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Abstract For any integer K ≥ 1 let s(K ) be the smallest integer such that in any colouring
of the set of squares of the integers in K colours every large enough integer can be written
as a sum of no more than s(K ) squares, all of the same colour. A problem proposed by
Sárközy asks for optimal bounds for s(K ) in terms of K . It is known by a result of Hegyvári

and Hennecart that s(K ) ≥ K exp
(

(log 2+o(1)) log K
log log K

)
. In this article we show that s(K ) ≤

K exp
(

(3 log 2+o(1)) log K
log log K

)
. This improves on the bound s(K ) �ε K 2+ε , which is the best

available upper bound for s(K ).

Keywords Monochromatic · Squares · Circle method

Mathematics Subject Classification Primary 11N36; Secondary 11P99

1 Introduction

For any integer K ≥ 1, a colouring in K colours of the set Q of the squares of the integers
is a partition of Q into K disjoint subsets. Each subset of Q in such a partition is called a
colour of the colouring. Let s(K ), for any integer K ≥ 1, be the smallest integer such that
given any colouring of Q in K colours, every sufficiently large integer is expressible as a
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sum of at most s(K ) squares, all of the same colour. Then Sárközy remarks on page 29 of
[10] that it is easily seen that s(K ) is finite for each integer K ≥ 1 and, in Problem 40 of
the list of problems in [10], Sárközy asks for bounds, in terms of K , for s(K ) as well as the
corresponding integer in the analogous problem for the set of prime numbers.

Our present contribution towards the solution of Sárközy’s problem for the squares is the
following theorem.

Theorem 1.1 For any integer K ≥ 2 we have s(K ) ≤ K exp
(

(3 log 2+o(1)) log K
log log K

)
.

Here o(1) � log log log K
log log K for all large enough K . This improves on the bounds s(K ) �

(K log K )5 given byTheorem1, page 318 ofHegyvári andHennecart [4] and s(K ) �ε K 2+ε

given subsequently by Theorem 1.1, page 18 of Akhilesh and Ramana [1]. Moreover, our
upper bound for s(K ) compares fairly well with the lower bound

s(K ) ≥ K exp

(
(log 2 + o(1)) log K

log log K

)
(1)

for all K ≥ 2 provided by Theorem 2, page 319 of [4].
For the convenience of the reader we summarise here the proof of the lower bound (1)

from [4]. For any integer m ≥ 1, let Um be the product of the first m prime numbers. We
partition the squares coprime toUm by the classes they belong to in Z/UmZ and partition the
remaining squares by their smallest divisor from the set of primes dividingUm . This defines
a colouring ofQ. The number of colours in this colouring is Km = m + bm , where bm is the
number of invertible square classes in Z/UmZ. It is then verified that at least Um summands
are required to represent any given squarefree multiple of Um as a sum of squares, all of the
same colour with respect to this colouring ofQ. This implies that s(Km) ≥ Um for allm ≥ 1.
The lower bound (1) results on applying this conclusion to m such that Km ≤ K < Km+1

for a given integer K ≥ 1 and using standard estimates on the distribution of prime numbers
to express Um in terms of K .

We now turn to the proof of Theorem 1.1. As with Ramana and Ramaré [7], which treats
Sárközy’s problem for the set of primes, and [1], our proof of Theorem 1.1 ultimately relies on
the elegant principle underlying the argument in [4] for the upper bound s(K ) � (K log K )5.
We paraphrase this principle in Lemma 1.2 below with the aid of the following notation.

For any subset S of the integers and any integer m ≥ 1, we write Em(S) for the number
of tuples (x1, x2, . . . , x2m) in S2m satisfying

x1 + x2 + x3 + · · · + xm = xm+1 + xm+2 + · · · + x2m . (2)

Lemma 1.2 Let N , L and m be integers and D a real number satisfying the conditions
L ≥ N ≥ 2D(mD + 1), D ≥ 1 and m ≥ 2. If S is a subset of the integers in the interval
(N , N + L] such that

Em(S) ≤ |S|2mD

L
(3)

and if S contains an integer that is not divisible by any prime number p ≤ �mD� then every
integer n ≥ (2�mD� + 1)m(N + L) is a sum of no more than n

N elements of S.

This lemma is a consequence of a well-known finite addition theorem, also due to Sárközy.
We use this theorem in the form provided by Lev [5]. Deferring the detailed proof of
Lemma 1.2 to Sect. 4.1, let us describe how this lemma applies to Sárközy’s problem. For
an integer K ≥ 1, let B be the set of squares of integers that are not divisible by any prime
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Monochromatic sums of squares 53

p ≤ B, where B is a fixed but large power of K , say B = K 13. For a given integer N ≥ 1,
let B(N ) denote B ∩ (N , 4N ]. It is then readily verified that there is a C > 0 such that

|B(N )| ≥ N
1
2

C log K ≥ K when N is large enough. Suppose now that ∪1≤i≤KQi is a partition
of the setQ into K disjoint subsets. Then for some i in [1, K ] the setQi ∩B(N ) contains at
least |B(N )|

K of the elements of B(N ). Thus if we set

S = Qi ∩ (N , 4N ], (4)

then S is a subset of the squares in the interval (N , 4N ] satisfying |S| ≥ N
1
2 /A, with

A = CK log K ≥ 1. As we verify later (see (57)), it follows from the classical bounds for
the number of representations of integers as sums of five squares that for any subset S of the

squares in (N , 4N ] satisfying |S| ≥ N
1
2 /A for some A ≥ 1 we have

E5(S) � |S|5N 3
2 � |S|10A5

N
. (5)

Therefore the bound (3) holds with m = 5 and L = 3N and D = C1A5, for some C1 ≥ 1.
Since �5D� ≤ K 13 when K is large enough and since S contains elements of B, the set S
satisfies the conditions of Lemma1.2.We then conclude that every integer n ≥ (200D+60)N
is a sum of no more than n

N elements of S. In particular, every integer in the interval I (N ) =
((200D + 60)N , (200D + 61)N ] is a sum of at most C2(K log K )5 squares all belonging to
S and hence toQi , for some C2 > 0. Thus when N is large enough, every integer in I (N ) is
the sum of no more than C2(K log K )5 squares, all of the same colour. Note, of course, that
the colour may vary with N . Nevertheless, since I (N ) meets I (N + 1) for all large enough
N , we deduce that s(K ) � (K log K )5, as given by [4].

In the remainder of this article we shall show that the argument of the preceding paragraph
can be improved to yield Theorem 1.1 essentially by taking S in (4) to beQi ∩ B(N ) rather
than Qi ∩ (N , 4N ]. This is on account of the following theorem, suggested by [7] and the
recent work of Browning and Prendiville [2].

Theorem 1.3 Let A ≥ ee
2
and l ≥ 12 be real numbers. Then for all sufficiently large integers

N, depending only on A and �, and any subset S of the squares in the interval (N , 4N ] with
|S| ≥ N

1
2

A and such that no integer in S is divisible by a prime p ≤ Al we have

E6(S) ≤ |S|11
N

1
2

exp

(
(3 log 2 + ol(1)) log A

log log A

)
, (6)

where o�(1) ��
log log log A
log log A .

Let us note that the bound (6) does not necessarily hold if we assume only that S is a

subset of the squares in the interval (N , 4N ] satisfying |S| ≥ N
1
2

A for some A ≥ 1. For
instance, we may take S = {A2n2 | M < n ≤ 2M} where M and A are integers ≥ 1. Then

with N = A2M2 we have S ⊆ (N , 4N ] and |S| = M = N
1
2

A . A classical application of the
circle method now shows that for some C > 0 we have E6(S) ∼ CM10 as M → +∞, so
that E6(S)  |S|10, contradicting (6) when A and M are sufficiently large.
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We prove Theorem 1.3 in Sect. 3. Our basic strategy for proving this theorem is similar
to that in [7] and goes back to the method of Ramaré and Ruzsa [8]. More precisely, we set
U = ∏

p≤A� p and first show that

E6(S) ≤ 5τ(U )

2N
1
2

|{x ∈ S11| f (x) an invertible square mod 4U }| + O

( |S|11
AN

1
2

)
, (7)

where f (x) denotes x1 + x2 +· · ·+ x6 − x7 −· · ·− x11 for any x = (x1, x2, . . . , x11) ∈ S11

and τ(U ) is the number of divisors ofU . We obtain (7) by an application of the circle method
following [2]. We then complete the proof of Theorem 1.3 by estimating

|{x ∈ S11| f (x) an invertible square mod 4U }| (8)

using Theorem 2.1 of Sect. 2, which treats a more general problem. In Sect. 4, our concluding
section, we finally detail the path from Theorems 1.3 to 1.1.

Throughout this article we use e(z) to denote e2π i z , for any complex number z and write

ep(z) for e
2π i z
p when p is a prime number. Further, all constants implied by the symbols �

and  are absolute except when dependencies are indicated, either in words or by subscripts
to these symbols. The Fourier transform f̂ of an integrable function f on R is defined by
f̂ (u) = ∫

R f (t)e(−ut)dt . Finally, the notations [a, b], (a, b] etc. will denote intervals in Z,
rather than in R, with end points a, b, unless otherwise specified.

2 The local problem

The main result of this section is Theorem 2.1. We shall suppose that A ≥ ee
2
and l ≥ 2 and

let

U =
∏
p≤w

p, where w = Al . (9)

In addition, we let Z be a subset of the integers satisfying the conditions

|Z| ≥ M

A
and |{z ∈ Z|z ≡ amodU }| ≤ BM

U
, (10)

for all classesa inZ/UZ and some B > 0 andM ≥ 1, real numbers.As before, τ(U ) = 2π(w)

is the number of divisors of U . Also, we denote by c = {c(i)}i∈I a given finite sequence of
integers and finally we let RU (Z, c) denote the set of triples (x, y, i) in Z ×Z × I such that
x2 + y2 + c(i) reduces to an invertible square modulo U .

Theorem 2.1 With notation as above and supposing also that A� ≥ 4BA ≥ 4ee
2
we have

|RU (Z, c)| ≤ |Z|2|I |
τ(U )

exp

(
(3 log 2 + o�,B(1)) log BA

log log BA

)
, (11)

where o�,B(1) ��
log log log BA
log log BA .

We prove Theorem 2.1 in Sect. 2.4. We do this by using the optimisation principle given by
Lemma 2.7 to pass to a problem in Z/UZ, dealt with by Theorem 2.6. By means of a pair of
applications Hölder’s inequality and the Chinese Remainder Theorem we reduce the proof
of Theorem 2.6 to the solution of a problem in Z/pZ for a given prime p|U . This problem
is treated by Proposition 2.2 of the following subsection. Theorem 2.6 is the analogue of
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Proposition 2.3 of [7] in our context. However, the argument we use for Theorem 2.6 is
both conceptually simpler and more efficient than the argument leading to Proposition 2.3
in [7], even if the first few steps in both cases are similar. In fact, and as will be shown in
another paper, our proof of Theorem 2.6 can be adapted to improve the conclusion of the
cited proposition from [7] and hence also that of the main result of [7].

2.1 A sum over Z/pZ

Throughout this subsection p shall denote fixed prime number, Gp the ring Z/pZ and c
a given element of Gp . Also, λp(x) shall denote the Legendre symbol ( xp ), for any x in

Gp . Furthermore, for any (x, y) in G2
p we set δp(x, y) = λp(x2 + y2 + c) and εp(x, y)

= 1 + δp(x, y).
We endow Gp , and likewise Gt

p for any integer t ≥ 1, with their uniform probability

measures and write Ex and Ex1,x2,...,xt in place of 1
p

∑
x∈Gp

and 1
pt

∑
x1,x2,...,xt∈Gp

respec-

tively. When t is fixed, we will use x = (x1, x2, . . . , xt ) for elements of Gt
p and abbreviate

Ex1,x2,...,xt further toEx. Also, we will use these notations in the same sense with other letters
in place of x . Finally, we define Ep(k, t) for any integer k with 1 ≤ k ≤ t by

Ep(k, t) = Ey1,y2,...,ytEx1,x2,...,xt

∏
1≤i≤t,
1≤ j≤k.

εp(xi , y j ) = EyEx

∏
1≤i≤t,
1≤ j≤k.

εp(xi , y j ). (12)

Proposition 2.2 For any integers t, k satisfying t ≥ 2 and 1 ≤ k ≤ t
2 we have

Ep(k, t) ≤ exp

(
8kt42t

p

)
. (13)

We shall prove (13) for a given integer t ≥ 2 and all integers k satisfying 1 ≤ k ≤ t
2 by

induction on k starting from k = 1, using Proposition 2.3 and Lemma 2.4 below. Let us note
that the trivial upper bound 2kt for Ep(k, t) implies (13) when p ≤ 8t32t . This allows us, in
particular, to assume that p > 2.

Proposition 2.3 Let t be an integer≥ 1 and J be a non-empty subset of {1, 2, . . . t}. Further,
letB(J ) be the subset of Gt

p consisting of y = (y1, y2, . . . , yt ) in Gt
p such that either y

2
j = y2k

for some distinct j, k in J or y2j = −c for some j in J . Then we have

(i) |Ex
∏

j∈J δp(x, y j )| <
2|J |√

p when y = (y1, y2, . . . , yt ) /∈ B(J ) and

(ii)
∣∣EyEx

∏
j∈J δp(x, y j )

∣∣ ≤ 2
p .

Proof The bound (i) is a consequence of the Weil bounds for character sums. Indeed, it
follows from Theorem 2C on page 43 of [11] that

|Ex

∏
j∈J

δp(x, y j )| = 1

p

∣∣∣∣∣∣
∑
x∈Gp

λp

⎛
⎝∏

j∈J

(x2 + y2j + c)

⎞
⎠

∣∣∣∣∣∣
≤ 2|J | − 1√

p
, (14)

when the polynomial f (X) = ∏
j∈J (X

2 + y2j + c) is not a square in Fp[X ], where Fp is
an algebraic closure of Fp . Since this condition holds for y = (y1, y2, . . . , yt ) /∈ B(J ), we
have (i).

To verify (ii), we begin by recalling that for all x ∈ Gp we have the classical identity

γpλp(x) =
∑
a∈Gp

λp(a)ep(ax) (15)
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where γp , the Gauss sum to modulus p, is the right hand side of the above relation evaluated
at x = 1. If for any a ∈ Gp we set �(a) = 0 when a = 0 and �(a) = γp

p when a �= 0 then it
is easily seen from (15) that

λp(a)Eyep(ay
2) = �(a) for all a in Gp. (16)

On combining (15) and (16) we deduce that for any b ∈ Gp we have

Eyλp(y
2 + b) = 1

γp

∑
a∈Gp

λp(a)Eyep(ay
2)ep(ab) = μ(b)

p
, (17)

where we have set μ(b) = ∑
a∈G∗

p
e(ab), for any b ∈ Gp , with G∗

p denoting the set of

non-zero elements of Gp . Thus μ(b) is p− 1 when b = 0 and is − 1 when b �= 0. By means
of (17) we then have that

ExEy

∏
j∈J

δp(x, y j ) = Ex

∏
j∈J

Ey j λp(x
2 + y2j + c) = 1

pm
Ex μ(x2 + c)m, (18)

where m = |J |. On using the values of μ(b) given above to evaluate the last term in each of
the cases c = 0,− c is non-zero square and − c is not a square we finally get

∣∣∣∣∣∣
EyEx

∏
j∈J

δp(x, y j )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ExEy

∏
j∈J

δp(x, y j )

∣∣∣∣∣∣
≤ 2pm

pm+1 = 2

p
. (19)

��
The following is the well-known Hoeffding’s lemma from elementary probability theory.

Lemma 2.4 Let Z be a real valued random variable on a probability space satisfying
a ≤ Z ≤ b, for real numbers a ≤ b. Then for any real s we have

E exp(sZ) ≤ exp(sEZ) exp

(
s2(b − a)2

8

)
. (20)

Proof Replacing Z with Z −EZ , we may suppose that EZ = 0. Then (20) is easily deduced
from the convexity of the function r �→ exp(sr) on the interval [a, b]. The details may be
found in the proof of Lemma 5.1, page 64 of [3], for example. ��
Proof of Proposition 2.2 Let t be an integer ≥ 2. We begin by noting that

Ep(1, t) = ExEy1

∏
1≤i≤t

(
1 + δp(xi , y1)

) ≤ 1

+
∑

J⊆{1,2,...,t},
J �=∅.

∣∣∣∣∣ExEy1

∏
i∈J

δp(xi , y1)

∣∣∣∣∣ , (21)

on expanding the product over 1 ≤ i ≤ t and using the triangle inequality. From the bound
(ii) of Proposition 2.3 applied to each summand in the sum over J in (21) we then obtain

Ep(1, t) ≤ 1 + 2 · 2t
p

≤ exp

(
2t+1

p

)
, (22)

which verifies (13) for k = 1. Suppose now that t ≥ 4 and that (13) holds for k − 1, where k
is an integer satisfying 2 ≤ k ≤ t

2 , and let us verify it for k. We recall the definition of B(J )
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from Proposition 2.3 and set B = B(J ) with J = {1, 2, . . . , k}. Then on writing B′ for the
complement of B in Gt

p we have

Ep(k, t) = Ey1B(y)Ex

∏
1≤i≤t,
j∈J.

εp(xi , y j ) + Ey1B′(y)Ex

∏
1≤i≤t,
j∈J.

εp(xi , y j ). (23)

Let us estimate the first term on the right hand side of (23). To this end, we set αl(y) = 1 for
any l ∈ J and any y in (y1, y2, . . . , yt ) ∈ Gt

p if either y
2
l = y2j for some j ∈ J distinct from l

or if y2l = −c and set αl(y) = 0 otherwise. Then for all y ∈ Gt
p we have 1B(y) ≤ ∑

l∈J αl(y)

and consequently

Ey1B(y)Ex

∏
1≤i≤t,
j∈J.

εp(xi , y j ) ≤
∑
l∈J

EyExαl(y)
∏

1≤i≤t,
j∈J.

εp(xi , y j ). (24)

For any l ∈ J let us write Eŷl for Ey1,y2,...,yt with the variable yl dropped. Then the trivial
bound

∏
1≤i≤t εp(xi , yl) ≤ 2t shows that the right hand side of (24) does not exceed

2t
∑
l∈J

EŷlEx Eylαl(y)
∏

1≤i≤t,
j∈J, j �=l.

εp(xi , y j ). (25)

For any l ∈ J we have Eylαl(y) ≤ 2k
p and EŷlEx

∏
1≤i≤t,
j∈J, j �=l.

εp(xi , y j ) = Ep(k −1, t). Since

|J | = k, it follows that (25) does not exceed 2t+1k2
p Ep(k − 1, t). We then conclude from (24)

that

Ey1B(y)Ex

∏
1≤i≤t,
j∈J.

εp(xi , y j ) ≤ 2t+1k2

p
Ep(k − 1, t). (26)

Turning now to the second term on the right hand side of (23), we define the random variable
X on Gt

p by

X (y) =
⎛
⎝Ex

∏
j∈J

εp(x, y j )

⎞
⎠ − 1 =

∑
I⊆J,
I �=∅.

Ex

∏
j∈I

δp(x, y j ). (27)

and set Z = 1B′ X . Then we have

Ey1B′(y)Ex

∏
1≤i≤t,
j∈J.

εp(xi , y j ) = Ey1B′(1 + X)t ≤ Ey exp(t Z), (28)

since 1B′(1 + X) ≤ exp(1B′ X) and also 0 ≤ 1 + X from (27). We apply Lemma 2.4 to
estimate the last term of (28). Let us first note from (27) that for any y ∈ Gt

p we have

|Z(y)| = 1B′(y)|X (y)| ≤ 1B′(y)
∑
I⊆J,
I �=∅

∣∣∣∣∣∣
Ex

∏
j∈I

δp(x, y j )

∣∣∣∣∣∣
≤ 2k · 2k√

p
, (29)
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by the triangle inequality and (i) of Proposition 2.3 applied to each summand in the sum over
I . Further, we have Z ≤ X + 1B since 0 ≤ 1B(1 + X). It follows that

EyZ ≤
∑
I⊆J,
I �=∅

∣∣∣∣∣∣
EyEx

∏
j∈I

δp(x, y j )

∣∣∣∣∣∣
+ Ey1B ≤ 2k+1 + 2k2

p
, (30)

on now using (ii) of Proposition 2.3 to bound each summand in the sum over I and remarking

that Ey1B(y) ≤ ∑
l∈J Eylαl(y) ≤ 2k2

p . From (30), (29) and Lemma 2.4 we then conclude
that

Ey exp(t Z) ≤ exp

(
(2k+1 + 2k2)t + 2k2t24k

p

)
≤ exp

(
4t42t

p

)
, (31)

by means of the inequalities 2k+1 + 2k2 ≤ 2t+1 and 2k2t24k ≤ 2t42t , valid since t ≥ 4 and
k ≤ t

2 . This relation taken together with (28), (26) and (23) gives

Ep(k, t) ≤ 2t+1k2

p
Ep(k − 1, t) + exp

(
4t42t

p

)
. (32)

By the induction hypothesis (13) holds for k−1 and consequently we deduce from (32) that

Ep(k, t) ≤
(
2t+1k2

p
+ 1

)
exp

(
(2(k − 1) + 1)4t42t

p

)
. (33)

Using again the inequality 1+ s ≤ exp(s) and noting that 2t+1k2 ≤ 4t42t we then conclude
from (33) that (13) holds for k, completing the induction step. ��

Remark 2.5 It is perhaps the case that the conclusion of Proposition 2.2 holds for all t ≥ 2
and all k satisfying 1 ≤ k ≤ t . A proof of this assertion would allow us to replace 3 log 2
with 2 log 2 in (11) and, as a consequence, in Theorem 1.1 as well.

2.2 The problem modulo U

Let, as above, l ≥ 2 and A ≥ ee
2
be real numbers and U = ∏

p≤w p, where w = A�.

Suppose further that X and Y are subsets of Z/UZ of density at least 1
A . That is,

|X | and |Y| ≥ U

A
. (34)

For a given element c of Z/UZ, let Tc(X ,Y) denote the set of pairs (x, y) ∈ X × Y such
that x2 + y2 + c is an invertible square in Z/UZ.

Theorem 2.6 For all l, A,U,X ,Y and c as above, we have

|Tc(X ,Y)| ≤ |X ||Y|
τ(U )

exp

⎛
⎝

(
3 log 2 + Ol

(
log log log A
log log A

))
log A

log log A

⎞
⎠ . (35)

Proof We shall write G for the ring Z/UZ and continue to use Gp for Z/pZ. Also, for any
x in G and p|U we denote the canonical image of x in Z/pZ by xp and, to be consistent
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with the notation of preceding subsection, write λp(x) for the Legendre symbol ( xpp ). Then
we have that

|Tc(X ,Y)| ≤
∑
x∈X

∑
y∈Y

∏
p|U

(
1 + λp(x2 + y2 + c)

2

)
, (36)

since 0 ≤ 1+ λp(x2 + y2 + c) ≤ 2 for any pair (x, y) in X × Y , with equality in the upper
bound for every prime p|U when x2 + y2 + c is an invertible square in G. On extending
the definitions of δp and εp from Sect. 2.2 by setting δp(x, y) = λp(x2 + y2 + c) and
εp(x, y) = 1 + δp(x, y) for any (x, y) in G2 and p|U , we may rewrite (36) as

|Tc(X ,Y)| ≤ 1

τ(U )

∑
x∈X

∑
y∈Y

∏
p|U

εp(x, y). (37)

Let t ≥ 2 be an even integer. Then an interchange of summations followed by an application
of Hölder’s inequality to exponent t to the right hand side of (37) gives

|Tc(X ,Y)| ≤ |Y|1− 1
t

τ(U )

⎛
⎝∑

y∈Y

⎛
⎝∑

x∈X

∏
p|U

εp(x, y)

⎞
⎠

t⎞
⎠

1
t

. (38)

To bound the sum over y ∈ Y on the right hand side of the inequality above, we first expand
the summand in this sum and extend the summation to all y ∈ G. By this we see that

∑
y∈Y

⎛
⎝∑

x∈X

∏
p|U

εp(x, y)

⎞
⎠

t

≤
∑
y∈G

∑
(x1,x2,...,xt )∈X t

∏
1≤i≤t

∏
p|U

εp(xi , y). (39)

Interchanging the summations over G andX t on the right hand side of the above relation and
applying Hölder’s inequality again, this time to exponent t

2 , we deduce that the right hand
side of (39) does not exceed

|X |t−2

⎛
⎜⎝

∑
(x1,x2,...,xt )∈X t

⎛
⎝∑

y∈G

∏
1≤i≤t

∏
p|U

εp(xi , y)

⎞
⎠

t
2
⎞
⎟⎠

2
t

. (40)

Finally, on expanding the summand in the sum over X t in (40) and extending the summation
to all of Gt we conclude using (39) and (38) and a rearrangement of terms that

|Tc(X ,Y)| ≤ |X ||Y|
τ(U )

(
U 3

|X |2|Y|
) 1

t

E
(
t

2
, t

) 2
t2

, (41)

where, for any integer k with 1 ≤ k ≤ t , we have set

E(k, t) = 1

U 2t

∑
(y1,y2,...,yt )∈Gt

∑
(x1,x2,,...,xt )∈Gt

∏
p|W

∏
1≤i≤t,
1≤ j≤k.

εp(xi , y j ). (42)

The Chinese Remainder Theorem gives G = ∏
p|U G p . Moreover, for all p|U and (x, y) in

G2 we have εp(x, y) = εp(xp, yp). It follows that E(k, t) = ∏
p|U Ep(k, t), where Ep(k, t) is
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as defined by (12). Using (13) with k = t
2 , valid on account of Proposition 2.2, and recalling

that U = ∏
p≤A� p we then obtain

E(k, t) =
∏
p|U

Ep(k, t) ≤ exp

⎛
⎝4t52t

∑

p≤A�

1

p

⎞
⎠ . (43)

From (3.20) on page 70 of [9] we see that
∑

p≤A�
1
p ≤ (log 2�) log log A, since A ≥ 4 and

� ≥ 2. On combining this remark with (43), (34) and (41) we then conclude that for any even
integer t ≥ 2 we have

|Tc(X ,Y)| ≤ |X ||Y|
τ(U )

exp

(
3 log A

t
+ 8(log 2�)t32t log log A

)
. (44)

Let us now set v log 2 = log
(

log A
(log log A)6

)
and suppose that A0 ≥ ee

2
is such that we have

log log A
log log log A ≥ 12 and v ≥ 2 for all A > A0. For such A we take t in (44) to be an even integer

satisfying v ≤ t ≤ v + 2. Also, with κ = 6 log log log A
log log A we have κ ≤ 1

2 and v = (1−κ) log log A
log 2 .

Thus 1
t ≤ 1

v
≤ (log 2)(1+2κ)

log log A and t32t ≤ 32v32v ≤ 32 log A
(log 2)3(log log A)3

. Substituting these

inequalities in (44) we obtain (35) for A > A0. To obtain (35) for ee
2 ≤ A ≤ A0 it suffices

to take t = 2 in (44). ��
2.3 An optimisation principle

This subsection summarises Subsection 2.3 of [7]. Suppose that n ≥ 1 is an integer and let P
and H be real numbers> 0. Further, assume that the subsetK of points x = (x1, x2, . . . , xn)
in Rn satisfying the conditions

∑
1≤i≤n

xi = P and 0 ≤ xi ≤ H for all i. (45)

is not empty. Then K is a non-empty, compact and convex subset of Rn and we have the
following standard fact.

Lemma 2.7 If f : Rn × Rn �→ R a bilinear form with real coefficients then

(i) There are extreme points x∗ and y∗ of K so that f (x, y) ≤ f (x∗, y∗) for all x, y ∈ K.
(ii) If x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n ) is an extreme point of K then x∗

i = 0 or x∗
i = H for all i

excepting at most one. Thus if m is the number of i such x∗
i �= 0 then mH ≥ P >

(m − 1)H.

Proof See the proof of Proposition 2.2 of [7], for example.

2.4 Proof of Theorem 2.1

Let a, b be any elements of Z/UZ. For any i in I we set αi (a, b) = 1 if a2 + b2 + c(i) is
an invertible square in Z/UZ and 0 otherwise. Further, we write m(a) for the number of z
in Z such that z ≡ a mod U . Then if Z̃ denotes the image of Z in Z/UZ we have

|RU (Z, c)| =
∑
i∈I

∑

(a,b)∈Z̃2

αi (a, b)m(a)m(b). (46)
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Moreover, we have
∑

a∈Z̃
m(a) = |Z| and 0 ≤ m(a) ≤ H, (47)

with H = BM
U , on account of the second assumption in (10). Let us bound the inner sum on

the right hand side of (46) for a given i in I . By means of Lemma 2.7 and (47) we obtain
∑

(a,b)∈Z̃2

αi (a, b)m(a)m(b) ≤
∑

(a,b)∈Z̃2

αi (a, b) x∗
a y

∗
b , (48)

for some x∗
a and y

∗
b , witha and b varying over Z̃, satisfying the following condition.All the x∗

a ,
and similarly all the y∗

b , are either equal to 0 or to H excepting at most one, which must lie in
(0, H). LetX andY be, respectively, the subsets of Z̃ for which x∗

a �= 0 and y∗
b �= 0. Then we

have from (i i) of Lemma 2.7 that |X |H ≥ |Z| > (|X |−1)H . From the first condition in (10)
we then get |X | ≥ |Z|

H ≥ U
AB ≥ 2, sinceU ≥ A�

2 ≥ 2AB. This gives H ≤ |Z|
|X |−1 ≤ 2|Z|

|X | . The
same inequalities hold with |X | replaced by |Y|. It follows that H2 ≤ 4|Z|2

|X ||Y| . Further, with
Tc(i)(X ,Y) as in Sect. 2.2 we have

∑
(a,b)∈X×Y αi (a, b) = Tc(i)(X ,Y). Since αi (a, b) ≥ 0

for all (a, b), we then deduce that

∑

(a,b)∈Z̃2

αi (a, b) x∗
a y

∗
b ≤ H2

∑
(a,b)∈X×Y

αi (a, b) ≤ 4|Tc(i)(X ,Y)||Z|2
|X ||Y| . (49)

Combining this with (48), (46) and the bound supplied by (35) for |Tc(i)(X ,Y)|, applicable
since AB ≥ ee

2
, we conclude that (11) holds. ��

3 An application of the circle method

We prove Theorem 1.3 in this section. As stated in Sect. 1, our first step will be to prove the
inequality (7). This is carried out in Sects. 3.1 through 3.3 starting from the preliminaries
given below.We then complete the proof of Theorem1.3 in Sect. 3.4 by applying Theorem2.1
to estimate (8).

We suppose that A ≥ ee
2
and l ≥ 12 are real numbers and assume that N is a sufficiently

large integer depending only on A and l, its actual size varying to suit our requirements at
various stages of the argument. We set

U =
∏
p≤w

p and W = 2U, where w = Al . (50)

Also,we setα(t) = 1−∣∣ 2t
5N

∣∣when |t | ≤ 5N
2 and0 for all other t ∈ R and setβ(t) = α(t− 5N

2 ).
Thus β(t) ≥ 0 for all t in R and β(t) ≥ 2

5 when t ∈ [N , 4N ]. Further, S will denote a given
subset of the squares in (N , 4N ] satisfying the hypotheses of Theorem 1.3. Finally, for all
t ∈ R we set

ψ(t) =
∑

0≤r<W,
(r,W )=1.

∑
n ≡ r modW

2nβ(n2)e(n2t) (51)

and Ŝ(t) = ∑
x∈S e(xt). Then by analogy with (3.1) of [7] we observe that

123



62 G. Prakash et al.

4

5

√
NE6(S) ≤

∫ 1

0
Ŝ(t)6 Ŝ(−t)5ψ(−t) dt. (52)

Indeed, E6(S) is the same as the number of x ∈ S11 such that f (x) ∈ S, with f (x) as in
(7). For any such x if f (x) = n2 then 4

5

√
N ≤ 2nβ(n2) and n is invertible modulo W . This

remark implies (52) by positivity of β and orthogonality.
We shall apply the circle method to estimate the integral on the right hand side of (52).

To this end, we set L = (log N )2, Q = W 2A12, M = N
L and, for any integers a and q

satisfying

0 ≤ a ≤ q ≤ Q and (a, q) = 1, (53)

we call the interval [ aq − 1
M , a

q + 1
M ) the major arc M( aq ). It is easily checked that distinct

major arcs are in fact disjoint when M > 2Q2, which holds when N is sufficiently large
depending only on A and l. We denote by M the union of the family of major arcs M( aq ).
Each interval in the complement ofM in [0, 1) is called a minor arc. We denote the union of
the minor arcs by m.

We have

∫ 1

0
Ŝ(t)6 Ŝ(−t)5ψ(−t) dt =

∫ 1− 1
M

− 1
M

Ŝ(t)6 Ŝ(−t)5ψ(−t) dt (54)

by the periodicity of the integrand. From the definitions given above it is easily seen that the
interval [− 1

M , 1 − 1
M ) is the union of m and M\[1 − 1

M , 1 + 1
M ). Since distinct major arcs

are disjoint, it then follows that the right hand side of (54) is the same as

∑
1≤q≤Q

∑
0≤a<q,
(a,q)=1.

∫

M( aq )

Ŝ(t)6 Ŝ(−t)5ψ(−t) dt +
∫

m
Ŝ(t)6 Ŝ(−t)5ψ(−t) dt. (55)

We shall presently estimate each of the two terms in (55). We begin by observing that

∫ 1

0
|Ŝ(t)|11 dt � |S|9A3. (56)

In effect, the integral in (56) does not exceed |S|E5(S). Thus (56) follows from |S| ≥ N
1
2 /A

and

E5(S) =
∑
1≤n

R2
5(n) =

∑
1≤n≤20N

R2
5(n) � N

3
2
∑
n≥1

R5(n) = |S|5N 3
2 , (57)

where R5(n) denotes the number of representations of an integer n as a sum of five elements
of S. To verify (57) we note that R5(n) = 0when n > 20N and R5(n) ≤ r5(n), the number of

representations of n as a sum of five squares of natural numbers, and recall that r5(n) � n
3
2 ,

by a standard application of the circle method. As a consequence of (56) we have

∑
1≤q≤Q

∑
0≤a<q,
(a,q)=1.

∫

M( aq )

|Ŝ(t)|11dt ≤
∫ 1− 1

M

− 1
M

|Ŝ(t)|11dt � |S|9A3. (58)
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3.1 The minor arc contribution

Here we bound the second term in (55). Let us first verify that for all t ∈ m we have

|ψ(t)| � N

A6 , (59)

when N is large enough, depending only on A and l. Indeed, for any real t Dirichlet’s
approximation theorem gives a rational number a

q satisfying |t − a
q | ≤ 1

qM together with

1 ≤ q ≤ M and (a, q) = 1. When t is inm we see that a
q is in [0, 1] sincem ⊆ [ 1

M , 1− 1
M ).

Consequently, we also have 0 ≤ a ≤ q . Since, however, t is not in M, we must then have
Q < q on account (53). We then conclude using q2 ≤ qM that for each t in m there are
integers a and q �= 0 with (a, q) = 1 satisfying

|t − a

q
| ≤ 1

q2
and Q < q ≤ M. (60)

Next, for a given class r modulo W , we temporarily let a(n) = 1 when n ≡ r modW and
a(n) = 0 otherwise. Then on setting P = √

5N and T (u) = ∑
0≤n≤u a(n)e

(
n2t

)
for a

given t in m and integrating by parts we get

∑
n ≡ r modW

2nβ(n2)e(n2t) =
∫ P

0
2uβ(u2)dT (u) � √

N sup
0≤u≤P

|T (u)|, (61)

since u �→ 2uβ(u2) is monotonic on each of the intervals on [0, P√
2
] and ( P√

2
, P]. By means

of the classical Weyl squaring and differencing argument, given, for example, on page 17 of
[6], and remarking that for any n, a(n)a(n + h) is a(n) when W |h and is 0 otherwise, we
obtain

|T (u)|2 ≤
∑

0≤n≤u

a(n) +
∑

1≤|h|≤u,
W |h.

∣∣∣∣∣∣
∑

n∈I (h)

a(n)e(2htn)

∣∣∣∣∣∣
, (62)

for all u, 0 ≤ u ≤ P , where I (h) is an interval of length u − |h| ≤ P . If N is large enough
so that P ≥ W , the first term on the right hand side of (62) is ≤ 2P

W . Also, on using (2), page
40 of [6] to bound the sum over n ∈ I (h) in (62) we get

∑
1≤|h|≤u,
W |h.

∣∣∣∣∣∣
∑

n∈I (h)

a(n)e(2htn)

∣∣∣∣∣∣
�

∑
1≤|k|≤2PW,

2W 2|k.

inf

(
P

W
,

1

‖kt‖
)

. (63)

We estimate the right hand side of (63) ignoring the condition 2W 2|k and applying (9), page
41 of [6] with a

q as in (60). This together with (62) gives

|T (u)|2 � P2

q
+ PW log q + P

W
+ q log q � P2

Q
� N

Q
, (64)

for all u, 0 ≤ u ≤ P . Combining (64) with (61), (51) and applying the triangle inequality
we obtain (59). From (59) and (56) we then conclude that for all N large enough, depending
only on A and �, we have
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∫

m
|Ŝ(t)|11 |ψ(t)| dt � N

A6

∫ 1

0
|Ŝ(t)|11 dt � N |S|9

A3 � |S|11
A

, (65)

since |S| ≥ N
1
2 /A. It now follows that

∫

m
Ŝ(t)6 Ŝ(−t)5ψ(−t) dt � |S|11

A
. (66)

3.2 The function ψ on a major arc

For any integers a, q and r , with q > 0, we set Gr (a, q) = ∑
0≤m<q e

(
a(r+mW )2

q

)
.

Lemma 3.1 Let a and q be any integers satisfying (53). Then for all t in the major arcM( aq )

we have

ψ(t) = 1

qW

∑
0≤r<W,
(r,W )=1.

Gr (a, q) β̂

(
t − a

q

)
+ O(Qφ(W )

√
N (log N )2). (67)

Proof Let θ = t − a
q and η(u) = 2uβ(u2)e(u2θ) for any real u. Then we have

∑
n ≡ r modW

2nβ(n2)e(n2t) =
∑
j

η(r + jW )e

(
a(r + jW )2

q

)
. (68)

We split j on the right hand side of (68) into arithmetical progressions modulo q and sum
both sides over r to get

ψ(t) =
∑

0≤r<W,
(r,W )=1.

∑
0≤m<q

e

(
a(r + mW )2

q

) ∑
k

η(r + (m + kq)W ). (69)

Let ϕ(u) = η(r + (m + uq)W ) for all real u. Then ϕ is a continuous compactly supported
function onR. Its support is the union of two disjoint intervals on the interior of each of which
ϕ is differentiable. Applying the Euler–Mclaurin formula to ϕ on each of these intervals and
adding the results we obtain

∑
k

ϕ(k) =
∫

ϕ(u)du + O

(
sup
u

|ϕ(u)| +
∫

|ϕ′(u)|du
)

. (70)

The left hand side of (70) is the same as the sum over k in (69). From the definitions of η, β

we have supu |ϕ(u)| � √
N . By means of the change of variable (r + (m + uq)W )2 �→ u

we see that
∫

ϕ(u)du = 1
qW β̂(θ). Finally, the change of variable (r + (m + uq)W ) �→ u

gives
∫ |ϕ′(u)|du = ∫ |η′(u)|du. From the definition of η(u) we have

η′(u) = 2β(u2)e(u2θ) + 4u2β ′(u2)e(u2θ) + 8π iu2θβ(u2)e(u2θ), (71)

which gives |η′(u)| � N
M , since 0 ≤ β(u2) ≤ 1, |β ′(u2)| � 1

N , |θ | ≤ 1
M and u2 � N for

u in the support of η′. Since the measure of this support is
√
5N , we conclude on recalling

the definition of M that
∫ |ϕ′(u)|du � √

N (log N )2. The preceding remarks together with
(70) and (69) and the triangle inequality yield (67). ��

The following lemma gives the key parts of Lemmas 5.2 and 5.3 of [2] in our context. The
conclusions of this lemma explain the utility of the condition (r,W ) = 1 in the definition
(51) of ψ(t).
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Lemma 3.2 Let a and q be integers satisfying (53) and r any integer coprime to W. Then
we have

(i) Gr (a, q) = 0 unless q|2W or there is a prime p > w such that p|q.
(ii) 1

q |Gr (a, q)| ≤
√

2
w
when q does not divide 2W.

Proof Following [2], we first note that for any integers c0, c1, c2 and d > 0, if P(X) is the
quadratic polynomial c0X2 + c1X + c2 and d1, d2 > 0 are integers such that d = d1d2 and
d2|c0 then

∑
0≤m<d

e

(
P(m)

d

)
=

∑
0≤m1<d1

e

(
P(m1)

d

) ∑
0≤m2<d2

e

(
c1m2

d2

)
. (72)

This is verified by remarking that the map (m1,m2) �→ m1 + m2d1 is a bijection from
[0, d1) × [0, d2) to [0, d) and that if m = m1 + m2d1, then

P(m)
d − P(m1)

d − c1m2
d2

∈ Z,
because d|c0d1. Now the sum over m2 on the right hand side of (72) is 0 unless d2|c1.
Therefore the sum on the left hand side of (72) is also 0 unless d2|c1. Using this with
P(X) = a(r + WX)2 = aW 2X2 + 2War X + ar2, d1 = q

(q,W 2)
and d2 = (q,W 2), we

deduce that for any integer r coprime to W we have Gr (a, q) = 0 unless (q,W 2)|2W ,
since ar is coprime to (q,W 2). If for any integer m and prime p, we write vp(m) for the
exponent of p in the prime factorisation of m, then the condition (q,W 2)|2W is equivalent
to inf(vp(q), 2vp(W )) ≤ vp(2W ) for all primes p|2W . From the definition of W in (50)
we have 2vp(W ) > vp(2W ) for all primes p|2W . Consequently, Gr (a, q) = 0 unless
vp(q) ≤ vp(2W ) for all primes p|2W , which is the same as (i).

In light of the preceding paragraph, we may verify (ii) supposing that (q,W 2)|2W and
q

(q,W 2)
> w. Let us set Q(X) = aW 2

(q,W 2)
X2 + 2War

(q,W 2)
X . Then with P(X), d1 and d2 as above

we obtain from (72) that

1

q
|Gr (a, q)| = d2

q

∣∣∣∣∣∣
∑

0≤m1<d1

e

(
Q(m1)

d1

)∣∣∣∣∣∣
≤

√
2(q,W 2)

q
≤

√
2

w
, (73)

on remarking that
∣∣∣∑0≤m1<d1 e

(
Q(m1)
d1

)∣∣∣ ≤ √
2d1, by the classical quadratic Weyl bound,

applicable since the leading coefficient of Q(X) and d1 are coprime. ��
3.3 The major arc contribution

In this subsection we complete the proof of (7). Let us first dispose of the first term in (55),
which we denote here by T . Also, we shall write T1 for

∑
0≤r<W,
(r,W )=1.

∑
1≤q≤Q

1

qW

∑
0≤a<q,
(a,q)=1.

Gr (−a, q)

∫

M( aq )

β̂

(
t − a

q

)
Ŝ(t)6 Ŝ(−t)5 dt. (74)

Then by substituting the complex conjugate of right hand side of (67) for ψ(−t) = ψ(t) in
T and using the triangle inequality together with (58) we deduce that

T − T1 � QW
√
N (log N )2

∫ 1

0
|Ŝ(t)|11dt � A3QW |S|9√N (log N )2. (75)
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If we now set

T (W ) =
∑

0≤r<W,
(r,W )=1.

∑
q|2W

1

qW

∑
0≤a<q,
(a,q)=1.

Gr (−a, q)

∫

M( aq )

β̂

(
t − a

q

)
Ŝ(t)6 Ŝ(−t)5 dt. (76)

then by (ii) of Lemma 3.2 combined with the triangle inequality and (58) we get

T1 − T (W ) � φ(W )‖β̂‖∞|S|9A3

W
√

w
� A3|S|9N√

w
, (77)

since ‖β̂‖∞ = supt∈R |β̂(t)| ≤ 5N
2 . From (77), (75) and on recalling that |S| ≥

√
N
A and

w = Al ≥ A12 we conclude that

T = T (W ) + O

( |S|11
A

)
, (78)

when N is sufficiently large, depending only on A and l. Let us now estimate T (W ). When
q|2W wehave (r+mW )2 ≡ r2 modulo q for all integersm, since 2W |W 2. Thereforewe have

Gr (−a, q) = qe
(
− ar2

q

)
when q|2W , for all 0 ≤ a < q . Furthermore, since r �→ r + W is

a bijection from the integers coprime to 2W in [0,W ) to those in (W, 2W ] coprime to 2W ,
we obtain

1

qW

∑
0≤r<W,
(r,W )=1.

Gr (−a, q) = 1

2W

∑
0≤r<2W,
(r,2W )=1.

e

(
−ar2

q

)
(79)

for any q|2W and all 0 ≤ a < q . Also, we have Ŝ(t)6 Ŝ(−t)5 = ∑
x∈S11 e ( f (x)t), with

f (x) as in (7). By means of the change of variable t − a
q �→ t in the integrals in (76) we then

see that

T (W ) = 1

2W

∑
0≤r<2W,
(r,2W )=1.

∑
q|2W

∑
0≤a<q,
(a,q)=1.

∫ 1
M

− 1
M

β̂ (t)
∑

x∈S11
e (t f (x)) e

(
a( f (x) − r2)

q

)
dt.(80)

Finally, on interchanging summations and remarking that

1

2W

∑
q|2W

∑
0≤a<q,
(a,q)=1.

e

(
a( f (x) − r2)

q

)
= 1

2W

∑
0≤a<2W

e

(
a( f (x) − r2)

2W

)
(81)

we conclude that the right hand side of (80) is the same as the left hand side of

∑
0≤r<2W,
(r,2W )=1.

∑

x∈S11,
f (x)≡r2mod 2W

∫ 1
M

− 1
M

β̂(t)e (t f (x)) dt ≤
∑

0≤r<2W,
(r,2W )=1.

∑

x∈S11,
f (x)≡r2mod 2W

1, (82)

where we have used | ∫
1
M

− 1
M

β̂(t)e(t f (x))dt | ≤ ∫
R α̂(t)dt = 1, since |β̂(t)| = α̂(t) for all

t ∈ R. For each class b in Z/2WZ, the number of r in [0, 2W ) coprime to 2W and such that
r2 ≡ b modulo 2W is 2τ(U ). Then it follows from (82) and (80) that

T (W ) = 2τ(U )|{x ∈ S11 | f (x) an invertible square mod 2W }|. (83)

SinceW = 2U we obtain (7) on combining (83) with (78), (66) and recalling that (55) is the
same as the integral in (52).
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3.4 Proof of Theorem 1.3 completed

It remains only to bound (8) using Theorem 2.1. Let Z be the set of integers n > 0 such
that n2 ∈ S. The set Z is contained in [M, 2M) with M = √

N and satisfies |Z| ≥ M
A

and |{z ∈ Z|z ≡ amodU }| ≤ MB
U with B = 2, when N is sufficiently large depending

on A and l. Finally, let I = S9 and for any x = (x1, x2, . . . , x9) ∈ S9 we set c(x) =
x1 + · · · + x4 − x5 − · · · − x9. Then with RU (Z, c) as in Theorem 2.1 we have that

|{x ∈ S11 | f (x) an invertible square modulo 2W }| ≤ |RU (Z, c)|, (84)

since U |2W . On combining the bound for |RU (Z, c)| given by Theorem 2.1 with (84) and
(7) we finally obtain (6), as required.

4 Monochromatic representation

Here we deduce Theorem 1.1 from Theorem 1.3. We first take up Lemma 1.2.

4.1 Proof of Lemma 1.2

A standard application of the Cauchy–Schwarz inequality gives |mS| Em(S) ≥ |S|2m . Using
(3) and L ≥ 2(mD + 1)D we then obtain

|mS| ≥ L

D
≥ mL

k + 1
+ 2 (85)

for any k ≥ mD. We take k to be the integer �mD�. Since the set mS contained in the
interval (mN ,mN + mL], its translate mS − mN is contained in [1,mL] and satisfies
(k + 1)(|mS−mN |− 2)+ 1 ≥ mL on account of (85). Then by means of Theorem 2′, page
129 of [5] applied to the set mS − mN we conclude that there are integers h, d and e with
1 ≤ h ≤ 2k + 1 and 1 ≤ d ≤ k such that hmS contains the arithmetical progression

A = hmN + {(e + 1)d, (e + 2)d, . . . , (e + mL)d}, (86)

of mL terms and to the modulus d . Since hmS ⊆ (hmN , hm(N + L)], each a inA satisfies

hmN < a ≤ hm(N + L) ≤ (2�mD� + 1)m(N + L). (87)

Since 1 ≤ d ≤ �mD�, there is an integer x in S coprime to d . Also, we have x ≤ mL
since x ≤ N + L , L ≥ N and m ≥ 2. Therefore the number of terms in the arithmetical
progression A is at least x and its modulus d is coprime to x . Consequently, A contains a
complete system of residue classes modulo x and every integer n can bewritten as n = a+r x
with a in A and r ∈ Z. For any integer n ≥ (2�mD� + 1)m(N + L) we have from N ≤ x
and the lower bound for a in (87) that

0 ≤ r = n − a

x
≤ n

N
− hm. (88)

Since each a ∈ A is a sum of hm elements of S, the conclusion of the lemma now follows.

4.2 Proof of Theorem 1.1

Since s(K ) is increasing with K , it suffices to prove Theorem 1.1 for all K sufficiently large.
For such a K , let ∪1≤i≤KQi be a partition of the set of squaresQ into K disjoint subsets.
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As in Sect. 1, let B be the set of squares of integers that are not divisible by any prime
p ≤ B, where B = K 13, and let B(N ) denote B∩ (N , 4N ], for a given integer N ≥ 1. Then
for all N ≥ N0, with N0 depending only on K , we have by the principle of inclusion and
exclusion and Mertens’ formula as given by (3.27), page 70 of [9] that

|B(N )| ≥ N
1
2

∏
p≤B

(
1 − 1

p

)
− 2B ≥ N

1
2

4 log B
− 2B ≥ N

1
2

100 log K
≥ ee

2
K . (89)

Let N be an integer ≥ N0. There is an i, 1 ≤ i ≤ K , such that Qi ∩ B(N ) contains at least
|B(N )|

K of the elements ofB(N ). For such an i we set S = Qi ∩B(N ). Then S is a set of squares

in (N , 4N ]with |S| ≥ N
1
2

A , where A = 100K log K ≥ ee
2
and no integer in S is divisible by a

prime p ≤ A12, since A12 ≤ B when K is sufficiently large. It now follows fromTheorem 1.3

that (3) holds with m = 6, L = 3N and D = A exp
(

(3 log 2+o(1)) log A
log log A

)
. Since S contains an

element of B and since �6D� ≤ B when K is large enough, we may apply Lemma 1.2 to S to
deduce that every integer n ≥ (288D + 72)N is a sum of no more than n

N elements of S. In
particular, there is aC1 > 0 such that every integer I (N ) = ((288D+72)N , (288D+73)N ]
is a sum of at most C1D squares all belonging to S and therefore to Qi . Thus for all large
enough N , every integer in the interval I (N ) can be expressed as a sum of no more than
C1D squares all of the same colour. On remarking that the interval I (N ) meets I (N + 1) for
all large enough N , we obtain that s(K ) ≤ C1D. This yields the conclusion of Theorem 1.1

since A = 100K log K and therefore C1D ≤ K exp
(

(3 log 2+o(1)) log K
log log K

)
.
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