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Abstract We present a construction of an explicit Hodge decomposition for ∂̄-operator on
Riemann surfaces.
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1 Introduction

Classical Hodge decomposition on the space Z (0,1)(V ) ⊂ E(0,1)(V ) of smooth ∂̄-closed
(0, 1)-forms on a smooth algebraic curve V ⊂ CP

n , (n ≥ 2) with metric induced by Fubini-
Study metric of CPn , has the following form

Hodge Theorem [22,24,38,39] For any form φ ∈ Z (0,1) (V ) there exists a unique Hodge
decomposition:

φ = ∂̄R1[φ] + H1[φ], (1.1)

where H1 is the orthogonal projection operator from Z (0,1) (V ) onto the subspaceH(0,1) (V )

of antiholomorphic (0, 1)-forms on V , R1 = ∂̄∗G1, ∂̄∗ : E(0,1)(V ) → E(0,0)(V ), ∂̄∗ = −∗∂̄∗
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is theHodge dual operator for ∂̄ ,∗ is theHodge operator, andG1 is theHodge-Green operator
for Laplacian � = ∂̄ ∂̄∗ + ∂̄∗∂̄ on V .

Hodge Theorem was proved by Hodge in [22] using the Fredholm’s theory of integral
equations. Weyl used his method of orthogonal projection from [38] to correct and simplify
the Hodge’s proof in [39], and was followed by Kodaira in [24], who also used Weyl’s
method of orthogonal projection. However, the Hodge Theorem, as it is formulated above
and in [3,6,7], is not explicit enough for some applications. This disadvantage was pointed
out by Griffiths and Harris in [12, §0.6], where the authors remarked that “the Hilbert space
method has the disadvantage of not giving us the Green’s operator” in the form of an integral
operator with “a beautiful kernel on M × M with certain singularities along the diagonal”.

A specific problem that we have in mind is an explicit solution of the inverse conduc-
tivity problem on a bordered Riemann surface, in which the conductivity function has to
be reconstructed from the Dirichlet-to-Neumann map on its boundary (see [4,16]), in more
general setting going back to. We notice that article [16] of Henkin and Novikov on this
subject was motivated by article [17] by the authors of the present article. In [20] we made
the first step toward explicit solution of the inverse conductivity problem by constructing an
explicit Hodge-type decomposition for ∂̄-closed residual currents of homogeneity zero on
reduced complete intersections in CPn . In the present article using Theorem 1 from [20] we
construct an explicit formula for operator R1 in (1.1) assuming the knowledge of operator
H1. A problem that is definitely worth considering is the construction of an explicit form of
H1. Our choice of Riemann surfaces is motivated by the applicationmentioned above, though
we consider the generalization of Theorem 1 from [20] to locally complete intersections as
another interesting and important task.

Themain result of the present article is the construction in Theorem 2 of an explicit Hodge
decomposition for ∂̄-closed forms on an arbitrary Riemann surface assuming the knowledge
of the Hodge projection. This construction is based on a generalized version of Theorem 1
from [20], which is presented in Sect. 2 and covers the case of arbitrary homogeneity. The
decompositions in Theorem 1 and in the propositions below are explicit in the sense that
they depend only on the equations from (2.1) describing V as a subvariety of CPn , and are
defined by explicit integral operators with singular kernels of the Coleff–Herrera [5] and of
the Cauchy–Weil–Leray types [27,37].

Construction of integral formulas on CP
n with application to complex Radon transform

was initiated in [17] and [2]. Application of such formulas to solution of ∂̄-equation on
singular analytic spaces was initiated in [18] and motivated further work in this direction
(see for example [1,9,34]). The development of specific residual formulas in [20] and in
Theorem 1 above has a long history going back to Poincaré [31], Leray [27], Grothendieck
[13], Herrera-Lieberman [21], Dolbeault [8], and Coleff and Herrera [5]. As it is pointed out
in [5], the authors’ work was conceived on the one hand as a generalization of the theory of
residues of meromorphic forms and of the Grothendieck’s theory of residues presented by
Hartshorne [14], and on the other hand of the work of Ramis and Ruget [33] on dualizing
complex in analytic geometry.

The modern development of the formulas of Cauchy–Weil–Leray type was initiated in
[26,28,29,32].

As a preliminary step in the construction of the explicitHodgedecomposition ofTheorem2
we use Theorem 1 and construct in Proposition 3.2 an intermediate explicit Hodge-type
decomposition on an arbitrary compact Riemann surfaceX , not necessarily embeddable into
CP

2. According to a classical result (see [25]), going back to Gauss and Riemann, such a
surface admits an embedding as an algebraic submanifold in CP

3. This embedding can be
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Explicit Hodge decomposition on Riemann surfaces 713

composed with a generic projection on CP
2 to produce an immersion into CP

2 with only
nodes as singularities (see [12,15]). Thenweuse theHodge-type decomposition ofTheorem1
on the image C of this immersion, which we lift and appropriatelymodify onX . An important
role in this construction is played by Proposition 3.1, in which we establish an isomorphism
between the residual cohomologies on C and the cohomologies of the structural sheaf of C.
This proposition might be considered as a step in constructing a Hodge-type decomposition
of cohomologies on curves with singularities, following direction of [6,7,13,15]. We notice
that the proof of Theorem 2 generalizes verbatim to the case of a nonsingular projective
complete intersection.

In Sect. 4 using Theorems 1 and 2 we obtain explicit formulas for solutions of ∂̄-equation
and present two explicit versions of theHodge-Kodaira Vanishing Theorem for openRiemann
surfaces.

The corresponding author would like to thank the referee for the useful discussion on the
subjects of the article, for suggested simplification (3.14) of the original explicit formula in
Theorem 2, and for pointing out several typos.

2 Generalized version of Theorem 1 from [20]

Below we present a generalized version of Theorem 1 from [20], which gives a Hodge-type
decomposition of residual currents of arbitrary homogeneity on reduced complete intersec-
tions in CP

n . Before formulating this version we introduce definitions from [19] and [20].
Let V be a complete intersection subvariety

V = {
z ∈ CP

n : P1(z) = · · · = Pm(z) = 0
}

(2.1)

of dimension n − m in CP
n defined by a collection {Pk}mk=1 of homogeneous polynomials.

Let
{
Uα = {

z ∈ CP
n : zα �= 0

}}n
α=0

be the standard covering of CPn , and let

F(α)(z) =

⎡

⎢⎢
⎣

F (α)
1 (z)

...

F (α)
m (z)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

P1(z)/z
deg P1
α

...

Pm(z)/zdeg Pm
α

⎤

⎥⎥
⎦

be collections of nonhomogeneous polynomials satisfying

F(α)(z) = Aαβ(z) · F(β)(z) =

⎡

⎢⎢
⎣

(
zβ/zα

)deg P1 · · · 0
...

. . .
...

0 · · · (
zβ/zα

)deg Pm

⎤

⎥⎥
⎦ · F(β)(z)

on Uαβ = Uα ∩Uβ .
Following [13] and [15] we consider a line bundle L on V with transition functions

lαβ(z) = det Aαβ =
(
zβ
zα

)∑m
k=1 deg Pk

on Uαβ and the dualizing bundle on the complete intersection subvariety V

ω◦
V = ωCPn ⊗ L, (2.2)
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714 G. M. Henkin, P. L. Polyakov

where ωCPn is the canonical bundle on CP
n .

For q = 1, . . . , n − m we denote by E(n,n−m−q) (V,L(−�)) = E(0,n−m−q)
(
V, ω◦

V (−�)
)

the space ofC∞ differential forms of bidegree (n, n−m−q)with coefficients inL⊗O(−�),
i.e. the space of collections of forms

{
γα ∈ E(n,n−m−q) (Uα)

}n

α=0

satisfying

γα = lαβ ·
(
zβ
zα

)−�

γβ +
m∑

k=1

F (α)
k · γ

αβ
k on Uα ∩Uβ . (2.3)

Then, following [5,19,30] we define residual currents and ∂̄-closed residual currents on V .

By a residual current φ ∈ C (0,q)
R (V,O(�)) of homogeneity �we call a collection

{
	

(0,q)
α

}n

α=0
of C∞ differential forms satisfying equalities

	α =
(
zβ
zα

)�

	β +
m∑

k=1

F (α)
k · 


(αβ)
k on Uα ∩Uβ, (2.4)

acting on γ ∈ E(n,n−m−q) (V,L(−�)) by the formula

〈φ, γ 〉 =
∑

α

∫

Uα

ϑαγα ∧ 	α

m∧

k=1

∂̄
1

F (α)
k

def= lim
t→0

∑

α

∫

T ε(t)
α

ϑα

γα ∧ 	α
∏m

k=1 F
(α)
k

, (2.5)

where {ϑα}nα=0 is a partition of unity subordinate to the covering {Uα}nα=0, and the limit in
the right-hand side of (2.5) is taken along an admissible path in the sense of Coleff–Herrera
[5], i.e. an analytic map ε : [0, 1] → R

m satisfying conditions
⎧
⎪⎨

⎪⎩

limt→0 εm(t) = 0,

lim
t→0

ε j (t)

εlj+1(t)
= 0, for any l ∈ N and j = 1, . . . ,m − 1, (2.6)

and
T ε(t)

α =
{
z ∈ Uα :

∣∣∣F (α)
k (z)

∣∣∣ = εk(t) for k = 1, . . . ,m
}

. (2.7)

Therefore, a residual current φ can be considered as an equivalence class of collections{
	

(0,q)
α

}
, where two collections represent the same residual current if their actions in (2.5)

coincide.
From definition (2.5) we obtain the following definition of ∂̄-operator on residual currents.

Namely, we define for a differential form ψ ∈ E(n,n−m−q−1) (V,L(−�))

〈∂̄φ, ψ〉 = lim
t→0

∑

α

∫

T ε(t)
α

ϑα

ψα ∧ ∂̄	α
∏m

k=1 F
(α)
k

. (2.8)

A residual current φ of homogeneity � we call ∂̄-closed
(
denoted φ ∈ Z (0,q)

R (V,O(�))
)
if

there exist a representative
{
	

(0,q)
α

}
and smooth forms


(α)
k , such that the following equality

holds

∂̄	α =
m∑

k=1

F (α)
k · 


(α)
k on Uα. (2.9)
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Explicit Hodge decomposition on Riemann surfaces 715

We notice that from the definitions above it follows that if a residual current φ is defined
by a ∂̄-closed form, then ∂̄φ = 0 in the sense of (2.8). The converse, however, is not true
in general (for a counterexample, see for instance Remark 12.1 in Andersson–Larkang,
arXiv:1703.01861).

Below we present an extended version of Theorem 1 from [20] that is used in this article.

Theorem 1 Let V ⊂ CP
n be a reduced complete intersection subvariety as in (2.1). Then

(i) for an arbitrary φ ∈ Z (0,q)
R (V,O(�)) the following representation holds

φ = ∂̄ Iq [φ] + Lq [φ], (2.10)

where Lq [φ] = 0 if 1 ≤ q < n − m, Ln−m[φ] ∈ Z (0,n−m)
R (V,O(�)) is defined by

formula

Ln−m [φ] =
∑

0≤r≤d−n−1−�

C(n,m, d, r) lim
t→0

∫

{|ζ |=1,{|Pk (ζ )|=εk (t)}mk=1}
〈z̄ · ζ 〉r · φ(ζ )

∏m
k=1 Pk(ζ )

∧
det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ ) (2.11)

with d = ∑m
k=1 deg Pk, and the current Iq [φ] ∈ C (0,q−1) (V,O(�)) is defined by formula

Iq [φ] = C(n, q,m) lim
t→0

∫

{|ζ |=1,{|Pk (ζ )|=εk (t)}mk=1}
φ(ζ )

∏m
k=1 Pk(ζ )

∧
det

⎡

⎢⎢⎢
⎣

z̄

B∗(ζ, z)

ζ̄

B(ζ, z)

m
︷ ︸︸ ︷
Q(ζ, z)

q−1
︷ ︸︸ ︷

dz̄

B∗(ζ, z)

n−m−q
︷ ︸︸ ︷

d ζ̄

B(ζ, z)

⎤

⎥⎥⎥
⎦

∧ ω(ζ ),

(2.12)

where the functions
{
Qi

k(ζ, z)
}
for k = 1, . . . ,m, i = 0, . . . , n satisfy

{
Pk(ζ ) − Pk(z) = ∑n

i=0 Q
i
k(ζ, z) · (ζi − zi ) ,

Qi
k(λζ, λz) = λdeg Pk−1 · Qi

k(ζ, z) for λ ∈ C,
(2.13)

and

B∗(ζ, z) =
n∑

j=0

z̄ j · (ζ j − z j
)
, B(ζ, z) =

n∑

j=0

ζ̄ j · (ζ j − z j
) ;

(ii) a ∂̄-closed residual current φ ∈ Z (0,n−m)
R (V,O(�)) is ∂̄-exact, i.e. there exists a current

ψ ∈ C (0,n−m−1) (V,O(�)) such that φ = ∂̄ψ , iff

Ln−m[φ] = 0. (2.14)

Remark Current Iq [φ] in Theorem 1 might not be a residual current in general. Estimates
proved in [20] show that it is a residual current on the set of regular points of V , and, therefore,
in general, on manifolds. However, Iq [φ] ∈ C (0,q−1) (V,O(�)), i.e. it is a current on reduced
complete intersections, which can be defined with the use of equality

Iq [φ](∂̄g) = ∂̄ Iq [φ](g) = φ[g] − L[g],
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716 G. M. Henkin, P. L. Polyakov

(that is equivalent to equality (5.4) in [20]), where the right hand side is represented by
residual currents.

We present here a sketch of proof of the theorem. In this sketch we are concerned with
extending the validity of all lemmas and propositions comprising the proof of Theorem 1 in
[20] to the case of nonzero homogeneity.

In the lemma below we prove that the operators L and I defined in [20] preserve homo-
geneity, validating equalities (2.6), (2.11) and Proposition 2.3 from [20] in the case of nonzero
homogeneity.

Lemma 2.1 If φ ∈ C (0,q)
R (V,O(�)) is a residual current defined by a differential form 	 in

a neighborhood of V satisfying
	(λζ) = λ� · 	(ζ), (2.15)

then for the forms Ln−m [	] and Iq [	] defined by operators Ln−m and Iq in formulas (3.24)
and (4.22) of [20] respectively, the following equalities hold

Ln−m [	] (λz) = λ� · Ln−m [	] (z),

Iq [	] (λz) = λ� · Iq [	] (z). (2.16)

Proof To prove the preservation of homogeneity for operator Ln−m we use the following
equality for |λ| = 1, after changing variables to ζ = λw

∫

{|ζ |=1,{|Pk (ζ )|=εk (t)}mk=1}
〈λ̄z̄ · ζ 〉r · 	(ζ)

∏m
k=1 Pk(ζ )

∧
det

⎡

⎢
⎣λ̄z̄

m
︷ ︸︸ ︷
Q(ζ, λz)

n−m
︷︸︸︷
λ̄dz̄

⎤

⎥
⎦ ∧ ω(ζ )

=
∫

{|ζ |=1,{|Pk (w)|=εk (t)}mk=1}
〈λ̄z̄ · λw〉r · 	(λw)

∏m
k=1 Pk(λw)

∧
det

⎡

⎢
⎣λ̄z̄

m
︷ ︸︸ ︷
Q(λw, λz)

n−m
︷︸︸︷
λ̄dz̄

⎤

⎥
⎦ ∧ ω(λw)

= λ�−d λ̄n−m+1λd−mλn+1
∫

{|ζ |=1,{|Pk (w)|=εk (t)}mk=1}
〈z̄ · w〉r · 	(w)

∏m
k=1 Pk(w)

∧
det

⎡

⎣λ̄z̄

m
︷ ︸︸ ︷
Q(w, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(w)

= λ�

∫

{|ζ |=1,{|Pk (w)|=εk (t)}mk=1}
〈z̄ · w〉r · 	(w)

∏m
k=1 Pk(w)

∧
det

⎡

⎣λ̄z̄

m
︷ ︸︸ ︷
Q(w, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(w),

where d = ∑m
k=1 deg Pk .

Similarly, we obtain equality
∫

{|ζ |=1,{|Pk (w)|=εk (t)}mk=1}
	(λw)

∏m
k=1 Pk(λw)

∧
det

⎡

⎢⎢⎢
⎣

λ̄z̄

B∗(λw, λz)

λ̄w̄

B(λw, λz)

m
︷ ︸︸ ︷
Q(λw, λz)

q−1
︷ ︸︸ ︷

λ̄dz̄

B∗(λw, λz)

n−m−q
︷ ︸︸ ︷

λ̄dw̄

B(λw, λz)

⎤

⎥⎥⎥
⎦

∧ ω(λw)
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Explicit Hodge decomposition on Riemann surfaces 717

= λ�−dλd−m λ̄n−m+1λn+1
∫

{|ζ |=1,{|Pk (w)|=εk (t)}mk=1}
	(w)

∏m
k=1 Pk(w)

∧
det

⎡

⎢⎢⎢
⎣

z̄

B∗(w, z)

w̄

B(w, z)

m
︷ ︸︸ ︷
Q(w, z)

q−1
︷ ︸︸ ︷

dz̄

B∗(w, z)

n−m−q
︷ ︸︸ ︷

dw̄

B(w, z)

⎤

⎥⎥⎥
⎦

∧ ω(w)

= λ�

∫

{|ζ |=1,{|Pk (w)|=εk (t)}mk=1}
	(w)

∏m
k=1 Pk(w)

∧
det

⎡

⎢⎢⎢
⎣

z̄

B∗(w, z)

w̄

B(w, z)

m
︷ ︸︸ ︷
Q(w, z)

q−1
︷ ︸︸ ︷

dz̄

B∗(w, z)

n−m−q
︷ ︸︸ ︷

dw̄

B(w, z)

⎤

⎥⎥⎥
⎦

∧ ω(w).

��
To include the case of nonzero homogeneity Lemmas 3.2 and 3.3 in [20] have to be

reformulated. In particular, Lemma 3.2 has to be replaced by the following Lemma.

Lemma 2.2 Let V ⊂ CP
n be a reduced complete intersection subvariety as in (2.1), let

U ⊃ V be an open neighborhood of V in CP
n, and let 	 ∈ E(0,n−m)

c (U ∩ Uα) be a
differential form of homogeneity � on U ∩Uα for some α ∈ (0, . . . , n).

Then formula

lim
t→0

∫

{|ζ |=τ,{|Pk (ζ )|=εk (t)}mk=1}
〈z̄ · ζ 〉r · 	(ζ)

∏m
k=1 Pk(ζ )

∧det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦∧ω(ζ ), (2.17)

where {εk(t)}mk=1 is an admissible path, defines a differential form of homogeneity � onU, real

analytic with respect to z. If 	(ζ) = ∑m
k=1 F

(α)
k (ζ )
k(ζ ) with 
k ∈ E(0,n−m)

c (U ∩Uα),
then the limit in (2.17) is equal to zero.

Proof Preservation of homogeneity follows from the first equality in (2.16) in Lemma 2.1.
As in Lemma 3.2 in [20] without loss of generality we can consider only the case α = 0, i.e.
	 ∈ E(0,n−m)

c (U ∩ {ζ0 �= 0}). Then formula (3.15) in [20] for a form 	 satisfying equality
(2.15) has to be replaced by the following formula

∫

{|ζ |=τ,{|Pk (ζ )|=εk (t)}mk=1}

⎛

⎝z̄0 +
n∑

j=1

z̄ j · w j

⎞

⎠

r

· 	(ζ)
∏m

k=1 Pk(ζ )

∧ det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ (ζ n+r
0 dζ0

) n∧

j=1

dw j

=
∫

{|ζ |=τ,{|Pk (ζ )|=εk (t)}mk=1}

⎛

⎝z̄0 +
n∑

j=1

z̄ j · w j

⎞

⎠

r

· 	(ζ)
∏m

k=1 Pk(ζ )

∧ det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ (ζ n+r
0 dζ0

) n∧

j=1

dw j

=
∫

{|ζ |=τ,{|Fk (w)|·χk (w)=εk (t)}mk=1}

⎛

⎝z̄0 +
n∑

j=1

z̄ j · w j

⎞

⎠

r
(
ζ
n+r+�−∑m

k=1 deg Pk
0 dζ0

)
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718 G. M. Henkin, P. L. Polyakov

× 	(w)
∏m

k=1 Fk(w)
∧ det

⎡

⎢
⎣z̄

m
︷ ︸︸ ︷
Q(eiφ0 , w, z)

n−m
︷︸︸︷
dz̄

⎤

⎥
⎦

n∧

j=1

dw j

= i
∫ 2π

0
ei(n+r+�−∑m

k=1 deg Pk+1)φ0dφ0

∫

{w∈U0,{|Fk (w)|·χk (w)=εk (t)}mk=1}

⎛

⎝z̄0 +
n∑

j=1

z̄ j · w j

⎞

⎠

r

×ρ0(w)n+r+�−∑m
k=1 deg Pk+1 · 	(w)

∏m
k=1 Fk(w)

∧ det

⎡

⎢
⎣z̄

m
︷ ︸︸ ︷
Q(eiφ0 , w, z)

n−m
︷︸︸︷
dz̄

⎤

⎥
⎦

n∧

j=1

dw j , (2.18)

whereweusednonhomogeneous coordinates {wi = ζi/ζ0}ni=1 in the subsetS
2n+1(τ )\ {ζ0 = 0}

of the sphere S2n+1(τ ) of radius τ in C
n+1, notation ζ0 = ρ0(w) · eiφ0 with

ρ0(w) = τ
√
1 +∑n

i=1 |wi |2

on S
2n+1(τ ), nonhomogeneous polynomials

Fk(w) = Pk(ζ )/ζ
deg Pk
0

in S
2n+1(τ )\ {ζ0 = 0}, and equality (2.15).
The last statement of the Lemma follows as in Lemma 3.2 of [20] from application of

Theorem 1.7.6(2) in [5] to the interior integral in the right-hand side of (2.18). ��
Lemma 3.3 has to be replaced by the following Lemma.

Lemma 2.3 Let φ ∈ Z (0,q)
R (V,O(�)) be a ∂̄-closed residual current defined by a collection

of forms
{
	

(0,n−m)
α

}n

α=0
of homogeneity � on a neighborhood U of the reduced subvariety

V as in (2.1) satisfying (2.4) and (2.9), and let 	(ζ) = ∑n
α=0 ϑα(ζ )	α(ζ ) be a differential

form of homogeneity � on U.

Then for an arbitrary γ ∈ E(n,0) (V,L(−�)) the equality

lim
τ→0

∫

T δ(τ )
β

γ (z)
∏m

k=1 F
(β)
k (z)

∧
(

lim
t→0

∫

{|ζ |=1,{|Pk (ζ )|=εk (t)}mk=1}
〈z̄ · ζ 〉r

× 	(ζ)
∏m

k=1 Pk(ζ )
∧ det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ )

⎞

⎠ = 0 (2.19)

holds unless

r ≤
m∑

k=1

deg Pk − � − n − 1. (2.20)

Proof We notice that for all values of a > 0 and ε = (ε1, . . . , εk) the sets

S(a) =
{
ζ ∈ S

2n+1(a) :
{
|Pk(ζ )| = εk · adeg Pk

}m

k=1

}

are real analytic subvarieties of S2n+1(a) of real dimension 2n + 1 − m satisfying

c · a2n+1−m · Volume (S(1)) < Volume2n+1−m (S(a)) < C · a2n+1−m · Volume (S(1)) .

(2.21)
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We denote

	α(ζ, z) = 〈z̄ · ζ 〉r · 	α(ζ )
∏m

k=1 Pk(ζ )
det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ ),

and apply the Stokes’ formula to the differential form

β(ζ, z) =
n∑

α=0

ϑα(ζ )	α(ζ, z) =
n∑

α=0

〈z̄ · ζ 〉r · ϑα(ζ )	α(ζ )
∏m

k=1 Pk(ζ )
det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ )

(2.22)
on the variety

{
ζ ∈ C

n+1 :
{
|Pk(ζ )| = εk · |ζ |deg Pk

}m

k=1
, a < |ζ | < 1

}

with the boundary
{
ζ : |ζ | = a,

{
|Pk(ζ )| = εk · adeg Pk

}m

k=1

}⋃{
ζ : |ζ | = 1, {|Pk(ζ )| = εk}mk=1

}
.

Then using equality (2.9) we obtain the equality
∫

{|ζ |=1,{|Pk (ζ )|=εk (t)}mk=1}
β(ζ, z) −

∫
{
|ζ |=a,

{|Pk (ζ )|=εk (t)·adeg Pk
}m
k=1

} β(ζ, z)

=
n∑

α=0

m∑

j=1

∫ 1

a
dτ

∫
{
|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

} F
(α)
j (ζ ) · β

(α)
j (ζ, z)

+
n∑

α=0

∫ 1

a
dτ

∫
{
|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

} d|ζ |
(
∂̄ϑα(ζ ) ∧ 	α(ζ, z)

)
(2.23)

for arbitrary t and 0 < a < 1.
Using estimate (2.21) and the homogeneity property

	β(t · ζ ) = t̄−(n−m) · t� · 	β(ζ ) (2.24)

of the coefficients of 	(0,n−m) from Proposition 1.1 in [17] we obtain that if

r + n + 1 + � −
m∑

k=1

deg Pk > 0, (2.25)

then
∣∣∣∣∣

∫
{
|ζ |=a,

{|Pk (ζ )|=εk (t)·adeg Pk
}m
k=1

} β(ζ, z)

∣∣∣∣∣
< C ′(ε) · ar+2n+1−m−(n−m)+�−∑m

k=1 deg Pk −→ 0

as t is fixed and a → 0.
For the first sum of integrals in the right-hand side of (2.23) we have

∣∣∣∣

∫ 1

a
dτ

∫
{
|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

} F
(α)
j (ζ ) · β

(α)
j (ζ, z)

∣∣∣∣

< C
∫ 1

a
dτ · τ r+2n+1−m−(n−m)+�−∑m

k=1 deg Pk
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×
∫
{
|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

} F
(α)
j (ζ ) ·

(
d|ζ | β

(α)
j (ζ, z)

)

< C ′(ε)

(
1 − ar+n+2+�−∑m

k=1 deg Pk
)

r + n + 2 + � −∑m
k=1 deg Pk

−→ 0 (2.26)

as t → 0, since a < 1, condition (2.25) is satisfied, and C ′(ε) → 0 as t → 0 by Lemma 2.2.
For the second sum of integrals in the right-hand side of (2.23) we use equality

lim
t→0

∑

{β: Uβ∩Uα �=∅}

∫ 1

a
dτ

∫
{
ζα �=0,|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

} d|ζ |
(
∂̄ϑβ(ζ ) ∧ 	β(ζ, z)

)

= lim
t→0

∫ 1

a
dτ

∑

{β: Uβ∩Uα �=∅}

∫
{
ζα �=0,|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

}〈z̄ · ζ 〉r

×d|ζ |
⎛

⎝∂̄ϑβ(ζ ) ∧ 	β(ζ )
[∏m

k=1 Pk(ζ )
] ∣∣

β

∧
det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ )

⎞

⎠

= lim
t→0

∫ 1

a
dτ

∑

{β: Uβ∩Uα �=∅}

∫
{
ζα �=0,|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

}〈z̄ · ζ 〉r

×d|ζ |
⎛

⎝∂̄ϑβ(ζ )
∣∣
Uα

∧ 	α(ζ )
[∏m

k=1 Pk(ζ )
] ∣∣

α

∧ det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ )

⎞

⎠

= lim
t→0

∫ 1

a
dτ

∫
{
ζα �=0,|ζ |=τ,

{|Pk (ζ )|=εk (t)·τ deg Pk
}m
k=1

}〈z̄ · ζ 〉r

×d|ζ |
⎛

⎝

⎡

⎣
∑

{β: Uβ∩Uα �=∅}
∂̄ϑβ(ζ )

∣∣
Uα

⎤

⎦ ∧ 	α(ζ )
[∏m

k=1 Pk(ζ )
] ∣∣

α

∧
det

⎡

⎣z̄

m
︷ ︸︸ ︷
Q(ζ, z)

n−m
︷︸︸︷
dz̄

⎤

⎦ ∧ ω(ζ )

⎞

⎠ = 0.

which follows from equality (2.4), Lemma 2.2, and the transformation formula for the
Grothendieck’s residue from Proposition 4.2 in [17] (for isolated singularities see [12,36]).

��
This completes the sketch of proof of Theorem 1.
Below we formulate a corollary of Theorem 1, which will be used in what follows. This

corollary gives an explicit form of the Hodge-Kodaira Vanishing Theorem for projective
complete intersections (see III.7.15 in [15] and §2.1 of [12].

Corollary 2.4 If homogeneity � satisfies inequality

� > d − n − 1, (2.27)

then the operator in the right-hand side of equality 2.11 is zero,

dim Hn−m
R (V,O(�)) = 0, (2.28)
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and for any φ ∈ Z (0,n−m)
R (V,O(�))

φ = ∂̄ In−m[φ]. (2.29)

3 Explicit Hodge decomposition on nonsingular algebraic curves.

In order to construct an explicit Hodge decomposition on an arbitrary nonsingular algebraic
curve X we use the existence of an immersion (see [25], 1.4 in [12], IV.3 in [15])

X �→ CP
2, (3.1)

such that C = � (X ) is a plane curve with at most nodes as singularities. Our construction of
the sought decomposition on X will be based on a similar decomposition on C, which exists
according to Theorem 1.

We construct a linear map �∗ : E(0,1)(X ) → Z (0,1)
R (C). Here and below we use notations

�∗ and �∗ for induced direct and respectively inverse maps on functions and differential
forms. Since � is biholomorphic everywhere outside of nodal points, we have to describe �∗
only in the neighborhoods of those points. Let p ∈ C be such nodal point with p1, p2 ∈ X
such that �(p1) = �(p2) = p. Let z1, z2 be local coordinates at p ∈ U ⊂ CP

2, such that
z1(p) = z2(p) = 0, and such that

C ∩U = C1 ∪ C2,
where C1 = {q ∈ U : z1(q) = 0}, and C2 = {q ∈ U : z2(q) = 0}.

Let φ ∈ E(0,1)(X ) be a smooth ∂̄-closed form on X with local representations

φ

∣∣∣
p1

= φ1(z)dz̄1, φ

∣∣∣
p2

= φ2(z)dz̄2

on X . Let φ̃1, φ̃2 be extensions of φ1 and φ2 to U such that

φ̃ j

∣∣∣C j
= φ j , ∂̄zk φ̃ j = 0 for k �= j.

Then the differential form
φ∗ = φ̃1dz̄1 + φ̃2dz̄2 (3.2)

defines a ∂̄-closed residual current on C in the neighborhood U � p. Current φ∗ is ∂̄-exact
in U since for the functions ψ̃1 and ψ̃2 chosen so that

∂̄z j ψ̃ j = φ̃ j , ∂̄zk ψ̃ j = 0 for k �= j,

we will have

∂̄
(
ψ̃1 + ψ̃2

) = φ̃1dz̄1 + φ̃2dz̄2,

and
(φ∗)∗ = φ.

In the proposition below we identify the spaces of residual cohomologies H (0,1)
R (C) of

curve C and the cohomologies H1(C,O) of the structural sheaf O on C.

Proposition 3.1 (compare with [13,15]) (Isomorphism of cohomologies) Let

C = {
z ∈ CP

2 : P(z) = 0
}
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722 G. M. Henkin, P. L. Polyakov

be a curve inCP2 with nodal points as the only singularities. Then there exists an isomorphism

ı : H (0,1)
R (C) → H1(C,O). (3.3)

Proof To define ı we consider an arbitrary φ ∈ Z1
R(C,O) represented locally on a cover

{Ui }Ni=1 by residual currents

{
	

(0,1)
i

F (i)

}N

i=1

satisfying ∂̄	i = F (i)

(0,2)
i . Then, using existence of �

(0,1)
i ∈ E(0,1)(Ui ) such that

∂̄�
(0,1)
i = 


(0,2)
i

we obtain

∂̄
(
	i − F (i)�i

)
= 0 in Ui ,

and therefore

	i = ∂̄�i + F (i)�i

for some �i ∈ E(0,0)(Ui ).
From the last equality we obtain that

∂̄
(
�i − � j

) = Fi
i j on Ui j = Ui ∩Uj ,

and therefore, by defining
ı {	i } = {

�i − � j
}

(3.4)

we obtain a cocycle in Z1(C,O).
To construct the inverse to ı we take

{
�i j

}
—acocycle in Z1(C,O).We consider a partition

of unity {ϑi }Ni=1 subordinate to some open cover {Ui }Ni=1 of an open neighborhood U ⊃ V .
Without loss of generalitywemayassume that

{
�i j

}
are restrictions of holomorphic functions

on Ui j . We define the cochain

�i =
∑

k �=i, Uk∩Ui �=∅
ϑk�ik,

and notice that on Ui j we have the equality

�i − � j =
∑

k �=i, Uk∩Ui �=∅
ϑk�ik −

∑

k �= j, Uk∩Uj �=∅
ϑk� jk

=
∑

k �=i, j Uk∩Ui �=∅
ϑk
(
�ik − � jk

)+ ϑ j�i j − ϑi� j i

=
∑

k �=i, j Uk∩Ui �=∅
ϑk�i j + ϑ j�i j + ϑi�i j + Fi
i j = �i j + Fi
i j

with some functions 
i j ∈ E(0,0)(Ui j ), and its corollary

∂̄
(
�i − � j

) = Fi ∂̄
i j . (3.5)
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Therefore, the collection
⎧
⎨

⎩
	i = ∂̄�i =

∑

k �=i, Uk∩Ui �=∅
�ik ∂̄ϑk

⎫
⎬

⎭

N

i=1

∈ Z (0,1)
R (C) (3.6)

defines a ∂̄-closed residual current in a neighborhood of V .
If we apply the map ı from (3.4) to the current in (3.6), then using equality (3.5) we obtain

ı {	i } = {
�i − � j

} = {
�i j

} ∈ Z1(C,O).

��
Let now

{
p(i)

}r
i=1 be the nodal points in C, and let points p(i)

1 , p(i)
2 ∈ X be such that

�(p(i)
1 ) = �(p(i)

2 ) = p(i) ∈ C. We consider a collection of paths {γi }ri=1 in X such that

γi (0) = p(i)
1 and γi (1) = p(i)

2 and functions { fi }ri=1 ∈ E (X ) with supports in some neigh-
borhoods Ui ⊃ γi such that

{
fi (p

(i)
1 ) = 0, fi (p

(i)
2 ) = 1,

∂ fi = 0 in Vi � Ui .
(3.7)

Then for a path γi ⊂ X we have
∫

γi

∂̄ fi = fi (p
(i)
2 ) − fi (p

(i)
1 ) = 1.

For an arbitrary form φ ∈ E(0,1)(X ) and the corresponding residual current φ∗ on C we
consider the decomposition on C that follows from Theorem 1:

φ∗ = ∂̄ I [φ∗] + L[φ∗],
and the lift of this decomposition on X :

φ = (φ∗)∗ = ∂̄(I [φ∗])∗ + (L[φ∗])∗. (3.8)

FromProposition 4.4 in [20] it follows that ifφ ∈ E(0,1)(X ), then I [φ∗] ∈ E(C), and therefore

(I [φ∗])∗ ∈ E(X ).

We consider the scalar product on E(0,1) (X )

〈φ,ψ〉 =
∫

X
φ ∧ ψ (3.9)

and assume without loss of generality that the collection of forms
{
(L[(∂̄ fi )∗])∗

}r
i=1 is

orthonormalized with respect to scalar product in (3.9). Then for φ ∈ E(0,1) (X ) we define
for i = 1, . . . , r ,

ai [φ] =
∫

X
φ ∧ (L[(∂̄ fi )∗])∗, (3.10)

and consider operators L : E(0,1)(X ) → E(0,1)(X ) and I : E(0,1)(X ) → E(X ), defined as

L[φ] = (L[φ∗])∗ −
r∑

i=1

ai [φ](L[(∂̄ fi )∗])∗, (3.11)
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and

I[φ] =
(

I

[

φ∗ −
r∑

i=1

ai [φ](∂̄ fi )∗

])∗
+

r∑

i=1

ai [φ] fi . (3.12)

Proposition 3.2 (Hodge-type decomposition on a nonsingular curve)LetX be a nonsingular

curve, and let X �→ CP
2 be an immersion of X into CP

2 with r nodal points. Let { fi }ri=1
satisfy (3.7) and let operators L and I be defined respectively in (3.11) and (3.12).

Then for the space of (0, 1)-forms E(0,1)(X )

(i) the following decomposition holds

φ = ∂̄I[φ] + L[φ], (3.13)

(ii) a (0, 1)-form φ ∈ E(0,1)(X ) is ∂̄-exact, iff L[φ] = 0.

Proof To prove equality (3.13) we use equality (3.8) to obtain for an arbitrary ∂̄-closed form
φ ∈ E(0,1)(X ) the equality

φ −
r∑

i=1

ai [φ]∂̄ fi = ∂̄

(

I

[

φ∗ −
r∑

i=1

ai [φ](∂̄ fi )∗

])∗
+
(

L

[

φ∗ −
r∑

i=1

ai [φ](∂̄ fi )∗

])∗
,

which we can rewrite as

φ = ∂̄

[(

I

[

φ∗ −
r∑

i=1

ai [φ](∂̄ fi )∗

])∗
+

r∑

i=1

ai [φ] fi
]

+ L[φ] = ∂̄I[φ] + L[φ].

According to Theorem 1 and Proposition 3.1 the image of L∗ is a subspace of the space
of ∂̄-closed forms—E(0,1)(X ) of dimension dim H1

R(C,O) = pa(C)—the arithmetic genus
of C. We notice that for any collection {ci }ri=1 there is no g ∈ E(C) such that

∂̄g∗ =
r∑

i=1

ci ∂̄ fi ,

because otherwise we would have

g∗ −
r∑

i=1

ci fi = const,

which contradicts g∗ taking the same values at p(i)
1 and p(i)

2 for all i = 1, . . . , r . Therefore,

dim KerL = dim Span
{
(L[(∂̄ fi )∗])∗

} = r,

and
dim Im {L} = dim Im

{
L∗}− r = pa(C) − r.

To prove item (ii) of Proposition 3.2 we consider a ∂̄-exact form φ = ∂̄g for g ∈ E(X )

and assume that (

L

[

(∂̄g)∗ −
r∑

i=1

ai [∂̄g](∂̄ fi )∗

])∗
�= 0.

Then from the inequality above it follows that

dim
{L {∂̄g, g ∈ E(X )

}}
> r,
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which, according to Proposition 3.1, contradicts the statement from IV.1 in [15], that

dim H (0,1) (X ) = pa(C) − r.

��
Using Theorem 1 and Proposition 3.2 we prove the following version of the Hodge The-

orem for smooth algebraic curves, which gives a formula for solution R1[φ] of equation
∂̄R1[φ] = φ − H1[φ]

in terms of explicit integral operator I and the Hodge projection H1. In a sense it addresses
the deficiency of implicit definition of R1 mentioned in Introduction.

Theorem 2 (Explicit formulas in the Hodge decomposition) Let X be a smooth algebraic
curve, let L and I be operators from (3.11) and (3.12) respectively, and let

{
ω j
}g
j=1 be an

orthonormal basis of holomorphic (1, 0)-forms on X , i.e.
∫

X
ω j ∧ ω̄k = δ jk, j, k = 1, . . . , g.

Then Hodge operators H1 and R1 in decomposition (1.1) admit the following represen-
tations

H1[φ] =
g∑

j=1

(∫

C
φ ∧ ω j

)
ω̄ j ,

R1[φ] = I[φ − H1[φ]]+ const. (3.14)

Proof From decomposition (1.1) we obtain that the form φ − H1[φ] is exact, and therefore,
using item (ii) from Theorem 1 we obtain equality

∂̄R1[φ] − ∂̄I[φ − H1[φ]] = 0,

which implies the second equality in (3.14). ��

4 Explicit solution of ∂̄-equation on affine curves.

In this section we prove solvability of the ∂̄-equation on affine smooth algebraic curves. Let
X be a nonsingular algebraic curve, and let � : X → CP

2 be an immersion of X as in (3.1)
such that

C = � (X ) = {
z ∈ CP

2 : P(z) = 0
}

(4.1)

is a plane curve of deg P = d with at most nodes as singularities. Without loss of generality
we may assume that the intersection of C with the line at infinity

C ∩ {(z0, z1, z2) ∈ CP
2 : z0 = 0

} =
{
z(1), . . . , z(r)

}
(4.2)

consists of r points with multiplicities m1, . . . ,mr such that
∑r

i=1 mi = d . We denote

C̊ = C\
{
z(1), . . . , z(r)

}
,

and
X̊ = X\

{
�−1(z(1)), . . . , �−1(z(r))

}
.

123



726 G. M. Henkin, P. L. Polyakov

Proposition 4.1 (Hodge-Kodaira Vanishing Theorem for affine curves) LetX and C ⊂ CP
2

be curves as in (4.1), with C of degree d satisfying condition (4.2). Let φ(0,1) ∈ E(X̊ ) be a
form on X̊ , and φ∗ be its direct image on C̊. If for some � satisfying � > d − 3 the form
ζ �
0φ∗(ζ ) admits an extension ψ(ζ ) ∈ C (0,1)(C), then there exists a function g ∈ E(X̊ ) such
that {

∂̄g = φ,

|g(ζ )| ≤ C |ζ0|−�.
(4.3)

Proof Let z( j) ∈ C ∩ {CP2 : z0 = 0
}
be one of the points of C at infinity. We consider a

neighborhood U ( j) of z( j) in C
2 with coordinates ζ1, ζ2 such that

C ∩U ( j) =
{
ζ ∈ U ( j) : ζ2 = 0

}
.

Using Cauchy–Green formula we solve the ∂̄-equation on C ∩U ( j) and obtain a function

g( j)(ζ1) ∈ C(C) ∩ C∞(C̊)

with compact support in C ∩U ( j) satisfying equality

∂̄g( j) = ψ
∣∣C∩V ( j) ,

where V ( j) � U ( j).
Then the form

ψ̃ = ψ −
d∑

j=1

∂̄g( j)

defines a ∂̄-closed residual current on C of degree � > d−3, and therefore, usingCorollary 2.4
we obtain the existence of a function g̃ = I1[ζ �

0 · ψ̃(ζ )] ∈ C (0,0)(C̊) satisfying the equation

∂̄ g̃ = ψ̃.

Therefore function g∗ = g̃ +∑d
j=1 g

( j) satisfies the equation

∂̄g∗(ζ ) = ψ(ζ ) = ζ �
0φ∗(ζ ),

and the function g(ζ ) = (ζ−�
0 g∗)∗ satisfies conditions (4.3). ��

Combining results of Theorem 2 and Proposition 4.1 we obtain the following proposition.

Proposition 4.2 Let X and C ⊂ CP
2 be curves as in (4.1), with C satisfying condition (4.2).

Let φ(0,1) ∈ E(X̊ ) be a form on X̊ , such that its direct image φ∗ has a compact support in C̊.
Then for arbitrary � > d − 3 the function

g(ζ ) =
(
ζ−�
0 · I1[ζ �

0φ∗ − H1[ζ �
0φ∗]]

)∗

satisfies equation
∂̄g = φ.
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