spf(B) is another model of X � then B ⊗R K ∼= A ⊗R K , and
therefore, since A⊗R K ∼= (A/π -torsion)⊗R K , every semi-affinoid K -analytic space has a
model. Moreover,X � does not change if we replaceX by its integral closure in the generic
fiber, that is the affine special formal R-scheme Spf(B), where B is the integral closure of
A in A ⊗R K . Observe that B is a special R-algebra since it is finite over A because A is
excellent.

123



1090 L. Fantini, D. Turchetti

IfX = Spf(A) is a model of a semi-affinoid space X , then the canonical homomorphism
A ⊗R K → OX (X) is injective. Indeed, let f be an element of A ⊗R K which vanishes in
OX (X), and letM be a maximal ideal of A⊗R K . By [10, Lemma 7.1.9]M corresponds to a
point x of X , and the image f (x) of f in the completed local ring of X at x coincides with the
image α( fM) via the completion morphism α : (A ⊗R K )M → (A ⊗R K )∧M of the image
fM of f in the localization of A ⊗R K at M. It follows that α( fM) = 0, hence fM = 0
because (A ⊗R K )M is a local noetherian ring and so its completion morphism is injective.
Since this is true for every maximal ideal of A⊗R K , it follows that f = 0. Moreover, since
A is flat over R, the canonical homomorphism A → A ⊗R K is also injective. This shows
that if X is reduced then both A and A⊗R K are reduced. Since by [10, Proposition 7.2.4.c]
X is reduced whenever A is reduced, these three properties are actually equivalent.

A reduced semi-affinoid space is completely determined by the ring O◦
X (X) of bounded

functions, which is defined as the subring ofOX (X) consisting of those analytic functions f
such that | f (x)| ≤ 1 for every point x of X , as is explained in the following lemma.

Lemma 2.2 If X is a reduced semi-affinoid K -analytic space then X = Spf
(O◦

X (X)
)
is a

model of X. Moreover X is the unique model of X which is integrally closed in its generic
fiber.

Proof Let Spf(A) be a model of X . By replacing A with its integral closure in A ⊗R K
(which is itself special because A is excellent) we can assume that A is integrally closed in
its generic fiber. Moreover, A is reduced because X is reduced. Therefore, by [20, Theorem
2.1] we have A ∼= O◦

X (X). Observe that O◦
X (X) is flat over R because the analytic function

induced by π on X becomes invertible inOX (X). This proves both parts of our statement. �
If X = (Spf A)� as in the proof above is not reduced, then the canonical injection

A → O◦
X (X), which is an isomorphism after killing the nilradicals, may fail to be surjective

in general, and O◦
X (X) may then fail to be special over R. See [20, Example 2.3] for an

example.
Let X be a reduced semi-affinoid K -analytic space. We call canonical model of X the

special formal R-scheme X = Spf
(O◦

X (X)
)
, and we define the canonical reduction X0 of

X to be the reduced affine special formal k-scheme (Xs)red associated with the special fiber
Xs = X ⊗R k ofX . We say that a semi-affinoid K -analytic space X is distinguished if it is
reduced and the special fiberXs of its canonical model is already reduced, i.e. if it coincides
with X0.

Remark 2.3 Let X be an affinoid K -analytic space. Then X is distinguished if and only if
its affinoid algebraA is distinguished in the classical sense, see [4, §6.4.3]. Moreover, when
this is the case then the canonical reduction X0 of X is the usual reduction of the affinoid
space X . Indeed, A is distinguished if and only if it is reduced and its spectral norm | · |sup
takes values in |K | (this is [4, 6.4.3/1], since by [4, 3.6] discretely valued fields are stable).
In particular, to show both implications we can assume that X is reduced, and therefore
by Lemma 2.2 its canonical model is X = Spf A◦, where A◦ = {

f ∈ A
∣∣ | f |sup ≤ 1

}
.

Observe that |A|sup = |K | if and only if πA◦ = {
f ∈ A

∣∣ | f |sup ≤ |π |} coincides with
A◦◦ = {

f ∈ A
∣∣ | f |sup < 1

}
. It follows that if A is distinguished then the special fiber

Xs = Spec
(A◦/πA◦) ofX coincides with the usual reduction Spec

(A◦/A◦◦) of X , which
in particular proves that X is distinguished. Conversely, assume that |A|sup � |K |, so thatA
is not distinguished. Then there exists an element f ∈ A such that |π | < | f |sup < 1. This
implies that there exists some n > 0 such that f n ∈ πA◦ while f ∈ A◦ \ πA◦, henceXs is
not reduced, which proves that X is not distinguished.
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Galois descent of semi-affinoid spaces 1091

We conclude the section with a simple lemma.

Lemma 2.4 Let X be a semi-affinoid K -analytic space and assume that X has a model X
with reduced special fiber. Then X is distinguished and X is its canonical model.

Proof SinceX is R-flat and has reduced special fiber then it is reduced, so X is reduced as
well. By Lemma 2.2 we have to show that X is integrally closed in its generic fiber. Write
X = Spf(A) and let α be an element of A ⊗R K = A[π−1] such that αm + am−1α

m−1 +
. . . + a0 = 0, where the ai are elements of A. We can write α = aπr , where a is an element
of A \ π A and r ∈ Z. If r < 0, since A has no π -torsion we can divide both sides of the
equality above by πmr to deduce that a ∈ π A, which gives a contradiction. Therefore r ≥ 0,
hence α ∈ A, which is what we wanted to prove. �

3 Weil restrictions

In this section we introduce the Weil restriction functor and discuss its representability for
semi-affinoid analytic spaces and their models. We then define the dilated Weil restriction, a
modified version of the usual Weil restriction for formal schemes, as a notational tool that is
useful to describe in a simple way the Weil restriction of a semi-affinoid space.

Let C be a category with fiber products. For an objectS of C denote by CS the category of
S -objects of C and letS ′ → S andX → S ′ be two morphisms in C. TheWeil restriction
of X to S is defined as the functor

∏

S ′|S X : CS −→ (Sets)

(Z → S ) �−→ HomS ′(Z ×S S ′,X ).

When this functor is representable we also denote by
∏

S ′|S X the object of CS which
represents it, and call it Weil restriction of X to S . In this paper we only deal with Weil
restrictions of affine special formal schemes with respect to a finite extension R′|R of com-
plete discrete valuation rings, and with Weil restrictions of semi-affinoid analytic spaces
with respect to a finite separable extension K ′|K of complete discrete valuation fields. In
these settings, we write

∏
R′|R instead of

∏
Spf R′| Spf R and

∏
K ′|K instead of

∏
M(K ′)|M(K )

respectively.
Observe that it follows from the definition that theWeil restriction is compatible with base

change, that is, for every morphism Z → S in C we have
∏

Z ′|Z
(
X ×S ′ Z ′) =

(∏

S ′|S X
)

×S Z ,

where Z ′ = Z ×S S ′.
When C is the category of schemes, the representability of the Weil restriction functor is

well understood: we refer the reader to [6, Sect. 7.6] for a thorough discussion.
As observed in [3], the representability of the Weil restriction functor on the category of

formal R-schemes can be studied in terms of the representability of the Weil restriction of
ordinary schemes in the followingway. IfX = lim−→ Xn is a formal schemeoverS ′ = lim−→S ′

n ,
where each Xn is a scheme over S ′

n such that
∏

S ′
n |Sn

Xn is representable for all n, then
∏

S ′|S X is represented by lim−→
∏

S ′
n |Sn

Xn . See Theorem 1.4 of loc. cit. for a precise
statement including conditions for the representability. In the case of an affine special formal
scheme the Weil restriction is always representable, and the formal scheme representing it
can be described explicitly in a simple way; this is the content of the next lemma. Recall
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1092 L. Fantini, D. Turchetti

that an element of a noetherian adic ring A is said to be topologically nilpotent if its powers
converge to zero in A, or equivalently if it belongs to some ideal of definition of A.

Lemma 3.1 Let A and A′ be two special R-algebras. Assume that A′ is a free A-module with
basis e0, . . . , em−1 and that e0, . . . , ed are the elements of this basis which are topologically
nilpotent in A′. Let A′ = A′{X}[[Y ]]/I be a special A′-algebra, where X is an r-tuple and
Y is an s-tuple of variables. Then

∏
Spf A′| Spf A Spf A′ is represented by the formal spectrum

of the special A-algebra

A{X0, . . . , Xm−1, Y 0, . . . , Yd}[[Yd+1, . . . , Ym−1]]
I c

,

where the Xi are r-tuples and the Y j are s-tuples of variables, and I c is the ideal of the
coefficients of I , that is the ideal generated by the coefficients appearing when expressing
the elements of I in the basis e0, . . . , em−1 via the isomorphism A′ ∼= e0A ⊕ . . . ⊕ em−1A
and writing T = T0e0 + . . . + Tm−1em−1 for every variable T among the X and Y .

Proof The proof is a slight extension of the one of [6, Sect. 7.6, Theorem 4]. The only
difficulty which is not present in loc. cit. is the case A′ = A′[[Y ]], where Y is a single
variable. Observe that being covered by affine formal R-schemes, any formal scheme is
determined by its functor of points on affine formal R-schemes, that is by its points with
values in adic R-algebras. Therefore, what we need to show is that for any adic A-algebra L
there is a bijection

HomA′
(
A′[[Y ]], L⊗̂A A

′) ∼= HomA
(
A{Y0, . . . , Yd}[[Yd+1, . . . , Ym−1]], L

)

which is functorial in L , where theHom sets are sets of continuous homomorphisms. Since A′
is finite over A we have L⊗̂A A′ ∼= L⊗A A′ by [4, 3.7.3/6]. A continuous A′-homomorphism
σ ′ : A′[[Y ]] → L ⊗A A′ is determined by σ ′(Y ), which is a topologically nilpotent element
of L ⊗A A′. Using the decomposition

L ⊗A A′ ∼=
m−1⊕

i=0

Lei

we write

σ ′(Y ) =
m−1∑

i=0

σ̃ (Yi ) ⊗ ei ,

where the σ̃ (Yi ) are elements of L . These elements give rise to a homomorphism of
A-algebras σ̃ : A[Y0, . . . , Ym−1] → L . The fact that σ ′(Y ) is topologically nilpotent trans-
lates to the fact that σ̃ (Yi ) ⊗ ei is topologically nilpotent in L ⊗A A′ for each i . This
imposes no condition on σ̃ (Y0), . . . , σ̃ (Yd), while σ̃ (Yd+1), . . . , σ̃ (Ym−1) have to be topo-
logically nilpotent in L . Therefore σ̃ extends to a continuous morphism of A-algebras
σ : A{Y0, . . . , Yd}[[Yd+1, . . . , Ym−1]] → L . The association σ ′ �→ σ is the bijection we
are after, and the general case is then a simple translation of the arguments of [6, Sect. 7.6,
Proposition 2 and Theorem 4]. �

In the remaining part of the sectionwe discussWeil restrictions in the context of K -analytic
spaces, building on the work of Bertapelle [3].

Let K ′ be a finite and separable non-archimedean extension of K . As is the case for
affine schemes and formal schemes, Weil restrictions of affinoid K ′-analytic spaces to K
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Galois descent of semi-affinoid spaces 1093

are always representable. However, the argument of Lemma 3.1 needs to be refined, since if
σ ′ : K ′{X} → K ′ is any bounded homomorphism of K ′-affinoid algebras then the induced
homomorphism σ : K {X0 . . . , Xm−1} → K may not be bounded. Indeed, one can have
||σ ′(X)||sup = ||∑m−1

i=0 σ(Xi ) ⊗ ei ||sup ≤ 1 but ||σ(Xi )||sup > 1 for some i .
To control the sup norm of σ ′(X) it is useful to consider characteristic polynomials.

Let A = K ′{X1, . . . , Xn}/I be a K -strictly affinoid algebra. Recall that, for each n-
tuple of positive real numbers r = (r1, . . . , rn), the K -algebra K {r−1

1 X1, . . . , r−1
n Xn} :=

{∑I aI X
I ||aI |r I → 0} is the algebra of functions that converge on the closed K -polydisc

of polyradius r . By [3, Proposition 1.8], we have
∏

K ′|K M(A) ∼= lim−→λ∈N
M (Bλ) , where

Bλ is the strictly K -affinoid algebra

Bλ = K
{|π |λX0,1, . . . , |π |λX0,n, |π |λX1,1, . . . , |π |λXm−1,n

}{
Z0,1, . . . , Zm−1,n

}

(
I c, Z0,1 − c0(X•,1), . . . , Zm−1,n − cm−1(X•,n)

) , (1)

c j ∈ K [x0, . . . , xm−1] is the coefficient of the term of degree j of the characteris-
tic polynomial of the endomorphism given by the multiplication by

∑m−1
i=0 xi ei in the

K [x0 . . . , xm−1]-vector space K ′[x0 . . . , xm−1], and as before I c is the ideal of the coeffi-
cients of I . Moreover, since K ′|K is separable, theWeil restriction

∏
K ′|K M(A) is compact,

therefore there exists a λ0 ∈ N such that for every λ > λ0 we have
∏

K ′|K M(A) ∼= M (Bλ) .

In other words,
∏

K ′|K M(A) is the affinoid subspace of (Anm
K )an cut out by the elements of

I c and by the conditions |c j (X•,i )| ≤ 1.

Example 3.2 Let p �= 2 be a prime number, set R = Zp and R′ = Zp[√p], and let K and
K ′ be the respective fraction fields. Then the set {1, √p} is a basis both for R′ over R and
for K ′ over K , and therefore Lemma 3.1 gives

∏
R′|R Spf R′{X} ∼= Spf

(
R{X0, X1}

)
. On the

other hand, by the Eq. (1) the Weil restriction of the unit disc is given by
∏

K ′|K M(K ′{X}) ∼= M(
K {|p|λX0, |p|λX1}{−2X0, X

2
0 − pX2

1}
)
,

which, for λ big enough, is the analytic subspace of A
2,an
K defined by the inequalities

{
|X0| ≤ 1

|X2
0 − pX2

1 | ≤ 1,

which is isomorphic to the 2-dimensional polydisc of polyradius
(
1, |p|−1/2

)
. Indeed, this

polydisc is clearly contained in
∏

K ′|K M(K ′{X}). For the converse inclusion, observe

that if |pX2
1 | = |X2

0 | then |pX2
1 | ≤ 1, while if |pX2

1 | �= |X2
0 | then |X2

0 − pX2
1 | =

max
{|X0|2, |p||X1|2

} ≤ 1. In both cases, |X1| ≤ 1/|√p|.

Example 3.2 shows that
∏

K ′|K
(
(Spf R′{X})�

)
and

(∏
R′|R Spf R′{X})� do not coincide

in general. It is therefore convenient to introduce a variant of the formal Weil restriction to
be able to describe the Weil restriction of a semi-affinoid K ′-analytic space in terms of an
R-model. In order to do this, let us fix some notation. Given two coprime positive integers a
and b, with b > 0, we set c = b�a/b� − a ≥ 0, where �a/b� is the ceiling of a/b, and we
write

R
{|π |a/b X} = R{W, Z}

(πc Z − Wb)
. (2)

This way, after a base change to K we obtain R
{|π |a/b X}⊗R K ∼= K {W, Z}/(πc Z −Wb) ∼=

K
{|π |�a/b�X, Z

}
/(Z − πa Xb) ∼= K

{|π |a/b X}, which is the K -affinoid algebra of the closed
disc of radius |π |−a/b, where the second isomorphism is defined by sending W to π�a/b�X .
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1094 L. Fantini, D. Turchetti

Similarly, we set R
[[ |π |a/b X]] = R[[W, Z ]]/(πc Z −Wb). This notation is primarily a way

of keeping track of equations when considering models of polydiscs of rational polyradii that
are contained in a given polydisc. For example, for n ∈ N then R

{|π |n X} is isomorphic to
the algebra R{W } of a closed disc of radius one, but this notation allows us to keep equations
in the variable X , avoiding a change of variables. More interesting examples with rational
radii are given in Sect. 7.

Let A′ = R′{X}[[Y ]]/I be a special R′-algebra, where X is an r -tuple and Y is an s-tuple
of variables, and set X = Spf A′. We define the dilated Weil restriction

∏dil
R′|R X of X to

R to be the affine special R-formal scheme lim−→λ∈N
Spf(Aλ), with Aλ the special R-algebra

Aλ

= R
{|π |λX0, . . . , |π |λXm−1, |π |λY 0, . . . , |π |λYm−1

}{
Z0,1, . . . , Zm−1,r

}[[
Z0,r+1, . . . , Zm−1,r+s

]]

(
I c, Z0,1 − c0(X•,1), . . . , Zm−1,r − cm−1(X•,r ), Z0,r+1 − c0(Y•,1), . . . , Zm−1,r+s − cm−1(Y•,s)

) ,

where, as before, c j is the coefficient of the term of degree j in the characteristic polynomial
of
∑m−1

i=0 xi ei ∈ K ′[x0 . . . , xm−1], and I c is the ideal of the coefficients of I . Note that, since
K ′|K is separable, [3, Proposition 1.8] ensures that the K -analytic space associated with the
dilated Weil restriction is contained in a compact subspace of the analytic affine space, and
therefore there exists a positive integer λ0 such that

∏dil
R′|R X = Spf Aλ for every λ ≥ λ0.

The following proposition shows that, as expected, the dilatedWeil restriction of an affine
special formal scheme is a model of the Weil restriction of the associated analytic space.

Proposition 3.3 Let K ′|K be a finite extension of discretely valued fields, let R′|R be the
corresponding extension of valuation rings, and letX be an affine special formal R′-scheme.
Then we have

∏

K ′|K
(
X �

) ∼=
(∏dil

R′|R X
)�

.

Proof Write X = Spf
(
R′{X}[[Y ]]/I ), so that X � is the increasing union of the affinoid

domains Un = M(
K ′{X , |π |−1/nY }/I ) for n > 0. Let U be the set of all strictly K ′-affinoid

domains ofX �, let Y be a strictly K -affinoid space, and let φ : YK ′ → X � be a K ′-analytic
morphism. We claim that the covering {φ−1(U ) |U ∈ U} of YK ′ can be refined to a covering
of the form {V ×K K ′ | V ∈ V} for some admissible coveringV of Y . Indeed, since X � is
semi-affinoid, it is an increasing union of affinoid domains, and so φ(YK ′), being compact,
is contained in an affinoid domainW ofX �. The claim follows by applying [3, Proposition
1.14] to W , since

∏
K ′|K W is representable. Now, by [3, Theorem 1.13], we deduce that

∏
K ′|K X � is obtained by gluing

∏
K ′|K U for U ∈ U, and therefore also by gluing the

∏
K ′|K Un along the immersions

∏
K ′|K Un ↪→ ∏

K ′|K Un′ whenever n′ > n. When X � is
affinoid, that is when X is of finite type over R′, the proposition follows immediately from
the description of the Eq. (1), therefore to prove the theorem it is enough to treat the case of the
open disc. So assume from now on that X = Spf R′[[Y ]], so that Un = M(

K ′{|π |−1/nY })
is a closed disc of radius |π |1/n . Weil restrictions of general K -affinoid spaces, including
non-strict ones, behave exactly in the same way as in 1, see [26]. In particular, by Proposition
3.1.4 of loc. cit., we have

∏

K ′|K Un ∼=
⋃

λ>0

M
(
K
{|π |λY0, . . . , |π |λYm−1

}{|π |−1/n Z0, . . . , |π |−(m − 1)/n Zm−1
}

(
Z0 − c0(Y•), . . . , Zm−1 − cm−1(Y•)

)
)
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as subspaces of (Am
K )an. It follows that

∏

K ′|K X � ∼=
⋃

n

∏

K ′|K Un

∼=
⋃

n,λ

M
(
K
{|π |λY0, . . . , |π |λYm−1

}{|π |−1/n Z0, . . . , |π |−(m − 1)/n Zm−1
}

(
Z0 − c0(Y•), . . . , Zm−1 − cm−1(Y•)

)
)

∼=
⋃

λ

Spf

(
R
{|π |λY0, . . . , |π |λYm−1

}[[
Z0, . . . , Zm−1

]]

(
Z0 − c0(Y•), . . . , Zm−1 − cm−1(Y•)

)
)

.

This is the subspace of (Am
K )an defined by the inequalities |c j (Y•)| < 1, which is precisely

(∏dil
R′|R X

)� from the definition of the dilated Weil restriction. �
In the case of unramified extensions, the usual formalWeil restriction is sufficient to obtain

a model of the Weil restriction of a semi-affinoid K ′-analytic space, as the following propo-
sition ensures. Observe that in this case no element of a basis of R′ over R is topologically
nilpotent.

Proposition 3.4 Let K ′|K be a finite extension of discretely valued fields, let R′|R be the
corresponding extension of valuation rings, and letX be an affine special formal R′-scheme.
Then we have an immersion

(∏

R′|R X
)�

↪−→
∏

K ′|K X �,

which is an isomorphism if K ′ is unramified over K .

Proof When X is topologically of finite type, this result is proved in [21, Prop. 2.5 (5)].
The general case then follows then from the description of semi-affinoid spaces as increasing
unions of affinoid domains. �

In Example 3.2 we computed explicitly the Weil restriction of a closed disc. Now we
generalize that description to the restriction of any semi-affinoid space with respect to a
tamely ramified extension.

Proposition 3.5 Let K ′|K be a totally tamely ramified degree m extension of discretely
valued fields, let R′|R be the corresponding extension of valuation rings, and let A′ =
R′{X}[[Y ]]/I be a special R′-algebra. Then we have

(∏dil

R′|R Spf A
′)�

∼=
(
Spf

R{X0, |π | 1
m X1 . . . , |π |m−1

m Xm−1}[[Y 0, |π | 1
m Y 1, . . . , |π |m−1

m Ym−1]]
I c

)�

.

Proof We prove the result in the case of the open disc, that is A′ = R′[[Y ]], the general
case being completely analogous. Let � be a uniformizer of R′ such �m is a uniformizer of
R. Then {1,�, . . . ,�m−1} is a basis of R′ over R. To compute the coefficients c j appear-
ing in the expression 1 we consider the matrix of the multiplication by

∑m−1
i=0 xi� i−1 in

K ′[x0, . . . , xm−1], which is

M =

⎛

⎜⎜⎜
⎝

x0 �mxm−1 . . . �mx1
x1 x0 . . . �mx2
...

...
. . .

...

xm−1 xm−2 . . . x0

⎞

⎟⎟⎟
⎠

.
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1096 L. Fantini, D. Turchetti

The c j correspond then to the sums of the (m − j)-th principal minors of M . Now, for every
i ∈ {0, . . . ,m − 1}, set yi = � i xi . With this substitution, the matrix becomes

⎛

⎜
⎜
⎜
⎝

y0 � ym−1 . . . �m−1y1
y1
�

y0 . . . �m−2y2
...

...
. . .

...
ym−1
�m−1

ym−2
�m−2 . . . y0

⎞

⎟
⎟
⎟
⎠

∼

⎛

⎜
⎜
⎜
⎝

y0 ym−1 . . . y1
y1 y0 . . . y2
...

...
. . .

...

ym−1 ym−2 . . . y0

⎞

⎟
⎟
⎟
⎠

,

the equivalent matrix on the right being obtained by multiplying the i-th row by � i and
the j-th column by �− j . Observe that the c j are invariant under equivalence, and the
matrix obtained on the right is the matrix associated with the multiplication by

∑m−1
i=0 yiαi

in K (α)[y0, . . . , ym−1], where αm = 1. Since the extension K (α) is unramified over K , the
inequalities |c j (y0, . . . , ym−1)| < 1 define an open unit disc. Therefore, over K the inequal-
ities |c j (x0, . . . , xm−1)| < 1 define a polydisc of polyradius {1, |� |−1, . . . , |� |1−m}, which
implies the result we want from the definition of the dilated Weil restriction. �

More generally, since any tamely ramified extension decomposes as a totally tamely
ramified extension of an unramified extension, one can combine Propositions 3.4 and 3.5
to compute in two steps the Weil restriction of a semi-affinoid space with respect to such an
extension. A computation of this kind is performed in Sect. 8 to study tame forms of annuli.

4 Fixed loci

We now move to the study of Galois-fixed loci for semi-affinoid analytic spaces and their
models. This is the second ingredient that we need to study forms of semi-affinoid K ′-analytic
spaces via their models.

Let C be a category, fix an object S of C, and let X → S be a morphism in C. Let G
be a finite group acting equivariantly on X → S , with the trivial action on S . Then the
G-fixed locus X G of X is defined as the functor

X G : CS −→ (Sets)

(Z → S ) �−→ (
HomS (Z ,X )

)G
,

where
(
HomS (Z ,X )

)G is the subset of HomS (Z ,X ) consisting of thoseS -morphisms
f such that g ◦ f = f for every g in G. When this functor is representable we also denote
by X G the object of CS which represents it, and call it the G-fixed locus of X .

Observe that the G-fixed locus is compatible with base change: if G acts trivially on a
morphism Z → S we have

(X ×S Z )G ∼= X G ×S Z .

In this paper we only consider fixed loci of affine special formal schemes and semi-affinoid
analytic spaces. We start by discussing the case of special formal R-schemes as it is slightly
simpler: ifX is a separated formal R-scheme thenX G is a closed formal subscheme ofX .
Indeed, write X = lim−→ Xn , then G acts on each of the Xn and they are all separated, so by

[13, Proposition 3.1] the G-fixed locus (Xn)
G of Xn is represented by a closed subscheme

of Xn . Then X G is the closed formal subscheme lim−→(Xn)
G of X .

Thefixed loci of affine formal R-schemes can be simply described as follows. IfG is a finite
group acting continuously on a commutative ring A, we define the ring of G-coinvariants
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AG of A as the quotient of A by the ideal generated by the set {a − g(a) | a ∈ A, g ∈ G}.
Observe that if A is a special R-algebra then AG , being an adic quotient of A, is itself a
special R-algebra.

Lemma 4.1 LetX = Spf A be an affine formal R-scheme and let G be a finite group acting
continuously on A. Then

(Spf A)G ∼= Spf AG .

Proof If L is an adic R-algebra, the quotient map A → AG defines an injection between the
sets of continuous R-homomorphisms � : HomR(AG , L) ↪→ HomR(A, L). A homomor-
phism σ : A → L belongs to the image of � if and only if σ(a) = σ

(
g(a)

)
for every a in A

and every g in G, that is if and only if σ belongs to
(
HomR(A, L)

)G . Therefore � induces a

bijection HomR(AG , L)
∼→ (

HomR(A, L)
)G , and since this bijection is functorial in L this

proves the lemma. �
We can now move to the study of G-fixed loci in the category of K -analytic spaces. Let

A be a K -affinoid algebra and let G act on M(A), trivially on K . Then G acts on A, the
ring of coinvariants AG is a K -affinoid algebra, and the same argument given in the case
of special formal schemes proves that the G-fixed locus of M(A) is the affinoid K -analytic
space M(AG). Now, if X = Spf A is an affine special formal R-scheme and G is a finite
group acting onX , with the trivial action on R, we obtain by functoriality an action of G on
X �, trivial on K .

Remark 4.2 This action can be constructed explicitly as follows. Denote by I the largest
ideal of definition of A and, as in the construction of X � in Sect. 2, write An = A

[
I n/π

]
,

let Bn be the I -adic completion of An , and set Cn = Bn ⊗R K for every n > 0, so that
X � =⋃n M(Cn). If g is an element of G, then g acts on A as a continuous ring morphism
g : A → Awhich is invertible and whose inverse is continuous. Therefore we have g(I ) = I ,
since g−1(I ) ⊂ I by continuity of g and g(I ) ⊂ I by continuity of g−1. It follows that for
every n > 0 the element g induces an action on An , hence actions on Bn and Cn . Since the
Cn → Cn+1 are equivariant, then g induces the wanted action on X �. See Lemma 5.2 for
an example of a computation of such an action.

We can now describe the G-fixed locus of the semi-affinoid space X �.

Proposition 4.3 Let X be an affine special formal R-scheme and let G be a finite group
acting on X , with trivial action on R. Then we have

(
X �

)G ∼= (X G)�.

Proof Let ρ : A → AG be the quotient map and set IG = ρ(I ). Then AG is a special
R-algebra with ideal of definition IG . For any n > 0, write A′

n = AG
[
(IG)n/π

]
, let B ′

n be
the IG -adic completion of A′

n , and set C ′
n = B ′

n ⊗R K , so that (Spf AG)� = ⋃
n M(C ′

n).

Since
(
X �

)G =⋃n M(Cn)
G =⋃n M

(
(Cn)G

)
, to prove the proposition it is now enough

to show that for every n > 0 the map ρ induces an isomorphism (Cn)G ∼= C ′
n . In order to

prove that, if we call αn : An → A′
n the natural surjection defined by sending an element of

the form a/π , a ∈ A, to α(a/π) = ρ(a)/π , it is sufficient to show that the kernel ker(αn)

of αn coincides with the ideal J of An generated by the elements of the form x − g(x) for
some x in An and some σ in G. If a/π is an element of ker(αn) then 0 = αn(aπ) = ρ(a)/π ,
so that ρ(a) = 0 and therefore a/π ∈ J . Conversely, consider an element of An of the form
x = a/π − σ(a/π) = a/π − σ(a)/π . Then we have αn(x) = ρ

(
a − σ(a)

)
/π = 0. This

shows that J ⊂ ker(αn), concluding the proof. �
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Remark 4.4 If G-acts on a reduced semi-affinoid space X , then this action extends canon-
ically to its canonical model X = Spf

(O◦
X (X)

)
. Indeed if f ∈ O◦

X (X) and σ ∈ G then
σ acts on f by sending it to f ◦ (σ�), which is still bounded by 1. This action is contin-
uous since it restricts to an action on the biggest ideal of definition of O◦

X (X), which is{
f ∈ O◦

X (X)
∣
∣ | f (x)| < 1 ∀x ∈ X ′}.

5 Descent of semi-affinoid spaces

Let K ′ be a finite tamely ramified Galois extension of K with Galois group G, let X be a
K -analytic space and denote by X ′ = X ⊗K K ′ its base change to K ′. In this section we
explain how we can use Weil restrictions and G-fixed loci to describe a model of X in terms
of a model of X ′, when the latter is a semi-affinoid K ′-analytic space.

Group actions naturally induce actions onWeil restrictions as follows. Let C be a category
with fiber product. If G is a finite group acting equivariantly on morphisms X → S ′ and
S ′ → S in the category C, with trivial action onS , then we have a G-action on

∏
S ′|S X

defined by ϕ · σ = σX ◦ ϕ ◦ σZ ′ , where Z → S is a morphism, Z ′ = Z ×S S ′, ϕ ∈∏
S ′|S X (Z ), σ ∈ G, σX is the automorphism induced by σ onX , and σZ ′ = σS ′ ×1Z

where σS ′ is the automorphism induced by σ on S ′.
Since dilatedWeil restrictions are not defined by a universal property, the argument above

does not apply to them. Assume now that G acts on an affine special formal R′-scheme

X ′. Then we obtain a G-action on the K ′-analytic space
(
X ′)�, hence a G-action on

∏
K ′|K

(
X ′)�. Whenever this action extends to a G-action on

∏dil
R′|R X ′, which by Propo-

sition 3.3 is a model of the latter, we say that the G-action on the dilated Weil restriction is

compatible with the G-action on
(
X ′)�. Such an action is described explicitly in the case

of a base change in Lemma 5.2, while explicit computations in the case of models of annuli
are performed in Sect. 8. We can now state the main result of the section.

Theorem 5.1 Let K ′|K be a finite tamely ramified Galois extension of discretely valued
fields with Galois group G, let R′|R be the corresponding extension of valuation rings, and
let X be a separated K -analytic space. Assume that X ′ = X ⊗K K ′ is a semi-affinoid K ′-
analytic space, and let X ′ be an affine model of X ′ such that G acts on the dilated Weil
restriction

∏dil
R′|R X ′ compatibly with the natural semilinear Galois action on X ′. Then we

have
(∏

K ′|K X ′)G ∼=
((∏dil

R′|R X ′)G
)� ∼= X.

The proof of this result relies on an explicit computation which is the content of the
following lemma.

Lemma 5.2 Let K ′|K be a finite Galois extension of discretely valued fields with Galois
group G, let R′|R be the corresponding extension of valuation rings, and let A be a special
R-algebra. Moreover, assume that one of the following properties holds:

(i) K ′ is totally tamely ramified over K ;
(ii) K ′ is unramified over K .

Then G acts on
∏dil

R′|R Spf(A⊗R R′) compatibly with the natural Galois action on Spf(A⊗R

R′)�, and we have
(∏dil

R′|R Spf(A ⊗R R′)
)G ∼= Spf A.
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Proof Case (i). Write m = [K ′ : K ] and let � be a uniformizer of R′ such that �m ∈ R.
Then {1,�, . . . ,�m−1} is a basis of R′ as a free R-module. Moreover, G is in this case
cyclic, and given a generator σ ∈ G the action of G on R′ is determined by σ(�) = ζ� ,
where ζ is a primitive m-th root of unity in R′. Write A = R{X}[[Y ]]/I , where X and Y
denote finite sets of variables. Proposition 3.5 yields

∏dil
R′|R Spf(A ⊗R R′) = Spf B, with

B = R
{
X0, |� |X1, |� |2X2, . . . , |� |m−1Xm−1

}[[
Y 0, |� |Y 1, . . . , |� |m−1Ym−1

]]

I c
.

In order to describe explicitly the action of σ on B, let T be one of the variables among X
and Y . Since σ acts trivially on the variables of A ⊗R R′, by writing

T = T0 + �T1 + . . . + �m−1Tm−1

we have

σ(T ) = σ(T0) + ζ�σ(T1) + . . . + ζm−1�m−1σ(Tm−1) = T,

so that we can deduce that the action of G on B must verify σ(Ti ) = ζ i Ti for every i ≥ 1.
Since the ramification is tame, ζ i − 1 is invertible in R for every 1 ≤ i ≤ m − 1. Hence, for
every such i , the variables Ti vanish in BG . Since this is true for all the variables in X and Y ,
we deduce that BG = R{X0}[[Y 0]]/(I c ∩ R{X0}[[Y 0]]). From the definition of I c it readily
follows that BG ∼= A, which by Lemma 4.1 is what we wanted to prove.

Case (ii). Let k, k′ be the residue fields of R, R′. Since K ′ is Galois and unramified over
K , it follows that k′ is Galois over k, with [k′ : k] = [K ′ : K ] = m, and we have a natural
isomorphism Gal(K ′|K ) ∼= Gal(k′|k). Write Gal(K ′|K ) = {σ0 = id, . . . , σm−1}. By the
normal basis theorem (see for example [19, VI, Sect. 13, Theorem 13.1]) there exists a basis
(a0, . . . , am−1) of k′ over k such that σi (a0) = ai for every i . As a result, given an element
a0 ∈ R′ lifting a0, the set {σi (a0) : 0 ≤ i ≤ m − 1} is a basis of R′ as a free R-module.
As before, write A = R{X}[[Y ]]/I , where X and Y denote finite sets of variables. Since
K ′|K is unramified the dilated Weil restriction coincides with the classical one, and so by
Lemma 3.1 we have

∏dil
R′|R Spf(A ⊗R R′) = Spf B, where

B = R{X0, . . . , Xm−1}[[Y 0, . . . , Ym−1]]
I c

.

Let T be one of the variables among X and Y , and write

T = a0T0 + σ1(a0)T1 + . . . + σm−1(a0)Tm−1.

Observe that each σi permutes the elements of the set {σi (a0) : 0 ≤ i ≤ m−1}, because σi is
an automorphism and for each j we have σi ◦σ j = σki j for some 0 ≤ ki j ≤ m−1. Therefore,
since σ acts trivially on T ∈ A⊗R R′, the G-action on B must verify σi (Tj ) = Tki j for every
i and j . Moreover, since for every j the association i �→ ki j is bijective, for every j and k
there exists i such that σi (Tj ) = Tk . It follows that BG = B/(Xi − X j , Y i − Y j )i, j . As in
case (i), we deduce that BG = R{X0}[[Y 0]]/(I c ∩ R{X0}[[Y 0]]). This shows that BG ∼= A
which, together with Lemma 4.1, concludes the proof. �
Proof of Theorem 5.1 We begin by showing that the statement of the theorem is local on X .
Let {Xi } be a cover of X by affinoid subsets and set X ′

i = Xi⊗K K ′ for every i , so thatwe have
X ′ = ∪X ′

i . The Weil restriction functor gives immersions
∏

K ′|K X ′
i ↪→∏

K ′|K X ′ for every
i , and

∏
K ′|K X ′ is obtained by gluing

∏
K ′|K X ′

i along the natural isomorphisms induced
by
∏

K ′|K X ′
i ∩∏K ′|K X ′

j
∼= ∏

K ′|K
(
X ′
i ∩ X ′

j

)
. Finally, since the action of G on X ′ arises
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from base-change, the isomorphisms involved in the gluing procedure are G-equivariant by
construction. It follows that

(∏
K ′|K X ′)G is the gluing of the

(∏
K ′|K X ′

i

)G . Hence, if the

theorem holds for every Xi , we have that
(∏

K ′|K X ′)G is obtained by gluing the Xi along

their intersections, so that
(∏

K ′|K X ′)G = X . Let us now show that the theorem holds for
X affinoid K -analytic space. If K ′′ is an intermediate extension between K and K ′, by the
universal property of the representing object we have that

∏
K ′′|K

(∏
K ′|K ′′ X ′) =∏K ′|K X ′.

For the same reason, if the extensions K ′|K ′′ and K ′′|K are Galois, with respective Galois
groups G1 and G2, then we have

(∏

K ′′|K
(∏

K ′|K ′′ X
′)G1

)G2

=
(∏

K ′|K X ′)G .

Now, since the extension K ′|K is the composition of the two Galois extensions K ′|K ur and
K ur|K , where K ur is the maximal unramified extension of K contained in K ′, and therefore
K ′ is totally ramified over K ur, we can assume without loss of generality that K ′|K satisfies
the hypothesis of Lemma 5.2. To conclude, observe that if Spf A is a model of X then we

have
(
Spf(A ⊗R R′)

)� ∼= X ′ ∼= (X ′)�. Combining this fact with Propositions 3.3 and 4.3,
we obtain

((∏dil

R′|R X
′)G
)� 4.3∼=

((∏dil

R′|R X
′)�
)G

3.3∼=
(∏

K ′|K
(
X ′)�)G ∼=

(∏

K ′|K
(
Spf(A ⊗R R′)

)�)G

3.3∼=
((∏dil

R′|R Spf(A ⊗R R′)
)�
)G 4.3∼=

((∏dil

R′|R Spf(A ⊗R R′)
)G)�

.

The theorem now follows by applying Lemma 5.2. �

The Weil restriction and the G-fix locus of a semi-affinoid analytic space under finite
tamely ramified extensions are both semi-affinoid, so we obtain the following corollary of
Theorem 5.1.

Corollary 5.3 Let K ′ be a finite, tamely ramified extension of K , and let X be a K -analytic
space such that X ′ = X ⊗K K ′ is a semi-affinoid K ′-analytic space. Then X is semi-affinoid.

Remark 5.4 From the computation of
(∏dil

R′|R Spf(A ⊗R R′)
)G in the proof of Lemma 5.2,

one can see that this result remains true if we replace the dilated restriction with the usual
Weil restriction. However, this is not sufficient to prove Theorem 5.1, as the isomorphisms
provided by Proposition 3.3 no longer hold when K ′ is ramified over K .

Remark 5.5 Following the notation of the theorem, we obtain a model of X if we consider
the flatification of the dilated Weil restriction X = ∏dil

R′|R X ′, which is the affine special
formal R-scheme Spf

(OX (X )/π -torsion
)
. Moreover, the theorem holds if we replace X

by its integral closure in its generic fiber. Since K ′ is separable over K , X ′ is reduced if and
only if X is reduced. When this is the case, andX ′ = Spf

(O◦
X ′(X ′)

)
is the canonical model

of X ′, the G-action on X ′ extends canonically to X ′, as observed in Remark 4.4. Putting
all of this together, we obtain the canonical model of X by taking the integral closure in its
generic fiber of the flatification of the formal scheme produced by Theorem 5.1.
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6 Annuli and their automorphisms

In this section we study automorphisms of finite order of annuli, not only of closed annuli
but also of open and semi-open ones. Using techniques reminiscent of the theory of Newton
polygons, we prove an analogue of Weierstrass preparation theorem for bounded functions
on annuli. We use this result to show that, for a suitable choice of a presentation, every tame
automorphism of finite order of an annulus is linear.

A K -analytic space V is said to be an open annulus (or semi-open annulus, or closed
annulus) if it is a semi-affinoid K -analytic space having a model of the form Spf A, with A ∼=
R[[X, Y ]]/(XY − πe) (respectively A ∼= R{X}[[Y ]]/(XY − πe), or A ∼= R{X, Y }/(XY −
πe)) for some positive integer e ∈ N. Given such a presentation, the pair (X, Y ) of elements
of A is referred to as a Laurent pair for the annulus V , and the integer e as the modulus of
the annulus.

Observe that V is distinguished, Spf A is its canonical model, and by Lemma 2.2 we have
A ∼= O◦

V (V ). The canonical reduction of an open (or semi-open, or closed) annulus is Spf Ak ,
where Ak ∼= k[[X, Y ]]/(XY ) (respectively Ak ∼= k[X ][[Y ]]/(XY ), or Ak ∼= k[X, Y ]/(XY ));
in all three cases it has two irreducible components, of generic points (X) and (Y ). As usual,
if f ∈ A is a bounded function on V , we denote by f its reduction, that is its image in the
ring Ak .

Remark 6.1 If A is a special R-algebra, an element f of A is a unit if and only if its image f
in Ak is a unit. In particular, a bounded function f (X, Y ) =∑i≥0 ai X

i +∑i>0 biY
i on an

open (or semi-open, or closed) annulus is invertible if and only if ordπ (a0) = 0 (respectively
ordπ (a0) = 0 and ordπ (ai ) > 0 in the semi-open case, or ordπ (a0) = 0, ordπ (ai ) > 0, and
ordπ (bi ) > 0 in the closed case).

Remark 6.2 Observe that two annuli which are isomorphic over K have the same modulus.
Indeed, if V is a K -annulus of modulus e, then e+1 is the number of irreducible components
of the special fiber of the minimal regular model of V over R. An interpretation in terms of
the geometry of the associated Berkovich space is the following. If V is a K -annulus, then the
topological space underlying the associated Berkovich space is an infinite tree that retracts
by deformation onto its skeleton, which is the unique subset that connects the two points of
the boundary of V and is homeomorphic to an interval. If V has modulus e, then its skeleton
contains in its interior exactly e − 1 points onto which a K -rational point retracts.

To study analytic functions on annuli it is useful to consider some valuations of the ring
O◦

V (V ). For the reader’s convenience, we first recall what happens for analytic functions on
discs. Let f =∑i≥0 ai X

i ∈ R[[X ]] be a bounded function on the open unit K -analytic disc

D− = {
x ∈ A

1,an
K

∣∣ |X (x)| < 1
}
, and denote by η( f ) = mini {ordπ (ai )} the valuation of

f at the Gauss point of the disc. Then the smallest degree of a monomial of the reduction
f/η( f ) ∈ k[[X ]] of f/η( f ) is v( f ) = min

{
i ∈ Z

∣∣ ordπ (ai ) = ηX ( f )
}
. It follows from

the Weiestrass preparation theorem that f has v( f ) zeros on D−. If moreover f converges
on the closed unit K -analytic disc D, that is it belongs to R{X}, then f/η( f ) is a polynomial
of degree ν( f ) = max

{
i ∈ Z

∣∣ ordπ (ai ) = ηX ( f )
}
, and so f has ν( f ) zeros on D.

Assume now that V is a K -analytic annulus, and let (X, Y ) be a Laurent pair for V .
We define boundary valuations associated with each irreducible component of the canonical
reduction of V . To the component corresponding to the ideal (X) one attaches the rank
2 valuation on O◦

V (V ) defined by f �→ (
ηX ( f ), vX ( f )

) ∈ Z≥0 × Z, where we write
f =∑i∈Z ai Xi as a function of X and set
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ηX

(∑

i∈Z
ai X

i
)

= min
i

{ordπ (ai )},

vX

(∑

i∈Z
ai X

i
)

= min
{
i ∈ Z

∣
∣ ordπ (ai ) = ηX ( f )

}
.

In the same way, by expressing f as a function of Y , one can associate with the component
corresponding to the ideal (Y ) a rank 2 valuation f �→ (

ηY ( f ), vY ( f )
)
.

Remark 6.3 The (unordered) pair of boundary valuations of an annulus does not depend on
the choice of a Laurent pair. Indeed, if (X ′, Y ′) is another Laurent pair, then there exists a
unit u of O◦

V (V ) such that either X ′ = uX or X ′ = uY , and the boundary valuations vanish
on u. This independence is reflected by the fact that boundary valuations are the two type 5
points pointing toward the interior in the boundary of the adic space of the annulus.

Finally, if V is a closed annulus, with every element f = ∑
i∈Z ai Xi of O◦

V (V ) we
associate the integer

νX ( f ) = max
{
i ∈ Z

∣
∣ ordπ (ai ) = ηX ( f )

}
.

We are going to give a geometric interpretation of the valuations introduced above, and
deduce a Weierstrass preparation result for analytic functions on annuli. The basic step is the
following lemma. To simplify the notation, we write f (a) = f (a, a−1πe).

Lemma 6.4 Let f (X, Y ) ∈ R{X, Y }/(XY − πe) be a bounded function on a closed K -
analytic annulus. Then:

(i) If there exists an element a of R× such that f (a) = 0, we can write

Y f (X, Y ) = (Y − a−1πe)g(X, Y )

for some function g(X, Y ) in R{X, Y }/(XY − πe).
(ii) The function f has νX ( f ) − vX ( f ) many zeros on the subset of V defined by |X | = 1.

Proof Write f (X, Y ) =∑i≥0 ai X
i +∑i>0 biY

i , and assume that f (a) = 0. By replacing
f (X, Y ) with f (aX, a−1Y ), we can assume without loss of generality that a = 1, so that
f (1) = ∑

ai + ∑
biπei = 0. Set ci = −∑k≥i+1 ak and di = ∑

k≥i bkπ
e(k−i). Then

g(X, Y ) = ∑
i≥0 ci X

i + ∑
i>0 diY

i is an element of R{X, Y }/(XY − πe). Comparing
coefficients, one verifies that Y f (X, Y ) = (Y − πe)g(X, Y ), which proves (i). Now, for a
general f , observe that νX ( f ) = vX ( f ) if and only if the reduction f/ηX ( f ) of f/ηX ( f )
is a monomial of degree vX ( f ), that is if and only if all zeros of f are contained in the
subset of V on which |X | < 1. If f (a) = 0, without loss of generality, after replacing K
by an extension, we can assume that a belongs to R. By the previous part we can then write
Y f (X, Y ) = (Y −a−1πe)g(X, Y ), and since νX (Y ) = vX (Y ) = −1 and νX (Y −a−1πe) =
1 = vX (Y −a−1πe)+1, it follows that νX ( f )−vX ( f ) = νX (g)−vX (g)+1.We can repeat
this argument as long as νX (g) − vX (g) > 0, until we obtain a factorization of the form
Y νX ( f )−vX ( f ) · f (X, Y ) = P(Y ) · g(X, Y ), with P a polynomial having νX (g) − vX (g) > 0
zeros in W = {

x ∈ K alg
∣∣ |x | = 1

}
and satisfying νX (P) − vX (P) = νX ( f ) − vX ( f ), and

g nowhere-vanishing on W . This proves (i i). �
Let f be a bounded function on V , which as before we write as f (X) = ∑

i∈Z ai Xi .
Given a real number 0 ≤ r ≤ e, consider the positive real number

ηr ( f ) = min
i∈Z

{
ordπ (ai ) + ir

}
.

123



Galois descent of semi-affinoid spaces 1103

Observe that η0( f ) = ηX ( f ) and ηe( f ) = ηY ( f ), and that the map r �→ ηr ( f ) defines a
piecewise linear function on [0, e]. Moreover, the derivative of this function is discontinuous
at a point r ∈]0, e[ if and only if the value defining ηr ( f ) is attained by more than one
monomial of f . This can happen only for finitely many values of r , since the valuation of R
is discrete, and those values are all rational. We say that a rational number 0 ≤ r ≤ e (with
0 ≤ r < e if V is a semi-open annulus, and 0 < r < e if V is an open annulus) is a critical
radius of f if the value defining ηr ( f ) is attained by more than one monomial of f .

Observe that, if r is rational, then after passing to the extension K (πr ) of K we have
ηr
(
f (X)

) = ηX
(
f (πr X)

)
. In particular, it follows from the definition that r is a critical

radius of f if and only if νX
(
f (πr X)

) �= vX
(
f (πr X)

)
, or equivalently, by part (i i) of

Lemma 6.4, whenever f (a) = 0 for some element a of K alg such that |a| = |π |r . In
particular, since f has finitely many critical radii, by Lemma 6.4 it can only have finitely
many zeros on V .

More generally, given a rational number 0 < r0 < 1, the right derivative of ηr ( f ) at r0 is
vX
(
f (πr X)

)
, while its left derivative at r0 is νX

(
f (πr X)

)
, since in a small neighborhood of

r0 we have ηr ( f ) = min
{
ordπ (ai )+ ir

∣
∣i ∈ {vX ( f (πr X)), νX ( f (πr X))}}. Combined with

Lemma 6.4, this makes it possible to count the zeros of f on any open or closed sub-annulus
of V in terms of vX and νX .

It is now simple to prove the following form of Weierstrass preparation for annuli.

Proposition 6.5 (Weierstrass preparation) Let V be a K -analytic annulus, let (X, Y ) be a
Laurent pair for V , and let f ∈ O◦

V (V ) be a bounded analytic function on V . Then there
exist a monic polynomial P ∈ R[Y ] and a unit u of O◦

V (V ) such that

Y α f (X, Y ) = πηY ( f )P(Y )u(X, Y ),

where α = vX ( f ) if V is an open annulus and α = νX ( f ) otherwise.

Proof We begin by claiming that we can write Y α−vX (g) f (X, Y ) = P(Y )g(X, Y ), where
P(Y ) belongs to R[Y ] and the function g ∈ O◦

V (V ) has no zeros on V . Indeed, we can pass
to an extension K ′ of K such that the zeros ai , . . . , an of f on V are all K ′-rational, so
that by applying Lemma 6.4 n times we obtain Yn f (X, Y ) = P(Y )g(X, Y ), with P(Y ) =∏n

i=1(Y−πea−1
i ), andwehaven = α−vX (g)because g has no zeros onV . Since f is defined

over R, the ai are permuted by the Galois group of K ′ over K , so that P(Y ) has coefficients in
R, and since P(Y ) ismonic then g has coefficients in R aswell. Now, since the function g does
not vanish on V , the value of ηr (g) is attained for every r by a unique monomial avX (g)XvX (g)

of g(X), with ordπ (avX ) = ηX (g). Hence, one has g(X, Y ) = πηX (g)XvX (g)u(X, Y ), where
u is a unit of O◦

V (V ). Substituting this in the first relation and multiplying both sides by
Y vX (g), we obtain the equality Y α f (X, Y ) = πηX (g)+e·vX (g) p(Y )u(X, Y ). We have ηX (g)+
e · vX (g) = ηY (g) because the dominant monomial of g(X), which is avX (g)XvX (g), has
smallest valuation also among the monomials in Y when writing g as g(πeY−1, Y ) (to see
this, observe that the constant term of g/(avX (g)XvX (g)) has valuation zero, and this remains
true whenwriting g in Y ), where it is written as avX (g)π

e·vX (g)Y−vX (g). Moreover, since P(Y )

is monic we have ηY
(
P(Y )

) = ηY (Yn) = 0, and so ηY (g) = ηY ( f ), which concludes the
proof. �
Remark 6.6 In the case of open annuli, a Weierstrass preparation theorem was proven by
Henrio in [16, Lemme 1.6.]. His proof relies on an explicit computation to reduce the proof
to the classical Weierstrass preparation for open discs. While it is possible to prove Proposi-
tion 6.5 extendingHenrio’s techniques, we believe that themethodwe employ allows a deeper
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understanding of the geometric nature of the result. Note that if we assumed Proposition 6.5
in the case of open annuli, that is Henrio’s result, we could apply it to the restriction of a
bounded function f (X, Y ) on a closed (or semi-open) annulus to the biggest open annulus
it contains. We would obtain an invertible function u(X, Y ) in R[[X, Y ]]/(XY − πe), but u
might not be invertible, nor convergent, on the closed (or semi-open) annulus.

In the remaining part of the section we study the automorphisms of finite order m of a
K -annulus V , when m is coprime with the residual characteristic of K . We do not suppose
that such an automorphism σ acts trivially on K . However, being a morphism of analytic
spaces, σ respects the absolute value of K and therefore induces an automorphism σ̄ of
the residue field k of K . The canonical reduction Spec

(O◦
V (V )k

)
of V has two irreducible

components, with generic points (X) and (Y ), where (X, Y ) is a Laurent pair for V , and so
the action induced by σ on it can either fix both points (X) and (Y ), or exchange them. In the
first case we say that σ fixes the branches of V ; in the second case we say that σ switches the
branches of V . Observe that this notion does not depend on the choice of the Laurent pair
(X, Y ).

Remark 6.7 The automorphism σ fixes the branches of the annulus V if and only if its action
on the Berkovich space of V fixes its skeleton pointwise; while when it switches the branches
the action on the skeleton reflects it over a point. This explains our terminology.

We now prove a linearization result for the action onO◦
V (V ) of an automorphism that fixes

the branches of V . In the case of open annuli, a slightly weaker form of this result appears
in Henrio’s unpublished doctoral dissertation [15, Chapitre II, Propositions 3.1 and 3.3].

Proposition 6.8 Let V be a K -analytic annulus of modulus e, and let σ be an automorphism
of V of finite order m that fixes the branches of V and acts on π as multiplication by a (not
necessarily primitive) m-th root of unity ζ . Assume that the characteristic of the residue field
k of K does not divide m. Then, there exist a Laurent pair (X, Y ) for V and a unit u of R
such that

σ(X) = uX,

σ (Y ) = ζ eu−1Y.

Moreover, if ζ is primitive, then u can be taken to be a m-th root of unity, whereas if ζ = 1,
then one can take u = 1.

Proof Let (X, Y ) be a Laurent pair for V . Since
(
σ(X), ζ−eσ(Y )

)
is again a Laurent pair and

σ fixes the branches, one gets ηX
(
σ(X)

) = 0, vX
(
σ(X)

) = νX
(
σ(X)

) = 1 and ηY
(
σ(X)

) =
e, and analogous relations hold for σ(Y ). By Proposition 6.5, we have that

Yσ(X) = πe P(Y )U1 and Xσ(Y ) = πeQ(X)U2,

withU1 andU2 units ofO◦
V (V ), and P and Q monic polynomials. By multiplying these two

relations one gets ζ eπ2e = π2e P(Y )Q(X)U1U2, so that P(Y )Q(X) is invertible inO◦
V (V ),

yielding P = Q = 1 (because P and Q are monic). It follows that σ(X) = XU1. Denote
by a ∈ R× the constant term of U1. Since σ has order m, we have that X = σm(X) =
U1σ(U1) · · · σm−1(U1)X , so that aσ(a) · · · σm−1(a) ≡ 1 modulo (π, X, Y ). Now let u be
the multiplicative representative in R of the image of a in the residue field k of K . Since
the choice of the multiplicative representatives commutes with automorphisms, we have
uσ(u) · · · σm−1(u) = 1 in R. Setting

X ′ = X + u−1σ(X) + u−1σ(u−1)σ 2(X) + · · · + u−1σ(u−1) · · · σm−2(u−1)σm−1(X)
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we have that σ(X ′) = uX ′. Moreover X ′ is divisible by X because every term of the sum is,
and X ′/X ≡ m modulo (π, X, Y ) because every term reduces to 1. Since the characteristic
of k does not divide m, this implies that X ′ = ηX for some invertible element η of O◦

V (V ).
Then Y ′ = η−1Y is such that (X ′, Y ′) is a Laurent pair for V , and we have σ(X ′)σ (Y ′) =
σ(πe) = ζ eπe, so that σ(Y ′) = ζ eu−1Y ′. To prove the final claim, observe that if ζ is
primitive, then σ is trivial on k. In this case a reduces to a m-th root of unity of k modulo
(π, X, Y ), and therefore u is the unique lift to a m-th root of unity of R. On the other hand,
if ζ = 1, then k|k<σ> is cyclic of degree m, and so the norm of ū relative to the extension
k|k<σ> is unitary. It then follows from Hilbert’s Theorem 90 (see for example [19, VI,
Sect. 6, Theorem 6.1]) that there exists b ∈ k× such that b = σ(b)ū. Taking a multiplicative
representative v of b in R×, we find that v = uσ(v). Hence, if we set X ′′ = vX ′, we have
σ(X ′′) = σ(v)uX ′ = vX ′ = X ′′. After setting Y ′′ = v−1Y ′, we obtain a Laurent pair
(X ′′, Y ′′) such that the action of σ is the identity on the coordinates. �

We conclude the section with a similar linearization result in the case of involutions that
switch the branches of V .

Proposition 6.9 Let V be a K -analytic annulus of modulus e, let σ be an automorphism of
V of order 2 that acts on π as the multiplication by an element ζ of {±1}, and assume that
σ switches the branches of V . Then V is either an open or a closed annulus, ζ e = 1, and
there exist a unit u of R that is invariant under σ and elements X, Y of O◦

V (V ) such that

σ(X) = Y,

σ (Y ) = X,

together with an isomorphism

O◦
V (V ) ∼= R[[X, Y ]]

(XY − uπe)

whenever V is an open annulus, and

O◦
V (V ) ∼= R{X, Y }

(XY − uπe)

whenever V is a closed annulus.

Proof Let (X, Y ) be a Laurent pair for V . First of all observe that V cannot be semi-open,
because the generic points of the two irreducible components of the canonical reduction of a
semi-open annulus, which is the formal spectrum of k[X ][[Y ]]/(XY ), cannot be exchanged
by an automorphism. The following proof applies both to the open and to the closed case.
Using Proposition 6.5, one can write σ(X) = U1Y and σ(Y ) = U2X for some units U1

and U2 of O◦
V (V ). We have X = σ

(
σ(X)

) = σ(U1)U2X , so that σ(U1)U2 = 1. Morever,
ζ eπe = σ(XY ) = σ(X)σ (Y ) = U1U2π

e, then yielding U1U2 = ζ e. Therefore, when
ζ = −1 the integer e must be even. Indeed, in this case σ fixes k and so, modulo (π, X, Y ),
we have 1 ≡ σ(U1)U2 ≡ U1U2 ≡ ζ e. In particular, U1U2 = 1 regardless of what ζ is. Up
to performing a change of variables and replacing the condition that (X, Y ) is a Laurent pair
with the weaker assumption that XY = ξπe for some unit ξ ∈ R×, we can suppose that
U1 ≡ U2 ≡ 1 mod π . Indeed, if we call x , y, and u1 the reductions modulo π of X , Y , and
U1 respectively, we can replace x with u−1

1 x in order to get σ(x) = y and σ(y) = x . An
easy computation (see [15, Lemme 2.3.]) shows the existence of lifts X and Y of x and y to
O◦

V (V ), and of a lift ξ of u1−1 to R× such that XY = ξπe. Hence, recalling thatU1U2 = 1,
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this change of variables allows us to write U1 = (1+ πU )−1 and U2 = (1+ πU ) for some
U in O◦

V (V ). It follows that σ(πU ) = πU .
Our goal is to find a unit η ofO◦

V (V ) such that ησ(η) = vU−1
1 for some unit v of R satisfying

σ(v) = v. Indeed, once we have done so, we can set X ′ = v−1ηX , and Y ′ = η−1Y , so that
these new variables satisfy

σ(X ′) = v−1σ(η)U1Y = η−1Y = Y ′

and

σ(Y ′) = σ(η)−1U−1
1 X = v−1ηX = X ′.

Moreover, we have X ′Y ′ = v−1ηXη−1Y = v−1XY = v−1ξπe = uπe, where u = v−1ξ ,
and since σ(u) = u this would conclude the proof of the theorem.
Therefore, it remains to find such η and v. In order to do so, we proceed by successive approx-
imations, constructing sequences of functions (ηn)n∈N in O◦

V (V )× and elements (vn)n∈N of
R× such that

ηnσ(ηn) − vn(1 + πU ) ≡ 0 mod πn+1

for every n ∈ N. We first set η0 = v0 = 1, and suppose that we defined successfully vn and
ηn . We then write ηnσ(ηn) − vn(1+ πU ) = πn+1g(X, Y ) in O◦

V (V ). Since σ
(
ηnσ(ηn)

) =
ηnσ(ηn), σ(vn) = vn , and σ(πU ) = πU , then πn+1g(X, Y ) is invariant by σ as well, and
so we can write

πn+1g(X, Y ) ≡ b + f (X, Y ) + σ
(
f (X, Y )

)
mod πn+2

for some function f in πn+1O◦
V (V ) and some element b of πn+1R such that σ(b) = b. Now

set ηn+1 = ηn − f and vn+1 = vn + b. Then, modulo πn+2 we have

ηn+1σ(ηn+1) ≡ (ηn − f )(σ (ηn) − σ( f ))

≡ ηnσ(ηn) − f σ(ηn) − σ( f )ηn

≡ vn(1 + πU ) + πn+1g − f − σ( f )

≡ vn(1 + πU ) + b

≡ vn+1(1 + πU ).

The limits η = lim ηn and v = lim vn exist in O◦
V (V )× and R× respectively, and satisfy

σ(v) = v and ησ(η) = v(1 + πU ), as desired. �

7 Fractional annuli

A closed K -analytic annulus of modulus e is isomorphic to the subspace of A
1,an
K defined by

the inequalities |π |e ≤ |X | ≤ 1, where X is a coordinate of the analytic affine line. In this
section, we consider a more general class of K -analytic spaces, that of annuli of fractional
moduli, subspaces ofA

1,an
K defined by inequalities such as |π |β ≤ |X | ≤ |π |α with α, β ∈ Q.

A K -analytic space V is said to be a fractional open annulus (or fractional semi-
open annulus, or fractional closed annulus) if it is a semi-affinoid space having a
model of the form Spf A, with A ∼= R[[|π |−αX, |π |βY ]]/(XY − 1) (respectively A ∼=
R{|π |−αX}[[|π |βY ]]/(XY − 1), or A ∼= R{|π |−αX, |π |βY }/(XY − 1)) for some rational
numbers α, β such that α < β.
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When there is no need to specify the type (open, semi-open, or closed) of such a fractional
annulus, we simply denote it by Vα,β , and call it a fractional annulus of radii |π |β < |π |α .
The modulus of a fractional annulus Vα,β is the positive rational number β − α.

Remark 7.1 Let Vα,β be a fractional K -annulus of radii |π |β < |π |α , and let ρ be a positive
integer such that ρα and ρβ are both integers. Then the base change of V to the totally
ramified degree ρ extension K (π

1/ρ) of K is a K (π
1/ρ)-analytic annulus of the same type as

Vα,β and of modulus ρ(β −α). In particular, it follows from Remark 6.2 that two isomorphic
fractional annuli have the same modulus.

Remark 7.2 Annuli are clearly fractional annuli, but not every fractional annulus whose
modulus is an integer is an annulus. For example, the open fractional annulus of radii |π |1/2 <

|π |−1/2 has modulus 1, but since it contains K -rational points it cannot be isomorphic to an
open annulus of modulus 1. In particular, this shows that two fractional annuli that have the
same modulus are not necessarily isomorphic.

Remark 7.3 Let a, b, a′, b′ be integers such that (a, b) = (a′, b′) = 1 and a/b < a′/b′.
Observe that the special R-algebra that we used to construct the open fractional annulus of
radii |π |a′/b′

< |π |a/b, as defined in Eq. (2), is

R
[[|π |−a/bX, |π |a′/b′

Y
]]

(XY − 1)
= R[[U, V,W, Z ]]
(
πb�−a/b�+aV −Ub, πb′�a′/b′�−a′ Z − Wb′

,UW − π�−a/b�−�a′/b′�) .

The reader should be aware that this algebra is not flat in general, so the canonical reduction of
the fractional annulus is not simply obtained by reduction modulo π of the above equations.
For example, the open fractional annulus defined by |π |1/b < |X | < 1 has model Spf A, with

A = R[[W, Z , Y ]]
(
πb−1Z − Wb,WY − π

) .

In A we have πb−1(W − ZYb−1) = 0, and the canonical model of this fractional annulus is
the formal spectrum of

R[[W, Z , Y ]]
(
πb−1Z − Wb,WY − π,W − ZYb−1

) = R[[Z , Y ]]
(
π − ZYb

) ,

hence its canonical reduction is the formal spectrum of k[[Z , Y ]]/(ZYb
)
.

We can be more precise than in Remarks 7.1 and 7.2, and describe the moduli space of
fractional annuli over K . This is the content of the next proposition. Consider the map

� : {Fractional annuli over K } −→ Q>0 × Q
/

Z

Vα,β �−→ (β − α, α)

that sends a fractional annulus Vα,β of radii |π |β < |π |α to the pair consisting of its modulus
and the class α of α modulo Z.

Theorem 7.4 Let P ∈ {open, semi-open, closed} denote a type of fractional annuli. Then
the map � induces a bijection

� : {Isomorphism classes of fractional annuli of type P over K } ∼−→
(
Q>0 × Q

/
Z

)
/
∼P

where ∼P is the equivalence relation on Q>0 × Q
/

Z generated by the relations of the form
(a, b) ∼P (a, a − b) if P ∈ {open, closed}, while ∼semi-open is the trivial equivalence relation.
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Proof We have already observed in Remark 7.1 that isomorphic fractional annuli have the
same modulus. Moreover, it is clear that if two fractional annuli are isomorphic then they are
of the same type P . Therefore, to conclude the proof it remains to establish the following
claim: two fractional annuli Vα1,γ−α1 and Vα2,γ−α2 of the same type P and same modulus
γ are isomorphic if and only if (γ, α1) ∼P (γ, α2). If α1 = α2, then the multiplication of
the coordinate X by πα2−α1 gives a K -isomorphism Vα1,γ−α1

∼→ Vα2,γ−α2 as subspaces of
A
1,an
K . Similarly, if the annuli are either open or closed and α1 = γ − α2, a K -isomorphism

Vα1,γ−α1

∼→ Vα2,γ−α2 as subspaces ofA
1,an
K \{0} is obtained by first sending the coordinate X

to its inverse X−1, then applying a transformation as in the previous case. This proves the “only
if” part of the claim above. To prove the “if” part of the claim, let ϕ : Vα1,γ−α1

∼→ Vα2,γ−α2

be an isomorphism of fractional annuli over K . Since ϕ induces an isomorphism at the level
of K -rational points, it also induces an isomorphism between the biggest annuli contained
in the two fractional annuli:

V1 =
{
x ∈ Vα1,γ−α1

∣
∣
∣|π |�γ−α1� ≤ |X | ≤ |π |�α1�

} ∼−→ V2

=
{
x ∈ Vα2,γ−α2

∣
∣
∣|π |�γ−α2� ≤ |X | ≤ |π |�α2�

}
,

and therefore ϕ is an isomorphism between the complements Vα1,γ−α1 \V1 and Vα2,γ−α2 \V2.
Assume that the annuli are either open or closed and that α is not an integer; the remaining
cases can be treated similarly and are left to the reader. Observe that Vα1,γ−α1 \ V1 has a
connected componentC that is a fractional annulus of modulus α1−�α1�. On the other hand,
the connected components of Vα1,γ−α1 \V1 are two fractional annuli of moduli α2−�α2� and
γ −α2−�γ −α2�, soC has to be isomorphic to either of the two. This implies that α1−�α1�
equals either α2−�α2� or γ −α2−�γ −α2�, whichmeans precisely that (γ, α1) ∼P (γ, α2).
�
Remark 7.5 As can be seen from the proof above, from the point of view of Berkovich spaces
if Vα,β is a fractional annulus then α measures the length of the segment of the skeleton of
Vα,β that connects the boundary point corresponding to the component (X) of the canonical
reduction of Vα,β to the closest point of the skeleton onto which a K -rational point retracts.

8 Tame forms of annuli

We say that a K -analytic space V is a K-form of an annulus if there exists a finite extension
K ′|K such that V ′ = V ⊗K K ′ is an annulus. We then say that the extension K ′|K trivializes
the form V . As we observed in Remark 7.1, fractional annuli over K are K -forms of annuli;
we say that a K -form of an annulus V is itself trivial if it is isomorphic to a fractional annulus
over K .

In this section we apply Theorem 5.1 and the results of Sect. 6 to classify forms of annuli
for a large class of Galois extensions that includes totally tamely ramified extensions. In
particular, in Theorem 8.1 we show that all such forms are trivial as long as the action
induced by the Galois group of K ′|K fixes the branches of the K ′-annulus V ′. On the other
hand, in Theorem 8.3 we show that up to isomorphism there exists only one non-trivial form
of an annulus of given modulus (except in the semi-open case, where all forms are trivial)
trivialized by a quadratic extension that switches the branches of V ′.

Observe that the corresponding problem for discs is well understood, since all tame forms
of open polydiscs are trivial by [11], and all tame forms of closed discs are trivial by [23].
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Our methods also allow to retrieve easily those results in dimension 1 for the extensions that
we consider. On the other hand, the triviality of forms of annuli when the Galois group fixes
the branches has also recently been obtained by Chapuis, with different techniques, in [9].

We begin by studying the case when the action induced by the Galois group on the
trivialized annulus V ⊗K K ′ fixes its branches.

Theorem 8.1 Let K ′ be a Galois extension of K of degree m and ramification index ρ such
that K contains all ρ-th roots of unity, its residue characteristic does not divide m, and the
residual extension k′|k is solvable. Let V be a K -form of an annulus trivialized by K ′|K.
Then, if every element of the Galois group of K ′|K fixes the branches of V ⊗K K ′, the form
V is trivial.

Example 8.2 If K ′ is a Galois and totally tamely ramified extension of K of degree m,
then it satisfies the conditions of Theorem 8.1, since it is generated by an m-th root � of
a uniformizer π of K , and a generator of the Galois group of K ′|K has to act on � by
multiplication by a primitive m-th root of unity ζ ∈ K ′, so that a primitive m-th root of unity
exists in k′ = k.

Proof of Theorem 8.1 We only treat the case when V is the form of an open annulus of mod-
ulus e. The cases of semi-open and closed annuli are completely analogous, only requiring
to replace some power series rings by the corresponding convergent version. Let � be a
uniformizer of R′ which is a root of π , and denote by G the Galois group of K ′|K . By
Theorem 5.1, if (X, Y ) is a Laurent pair for V ′ then V is isomorphic to the K -analytic space
associated with the special formal R-scheme

X =
(∏dil

R′|R Spf
( R′[[X, Y ]]

(XY − � e)

))G

,

where e is the modulus of the open annulus V ⊗K K ′. We now compute explicitly the special
formal R-scheme above. To simplify notations, let A be the ring of the dilatedWeil restriction
of Spf

(
R′[[X, Y ]]/(XY −� e)

)
to R, so thatX ∼= Spf(AG). We divide the rest of the proof

into three steps.
Step (i). Assume that the extension K ′|K is totally ramified. Then R′ is a free R-module

of rank m, with basis {1,�, . . . ,�m−1}, and the ring A is obtained as follows. Write

X = X0 + X1� + . . . + Xm−1�
m−1,

Y = Y0 + Y1� + . . . + Ym−1�
m−1.

Then, by Proposition 3.5 we have an isomorphism

A ∼= R
[[
X0, |� |X1, |� |2X2, . . . , |� |m−1Xm−1, Y0, |� |Y1, . . . , |� |m−1Ym−1

]]

J
,

where J = ( f0, . . . , fm−1) is the ideal generated by the coefficients of the expansion of
XY − � e in the basis {1,�, . . . ,�m−1}. Writing e = a + bm for some 0 ≤ a < m and
b ≥ 0, a simple computation of

(
X0 + . . . + Xm−1�

m−1
)(
Y0 + . . . + Ym−1�

m−1
) − � e

yields

fi =
i∑

j=0

X jYi− j +
( m−1∑

j=i+1

X jYm+i− j

)
π − δa,iπ

b

for every i = 0, . . . ,m − 1, where δa,i is equal to 1 if a = i and to 0 otherwise. Denote by
σ a generator of G and let ζ ∈ R be the primitive m-th root of unity such that σ(�) = ζ� .
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By Proposition 6.8 we can assume that σ(X) = ζ αX and σ(Y ) = ζ βY for some 0 ≤ α, β ≤
m−1. Observe that then α+β must be congruent to emodulom. It follows that, by a similar
computation as the one performed in the proof of part (i) of Lemma 5.2, σ(Xi ) = ζ α−i Xi

and σ(Yi ) = ζ β−i Yi for every i = 0, . . . ,m − 1. The kernel of the surjection A → AG

is generated by the monomials
(
1 − ζ α−i

)
Xi and

(
1 − ζ β−i

)
Yi , therefore only Xα and Yβ

survive in AG . It follows that fi = 0 for every i �= a, and

fa =
{
XαYβ − πb if α + β = a,

XαYβπ − πb if α + β = m + a.

In both cases we see that V is a fractional annulus, which is what we wanted to show.
Step (ii). Assume that K ′|K is cyclic and unramified. As in the proof of part (i i) of

Lemma 5.2, we can apply the normal basis theorem ([19, VI, Sect. 13, Theorem 13.1]) to
find α ∈ R′ such that |α| = 1 and

(
α, σ (α), . . . , σm−1(α)

)
is a basis of R′ as a free R-

module, where σ is a generator of G. Moreover, by dividing α by its trace
∑m−1

i=0 σ i (α) �= 0
we can assume that the trace of α is 1, so that an element a of R, when seen as an element of
R′, can be expressed as a =∑m−1

i=0 aσ i (α) in the basis above. Let T be one of the variables
among X and Y , and write

T = T0α + T1σ(α) + . . . + Tm−1σ
m−1(α),

so that as beforewewehave an isomorphism A ∼= R[[X0, X1, . . . , Xm−1, Y0, . . . , Ym−1]]/J,
where J is the ideal of the coefficients of XY −� e in the basis

(
α, σ (α), . . . , σm−1(α)

)
. By

Proposition 6.8 we can assume that σ(T ) = T . Since we also have σ(T ) = σ(T0)σ (α) +
σ(T1)σ 2(α) + . . . + σ(Tm−1)α, in the ring AG we have X0 = X1 = · · · = Xm−1 and
Y0 = Y1 = · · · = Ym−1, and therefore

XY − � e =
(
X0

∑

i
σ i (α)

)(
Y0
∑

i
σ i (α)

)
− πe

∑

i
σ i (α),

so that all the generators of J become X0Y0−πe. This proves that AG ∼= R[[X0, Y0]]/(X0Y0−
πe), that is V is an open annulus of modulus e.

Step (iii). Let us treat the general case. Up to adding to K ′ a ρ-th root π
1/ρ of π , we

can assume that the extension K ′|K decomposes as an extension K ′|K (π
1/ρ) of the totally

ramified extension K (π
1/ρ)|K . The extension K ′|K (π

1/ρ) is Galois, unramified and solvable,
and so it can be decomposed as a tower of unramified, cyclic Galois extensions. By applying
the result we proved in step (i i) to each extension in this tower, we deduce that the K (π

1/ρ)-
form V ⊗K K (π

1/ρ) of the K ′-analytic annulus V ⊗K K ′ is itself an annulus. Finally, the
extension K (π

1/ρ)|K is totally ramified, cyclic Galois, because K contains all ρ-th roots of
unity, so that the result we obtained in step (i) shows that the K -form V of the annulus
V ⊗K K (π

1/ρ) is a fractional annulus, concluding the proof of the theorem. �
If K ′ is an extension of K satisfying the hypotheses of the theorem above, this result,

together with Theorem 7.4, classifies completely the K -forms of a K ′-annulus X of modulus
e with fixed branches. Those are all the fractional annuli of radii |π |β < |π |α with β − α =
e/ρ and α, β ∈ 1

ρ
Z, where ρ is the ramification index of K ′|K . In the language of group

cohomology, the set of isomorphism classes of these forms is H1
(
Gal(K ′|K ),AutfixK ′(X)

)
,

where AutfixK ′(X) is the normal subgroup of AutK ′(X) that consists of the K ′-automorphisms
of X fixing its branches.

If V is a K -form of an annulus trivialized by an extension K ′|K , and if there exists an
element of the Galois group of K ′ over K that switches the branches of V ⊗K K ′, then the
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K -form V cannot be trivial. The next proposition shows that such non-trivial forms (both
ramified and unramified) indeed exist, and classifies those that are trivialized by a quadratic
extension.

Theorem 8.3 Let K ′ = K
(√

a
)
be a quadratic extension of K of ramification index ρ ∈

{1, 2}, and assume that the residue characteristic of K is different from 2. Let V ′ be a K ′-
analytic annulus of modulus e. Then there exists a K -form V satisfying V ⊗K K ′ ∼= V ′
and such that the action induced by the generator of the Galois group of K ′|K switches
the branches of V ′ if and only if V ′ is either an open or a closed annulus and ρ divides e.
Moreover, when this is the case we have

V ∼= Spf

(
R
[[
X, |a|1/2Y ]]

(X2 − aY 2 + uπ
e/ρ)

)�

whenever V ′ is open, and

V ∼= Spf

(
R
{
X, |a|1/2Y}

(X2 − aY 2 + uπ
e/ρ)

)�

whenever V ′ is closed, for some unit u of R.

Proof Let V be a K -form such that V ⊗K K ′ ∼= V ′. Proposition 6.8 implies that V ′ is either
an open or a closed annulus. We focus on the former case, as the other one is completely
analogous. Let σ be a generator of the Galois group of K ′ over K . We treat separately two
cases, according to whether the extension K ′|K is ramified or unramified, and proceed as
in the proof of Theorem 8.1, computing explicitly the model Spf A〈σ 〉 of V , where Spf A =
∏dil

R′|R Spf
(O◦

V (V )
)
. Given the similarities with that proof, some details are left to the reader.

Step (i). If K ′ is a ramified extension of K , we have R′ ∼= R ⊕ R� , with � 2 = π , and σ

acts on R′ by multiplying � by −1. Again by Proposition 6.8, the modulus e of V ⊗K K ′ is
even, and we can writeO◦

V (V ) ∼= R′[[X, Y ]]/(XY −u� e), with σ(X) = Y and σ(Y ) = X ,
and where u is a unit of R. We write X = X0 + X1� and Y = Y0 + Y1� , so that we have
A ∼= R[[X0, |� |X1, Y0, |� |Y1]]/(X1Y1 + X1Y0, X0Y0 − πX1Y1 − uπ

e/2). Since we have
σ(X0) = Y0 andσ(X1) = −Y1,wededuce that A〈σ 〉 ∼= R[[X0, |� |X1]]/(X2

0−πX2
1−uπ

e/2),
which is what we wanted.

Step (ii). If K ′ is an unramified extension of K , we can write R′ = R ⊕ Rα for some α in
R′ such that α2 ∈ R and σ(α) = −α.We can now apply one last time Proposition 6.8, and the
same computations as in Step (ii) yield as expected A〈σ 〉 ∼= R[[X0, X1]]/(X2

0−α2X2
1−uπe).

Step (iii). It remains to show that (Spf B)�, for B = R[[X, |a|1/2Y ]]/(X2 − aY 2 + uπ
e/ρ),

is indeed the K -form we expect. Since R′ = R[a1/2], with a ∈ R, we have

B ⊗R R′ ∼= R′[[X, |a|1/2Y ]]
(X2 − aY 2 − uπ

e/ρ)
∼= R′[[X, |a|1/2Y ]]
(
(X + a1/2Y )(X − a1/2Y ) − uπ

e/ρ

) .

This is the algebra of bounded functions on an open annulus of modulus e, as the change of
variables X ′ = X + a

1/2Y , Y ′ = u−1(X − a
1/2Y ) shows. The automorphism σ keeps X fixed

but changes the sign of Y , and therefore it exchanges the ideals (X ′) and (Y ′), which is the
last thing that we needed to verify. �

Together with Theorem 8.1, this result implies that, if K ′|K is a quadratic exten-
sion and the residue characteristic is different from 2, then the cardinality of the set
H1
(
Gal(K ′|K ),AutK ′(X)

)
of K -forms of a K ′-annulus X verifies:
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∣
∣H1(Gal(K ′|K ),AutK ′(X)

)∣∣ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 if X is not semi-open , ρ = 2 and e is even,

2 if X is semi-open and

ρ = 2 or X is not semi-open and ρ = 1,

1 otherwise.

Remark 8.4 Let V be a non-trivial K -form of an annulus as in Theorem 8.3. Since V is
homeomorphic to V ′/Gal(K ′|K ), and since the Galois action flips the skeleton of the K ′-
annulus V ′, as observed in Remark 6.7, it follows that V has exactly one boundary point. An
algebraic way to see this consists of showing that the canonical reduction of V is irreducible.
For example, if V ′ is a closed annulus of modulus e and K ′ is unramified over K , then the
formal spectrum of R{X, Y }/(X2 − aY 2 + uπe) is the canonical model of V , and so its
canonical reduction is the spectrum of k[X, Y ]/(X2 − aY 2), that is irreducible.

Remark 8.5 The methods of this section allow to study forms of open and closed polydiscs
as well. Indeed, as soon as we know that a Galois action can bemade linear on the coordinates
of a polydisc, in the same spirit as our Proposition 6.8 does for annuli, then the arguments
of Theorem 8.1 permit to prove the triviality of forms. While in dimension 1 this is always
satisfied (and it can be shown similarly as in Proposition 6.8), in general whether any tame
polynomial action of finite order on the affine n-space is linearizable is a well known open
problem (see [18, §5,6] for a thorough discussion). In particular, beyond the dimension 2 it is
currently not known whether non-trivial tame forms of closed polydiscs exist. Observe that
the linearizability assumption is equivalent to the hypothesis of residually affine action that
Chapuis assumes in [9, Théorème 2.12] to show the triviality of forms of polydiscs, since if
the action is residually affine one can find a suitable lift that can be linearized after a change
of coordinates of the polydisc.

The results of this section can be applied to obtain a non-archimedean analytic proof of
a seemingly unrelated result: the existence of resolutions of singularities of surfaces over an
algebraically closed field of characteristic zero. This was first proven by Zariski [27]. We
briefly explain how this can be done, building on [14].

Theorem 8.6 Let k be an algebraically closed field of characteristic zero and let X be a
surface over k. Then X admits a resolution of its singularities.

Proof Without loss of generality, by replacing X by its normalization and reasoning locally,
we can assume that X is normal and x ∈ X is its only singular point. With this data, in [14]
is associated a locally ringed space NL(X, x), the non-archimedean link of x in X . Using
[14, Corollary 4.10], we can assume without loss of generality that NL(X, x) is a smooth
Berkovich curve over a discretely valued field of the form k((π)). By [14, Proposition 10.9],
a resolution of (X, x) exists if and only if we can find a finite and non-empty set S of type
2 points of NL(X, x) such that for each connected component V of NL(X, x) \ S the ring
O◦(V ) is regular. By applying [12, Théorème 5.1.14.(iv)] to NL(X, x), we deduce that there
exists a finite set S′ of type 2 points of NL(X, x) such that each connected component V of
NL(X, x) \ S′ satisfies the following condition: there exists a finite separable extension s(V )

of k((π))which consists of analytic functions on V , so that V can be seen as an analytic space
over s(V ), and V is either a s(V )-form of an open disc or a s(V )-form of an open annulus
whose trivializing extension fixes the branches (in loc. cit., see 3.1.1.4 for the definition of
s(X)). Since the non-archimedean link NL(X, x) does not depend on the choice of a base
field, and s(V ) is abstractly isomorphic to k((π)) itself, without loss of generality we can
assume that V is a k((π))-form of an open disc or of an open annulus with fixed branches.
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Assume that V is a form of an annulus. Since k is algebraically closed and of characteristic
zero, the extension of k((π)) trivializing V is of the form K ′ = k((�)), where � is a root of
π , and satisfies the hypotheses of Theorem 8.1, so that V is a fractional annulus over k((π)).
By adding more type 2 points to S we can assume that O◦(V ) is regular. Since the same is
true for forms of discs, this concludes the proof. �
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