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Abstract In this note we discuss (weak) dual pairs in Dirac geometry. We show that this
notion appears naturally when studying the problem of pushing forward a Dirac structure
along a surjective submersion, andweprove aDirac-theoretic versionofLibermann’s theorem
from Poisson geometry. Our main result is an explicit construction of self-dual pairs for Dirac
structures. This theorem not only recovers the global construction of symplectic realizations
from Crainic and Mărcuţ (J Symplectic Geom 9(4):435–444, 2011), but allows for a more
conceptual understanding of it, yielding a simpler and more natural proof. As an application
of the main theorem, we present a different approach to the recent normal form theorem
around Dirac transversals from Bursztyn et al. (J für die reine und angewandte Mathematik
(Crelles J), doi:10.1515/crelle-2017-0014, 2017).
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1 Introduction

A symplectic realization

s : (�, ω−1) −→ (M, π)

of a Poissonmanifold (M, π) is a surjective and submersive Poissonmap s from a symplectic
manifold (�, ω).1 The importance of symplectic realizations had been manifest since the
early days of Poisson geometry (see [20,26,38]).

Our main result concerns one of the possible Dirac-theoretic2 incarnations of the notion
of symplectic realizations. Namely, we consider the following:

Problem Given a Dirac structure L ⊂ T M ⊕ T ∗M on a manifold M, find a surjective
submersion s : � → M and a closed two-form ω on � such that

s : (�,Gr(ω)) −→ (M, L),

is a forward Dirac map (where Gr(ω) denotes the graph of ω).

In the Poisson case, a global, direct proof of the existence of symplectic realizations was
presented in [19]. Our result is a natural extension of this construction to the Dirac setting.
Moreover, our construction produces a dual pair, which is one of the main notions introduced
in this paper, which generalizes to the Dirac setting the classical notion of dual pair in Poisson
geometry:

Definition A dual pair consists of surjective, forward Dirac submersions

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1),

where ω is a closed two-form on �, such that the following hold:

ω(V,W ) = 0, V ∩ ker ω ∩ W = 0, dim(�) = dim(M0) + dim(M1),

where V := ker s∗ and W := ker t∗.
The prototypical example of a dual pair is given by the presymplectic groupoid of an

integrable Dirac structure [10].
We present the following solution to the Problem above (for a full statement of the result,

including the explicit construction, see Sect. 6):

Main Theorem Any Dirac manifold (M, L) fits into a self-dual pair

(M, L)
s←− (�,Gr(ω))

t−→ (M,−L).

1 In the literature [7,10,38], a symplectic realization in our sense, in which the Poisson map is required to be
submersive, is called a full symplectic realization.
2 Since the inception of Dirac geometry in the work of Courant [16], many people worked on the field, and
there are several good sources available. For background material on Dirac structures particularly close in
spirit to the present note, we refer the reader to e.g. [2,11,23,31]. For the specific conventions and notations
used in this paper, we refer the reader to Sect. 2.
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On dual pairs in Dirac geometry 173

Here is an outline of the main results of the paper, and of its organization:

Section 2 establishes the notation and conventions used in the paper. Throughout, the symbol
§ refers to this Section.

Section 3 discusses in detail the problem of pushing forward a Dirac structure L on � to
a Dirac structure on M via a surjective submersion s : � → M with connected fibres.
The prototypical statement is Libermann’s theorem [29], which states that a non-degenerate
Poisson structure ω−1 ∈ X2(�), corresponding to a symplectic structure ω ∈ �2(�), can be
pushed forward through s to a Poisson structure onM if and only if the symplectic orthogonal
to the vertical foliation ker s∗ is involutive. We prove a general Dirac version of Libermann’s
theorem:

Proposition (Dirac–Libermann) A Dirac structure L on � can be pushed forward via s to
a Dirac structure on M if and only if the Lagrangian family (see §5)

p 	→ Ls
p := s!(s!(L p)) ⊂ Tp� ⊕ T ∗

p�

is a Dirac structure on � – i.e. iff it forms a smooth, involutive subbundle of T�.

Several criteria are discussed regarding smoothness and involutivity of Ls.

Section 4 first discusses the above proposition in the case when L = Gr(ω) is the graph of a
closed two-formω ∈ �2(�). In particular, we show that a sufficient condition for a surjective
submersion with connected fibres s : � → M to push forward a closed two-formω ∈ �2(�)

is the existence of an involutive subbundle W ⊂ T� such that Ls = V + Rω(W ), where
V := ker s∗ and Rω(W ) stands for the gauge-transformation of W under ω (see §10). This
leads naturally to the notions of weak dual pairs and dual pairs of Dirac structures, which
we discuss in this section. Next, we give several equivalent descriptions of these notions, and
present several illustrative examples.

Section 5 discusses natural operations on weak dual pairs:

composition of two weak dual pairs with one common leg,
pullback of a weak dual pair through a surjective submersion,
reduction of a weak dual pair to a dual pair,
pullback of a (weak) dual pair via transverse maps,

the latter to be used in the proof of the Main Theorem.

Section 6 presents the complete statement and the proof of the Main Theorem. This result
generalizes the construction of symplectic realization for Poisson structures from [19]; how-
ever, the proof presented here is completely conceptual, and bypasses all the unilluminating
calculations in loc. cit., relying on natural Dirac geometric operators (like pullback, gauge
transformations) which are not generally available in the Poisson setting.

Section 7 provides, as an application of theMain Theorem, an alternative proof of the normal
form theorem around Dirac transversals from [13]. In fact, the initial motivation for under-
taking this project had been to prove a Dirac version of the normal form theorem of [21] by
extending the techniques from the Poisson setting; the outcome is the result stated below. In
[13], this theorem is obtained through a completely different approach, by using a result on
linearization of vector fields around submanifolds, which applies to other geometric settings
(such as Lie algebroids, singular foliations, generalized complex structures etc.).

ADirac transversal in a Dirac manifold (M, L) is an embedded submanifold i : X ↪→ M
which is transverse to every presymplectic leaf of (M, L). Such submanifolds inherit a Dirac
structure i !(L).
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174 P. Frejlich, I. Mărcut,

Theorem (Normal form around Dirac transversals) Let i : X ↪→ M be a Dirac transversal
in a Dirac manifold (M, L), and let p : N X → X denote its normal bundle. Then, up
to a diffeomorphism extending i and an exact gauge-transformation, L and p!i !(L) are
isomorphic around X.

We refer the reader to Sect. 7 for the detailed statement.

Section 8 indicates connections with other results from the literature, and presents possible
implications and extensions of our work. The origin of the formula from the Main Theorem
is explained in terms of the path-space approach to integrability of Dirac structures [10,17];
we explain that ourMain Theorem can be used to find explicit models for local presymplectic
groupoids; we give the necessary ingredients to extend our results to twisted Dirac structures;
and finally, we discuss the relation between dual pairs and Morita equivalence in Poisson
geometry.

2 Conventions and notation

§1. The standard Courant algebroid of a smooth manifold M is denoted by TM , and
prT , prT ∗ denote the canonical projections:

TM := T M ⊕ T ∗M, T M
prT←− TM

prT∗−→ T ∗M, u ← � u + ξ 	→ ξ.

§2. TM comes equipped with a nondegenerate, symmetric bilinear pairing

〈·, ·〉 : TM × TM −→ R, 〈u + ξ, v + η〉 := ιvξ + ιuη,

and the Dorfman bracket at the level of sections:

[·, ·] : 
(TM) × 
(TM) −→ 
(TM), [u + ξ, v + η] := [u, v] + Luη − ιvdξ.

§3. For a smooth map ϕ : M0 → M1, the elements a0 = u0 + ξ0 ∈ Tx0M0 and a1 =
u1 + ξ1 ∈ Tx1M1 are ϕ-related [31, Definition 2.12], denoted a0 ∼ϕ a1, if

ϕ(x0) = x1, ϕ∗(u0) = u1, ξ0 = ϕ∗ξ1.

The notion of being ϕ-related applies to sections a0 ∈ 
(TM0) and a1 ∈ 
(TM1) as
well, meaning that a0,x0 ∼ϕ a1,ϕ(x0) for every x0 ∈ M0. Note that if a0, b0 ∈ 
(TM0)

and a1, b1 ∈ 
(TM1) are such that

a0 ∼ϕ a1, b0 ∼ϕ b1,

then also [a0, b0] ∼ϕ [a1, b1] (see e.g. the proof of [31, Proposition 2.13]).
§4. A subset E ⊂ TM whichmeets each fibreTx M in a linear subspace Ex := E∩Tx M is

called a linear family. Note that no continuity is assumed for the assignment x 	→ Ex .
The 〈·, ·〉-orthogonal of a linear family E is denoted by E⊥ ⊂ TM . If E ⊂ E⊥, then
E is called an isotropic family.

§5. A linear family satisfying E = E⊥ is called a Lagrangian family; equivalently, if each
Ex ⊂ (Tx M, 〈·, ·〉) is a maximal isotropic subspace. The set of maximal isotropic
linear subspaces of Tx M is denoted by Lag(Tx M).

§6. A linear family E ⊂ TM which is a smooth subbundle of TM is called smooth; if in
addition E is Lagrangian, then it is called a Lagrangian subbundle.
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On dual pairs in Dirac geometry 175

The graph of a two-form ω ∈ �2(M) and the graph of a bivector field π ∈ X2(M) are
the following Lagrangian subbundles, respectively,

Gr(ω) := {u + ιuω | u ∈ T M}, Gr(π) := {π�ξ + ξ | ξ ∈ T ∗M}.
§7. An arbitrary linear family E ⊂ TM is called involutive if [a, b] ∈ 
(E) whenever

a, b ∈ 
(E).
§8. A Dirac structure is an involutive Lagrangian subbundle. For instance, the Lagrangian

subbundle Gr(ω) defined by a two-form ω ∈ �2(M) is a Dirac structure iff ω is closed,
whereas the Lagrangian subbundle Gr(π) defined by a bivector π ∈ X2(M) is a Dirac
structure iff π is Poisson.

§9. The Courant tensor of a Lagrangian subbundle L is defined by

ϒ ∈ 
(∧3L∗), ϒ(a1, a2, a3) := 〈[a1, a2], a3〉,
and it vanishes exactly when L is a Dirac structure [16, Proposition 2.3.3].

§10. The following operations on Dirac structures will be used:

rescaling a Dirac structure L ⊂ TM by a scalar λ �= 0:

λL := {u + λξ | u + ξ ∈ L};
in particular, −L = (−1)L denotes the opposite Dirac structure;
gauge-transformation by a closed two-form ω ∈ �2(M):

Rω(L) := {u + ξ + ιuω | u + ξ ∈ L};
pullbacks through submersions: the pullback of a Dirac structure L ⊂ TM through
a submersion s : � → M is given by

s!(L) ⊂ T�, s!(L)p = {u + s∗(ξ) ∈ Tp� | s∗(u) + ξ ∈ Ls(p)}.
§11. A smooth map ϕ : M0 → M1 gives rise to pointwise operations of pullback and

push-forward:

ϕ! : Lag(Tϕ(x0)M1) −→ Lag(Tx0M0), ϕ!(L1,x1) := {a0 | a0 ∼ϕ a1 ∈ L1,ϕ(x0)}
ϕ! : Lag(Tx0M0) −→ Lag(Tϕ(x0)M1), ϕ!(L0,x0) := {a1 | L0,x0 � a0 ∼ϕ a1}.

A smooth map between Dirac manifolds ϕ : (M0, L0) → (M1, L1) is called

forward if ϕ!(L0,x0) = L1,ϕ(x0) for all x0 ∈ M0;
backward if L0,x0 = ϕ!(L1,ϕ(x0)) for all x0 ∈ M0.

§12. In general, for a smooth map ϕ : M0 → M1 and a Lagrangian subbundle L1 on M1,
ϕ!(L1) need not be smooth. However (see e.g. [11, Proposition 5.6]):

(a) A sufficient criterion ensuring smoothness ofϕ!(L1) is that L1∩ker(ϕ∗)have constant
rank;

(b) In particular, ϕ!(L1) is smooth when ϕ is transverse to L1, i.e., when either of the
equivalent conditions holds:
(i) L1 ∩ ker(ϕ∗) = 0;
(ii) for all x0 ∈ M0, we have that ϕ∗(Tx0M0) + prT (L1,ϕ(x0)) = Tϕ(x0)M1;

(c) When L1 is a Dirac structure and ϕ!(L1) is smooth, then it is automatically a Dirac
structure.
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176 P. Frejlich, I. Mărcut,

§13. Let A1 → M1 be a vector bundle, and let ϕ : M0 → M1 be a smooth map. Denote
by ϕ∗(A1) := M0 ×M1 A1 → M0 the pullback vector bundle. If A0 → M0 is another
vector bundle, a vector bundlemap� : ϕ∗(A1) → A0 over idM0 is called a comorphism
of vector bundles.

A comorphism of vector bundles � : ϕ∗(A1) → A0 induces a map on sections

�† : 
(A1) → 
(A0), a1 	→ � ◦ a1 ◦ ϕ.

If Ai → Mi are Lie algebroids, with anchor maps �i : Ai → T Mi , a comorphism
of vector bundles � : ϕ∗(A1) → A0 is called a comorphism of Lie algebroids if it is
compatible with anchors, ϕ∗ ◦�0 ◦� = �1, and the induced map of sections�† is a Lie
algebra homomorphism. A comorphism of Lie algebroids � is called complete if the
following condition is met: if a1 ∈ 
(A1) is such that �1(a1) ∈ X(M1) is a complete
vector field, then �0(�

†a1) ∈ X(M0) is also a complete vector field. See e.g. [15] for
more details on comorphisms.

3 Pushing forward Dirac structures

In this section, we discuss the following problem: given a Dirac structure L ⊂ T�, when
does a surjective submersion with connected fibres

s : � −→ M

push L forward to a Dirac structure LM ⊂ TM , i.e. when is there a Dirac structure LM for
which s : (�, L) → (M, LM ) is a forward Dirac submersion?

First observe that, for a given LM ⊂ TM , there exists a canonical Dirac structure on
� for which s : (�, L) → (M, LM ) is forward Dirac—namely, the basic Dirac structure
L = s!(LM ):

Definition 1 Let s : � → M be a surjective submersion. A Dirac structure L on � is called
basic if there exists a Dirac structure LM on M such that L = s!(LM ), i.e., for which

s : (�, L) −→ (M, LM )

is a backward Dirac submersion.

The following proposition describes those Dirac structures on � which are basic:

Proposition 1 (Basic criterion) Let s : � → M be a surjective submersion with connected
fibres, and denote by V := ker s∗ ⊂ T�. A Dirac structure L on � is basic, L = s!(LM ),
if and only if V ⊂ L. In this case, we also have that s : (�, L) → (M, LM ) is a forward
Dirac map.

Proof If L is basic, L = s!(LM ), then clearly V ⊂ L and, since s is a submersion, we also
have that s!s!(LM ) = LM .

Conversely, assume that V ⊂ L . Then the flow of vector fields in V preserves L . Since
the fibres of s are connected, this implies that, for every p, q ∈ s−1(x), we can find a
diffeomorphism ϕ : � → � such that ϕ(p) = q , ϕ!(L p) = Lq , and which is vertical:
s ◦ ϕ = s. So s!(Lq) = s!ϕ!(L p) = s!(L p). Thus, there is a well-defined Lagrangian family
x 	→ LM,x ∈ Tx M such that s!(L p) = LM,s(p) for all p ∈ �.
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On dual pairs in Dirac geometry 177

Smoothness and involutivity of LM (in the sense of §6, §7) are proven as follows. First,
remark that the submersion s admits local sections σ : U → �, U ⊂ M , and that any such
local section σ is transverse to L , i.e. it satisfies:

σ∗(TxM) + prT (Lσ(x)) = Tσ(x)�, ∀ x ∈ U,

and this condition implies thatσ !(L) is aDirac structure onU (see §12). Second, note thatV ⊂
L implies that L ⊂ T� ⊕ im s∗. Now, if v +σ ∗α ∈ σ !(L), then σ∗v +α ∈ L ⊂ T� ⊕ im s∗,
and so α = s∗β for some β ∈ T ∗M ; hence s∗σ∗v+β = v+β ∈ LM . Thus, σ !(L) ⊂ LM |U ,
and since these spaces have equal dimension, we conclude that LM |U = σ !(L). This proves
that LM is a Dirac structure.

Let us conclude by showing that s!(LM ) = L . An element in s!(LM ) has the form v+s∗α,
where s∗v + α ∈ LM . Since LM = s!(L), there exists w ∈ T� such that s∗w = s∗v and
w + s∗α ∈ L . But then w − v ∈ V ⊂ L; hence v + s∗α = (w + s∗α) + (v − w) ∈ L . ��

Given a surjective submersion s : � → M from a Dirac manifold (�, L), there is a
canonical Lagrangian family (see §5)

Ls ⊂ T�, Ls
p := s!(s!(L p)) ⊂ Tp�, p ∈ �,

which one can view as the Lagrangian family closest to L among Lagrangian families which
contain V := ker s∗ [14, Section 3], since it satisfies

Ls = L ∩ V⊥ + V . (1)

Whether or not the Lagrangian family Ls is a Dirac structure (see §6–§8) plays a key role in
the following Dirac-geometric version of Libermann’s theorem.

Proposition 2 (Dirac–Libermann) Let s : � → M be a surjective submersion with con-
nected fibres. A Dirac structure L on � can be pushed forward via s to a Dirac structure on
M if and only if the Lagrangian family:

Ls = s!s!(L) ⊂ T�

is a Dirac structure on �, i.e., if Ls is a smooth, involutive subbundle of T�.

Proof First, if L can be pushed forward to a Dirac structure LM on M , then Ls = s!(LM ) is a
Dirac structure on�, as it is the pullback of a Dirac structure through a surjective submersion
(see §10).

Conversely, assume that Ls is a Dirac structure. Note that s!(Ls
p) = s!(L p) for all p ∈ �

(see §11); hence it suffices to check that Ls can be pushed forward. Since V ⊂ Ls, this
follows from Proposition 1. ��

The purpose of the next two examples is to highlight that, under the hypotheses of Propo-
sition 2, neither smoothness nor involutivity of Ls is ensured.

Example 1 Consider s : R
2 → R, s(x, y) = x , and let L = Gr(xdx ∧ dy). Then the

Lagrangian family Ls is not smooth; explicitly, it is given by

Ls
(x,y) =

{
R∂y + Rxdx if x �= 0,

R∂x + R∂y if x = 0.

In particular, s does not push L forward to a Dirac structure on R.
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178 P. Frejlich, I. Mărcut,

Example 2 Consider s : R
3 → R

2, s(x, y, z) = (x, y), and let L = Gr(z∂x ∧ ∂y). In this
case the smooth sections si ∈ 
(TR

3) given by

s1 = z∂x − dy, s2 = z∂y + dx, s3 = ∂z

span Ls; hence Ls is a smooth bundle. However, it is not involutive; e.g., [s3, s1] = ∂x /∈

(Ls). In particular, s does not push L forward to a Dirac structure on R

2.

Sufficient criteria

Next, we give sufficient criteria for Ls to be a Dirac structure.

Proposition 3 (Bundle criterion) Let (�, L) be a Dirac manifold and let s : � → M be a
surjective submersion.

(i) If a vector subbundle E ⊂ T� exists, such that

Ls = E + V,

then Ls is smooth. This condition is also necessary for Ls to be smooth.
(ii) If in addition E is involutive, then also Ls is involutive. Hence, if s has connected fibres,

then there is a Dirac structure LM on M for which s : (�, L) → (M, LM ) is a forward
Dirac map.

Proof Note that Ls is the image of the vector bundle map

F : E ⊕ V −→ T�, F(e, v) := e + v.

Since Ls is a family of Lagrangian subspaces, we conclude that F has constant rank, and
therefore Ls is smooth. Conversely, if Ls is smooth, then one can take E to be any smooth
complement of V in Ls. This proves (i).

By choosing a smooth splitting of the vector bundlemap F , note that any section s ∈ 
(Ls)

can be represented as s = v + e, where v ∈ 
(V ) and e ∈ 
(E). Assume now that E is
involutive. Recall that the smooth Lagrangian subbundle Ls = E+V is Dirac iff the Courant
tensor ϒ ∈ 
(

∧3
(Ls)∗

)
, ϒ(s1, s2, s3) = 〈[s1, s2], s3〉 vanishes identically (see §9). So to

check that ϒ = 0, it suffices to show that it vanishes on sections which are either in 
(V ) or
in 
(E). For i = 1, 2, 3, let vi ∈ 
(V ) and ei ∈ 
(E). Because V and E are involutive and
E + V is isotropic, we have

ϒ(v1, v2, v3) = 0, ϒ(v1, v2, e1) = 0, ϒ(e1, e2, v3) = 0, ϒ(e1, e2, e3) = 0.

Thus, ϒ = 0, and therefore Ls is Dirac. Hence if s has connected fibres, we can invoke
Proposition 2 to conclude that s pushes L forward. This proves (ii). ��

Since Ls = L ∩ V⊥ + V (1), a candidate for the vector bundle E in Proposition 3 is the
isotropic family L ∩ V⊥—which need not be smooth. The next criterion shows that, if Ls is
smooth, then its involutivity is controlled by that of L ∩ V⊥.

Proposition 4 (L ∩ V⊥ criterion) Let (�, L) be a Dirac manifold and let s : � → M be a
surjective submersion.

(i) If L ∩ V⊥ (or equivalently, if L ∩ V ) is smooth, then Ls is smooth.
(ii) If Ls is smooth, then Ls is involutive if and only if L ∩ V⊥ is involutive in the sense of

§7.
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On dual pairs in Dirac geometry 179

Proof Note that L ∩V has constant rank iff L+V has constant rank iff (L+V )⊥ = L ∩V⊥
has constant rank. Thus (i) follows from Proposition 3(i).

Note that L ∩ V⊥ = L ∩ Ls. Thus, if Ls is involutive, then, being the intersection of two
involutive subbundles, so is L ∩ V⊥. Conversely, suppose that L ∩ V⊥ is involutive. Note
that the isotropic family L ∩V⊥ restricts on an open, dense subsetU ⊂ � to a vector bundle
E = L ∩ V⊥|U ; hence Proposition 3(ii) applies, showing that Ls|U is a Dirac structure on
U . Hence the Courant tensor ϒ of Ls (see §9) vanishes on an open, dense subset, whence it
vanishes on the whole �. Thus, Ls is a Dirac structure. ��
Remark 1 When Ls is a Dirac structure, and s has connected fibres, Ls is a basic Dirac
structure, i.e., Ls = s!(LM ) for a Dirac structure LM on M . In this case, there is an induced
bundlemap s! : Ls → LM covering s : � → M , where s!(a) = b iff a ∈ Ls

p and b ∈ LM,s(p)
are s-related: a ∼s b (see §3). Note that this gives rise to an exact sequence of Lie algebroids

0 −→ V −→ Ls s!−→ LM −→ 0.

The next criterion concerns the existence of a splitting of this sequence.

Proposition 5 (Comorphism criterion) Let s : � → M be a surjective submersion with
connected fibres from the Dirac manifold (�, L). If an involutive subbundle E ⊂ T� exists
such that

Ls = E ⊕ V,

then there is an induced comorphism of Lie algebroids � : s∗(LM ) → E, where LM is the
push-forward Dirac structure on M, LM = s!(L).

Proof By Proposition 3(ii), s pushes L forward to a Dirac structure LM on M . The surjective
vector bundle map s! : Ls → LM covering s induces an exact sequence of vector bundles
over �

0 −→ V −→ Ls −→ s∗(LM ) −→ 0

which restricts to a vector bundle isomorphism on E ∼−→ s∗(LM ) (see Remark 1). Denote
by � : s∗(LM ) → E the inverse isomorphism, which is a vector bundle comorphism. By
definition of �, we have that, for each a ∈ 
(LM ), �†(a) ∈ 
(E) is the unique section such
that�†(a) ∼s a; in particular, it is compatiblewith anchors.Moreover (see §3)�†([a, b]) ∼s
[a, b], and [�†(a),�†(b)] ∼s [a, b] imply that �†([a, b]) = [�†(a),�†(b)]; hence � :
s∗(LM ) → E is a comorphism of Lie algebroids. ��
Coupling Dirac structures

As an application of Proposition 2, we consider the case of when a surjective submersion
s : � → M pushes forward a coupling Dirac structure L ⊂ T�, i.e., a Dirac structure
satisfying:

L ∩ (V ⊕ V ◦) = 0, where V = ker s∗, V ◦ = im s∗.

Such Dirac structures are also called horizontally nondegenerate [37].
A Lagrangian subbundle L ⊂ T� satisfying the condition above can be described by a

Vorobjev triple (H, ω, π), where H ⊂ T� is an Ehresmann connection for s : � → M , ω
is a two-form on H , and π is a vertical bivector field:

T� = H ⊕ V, ω ∈ 
(∧2V ◦) ⊂ �2(�), π ∈ 
(∧2V ) ⊂ X2(�),
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in terms of which L has the direct sum decomposition:

L = {v + ιvω | v ∈ H} ⊕ {ξ + π�ξ | ξ ∈ H◦}.
Involutivity of L is equivalent to the following conditions (see e.g. [37]):

(a) π is a Poisson structure: [π, π] = 0,
(b) Lu1π ∈ 
(H ∧ T�),
(c) [u1, u2] + π�ιu1 ιu2dω ∈ 
(H),
(d) dω(u1, u2, u3) = 0,

for all u1, u2, u3 ∈ 
(H).
In this situation, Proposition 2 specializes to:

Corollary 1 (Coupling Dirac structures) Let s : � → M be a surjective submersion with
connected fibres, and let L be a coupling Dirac structure on �, with corresponding Vorobjev
triple (H, ω, π). Then L can be pushed forward via s to a Dirac structure on M if and only
if ω is closed. In this case, ω = s∗η, where η is a closed two-form on M, s!(L) = Gr(η), and
moreover, H is involutive.

Proof It is easy to check that Ls = Gr(ω). This is always a smooth bundle, and it is a Dirac
structure iff ω is closed. Thus, the first part follows from Proposition 2. By Proposition 1,
Gr(ω) is a basic Dirac structure, and hence ω is a basic two-form, i.e. ω = s∗η, where η is a
closed two-form on M , and s : (�, L) → (M,Gr(η)) is a forward Dirac map. By (c) above,
dω = 0 implies that H is involutive. ��

4 Weak dual pairs and dual pairs

In this section we discuss the notions of weak dual pairs and dual pairs in Dirac geometry.
In the setting of Lie groupoids endowed with multiplicative two-forms, these notions cor-
respond to over-presymplectic groupoids [10, Definition 4.6] and presymplectic groupoids
[10, Definition 2.1], respectively.

Pushing forward two-forms

In order to motivate the notion of weak dual pairs, we begin by specializing Proposition 2 to
the case of closed two-forms. Given a closed two-formω ∈ �2(�), denote the corresponding
gauge transformation by

Rω : T� −→ T�, Rω(u + ξ) := u + ξ + ιuω.

The ω-orthogonal of a linear space E ⊂ T� will be denoted by

Eω := T� ∩ Rω(E)⊥ ⊂ T�.

Given a surjective submersion s : � → M and denoting V := ker s∗, we have that

Gr(ω) ∩ V⊥ = Rω(V ω),

and so the Lagrangian family Gr(ω)s becomes

Gr(ω)s = V + Gr(ω) ∩ V⊥ = V + Rω(V ω). (2)

The criteria from Sect. 3 specialize to the following:
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Corollary 2 Let s : � → M be a surjective submersion with connected fibres, ω ∈ �2(�)

be a closed two-form, and let V := ker s∗.

(i) s pushes Gr(ω) to a Dirac structure LM on M if and only if the Lagrangian family
Gr(ω)s = V + Rω(V ω) is a Dirac structure on �. In this case,

LM is Poisson ⇐⇒ ker ω ⊂ V .

(ii) If V ω is smooth then also Gr(ω)s is smooth. On the other hand, if Gr(ω)s is smooth then
it is a Dirac structure exactly when the linear family V ω is involutive.

(iii) If there exists a smooth subbundle W ⊂ T� such that

Gr(ω)s = V + Rω(W ), (3)

then Gr(ω)s is smooth. If W is also involutive, then Gr(ω)s is a Dirac structure, and so
s pushes Gr(ω) forward to a Dirac structure LM on M.
Moreover, if the decomposition above is a direct sum

Gr(ω)s = V ⊕ Rω(W )

then there is an induced Lie algebroid comorphism � : s∗(LM ) → W.

Proof Proposition 2 implies the first part of i); for the second part, note that

s!(L p) ∩ Ts(p)M = s∗(ker ωp),

and therefore the induced Dirac structure is Poisson if and only if this space is trivial, which
is equivalent to ker ω ⊂ V . Item (i i) is implied by Proposition 4. The first part of item (i i i)
follows from Propositions 3 and the second from Proposition 5. ��

Thus the condition that there be an involutive W ⊂ T� satisfying (3) is sufficient to
ensure that a surjective submersion s : � → M pushes Gr(ω) forward, but it is certainly not
necessary, as the following example illustrates:

Example 3 Consider s : R
3 → R, s(x, y, z) = x and ω = d(x2y) ∧ dz. Then

s : (R3,Gr(ω)) −→ (R, TR)

is a forward Dirac map.
Note that there cannot be a smooth subbundleW ⊂ T� satisfying Gr(ω)s = V +Rω(W ).

Indeed, such a subbundle would have to be spanned by the vector field v := x∂x − 2y∂y
on x �= 0, yet this cannot be extended smoothly (as a line bundle) over points of the form
(0, 0, z), since:

lim
y→0

lim
x→0

〈v〉 = 〈∂y〉 and lim
x→0

lim
y→0

〈v〉 = 〈∂x 〉.

Remark 2 Part (ii) of Corollary 2 resembles the most Libermann’s theorem in Poisson geom-
etry. Namely, assuming that Gr(ω)s is smooth, s pushes Gr(ω) forward if and only if V ω is
involutive. However, note that even if this is the case, the rank of V ω need not be lower semi-
continuous (see Example 3); thus, even if it is involutive, it need not be a singular foliation
(in the sense of [36]).
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Weak dual pairs

The key ingredient in defining weak dual pairs is condition (3) of Corollary 2(i i i). First, we
give several algebraic reformulations of this condition, which, in particular, show that V and
W play a symmetric role (note that condition (a) in Lemma 1 below is the pointwise version
of (3)).

Lemma 1 Consider a finite dimensional vector space A, vector subspaces B ⊂ A and
C ⊂ A, and a 2-formω ∈ ∧2A∗. Denote ker ω ⊂ A by K . Then the following are equivalent:

(a) B + Rω(Bω) = B + Rω(C) ⊂ A ⊕ A∗;
(b) C + R−ω(Cω) = C + R−ω(B) ⊂ A ⊕ A∗;
(c) Bω = C + B ∩ K;
(d) Cω = B + C ∩ K;
(e) ω(B,C) = 0 and dim(B ∩ K ∩ C) = dim(B) + dim(C) − dim(A).

Proof Note first that all conditions imply ω(B,C) = 0. Next, note that:

dim(Bω) = dim(A) − dim(B) + dim(B ∩ K ),

dim(C + B ∩ K ) = dim(C) + dim(B ∩ K ) − dim(B ∩ K ∩ C).

Clearly, C + B ∩ K ⊂ Bω; thus the two are equal iff they have the same dimension. This
shows that (c) ⇔ (e). Similarly, (d) ⇔ (e).

On the other hand, B + Rω(C) ⊂ B + Rω(Bω). The latter is a Lagrangian subspace of
A ⊕ A∗, thus (a) holds iff

dim(B + Rω(C)) = dim(A),

which is equivalent to (e), because

dim(B + Rω(C)) = dim(B) + dim(C) − dim(B ∩ K ∩ C).

Hence (a) ⇔ (e). Similarly, (b) ⇔ (e). ��
Motivated by Corollary 2(i i i) and Lemma 1, we introduce:

Definition 2 A weak dual pair consists of surjective, forward Dirac submersions

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1), (4)

where ω is a closed two-form on �, satisfying

ω(V,W ) = 0 and rank(V ∩ K ∩ W ) = dim(�) − dim(M0) − dim(M1), (∗)

where V := ker s∗, W := ker t∗, and K := ker ω.

A first consequence of this definition is that

Lemma 2 For a weak dual pair, we have that V ∩ K ∩W is a smooth, involutive subbundle
of T�, where we used the notation of Definition 2.

Proof Note that the kernel of the vector bundle map

V ⊕ W −→ T�, v ⊕ w 	→ v + Rω(w)

canbe identifiedwithV∩K∩W . Thismaphas constant rank, because its image isV+Rω(W ),
which, by Lemma 1(a) is Lagrangian. Therefore V ∩K ∩W is smooth. The bundles V andW
are involutive, and since ω is closed, also K is involutive in the sense of §7. Thus V ∩ K ∩W
is involutive. ��
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By Lemma 1, condition (∗) in Definition 2 is the same as condition (3) in Corollary 2.
Due to the symmetric role played by V andW , we may apply Corollary 2(i i i) and obtain an
intrinsic description of weak dual pairs:

Corollary 3 Let ω ∈ �2(�) be a closed two-form, and let s : � → M0 and t : � → M1

be surjective submersions with connected fibres. If V := ker s∗ and W := ker t∗ satisfy (∗),
then M0 and M1 carry Dirac structures L0 and L1 respectively, which yield a weak dual
pair

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1).

Next we give some alternative descriptions of weak dual pairs.

Proposition 6 Let ω ∈ �2(�) be a closed two-form, (M0, L0) and (M1, L1) be Dirac
manifolds and s : � → M0 and t : � → M1 be surjective submersions. The following are
equivalent:

(i) the diagram below is a weak dual pair:

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1);
(ii) s!(L0) = Rω(t!(L1)) and rank(V ∩ K ∩ W ) = dim(�) − dim(M0) − dim(M1);
(iii) (s, t) : (�,Gr(ω)) → (M0, L0) × (M1,−L1) is a forward Dirac map and either

rank(V ∩ K ∩ W ) = dim(�) − dim(M0) − dim(M1) or ω(V,W ) = 0 holds;
(iv) s!(L0) = Rω(t!(L1)) and (s, t) : (�,Gr(ω)) → (M0, L0) × (M1,−L1) is a forward

Dirac map,

where V := ker s∗, W := ker t∗, and K := ker ω.

Proof First, we claim that (s, t) being forward Dirac is equivalent to the inclusions:

s!(L0) ⊂ V + Rω(W ), t!(L1) ⊂ R−ω(V ) + W. (5)

Assume that (s, t) is a forward Dirac map. Let ũ0+s∗(ξ0) ∈ s!(L0)p be s-related to u0+ξ0 ∈
L0,s(p). By assumption, for all (u0 + ξ0, u1 − ξ1) ∈ L0,s(p) × −L1,t(p), there is u ∈ Tp�

such that u + ιuω ∼(s,t) (u0 + ξ0, u1 − ξ1). Applying this to (u0 + ξ0, 0), we deduce the
existence of w ∈ Wp such that w + ιwω ∼s u0 + ξ0; hence

ũ0 = w + v, ιwω = s∗(ξ0)

for some v ∈ Vp . Therefore

ũ0 + s∗(ξ0) = v + w + ιwω ∈ V + Rω(W ),

which shows that s!(L0) ⊂ V + Rω(W ). The inclusion t!(L1) ⊂ R−ω(V ) + W is proved
similarly. Hence (5) holds.

Conversely, assume that (5) holds. Then for (u0 + ξ0, u1 − ξ1) ∈ L0,s(p) ×−L1,t(p) there
exist v0, v1 ∈ Vp and w0, w1 ∈ Wp , such that

v0 + w0 + ιw0ω ∼s u0 + ξ0, v1 + w1 + ιv1ω ∼t u1 − ξ1;
this implies that

w0 + ιw0ω ∼s u0 + ξ0, v1 + ιv1ω ∼t u1 − ξ1,

and so v1 + w0 + ιv1+w0ω ∼(s,t) (u0 + ξ0, u1 − ξ1); hence (s, t) is forward Dirac.
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Assume now that (i) holds. Then by Lemma 1, the following equalities below

s!(L0) = (Gr(ω))s = V + Rω(W ), t!(L1) = (Gr(ω))t = R−ω(V ) + W,

hold, and imply both the condition s!(L0) = Rω(t!(L1)) and the inclusions (5). Since con-
dition (∗) is implied by (i), we conclude that (i) implies both (i i) and (i i i).

Assume now that (i i) holds. Since V ⊂ s!(L0) and W ⊂ t!(L1), (i i) yields

V + Rω(W ) ⊂ s!(L0) = Rω(t!(L1)).

The rank condition in (i i) implies that rank(V +Rω(W )) = dim(�), and so the above must
hold with equality

V + Rω(W ) = s!(L0) = Rω(t!(L1)).

The fact that this space is isotropic givesω(V,W ) = 0, hence V+Rω(W ) ⊂ V+Rω(V ω) ⊂
Gr(ω)s. Again, since both spaces are Lagrangian, we conclude that

V + Rω(W ) = Gr(ω)s = s!(L0).

This implies that s is forward Dirac, and similarly, one shows that t is forward Dirac. Thus
(i i) implies (i).

Assume now that (i i i) holds. By the claim, (5) holds. The conditionω(V,W ) = 0 implies
that V +Rω(W ) is isotropic, so rank(V +Rω(W )) ≤ dim(�), and the rank condition from
(i i i) implies that rank(V +Rω(W )) = dim(�). Assuming that either rank(V ∩ K ∩ W ) =
dim(�) − dim(M0) − dim(M1) or ω(V,W ) = 0 yields equalities in (5), and so s!(L0) =
Rω(t!(L1)) and rank(V + Rω(W )) = dim(�), which is equivalent to the rank condition in
(i i). Hence, (i i i) implies (i i).

Clearly, by the discussion above, (i) implies (iv). Finally, assume that (iv) holds. Note
that s!(L0) = Rω(t!(L1)) implies that V +Rω(W ) ⊂ s!(L0); hence V +Rω(W ) is isotropic,
and so ω(V,W ) = 0. Thus (i i i) holds. ��
Remark 3 In [7] (see also [10, Lemma 4.2]), a different version of weak dual pairs is con-
sidered. Namely, the diagram (4) from Definition 2 is called a pre-dual pair if instead of (∗)

it satisfies (see [7, Definition 3.1]):

V ω = W + K and Wω = V + K . (∗∗)

Note that these two conditions are equivalent: by taking the ω-orthogonal of the first relation
one obtains the second. Weak dual pairs satisfy (∗∗) (see (c) in Lemma 1), but not conversely
(see Example 1 with W = V = ker s∗, and also Example 5).

That condition (∗∗) is not sufficient for s to push the Dirac structure Gr(ω) forward
should be contrasted to the setting in [10, Lemma 4.2]—where (∗∗) is enough to ensure that
a multiplicative two-form on a Lie groupoid pushes forward via the source map.

Below are two examples of diagrams of surjective, forward Dirac submersions, as in 4,
which are not weak dual pairs.

Example 4 Let s : (R3,Gr(ω)) −→ (R, TR) be as in Example 3, and consider t :
(R3,Gr(ω)) → (R0, 0), which is trivially a forward map into the trivial Dirac structure
on R

0. Then

(R, TR)
s←− (�,Gr(ω))

t−→ (R0, 0)
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is a diagram of surjective, forward Dirac submersions, in which

(s, t) : (�,Gr(ω)) → (R, TR) × (R0, 0)

is forward Dirac. However, s!(L0) �= Rω(t!(L1)). Clearly, the fibres of s and t are not
ω-orthogonal.

Example 5 Consider the forward Dirac submersions

(R2, L0)
s←− (R3,Gr(ω))

t−→ (R2,−L1),

where s(x, y, z) := (x, y), t(x, y, z) := (y, z), ω := dx ∧ dy + dy ∧ dz, L0 := 〈∂x , dy〉
and L1 := 〈∂z, dy〉. In this case, s!(L0) = Rω(t!(L1)) = 〈∂x , ∂z, dy〉. However, (s, t) :
(R3,Gr(ω)) → (R2, L0) × (R2,−L1) is not forward Dirac. Moreover, the fibres of s and t
are ω-orthogonal.

This is also an example of a pre-dual pair (see Remark 3) which is not a weak dual pair,
i.e. condition (∗∗) holds, but condition (∗) (Lemma 1(c)) fails:

V ω = W + K �= W + V ∩ K .

Dual pairs

Next, we introduce the main notion of this paper:

Definition 3 A dual pair is a weak dual pair

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1),

satisfying the condition

V ∩ K ∩ W = 0, (�)
where V := ker s∗, W := ker t∗ and K := ker ω.

Equivalently, by (∗), a dual pair is weak dual pair satisfying:

dim(�) = dim(M0) + dim(M1).

Analogously to Lemma 1, the algebraic conditions appearing in the definition of dual pairs
can be reformulated as follows:

Lemma 3 In the setting of Lemma 1, the following are equivalent

(a) B + Rω(Bω) = B ⊕ Rω(C);
(b) C + R−ω(Cω) = C ⊕ R−ω(B);
(c) Bω = C ⊕ B ∩ K;
(d) Cω = B ⊕ C ∩ K;
(e) ω(B,C) = 0 and B ∩ K ∩ C = 0 and dim(A) = dim(B) + dim(C).

Before giving further descriptions of dual pairs, we recall the following notion:

Definition 4 A forward Dirac map

ϕ : (M0, L0) → (M1, L1)

is called strong if L0 ∩ ker ϕ∗ = 0 [2]. When L0 is the graph of a closed two-form ω0 ∈
�2(M0), we call it a presymplectic realization [10, Definition 7.1].
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Proposition 7 Consider a diagram of surjective submersions

M0
s←− �

t−→ M1, where dim� = dim M0 + dim M1.

Let ω ∈ �2(�) be a closed two-form, and let Li ⊂ TMi be Dirac structures. Then the
following conditions are equivalent:

(i) the diagram below is a dual pair:

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1);
(ii) s!(L0) = Rω(t!(L1)) and V ∩ K ∩ W = 0;
(iii) (s, t) : (�,Gr(ω)) → (M0, L0) × (M1,−L1) is a presymplectic realization;

where V := ker s∗, W := ker t∗, and K := ker ω.

Proof Note that, under the assumption dim� = dim M0 + dim M1, the first two items
are equivalent to the corresponding items of Proposition 6. Similarly, item (i i i) is equiva-
lent to (s, t) being a forward Dirac map, and to V ∩ W ∩ K = 0; thus it is equivalent to
the first version of the corresponding item in Proposition 6. Thus, the result follows from
Proposition 6. ��
Example 6 A foliation F on a smooth manifold M admits a presymplectic realization.
Indeed, let L ⊂ TM be the Dirac structure corresponding toF . Denote the conormal bundle
of F by N∗F ⊂ T ∗M , the bundle projection by s : N∗F → M , and by ω ∈ �2(N∗F )

the restriction of the canonical symplectic form on T ∗M . Then

s : (N∗F ,Gr(ω)) −→ (M, L)

is a presymplectic realization.
Assume that the foliationF is given by the fibres of a surjective submersion p : M → B.

Then the above presymplectic realization is part of a dual pair

(M, L)
s←− (N∗F ,Gr(ω))

t−→ (B, T ∗B), t := p ◦ s.

Example 7 If (M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1) is a dual pair, and σ0 ∈ �2(M0),
σ1 ∈ �2(M1) are closed two-forms, then

(M0,Rσ0(L0))
s←− (�,Gr(ω + s∗(σ0) − t∗(σ1)))

t−→ (M1,−Rσ1(L1))

is again a dual pair, as follows by the description provided in Proposition 7(i i i).

The main property of strong forward Dirac maps is contained in the following result from
[2, Proposition 2.8] (see also [10, Lemma 7.3]):

Lemma 4 (Strong forward Dirac maps) A strong, forward Dirac map ϕ : (�, L�) →
(M, L) induces a comorphism of Lie algebroids � : ϕ∗(L) → L� .

A presymplectic realization ϕ : (�,Gr(ω)) → (M, L) induces a comorphism of Lie
algebroids � : ϕ∗(L) → T�.

Proof The forward condition on ϕ means that, for each x ∈ � and a ∈ Lϕ(x), there is at
least one b ∈ L�,x such that b ∼ϕ a, and the strong condition means that at most one
such b exists. This defines a comorphism of vector bundles � : ϕ∗(L) → L� by setting
b =: �x (a). If now a1, a2 ∈ 
(L), then �†(a1) ∼ϕ a1 and �†(a2) ∼ϕ a2; therefore
�†([a1, a2]) ∼ϕ [a1, a2]; by uniqueness, it follows that �†([a1, a2]) = [�†(a1),�†(a2)]
and hence �† is a homomorphism of Lie algebras. This proves the first assertion, and the
second follows by composing � with the anchor map prT : Gr(ω) → T�. ��
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Remark 4 Let (M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1) be a dual pair. By Proposition
7(i i i) and Lemma 4 above, we obtain a comorphism of Lie algebroids

� : (s, t)∗(L0 × −L1) −→ T�.

Restricting this to the first and second components, we obtain induced comorphisms of Lie
algebroids:

�0 : s∗(L0) −→ W = ker t∗, �1 : t∗(L1) −→ V = ker s∗.

For sections ai ∈ 
(Li ), w := �
†
0 (a0) ∈ 
(W ) is the unique vector field tangent to the

fibres of t, satisfying w + ιwω ∼s a0; similarly, v := �
†
1 (a1) is the unique vector field

tangent to the fibres of s satisfying v − ιvω ∼t a1. Note also that any two such vector fields
�

†
0 (a0),�

†
1 (a1) are ω-orthogonal and commute, since

[�†
0 (a0),�

†
1 (a1)] + ι[�†

0 (a0),�
†
1 (a1)]ω ∼(s,t) [(a0, 0), (0, a1)] = 0,

where for a section a = u + ξ , a denotes the section u − ξ .

The main example of dual pairs is the following:

Example 8 If a Diracmanifold (M, L) is integrable by a (Hausdorff) presymplectic groupoid
(G, ω) ⇒ (M, L), then

(M, L)
s←− (G,Gr(ω))

t−→ (M,−L)

forms a dual pair [10]. In this case, the induced comorphism of Lie algebroids s∗(L) → W is
the canonical action by left-invariant vector fields of the Lie algebroid L on its Lie groupoid
G, and is automatically complete (in the sense of §13). OurMain Theorem is strongly related
to this example (see Sect. 8).

It was proven in [18, Theorem 8] that the existence of a complete symplectic realization of
a Poisson manifold implies its integrability; but, as pointed out in [18, Corollary 7], the proof
depends only upon the existence of a complete action of the corresponding Lie algebroid.
Applying these results in the same way as in the case of presymplectic realizations [10,
Remark 7.5], one obtains the following:

Corollary 4 (Integrability criterion) Consider a surjective, forward Dirac submersion s :
(�,Gr(ω)) → (M, L). Assume that there is an involutive subbundle W ⊂ T� such that:

Gr(ω)s = V ⊕ Rω(W ), where V := ker s∗.

If the induced comorphismofLie algebroids s∗(L) → W (seeCorollary2(i i i)) is complete
(see §13), then (M, L) is integrable by a (not necessarily Hausdorff) presymplectic groupoid.
In that case, the source-simply connected Lie groupoid integrating (M, L) is Hausdorff if
and only if the holonomy groupoid Hol(W ) ⇒ � of the foliation W is Hausdorff.

5 Operations with weak dual pairs

In this sectionwe discuss operations that can be performedwithweak dual pairs: the operation
of composition of weak dual pairs, the operation of pullback along a surjective submersion,
and its partial inverse, called the reduction procedure (which, under certain assumptions,
allows one to reduce a weak dual pair to a dual pair), and finally the pullback procedure
along transverse maps.
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Composition

Weak dual pairs can be composed. Namely, suppose

(M0, L0)
s01←− (�01,Gr(ω01))

t01−→ (M1,−L1),

(M1, L1)
s12←− (�12,Gr(ω12))

t12−→ (M2,−L2)

are weak dual pairs. Their composition is

(M0, L0)
s02←−(�02,Gr(ω02))

t02−→ (M2,−L2),

where

�02 := �01 ×M1 �12, ω02 := pr∗1(ω01) + pr∗2(ω12),

M0
s02←− �02

t02−→ M2, s02 := s01 ◦ pr1, t02 := t12 ◦ pr2.

Pictorially:

(�02,Gr(ω02))

pr1 pr2

(�01,Gr(ω01))

s01 t01

(�12,Gr(ω12))

s12 t12

(M0, L0) (M1,±L1) (M2,−L2)

Proposition 8 The composition of weak dual pairs is again a weak dual pair.

Proof We must check that

(M0, L0)
s02←− (�02,Gr(ω02))

t02−→ (M2,−L2)

is again a weak dual pair. First, since s12 is a submersion, the map pr1 : �02 → �01 is a
submersion. Similarly, pr2 : �02 → �12 is a submersion. Hence, s02, t02 are compositions of
submersions. The same sequence of implications shows that these maps are also surjective.

We turn next to the characterization provided by item (iv) of Proposition 6. From

R−ω01(s
!
01(L0)) = t!01(L1), s!12(L1) = Rω12(t

!
12(L2)),

and from the equality t01 ◦ pr1 = s12 ◦ pr2 on �02, it follows that

R−pr∗1(ω01)(s
!
02(L0)) = Rpr∗2(ω12)(t

!
12(L2)) ⇐⇒ s!02(L0) = Rω02(t

!
02(L2)).

Thus the first condition of Proposition 6(iv) holds. We conclude the proof by showing that
also the second condition in Proposition 6(iv) hold. Let a0 ∈ L0. Then there isw01 ∈ W01 :=
ker(t01∗) such that w01 + ιw01ω01 ∼s01 a0. Then w02 := (w01, 0) ∈ T�01 ×T M1 T�12 lies
in W02 := ker(t02∗), and w02 + ιw02ω02 ∼s02 a0. Similarly, for all a1 ∈ −L1, there is
v02 ∈ V02 := ker(s02∗) such that v02 + ιv02ω02 ∼t02 a1. Hence

w02 + v02 + ιw02+v02ω02 ∼(s02,t02) (a0, a1).

This concludes the proof. ��
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Remark 5 Given dual pairs

(M0, L0)
s01←− (�01,Gr(ω01))

t01−→ (M1,−L1)

(M1, L1)
s12←− (�12,Gr(ω12))

t12−→ (M2,−L2),

their composition (in the sense of Proposition 8) is not a dual pair, unless dim M1 = 0, simply
because

dim�02 = dim M0 + dim M1 + dim M2.

and hence the dimension condition of Definition 3 is violated.
When the foliation ker s02∗ ∩ ker ω02 ∩ ker t02∗ ⊂ T�02 is simple, the reduction proce-

dure of Proposition 9(i i) below, applied to their composition, yields again a dual pair. Note
however that this requirement is not always met, as illustrated in Example 9 below.

Reduction to dual pairs

In the following, we describe how weak dual pairs can be pulled back via surjective sub-
mersions, and how, under certain assumptions (which hold locally), weak dual pairs can be
reduced to dual pairs.

Proposition 9 (Reduction to dual pairs) Consider a weak dual pair diagram

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1).

(i) If r : �̃ → � is a surjective submersion, then

(M0, L0)
s◦r←− (�̃,Gr(r∗(ω)))

t◦r−→ (M1,−L1)

is again a weak dual pair.
(ii) Assume that the foliation V ∩ K ∩ W is simple, i.e., that there exists a surjective sub-

mersion r : � → � whose fibres are the leaves of V ∩ K ∩W. Then there is an induced
commutative diagram of surjective, forward Dirac submersions:

(�,Gr(ω))
ts

r

(M0, L0) (�,Gr(ω))
ts

(M1,−L1)

where ω is a closed two-form on � such that ω = r∗(ω), and where the bottom line is a
dual pair.

Proof We use the description of weak dual pairs provided by item (iv) of Proposition 6. The
first condition of (iv) holds, since

(s ◦ r)!(L0) = r!(s!(L0)) = r!(Rω(t!(L1))) = Rr∗(ω)((t ◦ r)!(L1)),

whereas the second holds because, for any surjective submersion r : �̃ → �, we have that
r : (�̃,Gr(r∗ω)) → (�,Gr(ω)) is forward Dirac. This proves (i).

By Lemma 2, V∩K∩W is a smooth, involutive distribution. For (i i), assume the existence
of a surjective submersion r : � → � whose fibres are the leaves of V ∩K ∩W . By applying
Proposition 1 to the three Dirac structures corresponding to the foliations V and W and to
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the closed two-form ω, we deduce that there are foliations V and W , and a closed two-form
ω on �, such that

V = r−1∗ V , W = r−1∗ W , ω = r∗ω.

Since ker r∗ ⊂ V ∩ W , and the fibres of r are connected, it follows that s and t are constant
along the fibres of r; hence they factor as in the diagram, s = s ◦ r, t = t ◦ r, and these
equalities imply that the maps s and t are surjective submersions. Note next that both these
maps push forward the Dirac structure L := Gr(ω):

s!(L) = s!r!(L) = s!(L) = L0, t!(L) = t!r!(L) = t!(L) = −L1,

where L := Gr(ω). Moreover, the equalities:

K = ker ω = r∗K , V = r∗V, W = r∗W,

imply that

ω(V ,W ) = ω(r∗V, r∗W ) = ω(V,W ) = 0,

V ∩ K ∩ W = 0.

Since

dim(�) = dim(�) − rank(V ∩ K ∩ W ) = dim(M0) + dim(M1),

all the conditions from Definition 3 are met, hence the diagram is a dual pair. ��
Example 9 Consider the dual pairs

(S1, T ∗
S
1)

pr2←− (S1 × S
1,Gr(ω01))

pr1−→ (S1, T ∗
S
1),

(S1, T ∗
S
1)

pr2←− (S1 × S
1,Gr(ω12))

pr1−→ (S1, T ∗
S
1)

ω01 = pr∗1(dθ) ∧ pr∗2(dθ), ω12 = λpr∗1(dθ) ∧ pr∗2(dθ),

where λ ∈ R�Q and where dθ ∈ �1(S1) denotes a volume form. Their composition as
weak dual pairs is isomorphic with the diagram

(S1, T ∗
S
1)

pr2←− (S1 × S
1 × S

1,Gr(ω02))
pr1−→ (S1, T ∗

S
1).

The leaves of the foliation ker s02∗ ∩ ker ω02 ∩ ker t02∗ = 〈λ∂θ1 + ∂θ3〉 on S
1 × S

1 × S
1 are

not closed; in particular, the foliation is not simple, and therefore the weak dual pair above
does not reduce to a dual pair. (See also [9, p. 39]).

Let us give a simple characterization of the situation when one of the legs of a weak dual
pair is a Poisson structure.

Lemma 5 Let (M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1) be a weak dual pair.

i) Then L1 is a Poisson structure if and only if W = V ω.
ii) If L1 is a Poisson structure, then s is a presymplectic realization iff the weak dual pair is

a dual pair.

Proof L1 is a Poisson structure exactly when L1 ∩ T M1 = 0; but note that

L1 ∩ T M1 = t!t!(L1) ∩ T M1 = t!(R−ω(V ) + W ) ∩ T M1

= t!(R−ω(V )) ∩ T M1 = t∗(V ∩ K ).
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Hence, L1 is Poisson iff V ∩ K ⊂ W . By Lemma 1, we have V ω = W + V ∩ K . Therefore,
V ∩ K ⊂ W iff V ω = W . This proves (i).

Let us prove now (i i). By (i) we have that V ∩ K ⊂ W . Therefore V ∩ K ∩ W = 0
iff V ∩ K = 0. The first condition is equivalent to the diagram being a dual pair, while the
second is equivalent to s being a presymplectic realization. ��

Proposition 9 and Lemma 5 give a procedure for reducing to presymplectic realizations:

Corollary 5 (Reduction to presymplectic realizations) Let

s : (�,Gr(ω)) −→ (M0, L0)

be a surjective, forward Dirac submersion. Assume that V ω is a smooth distribution. Then
V ω and V ∩ K are both smooth, involutive distributions, and:

(i) if the foliation V ∩ K is simple, i.e. if its leaves are the fibres of a surjective submersion
r : � → �, then ω = r∗(ω), where ω is a closed 2-form on �, and s factors as s = s ◦ r,
where s is a presymplectic realization

(�,Gr(ω))
s

r

(M0, L0) (�,Gr(ω))
s

(ii) if the foliation V ω is simple, i.e. if its leaves are the fibres of a surjective submersion
t : � → M1, then there exists a Poisson structure π1 on M1 which fits into the weak dual
pair

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,Gr(−π1))

(iii) if both (i) and (i i) are assumed, then t factors as t = t ◦ r, and the weak dual pair from
(i i) reduces to a dual pair:

(�,Gr(ω))
ts

r

(M0, L0) (�,Gr(ω))
ts

(M1,Gr(−π1))

Example 10 Consider the forward Dirac map s : (R3,Gr(ω)) → (R2, L0) from Example
5. Then s is a presymplectic realization, i.e. V ∩ K = 0, and V ω is the simple foliation
corresponding to the fibres of t : R

3 → R, t(x, y, z) := y. By Corollary 5, we obtain the
dual pair (compare with the pre-dual pair of Example 5):

(R2, L1)
s←− (R3,Gr(ω))

t−→ (R, T ∗
R).

Pullback along transverse maps

In the Poisson setting, the procedure of pullback of a dual pair to small transversals to
the symplectic leaves goes back to [38, Theorem 8.1], where it is shown that the induced
transverse Poisson structures are anti-isomorphic. Here we discuss the procedure in the
general Dirac setting.

We will use the following result.

Lemma 6 Let f : (M, LM ) → (N , LN ) be a forward Dirac map, and let g : X → N be a
smooth map that is transverse to LN (see §12). Then the following hold:
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(i) f and g are transverse maps, so that M ×N X, i.e. the pullback of f and g, is a smooth
manifold;

(ii) pr1 : M ×N X → M is transverse to LM, so that pr!1(LM ) is a Dirac structure on
M ×N X;

(iii) pr2 : (M ×N X, pr!1(LM )) → (X, g!(LN )) is forward Dirac. Moreover, if f is a strong
map, then also pr2 is a strong map.

Proof Throughout, (m, x) will denote a point in M ×N X , so that n := f (m) = g(x). Using
that g is transverse to LN and that f is forward Dirac, for , we obtain:

TnN = g∗(Tx X) + prT (LN ,n) = g∗(Tx X) + prT ( f!LM,m) ⊂ g∗(Tx X) + f∗(TmM),

which proves (i).
For (i i), let v ∈ TmM . By item (i) above, we can decompose f∗(v) = g∗(u) + f∗(w),

with u ∈ Tx X and w + α ∈ LM,m for some α ∈ T ∗
mM . Then (v − w, u) ∈ T(m,x)(M ×N X)

and v = pr1(v − w, u) + prT (w + α). This proves (i i).
The first part of (i i i) is proven in [22, Lemma 3a)]. Finally, assume that f is a strong

forwardDiracmap. Consider (v, 0) ∈ T(m,x)(M×N X)∩pr!1(LM ). Then f∗(v) = g∗(0) = 0.
Since pr1 is backward Dirac, there is α ∈ ker pr∗1 such that v + α ∈ LM,m . By transversality
of f and g, we have the short exact sequence:

0 −→ T ∗
n N

f ∗−g∗
−→ T ∗

mM ⊕ T ∗
x X

(pr∗1,pr∗2)−→ T ∗
(m,x)(M ×N X) −→ 0.

Hence, there is β ∈ T ∗
n N such that f ∗(β) = α and g∗(β) = 0. Since f is forward Dirac, we

have that f∗(v) + β = β ∈ LN ,n ∩ ker g∗. Since g is transverse to LN , this yields β = 0,
and so α = 0. So v ∈ LM,m ∩ ker f∗, and since f is a strong map, v = 0. We have shown
that ker pr2∗ ∩ pr!1(LM ) = 0, i.e. pr2 is a strong map. ��

Next, we present the general procedure of pulling back along transverse maps.

Proposition 10 (Transverse pullback) Consider a weak dual pair

(M0, L0)
s←− (�,Gr(ω))

t−→ (M1,−L1).

For j = 0, 1, consider a smooth map i j : X j → Mj that is transverse to L j . Denote

�X := X0 ×M0 � ×M1 X1, ωX := pr∗2ω
sX = pr1 : �X → X0, tX = pr3 : �X → X1.

Then the diagram

(X0, i
!
0(L0))

sX←− (�X ,Gr(ωX ))
tX−→ (X1,−i !1(L1))

satisfies all axioms of a weak dual pair, except maybe for the surjectivity of the maps sX and
tX . The same holds for dual pairs instead of weak dual pairs.

Proof We apply Lemma 6 to the pair of maps:

(s, t) : (�,Gr(ω)) −→ (M0, L0) × (M1,−L1),

i0 × i1 : X0 × X1 −→ M0 × M1.

We conclude that �X is a smooth manifold, and that

(sX , tX ) : (�X ,Gr(ωX )) −→ (X0, i
!
0(L0)) × (X1,−i !1(L1))
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is a forward Dirac map.
Next, we show that sX and tX are submersions. We use the notation V := ker s∗, W :=

ker t∗ and K := ker ω. Let (x0, z, x1) ∈ �X , and let v0 ∈ Tx0 X0. Since s is a submersion,
there is w0 ∈ Tz� such that s∗(w0) = i0∗(v0). Since i1 and L1 are transverse, we can
decompose t∗(w0) = i1∗(v1)+ u, where u +α ∈ L1,m1 and m1 = i1(x1). Since t is forward
Dirac, there is w1 ∈ Tz� such that t∗(w1) = u and ιw1ω = −t∗(α). This implies that
w1 ∈ Wω. By Lemma 1(c), Wω = V + W ∩ K , so we can decompose w1 = w2 + w3

with w2 ∈ V and w3 ∈ W . Hence t∗(w2) = t∗(w1) = u and s∗(w2) = 0. So the element
w = w0−w2 satisfies s∗(w) = i0∗(v0) and t∗(w) = i1∗(v1), thus (v0, w, v1) ∈ T(x0,z,x1)�X .
This shows that sX is a submersion, and similarly, one shows that also tX is a submersion.

Since the fibres of s and t are ω-orthogonal, by construction it follows that also the fibres
of sX and tX are ωX -orthogonal; hence it follows from Proposition 6(i i i) that the transverse
pullback

(X0, i
!
0(L0))

sX←− (�X ,Gr(ωX ))
tX−→ (X1,−i !1(L1))

is a weak dual pair.
Assume now that the weak dual pair in the statement is a dual pair. This is equivalent by

Proposition 7(i i i) to (s, t) being a presymplectic realization and dim� = dim M0+dim M1.
In that case, it follows from Lemma 6 that (sX , tX ) is also a presymplectic realization, and
transversality yields the dimension condition

dim(�X ) = dim(�) + dim(X0) + dim(X1) − dim(M0) − dim(M1)

= dim(X0) + dim(X1).

Invoking Proposition 7(i i i) once again, we conclude that the transverse pullback of a dual
pair is again a dual pair. ��

6 On the existence of self-dual pairs

An important ingredient of our Main Theorem is the following notion:

Definition 5 Let L ⊂ TM be a Dirac structure on M , and let s : L → M denote the bundle
projection. A spray for L is a vector field V ∈ X(L), satisfying:

(Spr1) s∗Va = prT (a), for all a ∈ L;
(Spr2) m∗

t V = tV , where mt : L → L denotes multiplication by t �= 0.

For example, given a linear connection on L with horizontal lift h, the vector field Va :=
ha(prT (a)) is a spray for L .

Given a spray V for L , note that (Spr2) implies that V vanishes along M , identified with
the zero-section of L . Therefore, there exists a small enough neighborhood U ⊂ L of M on
which the flow ϕε : U → L of V is defined for 0 ≤ ε ≤ 1, and consider

ω :=
∫ 1

0
ϕ∗

ε ωLdε ∈ �2(U), t := s ◦ ϕ1 : U → M,

where ωL ∈ �2(L) denotes the pullback of the canonical two-form on T ∗M under prT ∗ :
L → T ∗M . With this notation, we state:
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Main Theorem There is an open set � ⊂ U containing M, such that the diagram

(M, L)
s←− (�,Gr(ω))

t−→ (M,−L)

forms a dual pair.

The proof will make use of the following

Lemma 7 (i) The flow ϕε is the identity along M, and in the canonical decomposition
T L|M = T M ⊕ L, its differential reads

ϕε∗ : T L|M ∼−→ T L|M , ϕε∗(u, a) = (u + εprT (a), a).

(ii) We have that (ker s∗ ∩ ker ω ∩ ker t∗)|M = 0.

Proof (i) Since V vanishes along M , we have ϕε |M = idM . Let VT ∈ X(T L) be the vector
field generating the flow ϕε∗ : T L ∼−→ T L (also called the tangent lift of V). Due to (Spr2),
VT is tangent to Tx L ⊂ T L for each x ∈ M , and VT |Tx L ∈ X(Tx L) is a linear vector field.
By (Spr1), this vector field corresponds to the endomorphism

TxM ⊕ Lx → TxM ⊕ Lx , (u, a) 	→ (prT (a), 0);
the exponential of this map, i.e. ϕε∗ on TxM ⊕ Lx , is given by the formula in the statement.
For a different proof, see [3, Lemma 3.21].

(ii) Along the zero section M ⊂ L , the two-form ωL ∈ �2(L) reads:

ωL
(
(u, v + η), (u′, v′ + η′)

) = η′(u) − η(u′).

On the other hand, by item i), we have

ϕε∗(u, v + η) = (u + εv, v + η), (u, v + η) ∈ T L|M = T M ⊕ L;
hence

ω
(
(u, v + η), (u′, v′ + η′)

) = η′(u + 1/2v) − η(u′ + 1/2v′). (6)

Let (u, v + η) ∈ ker s∗ ∩ ker ω ∩ ker t∗|M . Since s∗(u, v + η) = u and

t∗(u, v + η) = s∗ϕ1∗(u, v + η) = s∗(u + v, v + η) = u + v,

it follows that u = 0 and v = 0. By formula (6),

0 = ω((u, v + η), (u′, 0)) = −η(u′)

for all u′; thus, also η = 0. ��
Proof of Main Theorem Let U ⊂ L be a neighborhood of M on which ϕε is defined for
0 ≤ ε ≤ 1, and so also t = s◦ϕ1 andω = ∫ 1

0 ϕ∗
ε ωLdε are defined onU .Write V,W, K ⊂ TU

for ker s∗, ker t∗ and ker ω, respectively. By Lemma 7(i i), (V ∩ K ∩ W )|M = 0. Sine this
condition is open, we may assume that

(V ∩ K ∩ W )|� = 0, (7)

where � ⊂ U is an open neighborhood of M .
Consider the pullback to L of the tautological one-form λcan on T ∗M :

λL := (prT )∗λcan ∈ �1(L).
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Note that condition (Spr1) in the definition of a spray V implies that V + λL is a section of
the Dirac structure s!(L). The local flow �ε of the section V + λL on s!(L) covers the local
flow ϕε : L → L and, on its domain of definition, it is given by (e.g. [23, Proposition 2.3]):

�ε = ϕε∗ ◦ RBε : s!(L) −→ s!(L),

where Bε = ∫ ε

0 ϕ∗
s dλLds = − ∫ ε

0 ϕ∗
s ωLds. Since B1 = −ω, we have that:

s!(L)|ϕ1(�) = �1

(
s!(L)|�

)
= ϕ1!(R−ω(s!(L)|�)),

and therefore
R−ω(s!(L)|�) = ϕ!

1(s
!(L)|ϕ1(�)) = t!(L)|�. (8)

Since dim� = 2 dim M and Eqs. (7) and (8) hold, Proposition 7(i i) ⇒ (i) yields the
conclusion. ��

7 Application: normal forms around Dirac transversals

In this section, we use the Main Theorem to prove the normal form theorem around Dirac
transversals (from [13]) The same strategy is already present in [21] in the context of Poisson
geometry.

Definition 6 An embedded submanifold X of a Dirac manifold (M, L) is called a Dirac
transversal if the inclusion i : X → M is transverse to L .

The normal form theorem aroundDirac transversals states that, up to diffeomorphisms and
exact gauge transformations, the induced Dirac structure on the transversal determines the
Dirac structure around the transversal. The Poisson geometric version of this result appeared
in [21]; a local version for Dirac structures occurs in [5]; a version for generalized complex
structures was described in [3]. Moreover, the same statement as the one below, but with a
different proof, appeared in [13]:

Theorem (Normal form aroundDirac transversals)Let i : X → (M, L) be aDirac transver-
sal, and let p : N X → X be the normal bundle of X. Then there exist an embedding
ϕ : U → M of an open neighborhood U ⊂ N X of X extending i , and an exact two-form
α ∈ �2(U ), such that

ϕ!(L) = Rα(p!i !(L)).

Proof Consider the dual pair given by the Main Theorem:

(M, L)
s←− (�,Gr(ω))

t−→ (M,−L).

We apply the pullback procedure of Proposition 10, and obtain the diagram

(X, i !(L))
s0←− (�0,Gr(ω0))

t0−→ (M,−L), (9)

where

�0 := s−1(X), ω0 := ω|�0 , s0 := s|�0 , t0 := t|�0 .

Note that s0 is surjective. By construction, the image of t0 contains X and it is open, because
t0 is a submersion. Therefore, by replacing M by t0(�0), we may assume that also t0 is onto,
and so, by Proposition 10, we may assume that the diagram (9) is a dual pair.
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The fact that X is a Dirac transversal implies that

ĩ : i !(L) −→ L|X , ĩ(u + i∗ξ) := i∗(u) + ξ

is a well-defined bundle map which fits into the exact sequence:

0 −→ i !(L)
ĩ−→ L|X −→ N X −→ 0.

Let ρ : N X → i∗(L) be a splitting of this sequence. By Lemma 7(i), we have that

t0∗ : T�0|X = T X ⊕ L −→ T M, t0∗(u, a) = u + prT (a),

and therefore there exists an open set X ⊂ U ⊂ N X such that

ϕ := t0 ◦ ρ : U ↪−→ M

is an open embedding extending the inclusion i . Since s0 ◦ ρ = p and ϕ = t0 ◦ ρ,

p!(i !(L)) = ρ!(s!0(i !(L))) = ρ! (Rω0(t
!
0(L))

)
= Rρ∗ω0(ϕ

!(L)),

wherewe have used the relation s!0(i !(L)) = Rω0(t
!
0(L)) fromProposition 7(i i). This implies

the conclusion:

ϕ!(L) = Rα(p!(i !(L))), where α := −ρ∗ω0 ∈ �2(U ).

��

8 Further remarks

The origin of the formula

The formula for the two-formω from theMainTheoremoriginates in the path-space approach
to integrability of Lie algebroids, developed in [17]. In a nutshell, given a Lie algebroid A
over a manifold M , the space P(A) of A-paths carries a canonical homotopy foliation, of
finite codimension. The leaf space of this foliation has a canonical structure of topological
groupoidG(A) ⇒ M (the so-calledWeinstein groupoid of A), which is smooth exactly when
A is integrable by a Lie groupoid. If the Lie algebroid is a Dirac structure A = L on M , and
moreover, if it is integrable, then G(L) carries a canonical, multiplicative, closed two-form
ωG(L), for which the source and target maps s, t : (G(L),Gr(ωG(L))) → (M, L) give a dual
pair [10]. However, even if L is not integrable, the Banach manifold P(L) of L-paths carries
a canonical two-form ωP(L) which is basic for the homotopy foliation, and, in the integrable
case, it is the pullback of ωG(L). Using the language developed in Sect. 5, in the integrable
case the passage from P(L) to G(L) can be viewed as a reduction of an infinite dimensional
weak dual pair to a finite dimensional dual pair:

(P(L),Gr(ωP(L)))
ts

π

(M, L) (G(L),Gr(ωG(L)))
ts

(M,−L)

Now, a spray V on L induces an exponential map expV : � → P(L) on a neighborhood
� ⊂ L of the zero-section, which is transverse to the homotopy foliation, and of complemen-
tary dimension. The two-form ω from our main result is the precisely the pullback of ωP(L)
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via expV (see the explicit formula of ωP(L) from [10, Section 5]). In fact, along these lines,
one can use results of loc.cit. to give an alternative proof of our Main Theorem; however,
such a proof is bound to be less elementary.

Local presymplectic groupoids

Closely related to the dual pair constructed in our Main Theorem is the notion of local
presymplectic groupoid. First, by [17, Corollary 5.1], any Lie algebroid is integrable by a
local Lie groupoid, and second, by extending the results of [10] to the setting of such local
objects, one can prove the existence of a local presymplectic groupoid integrating a given
Dirac manifold; and in particular, the existence of a self-dual pair.

However, the converse construction seems of more significance: one can endow the
self-dual pair constructed in the Main Theorem with the structure of a local presymplec-
tic groupoid, yielding a rather explicit construction of a local integration of a Dirac manifold;
a simple version of this construction was shown to us by Eckhard Meinrenken [31], which
uses the comorphism � from Remark 4 to construct an action of L × −L of �, which cor-
responds to the left and right invariant vector fields on the local Lie groupoid � ⇒ M . This
is very much in the spirit of [20], where a local symplectic groupoid integrating a Poisson
manifold is constructed by using a symplectic realization. For a general construction of local
Lie groupoids using Lie algebroid sprays, see [4].

The twisted case

Courant algebroids may be twisted by closed three-forms. Specifically, let φ ∈ �3(M) be
closed, and consider the φ-twisted Dorfman bracket

[u + ξ, v + η]φ := [u + ξ, v + η] + ιu ιvφ, u + ξ, v + η ∈ 
(TM),

and where [u + ξ, v + η] stands for the Dorfman bracket of §2. A Lagrangian subbundle
L ⊂ TM (in the sense of §6) is called a φ-twisted Dirac structure if its space of sections is
involutive under the φ-twisted Dorfman bracket.

Twisted Dirac structures go back, in one form or another, to [27,32,34,35]. A crucial
example of such structures is given by Cartan-Dirac structures associated to nondegenerate,
invariant inner products on the Lie algebra g of a Lie group G [35, Example 4.2], and whose
presymplectic realizations correspond to the quasi-Hamiltonian g-spaces of [1] (see [10]).

Twisted Dirac structures are in particular Lie algebroids, whose global objects correspond
(in the integrable case) to the twisted presymplectic groupoids of [10], or quasi-symplectic
groupoids in the language of [41].

Our Main Theorem can be adapted to the twisted setting in a straightforward way [30]
(see also the comments in [19, Section 4]). We briefly indicate here the necessary modifica-
tions. The notions of forward/backward Dirac maps, and of sprays make sense for general
Lagrangian subbundles (as pointwise conditions), and retain theirmeaning from the untwisted
case. For example, if L ⊂ TM is a φ-twisted Dirac structure, and s : � → M is a sub-
mersion, then s!(L) := {u + s∗(ξ) | s∗(u) + ξ ∈ L} is a s∗(φ)-twisted Dirac structure on
�. The notion of dual pair, however, needs to be adapted: if (Mi , Li , φi ) are twisted Dirac
structures, a twisted dual pair is a diagram of surjective, forward Dirac submersions

(M0, L0)
s←− (�, ω)

t−→ (M1,−L1)
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as in Definition 3, but where now ω ∈ �2(�) is a two-form satisfying

dω = s∗(φ0) − t∗(φ1).

Lemma 7 remains valid ipsis litteris in the twisted case, and if V ∈ X(L) is a spray for L
(in the sense that it satisfies conditions (Spr1) and (Spr2) of Definition 5), then V + λL is a
section of the s∗(φ)-twisted Dirac structure s!(L) (where λL is, as before, the pullback of the
tautological one-form on M via the projection prT ∗ : L → T ∗M). Then D = [V+λL , ·]s∗(φ)

corresponds to the derivation

D = (V, b) ∈ X(L) ⊕ �2(L), b := dλL + ιVs∗(φ), LVs∗(φ) = db,

that is, it integrates to a linear automorphism

�ε : TU −→ TU, �ε(u + η) = ϕε∗(u) + ϕ∗−1
ε (ιu Bε + η),

which is orthogonal for the inner product of §2, and preserves the s∗(φ)-twisted bracket;
here U ⊂ L denotes (as before) an open neighborhood of M on which the flow of V is
defined up to time one, and Bε denotes the two-form Bε := ∫ ε

0 ϕ∗
s (b)ds, which satisfies

dBε = ϕ∗
ε s

∗(φ) − s∗(φ).
The condition that [
(s!(L)), 
(s!(L))]s∗(φ) ⊂ 
(s!(L)) implies that D
(s!(L)) ⊂


(s!(L)), and so �ε restricts to a Lie algebroid automorphism of s!(L). As in the proof
of the Main Theorem, this implies that

s!(L) = ker s∗ ⊕ Rω(ker t∗), t!(L) = R−ω(ker s∗) ⊕ ker t∗,

where ω := −B1, t := s ◦ ϕ1. The twisted version of Proposition 7 allows us to deduce that,
on an open neighborhood � ⊂ U of M , the map (s, t) : (�,Gr(ω)) → (M, L) × (M,−L)

is a presymplectic realization; we obtain a twisted dual pair:

(M, L)
s←− (�,Gr(ω))

t−→ (M,−L), dω = s∗(φ) − t∗(φ).

Morita equivalence

Closely related to the notion of dual pairs above is that of Morita equivalences. This notion
of equivalence was first introduced by Xu [39,40] in the context of Poisson manifolds as a
classical analogue of the algebraic notion for C∗-algebras developed by Rieffel [33].

Two Poisson manifolds (M0, π0), (M1, π1) are called Morita equivalent if there exists a
dual pair

(M0,Gr(π0))
s←− (�,Gr(ω))

t−→ (M1,−Gr(π1))

with simply-connected fibres, in which the induced comorphisms

s∗(Gr(π0)) → T�, t∗(Gr(π1)) → T�

are complete [40, Definition 2.1]. This ensures that the Poisson manifolds are integrable
(see Corollary 4), that the symplectic leaves of (M0, π0) and (M1, π1) are in bijection
(with the same first homology), that they have anti-isomorphic transverse Poisson structures,
isomorphic algebras of Casimirs and modules of first Poisson cohomology [24,38]. More
importantly, it ensures that Morita equivalent Poisson manifolds have equivalent ’categories’
of complete symplectic realizations [40, Theorem 3.3].

Morita equivalence of Poisson manifolds can also be approached through symplectic
groupoids: two (integrable) Poisson manifolds are Morita equivalent if their source-simply
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connected symplectic groupoids (G0, ω0) ⇒ (M0, π0), (G1, ω1) ⇒ (M1, π1) admit a sym-
plectic (G0,G1)-bibundle which is biprincipal [9,28,39,40]. This line of thought was greatly
extended in [41], which introduces Morita equivalence for quasi-symplectic groupoids (or
twisted presymplectic groupoids in the sense of [10]), which plays an analogous role for
twisted Dirac manifolds as Morita equivalence of symplectic groupoids in Poisson geom-
etry. As in the Poisson case, this notion only makes sense in the integrable case, but some
recent ’stacky’ versions of Morita equivalence forgo the integrability hypothesis [8,9,12] (cf.
also the weaker notion of Morita equivalence discussed in [25, Section 6]).
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