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Abstract Consider a second order, strongly elliptic negative semidefinite differential opera-
tor L (may be a system) on a compact Riemannian manifold M with smooth boundary, where
the domain of L is defined by a coercive boundary condition. Classically known results, and
also recent work in Duong et al. (J Funct Anal 196:443–485, 2002) and Duong and McIn-
tosh (Rev Math Iberoam 15:233–265, 1999) establish sufficient conditions for L∞ −BMOL

continuity of ϕ(
√−L), where ϕ ∈ S01 (R), and L is a suitable elliptic operator. Using a

variant of the Cheeger–Gromov–Taylor functional calculus due to Mauceri et al. (Math Res
Lett 16:861–879, 2009), and short time upper bounds on the integral kernel of etL due to
Greiner (ArchRationMechAnal 41:168–218, 1971),we prove that a variant of such sufficient
conditions holds for our operator L .

Mathematics Subject Classification 58J60 · 35L05 · 47A60

1 Introduction

Consider a compact RiemannianmanifoldM with smoothmetric and smooth boundary, and a
second order strongly elliptic differential operator L : L2(M, E) → L2(M, E) with smooth
coefficients, where E is a complex vector bundle with Hermitian metric. Assume a regular
elliptic boundary condition B(x, ∂x )u = 0 on ∂M (see Proposition 11.9, Chapter 5 of [24];
see also [13] for general background information) whichmakes L into a negative semidefinite
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1012 M. Mukherjee

self-adjoint operator with domain D(L) ⊂ H2(M, E). For notational convenience, we will
drop the letter E when denoting the space of sections; for example, L2(M), or just L2, will
stand for L2(M, E) henceforth. Also, T : B1 → B2 will mean that T is a bounded linear
operator from B1 to B2, where Bi are Banach spaces.

Given a bounded continuous function ψ : R −→ R, the spectral theorem defines

ψ(
√−L) : L2(M) −→ L2(M) (1.1)

as a bounded self-adjoint operator. Following [20,23], here we consider functions ϕ in the
pseudodifferential function class S01 (R), which means that

ϕ ∈ S01 (R) �⇒ |ϕ(k)(λ)| � (1 + |λ|)−k, k = 0, 1, 2, . . . (1.2)

We wish to prove that

Theorem 1.1

ϕ(
√−L) : L∞ −→ BMOL . (1.3)

For the definition of BMOL , see Definition 2.1 and Lemma 1.5, which is in turn motivated
by definitions in [8] (see also [1,5] and [12]). As a corollary, we get that

Corollary 1.2

ϕ(
√−L) : L p −→ L p, ∀ p ∈ (1,∞). (1.4)

In a compact setting, and in the absence of a boundary, results like Theorem 1.1 are well-
known (see [17], for example). Also well-known are sufficient conditions for such results in
the general setting of a metric measure space, for example, see Theorem 1.6 below, which
is due to [6]. However, except for well-behaved scalar elliptic operators (like the Laplace–
Beltrami operator associated with the metric onM) with nice boundary conditions and global
“heat kernel” bounds, such sufficient conditions are not easy to verify. As mentioned in the
abstract, our main technical lemma for proving Theorem 1.1 is to check the following variant
of the sufficiency condition proved in Theorem 3 of [6] (see also [8]):

Lemma 1.3 With ϕ#(
√−L) as in (1.14) and (1.15), denote by k#(x, y) and kt (x, y) the

integral kernels of ϕ#(
√−L) and the composite operator ϕ#(

√−L)etL respectively. We
have for some ε > 0,

sup
t∈(0,ε]

sup
y∈M

∫
M\B√

t (y)
|k#(x, y) − kt (x, y)|dx < ∞. (1.5)

Observe that the due to the generality of the elliptic operator L (we do not assume, for
instance, that L can bewritten in the form D∗D, where D is a first order differential operator),
and due to the generality of the boundary conditions, Gaussian bounds on the integral kernel
of etL are rather non-trivial to derive. Short time bounds are known from the work in [10]:

Theorem 1.4 (Greiner) Let M be a compact manifold with boundary, and L be a second
order self-adjoint negative semidefinite elliptic system defined by regular elliptic boundary
conditions. If p(t, x, y) denotes the integral kernel for et L , for some κ ∈ (0,∞) we have,

|p(t, x, y)| � t−n/2e−κd(x,y)2/t , t ∈ (0, 1], x, y ∈ M, (1.6)

and

|∇x p(t, x, y)| � t−n/2−1/2e−κd(x,y)2/t , t ∈ (0, 1], x, y ∈ M . (1.7)
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Boundedness of spectral multipliers of generalized… 1013

Since the “heat kernel” bounds here are only known for short time, we prove Theorem 1.1
in two main steps. Firstly, we define a concept of local BMOL spaces, denoted by BMOε

L
(see Definition 2.1 below). Then, Lemma 1.3 proves that ϕ#(

√−L) : L∞ → BMOε
L . This

we supplement by the following lemma, which proves that BMOε
L is in fact independent of

ε.

Lemma 1.5

‖ f ‖
BMO

√
2R

L

∼= ‖ f ‖
BMO

√
R

L
(1.8)

where R > 0.

1.1 Tools, preliminaries and motivation

Our main tool will be the functional calculus used in [2], namely

ϕ(
√−L) = 1√

2π

∫ ∞

−∞
ϕ̂(t)eit

√−Ldt. (1.9)

We see that
√−L is a first order elliptic self-adjoint operator with compact resolvent. So,

Spec(
√−L) is a discrete subset of [0,∞), and it is no loss of generality to assume that ϕ(λ)

is an even function of λ. This reduces (1.9) to

ϕ(
√−L) = 1√

2π

∫ ∞

−∞
ϕ̂(t)cos t

√−L dt, (1.10)

where cos t
√−L is the solution operator to the “wave equation” with zero initial velocity,

i.e.,

u(t, x) = cos t
√−L f (x) (1.11)

where

∂2t u − Lu = 0, u(0, x) = f (x), ∂t u(0, x) = 0 (1.12)

together with the coercive boundary conditions mentioned above.
We split (1.10) into two parts in the following way: let, for a > 0 small, θ(t) be an even

function, such that

θ ∈ C∞
c ((−a, a)), θ(t) ≡ 1 on [−a/2, a/2]. (1.13)

Now, denote

ϕ̂#(t) = θ(t)ϕ̂(t), ϕ̂b(t) = (1 − θ(t))ϕ̂(t). (1.14)

Then, we can write

ϕ(
√−L) = 1√

2π

∫ ∞

−∞
ϕ̂#(t)cos t

√−Ldt + 1√
2π

∫ ∞

−∞
, ϕ̂b(t)cos t

√−Ldt

= ϕ#(
√−L) + ϕb(

√−L), (1.15)

where both ϕ#(
√−L) and ϕb(

√−L) are self-adjoint.
Now, (1.2) implies that ϕb is smooth and rapidly decreasing. So we have

|ϕb(λ)| � (1 + |λ|)−m, for some m >
n

2
.
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1014 M. Mukherjee

Then, the ellipticity of L implies

ϕb(
√−L) : L2(M) −→ Hm(M) ⊂ C(M). (1.16)

This is because, we can write ϕb(λ) = (1 + |λ|2)−s/2ψb(λ), s ∈ N, where ψb(λ) is a
bounded function. That implies

ϕb(
√−L) = (I − L)−s/2ψb(

√−L).

By the spectral theorem, ψb(
√−L) is bounded on L2, and

(I − L)−s/2 : L2(M) → D((−L)s/2) ⊂ Hs(M).

We can see that L1(M) ⊂ C(M)∗ and the inclusion is continuous. Also, when m >

n/2, Hm(M) ⊂ C(M) by Sobolev embedding. This gives, via duality on (1.16), and self-
adjointness of ϕb(

√−L), that

ϕb(
√−L) : L1(M) −→ L2(M). (1.17)

This interpolates with (1.1) to give

ϕb(
√−L) : L p(M) −→ L p(M) ∀ p ∈ (1,∞). (1.18)

Results of the type (1.4) have been well-studied for complete Riemannian manifolds M
without boundary and L = �, the Laplace–Beltrami operator. When M is compact, we refer
to [19], particularly the combination of Theorem 1.3 of Chapter XII and Theorem 2.5 of
Chapter XI. For results in the non-compact setting, refer to [2,14,21–23], etc. In the papers
which deal with a non-compact setting, an additional difficulty is in analyzing ϕb(

√−�),
because of the failure of the compact Sobolev embedding. Particularly for manifolds like the
hyperbolic space, where the volume growth is exponential with respect to the distance, one
requires more stringent restrictions on ϕ, namely, ϕ being holomorphic on a strip around
the x-axis, satisfying bounds of the form (1.2). This condition was first introduced in the
paper [3]. This motivated some research on the optimal width of said strip; to the best of
our knowledge, the sharpest results in this direction appear in [22]. Also, in [2], ϕ#(

√−�)

was analyzed as a pseudodifferential operator, something we cannot do in our present setting
because of the presence of a boundary. It is well-known that the scalar square root of the
Laplacian fails the “transmission condition” (see, for example, equation (18.2.20) of [11]) to
be a pseudodifferential operator (in this context, see also [25], [26]). Our analysis will be a
combination of methods from [6,9], and the approach of [23], which follows and refines the
results in [14].

Let us discuss some of themain lines of investigation in [6,9]. The results therein are rather
general, set in the context of an open subset X of a metric measure space of homogeneous
type. If L is a negative semi-definite, self-adjoint operator on L2(X), they assume that the
integral kernel of L satisfies

|p(t, x, y)| � t−n/me−κdist (x,y)m/(m−1)/t1/(m−1)
, 0 < t ≤ 1, κ ∈ (0,∞). (1.19)

Theorem 3.1 of [9] establishes L p-continuity of ϕ((−L)1/m) via proving that it is weak
type (1, 1). What mainly concerns us with [9] is the fact that they proved L p continuity of
ϕ((−L)1/m) via using the following result from [6]:

Theorem 1.6 (Duong–McIntosh) Under the hypothesis on L outlined above, let kt (x, y)
denote the integral kernel of ϕ((−L)1/m)(I − etL), where ϕ : R → R is bounded and
continuous. Also assume
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Boundedness of spectral multipliers of generalized… 1015

sup
t>0

sup
y∈X

∫
X\Bt1/m (y)

|kt (x, y)|dx < ∞. (1.20)

Then ϕ((−L)1/m) is of weak type (1, 1).

It is naturally interesting to investigate when conditions like (1.20) are satisfied. In this
paper, our aim is to check that (1.20) holds for a large class of operators L , as mentioned
before, in the setting of a smooth compact manifold with boundary.

We also note here that in the proof of L p-boundedness of ϕ(
√−L) in [20], the main

approach is to prove the following

Lemma 1.7 (Taylor) There exists C < ∞, independent of s ∈ (0, 1] and of y, y′ ∈ M, such
that

dist(y, y′) ≤ s

2
�⇒ ‖K #(., y) − K #(., y′)‖L1(B1(y)\Bs (y)) ≤ C,

where K #(x, y) is the integral kernel of ϕ#(
√−L).

With that in place, as is noted in [20], the weak type (1, 1) property of ϕ#(
√−L) is a

consequence of Proposition 3.1 of [14], which is a variant of Theorem 2.4 in Chapter III of
[4].

Note thatwe are yet to argue the L∞−BMOL boundedness ofϕb(
√−L); thiswewill do at

the beginning of Sect. 3. So, for all continuity related aspects, for the rest of our investigation,
we will mainly be concerned with just ϕ#(

√−L). These boundedness considerations will
largely be addressed in Sects. 2 and 3. For those sections, our standing assumption will be
the following:

Assumption cos t
√−L has finite speed of propagation, which, by scaling L if necessary,

we will assume to be ≤ 1.

It seems a challenging question to determine when cos t
√−L has finite speed of prop-

agation. However, for a reasonable class of operators L , we can prove the following
“Davies–Gaffney” type estimates:

Proposition 1.8 Let −L = D∗D+ H with the generalized Dirichlet or Neumann boundary
conditions on D, as defined in (5.3) and (5.4), and with H ≥ 0 in L2(M). Let U, V be
two open balls such that dist(U, V ) = r . With t > 0 fixed, let φ(x) = r

t dist (x,U ) and
P = [D, eφ] denote the usual commutator operator. Then cos t

√−L has finite speed of
propagation if it satisfies for all v ∈ L2(V ) the following:

‖e−φ/2Pv‖L2 ≤ r

t
‖eφ/2v‖L2 . (1.21)

Equation (1.21) follows when |Dφ| is bounded. As a special case, (1.21) follows trivially
when L = � with the Dirichlet or Neumann boundary conditions.

One last comment: for the purposes of proving Lemma 1.3, we will also a modification
of (1.9), following [14,20,23]. For details on this, see Sect. 2.2.

1.2 Outline of the paper

In Sect. 2, we prove that Definition 2.1 of BMOε
L is independent of ε, as long as we are on

a compact setting. This is the content of Lemma 1.5. Then we proceed to prove our main
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1016 M. Mukherjee

technical lemma of the paper, Lemma 1.3. We begin Sect. 3 by arguing the L∞ − BMOL

continuity of ϕb(
√−L), and then prove in Proposition 3.1 (using Lemma 1.3) the L∞ −

BMOL continuity of ϕ#(
√−L), which finally proves Theorem 1.1. In Appendix 1, we collect

together some useful information about the integral kernels of the operators etL and e−t
√−L .

The properties we establish are quite parallel to their usual scalar Laplacian counterparts,
and are at the background of some of the estimates we derive in the main body of the
paper. In Appendix 2, we prove some partial results towards establishing sufficient criteria
for cos t

√−L to have finite propagation speed. To wit, we prove that for those operators
L which can be written in the specific form (5.1), under generalized Dirichlet or Neumann
boundary conditions (see (5.3) and (5.4) below), and under the assumption (1.21), cos t

√−L
has finite speed of propagation. This is the content of Proposition 1.8.

2 Proof of Lemma 1.3

2.1 BMOL and its variants

We combine the definition of BMOL in [7] with the definition of local BMO spaces in [21]
to give the following

Definition 2.1 f ∈ L1
loc(M) is in BMOε

L (M) if

1

|B|
∫
B

| f (x) − etL f (x)|dx ≤ C, (2.1)

where
√
t is the radius of the ball B, and B ranges over all balls in M of radius ≤ ε. Let

‖ f ‖BMOε
L

= sup
B∈B

1

|B|
∫
B

| f (x) − etL f (x)|dx, (2.2)

where
√
t is the radius of the ball B, and B contains all balls of radius ≤ ε.

We now make the observation that our definition of BMOε
L is actually independent of the

ε chosen.

Proof Clearly,

‖ f ‖
BMO

√
2R

L
≥ ‖ f ‖

BMO
√
R

L
.

For the reverse inequality, let us fix a point y ∈ M . Then we have, for r ≤ R,

1

|B√
2r (y)|

∫
B√

2r (y)
| f (x) − e2r L f (x)|dx − 1

|B√
r (y)|

∫
B√

r (y)
| f (x) − er L f (x)|dx

� 1

|B√
r (y)|

∫
B√

2r (y)
| f (x) − e2r L f (x) − χB√

r (y)(x) f (x) + χB√
r (y)(x)e

r L f (x)|dx

= 1

|B√
r (y)|

∫
B√

2r (y)
|χA(x) f (x) − e2r L f (x) + χB√

r (y)(x)e
r L f (x)|dx,

where A denotes the “annulus” B√
2r (y) \ B√

r (y), which can be covered by at most K balls

of radius
√
r , where K is a positive number independent of r , because M is compact. Also,
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Boundedness of spectral multipliers of generalized… 1017

in the ensuing calculation, we tacitly use the fact that the volume of a ball of radius r is
uniformly bounded.

Now, the last quantity in the above equation is

≤ 1

|B√
r (y)|

∫
B√

2r (y)
|χA(x) f (x) − χA(x)e2r L f (x)|dx

+ 1

|B√
r (y)|

∫
B√

2r (y)
|χB√

r (y)(x)e
2r L f (x) − χB√

r (y)(x)e
r L f (x)|dx

≤ 1

|B√
r (y)|

∫
B√

2r (y)
|χA(x) f (x) − χA(x)er L f (x)|dx

+ 1

|B√
r (y)|

∫
B√

2r (y)
|χA(x)e2r L f (x) − χA(x)er L f (x)|dx

+ 1

|B√
r (y)|

∫
B√

2r (y)
|χB√

r (y)(x)e
2r L f (x) − χB√

r (y)(x)e
r L f (x)|dx

= 1

|B√
r (y)|

∫
A

| f (x) − er L f (x)|dx + 1

|B√
r (y)|

∫
A

|e2r L f (x) − er L f (x)|dx

+ 1

|B√
r (y)|

∫
B√

r (y)
|e2r L f (x) − er L f (x)|dx

= A + B + C (say) .

Putting everything together, we have that

1

|B√
2r (y)|

∫
B√

2r (y)
| f (x) − e2r L f (x)|dx − 1

|B√
r (y)|

∫
B√

r (y)
| f (x) − er L f (x)|dx

� A + B + C. (2.3)

Now, if we let er L f (x) = g(x), and can prove that

‖g‖
BMO

√
r

L
� ‖ f ‖

BMO
√
r

L
, (2.4)

then we have that each of A, B,C is � ‖ f ‖
BMO

√
R

L
, giving us our result from (2.3).

Now we justify (2.4). Choose ε > 0 and let B consist of all balls in M whose radii are
≤ ε. Choose s > 0 such that

√
s ≤ ε. As per the notation above, if u(x) = esL f (x) − f (x),

observe that it suffices to prove that

sup
B√

s∈B
1

|B√
s |

∫
B√

s

|esLu(x)|dx � sup
B√

s∈B
1

|B√
s |

∫
B√

s

|u(x)|dx .

Now, we have,

sup
B√

s∈B
1

|B√
s |

∫
B√

s

|esLu(x)|dx � sup
B√

s∈B
1

|B√
s |

∫
B√

s

∫
M

|p(s, z, x)u(z)|dzdx

� sup
B√

s∈B
1

|B√
s |
s−n/2

∫
B√

s

‖u‖L1(M) (from (1.6))

= s−n/2‖u‖L1(M).
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1018 M. Mukherjee

So we are done if we can prove that

‖u‖L1(M) � sup
B√

s∈B
1

|B√
s |

‖u‖L1(B√
s )
.

Consider a partition of M into balls coming from B. Let M = ∐
n Bn , where Bn ∈ B.

Then,

1

|M | ‖u‖L1(M) = 1

|M |
∑
n

‖u‖L1(Bn) = 1

|M |
∑
n

|Bn | 1

|Bn | ‖u‖L1(Bn)

≤ 1

|M |
∑
n

|Bn | sup
B∈B

1

|B| ‖u‖L1(B) = sup
B∈B

1

|B| ‖u‖L1(B).

This finishes the proof. ��
2.2 A modification of the [2] functional calculus

At this point, let us recall the main approach of [14,20,23]. The analysis in these papers
avoided producing a parametrix for (1.10). Instead, they replaced (1.10) by the following

ϕ(
√−L) = 1

2

∫ ∞

−∞
ϕk(t)Jk−1/2(t

√−L) dt, (2.5)

where

Jν(λ) = λ−ν Jν(λ),

Jν(λ) denoting the standard Bessel function (see [23], equation (3.1) and [24], Chapter 3,
Section 6 for more details on Bessel functions), and

ϕk(t) =
k∏
j=1

(
−t

d

dt
+ 2 j − 2

)
ϕ̂(t).

Taylor [23] derives (2.5) from (1.10) by an integration by parts argument (see (3.7)–(3.9)
of [23]). Similarly, from [23], (3.14), we have

ϕ#(
√−L) = 1

2

∫ ∞

−∞
ψk(t)Jk−1/2(t

√−L) dt (2.6)

with

ψk(t) =
k∏
j=1

(
−t

d

dt
+ 2 j − 2

)
ϕ̂#(t), where supp ψk ⊂ [−a, a]. (2.7)

Also, (1.2) implies

|(t∂t ) j ϕ̂(t)| ≤ C j |t |−1, ∀ j ∈
{
0, 1, . . . ,

[n
2

]
+ 2

}
,

which in turn implies

|ψk(t)| ≤ Ck |t |−1, 0 ≤ k ≤
[n
2

]
+ 2. (2.8)
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Boundedness of spectral multipliers of generalized… 1019

Now, let k#(x, y) denote the integral kernel of ϕ#(
√−L), that is,

ϕ#(
√−L) f (x) =

∫
M
k#(x, y) f (y)dy. (2.9)

Without any loss of generality,we can scale L so that the speedof propagationof cos t
√−L

is ≤ 1, which has been stated as an assumption on page 4. Also, let us select a = 1 in (2.7)
and (1.13).

Now we address one fundamental question: why this choice of a and why is the finite
propagation speed of cos t

√−L so important? This has to do with the support of the integral
kernel k#(x, y). If the speed of propagation of cos t

√−L is ≤ 1, then k#(x, y) is supported
within a distance ≤ 1 from the diagonal. Let us justify this: we have

ϕ#(
√−L) f (x) =

∫
M
k#(x, y) f (y)dy = 1√

2π

∫ ∞

−∞
ϕ̂#(t)cos t

√−L f (x)dt.

Suppose the propagation speed of cos t
√−L is ≤ 1. Then, when |t | ≤ 1,

supp cos t
√−L f (x) ⊂ {x ∈ M : dist (x, supp f ) ≤ t}.

When |t | > 1, ϕ̂#(t) = 0. So, for all t ∈ R, ϕ#(
√−L) f (x) will be zero for all x ∈ M

such that dist(x, supp f ) > 1. Since this happens for all f ∈ L2(M), we have that k#(x, y)
is supported within a distance of 1 from the diagonal. This property will be crucially used in
the sequel.

Using (2.6), (2.7) and the fact that ψk is an even function, we can write

k#(x, z) =
∫ 1

0
ψk(s)Bk(s, x, z)ds (2.10)

where Bk(t, x, y) is the integral kernel of Jk−1/2(t
√−L), that is,

Jk−1/2(t
√−L) f (x) =

∫
M
Bk(t, x, y) f (y)dy.

Let us also record the following formula:

Jk−1/2(t
√−L) ≈

∫ 1

−1
(1 − s2)k−1cos st

√−Lds. (2.11)

We have assumed that the speed of propagation of cos t
√−L is≤ 1. Observe that, written

in symbols, this means,

supp f ⊂ K ⇒ supp cos t
√−L f ⊂ K|t |,

where K|t | = {x ∈ M : dist(x, K ) ≤ |t |}. This gives, in conjunction with (2.11),

supp f ⊂ K ⇒ supp Jk−1/2(t
√−L) f ⊂ K|t |. (2.12)

We now derive a technical estimate on ‖Bk(s, x, .)‖L2(B1(x)) which we will find essential
in the sequel. These estimates are variants of Lemma 2.2 in [20].

Lemma 2.2 If G : R −→ R satisfies

|G(λ)| � (1 + |λ|)−γ−1, γ > n/2, (2.13)

then

‖G(s
√−L)‖L(L2,L∞) � s−n/2, s ∈ (0, 1]. (2.14)
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1020 M. Mukherjee

This implies, in particular, the following

‖Bk(s, x, .)‖L2(B1(x)) � s−n/2, s ∈ (0, 1], x ∈ M . (2.15)

Proof We use the following estimate:

|Jk−1/2(λ)| � (1 + |λ|)−k, k > 0.

We write

G(s
√−L) = (I − s2L)−σG(s

√−L)(I − s2L)σ , 2σ = γ + 1. (2.16)

Now, let F(λ) = G(λ)(1 − λ2)σ . Then, using γ > n/2 and 2σ = γ + 1, we see that

|F(λ)| = |G(λ)(1 − λ2)σ | � (1 + |λ|)−γ−1|1 − λ2|σ
� (1 + |λ|)2σ−γ−1 ≤ C.

Since F is bounded, by the spectral theorem, F(s
√−L) : L2 −→ L2 is continuous. So

by virtue of (2.16), our task is reduced to proving that

‖(I − s2L)−σ ‖L(L2,L∞) � s−n/2, σ > n/4. (2.17)

Now, we use the following identity from that can be derived from the definition of the
gamma function:

(I − s2L)−σ ≈
∫ ∞

0
e−r ers

2Lrσ−1dr,

which gives

‖(I − s2L)−σ ‖L(L2,L∞) �
∫ s−2

0
e−r‖ers2L‖L(L2,L∞)r

σ−1dr

+
∫ ∞

s−2
e−r‖ers2L‖L(L2,L∞)r

σ−1dr

�
∫ s−2

0
e−r (rs2)−n/4rσ−1dr +

∫ ∞

s−2
e−r rσ−1dr

� (s−n/2 + 1) � s−n/2, s ∈ (0, 1],
where in going from the second to the third step, we have used that

‖etL‖L(L2,L∞) � t−n/4, t ∈ (0, 1]
and

‖etL‖L(L2,L∞) � 1, t > 1.

This establishes (2.14). That is,

|G(s
√−L) f (x)| � s−n/2‖ f ‖L2 , s ∈ (0, 1].

In particular, with f = δx and using the compactness of M , we have

‖g(s, x, .)‖L2 � s−n/2, s ∈ (0, 1].
��

We are in a position to prove Lemma 1.3.
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Boundedness of spectral multipliers of generalized… 1021

Proof We have

ϕ#(
√−L)etL f (x) =

∫
M
kt (x, y) f (y)dy. (2.18)

Also,

ϕ#(
√−L)etL f (x) =

∫
M
k#(x, y)etL f (y)dy =

∫
M
k#(x, y)

∫
M

p(t, y, z) f (z)dzdy

=
∫
M

∫
M
k#(x, y)p(t, y, z) f (z)dzdy.

Interchanging the variables y and z, we get

ϕ#(
√−L)etL f (x) =

∫
M

∫
M
k#(x, z)p(t, z, y) f (y)dydz. (2.19)

Comparing (2.18) and (2.19), we get

kt (x, y) =
∫
M
k#(x, z)p(t, z, y)dz = etL y k#(x, y).

Interchanging x and y and using the symmetry of the integral kernels, we get

kt (x, y) = kt (y, x) = etLx k#(y, x) = etLx k#(x, y).

Henceforth, we shall drop the subscript x in Lx and L will refer to a differential operator in
the x-variable, unless otherwise mentioned explicitly. To show (1.5), all we want is a uniform
bound on

‖etLk#(., y) − k#(., y)‖L1(M\B√
t (y))

. (2.20)

To derive (2.20), it is clear (by the Mean value theorem) that a uniform bound on

‖et ′L t Lk#(., y)‖L1(M\B√
t (y))

,

where t ′ ∈ (0, t], will suffice. Now, since k#(x, y) is a fixed kernel, we can choose t small
enough such that

‖et ′L t Lk#(., y)‖L1(M\B√
t (y))

≤ C‖t Lk#(., y)‖L1(M\B√
t (y))

,

where C does not depend on t . This latter quantity, using the relation between k#(x, y) and
Bk(s, x, y) given by (2.10), is equal to

∥∥∥∥t L
∫ 1

0
ψk(s)Bk(s, ., y)ds

∥∥∥∥
L1(M\B√

t (y))
. (2.21)

Now, when s′ ≤ √
t , we have by (2.12) that

∫ s′
0 ψk(s)B(s, x, y)ds is supported on

{(x, y) ∈ M × M : dist(x, y) ≤ s′}. So, (2.21) gives via (2.8) that,
∥∥∥∥t L

∫ 1

0
ψk(s)Bk(s, ., y)ds

∥∥∥∥
L1(M\B√

t (y))
� t

∫ 1

√
t

1

s
‖LBk(s, ., y)‖L1(M\B√

t (y))
ds,

which we must prove to be uniformly bounded. If we can prove

‖LBk(s, ., y)‖L1(M\B√
t (y))

� s−2,
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1022 M. Mukherjee

then we are done. Observe that this will be implied by

‖LBk(s, ., y)‖L2(M\B√
t (y))

� s−n/2−2. (2.22)

This is because, from (2.12), we see that Bk(s, ., y) is supported on the ball Bs(y) ⊂ M ,
so

‖LBk(s, ., y)‖L1(M\B√
t (y))

� |Bs(y)|1/2‖LBk(s, ., y)‖L2(M\B√
t (y))

� |Bs(y)|1/2s−n/2−2 � s−2.

So, we are done if we can prove that,

‖LBk(s, ., y)‖L2 � s−n/2−2. (2.23)

We observe that (2.23) is another variant of Lemma 2.2 of [20] and proceeds along
absolutely similar lines. See the lemmas below, which finish the proof. ��
Lemma 2.3

‖Le−s
√−L‖L(L2,L∞) � s−n/2−2, s ∈ (0, 1]. (2.24)

Proof For f ∈ L2(M), call

us(x) = e−s
√−L f (x), s > 0, x ∈ M . (2.25)

Then u is a solution of

(∂2s + L)u = 0, on (0,∞) × M (2.26)

B(x, ∂x )u = 0, on (0,∞) × ∂M, (2.27)

where B represents the coercive boundary condition defining D(L). We have, by the Hille–
Yosida theorem,

‖us‖L2(M) = ‖e−s
√−L f ‖L2 ≤ ‖ f ‖L2(M), ∀s > 0.

Let us pick δ ∈ (0, 1], s0 = δ, and x0 ∈ M . Let U = {x ∈ M : dist(x, x0) < 2δ}. We
now scale the s and the x variables by a factor of 1/δ, and let vs(x) denote the new function
corresponding to us in the scaled variables. Then v solves

(∂2s + L̃)v = 0, on (1/2, 3/2) × Ũ , (2.28)

B̃(x, ∂x )v = 0, on (1/2, 3/2) × (Ũ ∩ ∂M), (2.29)

which is a coercive boundary valued elliptic system with uniformly smooth coefficients and
uniform ellipticity bounds. On calculation,

‖v‖L2((1/2,3/2)×Ũ)
≈ δ−n/2‖u‖L2((δ/2,3δ/2)×U ) � δ−n/2‖ f ‖L2 .

From elliptic regularity estimates we get that

‖Lv1(.)‖L∞(Ũ0)
� ‖v‖L2((1/2,3/2)×Ũ)

� δ−n/2‖ f ‖L2 . (2.30)

This can be obtained by iterating the estimate (11.29) of Chapter 5 of [24] to prove that
‖u‖Hk (I×Ũ0)

� ‖u‖L2((1/2,3/2)×Ũ)
, where 1 ∈ I ⊂ (1/2, 3/2), and taking k high enough

such that Hk ↪→ C2,α for some α. This implies (2.30). Scaling back gives our result

|Lus0(x0)| � δ−n/2−2‖ f ‖L2 .

��
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Lemma 2.4 If G : R → R satisfies

|G(λ)| � (1 + |λ|)−γ−1, γ >
n

2
,

then

‖LG(s
√−L)‖L(L2,L∞) � s−n/2−2, s ∈ (0, 1]. (2.31)

This implies (2.23).

Proof We start by using the formula

(I + s
√−L)−σ = 1

�(σ)

∫ ∞

0
e−t e−ts

√−L tσ−1dt.

That implies, in conjunction with (2.24),

‖L(I + s
√−L)−σ ‖L(L2,L∞) �

∫ 1/s

0
e−t (st)−n/2−2tσ−1dt

+
∫ ∞

1/s
e−t‖Le−ts

√−L‖L(L2,L∞)t
σ−1dt

� s−n/2−2 + 1, (2.32)

where σ > n/2 + 2. Also, in the above calculation, we have used that when r ≥ 1,

‖Le−r
√−L‖L(L2,L∞) = ‖Le−√−Le−(r−1)

√−L‖L(L2,L∞)

� ‖e−(r−1)
√−L‖L(L2,L2) ≤ 1.

The facts that (2.32) implies (2.31) and (2.31) implies (2.23) are absolutely similar to the
proof of Lemma 2.2. ��

3 L∞ − BMOL continuity

We see that (1.17) gives, by duality,

ϕb(
√−L) : L2 −→ L∞. (3.1)

Now, we can prove the following inclusion on a compact manifold:

‖.‖BMOL � ‖.‖L∞ . (3.2)

This is because, for small enough t > 0, we have

1

|B√
t (y)|

∫
B√

t (y)
| f (x) − etL f (x)|dx ≤ ‖ f − etL f ‖L∞ � ‖ f ‖L∞ .

Equations (3.1) and (3.2) give

‖ϕb(
√−L) f ‖BMOL ≤ ‖ϕb(

√−L) f ‖L∞ � ‖ f ‖L2 , (3.3)

which means

ϕb(
√−L) : L2 −→ BMOL . (3.4)
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Equations (3.2) and (3.4) give

ϕb(
√−L) : L∞ −→ BMOL . (3.5)

Finally, we have

Proposition 3.1

ϕ#(
√−L) : L∞ −→ BMOL .

Proof

1

|B√
t (y)|

∫
B√

t (y)
|ϕ#(

√−L) f (x) − etLϕ#(
√−L) f (x)|dx

≤ 1

|B√
t (y)|

∫
B√

t (y)
|ϕ#(

√−L)ψ(x) f (x) − etLϕ#(
√−L)ψ(x) f (x)|dx

+ 1

|B√
t (y)|

∫
B√

t (y)
|ϕ#(

√−L)(1 − ψ(x)) f (x) − etLϕ#(
√−L)(1 − ψ(x)) f (x)|dx

= �1 + �2.

where ψ is a smooth cut-off function supported in B√
t+δ(y), and ψ(x) ≡ 1 on B√

t (y).
Clearly, by Hölder’s inequality,

�1 = 1

|B√
t (y)|

∫
B√

t (y)
|ϕ#(

√−L)ψ(x) f (x) − etLϕ#(
√−L)ψ(x) f (x)|dx

≤ 1√
|B√

t (y)|
‖ϕ#(

√−L)ψ f − etLϕ#(
√−L)ψ f ‖L2

� 1√
|B√

t (y)|
‖ϕ#(

√−L)ψ f ‖L2 (by contractivity of heat semigroup)

� 1√
|B√

t (y)|
‖ψ f ‖L2 ≤ 1√

|B√
t (y)|

‖ψ f ‖L∞
√

|B√
t+δ(y)| � ‖ψ f ‖L∞ ≤ ‖ f ‖L∞ .

Also

|ϕ#(
√−L)(I − etL)(1 − ψ(x)) f (x)|≤

∫
M\B√

t (x)
|(k#(x, z) − kt (x, z))(1 − ψ(z)) f (z)|dz

(3.6)

≤ ‖ f ‖L∞
∫
M\B√

t (x)
|k#(x, z) − kt (x, z)|dz (3.7)

where kt is the integral kernel of ϕ#(
√−L)etL . Now, choosing t small,1 we are done by

Lemmas 1.3 and 1.5. ��
So, let us see the immediate consequence of Proposition 3.1. By virtue of this, we imme-

diately have L p-continuity of ϕ(
√−L) upon application of Theorem 5.6 of [8]. This

L p-continuity result is not new of course. It is established in a more general context in
[9]. Reference [20] has a different proof of this same result.

1 This is the main reason for introducing BMOε
L instead of just the usual BMOL .
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Boundedness of spectral multipliers of generalized… 1025

Note also the L∞ − BMOL result in Theorem 6.2 of [8]. However, the conditions used
to prove Theorem 6.2 in [8] are stronger than (1.6). So, in comparison, it can be said that
we prove similar results in a more restricted setting, but with less assumptions on the heat
semigroup etL .

It is also a natural question to ask what happens if we adopt the seemingly more natural
definition of BMO spaces, as follows:

‖ f ‖BMOε = sup
B∈B

1

|B|
∫
B

| f (x) − At f (x)|dx, (3.8)

where B contains all balls of radius less than or equal to ε, B is a ball of radius
√
t , and At

is the operator whose integral kernel is given by

h(t, x, y) = 1

|B√
t (y)|

χB√
t (y)(x).

On calculation, it can be seen that estimates on∫
d(x,y)≥√

t,d(y,z)≥
√
t
2

|k#(x, y) − k#(x, z)|dx

will imply that

sup
y∈M

sup
t∈(0,ε]

∫
d(x,y)≥√

t
|k#(x, y) − kt (x, y)|dx ≤ C, (3.9)

where kt represents the integral kernel of ϕ#(
√−L)At . The issue is, here At and ϕ#(

√−L)

do not necessarily commute.
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Appendix 1: Properties of heat and Poisson semigroups

In this Appendix, we include some essential facts about the semigroups etL and e−t
√−L .

Henceforth, we will call them heat and Poisson semigroups respectively. Since −L is a
nonnegative semi-definite self-adjoint operator, by theHille–Yosida theorem (see [16], Propo-
sition 6.14), etL gives a contraction semigroup on L2(M). Our first lemma is the following

Lemma 4.1

‖etL‖L(L2,Lip) � (1 + t−n/4−1/2), t > 0. (4.1)

Proof We will first use the gradient estimate (1.7) to prove that∫
M

|∇x p(t, x, y)|2dy � t−n/2−1, t ∈ (0, 1]. (4.2)
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Using (1.7), we see that
∫
M

|∇x p(t, x, y)|2dy � t−n−1
∫
M
e−2κd(x,y)2/t dy.

Nowwe consider the identitymapping i : (M, g) −→ (M, t
2κ g), where (M, t

2κ g) denotes
the manifold M with a scaled metric. That gives,

∫
M
e−2κd(x,y)2/t dy =

∫
M
e−d(x,z)2 |J i |dz ≈ tn/2

∫
M
e−2d(x,z)2dz ≈ tn/2,

where J i denotes the Jacobian of the map i , which finally gives (4.2).
We have, as usual,

∇x e
t L f (x) =

∫
M

∇x p(t, x, y) f (y)dy ≤ ‖∇x p(t, x, .)‖L2‖ f ‖L2 ,

which gives, by (4.2),

‖etL‖L(L2,Lip) ≤ t−n/4−1/2, t ∈ (0, 1]. (4.3)

Now, if Spec(−L) ⊂ [ρ,∞), then ‖etL f ‖L2 ≤ e−tρ‖ f ‖L2 , which, in conjunction with
(4.3) means that for t > 1,

|∇etL f (x)| = |∇eL/2eL/2e(t−1)L f (x)|
� ‖eL/2e(t−1)L f ‖L2 from (4.3)

≤ ‖e(t−1)L f ‖L2 (contractivity of heat semigroup)

≤ e−ρ(t−1)‖ f ‖L2 � ‖ f ‖L2 .

So, putting (4.3) and the last inequality together, we have

‖etL‖L(L2,Lip) � (1 + t−n/4−1/2), t > 0.

��

Similarly, for the Poisson semigroup, we have

Lemma 4.2

‖e−t
√−L‖L(L2,L∞) � (1 + t−n/2), t > 0, (4.4)

and

‖e−t
√−L‖L(L2,Lip) � (1 + t−n/2−1), t > 0. (4.5)

Proof As in Lemma 4.1, starting from (1.6), we can establish that

‖etL‖L(L2,L∞) � (t−n/4 + 1), t > 0. (4.6)

Now the estimate on e−t
√−L can be obtained from the Subordination identity (see (5.22),

Chapter 3 of [24]),

e−t
√−L ≈

∫ ∞

0
te−t2/4ss−3/2esLds. (4.7)
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Boundedness of spectral multipliers of generalized… 1027

This gives,

‖e−t
√−L‖L(L2,L∞) �

∫ ∞

0
te−t2/4ss−3/2‖esL‖L(L2,L∞)ds

�
∫ ∞

0
te−t2/4ss−3/2(s−n/4 + 1)ds

� t
∫ ∞

0
e−t2/4ss− 6+n

4 ds + t
∫ ∞

0
e−t2/4ss−3/2ds. (4.8)

Calling the first integral above I1 and the second one I2, we get I2 ≤ c0, where cn is a
multiple of �( n+1

2 ) (see [24] for details, particularly pp. 247–248). Similarly,

I1 = t
∫ ∞

0
e−t2/4ss− 3+n/2

2 ds ≤ cn/2
t

(t2)
n+2
4

≤ cn/2t
−n/2.

This gives (4.4). Now, when t ∈ (0, 1], we can write,

‖∇e−t
√−L f ‖L∞ = ‖∇etLe−t

√−Le−t L f ‖L∞ � (t−n/4−1/2)‖e−t
√−Le−t L f ‖L2 from (4.3)

� (t−n/4−1/2)‖e−t L f ‖L2 � (t−n/4−1/2)‖ f ‖L2 .

Lastly, when t ∈ [1,∞),

‖∇e−t
√−L f ‖L∞ = ‖∇e−√−Le−(t−1)

√−L f ‖L∞ � ‖e−(t−1)
√−L f ‖L2 � ‖ f ‖L2 .

This proves the lemma. ��

Appendix 2: Finite propagation speed of cos t
√−L

In this section we investigate some sufficient criteria for cos t
√−L to have finite propa-

gation speed under special boundary conditions. Namely, we will establish finite speed of
propagation for those L which can be written as

− L = D∗D + H (5.1)

where D is a first order elliptic differential operator with either the generalized Dirichlet or
Neumann boundary condition (see (5.3) and (5.4) below), and H ∈ L2(M) is nonnegative.
To do this, we invoke the so-called Davies–Gaffney estimates:

Definition 5.1 An operator L satisfies the Davies–Gaffney estimates on a manifold M if

(etLu, v) ≤ e− r2
4t ‖u‖L2‖v‖L2 (5.2)

for all t > 0, for all pairs of open subsets U, V of M , supp u ⊂ U , supp v ⊂ V , sections
u ∈ L2(U ), v ∈ L2(V ) and r = dist (U, V ), the metric distance between U and V .

We also recall the following (see [18], Theorem 2).

Lemma 5.2 For a self-adjoint negative semi-definite operator L on L2(M), satisfaction of
theDavies–Gaffney estimates is equivalent to finite propagation speed property of cos t

√−L.
Furthermore, it is enough to check the Davies–Gaffney estimates only for open sets U, V
which are balls around some points.
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It might be pointed out that this method is eminently suited to establishing finite propa-
gation speed type results particularly when the manifold has boundary or is less “nice” in
some other way, as Lemma 5.2 above holds in the great generality of metric measure spaces
(X, d, μ), where μ is a Borel measure with respect to the topology defined by d .

Now, let−L = D∗D+H , where D : H1(M, E) → H2(M, F)be afirst-order differential
operator between sections of vector bundles. Assume that the symbol σD(x, ξ) : Ex → Fx
is injective for x ∈ M, ξ ∈ T ∗

x M\{0}. Following [20], consider the following generalization
of the Dirichlet condition on D(D):

u ∈ D(D) ⇒ β(x)u(x) = 0, ∀x ∈ ∂M, (5.3)

where β(x) is an orthogonal projection on Ex for all x ∈ ∂M . We also consider the following
generalization of the Neumann boundary condition:

u ∈ D(D) ⇒ γ (x)σD(x, ν)u(x) = 0, ∀x ∈ ∂M, (5.4)

where ν(x) is the outward unit normal to ∂M and γ (x) is an orthogonal projection on Ex for
all x ∈ ∂M .

We first argue that both these boundary conditions have the consequence that

〈σD(x, ν)v,w〉 = 0, ∀x ∈ ∂M, (5.5)

when v ∈ D(D), w ∈ D(D∗) and v,w are smooth. This is because
∫
M

(〈Dv,w〉 − 〈v, D∗w〉)dV = 1

i

∫
∂M

〈σD(x, ν)v,w〉dS.

Now, w ∈ D(D∗) implies that the left hand side in the above equation vanishes. So, for
the Dirichlet boundary condition, for smooth v,w we have

w ∈ D(D∗) �⇒ (I − β(x))σD(x, ν)∗w(x) = 0, x ∈ ∂M, (5.6)

where ν is the outward unit normal to ∂M . This gives, for smooth v and w,

v ∈ D(D), w ∈ D(D∗) �⇒ 〈σD(x, ν)v,w〉 = 0 on ∂M.

For the Neumann boundary condition, (5.6) will be replaced by

w ∈ D(D∗) �⇒ (I − γ (x))w(x) = 0, x ∈ ∂M (5.7)

with the same conclusion (5.5). With that in place, we can now prove Proposition 1.8.

Proof We first observe that by the Cauchy–Schwarz inequality

(etLu, v) ≤ ‖χV e
tLu‖L2‖v‖L2 , (5.8)

where χV represents the characteristic function of V . So, to get finite speed of propagation,
we want to establish (5.2), which will in turn be implied by

‖χV e
tLu‖L2 ≤ e− r2

4t ‖u‖L2 , (5.9)

when supp u ⊂ U . Now, let w = χV etLu and call ρ = r
t . Then we have∫

V
|w|2dx ≤ e−ρr

∫
V
〈w,w〉eϕ(x)dx ≤ e−ρr

∫
M

〈etLu, etLu〉eϕ(x)dx . (5.10)
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Let us define

E(t) =
∫
M

〈etLu, etLu〉eϕ(x)dx . (5.11)

Differentiating (5.11) with respect to t , we get

1

2
E ′(t) = Re

∫
M

〈∂t et Lu, etLu〉eϕ(x)dx = Re
∫
M

〈LetLu, etLu〉eϕ(x)dx

= −Re
∫
M

〈(D∗D + H)etLu, etLu〉eϕ(x)dx

= −Re
∫
M

〈DetLu, D(etLueϕ(x))〉dx − Re
∫
M
H〈etLu, etLu〉eϕ(x)dx

+Re
1

i

∫
∂M

〈σ(x, ν)etLueϕ(x), DetLu〉dS

= −Re
∫
M

(〈DetLu, DetLu〉eϕ(x) + 〈DetLu, [D, eϕ(x)]etLu〉)dx

−Re
∫
M
H〈etLu, etLu〉eϕ(x)dx + Re

1

i

∫
∂M

〈σ(x, ν)etLueϕ(x), DetLu〉dS

≤ −Re
∫
M

(〈DetLu, DetLu〉eϕ(x) + 〈DetLu, [D, eϕ(x)]etLu〉)dx,

using the facts that H ≥ 0 and that under the Dirichlet or the Neumann boundary condition,
the last term

∫
∂M 〈σD(x, ν)etLueϕ(x), Du〉dS disappears. Now, if we can say that

1

2
E ′(t) ≤ ρ2

4

∫
M

〈etLu, etLu〉, eϕ(x)dx,

then we will be in a position to use Gronwall’s inequality.
Now what is the condition that allows this? Let us define P = [D, eϕ]. Now we have

4(DetLu, PetLu) = 4(eϕ/2DetLu, e−ϕ/2PetLu) ≤ 4‖eϕ/2DetLu‖2L2 + ‖e−ϕ/2PetLu‖2L2 .

So it seems that the correct condition is to demand that

‖e−ϕ/2PetLu‖2L2 ≤ ρ2‖eϕ/2etLu‖2L2

or,

‖e−ϕ/2Pv‖L2 ≤ ρ‖eϕ/2v‖L2 . (5.12)

Heuristically, we can say that a condition like this is expected, as the propagation phe-
nomenon of cos t

√−L will be dictated by the interaction of L , and hence of D with the
distance function on M .

So, now we can say

E ′(t) ≤ ρ2/2E(t). (5.13)

This gives, by Gronwall’s inequality, E(t) ≤ eρ2t/2E(0). Plugging everything back, we
have from (5.10),

∫
V

|w|2dx ≤ eρ2t/2−ρr‖u‖2L2 .
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Using ρ = r/t , we have ∫
V

|w|2dx ≤ e− r2
2t ‖u‖2L2 . (5.14)

This proves what we want. ��
Remark 5.3 Though (1.21) does not seem to be much of an improvement over (5.2), in many
practical situations (1.21) is easier to verify than (5.2). For example, if L is the Laplace
Beltrami operator with Dirichlet or Neumann boundary condition, then (1.21) holds trivially,
because |∇ϕ(x)| ≤ r

t (as the gradient of the distance function to any set is known as a
1-Lipschitz function), which gives us back the special case of finite propagation speed of
cos t

√−�. Verifying (5.2) seems to be harder in this case.

Now, we extend the range of H in Proposition 1.8 to H ∈ L2(M). Towards that end,
pick Hn continuous such that Hn −→ H and consider Ln given by −Ln = D∗D + Hn . Let
−L = D∗D + H .

We can see that Ln(u) −→ L(u) for u ∈ D(D∗D) as n −→ ∞. That means, Ln −→ L
in the strong resolvent sense as n −→ ∞ (see [15], Theorem VIII.25(a)). Then, cos t x and
e−t x being bounded continuous functions on R for all t > 0, by Theorem VIII.20(b) of [15],
we have ∀u ∈ D(D),

cos t
√−Lnu −→ cos t

√−Lu,

etLn u −→ etLu.

The finite propagation speed of cos t
√−L now follows by the Davies–Gaffney estimates:

if for a fixed pairU, V ⊂ M of open sets, L2 sections u, v such that supp u ⊂ U , supp v ⊂ V ,
r = dist (U, V ), we have

(etLn u, v) ≤ e− r2
4t ‖u‖L2‖v‖L2 , (5.15)

then in the limit, we must have

(etLu, v) ≤ e− r2
4t ‖u‖L2‖v‖L2 . (5.16)
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