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Abstract Consider a connected orientable surface S of infinite topological type, i.e. with
infinitely-generated fundamental group. Our main purpose is to give a description of the
geometric structure of an arbitrary subgraph of the arc graph of S, subject to some rather
general conditions. As special cases, we recover results of Bavard (Geom Topol 20, 2016)
and Aramayona–Fossas–Parlier (Arc and curve graphs for infinite-type surfaces. Preprint,
2015). In the second part of the paper, we obtain a number of results on the geometry of
connected, Mod(S)-invariant subgraphs of the curve graph of S, in the case when the space
of ends of S is homeomorphic to a Cantor set.

1 Introduction

There has been a recent surgeof activity aroundmapping class groupsof infinite-type surfaces,
i.e. with infinitely-generated fundamental group. The motivation for studying these groups
stems from several places, as we now briefly describe.

First, infinite-type surfaces appear as inverse limits of surfaces of finite type. In partic-
ular, infinite-type mapping class groups are useful in the study of asymptotic and/or stable
properties of their finite-type counterparts. This is the approach taken by Funar–Kapoudjian

J. Aramayona was partially funded by Grants RYC-2013-13008 and MTM2015-67781. F. Valdez was
supported by PAPIIT Projects IN100115, IN103411 and IB100212.

B Javier Aramayona
javier.aramayona@uam.es

Ferrán Valdez
ferran@matmor.unam.mx

1 Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain

2 Centro de Ciencias Matemáticas, UNAM, Morelia, Mexico

3 Instituto de Ciencias Matemáticas, CSIC, Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-017-1952-6&domain=pdf


310 J. Aramayona, F. Valdez

[7], where the authors identify the homology of an infinite-type mapping class group with
the stable homology of the mapping class groups of its finite-type subsurfaces.

In a related direction, a number of well-known groups appear as subgroups of the mapping
class group of infinite-type surfaces. For instance, Funar–Kapoudjian [6] realized Thomp-
son’s group T as a topologically-defined subgroup of the mapping class group of a certain
infinitely-punctured sphere.

A third piece of motivation for studying mapping class groups of infinite-type surfaces
comes fromdynamics, as explained byCalegari [3].More concretely, let S be a closed surface,
P ⊂ S a finite subset, and consider the group Homeo(S, P) of those homeomorphisms of
S that preserve P setwise. Let G < Homeo(S, P) be a subgroup that acts freely on S − P .
Then G admits a natural homeomorphism to Mod(S − K , P), where K is either a finite set
or a Cantor set. See [3] for more details.

1.1 Combinatorial models

A large number of problems aboutmapping class groups of finite-type surfacesmay be under-
stood through the various simplicial complexes built from curves and/or arcs on surfaces.
Notable examples of these are the curve graph C(S) and the arc graph A(S); see Sect. 4 for
definitions. When S has finite type, a useful feature of these complexes is that, with respect
to their standard path-metric, they are hyperbolic spaces of infinite diameter; see [11,13],
respectively.

In sharp contrast, in the case of an infinite-type surface these complexes often have finite
diameter; see Sect. 4. This obstacle was first overcome by Bavard [2] in the particular case
when S is a sphere minus a Cantor set and an isolated point. Indeed, she proved that a
certain subgraph of the arc graph is hyperbolic and has infinite diameter, and used this to
construct non-trivial quasi-morphisms from the mapping class group of the plane minus a
Cantor set. Subsequently, Aramayona–Fossas–Parlier [1] have produced similar graphs for
arbitrary surfaces, subject to certain conditions on the set of punctures of S. However, the
definition of these subgraphs is surprisingly subtle, and small variations in the definition may
produce graphs that have finite diameter or are not hyperbolic.

1.1.1 Arc graphs

Our main goal is to give a unified description of the possible geometric structures of an
arbitrary subgraph of the arc graph of an infinite-type surface, subject to some rather natural
conditions on the given graph. First, we will require that it be sufficiently invariant, that is
invariant under Mod(S, P), for some (possibly empty) finite set P of punctures. In addition,
wewill assume that every such graph satisfies the projection property. This property is needed
only for technical reasons, and thus we refer the reader to Sect. 5 for details. However, we
stress that this restriction is easy to check, and often automatically satisfied, once one is given
an explicit subgraph G(S) of A(S). This is the case with the graphs considered in [1,2]; see
Remark 5.5 below.

Before we state our result, recall from [17] that a witness1 of a subgraph G(S) of A(S) is
an essential subsurface Y of S such that every vertex of G(S) intersects Y essentially. Given
a witness Y , we denote by G(Y ) the subgraph of G(S) spanned by those vertices of G(S)

that are entirely contained in Y . Finally, say that a subgraph of A(S) is sufficiently invariant

1 This definition is due to Schleimer [17], who referred to witnesses as holes. The word “witness” has been
suggested to us by S. Schleimer.

123



On the geometry of graphs associated to infinite-type surfaces 311

if it is invariant under Mod(S, P), the Mod(S)-stabiliser of a finite set P of punctures; see
Definition 4.1. We will prove:

Theorem 1.1 Let S be a connected orientable surface of infinite type, and G(S) a connected,
sufficiently invariant subgraph of A(S) with the projection property.

(1) If every witness of G(S) has infinitely many punctures, then G(S) has finite diameter.
(2) Otherwise, G(S) has infinite diameter. Moreover:

(2a) If every two witnesses of G(S) intersect, then G(S) is hyperbolic if and only if G(Y )

is uniformly hyperbolic, for every finite-type witness Y .
(2b) If G(S) has two disjoint witnesses of finite type, then it is not hyperbolic.

We stress that part (2b) of Theorem 1.1 is merely a manifestation of Schleimer’s Disjoint
Witnesses Principle [13,17], although we have included a proof in Sect. 5 for completeness.
In addition, we remark that once one is given an explicit subgraph G(S) of A(S), it is
straightforward to decide what the witnesses of G(S) are and, in particular, where G(S)

falls in the description offered by Theorem 1.1; see the various corollaries below. Finally, we
will see in Sect. 5 that the assumptions that G(S) has the projection property will not be used
in the proof of part (1) of Theorem 1.1, and thus that part holds in slightly more generality;
this remark will be useful for the various corollaries of Theorem 1.1, see below.

As a special case ofTheorem1.1,we recover themain result ofAramayona–Fossas–Parlier
[1]; see Sect. 5 for the necessary definitions:

Corollary 1.2 [1] Let S be a connected orientable surface, and P a non-empty finite set
of isolated punctures. Then, the relative arc graph A(S, P) ⊂ A(S) is hyperbolic and has
infinite diameter.

Once again, we stress that this result was first proved by Bavard [2] in the special case
when S is a sphere minus a Cantor set and one isolated puncture.

We will see in Corollary 5.6 in Sect. 5 that, on the other hand, if P contains a puncture that
is not isolated, Theorem 1.1 implies that A(S, P) has finite diameter. More drastically, if S
has no isolated punctures at all, then there are no geometrically interesting Mod(S)-invariant
subgraphs of A(S):

Corollary 1.3 Let S be a connected orientable surface with at least one puncture. If S has
no isolated punctures, then any connected Mod(S)-invariant subgraph of A(S) has finite
diameter.

See Sect. 5 for some further consequences of Theorem 1.1.

1.1.2 Curve graphs

In the light of Corollary 1.3, there are no geometrically interesting Mod(S)-invariant sub-
graphs of A(S) if S is a punctured surface with no isolated punctures. With this motivation
we are going to study Mod(S)-invariant subgraphs of the curve graph C(S) instead. We will
restrict our attention to the case when S has no isolated ends; as we will see, the situation
heavily depends on whether S has finite or infinite genus. Before going any further, we note
that the case when S has isolated ends is covered in the recent preprint [4]; see Remark 1.8
below.

Before we state our results, we denote byNonSep(S) the non-separating curve graph of S,
namely the subgraph of C(S) spanned by all non-separating curves. Further, let NonSep∗(S)
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be the augmented nonseparating curve graph of S, whose vertices are all nonseparating curves
on S together with those curves that cut off a disk containing every puncture of S. Finally,
denote by Outer(S) the subgraph of C(S) spanned by all the outer curves on S, namely those
curves which cut off a disk containing some, but not all, punctures of S. See Sect. 4 for further
definitions.

We start with the case when the genus of S is finite:

Theorem 1.4 Let S a connected orientable surface of infinite type, with finite genus and no
isolated punctures. Then, a Mod(S)-invariant subgraph G(S) ⊂ C(S) has infinite diameter
if and only if G(S) ∩ Outer(S) = ∅. Moreover, in this case:
(1) If G(S) ∩ NonSep(S) = ∅ then G(S) is not hyperbolic.
(2) If G(S) ∩ NonSep(S) �= ∅ then G(S) is quasi-isometric to NonSep(S) or NonSep∗(S).

Remark 1.5 The classification of infinite-type surfaces, stated as Theorem 3.3 in Sect. 3, tells
us that, under the hypotheses of the theorem, S is homeomorphic to a closed surface with a
Cantor set removed.

As an immediate consequence of Theorem 1.4, we get that if S has genus 0 then any con-
nected, Mod(S)-invariant subgraph of C(S) has finite diameter; compare with Corollary 1.3
above.

In the light of Theorem 1.4, a natural problem is the following; compare with Question 6.2
below:

Question 1.6 For S as in Theorem 1.4, is NonSep(S) (resp. NonSep∗(S)) hyperbolic?

As we will see in Proposition 6.1 below, the answer to this question is positive if and
only if NonSep(S) (resp. NonSep∗(Sg,n)) is hyperbolic uniformly in n; compare with part
(2a) of Theorem 1.1 above. We remark that NonSep(Sg,n) is known to be hyperbolic by
the work of Masur–Schleimer [13] and Hamensdädt [9], although the hyperbolicity constant
may well depend on S. Similarly, NonSep∗(Sg,n) is conjecturally hyperbolic by the work of
Masur–Schleimer [13], since every two of its witnesses intersect, see Example 4.3 in Sect. 4;
on the other hand, even if this were the case, the hyperbolicity constant may well depend on
S, again.

Next, we deal with the case when the genus of S is infinite:

Theorem 1.7 Let S be a connected orientable surface of infinite genus and no isolated ends.
If G(S) is a Mod(S)-invariant subgraph of C(S), then diam(G(S)) = 2.

Remark 1.8 If S has a finite number ≥ 5 of isolated ends, Durham–Fanoni–Vlamis [4]
have constructed Mod(S)-invariant subgraphs of C(S) that are hyperbolic and have infinite
diameter.

The plan of the paper is as follows. Section 2 provides the necessary background on δ-
hyperbolic spaces and quasi-isometries. In Sect. 3 we recall some facts about the space of
ends of a surface. In Sect. 4 we briefly introduce mapping class groups and some of the
combinatorial complexes one can associate to a surface. In Sect. 5 we prove Theorem 1.1
and discuss some of its consequences. Finally, Sect. 6 contains the proofs of Theorems 1.4
and 1.7, together with some open questions.
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2 Hyperbolic metric spaces

We briefly recall some notions on large-scale geometry that will be used in the sequel. For a
thorough discussion, see [8].

Definition 2.1 (Hyperbolic space) Let X be a geodesic metric space. We say that X is δ-
hyperbolic if there exists δ ≥ 0 such that every triangle T ⊂ X is δ-thin: there exists a point
c ∈ X at distance at most δ from every side of T .

We will simply say that a geodesic metric space is hyperbolic if it is δ-hyperbolic for some
δ ≥ 0.

Definition 2.2 (Quasi-isometry) Let (X, dX ), (Y, dY ) be two geodesicmetric spaces.We say
that a map f : (X, dX ) → (Y, dY ) is a quasi-isometric embedding if there exist λ ≥ 1 and
C ≥ 0 such that

1

λ
dX (x, x ′) − C ≤ dY ( f (x), f (x ′)) ≤ λdX (x, x ′) + C, (1)

for all x, x ′ ∈ X . We say that f is a quasi-isometry if, in addition to (1), there exists D ≥ 0
such that Y is contained in the D-neighbourhood of f (X). More concretely, for all y ∈ Y
there exists x ∈ X with dY (y, f (x)) ≤ D.

We say that two spaces are quasi-isometric if there exists a quasi-isometry between them.
The following is well-known:

Proposition 2.3 Suppose that two geodesic metric spaces X, Y are quasi-isometric to each
other. Then X is hyperbolic if and only if Y is hyperbolic.

3 The ends of a surface

Let S be a connected orientable surface, possibly of infinite topological type. We will briefly
recall the definition of the space of ends of S, and refer the reader to [15,16] for a more
thorough discussion on the space of ends of topological spaces and surfaces respectively.

Definition 3.1 (Exiting sequence) An exiting sequence is a collection U1 ⊇ U2 ⊇ · · · of
connected open subsets of S, such that:

(1) Un is not relatively compact, for any n;
(2) The boundary of Un is compact, for all n;
(3) Any relatively compact subset of S is disjoint from Un , for all but finitely many n.

We deem two exiting sequences to be equivalent if every element of the first sequence
is contained in some element of the second, and vice-versa. An end of S is defined as an
equivalence class of exiting sequences, and we write Ends(S) for the set of ends of S.

Given a subset U ⊂ S with compact boundary, let U∗ be the set of all ends of S that
have a representative exiting sequence that is eventually contained in U . We put a topology
on Ends(S) by declaring the set of all such U∗ to be a basis of the topology. The following
theorem is a special case of Theorem 1.5 in [15]:

Theorem 3.2 Let S be a connected orientable surface. ThenEnds(S) is totally disconnected,
separable, and compact; in particular, it is a subset of a Cantor set.
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We now proceed to describe the classification theorem for connected orientable surfaces
of infinite type [16]. Before this, we need some notation. Say that an end of S is planar if it
has a representative exiting sequence whose elements are eventually planar; otherwise it is
said to be non-planar. We denote by Endsp(S) and Endsn(S), respectively, the subspaces of
planar and non-planar ends of S. Clearly Ends(S) = Endsp(S)Endsn(S). In [16], Richards
proved:

Theorem 3.3 [16] Let S1 and S2 be two connected orientable surfaces. Then S1 and S2
are homeomorphic if and only if they have the same genus, and Endsn(S1) ⊂ Ends(S1)
is homeomorphic to Endsn(S2) ⊂ Ends(S2) as nested topological spaces. That is, there
exists a homeomorphism h : Ends(S1) → Ends(S2) whose restriction to Endsn(S1) defines
a homeomorphism between Endsn(S1) and Endsn(S2).

We remark that this theorem was later extended by Prishlyak and Mischenko [14] to
surfaces with non-empty boundary.

4 Arcs, curves, and witnesses

In this section we will introduce the necessary definitions about arcs and curves that appear
in our results. Throughout, let S be a connected, orientable surface of infinite topological
type. Let � be a (possibly empty) set of marked points on S, which we feel free to regard as
marked points, punctures, or (planar) ends of S.

4.1 Mapping class group

The mapping class group Mod(S) is the group of self-homeomorphisms of S that preserve
� setwise, up to isotopy preserving � setwise. Given a (possibly empty) finite subset P of
�, we define Mod(S, P) to be the subgroup of Mod(S) whose every element preserves P
setwise. Observe that Mod(S,∅) = Mod(S).

4.2 Arcs and curves

By a curve on S we mean the isotopy class of a simple closed curve on S that does not bound
a disk with at most one puncture. An arc on S is the isotopy class of a properly embedded,
simple arc on S with both endpoints in �.

Given a, b ∈ AC(S), we define their intersection number as

i(a, b) = min
{
ā ∩ b̄|ā ∈ a, b̄ ∈ b

}
,

and say that a, b are disjoint if i(a, b) = 0. Observe i(a, b) is finite whenever at least one
of a, b is a curve, as curves are compact; however, note that the intersection number of two
arcs could well be infinite.

The arc and curve graphAC(S) of S is the simplicial graph whose vertices are all arcs and
curves on S, andwhere two vertices are adjacent inAC(S) if they have disjoint representatives
on S. As is often the case, we turnAC(S) into a geodesic metric space by declaring the length
of each edge to be 1.

Observe that Mod(S) acts onAC(S) by isometries. As mentioned in the introduction, we
will concentrate in subgraphs of A(S) that are invariant under big subgroups of Mod(S).
More concretely, we have the following definition:
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Definition 4.1 (Sufficient invariance) We say that a subgraph G(S) of AC(S) is sufficiently
invariant if there exists a (possibly empty) subset P of � such that Mod(S, P) acts on G(S).

We will be interested in various standard Mod(S)-invariant subgraphs of AC(S), whose
definition we now recall.

The arc graph A(S) is the subgraph of AC(S) spanned by all vertices of AC(S) that
correspond to arcs on S; note that A(S) = ∅ if and only if � = ∅. Observe that if S has
infinitely many punctures then A(S) has finite diameter.

Similarly, the curve graph C(S) is the subgraph spanned by those vertices that correspond
to curves on S. Note that C(S) has diameter 2 for every surface of infinite type.

The nonseparating curve graph NonSep(S) is the subgraph of C(S) spanned by all
nonseparating curves on S. A related graph is the augmented nonseparating curve graph
NonSep∗(S), whose vertices are curves that either do not separate S, or else bound a disk
containing every puncture of S. Note that these graphs have diameter 2 if S has infinite genus.

Finally, the outer curve graph Outer(S) is the subgraph of C(S) spanned by those curves
α that bound a disk with punctures on S, and such that both components of S − α contain at
least one puncture of S. Observe that Outer(S) = ∅ if S is closed or has exactly one puncture,
and that Outer(S) has finite diameter if S has infinitely many punctures.

As the reader may suspect at this point, these observations constitute the main source of
inspiration behind the statements of Theorems 1.4 and 1.7.

4.3 Witnesses

Let S be a connected orientable surface of infinite type, and G(S) a connected subgraph of
AC(S). As mentioned in the introduction, we will use the following notion, originally due to
Schleimer [17]:

Definition 4.2 (Witness) A witness of G(S) is an essential subsurface Y ⊂ S such that every
vertex of G(S) intersects Y essentially.

Observe that if Y is a witness of G(S) and Z is a subsurface of S such that Y ⊂ Z , then
Z is also a witness.

Example 4.3 For the sake of concreteness, let S be a connected orientable surface of finite
genus g, possibly with infinitely many punctures.

(1) If G(S) = A(S), then Y ⊂ S is a witness if and only if Y contains every puncture of S.
(2) If G(S) = C(S), then Y ⊂ S is a witness if and only if Y = S.
(3) If G(S) = NonSep(S), then Y ⊂ S is a witness if and only if Y has genus g.
(4) LetG(S) = NonSep∗(S), and suppose S has at least two punctures so thatNonSep∗(S) �=

NonSep(S). ThenY ⊂ S is awitness if and only ifY has genus g and at least one puncture.

5 Subgraphs of the arc graph

In this section we give a proof of Theorem 1.1. The main tool is the following variant of
Masur–Minsky’s subsurface projections [12]:

Subsurface projections Let Y be a witness of G(S), and suppose Y is not homeomorphic to
an annulus. There is a natural projection

πY : G(S) → A(Y )
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316 J. Aramayona, F. Valdez

defined by setting πY (v) to be any connected component of v ∩ Y . In particular, πY (v) = v

for every v ⊂ Y ; in other words, the restriction of πY to G(Y ) is the identity. Observe that
the definition of πY involves a choice, but any two such choices are disjoint and therefore at
distance at most 1 in A(Y ). The same argument gives:

Lemma 5.1 Let S be a surface and Y an essential subsurface not homeomorphic to an
annulus. If u, v are disjoint arcs which intersect Y essentially, then πY (u) and πY (v) are
disjoint (possibly equal).

Recall that, given a graph G(S) ⊂ A(S) and a witness Y , by G(Y ) we mean the full
subgraph of G(S) spanned by those vertices that are entirely contained in Y . Observe that
Lemma 5.1, plus the discussion preceding it, implies that G(Y ) is connected whenever G(S)

is.
For technical reasons, which will become apparent in the proof of Lemma 5.3 below, we

will be interested in subgraphs of A(S) for which the subsurface projections defined above
satisfy the property described in the following definition:

Definition 5.2 (Projection property)We say that a subgraphG(S) ⊂ A(S) has the projection
property if there are constants λ ≥ 1 and C, D ≥ 0 such that, for every finite-type witness Y
of G(S), the graphs πY (G(S)) and G(Y ) are quasi-isometric via a (λ,C, D)-quasi-isometry
which restricts to the identity on G(Y ).

As mentioned in the introduction, we remark that deciding whether a given explicit sub-
graph of A(S) has the projection property is normally easy to check; see Remark 5.5 below.

The following lemma, which is a small variation of Corollary 4.2 in [1], is the main
ingredient in the proof of Theorem 1.1. We note that this is the sole instance in which we
will make use of the assumption that G(S) has the projection property.

Lemma 5.3 Let S be a surface of infinite type, and G(S) ⊂ A(S) a connected subgraph with
the projection property. Then, for every finite-type witness Y of G(S), the subgraph G(Y ) is
uniformly quasi-isometrically embedded in G(S).

Proof Let u, v be arbitrary vertices of G(Y ). First, observe that since G(Y ) ⊂ G(S), we have

dG(S)(u, v) ≤ dG(Y )(u, v).

To show a reverse coarse inequality, we proceed as follows. Consider a geodesic γ ⊂ G(S)

between u and v. The projected path πY (γ ) is a path in πY (G(S)) between u = πY (u) and
v = πY (v), and

lengthπY (G(S))(πY (γ )) ≤ lengthG(S)(γ ),

by Lemma 5.1. In particular,

dπY (G(S))(u, v) ≤ dG(S)(u, v).

Since G(S) has the projection property, there exist constants L ≥ 1 andC ≥ 0 (which depend
only on S) such that

dG(Y )(u, v) ≤ L · dπY (G(S))(u, v) + C,

and thus the result follows by combining the above two inequalities. �
We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1 Let S be a connected, orientable surface of infinite type, and denote by
� the set ofmarked points of S. LetG(S) be a connected subgraph ofA(S)with the projection
property, and invariant under Mod(S, P) for some P ⊂ � finite (possibly empty).

We first prove part (1); in fact, we will show that the diameter of G(S) is at most 4. Let
u, v be two arbitrary distinct vertices of G(S). We first claim that there exists w ∈ G(S)

that intersects both u and v a finite number of times. To see this, observe that if u and v

have no endpoints in common, then their intersection number is finite and thus we may take
w = u. Suppose now that u and v share two distinct endpoints p, p′ ∈ �. Then there exists
an element h in the subgroup of Mod(S, P) whose every element fixes p and p′, such that
w = h(u) intersects both u and v a finite number of times, as desired. The rest of cases are
dealt with in a similar fashion. This finishes the proof of the claim.

Continuing with the proof, we now claim that there is a vertex z ∈ G(S) that is disjoint
from v and w. Indeed, consider the surface F(v,w) filled by v and w, which has finite type
since v and w intersect finitely many times. Since every witness of G(S) has infinitely many
punctures, by assumption, we deduce that F(v,w) is not a witness, and therefore there exists
a vertex z ∈ G(S) that does not intersect F(v,w). Using the same reasoning, there exists a
vertex z′ ∈ G(S) that is disjoint from u and w. Thus,

u → z′ → w → z → v

is a path of length at most 4 in G(S) between u and v, as desired.
We now proceed to prove part (2), arguing along similar lines to [1]. To show that G(S)

has infinite diameter we proceed as follows. By assumption, there exists a witness Y of G(S)

with finitely many punctures. After replacing Y by a finite-type surface containing every
puncture of S, we may assume that Y has finite type and Mod(Y ) contains a pseudo-Anosov.
Essentially by Luo’s argument proving that the curve graph of a finite-type surface has infinite
diameter (see the comment after Proposition 3.6 of [11]), we deduce that G(Y ) has infinite
diameter. Since G(Y ) is quasi-isometrically embedded in G(S), by Lemma 5.3, it follows that
G(S) has infinite diameter, as desired.

Next, we establish part (2a) Assume that every two witnesses of G(S) intersect, and
suppose first that there exists δ = δ(S) such that G(Y ) is δ-hyperbolic, for every finite-type
witness Y . We will prove that G(S) is δ-hyperbolic. To this end, consider a geodesic triangle
T ⊂ G(S), and let Z be a witness of G(S) containing every vertex of T , so that T may be
viewed as a triangle in G(Z). First, if Z has infinitely many punctures then G(Z) has diameter
≤ 4, by the proof of part (1). Therefore T has a 4-center in G(Z), and thus also in G(S), as
desired. Assume now that Z has finitely many punctures; in this case, again up to replacing
Z by a connected, finite-type surface containing every puncture of Z , we may in fact assume
that Z is connected and has finite type. Since G(Z) is δ-hyperbolic, by assumption, T has a
δ-center in G(Z), and thus also in G(S). Since T is arbitrary and uniformly thin, we obtain
that G(S) is hyperbolic, as claimed.

Using a very similar argument to the one just given, we also deduce that the hyperbolicity
of G(S) implies that of G(Y ), for every finite-type witness Y of G(S). This finishes the proof
of part (2a).

It remains to show part (2b). Assume that G(S) has two disjoint witnesses Y, Z ⊂ S, each
of finite type. As remarked above, after enlarging Y and/or Z if necessary we may assume
that G(Y ) and G(Z) have infinite diameter. Since Y and Z are witnesses, the projection maps
πY and πZ are well-defined. Therefore there is a projection map

π : G(S) → A(Y ) × A(Z)
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which is simply the map πY × πZ . Using this projection and the same arguments as in the
proof of Lemma 5.3, the fact thatG(S) has the projection property implies thatG(S) contains a
quasi-isometrically embedded copy ofG(Y )×G(Z). By choosing a bi-infinite quasi-geodesic
in G(Y ) and in G(Z), we obtain G(S) contains a quasi-isometrically embedded copy of Z2,
as claimed. This finishes the proof of part (2b), and hence of Theorem 1.1. �
Remark 5.4 As mentioned in the introduction, the proof of part (1) of Theorem 1.1 does
not use that G(S) has the projection property; this will be crucial for Corollaries 1.3 and 5.6
below.

5.1 Consequences

We proceed to discuss some of the consequences of Theorem 1.1 mentioned in the introduc-
tion, starting with Corollary 1.2. Before doing so, we need some definitions from [1]. Let �
be the set of marked points of S, where we assume that � �= ∅. As always, we will feel free
to view the elements of � as marked points, punctures, or (planar) ends of S.

We say that a marked point p ∈ � is isolated if it is isolated in �, where the latter is
equipped with the subspace topology (here we are viewing � as a set of marked points on
S). Let P ⊂ � be a non-empty finite subset of marked points on S. Define A(S, P) as
the subgraph of A(S) spanned by those arcs that have at least one endpoint in P . Note that
Mod(S, P) acts on A(S, P), and hence A(S, P) is sufficiently invariant.

Remark 5.5 The graphs A(S, P) have the projection property: if Y is a finite-type witness
of S then πY (A(S, P)) is uniformly quasi-isometric to A(Y, P), which is G(Y ) for G(S) =
A(S, P). The proof that both graphs are quasi-isometric boils down to the fact that, for
v ∈ A(S, P), there is at least one component of v ∩ Y that has an endpoint in P , which we
can use to define a subsurface projection map with nice properties.

We are now in a position to prove Corollary 1.2:

Proof of Corollary 1.2 Since P is finite and every puncture is isolated, there exists a wit-
ness containing only finitely many punctures (any finite-type surface containing P will do).
Now, part (2) of Theorem 1.1 applies with G(S) = A(S, P), and thus A(S, P) has infinite
diameter. Moreover, if Y is a finite-type witness of A(S, P) then G(Y ) = A(Y, P), which is
7-hyperbolic by [10]. �

We now prove Corollary 1.3:

Proof of Corollary 1.3 Let S be as in the statement, and G(S) be a connected, Mod(S)-
invariant subgraph of A(S). As S has no isolated punctures, using for instance the
classification theorem for infinite-type surfaces [16] we deduce that there exists an infi-
nite sequence of distinct and pairwise disjoint vertices of G(S) such that every two distinct
arcs in the sequence have no endpoints in common. In particular, every witness of G(S) must
have an infinite number of punctures, and so the result follows from part (1) of Theorem 1.1.

�
In addition, we recover the following observation due to Bavard (stated as Proposition 3.5

of [1]):

Corollary 5.6 Suppose P ⊂ � contains a puncture that is not isolated. Then A(S, P) has
finite diameter.
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Finally, one could define A(S, P, Q) to be, for disjoint finite subsets P, Q of isolated
punctures, the subgraph of A(S) spanned by those arcs that have one endpoint in P and the
other in Q. In this situation we have the following result, also due to Bavard (unpublished):

Corollary 5.7 The graph A(S, P, Q) is not hyperbolic.

Proof Observe thatY is awitness ofA(S, P, Q) if and only if it contains P or Q. In particular,
there are two disjoint witnesses of finite type, and part (2b) of Theorem 1.1 applies. �

6 Subgraphs of the curve graph

In this section we deal with connected, Mod(S)-invariant subgraphs of the curve graph,
proving Theorems 1.4 and 1.7. As mentioned in the introduction, we restrict our attention to
the case when S has no isolated ends, which in turn implies that Ends(S) is homeomorphic to
a Cantor set, by the classification theorem for infinite-type surfaces [16] described in Sect. 3.

We first prove Theorem 1.4. The arguments we will use are similar in spirit to those used
in the previous section, but adapted to this particular setting.

Proof of Theorem 1.4 Let S be a connected, orientable surface of infinite type, with finite
genus and no isolated ends. Let G(S) be a connected, Mod(S)-invariant subgraph of C(S).

Suppose first that G(S) ∩ Outer(S) �= ∅. We want to conclude that diam(G(S)) = 2. To
this end, let α and β be arbitrary vertices of G(S). If α and β are disjoint, there is nothing to
prove, so assume that i(α, β) �= 0. Let F(α, β) be the subsurface of S filled by α and β, which
has finite topological type since α and β are compact. Therefore, there exists a connected
component Y of S − F(α, β) that has infinitely many punctures. Now, the fact that Ends(S)

is a Cantor set and the classification theorem for infinite-type surfaces, together imply that
Mod(S) acts transitively on Outer(S). Thus there exists h ∈ Mod(S) and γ ∈ Outer(S) such
that h(γ ) ⊂ Y . In particular, h(γ ) is disjoint from both α and β and hence dG(S)(α, β) = 2.

Hence from now on, we assume that G(S)∩Outer(S) = ∅. Suppose first that, in addition,
G(S) ∩ NonSep(S) = ∅, and so every element of G(S) is a curve that either separates S
into two surfaces of positive genus, or cuts off a disk containing every puncture of S. We
claim that G(S) has two disjoint witnesses, and thus fails to be hyperbolic. To construct these
witnesses, consider a multicurve M consisting of genus(S) + 1 non-separating curves on S
such that S−M = W1W2, withWi a surface of genus 0 for i = 1, 2 and containing at least
one puncture of S. By construction, W1 and W2 are witnesses for G(S). Let Pi be the finite
subset of punctures of Wi coming from the elements of M . Using subsurface projections as
in the previous section gives a quasi-isometric embedding

A(W1, P1) × A(W2, P2) → G(S),

thus obtaining a quasi-isometrically embedded copy of Z2 inside G(S). In particular, G(S) is
not hyperbolic and has infinite diameter.

Hence, from now on we assume that G(S) ∩NonSep(S) �= ∅, which in particular implies
that NonSep(S) ⊂ G(S), since Mod(S) acts on G(S). There are two cases to consider:

Case I No vertex of G(S) bounds a disk with punctures.

In this case, we claim:

Claim The inclusion map NonSep(S) ↪→ G(S) is a quasi-isometry.
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Proof of Claim We begin by showing that the inclusion map is a quasi-isometric embedding.
In fact, more is true: we will prove that, given α, β ∈ NonSep(S) and a geodesic σ in G(S)

between them, we can modify σ to a geodesic σ ′ in NonSep(S) of the same length. (We
remark that this argument is contained in the proof that the nonseparating curve complex
is connected; see Theorem 4.4 of [5].) Let γ ∈ σ be a curve in G(S) − NonSep(S). By
hypothesis, S − γ = Y ∪ Z , where Y and Z both have positive genus. Let γL and γR be
the vertices of σ preceding (resp. following) γ . The assumption that σ is geodesic implies
that either γL , γR ⊂ Y or γL , γR ⊂ Z ; suppose for the sake of concreteness that we are in
the former case. Since Z has positive genus, it contains a nonseparating curve γ ′ which, by
construction, is disjoint from γL and γR . Replacing γ by γ ′ on σ produces a geodesic in
G(S) with a strictly smaller number of separating curves.

At this point, we know that the inclusion map NonSep(S) ↪→ G(S) is a (quasi-)isometric
embedding. To see that it is a quasi-isometry, observe that every element of G(S) is at distance
at most 1 from an element of NonSep(S). This finishes the proof of the claim. �

Case II There is a vertex of G(S) which bounds a disk with punctures.

Since G(S) ∩ Outer(S) = ∅, we get an inclusion NonSep∗(S) ⊂ G(S). Using the same
arguments as in the previous claim, we obtain:

Fact The inclusion map NonSep∗(S) ↪→ G(S) is a quasi-isometry.

In the light of the claims above, in order to finish the proof of the theorem it suffices to
show:

Claim The graphs NonSep(S) and NonSep∗(S) have infinite diameter.

Proof of Claim We prove the result for NonSep(S), as the case of NonSep∗(S) is totally
analogous.

In a similar fashion to what we did in the previous section, we are going to prove that,
for every finite-type witness Y , the subgraph NonSep(Y ) is quasi-isometrically embedded
in NonSep(S). Once this has been done, the claim will follow since NonSep(Y ) has infinite
diameter, which again may be deduced using Luo’s argument showing that the curve graph
has infinite diameter; see Proposition 3.6 of [11].

In this direction, let Y be a finite-type witness of NonSep(S); in other words, Y is a
finite-type subsurface of S of the same genus as S, see Example 4.3 above. Let A(Y, ∂Y ) be
the subgraph of A(Y ) spanned by those vertices that have both endpoints on ∂Y , where ∂Y
denotes the boundary of Y . Similarly, let ANonSep(Y ) be the subgraph of AC(Y ) spanned
by the vertices of NonSep(Y ) ∪ A(Y, ∂Y ). The inclusion map

NonSep(Y ) ↪→ ANonSep(Y )

is a quasi-isometry, where the constants do not depend on Y ; to see this, one may use the
standard argument to show that the embedding of C(Y ) into AC(Y ) is a uniform quasi-
isometry. Now, as in the previous section, there is a subsurface projection

πY : NonSep(S) → ANonSep(Y )

that associates, to an element of NonSep(S), its intersection with Y . Using an analogous
reasoning to that of Lemma 5.3, we obtain that NonSep(Y ) is uniformly quasi-isometrically
embedded in NonSep(S), as desired. This finishes the proof of the claim, and thus that of
Theorem 1.4. �
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The graphs NonSep(S) and NonSep∗(S) have an intriguing geometric structure. Indeed,
using a small variation of the proof of Theorem 1.1, we obtain:

Proposition 6.1 Let S be a connected surface of finite genus g and with infinitely many
punctures. Then NonSep(S) (resp. NonSep∗(S)) is hyperbolic if and only if NonSep(Sg,n)
(resp. NonSep∗(Sg,n)) is hyperbolic uniformly in n.

In the light of Example 4.3, the finite-type witnesses of NonSep(S) and NonSep∗(S) are
precisely the subsurfaces of the form Sg,n ; compare with part (3) of Theorem 1.1.

Proof of Proposition 6.1 Again, we argue only for NonSep(S), as the other case is very
similar. Let T be a geodesic triangle in NonSep(S). Since T has finitely many vertices and
curves are compact, there exists a finite-type subsurface Y of S that contains every element of
T . Thus we can view T as a geodesic triangle in NonSep(Y ). If NonSep(Sg,n) is hyperbolic
uniformly in n, there is δ = δ(g) such that T has a δ-center α ∈ NonSep(Y ) (with respect to
the distance function in NonSep(Y )). In particular, α is at distance at most δ from the sides of
T , where distance is measured in NonSep(Y ), and hence is a δ-centre for T in NonSep(S).
Thus, NonSep(S) is δ-hyperbolic.

The other direction is analogous. �
As mentioned in the introduction, it is known that NonSep(Sg,n) is hyperbolic [9,13], but

in principle the hyperbolicity constant may well depend on n. Similarly, NonSep∗(Sg,n) is
conjecturally hyperbolic by Masur–Schleimer’s principle that every two witnesses intersect
[13], but even in this case the hyperbolicity constant could again depend on n. Thus we ask:

Question 6.2 For fixed g, are NonSep(S) and NonSep∗(Sg,n) hyperbolic uniformly in n?
More generally, are they hyperbolic uniformly in both g and n?

Finally, we prove Theorem 1.7:

Proof of Theorem 1.7 Let S be a connected orientable surface of infinite genus with no
isolated ends; in other words, Ends(S) is homeomorphic to a Cantor set. Consider a Mod(S)-
invariant subgraph G(S) of C(S). Let α and β be arbitrary vertices of G(S), noting again
that the subsurface F(α, β) filled by them has finite type. Choose h ∈ Mod(S) such that
h(α) ⊂ S − F(α, β). Then

α → h(α) → β

is a path of length 2 in G(S) between α and β.
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