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Abstract We explicitly construct a V -normal crossing Gorenstein canonical model of the
relative symmetric products of a local semistable degeneration of surfaces without a triple
point by means of toric geometry. Using this model, we calculate the stringy E-polynomial
of the relative symmetric product. We also construct a minimal model of degeneration of
Hilbert schemes explicitly.

Introduction

Let S be a smooth (quasi-)projective algebraic surface. A theorem of Fogarty [8] says that
the Hilbert scheme Hilbn(S) of 0-dimensional subschemes on S of length n is a smooth
(quasi-)projective algebraic variety of dimension 2n. This construction gives a very nice and
interesting way to produce higher dimensional algebraic varieties. For example, if S is a
K3 surface (resp. an abelian surface), then Hilbn(S) (resp. the albanese fiber of Hilbn+1(S))
gives an example of higher dimensional irreducible symplectic compact Kähler manifold [2].
Besides the holomorphic symplectic geometry, the Hilbert scheme of points on a surface is
related to many branches of mathematics, such as differential geometry, singularity theory,
and representation theory.

As Hilbert schemes behave nicely in family, it is quite natural to think of the relative
Hilbert scheme Hilbn(S /B) for a flat family of surfaces π : S → B. If the family π

degenerates at some point b ∈ B, one naturally expects that the family of Hilbert schemes
Hilbn(S /B) → B also degenerates at b. In this setting, one of the fundamental questions
is to ask how much singular the induced degeneration of Hilbert schemes is. Of course, it
will depend on the singularity of the degeneration of the original family. To get a modest
degenerationofHilbert schemes, it is natural to assume that the family of surfacesπ : S → B
is semistable. In such a situation, another natural question is to find a good birational model of
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1144 Y. Nagai

a degeneration of Hilbert schemes that is semistable (or very near to semistable) and minimal
[9,14], and to understand the behavior of the family.

However, even if the family π : S → B is a semistable degeneration, and hence S
is smooth, it seems difficult, at least to the author, to study the relative Hilbert scheme
Hilbn(S /B) directly by the ring theoretic approach as in [8] or [4], in contrast to Ran’s
work [18] on the case of semistable degeneration of curves in this direction. In fact, our
relative Hilbert scheme can be seen as a closed subscheme Hilbn(S /B) ⊂ Hilbn(S ), while
Hilbn(S ) can be very singular for dimS � 3 and n large.

In this article, wewill focus on the relative symmetric product Symn(S /B) rather than the
relative Hilbert scheme, and study its singularity and birational geometry. For that purpose,
we start from a local model of semistable degeneration of surfacesS → B and describe the
symmetric product Symn(S /B) as a quotient of certain affine toric variety by an action of
the symmetric group (§1). This description leads us to a Gorenstein canonical model with
only quotient singularities for a degeneration without a triple point (§2, Theorem 2.10). The
Gorenstein canonical model is obtained as a quotient by a natural action of the symmetric
group of the total space of a rank two toric vector bundle over a toric variety associated
with the Coxeter complex of a root system of type A (Proposition 2.5). It is noteworthy that
such a toric variety was studied by several authors from an interest of combinatorics and
representation of symmetric groups [6,17,21]. This toric-quotient description also enables
us to calculate the stringy E-polynomial of the Gorenstein canonical model, which encodes
cohomological information of the degeneration (§3, Theorem 3.14, Proposition 3.17). In the
last section, we discuss an explicit construction of a Q-factorial terminal minimal model of
the relative symmetric product (Theorem 4.1), which turns out to be a V -normal crossing
degeneration of Hilbert schemes of general fibers. This gives a good birational model of a
degeneration of Hilbert schemes in the case where the singular fiber of the original semistable
degeneration of surfaces has no triple point. We also relate our minimal model to the relative
Hilbert scheme explicitly in the case where the length n = 2.

1 Local description of symmetric product

1.1 Let S2 = S3 = C3 and define pd : Sd → B = C by

pd(x1, x2, x3) =
{
x1x2 if d = 2,

x1x2x3 if d = 3.

The origin of S2 is the localmodel at the general point of the singular locus of the singular fiber
of semistable degeneration of surfaces, while the origin of S3 is the maximally degenerate
point. Let us denote the n-fold self-products of Sd relative to pd by

X̃ (n)
d = (Sd/B)n = Sd ×B Sd ×B · · · ×B Sd .

and let π̃
(n)
d : X̃ (n)

d → B be the natural morphism. Then, the symmetric group Sn acts on

X̃ (n)
d and π̃

(n)
d is Sn-invariant. The quotient variety

π
(n)
d : X (n)

d = X̃ (n)
d /Sn → B

is the nth relative symmetric product of pd : Sd → B.
The fiber (π(n)

d )−1(b) for b ∈ B, b �= 0 is just Symn(C∗×C) for d = 2 and Symn((C∗)2)
for d = 3. It is also easy to see the combinatorics of the fiber over the origin. It has

(n+d−1
d

)
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Symmetric products of a semistable degeneration of surfaces 1145

components each of which corresponds to a partition of n,

a =
(
ai | 1 � i � d,

∑
ai = n

)
.

The component X (n)
a is an image of a birational morphism

Syma(C2) =
d∏

i=1

Symai (C2) → X (n)
a .

The morphism has finite fibers over the double curves except for the case ai = n for some
i . It implies that X (n)

a is non-normal for general a. The geometry of the intersection of these
components seems difficult to describe directly.

In contrast, it is easy to describe the product variety X̃ (n)
d by affine equations. Let

(z11, z12, z13, . . . , zn1, zn2, zn3) be the coordinate of (C3)n = C3n . Then, X̃ (n)
d is nothing

but the complete intersection

z11 · · · z1d = z21 · · · z2d = · · · = zn1 · · · znd (d = 2, 3) (1)

of dimension 2n + 1 and the projection π̃
(n)
d : X̃ (n)

d → B = C is the function defined by the
value of these monomials. If d = 2, the variety split into a product of the closed subvariety
X̃ (n)′
2 ⊂ C2n defined by the same Eq. (1) and Cn .

Proposition 1.2 X (n)
d is Q-Gorenstein, i.e., the canonical divisor of X (n)

d is Q-Cartier.

Proof The locus F of points with non-trivial stabilizers with respect to the action of Sn is
the union of linear subspaces defined by zi1 = z j1, zi2 = z j2, and zi3 = z j3 for i �= j .

Therefore, the codimension of F inside X̃ (n)
d is two. This implies that the quotient map

X̃ (n)
d → X (n)

d is étale in codimension 1 and the proposition follows from Proposition 5.20 of
[12]. �	
1.3. For later use, we give a description of X̃ (n)

d as a toric variety. Let us first consider
the case in which d = 2. Let M = Zn+1 and N = HomZ(M,Z) its dual. We denote by
[a1 a2 . . . al ]lr the sequence a1, a2, . . . , al recurred r times. For example,

[0 0 1 1]12 = (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1).

Using this notation, we define C (n)
2 as the (n + 1) × 2n matrix whose rows are given by

[1 0]2n
[0 1]2n
[0 0 1 1]2n
...

[02n−1
12

n−1 ]2n ,

where “ 0r ” means 0 repeated r -times and the same for “ 1r ”. For example,

C (3)
2 =

⎛
⎜⎜⎝
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎞
⎟⎟⎠ .
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1146 Y. Nagai

Under the standard identification N ∼= Zn+1, we define σ
(n)
2 ⊂ N ⊗ R to be a rational

polyhedral convex cone generated by the column vectors in C (n)
2 . The cone σ

(n)
2 is a non-

simplicial cone of maximal dimension for n � 2.

Proposition 1.4 The affine variety X̃ (n)′
2 ⊂ C2n defined above is the affine toric variety

X (σ
(n)
2 ) = SpecC[σ (n)∨

2 ∩ M].
This proposition is implicitly given in [23], §4. Here we give a proof of slightly different

flavor.

Lemma 1.5 Let σ1, σ2, σ̄ be strictly convex rational polyhedral cones on lattices N1, N2, N̄ ,
respectively. Assume that we have surjective homomorphisms h1 : N1 → N̄ and h2 :
N2 → N̄ such that σ̄ = h1,R(σ1) = h2,R(σ2). Let πi : X (σi ) → X (σ̄ ) (i = 1, 2) be the
corresponding toric morphisms of affine toric varieties. Then, the fiber product X (σ1)×X (σ̄ )

X (σ2) is an affine toric variety corresponding to the cone

σ1 ×N̄ σ2 = {(v1, v2) ∈ (N1 ⊕ N2)R | vi ∈ σi (i = 1, 2), h1(v1) = h2(v2)}
on the lattice N1 ×N̄ N2 = {(v1, v2) ∈ N1 ⊕ N2 | h1(v1) = h2(v2)}.
Proof Let M1, M2, M̄ be dual lattices of N1, N2, N̄ , respectively. Since hi (i = 1, 2) is
surjective, M̄ is a direct summand of Mi . The tensor product

C[σ∨
1 ∩ M1] ⊗

C[σ̄∨∩M̄]
C[σ∨

2 ∩ M2]

has a basis consisting of monomials (m1,m2) (mi ∈ Mi ) subject to a relation

(m1,m2) = (m′
1,m

′
2) if and only if m1 − m′

1 = m′
2 − m2 ∈ M̄ .

This implies that the tensor ring is themonoid ring corresponding to a coneC that is the image
of the product cone σ∨

1 × σ∨
2 under the surjective homomorphism to the fiber co-product

M1 ⊕ M2 → M1 +M̄ M2 = (M1 ⊕ M2)/M̄ .

In particular, C is spanned by the vectors (m1,m2) ∈ M1 +M̄ M2 with mi a generator of
a ray of σ∨

i for each i = 1, 2. Passing to the dual, the dual cone C∨ is cut out by positive
half-planes defined by (m1,m2) as above on the fiber product of lattices N1 ×N̄ N2. This
immediately implies that C∨ is nothing but the fiber product of cones σ1 ×N̄ σ2. �	
Proof of Proposition 1.4 LetC → B = C be a family of curves defined by (x1, x2) �→ x1x2.
This is a toric morphism corresponding to a surjective homomorphism of lattices

(1 1) : NC = Z2 → NB = Z

that is compatibile with the cones σC = R�0 d1 +R�0 d2 and σB = R�0, where d1 =
(
1
0

)

and d2 =
(
0
1

)
. Noting that X̃ (n)′

2 is an n-fold fiber product (C/B)n , the cone σ
(n)
2 is nothing

but the fiber product of cones

(σC/NB)n = σC ×NB · · · ×NB σC

on the lattice (NC/NB)n by the lemma above. If we take a basis (NC/NB)n ∼= Zn+1 as

e0 = (d1, d1, . . . , d1), e1 = (d2, d1, . . . , d1)

e j = (0, . . . , d2 − d1∧
( j+1)

, 0, . . . , 0)

123



Symmetric products of a semistable degeneration of surfaces 1147

one immediately sees that the cone (σC/NB)n is generated by the column vectors of the
matrix C (n)

2 defined above. �	
1.6. Let M̃ = Z2 ⊗ Zn . The symmetric groupSn acts on M̃ by the permutation represen-
tation on the second factor. Define a (n + 1) × 2n integral matrix P(n)

2 by

P(n)
2 = (e0 e1 e0 + e1 − e2 e2 · · · e0 + e1 − en en), (2)

where e0, . . . , en is the standard basis of M = Zn+1. The cone σ
(n)∨
2 is nothing but the

image under the surjective linear map P(n)
2 : M̃ ⊗ R → M ⊗ R of the cone spanned by the

standard simplex in M̃ . Therefore, we have an induced action of Sn on M and its dual N .
More precisely, Sn acts on M by permuting n pairs of vectors

(e0 e1 | e0 + e1 − e2 e2 | · · · | e0 + e1 − en en),

so that the action of Sn on N is represented by matrices

(1 2) =

⎛
⎜⎜⎝
1 1 −1
0 0 1
0 1 0

In−2

⎞
⎟⎟⎠ and (k k + 1) =

⎛
⎜⎜⎝

Ik
0 1
1 0

In−k−1

⎞
⎟⎟⎠ (3)

for k > 1. The cone σ
(n)
2 and its dual σ (n)∨

2 are invariant under the action of Sn . Let σ be a

cone in (N ⊕ Zn) ⊗ R spanned by σ
(n)
2 and the standard basis of Zn . Then, the associated

affine toric variety X (σ ) is nothing but X̃ (n)
2 . The action of Sn on X̃ (n)

2 coincides with the
action induced by the diagonalSn-action on N and Zn .
1.7. We also have a similar description of X̃ (n)

3 as a toric variety. Let M = Z2n+1 and

N = HomZ(M,Z) ∼= Z2n+1. Let C (n)
3 be the (2n+ 1)× 3n matrix whose rows are given by

[1 0 0]3n
[0 1 0]3n
[0 0 1]3n
[0 0 0 1 1 1 0 0 0]3n
[0 0 0 0 0 0 1 1 1]3n
...

[03n−1
13

n−1
03

n−1 ]3n
[03n−1

03
n−1

13
n−1 ]3n .

and σ
(n)
3 ⊂ N ⊗ R the cone generated by the column vectors of C (n)

3 . Then, the associated

toric variety X (σ
(n)
3 ) = SpecC[σ (n)∨

3 ∩ M] is nothing but X̃ (n)
3 . The proof of this claim is

completely parallel to the case of X̃ (n)′
2 ; it is a direct consequence of Lemma 1.5.

2 Gorenstein canonical orbifold model

In this section, we construct a Gorenstein canonical model of X (n)
2 with only quotient sin-

gularities. From now on, we concentrate on the case d = 2. We suppress the subscript and
write X̃ (n), X̃ (n)′ and X (n) instead of X̃ (n)

2 , X̃ (n)′
2 and X (n)

2 , respectively, for better readability.
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1148 Y. Nagai

Proposition 2.1 There is an Sn-equivariant small projective toric resolution

μ̃(n)′ : Z̃ (n)′ → X̃ (n)′.

Proof X̃ (n)′ is the affine closed subvariety in C2n defined by

z11z12 = z21z22 = · · · = zn1zn2. (4)

The n-plane �(n) defined by z11 = z21 = · · · = zn1 = 0 is anSn-invariant non-Cartier Weil
divisor on X (n)′. Let

f̃ (n) : W̃ (n)′ → X̃ (n)′

be the blowing-up of X̃ (n)′ along �(n). W̃ (n)′ is the closed subvariety of C2n × Pn−1 defined
by

zi1y j − z j1yi = 0 (i �= j)

along with (4), where [y1 : · · · : yn] is the homogeneous coordinate of Pn−1. Let Pi = [0 :

· · · : 0 :
i∨
1 : 0 : · · · : 0] ∈ Pn−1 and Ui = (yi �= 0) ⊂ Pn−1. Then, it is easily checked using

coordinate that there is a natural isomorphism of affine varieties

W̃ (n)′ ∩ (C2n ×Ui ) ∼= X̃ (n−1)′ × C.

Moreover,

Di = W̃ (n)′ ∩ (C2n × {Pi }) (i = 1, 2, . . . , n)

is a non-Q-Cartier Weil divisor of W̃ (n)′ that is the strict transform of the divisor on X̃ (n)′
defined by

z11 = · · · = zi−1,1 = zi2 = zi+1,1 = · · · = zn1 = 0.

Di is identified with �(n−1) × C ⊂ X̃ (n−1)′ × C under the isomorphism above. Di ’s are
disjoint to each other and the union D = � Di is Sn-invariant. Therefore, the blowing-up
of W̃ (n)′ along D is Sn-equivariant. As it is locally isomorphic to f̃ (n−1), we get an Sn-
equivariant small resolution of X̃ (n)′ by induction on n. The centers of the blowing-ups are
strict transform of torus invariant (non-Q-Cartier) divisors on X̃ (n)′, so the resolution is a
toric morphism. �	
Remark 2.1.1 The toric variety Z̃ (n)′ also appeared in [23] as the local model of ‘augmented
relative Hilbert scheme’.

2.2. From this proposition, one immediately sees that the relative self-product X̃ (n) admits
an Sn-equivariant small projective toric resolution

μ̃(n) = (μ̃(n)′ × id) : Z̃ (n) = Z̃ (n)′ × Cn → X̃ (n) = X̃ (n)′ × Cn .

Now we let Z (n) = Z̃ (n)/Sn = (Z̃ (n)′ ×Cn)/Sn . Then, we get a small projective birational
morphism

μ(n) : Z (n) → X (n)

and an induced family

ρ(n) = π(n) ◦ μ(n) : Z (n) → B.
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Symmetric products of a semistable degeneration of surfaces 1149

We want to study the singular locus of Z (n). For that purpose, we need a description of the
toric birational morphism μ̃(n)′ : Z̃ (n)′ → X̃ (n)′ in terms of fan.

2.3. The blowing-up f̃ (n) appeared above corresponds to the star subdivision (see [5], §11.1
for the definition) �(n) of the cone σ (n) with respect to the ray spanned by t (1, 0, . . . , 0).
The fact that the ray is a one dimensional face of σ (n) corresponds to the smallness of f̃ (n).
The cone σ (n) is spanned by the column vectors of the (n + 1) × 2n matrix C (n). One can
check that the resolution μ̃(n)′ : Z̃ (n)′ → X̃ (n)′ is given by the consecutive star subdivisions
of σ (n) with respect to first (2n − 1) column vectors (in this order).

Let �(n) be the resulted fan in N ⊗R and Z̃ (n)′ is the toric variety X (�(n)). By the proof
of Proposition 2.1, one sees that Sn acts transitively on the set of open subsets {W̃ (n)′ ∩
(C2n × Ui )}ni=1. This means that Sn acts transitively on the set of maximal cones {θi }ni=1
of the fan �(n) corresponding to W̃ (n)′. Actually, Sn acts on it via the permutation of the
index set {1, 2, . . . , n}. Each cone θi can be identified with σ (n−1) and its stabilizer subgroup
Stab(θi ) ⊂ Sn is nothing but the subgroup of permutations that leave i invariant, which is
naturally isomorphic to Sn−1. An inductive argument infers that the set of maximal cones
of the fan �(n) consists of n! cones and Sn acts on the set transitively. By the construction,
�(n) contains a cone δ(n) that is generated by the column vectors of⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 1 1 · · · 1
0 0 1 · · · 1

. . .

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ . (5)

2.4. Let �̄(n) be the Coxeter fan of An−1-root system, namely the fan whose maximal cones
are Weyl chambers of An−1-root system on the weight lattice N = Zn−1. Here, we adopt
somewhat non-standard realization of An−1-root system. Regardless of inner product, we set
the non-zero vectors in N = Zn−1 whose entries are 0 or 1 the positive primitive weight
vectors, and the negative primitive weight vectors are the negation of the positive primitive
weight vectors. Note that this determines anSn-action on the lattice N = Zn−1, namely for
k < n − 1

(k k + 1) =

⎛
⎜⎜⎝

Ik−1

0 1
1 0

In−k−2

⎞
⎟⎟⎠ and

(n − 1 n) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 −1
0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 −1

⎞
⎟⎟⎟⎟⎟⎠ .

Nowweconsider the projective toric variety X (�̄(n)). It has been studiedby several authors [7,
17,22] in connection with combinatorics theory. Speaking in a geometric language, X (�̄(n))

is the canonical elimination of indeterminacy of the standard Cremona transformation of
degree n − 1 in Pn−1 ([6], Example 7.2.5). More precisely, we have a sequence of projective
birational morphisms

g : X (�̄(n)) = X1
g1−→ X −→ · · · −→ Xn−2

gn−2−→ Xn−1 = Pn−1,

123



1150 Y. Nagai

where gi is the blowing-up of the strict transform of the union of the linear subspaces defined
by vanishing of i +1 projective coordinates ([7], Lemma 5.1). We take a fan 
 in N = Zn−1

spanned by

v1 =

⎛
⎜⎜⎜⎝
1
0
...

0

⎞
⎟⎟⎟⎠ , v2 =

⎛
⎜⎜⎜⎝
0
1
...

0

⎞
⎟⎟⎟⎠ , . . . , vn−1 =

⎛
⎜⎜⎜⎝
0
0
...

1

⎞
⎟⎟⎟⎠ , vn =

⎛
⎜⎜⎜⎝

−1
−1
...

−1

⎞
⎟⎟⎟⎠ .

The fan �̄(n) is a subdivision of 
 and the associated toric morphism X (�̄(n)) → X (
) =
Pn−1 is nothing but the above-mentioned birational morphism g.

Let Dpos (resp. Dneg) be a torus invariant divisor on a toric variety X (�̄(n)) corresponding
to the sum of positive (resp. negative) primitive weight vectors. We take a homogeneous
coordinate [x1 : · · · : xn] on Pn−1 such that the prime divisor corresponding to v j is the
hyperplane (x j = 0) for 1 ≤ j ≤ n. Then, theSn-action on the toric variety X (
) coincides
with the natural permutation of coordinates on Pn−1:

s · [x1 : · · · : xn] = [xs(1) : · · · : xs(n)] (s ∈ Sn).

Under this choice of coordinate, we have Dneg = g∗ div(xn). Let 
′ be another Pn−1-
fan on N spanned by −v1, −v2, . . . , −vn . �̄(n) is again a subdivision of 
′ and let
h : X (�̄(n)) → X (
′) = Pn−1 be the associated birationalmorphism.Then, the composition

h ◦ g−1 : Pn−1 Pn−1 is nothing but the standard Cremona transformation

[x1 : · · · : xn] �→
[
1

x1
: · · · : 1

xn

]
,

andwe have Dpos = h∗ div(xn). In the below, we sometimes denote the toric variety X (�̄(n))

by X (An−1) for easy recognition.

Proposition 2.5 The toric variety Z̃ (n)′ = X (�(n)) is isomorphic to the total space of a rank
2 vector bundle

O(−Dpos) ⊕ O(−Dneg)

over X (�̄(n)) = X (An−1). Moreover, the projection

η(n) : X (�(n)) → X (�̄(n))

is Sn-equivariant.

Proof Let Q : N → N be an automorphism defined by left multiplication of the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...

. . .
...

...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Symmetric products of a semistable degeneration of surfaces 1151

Then, we see that

QC (n)
2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · · · · 1 0 · · · · · · 0 0
0 0
...

positive primitive
weight vectors

negative primitive
weight vectors

...

0 0
0 0 · · · · · · 0 1 · · · · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

In particular, Qδ(n) is generated by column vectors of⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1 0
0 1 · · · 1 0
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Let p : N = Zn+1 → N = Zn−1 be the projection to middle (n − 1)-factors. From the
matrix representation (3), it is easy to see that the composition

� = p ◦ Q : N → N

is Sn-equivariant. As the maximal cones in �(n) are Sn-translates of δ(n) and � is Sn-
equivariant, we know that � is compatible with fans �(n) and �̄(n), and induces a toric
morphism η(n) : X (�(n)) → X (�̄(n)). Moreover, one sees from (6) and [5] Proposition 7.3.1
that X (�(n)) is the total space of the direct sum of line bundles O(−Dpos) ⊕ O(−Dneg).

�	
2.6. The coordinate [x1 : · · · : xn] on Pn−1 gives a convenient system of local coordinate
on X (An−1) as in the following way. Let δ̄(n) be the positive Weyl chamber generated by the
column vectors of ⎛

⎜⎜⎜⎝
1 1 · · · 1
0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎟⎠ .

This is a smooth cone and the corresponding affine open subset U , which is isomorphic to
Cn−1, has a toric coordinate (

x1
x2

,
x2
x3

, . . . ,
xn−1

xn

)
.

A maximal cone in the An−1-Coxeter fan �̄(n) is written as s · δ̄(n) for some s ∈ Sn . It is
immediate to see that the corresponding affine open subset Us has a toric coordinate(

xs(1)
xs(2)

,
xs(2)
xs(3)

, . . . ,
xs(n−1)

xs(n)

)
.

2.7. Let λ = (λ1, . . . , λr ) be a partition of n, i.e., let λ satisfy λ1 � · · · � λr > 0 and
λ1 + · · · + λr = n. We set l j = ∑ j

i=1 λi for 1 � j � r (and l0 = 0 for convenience). Let
c j (1 � j � r) be a cyclic permutation

c j = (l j−1 + 1 . . . l j )
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1152 Y. Nagai

of length λ j and we take a standard element

s = sλ = (1 . . . l1)(l1 + 1 . . . l2) · · · (lr−1 + 1 . . . lr )

= c1c2 . . . cr
(7)

of Sn in the conjugacy class determined by λ.

Let N
〈s〉

be the sublattice of s-fixed vectors. If we denote the standard basis of N = Zn−1

by e1, . . . , en−1, N
〈s〉

is generated by

e1 + · · · + el1 , el1+1 + · · · + el2 , . . . , elr−2+1 + · · · + elr−1 ,

so that N
〈s〉 ∼= Zr−1. Every s-fixed point on X (An−1) is contained in an open subset

XN (�̄(n) ∩ (N 〈s〉 ⊗ R)) ∼= (C∗)n−r × X (Ar−1),

which Sn-equivalently birationally dominates (C∗)n−r × Pr−1. Let

t j i = xl j−1+i+1

xl j−1+i
, t j = (t j1, . . . , t j,λ j−1), and yk = xlk−1+1.

Then,

((t1, . . . , tr ), [y1 : . . . : yr ]) = ((t11, . . . , t1,λ1−1 ; . . . ; tr1, . . . , tr,λr−1), [y1 : . . . : yr ]
)

is a coordinate on (C∗)n−r × Pr−1 and the action of c j is given by(
(t1; . . . ; t j1, . . . , t j,λ j−1 ; . . . ; tr ), [y1 : · · · : y j : · · · : yr ]

)
�→
((

t1; . . . ; t j2, . . . , t j,λ j−1,
1

t j1 · · · t j,λ j−1
; . . . ; tr

)
, [y1 : · · · : t j1y j : · · · : yr ]

)
.

In particular, if a point on (C∗)n−r × X (Ar−1) is fixed by s, we necessarily have

t j1 = · · · = t j,λ j−1 = α j

for all 1 � j � r , where α j is a λ j th root of unity. Let us fix such a point

α = (α1, . . . , α1; . . . ;αr , . . . , αr ) ∈ (C∗)n−r

and p ∈ Sr . Let Up ∼= Cr−1 be the affine open subset of X (Ar−1) corresponding to p. At a
point (α, ξ) ∈ (C∗)n−r ×Up , the acton of c j is given by(

α,

(
yp(1)
yp(2)

, . . . ,
yp(r−1)

yp(r)

))

�→
(

α,

(
yp(1)
yp(2)

, . . . ,
1

α j
· yp(p−1( j)−1)

y j
, α j · y j

yp(p−1( j)+1)
, . . . ,

yp(r−1)

yp(r)

))
, (8)

thus the action of s = c1 . . . cr is of the form(
α,

(
yp(1)
yp(2)

, . . . ,
yp(r−1)

yp(r)

))
�→
(

α,

(
αp(1)

αp(2)
· yp(1)
yp(2)

, . . . ,
αp(r−1)

αp(r)
· yp(r−1)

yp(r)

))
. (9)

In particular, for the torus invariant point ξp , the origin of Up ∼= Cr−1, (α, ξp) is always an
s-fixed point.
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2.8. Now we consider the action of s on the fiber C2 of O(−Dpos) ⊕ O(−Dneg) over a
fixed point. In §2.4, we saw that Dneg = g∗ div(xn). Noting that n = lr and s(n) = lr−1 + 1,
we have

(s−1)∗Dneg = g∗ div(xlr−1+1) = Dneg + div

(
xlr−1+1

xn

)
,

hence an isomorphism of invertible sheaves

(s−1)∗O(−Dneg)

xlr−1+1
xn

O(−Dneg).

Let us take an s-fixed point (α, ξ) ∈ (C∗)n−r × Up (p ∈ Sr ) and set ν = p−1(r). Then, it
is easy to see that

O(C∗)n−r×Up (−Dneg) = yp(ν+1)

yp(ν)

. . .
yp(r)
yp(r−1)

O(C∗)n−r×Up .

Therefore, for any ξ ∈ Up , the action of s on the fiber O(−Dneg) ⊗ κ(α, ξ) is given by the
composition

O(−Dneg) ⊗ κ(α, ξ)

αp(r)
αr

(s−1)∗O(−Dneg) ⊗ κ(α, ξ)

αr
O(−Dneg) ⊗ κ(α, ξ),

namely by a multiplication of αp(r). One also sees by the same argument that the action of s
on the fiber O(−Dpos) ⊗ κ(α, ξ) is given by the multiplication of α−1

p(1).

Lemma 2.9 Let s ∈ Sn as in (7) and take a fixed point q = (q1, q2) ∈ Z̃ (n) = X (�(n))×Cn.
Assume η(n)(q1) = (α, ξ) ∈ (C∗)n−r×Up ⊂ X (�̄(n)). Then, the eigenvalues of the Jacobian
matrix Jq(s) of s at q is

(ζ1, . . . , ζ
λ1−1
1 ; . . . ; ζr , . . . , ζ

λr−1
r︸ ︷︷ ︸

(i)

; αp(1)

αp(2)
, . . . ,

αp(r−1)

αp(r)︸ ︷︷ ︸
(ii)

;

α−1
p(1), αp(r)︸ ︷︷ ︸

(iii)

; 1, ζ1, . . . , ζ
λ1−1
1 ; . . . ; 1, ζr , . . . , ζ λr−1

r︸ ︷︷ ︸
(iv)

).

In particular, we always have det
(
Jq(s)

) = 1.

Proof The part (i) comes from the action of s on (C∗)n−r . More precisely, as we saw in §2.7,
s acts on (C∗)n−r by

(. . . ; t j1, . . . , t j,λ j−1 ; . . . ) �→
(

. . . ; t j2, . . . , t j,λ j−1,
1

t j1 . . . t j.λ j−1
; . . .

)
,
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therefore the corresponding Jacobian matrix at t j i = α j (1 � j � r, 1 � i � λ j − 1) is a
block matrix with components of the form⎛

⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−1 −1 −1 · · · −1

⎞
⎟⎟⎟⎟⎟⎠ ,

whose characteristic polynomial is 1 + t + · · · + tλ j−1. This gives the part (i). The part (ii)
comes from the action (9) of s onUp, and the part (iii) is the action on the fiber ofO(−Dpos)⊕
O(−Dneg) (§2.8). The part (iv) is the contribution from the permutation representation of
Sn on the second factor Cn in Z̃ (n). �	

Theorem 2.10 The quotient Z (n) = Z̃ (n)/Sn has only Gorenstein canonical quotient sin-
gularities and the singular fiber (ρ(n))−1(0) ⊂ Z (n) of the induced family ρ(n) : Z (n) → B
is a divisor with V -normal crossings ([21], Definition (1.16)).

Proof V -normal crossingness automatically follows from the fact that the morphism Z̃ (n) =
X (�(n)) × Cn → B is toric and each s ∈ Sn acts on Z̃ (n) by a toric morphism. Therefore,
it is enough to show that for every point q ∈ Z̃ (n), the stabilizer subgroup StabSn (q) is
contained in SL(Tq Z̃ (n)). This is equivalent to say that for any s ∈ Sn and s-fixed point
q ∈ Z̃ (n), the determinant of the Jacobian matrix Jq(s) for the action of s at q is 1, which is
nothing but the last assertion of the lemma above. �	

Remark 2.10.1 It follows from the theorem that X (n) also has only Gorenstein canonical
singularities (but not Q-factorial, unlike Z (n)). Since μ(n) : Z (n) → X (n) is small, and
therefore KZ (n) = μ(n) ∗KX (n) , it is clear that X (n) has only canonical singularities. The
following argument to show that X (n) is Gorenstein is suggested by the referee; Let D be
an effective divisor such that −D is μ(n)-ample ([12], Lemma 6.28). Then, for a sufficiently
small positive rational numver ε, the pair (Z (n), εD) is klt and μ(n) is a contraction of
(KZ (n) + εD)-negative extremal curves. Cone theorem ([12], Theorem 3.25) implies that
there exists a Cartier divisor B on X (n) such that KZ (n) = μ(n) ∗B since (KZ (n) · C) = 0 for
every curve C that is contracted by μ(n). This shows that KX (n) ∼Q B and therefore KX (n) is
Cartier.

3 Stringy E-polynomial

3.1. The stringy E-function is a cohomological invariant defined for varieties with only log
terminal singularities.We review the formula,which can be seen as a definition in our purpose,
of the stringy E-function for (global) quotient variety. For the foundation of the theory of
stringy E-functions, we refer [1,24].

Let X be a variety. By general theory of mixed Hodge structures, the compact support
cohomology Hk

c (X,Q) carries a canonical mixed Hodge structure, and hence the Hodge
number h p,q(Hk

c (X)) is defined. We define the E-polynomial E(X) ∈ Z[u, v] of X by

E(X) =
∑
p,q,k

(−1)k h p,q(Hk
c (X)) u pvq .
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As customary, we denote the E-polynomial of the affine line A1 by L:

L = E(A1) = uv.

If X is a toric variety, X is stratified into tori of various dimensions in Zariski topology,
therefore, E(X) can be written as a polynomial in L.

Let M be a non-singular algebraic variety of dimension n and G a finite group acting on
M . We denote a set of complete representatives of the conjugacy classes of G by Conj(G).
Let Fg be the locus of g-fixed points on M for g ∈ Conj(G). For each point q ∈ Fg , the
Jacobian matrix Jq(g) is diagonalizable. We list its eigenvalues as(

e2π iθ1 , . . . , e2π iθn
)

(0 � θ j < 1),

where θ j is a rational number whose denominator is a divisor of the order of g. We define
the age (or shift number) of g at q by

age(g; q) =
n∑
j=1

θ j .

The age gives a locally constant function

age : Fg → Q.

For ν ∈ Q , we define Fg,ν = age−1(ν). The age of g is an integer if and only of Jq(g) ∈
SL(TqM).

From now on, let us assume Jq(g) ∈ SL(TqM) for all g ∈ G and q ∈ M , namely we
assumeM/G is Gorenstein canonical.We also assume that the quotient mapM → M/G has
no ramification divisor, i.e., codim Fg > 1 for any g ∈ G. Then, the stringy E-polynomial
of the quotient variety M/G is given by

Est (M/G) = E(M/G) +
∑

id �=g∈Conj(G)
ν∈Z

E
(
Fg,ν/Z(g)

) · Lν, (10)

where Z(g) is the centralizer of g ∈ G. The right hand side is called the orbifold E-function
of M/G (see [1], Definition 6.3), which is known to be the same as the stringy E-function
that, in turn, is defined in a quite different way ([1] Theorem 7.5). The summands other than
E(M/G) are called twisted sectors, while we call E(M/G) the untwisted sector.
3.2. Now, let us move on to the case M = Z̃ (n) and G = Sn . The untwisted sector
E(Z̃ (n)/Sn) = E(Z (n)) can be calculated by the character formula for the cohomology
group H∗(X (An−1),Q) due to Procesi, Dolgachev–Lunts, and Stembridge.

Lemma 3.3 E(X (An−1)/Sn) = (1 + L)n−1.

Proof This is essentially Theorem 3.1 of [22], which states that the Sn-invariant part of
the cohomology ring H∗(X (An−1))

Sn has a basis {yJ | J ⊂ { simple roots }} indexed by
all the subset of the set of simple roots. Moreover the degree of yJ is 2 · |J |. Therefore,
H2k(X (An−1))

Sn is of dimension
(n−1

k

)
. Since X (An−1) is a smooth toric variety, the whole

H2k has Hodge type (k, k) ([5] Theorem 12.5.3), and we obtain

E(X (An−1))/Sn) =
n−1∑
k=0

(
n − 1

k

)
(uv)k = (1 + L)n−1.

�	
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Proposition 3.4 E(Z (n)) = Ln+2(1 + L)n−1.

Proof We recall that Z̃ (n) = X (�(n)) ×Cn and X (�(n)) is the total space of a rank 2 vector
bundle over X (An−1). Poincaré duality implies

H2k+4
c (X (�(n))) ∼= H2k(X (An−1)) ⊗ H4

c (C2)

and therefore

H2k+2n+4
c (Z̃ (n)) ∼= H2k(X (An−1)) ⊗ H4

c (C2) ⊗ H2n
c (Cn).

The one-dimensional space H2m
c (Cm) is spanned by the fundamental class so that a finite

group action always leaves it invariant. Thus we get

E(Z̃ (n)/Sn) = E(X (An−1)) · Ln+2 = Ln+2(1 + L)n−1

by the previous lemma. �	
3.5. For a subset M ⊂ {1, . . . , r}, we defineSM to be the subgroup consisting of elements
in Sr that leave each element of {1, . . . , r}\M invariant. Let

ϕ : {1, . . . , r} → T

be a map to a set T and {β1, . . . , βk} the set of its values. Taking the level sets M(ϕ) j =
ϕ−1(β j ) (1 � j � k), we get a partition M(ϕ) = {M(ϕ)i },

{1, . . . , r} =
k∐
j=1

M(ϕ) j ,

and

m(ϕ) = (|M(ϕ)1|, . . . , |M(ϕ)k |)
is a (not necessarily non-increasing) partition of r . We will call M(ϕ) (or m(ϕ)) the multi-
plicity partition of ϕ. We define

SM(ϕ) = SM(ϕ)1 × · · · × SM(ϕ)k ⊂ Sr .

This is a Young subgroup of Sr .
3.6. Let λ = (λ1, . . . , λr ) be a length r partition of n. It defines a non-increasing map
λ : {1, . . . , r} → Z by j �→ λ j , and therefore we have the associated multiplicity partition
M(λ) and the Young subgroupSM(λ). If m(λ) = (m1, . . . ,mk), we have

M(λ) j =
⎧⎨
⎩

j∑
i=1

mi−1 + 1, . . . ,
j∑

i=1

mi

⎫⎬
⎭ ,

where m0 = 0 by convention. For each partition λ = (λ1, . . . , λr ), we define

�λ =
{
θ = (θ1, . . . , θr ) | θ j = a j

λ j
, a j ∈ Z, 0 � a j < λ j

}

and call an element θ ∈ �λ an angle type associated with λ. We say that an angle type
θ = (θ1, . . . , θr ) ∈ �λ is standard if

θ∑ j
i=1 mi−1+1

� · · · � θ∑ j
i=1 mi
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for all 1 � j � k. An angle type θ also determines a map

θ : {1, . . . , r} → Q ∩ [0, 1)
and we have the associated multiplicity partition M(θ) and the Young subgroupSM(θ).
3.7. Each angle type θ ∈ �λ determines a point α(θ) ∈ (C∗)n−r by

α(θ) = (e2π iθ1 , . . . , e2π iθ1︸ ︷︷ ︸
(λ1−1)−times

; . . . ; e2π iθr , . . . , e2π iθr︸ ︷︷ ︸
(λr−1)−times

).

Now let s = sλ ∈ Sn be the standard element in the conjugacy class determined by λ, as in
(7). Let Fs be the set of s-fixed points on X (An−1). As we saw in §2.7, a point in Fs is of the
form (α(θ), ξ) ∈ (C∗)n−r × X (Ar−1) ⊂ X (An−1) for some angle type θ ∈ �λ. Therefore,
if we define

F
θ

s = Fs ∩ ({α(θ)} × X (Ar−1)) ,

then we have Fs = ∐
θ∈�λ

F
θ

s . We naturally identify F
θ

s with the corresponding closed
subset of X (Ar−1).

The centralizer Z(s) for s ∈ Sn is generated by the cyclic permutations c1, . . . , cr in the
notation of (7) and the permutations of the cycles of the same length among {c1, . . . , cr }
(see [20], Proposition 1.1.1). The subgroup H(s) generated by c1, . . . , cr in Sn is a normal
subgroup of Z(s) and we have Z(s)/H(s) ∼= SM(λ).

Lemma 3.8 Let V ⊂ Fs be a union of connected components that is invariant under the
action of the centralizer subgroup Z(s). Then, Z(s) acts on the cohomology group H∗(V )

via a natural action of SM(λ), namely H∗(V/Z(s)) ∼= H∗(V/SM(λ)).

Proof The permutations of the cycles of the same length in {c1, . . . , cr } act on Pr−1 through
corresponding permutations of homogeneous coordinates [y1 : · · · : yr ], and accordingly
they naturally act on X (Ar−1). The action is identifiedwith the natural action ofSM(λ) ⊂ Sr .
Therefore, it is sufficient to show that the subgroup H(s) acts on H∗(V ) trivially. H(s) leaves

α(θ) invariant and it acts on the torus invariant closed subset F
θ

s as a finite subgroup of the

open dense torus associated to N 〈s〉 of X (Ar−1). H(s) also leaves H∗(Fθ

s ∩ V ) invariant,

since the cohomology group H∗(Fθ

s ∩ V ) is generated by the fundamental cycles of torus

invariant closed subvarieties of a smooth projective toric variety F
θ

s ∩ V (see [5], Lemma
12.5.1 and Theorem 12.5.3). �	
3.9 Let ϕ : {1, . . . , r} → T be a map. We define the adjacency function

adj(ϕ) : {1, . . . , r} → Z

of ϕ inductively by

adj(ϕ)(1) = 1, adj(ϕ)( j) =
{
adj(ϕ)( j − 1) if ϕ( j) = ϕ( j − 1)

adj(ϕ)( j − 1) + 1 if ϕ( j) �= ϕ( j − 1)
.

Let λ be a length r partition of n, θ ∈ �λ an angle type, and p ∈ Sr . We define a function

θ � p : {1, . . . , r} → Z

by θ � p = adj(θ ◦ p) ◦ p−1 and let M(θ � p) be the corresponding level set partition
of {1, . . . , r}. The partition defines a Young subgroup SM(θ�p) ⊂ Sr . As M(θ � p) is a
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refinement of the partition M(θ), SM(θ�p) is a subgroup of SM(θ). Let p̄ = SM(θ�p) p be
the right coset inSr and P(θ) = { p̄ | p ∈ Sr }. Then, it is easy to see that P(θ) is a partition
of Sr . We define

τ p̄ =
⋂
q∈ p̄

q δ̄(r),

where δ̄(r) is the positive Weyl chamber of the Ar−1-root system as in §2.6.

Proposition 3.10 The set of connected components of F
θ

s agrees with the set of orbit closures
{V (τ p̄) | p̄ ∈ P(θ)}. Moreover, if m(θ � p) = (r1, . . . , rk), then V (τ p̄) ∼= X (Ar1−1) × · · · ×
X (Ark−1).

Proof A codimension one face of pδ̄(r) is cut out by a hyperplane of invariant vectors under
a transposition (p( j) p( j + 1)) for some 1 � j < r . The face corresponds to an affine line
with coordinate yp( j)/yp( j+1). Taking the action (9) into account, this affine line consists of
s-fixed point if and only if θp( j) = θp( j+1). On the other hand, it is easy to verify that

SM(θ�p) = 〈(p( j) p( j + 1)) | θp( j) = θp( j+1)
〉 ⊂ Sr

and if q ∈ p̄, thenSM(θ�q) = SM(θ�p) as subgroups ofSr . By construction, the orbit O(τ p̄)

is a torus with the coordinates{
yp( j)
yp( j+1)

∣∣∣∣ θp( j) = θp( j+1)

}
.

In particular, every point in O(τ p̄), and therefore of V (τ p̄), is fixed by s, namely V (τ p̄) is a

connected component of F
θ

s .
On the other hand, since s acts on X (Ar−1) via a cyclic subgroup of the torus, every

connected component V of F
θ

s is a torus invariant closed subset of X (Ar−1). In particular, V
contains a torus invariant point ξp corresponding to a maximal cone pδ̄(r) for some p ∈ Sr .

The above argument shows that V (τ p̄) is the connected component of F
θ

s containing ξp .
Hence we know that V = V (τ p̄).

The image fan on N
〈s〉

/
(
〈(τ p̄)〉R ∩ N

〈s〉)
corresponding to V (τ p̄) is the Coxeter complex

of the root system corresponding to the Young subgroupSM(θ�p) ∼= Sr1 ×· · ·×Srk , where
m(θ � p) = (r1, . . . , rk). It immediately follows that V (τ p̄) ∼= X (Ar1−1) × · · · × X (Ark−1).

�	
3.11. Wedenote the connected componentV (τ p̄) ⊂ F

θ

s by F
θ, p̄
s . Let Fs be the closed subset

of s-fixed points on X (�(n)) and Fθ, p̄
s ⊂ X (�(n)) the union of connected components of

Fs that map to F
θ, p̄
s . If we define φ(θ, p̄) to be the number of 0 in the set {θp(1), θp(r)},

the calculation in §2.8 implies that Fθ, p̄
s → F

θ, p̄
s is a vector bundle of rank φ(θ, p̄). In

particular Fθ, p̄
s is connected. We know that the s-fixed point locus of Z̃ (n) is a disjoint union

of Fθ, p̄
s × (Cn)〈s〉 ⊂ X (�(n)) × Cn = Z̃ (n).

Lemma 3.12 The value of the age function at a point in Fθ, p̄
s × (Cn)〈s〉 is given by

a(s; θ, p̄) = n − r +
r−1∑
j=1

{
θp( j+1) − θp( j)

}+ {1 − θp(1)} + θp(r), (11)

where {t} = t − �t� is the fractional part of t .
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Proof This is just a consequence of Lemma 2.9, noting that the contribution from the parts
(i) and (iv) sum up to

r∑
j=1

λ j−1∑
i=1

2 · i

λ j
=

r∑
j=1

(λ j − 1) = n − r.

�	
3.13 Let�st

λ be the set of standard angle types.SM(λ) ⊂ Sr acts on the set of angle types�λ

by permutation of the factors and each orbit contains a unique standard element θ . Therefore,
there is an identification �λ/SM(λ)

∼= �st
λ . The stabilizer subgroup of θ isSM(λ) ∩ SM(θ).

Therefore, we get

Fs/SM(λ) =
⎛
⎝∐

θ∈�λ

F
θ

s

⎞
⎠ /SM(λ)

∼=
∐

θ∈�st
λ

F
θ

s /(SM(λ) ∩ SM(θ)).

Let θ ∈ �st
λ . Then, Proposition 3.10 says that we have a decomposition into connected

components

F
θ

s =
∐

p̄∈P(θ)

F
θ, p̄
s ,

where P(θ) = { p̄ = SM(θ�p) p | p ∈ Sr }, and the isomorphism class of F
θ, p̄
s = V (τ p̄) is

determined only by themultiplicity partitionm(θ � p).SM(λ)∩SM(θ) naturally acts on P(θ).
Let P(θ) be a complete system of representative for the quotient set P(θ)/(SM(λ) ∩SM(θ)).
Then, we get

F
θ

s /(SM(λ) ∩ SM(θ)) ∼=
∐

p̄∈P(θ)

F
θ, p̄
s /(SM(λ) ∩ SM(θ�p)).

Combining what we have obtained above, finally we get the following

Theorem 3.14 We keep the notation above. The stringy E-polynomial of Z (n) is given by
the following formula:

Est (Z
(n)) = Ln+2(1 + L)n−1

+
∑
λ�n

λ�=(1n)

∑
θ∈�st

λ

∑
p̄∈P(θ)

E(F
θ,p
sλ /(SM(λ) ∩ SM(θ�p))) · Lφ(θ, p̄)+r(λ)+a(s;θ, p̄),

(12)

where sλ is the standard permutation associated with λ as in (7) and r(λ) stands for the
length of the partition λ.

3.15. We remark that one can actually calculate the term E(F
θ,p
sλ /(SM(λ) ∩ SM(θ�p))) in

the formula (12) as follows.
We saw in Proposition 3.10 that

F
θ, p̄
s

∼= X (Ar1−1) × · · · × X (Ark−1)

if m(θ � p) = (r1, . . . , rk). Since SM(λ) ∩ SM(θ�p) is a Young subgroup of

SM(θ�p) ∼= Sr1 × · · · × Srk ,
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1160 Y. Nagai

there is a partition μ j � r j for each 1 � j � k such that

SM(λ) ∩ SM(θ�p) ∼= Sμ1 × · · · × Sμk ,

where Sμ j ⊂ Sr j is the Young subgroup associated with the partition μ j � r j . Therefore,
we have

E(F
θ,p
sλ /(SM(λ) ∩ SM(θ�p))) = E(X (Ar1−1)/Sμ1) × · · · × E(X (Ark−1)/Sμk ).

On the other hand, E(X (Ar−1)/Sμ) forμ � r can be calculated by the character formula
of Procesi, Dolgachev–Lunts, and Stembridge: ifwe defineχl(An−1) to be the character of the
Sn-representation H2l(X (An−1),Q)) and χ[An−1, q] = ∑n−1

l=0 χl(An−1)ql the generating
function, then we know that

1 +
∑
n�1

χ[An−1, q]tn = 1 +∑m�1 hmt
m

1 −∑m�2(q + · · · + qm−1)hmtm

= 1 + h1t + h2(1 + q)t2 + (h3 + (h1h2 + h3)q + h3q
2)t3

+ (h4 + (h22 + h1h3 + h4)(q + q2) + h4q
3)t4 + · · · ,

where hm is the character of the trivial representation of Sm , or rather, the complete
symmetric function of degree m (see [22], Theorem 6.2, see also [7,17]). Therefore, if
μ = (m1, . . . ,mk), the character inner product gives the formula

E(X (Ar−1/Sμ)) = (hμ, χ[Ar−1,L]),
where hμ = hm1 · · · hmk .

3.16. Let X be a variety with only log terminal singularities. The change of variable formula
for motivic integration ([1], Theorem 3.5, or [24], Theorem 66) implies that if f : Y → X
is a proper birational morphism that is crepant, i.e., KY = f ∗KX , the stringy E-function is
invariant: Est (Y ) = Est (X) ([1], Theorem 3.8). In particular, if f : Y → X is a crepant
resolution, we have Est (X) = Est (Y ) = E(Y ).

In our situation, as the birational morphism μ(n) : Z (n) → X (n) is small, it is in particular
crepant. Thuswe have Est (X (n)) = Est (Z (n)). If the symmetric product X (n) admits a crepant
resolution Y → X (n), we have E(Y ) = Est (Z (n)). Moreover if the induced family Y → B
is semistable, and if we denote the singular fiber by Y0, Poincaré duality and homotopy
invariance implies

H p
c (Y )∗ ∼= H2n−p+2(Y ) ∼= H2n−p+2(Y0).

Therefore, the polynomial E(Y ) = Est (Z (n)) encodes the cohomological information of the
singular fiber of a semistable model. In general, X (n) may not admit a crepant resolution;
nevertheless the Gorenstein canonical orbifold model Z (n) is already a good substitute for a
minimal semistable model of X (n) on the level of cohomology.

Proposition 3.17 The stringy E-polynomial Est (Z (n)) for n = 2, 3, 4, 5 is as follows:

Est (Z
(2)) = L5 + 2L4 + L3,

Est (Z
(3)) = L7 + 3L6 + 5L5 + 2L4,

Est (Z
(4)) = L9 + 4L8 + 11L7 + 14L6 + 4L5,

Est (Z
(5)) = L11 + 5L10 + 17L9 + 35L8 + 30L7 + 6L6.
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Symmetric products of a semistable degeneration of surfaces 1161

Proof We demonstrate the case n = 4. The other cases are similar (but much more compli-
cated in the case n = 5). Nontrivial partition λ of 4 is one of λ = (2, 12), (22), (3, 1), (4).
We calculate the contributions to twisted sectors case by case. We represent p ∈ Sr by a
sequence p = [p(1), p(2), . . . , p(r)] to make it short.

Case λ = (2, 12). The length of the partition is r = 3. The set of standard angle type in this
case is �st

(2,12)
= {(03), (1/2, 02)}. We also note that SM(λ) = S{2, 3}.

Case θ = (03): In this case, we haveSM(θ) = SM(θ�p) = S3 for all p ∈ S3. It immediately

follows that P(θ) = {1̄}, F (03)
(1 2) = X (A2), and SM(λ) ∩ SM(θ�1) = S{2, 3}. We need to

know E(X (A2)/S{2, 3}), which is calculated by the argument in §3.15 as follows:

E(X (A2)/S{2, 3}) = (h1h2, χ[A2,L])
= (h1h2, h3 + (h1h2 + h3)L + h3L

2)

= 1 + 3L + L2.

Noting φ = 2, a = 1, the associated twisted sector is L8 + 3L7 + L6.

Case θ = (1/2, 02): SM(θ) = S{2, 3}. P(θ) consists of

[1, 2, 3] = [1, 3, 2], [2, 1, 3], [3, 1, 2], and [2, 3, 1] = [3, 2, 1].

However, [2, 1, 3] and [3, 1, 2] is in the same oribt under the action ofSM(λ) ∩SM(θ) =
S{2, 3}, therefore we have P(θ) = {1̄, (1 2), (1 2 3)}. It is straightforward to get the fol-
lowing table:

p SM(θ�p) θ ◦ p φ a Twisted sector

1 S{2, 3} (1/2, 0, 0) 1 2 (1 + L)L6

(1 2) {1} (0, 1/2, 0) 2 2 L7

(1 2 3) S{2, 3} (0, 0, 1/2) 1 2 (1 + L)L6

In total, the contribution is 3L7 + 2L6.

Case λ = (22). We have r = 2, SM(λ) = S2, and

�st
(22) = {(0, 0), (1/2, 0), (1/2, 1/2)}.

Case θ = (02): SM(θ) = SM(θ◦p) = S2 for all p ∈ S2, and P(θ) = {1̄} as before.

F
(02)
(1 2)(3 4) = X (A1) and SM(λ) ∩ SM(θ) = S2, φ = 2, and a = 2, so that the associated

twisted sector is E(X (A1)/S2)L
6 = L7 + L6.
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Case θ = (1/2, 0): Since SM(θ) = {1}, P(θ) = {1̄, (1 2)} and F
(02)
(1 2)(3 4) consists of two

points. As we have φ = 1, a = 3 in both cases, the associated twisted sector is 2L6.

Case θ = (1/2, 1/2): SM(θ) = SM(θ�p) = S2, and P(θ) = {1̄}. As before, we know

F
(1/2,1/2)
(1 2)(3 4) = X (A1) and SM(λ) ∩ SM(θ) = S2. Since φ = 0, a = 3 the associated twisted

sector is E(X (A1)/S2)L
5 = L6 + L5.

Case λ = (3, 1). In this case, r = 2, SM(λ) = {1}, �st
(3,1) = {(02), (1/3, 0), (2/3, 0)}.

Case θ = (02): As before, SM(θ) = SM(θ�p) = S2 and P(θ) = {1}. Therefore, F (02)
(1 2 3) =

X (A1). As φ = 2, a = 2, the twisted sector is L7 + L6.

Case θ = (1/3, 0): SM(θ) = 1, P(θ) = {1̄, (1 2)} and F
(1/3,0)
(1 2 3) consists of two points. As

φ = 1, a = 3 in this case, the twisted sector is 2L6.

Case θ = (2/3, 0): This case is completely the same as in the case θ = (1/3, 0). The twisted
sector is 2L6.

Case λ = (4). In this case r = 1 and we always have SM(λ) = SM(θ) = {1}. Therefore
P(θ) = {1̄} and F

θ

(1 2 3 4) is just one point set. As we have the twisted sector in total is

θ φ a Twisted sector

(0) 2 3 L6

(1/4), (2/4), (3/4) 0 4 L5

L6 + 3L5.
Summing up everything, finally we get

Est (X
(4)) = L6(1 + L)3

+ (L8 + 3L7 + L6)+ (3L7 + 2L6)+ (L7 + L6)+ 2L6

+
(
L6 + L5

)
+ (L7 + L6)+ 2L6 + 2L6 +

(
L6 + 3L5

)
= L9 + 4L8 + 11L7 + 14L6 + 4L5.

�	

Remark 3.17.1 In comparison with the case of Hilbn(S) for smooth algebraic surface S (see
e.g. [16]), it is interesting to look for a formula of the generating function

∑
n�0

Est (Z
(n)) · tn .

Unfortunately, due to combinatorial complication in Theorem 3.14, the author does not yet
have a good answer to this question at the time of writing.
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4 Minimal model

In this section, we will discuss more birational modifications of Z (n), in particular minimal
models of Z (n).

Theorem 4.1 There exists a projective birational morphism ν(n) : Y (n) → Z (n) satisfying
the following conditions:

(i) Y (n) has only Gorenstein terminal quotient singularities.
(ii) ν(n) is a crepant divisorial contraction, namely KY (n) = ν(n) ∗KZ (n) and the exceptional

set of ν(n) is a divisor.
(iii) Letψ(n) : Y (n) → B be the compositionρ(n)◦ν(n). Then, its general fiber isHilbn(C∗×

C) and the singular fiber is a divisor with V -normal crossings.

Although the existence of a minimal model of Z (n) is a consequence of the general theory
of minimal model program (MMP) of higher dimensional algebraic varieties [3], here we
stick to an explicit construction of a minimal model Y (n) so that we have a good control on
the singularities of the total space and the singular fiber of the resulted minimal model. The
claims (i) and (iii) will not follow from a straightforward application of MMP.

4.2. From the description of §1.6, the natural morphism ρ̃(n)′ : Z̃ (n)′ = X (�(n)) → B = C

is a toric morphism associated with the lattice homomorphism

g = (1 1 0 . . . 0) : N = Zn+1 → Z.

If we take a basis of N consisting of the column vectors of Q in the proof of Proposition
2.5, g is represented by a matrix (1 0 . . . 0 1). It immediately follows that the primitive
generator for each ray in the fan�(n), namely the column vectors of (6), has multiplicity one
with respect to g. This means that the fiber of ρ̃(n)′ over the origin is the union of all the torus
invariant divisors of X (�(n)). It is easy to see from the description (3) the Sn-action on N
that its restriction to Ker(g) is the permutation representation. Therefore, the restriction of
ρ̃(n)′ to the torus N ⊗ C∗ → C∗ is a trivial family of the permutation action on (C∗)n , and
theSn-quotient of N ⊗C∗ ×Cn → C∗ is a trivial family of Symn(C∗ ×C). It follows that
Z (n)◦
n = ρ(n) −1(C∗) has a crepant divisorial resolution

ψ(n)◦ : Y (n)◦ → Z (n)◦

that is a family of Hilbert–Chow morphism Hilbn(C∗ × C) → Symn(C∗ × C). We prove
that ψ(n)◦ extends to a crepant birational morphism ψ(n) : Y (n) → Z (n).

Lemma 4.3 Let s ∈ Sn. The connected component Fθ, p̄
s (see §3.11) of the s-fixed point

locus in X (�(n)) has intersection with the open dense torus N ⊗ C∗ if and only if θ is a
zero-sequence (0r ) where r is the length of the partition λ associated with s.

Proof Let us assume that Fθ, p̄
s has a point in common with N ⊗ C∗. Then, we necessarily

have φ(θ, p̄) = 2, that is, θp(1) = θp(r) = 0. A point
(
α,
(
yp(1)
yp(2)

, . . . ,
yp(r−1)
yp(r)

))
∈ X (An−1)

is in the open dense torus if and only if
yp( j)

yp( j+1)
�= 0 for all j . Taking the action map (9) into

account, it follows that θ j − θ j+1 ∈ Z. Therefore, we must have θ = (0r ). The converse also

follows from the action map (9) and the definition of Fθ, p̄
s . �	

4.4. Let F0 be the union of the fixed point loci of trivial angle type F (0r )
s for all s ∈ Sn

(here r is the length of the associated partition λ to s ∈ Sn). Since F
(0r )
s is the total space of
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1164 Y. Nagai

a rank 2 vector bundle over F
(0r−1)

s
∼= X (Ar−1), we know dim F (0r )

s = r + 1. In particular
F0 is a divisor in X (�(n)).

Lemma 4.5 Let q = (q1, q2) ∈ Z̃ (n). We define

Stab0(q) = {s ∈ Stab(q) | q1 ∈ F (0r )
s }.

Then,

(i) Stab0(q) is a Young subgroup of Sn.
(ii) Stab0(q) is a normal subgroup of Stab(q).

Proof (i) Let q̄1 be an image of q1 under the composition

X (�(n)) → X (An−1) → Pn−1.

From the description in §2.7, one sees that q1 is an s-fixed point of trivial angle type if and

only if its coordinate satisfies the relation
xs(i)
xi

= 1 for all i such that s(i) �= i . If q1 is also

t-fixed point of trivial angle typle, we have
xt◦s(i)
xi

= xt (s(i))
xs(i)

xs(i)
xi

= 1, and hence Stab0(q)

is a subgroup of Stab(q). Also by the characterization above, one sees that if s ∈ Stab0(q)

has a cycle decomposition

s = (i1 · · · il1)(il1+1 · · · il2) · · · (ilr−1+1 · · · ilr ),
all the elements in the subgroup

S{i1 · · · il1} × S{il1+1 · · · il2} × · · · × S{ilr−1+1 · · · ilr }
is also contained in Stab0(q). It implies that Stab0(q) ⊂ Sn is a Young subgroup.
(ii) Assume that s ∈ Stab(q) ⊂ Sn has the partition type λ of length r . Then, by Lemma
2.9, s ∈ Stab0(q) if and only if the multiplicity of 1 in the eigenvalues of the action of s on
Tq Z̃ (n) is 2r +1. As the eigenvalues are constant in a conjugacy class, we know that Stab0(q)

is a normal subgroup of Stab(q). �	
4.6. Let q = (q1, q1) ∈ Z̃ (n) = X (�(n)) ×Cn and assume that q1 ∈ F0. Then, by Lemma
2.9, the action of an element s ∈ Stab0(q) on the tangent space Tq Z̃ (n) has eigenvalues

(ζ1, . . . , ζ
λ1−1
1 ; . . . ; ζr , . . . , ζ

λr−1
r ; 1, . . . , 1︸ ︷︷ ︸

r+1

;

1, ζ1, . . . , ζ
λ1−1
1 ; . . . ; 1, ζr , . . . , ζ λr−1

r )

if s has partition type λ = (λ1, . . . , λr ). In particular, the character of the representation
Stab0(q) → GL(Tq Z̃ (n)) agrees with the character of the permutation representation of
the Young subgroup Stab0(q) ⊂ Sn on Cn ⊕ Cn ⊕ C, the direct sum of two copies of a
permutation representation and a trivial representation. LetUq be a sufficiently small Stab(q)-
invariant open neighborhood of q ∈ Z̃ (n). If Stab0(q) is of the form Sμ for a partition
μ = (μ1, . . . , μk), Vq = Uq/Stab0(q) is locally isomorphic to a product of a neighborhood
of a general cycle in Symn(C2) of the form

k∑
i=1

μi ai (ai ∈ C2),
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Symmetric products of a semistable degeneration of surfaces 1165

and a complex line C. Therefore, it admits a crepant resolution Ṽq ⊂ Hilbn(C2) × C.
By a theorem of Haiman ([10], Theorem 5.1), Ṽq can be regarded as an open subset of
Sn- Hilb(C2n+1), so the quotient group Gq = Stab(q)/Stab0(q) naturally acts on Ṽq and
the quotient Ṽq/Gq gives a partial resolution

ψ
(n)
2,q : Ṽq/Gq → Uq

of the image Uq of Uq in Z (n) = Z̃ (n). Since Uq ⊂ Z (n) has only canonical singularities,

ψ
(n)
2,q is again a crepant birational morphism. As the partial resolution ψ

(n)
2,q naturally glue

with the Hilbert-Chow morpihsm ψ(n)◦ : Y (n)◦ → Z (n)◦ at the image of q in Z (n) for every
q = (q1, q2)with q1 ∈ F0, we get an extended crepant partial resolutionψ(n) : Y (n) → Z (n).

4.7. To finish the proof of Theorem 4.1, we check that ψ(n) constructed above satisfies the
conditions (i) and (iii).

Let D1, . . . , Dk ⊂ X (�(n)) be torus invariant prime divisors. At a point q ∈ F0, they are
defined by y j = 0 (not all but for some j’s) in the notation of §2.7. Lemma 2.9 implies that
the intersection D1 ∩· · ·∩Dk is (if not empty) transversal to the action ofSn . Therefore, the
strict transform D′

i of the image of Di in Ṽq is a smooth divisor and intersecting transversally
along the exceptional divisor. As the quotient group Gq = Stab(q)/Stab0(q) acts on the
coordinate (y1, . . . , yr ) via a torus (C∗)r , the normal crossing divisor

∑
D′
i is preserved

by the action of Gq . Therefore, the singular fiber of Y (n) → B is a divisor with V -normal
crossings. This proves the condition (iii).

The condition (i) is a consequences of the characterization of terminal quotient singularity
(see, [13] Theorem 2.3). Let �̃ be a unique smooth irreducible divisor on Z̃ (n) dominating

F (0n−1)
(1 2) ⊂ X (�(n)) and � the image of �̃ in Z (n). Lemma 3.12 implies that the age function

always satisfies a(s; θ, p̄) � n−r if s has the partition type of length r (regardless of a choice
of primitive root of unity). In particular, if a(s; θ, p̄) = 1, we necessarily have r = n − 1,
therefore the associated partition should be λ = (2, 1n−1). Moreover, in that case, one need
to have θ1 = · · · = θr and θr = 0, namely θ = (0n−1). This implies that an exceptional
divisor of discrepancy 0 over Z (n) necessarily dominates � (see [19] Remark (3.2)). On the
other hand, as ψ(n) is a crepant resolution of the singularity of Z (n) at the generic point of
�, Y (n) has no crepant exceptional divisor over it. This implies (i) and completes the proof
of Theorem 4.1.

4.8. The recent construction of degeneration of Hilbert schemes by Gulbrandsen et al. [9]
seems to be strongly related to the problem. In this paragraph, we use the notation of [9]
freely. We can show that, for the expanded degeneration X [n] → An+1, there is a natural
isomorphism between the GIT quotient of the stable locus of the relative symmetric product
Symn(X [n]/An+1)s by G[n] = (C∗)n and our Z (n):

ε(n) : Symn(X [n]/An+1)s//G[n] ∼−→ Z (n).

Therefore, the relative Hilbert–Chow morphism

Hilbn(X [n]/An+1)s → Symn(X [n]/An+1)s

gives a birational morphism

ψ(n),GHH : I n(X/A1) = Hilbn(X [n]/An+1)s//G[n] → Z (n)

over the base B = A1. As the authors claim in [9] that I n(X/A1) has only (abelian) quotient
singularities and has trivial canonical bundle, it will immediately follow that ψ(n),GHH is
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an extension of ψ(n)◦ satisfying the conditions (i)–(iii) of Theorem 4.1. We will discuss the
construction of ε(n) and the comparison of ψ(n),GHH and our ψ(n) in a forthcoming article
[15].

4.9. The theorem asserts that Y (n) is a relatively minimal model of the symmetric product
X (n) over B, as KY (n) is numerically trivial over X (n) and KX (n) ≡ 0. The general theory
of MMP also suggests that there may be other minimal models of the symmetric product.
Actually, if n = 2 or 3, we can prove that the relative Hilbert scheme Hilbn(S2/B) is
irreducible and admits a small resolution

H (n) → Hilbn(S2/B) → X (n)

such that the natural map H (n) → B is semistable (see [14], Theorem 4.3, for the case

n = 2). Moreover, for n = 2, we can explicitly write down the flop H (2) Y (2) as
follows.

The singular fiber of p2 : S2 → B consists of two components S2,1 = (x1 = 0) and
S2,2 = (x2 = 0). Let C = S2,1 ∩ S2,2 ∼= A1 be the double line. The fiber of the relative
Hilbert scheme Hilb2(S2/B) → B consists of three components:

Hilb2(S2,1), Hilb2(S2,2), and a component H12 birational to S0 × S1.

A non-trivial fiber occurs over a cycle γ = 2p ∈ X (2). If the support of γ lies in the smooth
locus of p2, the fiber of Hilb2(S2/B) → X (2) is P1. Let us denote the associated cycle by
l1. If the support is in the double curve C , the fiber is P2 and we denote the class of a line in
this P2 by l2.

The small resolution h : H (2) → Hilb2(S2/B) is given by a blowing-up along the (non-
Cariter) divisor Hilb2(S2,1).

Claim The singular fiber of H (2) → B consists of

Hii = BlHilb2(C)(Hilb
2(S2,i )) (i = 1, 2), and H12 = Bl�C (S2,1 × S2,2),

where �C is the diagonal of C in C × C ⊂ S2,1 × S2,2.

Proof Let D be the diagonal of S2 × S2 and W the strict transform of (p2 × p2)−1�B in
BlD(S2 × S2), where �B ∼= B is the diagonal of B × B. Then, Hilb2(S2/B) is nothing but
the quotient W/S2. The fiber of W → �B ∼= B over the origin 0 ∈ B consists of four
components

Wii = Bl�S2,i
(S2,i × S2,i ), Wi j = Bl�C (S2,i × S2, j )

with i, j ∈ {1, 2}, i �= j . If we take W̃ = BlW11W = BlW22W , we have an isomorphism
H (2) ∼= W̃/S2. Let us denote by W̃ii , W̃i j the strict transforms of Wii ,Wi j , respectively. It
immediately follows that the fiber of H (2) → B over 0 ∈ B consists of

Hii ∼= W̃ii/S2 = BlHilb2(C)(Hilb
2(S2,i )) and

H12 ∼= W̃12 ∼= W12 = Bl�C (S2,1 × S2,2),

noting that W12 is smooth and W12 ∩ W11 is a Cartier divisor on W12. �	
The exceptional divisor E of Bl�C (S2,1 × S2,2) is isomorphic to P2 × �C and the class

of a line on the fiber P2 is l2. Here, we remark that the morphism h restricted to the strict
transform C × C ⊂ H12 of C × C ⊂ S2,1 × S2,2 is the canonical morphism

C × C → Sym2(C),

123



Symmetric products of a semistable degeneration of surfaces 1167

while h|H12 is birational. It in particular implies that the component H12 is non-normal.1

One also sees from the description given in the proof of the claim above that H11 ∩ H22 is
P1-bundle over Hilb2(C) = Sym2(C):

H11 ∩ H22 = P(NHilb2(C)/Hilb2(S2,1)),

and H11 ∩ H22 ∩ H12 is isomorphic to C × C that is embedded in H11 ∩ H22 as a double
section over Sym2(C). All the exceptional fibers of h are isomorphic to P1, whose numerical
class we denote by l3. The fiber P1 of H11 ∩ H22 → Sym2(C) is numerically equivalent to
l3.

Now, the relative cone of curves NE(H (2)/X (2)) is spanned by l1, l2, and l3. An easy
calculation shows that

H12 · l1 = 0, H12 · l2 = −2, and H12 · l3 = 2.

As the canonical bundle of H (2) is trivial by [14], Theorem 4.3, (H (n), εH12) is klt for a
sufficiently small positive rational number ε, and Cone Theorem guarantees that there is an
extremal contraction of l2, which is a small contraction that contracts E . One sees that Y (2)

is nothing but its flop. Actually, the flop produces family of P1 over �C passing through a
1
2 (1, 1, 1, 1)-singularity coming from the fixed point locus with the angle type θ = (1/2).
This is a locally trivial family of toric flop that is called “Francia flop” in [11] (Example 5.1
and Definition 4.1).
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