
Math. Z. (2018) 289:25–38
https://doi.org/10.1007/s00209-017-1941-9 Mathematische Zeitschrift

Characterization of projective spaces by Seshadri
constants

Yuchen Liu1 · Ziquan Zhuang1

Received: 18 August 2016 / Accepted: 15 May 2017 / Published online: 26 October 2017
© The Author(s) 2017. This article is an open access publication

Abstract We prove that an n-dimensional complex projective variety is isomorphic to P
n

if the Seshadri constant of the anti-canonical divisor at some smooth point is greater than n.
We also classify complex projective varieties with Seshadri constants equal to n.
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1 Introduction

It is believed that the projective space P
n has the most positive anti-canonical divisor

among complex projective varieties. Various characterizations of P
n have been found cor-

responding to different explanations of the “positivity” of the anti-canonical divisor. Using
Kodaira vanishing theorem, Kobayashi and Ochiai [14] proved that if an n-dimensional
projective manifold X with an ample line bundle H satisfies −KX ≡ (n + 1)H , then
(X, H) ∼= (Pn,O(1)). Kobayashi–Ochiai’s characterization was generalized by Ionescu
[11] (in the smooth case) and Fujita [8] (allowing Gorenstein rational singularities) assuming
the weaker condition that KX + (n + 1)H is not ample. Later, Cho, Miyaoka and Shepherd-
Barron [5] (simplified by Kebekus in [13]) showed that a Fano manifold is isomorphic to P

n

if the anti-canonical degree of every curve is at least n + 1. Their proofs rely on deformation
of rational curves which still work if we allow isolated local complete intersection quotient
singularities (see [4]). Besides, Kachi andKollár [12] gave characterizations ofPn in arbitrary
characteristic that generalized [5,13,14] with a volume lower bound assumption.
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26 Y. Liu, Z. Zhuang

The purpose of this paper is to provide a characterization of P
n among complex Q-Fano

varieties by the local positivity of the anti-canonical divisor, namely the Seshadri constants.
Recall that a complex projective variety X is said to be Q-Fano if X has klt singularities and
−KX is an ample Q-Cartier divisor.

Definition 1 Let X be a normal projective variety and L an ample Q-Cartier divisor on X .
Let p ∈ X be a smooth point. The Seshadri constant of L at p, denoted by ε(L , p), is defined
as

ε(L , p) := sup{x ∈ R>0 | σ ∗L − x E is ample},
where σ : Blp X → X is the blow-up of X at p, and E is the exceptional divisor of σ .

It is clear that ε(−KPn , p) = n + 1 for any point p ∈ P
n . Our main result characterizes

P
n as the only Q-Fano variety with Seshadri constant greater than n:

Theorem 2 Let X be a complex Q-Fano variety of dimension n. If there exists a smooth
point p ∈ X such that ε(−KX , p) > n, then X ∼= P

n.

Note that Theorem 2 only assumes that ε(−KX , p) > n for some smooth point p rather
than any smooth point (although the existence of such p immediately implies the same
inequality for a general smooth point). We also remark here that when X is smooth, Theorem
2 was obtained by Bauer and Szemberg in [1, Theorem 1.7] using different methods.

Since the Seshadri constant of a quadric hypersurface in P
n+1 is equal to n, the lower

bound on the Seshadri constant in Theorem 2 is sharp. It turns out that this is not the only
Q-Fano varieties achieving such lower bound, and the full list is given by the following
theorem.

Theorem 3 Let X be a n-dimensional complex Q-Fano variety. Then there exists a smooth
point p ∈ X with ε(−KX , p) = n if and only if X is one of the following:

1. a degree d+1weighted hypersurface Xd+1 = (x0xn+1 = f (x1, . . . , xn)) ⊂ P(1n+1, d),
2. a quartic weighted hypersurface X4 = (x2n+1 + xnh(x0, . . . , xn−1) = f (x0, . . . , xn−1))

(h �= 0) or (xnxn+1 = f (x0, . . . , xn−1)) ⊆ P(1n, 2, 2),
3. the blow-up of P

n along the complete intersection of a hyperplane and a hypersurface
of degree d ≤ n,

4. the quotient of the quadric Qk = (
∑k

i=0 x
2
i = 0) ⊆ P

n+1 (2 ≤ k ≤ n + 1) by an
involution τ(xi ) = δi xi (δi = ±1) that is fixed point free in codimension 1 and such that
not all the δi (i = 0, . . . , k) are the same,

5. a Gorenstein log del Pezzo surface of degree ≥ 4 (for the classification of such surfaces,
see [10, §3]).

When X is smooth, the condition ε(−KX , p) = n implies that (−KX · C) ≥ n for any
curve C ⊂ X passing through a very general point p. If in addition X has dimension at least
3, then by [3,19] X is either a quadric hypersurface or the blow-up of P

n along a smooth
subvariety of codimension 2 and degree d ≤ n contained in a hyperplane. On the other hand,
in the surface case some of our results have been proved by [21, Theorem 1.8] under the
somewhat restrictive assumption that (K 2

X ) ∈ {4, 5, 6, 7, 8, 9}. Hence the above theorem is
a natural generalization of their results to the singular and higher dimensional case, although
our proof uses a completely different strategy.

Finally we show that in general the Seshadri constant ε(−KX , p) can be any rational
number between 0 and n. This is in sharp contrast with Theorem 2 where we have seen that
there is a gap between n and n + 1 for the possible values of ε(−KX , p).
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Characterization of projective spaces by Seshadri constants 27

Theorem 4 For any rational number 0 < c ≤ n, there exists an n-dimensional Q-Fano
variety X with a smooth point p such that ε(−KX , p) = c.

The paper is organized as follows. In Sect. 2, we prove Theorem 2. Denote the blow up of
X at p by σ : X̂ = Blp X → X , then the divisor D := σ ∗(−KX ) − ε(−KX , p)E is nef by
the definition of the Seshadri constant. Under the assumption that ε(−KX , p) > n, we use
Kawamata–Viehweg vanishing theorem to show that D is semiample and g = g|mD| : X̂ →
Y maps E isomorphically onto its image for sufficiently divisible k. A simple computation
yields that (−KX̂ · C) = ε(−KX , p) − (n − 1) > 1 for any curve C contracted by g. We
show in Lemma 8 that g cannot be birational under these assumptions and therefore has to
be a morphism of fiber type with target Y = g(E) ∼= P

n−1. Then Lemma 6 implies that X̂ is
a P

1-bundle over P
n−1, thus X ∼= P

n . The proof of Lemma 8 relies on a dimension reduction
argument and Lemma 5. As an application of Theorem 2, we show that P

n is the only Ding-
semistable Q-Fano variety of volume at least (n + 1)n (see Theorem 10). This improves the
equality case of [7, Theorem 1.1] where Fujita proved for Ding-semistable Fano manifolds.

In Sect. 3, we classify all Q-Fano varieties with Seshadri constants equal to n. By the
same argument as in the proof of Theorem 2, we still have that D is semiample. We divide
the classification into two parts. In Sect. 3.1, we study the case when g is birational. We show
that g|E is a closed embedding, −(KY + g(E)) is ample, g(E) is nef (see Lemmas 11). We
classify such pairs (Y, g(E)) in Lemma 13. Then we obtain the partial classification after a
detailed study of the structure of the birational morphism g (see Lemmas 12 and 14). In Sect.
3.2, we study the case when g is of fiber type. It is not hard to see that every fiber of g has
dimension 1, the general fiber of g is isomorphic to P

1, g|E : E → Y is a double cover, and
−KX̂ is g-ample. After pulling back g to E and taking the normalization, we obtain a conic
bundle g̃ : X̃ → E ∼= P

n−1 with two sections (see Lemmas 16, 18 and Corollary 17). From
the classification of the conic bundle g̃ and the quotient map g|E (see Lemmas 19 and 20),
we finish the classification of X and hence prove Theorem 3. Finally in Sect. 4, we provide
examples showing that the Seshadri constant of a Q-Fano variety can be any positive rational
number less than n.

2 Proof of Theorem 2

Lemma 5 Let π : S → T be a proper birational morphism between normal surfaces. Let
C ⊂ S be a KS-negative π -exceptional curve. Then (−KS ·C) ≤ 1, with equality if and only
if S has only Du Val singularities along C. (Since KS is not necessarily Q-Cartier, we use
the intersection theory of Weil divisors on surfaces by Mumford [20].)

Proof Let φ : S̃ → S be the minimal resolution of S. Denote the exceptional curves of φ by
Ei . Then we have

KS̃ +
∑

i

ai Ei ≡ φ∗KS, where ai ≥ 0.

Let C̃ be the birational transform of C under φ. Since π ◦ φ contracts C̃ , we have (C̃2) < 0.
By the assumption that C is KS-negative, we have

(KS̃ · C̃) = (φ∗KS · C̃) −
∑

i

ai (Ei · C̃) ≤ (KS · C) < 0.

Hence C̃ is a (−1)-curve on S̃ and (−KS · C) ≤ (−KS̃ · C̃) = 1.
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28 Y. Liu, Z. Zhuang

It is clear that (−KS · C) = 1 if and only if
∑

i ai (Ei · C̃) = 0, i.e. ai = 0 whenever C̃
intersects Ei . By the negativity lemma (cf. [16, Lemma 3.41]), this is equivalent to saying
that ai = 0 whenever Ei is connected to C̃ through a chain of φ-exceptional curves. Thus
the equality holds if and only if S has Du Val singularities along C .

Lemma 6 Let π : S → T be a proper surjective morphism from a normal surface S to a
smooth curve T . Assume that the general fiber of π is isomorphic to P

1, and that all fibers
of π are generically reduced and irreducible. Then π is a smooth P

1-fibration, i.e. S is a
geometrically ruled surface over T .

Proof For any closed point t ∈ T , denote by St the scheme-theoretic fiber of π at t . It is
clear that π is flat, so χ(St ,OSt ) = χ(P1,OP1) = 1. Besides, S being normal implies that
the Cartier divisor St on S has no embedded points. Then St being generically reduced and
irreducible yields that St is an integral curve. Therefore, St ∼= P

1.

7 (Proof of Theorem 2) Denote by σ : X̂ = Blp X → X the blow up of X at p with
exceptional divisor E . Let D := σ ∗(−KX )−ε(−KX , p)E be the nef divisor. Since−KX̂ =
σ ∗(−KX ) − (n − 1)E , we know that D − KX̂ is ample. Hence Shokurov’s basepoint-free
theorem [16, Theorem 3.3] implies that D is semiample.

Let g : X̂ → Y be the ample model of D (i.e. g is the morphism determined by the
complete linear system |kD| for some k  0). Let m be a positive integer such that mD is
Cartier. Notice that mD − E − KX̂ is ample by ε(−KX , p) > n, so Kawamata–Viehweg

vanishing implies that H1(X̂ ,mD − E) = 0. Hence H0(X̂ ,mD) → H0(E,mD|E ) is
surjective for all m ∈ Z>0 such that mD is Cartier. As a result, g|E : E → Y is a closed
embedding. Thus any curve C contracted by g is not contained in E , which implies that
(C · σ ∗(−KX )) > 0. Since 0 = (C · D) = (C · σ ∗(−KX )) − ε(−KX , p)(C · E), we know
that (C · E) > 0.

Suppose g contracts C to a point y ∈ Y . Consider the scheme-theoretic fiber g−1(y) of g.
Since g|E is a closed embedding, the scheme-theoretic intersection E ∩ g−1(y) is a reduced
closed point, say q . If there is another curve C ′ �= C contained in g−1(y), then E ∩ g−1(y)
has multiplicity at least 2 at q , a contradiciton! So Supp g−1(y) = C and g−1(y) is smooth
and transversal to E at q . In particular, we have (C · E) = 1 for any curve C contracted by g.
Since X̂ has klt singularities, it is Cohen–Macaulay by [16, Theorem 5.22]. In addition we
have −KX̂ ∼g.Q. λE where λ = ε(−KX , p) − n + 1 > 1. Hence by the following lemma,
g cannot be birational.

Lemma 8 Let g : X̂ → Y be a proper birationalmorphism between quasi-projective normal
varieties and E a smooth g-ample Cartier divisor on X̂ such that −KX̂ ∼g.Q. λE for some

λ ≥ 1. Assume that X̂ is Cohen–Macaulay and g|E : E → G = g(E) is an isomorphism,
then λ = 1 and Y is smooth along G.

Proof Let H be a very ample divisor on Y such that H0(Y,OY (H)) → H0(G,OG(H)) is
surjectve. Let y ∈ Y be a closed point in the exceptional locus of g and let H1, . . . , Hn−2 be
general members of |H | containing y. Let C = g−1(y) and S = g∗H1 ∩ · · · ∩ g∗Hn−2. We
claim that S is a normal surface. Since E |C is ample and g|E is an isomorphism, it is easy to
see as above that C is an irreducible curve and E ∩ C is supported at a single point q . As X̂
is Cohen–Macaulay, S is S2. By Bertini’s theorem S\C is smooth in codimension one and
G ∩ H1 ∩ · · · ∩ Hn−2 (scheme-theoretic intersection) is smooth at y. It follows that E |S is
smooth at q . Since E is Cartier, we see that S is also smooth at q ∈ C , hence S is smooth in
codimension one and it is normal.
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Characterization of projective spaces by Seshadri constants 29

It is clear that g|S is a birational morphism that contracts C . By adjunction KS = (KX +
g∗H1 + · · · + g∗Hn−2)|S , thus (−KS ·C) = (−KX̂ · C) = λ(E · C) = λ ≥ 1. On the other
hand by Lemma 5 we have (−KS · C) ≤ 1. Hence λ = (−KS · C) = 1 and S has only Du
Val singularities alongC . Since contracting a (−1)-curve (i.e. a curve that has anti-canonical
degree 1) from a surface with Du Val singularities produces a smooth point, g(S) and hence
Y is smooth at y. Note that y is arbitrary in the exceptional locus, so Y is smooth along G.

Remark 9 In fact more is true. Under the same assumptions of the lemma, X̂ is indeed the
blowup of Y along a divisor in G. We postpone its proof to the next section.

Returning to the proof of Theorem 2, we see that g has to be a fiber type contraction.
Since g|E is a closed embedding, we know that g|E : E → Y is in fact an isomorphism.
In particular, E ∼= Y ∼= P

n−1. Let us define S, Hi as in the proof of Lemma 8. By the
same argument there, S is a normal surface. Since the singular set of X̂ has codimension at
least 2, by generic smoothness we know that the generic fiber of g : X̂ → Y is smooth. So
the contraction g being KX̂ -negative implies that the general fiber of g is a smooth rational
curve. In particular, the generic fiber of g|S : S → g(S) is isomorphic to P

1. Hence applying
Lemma 6 yields that C ∼= P

1, which means that g : X̂ → Y is a smooth P
1-fibration.

It is clear that s = g|−1
E : Y → E gives a section of g, thus X̂ = PY (E) is a P

1-bundle
where E is a rank 2 vector bundle over Y . Then the section E corresponds to a surjection
E � N for some line bundle N on Y . Denote the kernel of this surjection by M. By the
adjunction formula on P

1-bundles, we know that OY (−1) ∼= s∗NE/X̂
∼= M−1 ⊗ N . For

simplicity we may assume M ∼= OY , then we get N ∼= OY (−1) and hence a short exact
sequence

0 → OY → E → OY (−1) → 0.

Since Ext1(OY (−1),OY ) ∼= H1(Pn−1,O(1)) = 0, the above exact sequence splits. So
E ∼= OY ⊕OY (−1) and E corresponds to the second projectionOY ⊕OY (−1) � OY (−1).
As a result, X̂ is isomorphic to the blow up of P

n at one point with E corresponding to the
exceptional divisor. Therefore, X ∼= P

n . ��
The following is an application of Theorem 2 to Ding-semistable Q-Fano varieties with

maximal volume (see [7] or [18] for backgrounds). This improves Fujita’s result on the
equality case in [7, Theorem 5.1]. We remark that a different proof is presented in [18, Proof
2 of Theorem 36].

Theorem 10 Let X be a Ding-semistable Q-Fano variety of dimension n. If ((−KX )n) ≥
(n + 1)n, then X ∼= P

n.

Proof Notice that ((−KX )n) ≤ (n + 1)n by [7, Corollary 1.3]. Thus we have
((−KX )n) = (n + 1)n . Let p ∈ X be a smooth point. From [7, Proof of 5.1], we see
that ε(−KX , p) = n + 1. Hence X ∼= P

n by Theorem 2. ��

3 Equality case

In this section we prove Theorem 3. Let X be an n-dimensionalQ-Fano variety with a smooth
point p ∈ X . Assume ε(−KX , p) = n. Following the proof of Theorem 2, we have that
D = σ ∗(−KX ) − nE is semiample on X̂ and induces the morphism g : X̂ → Y . We now
separate into two cases based on different behavior of g.
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30 Y. Liu, Z. Zhuang

3.1 g is birational

Lemma 11 If g : X̂ → Y is birational, then g|E is a closed embedding, −(KY + g(E)) is
ample and g(E) ∼= P

n−1 is a nef divisor in the smooth locus of Y . Moreover, Y is a Q-Fano
variety.

Proof We see that mD − E − KX̂ = (m − 1)D is nef and big, so Kawamata–Viehweg
vanishing implies that g|E : E → Y is a closed embedding as in the proof of Theorem 2.
Hence g(E) ∼= E ∼= P

n−1. By Lemma 8, it lies in the smooth locus of Y .
Since g is induced by D,−(KY +g(E)) = π∗D is ample. To show the nefness of g(E)we

only need to show that (L · g(E)) ≥ 0 for a line L in g(E). We may assume L intersects the
the exceptional locus of g. Denote by L ′ the strict transform of L in X̂ . LetW = g∗g(E)−E ,
then it is an effective Cartier divisor supported on Ex(g). Since −W ∼g.Q. −KX̂ is g-ample,
we have Ex(g)⊆ W , hence (L ′ ·W ) ≥ 1 and (L ·g(E)) = (L ′ ·(E+W )) = −1+(L ′ ·W ) ≥ 0.

According to Lemma 11, we are now in the situation of Lemma 8 with λ = 1. In order to
classify X , we first need to study the structure of the birational map g : X̂ → Y in greater
detail. This is accomplished by the following lemma.

Lemma 12 Under the same notations and assumptions as in Lemma 8, X̂ is the blowup of
Y along a divisor in G.

Proof First note that by Lemma 8 and its proof, X̂ has only compound Du Val singularities
along Ex(g), hence after shrinking X̂ and Y we may assume that X̂ has only klt singularities.

LetW = g∗G−E as above, thenW is g-exceptional and−W is a g-ample Cartier divisor
on X̂ , hence we have X̂ ∼= Proj ⊕∞

m=0 Jm where Jm = g∗OX̂ (−mW )(m = 0, 1, . . .). It is
clear that each Jm is an ideal sheaf on Y . Let J = J1, we claim that J is the ideal sheaf of
a hypersurface in g∗E and Jm = J m .

To see this, note that since −mW − KX̂ ∼g.Q (m + 1)E is g-ample and X̂ is klt, we have
R1g∗OX̂ (−mW ) = 0 for all m ≥ 0. Hence from the pushforward g∗ of

0 → OX̂ (−g∗G − mW ) → OX̂ (−(m + 1)W ) → OE (−(m + 1)W ) → 0

we obtain an exact sequence

0 → Jm(−G) → Jm+1 → OE (−(m + 1)W ) → 0

Takingm = 0, by Nakayama lemmawe see that locallyJ = (a, b) is the ideal sheaf of g(W )

where a = 0 (resp. a = b = 0) is the local defining equation of G (resp. g(W )). Note that
the restriction of g to E is an isomorphism, so g(W ) ∼= W ∩ E is a divisor (not necessarily
irreducible or reduced) in G. Suppose we have shown Jm = J m for some m ≥ 1 (the case
m = 1 being clear), then the above exact sequence tells us that Jm+1 is generated by a · Jm

and bm+1, hence Jm+1 = J m+1 as well. The claim then follows by induction on m and the
lemma follows immediately from the claim.

Now we will classify the pairs (Y, g(E)) satisfying the statement of Lemma 11. By abuse
of notation, wewill simply denote the divisor by E instead of g(E).We remark that Bonavero,
Campana and Wiśniewski classified such pairs in [2] when Y is smooth.

Lemma 13 Let Y be an n-dimensionalQ-Fano variety containing a prime divisor E ∼= P
n−1

in its smooth locus.
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Characterization of projective spaces by Seshadri constants 31

1. If ρ(Y ) = 1, then either Y is a weighted projective space P(1n, d) for some d ∈ Z>0 and
E is the hyperplane defined by the vanishing of the last coordinate, or n = 2, Y ∼= P

2

and E is a smooth conic;
2. If ρ(Y ) ≥ 2 and −(KY + E) is ample, then Y is a P

1-bundle P(O ⊕O(−d)) over P
n−1

for some d ∈ Z≥0 and E is a section. If n ≥ 3 and d ≥ n then E is the only section with
negative normal bundle.

Proof Note that in the case ρ(Y ) = 1, E is necessarily an ample divisor on Y . As E
does not intersect the singular locus of Y , Y has only isolated singularities. By adjunction
−(KY + E)|E = −KE is ample, hence −(KY + E) is ample as well. Let Y ◦ be the smooth
locus of Y and i : E → Y ◦ the inclusion.

First assume ρ(Y ) = 1 and n ≥ 3. By the generalized version of Lefschetz hyperplane
theorem [9, Theorem II.1.1], Hi (Y ◦, E, Z) = Hi (Y ◦, E, Z) = 0 for i < n, hence by
the universal coefficient theorem, Hn(Y ◦, E, Z) is torsion free. As n ≥ 3, this implies the
restriction map i∗ : H2(Y ◦, Z) → H2(E, Z) is injective and has torsion free cokernel.
But H2(E, Z) ∼= Z since E ∼= P

n−1, so i∗ is in fact an isomorphism. As Y is Q-Fano we
have H1(Y,OY ) = 0 by Kawamata–Viehweg vanishing and Y is Cohen–Macaulay by [16,
Theorem 5.22]. Since Z = SingY consists of isolated points and n ≥ 3, by the long exact
sequence of cohomology with support

· · · → H1
Z (Y,OY ) → H1(Y,OY ) → H1(Y ◦,OY ◦) → H2

Z (Y,OY ) → · · ·
we get H1(Y ◦,OY ◦) = 0. Combining this with the exponential sequence 0 → Z → OY ◦ →
O∗

Y ◦ → 0, we see that the restriction i∗ : Cl(Y ) = Pic(Y ◦) → Pic(E) ∼= Z is also an
isomorphism.

Let H be the ample generator of Cl(Y ), then E ∼ dH for some d ∈ Z>0. Let π : Y ′ → Y
be the (normalization of the) cyclic cover of degree d of Y ramified at E and E ′ = π−1(E)red.
Then KY ′ + E ′ = π∗(KY + E) as E is the only branched divisor, hence Y ′ is also Q-Fano
and E ′ satisfies the same assumptions of the lemma.We also haveOE ′(dE ′) ∼= OE ′(π∗E) =
π∗NE/Y ∼= OE ′(d), hence NE ′/Y ′ ∼= OE ′(1) is the hyperplane class. Note that E ′ is ample
since it’s the preimage of the ample divisor E . It now follows from the long exact sequence

0 → H0(Y ′,OY ′) → H0(Y ′,OY ′(E ′)) → H0(E ′, NE ′/Y ′) → H1(Y ′,OY ′) = 0

that the linear system |E ′| is base point free, has dimension n and defines an isomorphism
Y ′ ∼= P

n such that E ′ is mapped to a hyperplane. Our original pair (Y, E) is then obtained
by taking a cyclic quotient of degree d ramified at E ′, and is easily seen to be as claimed in
the statement of the lemma.

Next assume ρ(Y ) = 1 and n = 2. Then Y has quotient singularity and is Q-factorial,
hence Cl(Y ) has rank one. As E is ample, π1(E) → π1(Y ◦) is surjective by [9, Theo-
rem II.1.1], but π1(E) = π1(P

1) = 0, so Y ◦ is simply connected as well. In particular,
Cl(Y ) = Pic(Y ◦) is torsion-free and thus ∼= Z. Let r be the index of i∗Cl(Y ) in Pic(E). As
−(KY + E)|E = −KE has degree 2, r = 1 or 2. Let H be the ample generator of Cl(Y ),
then (H.E) = r and E ∼ dH for some d ∈ Z>0. Let π : Y ′ → Y be the corresponding
cyclic cover of degree d and define E ′ as before. By the same argument as the n ≥ 3 case,
we have NE ′/Y ′ ∼= OE ′(r), and if r = 1, the linear system |E ′| defines an isomorphism
(Y ′, E ′) ∼= (P2, hyperplane), while if r = 2, the linear system |E ′| embeds Y ′ into P

3 as a
quadric surface. Taking cyclic quotients, we see that the original (Y, E) is again as claimed.

Finally assume ρ(Y ) ≥ 2 and −(KY + E) is ample. Let l be a line in E . We claim that
there is an extremal ray R≥0[Γ ] in NE(Y ) generated by an integral curve Γ on Y such that
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32 Y. Liu, Z. Zhuang

[Γ ] /∈ R≥0[l] and (E · Γ ) > 0. If (E · l) = 0, then such Γ exists since E is not numerically
trivial. If (E · l) > 0, consider the exact sequence

0 → TE |l → TY |l → NE/Y |l → 0.

It is clear that TE |l is ample because E ∼= P
n−1. On the other hand, deg NE/Y |l = (E · l) > 0

hence NE/Y |l is ample. Therefore, TY |l is also ample which implies that l is a very free
rational curve in Y . Since ρ(Y ) ≥ 2, R≥0[l] cannot be an extremal ray of NE(Y ) (otherwise
the contraction of l will contract Y to a single point), which means that such Γ exists.

Now let h : Y → Z be the contraction of Γ . As we argued in the proof of Theorem 2,
h|E : E → Y is a closed embedding, hence (E · Γ ) = 1. Since −(KY + E) is ample, we
have (−KY ·Γ ) > 1. Then by the same reasoning as in the proof of Theorem 2, we conclude
that h has to be a fiber type contraction. Hence Y is a P

1-fibration over Z ∼= P
n−1 admitting

a section h|−1
E : Z → E , so Y ∼= PZ (O⊕O(−d)) with d ≥ 0. If n ≥ 3, then E corresponds

to either a surjectionO⊕O(−d) � O or a surjectionO⊕O(−d) � O(−d). If in addition
d ≥ n, then −(KY + E) being ample implies that E is the unique section corresponding to
the second projection O ⊕ O(−d) � O(−d).

Combining the last two lemmas we can give a partial classification of X :

Lemma 14 If g is birational then X is one of the following:

1. a degree d+1weighted hypersurface Xd+1 = (x0xn+1 = f (x1, . . . , xn)) ⊂ P(1n+1, d);
2. the blow-up of P

n along the complete intersection of a hyperplane and a hypersurface
of degree d ≤ n;

3. a Gorenstein log del Pezzo surface of degree ≥ 5.

Proof By Lemma 13, we have the following cases:
(1) Y ∼= P(1n, d) with homogeneous coordinate [y0 : · · · : yn] and g(E) = (yn = 0).

We have Ng(E)/Y ∼= OE (d). By Lemma 12, X̂ is obtained by blowing up a hypersur-
face S = ( f = 0) in g(E) where f is a homogeneous polynomial in y0, . . . , yn−1. As
NE/X̂

∼= OE (−1)we see that deg f = d+1. Consider the rationalmapφ : Y ��� P(1n+1, d)

given by

[y0 : · · · : yn] �→ [x0 : · · · : xn+1] =
[
f (y0, . . . , yn−1)

yn
: yn : y0 : · · · : yn−1

]

whose image lies in the weighted hypersurface Xd+1 define by x0xn+1 = f (x1, . . . , xn). It
is clear that φ is contracts g(E) to the point [1 : 0 : · · · : 0] and the indeterminacy locus of φ

is exactly S. By inspecting each affine chart (xi �= 0) ⊂ Y it is easy to see that after blowing
up S, φ extends to a birational morphism X̂ → Xd+1 that contracts E , hence X ∼= Xd+1 as
in the first case in the statement of the lemma.

(2) Y is a P
1-bundle P(O⊕O(−d)) over P

n−1 (n ≥ 3) and g(E) is a section. Since g(E)

is nef by Lemma 11, we have d < n by Lemma 13. Going back to the last part of the proof
of Lemma 13 we see that the section g(E) corresponds to a surjection O ⊕ O(−d) � O
and hence Ng(E)/Y ∼= OE (d). By Lemma 12 as in previous case, X̂ is obtained by blowing
up a hypersurface S of degree d + 1 in g(E). It is straightforward to see that the elementary
transformation of Y with center S is the P

1-bundle P(O ⊕ O(−1)) over P
n−1 , which is

isomorphic to the blowup of a point R on P
n , such that the strict transform E ′ (resp. H )

of g(E) (resp. the negative section on Y ) becomes the exceptional divisor over R (resp. a
hyperplane in P

n that is disjoint from R). Contracting E ′ and reversing this procedure we
see that X is the blowup of P

n along a hypersurface of degree d + 1 ≤ n in a hyperplane.
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(3) Y ∼= P
2 and g(E) is a smooth conic, or Y is a ruled surface over P

1 and g(E) is a
section. In either case Y is smooth and X̂ is obtained by blowing up subschemes of g(E).
Locally on Y , such a subscheme is defined by (a = bk = 0) where a, b are local coordinates
such that g(E) = (a = 0). X̂ then has local equation at = bk or a = bkt and it follows that
both X̂ and X have only Du Val singularities of type A. As D = σ ∗(−KX ) − 2E is big and
nef and Cartier in this case we have (K 2

X ) = (D2) − 4(E2) = (D2) + 4 ≥ 5, so X is as
described in the third case of the statement of the lemma. ��
3.2 g is of fiber type

Lemma 15 If g is of fiber type, then every fiber has dimension 1, g|E : E → Y is a double
cover and −KX̂ ∼g.Q. E is g-ample.

Proof Since ε(−KX , p) > n− 1, X̂ is Q-Fano, so −KX̂ ∼g.Q. E is g-ample. D|E is ample,
so E → Y is finite and every fiber of g has dimension one. Let l be a general fiber, then
l ∼= P

1 and (−KX̂ · l) = 2 = (E · l), so E is a double section.

Similar to the previous case, we first analyze the local structure of g in a slightly more
general setting. For ease of notations, we call g : X̂ → Y (where X̂ and Y are normal quasi-
projective varieties) a rational conic bundle if g is proper, every fiber of g has dimension 1 and
the general fiber is isomorphic to P

1. If in addition X̂ is Cohen–Macaulay and there exists a
Cartier divisor E on X̂ such that−KX̂ ∼g.Q. E is g-ample, then we say that the rational conic
bundle is Gorenstein. It is clear that a conic bundle is automatically a Gorenstein rational
conic bundle.

Lemma 16 Let g : S → C be a Gorenstein rational conic bundle. Assume dim S = 2, then
S is a conic bundle and in particular has only Du Val singularities.

Proof Let l be an irreducible component of a fiber of g, then (−KS · l) = (E · l) is a positive
integer since E is Cartier and −KS is g-ample. On the other hand, if F is a general fiber
of g then (−KS · F) = 2. Hence every fiber of g has at most two irreducible components
(counting multiplicities), so on the minimal resolution of S (which is a birationally ruled
surface over C), every fiber over C has one of the following as its dual graph:

(−2) − (−1) − (−2),

(−1) − (−2) − (−2) − · · · − (−2) − (−1),

or

(−2) (−2) − · · · − (−2) − (−1)

(−2)

(−2)

As S is obtained by contracting those (−2)-curves, it has only Du Val singularities and is a
conic bundle. ��

Corollary 17 If g : X̂ → Y is a Gorenstein rational conic bundle such that Y is smooth,
then X̂ is a conic bundle over Y . In particular, X̂ is a hypersurface in P(E) for some rank 3
vector bundle E on Y .
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Proof Let y ∈ Y and C a general complete intersection curve on Y passing through y. Let
S = X̂ ×Y C . Since X̂ is Cohen–Macaulay, S is S2. From the proof of Lemma 16 we know
that the fiber g−1(y) has at most 2 irreducible components (counting multiplicities), hence
S is smooth at every generic point of g−1(y), for otherwise g−1(y) contains a component of
multiplicity ≥ 22 = 4. It follows that S is normal. By adjunction it is easy to see that S is a
Gorenstein rational conic bundle overC , so by Lemma 16, S has onlyDuVal singularities and
is a conic budle, hence every fiber of g is isomorphic to a conic and X̂ has cDV singularities
which is Gorenstein. The lemma then follows from standard arguments (see e.g. [6, Theorem
7]).

Unfortunately in our classification problem, the Gorenstein rational conic bundle
g : X̂ → Y does not have a smooth base. Nevertheless, there is a smooth double sec-
tion E . Hence we would like to apply Corollary 17 to g̃ : X̃ → Ỹ , where Ỹ ∼= E and X̃ is the
normalization of X̂ ×Y Ỹ . For this purpose, we need to show that X̃ is Gorenstein rational
conic bundle over Ỹ . This is given by the following lemma.

Lemma 18 Let g : X̂ → Y be a Gorenstein rational conic bundle and φ : Ỹ → Y a finite
morphism between normal varieties. Let X̃ be the normalization of X̂ ×Y Ỹ . Assume that X̂
has klt singularities and the branch divisor of φ is disjoint from the singular locus of Ỹ and
Y . Then g̃ : X̃ → Ỹ is also a Gorenstein rational conic bundle.

Proof By shrinking Y we may assume either φ is unramified in codimension one or both
Y and Ỹ are smooth. In the first case X̃ is also klt by [16, Proposition 5.20] hence is CM,
and the other properties of Gorenstein rational conic bundles are preserved by a finite base
change that is étale in codimension one. In the second case g is a conic bundle by Lemma
17, hence the same holds for g̃. ��

The pullback E ′ of E to X̃ is then a union of two sections E1 and E2. If they are disjoint,
we have a simple description of the conic bundle g̃:

Lemma 19 Let g̃ : X̃ → Ỹ be a conic bundle with smooth base. Assume that there are
two disjoint sections E1 and E2 that are Cartier as divisors on X̃ and such that −KX̃ ∼g.Q.

E1+E2. Then there is a birational morphism u : X̃ → Z = PỸ (O⊕L) (whereL ∼= NE1/X̃ )

sending E1, E2 to two disjoint sections E ′
1, E

′
2 of Z such that X̃ is the blow up of Z along a

divisor in E2.

Proof If every fiber of g̃ is an irreducible P
1 then X̃ ∼= PỸ (O ⊕ L) and there is nothing

to prove. So we may assume l = l1 + l2 is a reducible fiber. We have (E1 + E2 · l j ) =
(−KX̃ · l j ) = 1 ( j = 1, 2). Since the section Ei is Cartier, we have (Ei · l j ) = δi j after
rearranging indices. Let u : X̃ → Z be the contraction of the extremal ray R+[l2] and let
E ′
1, E

′
2 be strict transform of E1, E2. As Ei is a section of g̃ and Ei → Ỹ factors through

E ′
i , the restriction u|Ei is an isomorphism. In addition we have −(KX̃ + E2) ∼u.Q. 0 since

its intersection number with l2 is zero. Hence the lemma follows by a direct application of
Lemma 12. ��

Putting everything together and specializing to E ∼= P
n−1, we now finish the second part

of the classification of X with ε(−KX , p) = n.

Lemma 20 If g is of fiber type then X is one of the following:

1. A Gorenstein log del Pezzo surface of degree 4;
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2. Quotient of a quadric hypersurface in P
n+1 by an involution that is fixed point free in

codimension 1;
3. A quartic weighted hypersurface in P(1n, 22).

Proof If n = dim X = 2 then by Lemma 16, X̂ and hence X has only Du Val singularities.
We have σ ∗(−KX ) − 2E ∼g.Q. 0, so (K 2

X ) = −4(E2) = 4 and we are in case (1). Hence in
the remaining part of the proof we assume that n ≥ 3.

We keep using the notations introduced in this subsection. Let X̃ → X̄ be the Stein
factorization of the composition X̃ → X̂ → X , then X̄ → X is a double cover. The double
cover E → Y is either unramified in codimension one or the quotient P

n−1 → P(1n−1, 2)
in which case the branch divisor is a hyperplane on P

n−1, so the conditions and conclusions
of Lemma 18 are satisfied and we see that g̃ : X̃ → Ỹ is a conic bundle over Ỹ ∼= P

n−1 by
Corollary 17.

If h : X̃ → X̂ is unramified in codimension one, so is X̄ → X andwe have codimE1∩E2Ei

≥ 2. But since X̃ is Cohen–Macaulay and E ′ = E1 + E2 is a Cartier divisor, E1 ∪ E2 is
S2. It follows that E1 and E2 do not intersect at all, hence they are disjoint smooth Cartier
divisors in X̃ with normal bundle OPn−1(−1). As KX̃ + E1 + E2 = h∗(KX̂ + E) ∼g.Q. 0,
it follows from Lemma 19 that X̃ is a blowup of Z ∼= PỸ (O ⊕ O(−1)) ∼= BlzPn along a
hypersurface in the strict transform of a hyperplane. For the normal bundle to match, it is
the blowup of a quadric hypersurface. As X̄ is obtained by contracting E1 ∪ E2 from X̃ , it
is a quadric hypersurface in P

n+1, and X is the quotient of X̄ by an involution that acts fixed
point free in codimension one as in case (2).

If h : X̃ → X̂ is ramified in codimension one, then it is ramified along g̃∗H where
H is a hyperplane on Ỹ . As in the last paragragh E1 ∩ E2 has pure codimension one,
so E ′ is a union of two P

n−1 intersecting transversally at a hyperplane. The conic bundle
X̃ is a hypersurface in some P(E) over Ỹ . To compute E , first note that −(KX̃ + E ′) =
g̃∗M for some M ∈ Pic(E) since it restricts to a trivial bundle on every fiber of g̃; we
also have −(KX̃ + E ′)|E ′ = −KE ′ = (n − 1)g̃∗H , so M ∼ (n − 1)H . Combining with
NE ′/X̃ ∼= g̃∗OỸ (−H)we have−KX̃ |E ′ ∼= g̃∗(n−2)H . Now apply g̃∗ to the exact sequence

0 → OX̃ (−KX̃ − E) → OX̃ (−KX̃ ) → OE ′(−KX̃ ) → 0

we obtain another exact sequence

0 → OỸ ((n − 1)H) → g̃∗OX̃ (−KX̃ ) → OỸ ((n − 2)H)

⊕OỸ ((n − 3)H) → R1g̃∗OX̃ ⊗ M = 0

hence g̃∗OX̃ (−KX̃ ) ∼= ⊕3
k=1OỸ ((n − k)H) and we may choose E ∼= ⊕2

k=0OỸ (kH). Let

π be the projection P(E) → Ỹ and OP(E)(1) the relative hyperplane class. X̃ corresponds
to section of OP(E)(2) ⊗ π∗OỸ (mH) for some m ∈ Z and by adjunction formula we have
OX̃ (−KX̃ ) ∼= OX̃ (1)⊗ g̃∗OỸ ((n−3−m)H), hence g̃∗OX̃ (−KX̃ ) ∼= E⊗OỸ ((n−3−m)H).
Comparing this to the previous formula for g̃∗OX̃ (−KX̃ ) we see that m = 0. The surjection
E � OỸ defines a section S of P(E) → Ỹ that is disjoint with X̃ (since OP(E)(2)|S ∼=
OS) and the linear projection from S makes X̃ into a double cover over the P

1-bundle
PỸ (O(H) ⊕ O(2H)), which is also the blowup of a point on P

n , such that E ′ is mapped to
the exceptional divisor and g̃∗H to the strict transform of a hyperplane passing through the
center of blowup. X̄ is then a double cover of P

n , and as−(KX̃ + E ′) ∼ (n−1)g̃∗H we have
−KX̄ ∼ (n − 1)τ ∗H ′ where H ′ is a hyperplane on P

n and τ : X̄ → P
n the double cover. It

follows that X̄ is a weighted hypersurface of degree 4 in P(1n+1, 2). The original X is then
obtained as the quotient of X̄ by an involution that fixes a hyperplane section (i.e. the strict
transform of g̃∗H ), hence is a quartic weighted hypersurface in P(1n, 22) as in case (3).
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21 (Proof of Theorem 3) By Lemmas 14 and 20, we have the following five possibilities for
X . Note that by Theorem 2 it suffices to show that ε(−KX , p) ≥ n in each case.

(1) X ∼= Xd+1 = (x0xn+1 = f (x1, . . . , xn)) ⊆ P(1n+1, d). If d = 1 then X is a
quadric hypersurface and the result is clear (or see case (4)). Otherwise d > 1 and we have
q = [0 : · · · : 0 : 1] ∈ X . Let p be a smooth point on X and let σ : Z → P(1n+1, d) be
the blowup of P(1n+1, d) at p with exception divisor V . Let H be the divisor class O(1) on
P(1n+1, d), then we have σ ∗(−KX ) − nE = n(σ ∗H − V )|X̂ . The base locus of the linear
system |σ ∗H − V | on Z is the strict transform of the line l joining p and q . For general
choice of p we have l � X , hence σ ∗(−KX ) − nE is nef on X̂ , yielding ε(−KX , p) ≥ n.

(2) X is a quartic hypersurface in P(1n, 22). Up to weighted projective isomorphism
we may assume that X is defined by the equation q(xn, xn+1) + xnh(x0, . . . , xn−1) =
f (x0, . . . , xn−1) where deg q = deg h = 2, deg f = 4 and h = 0 if q �= ax2n+1. Let
p ∈ X be a smooth point and define H , V in the similar way as in the first case. We have
σ ∗(−KX )−nE = n(σ ∗H−V )|X̂ . The base locus of |σ ∗H−V | is the planeΣ spanned by p
and the line (x0 = · · · = xn−1 = 0), so D is nef (i.e. ε(−KX , p) ≥ n) if and only if for every
curve C ⊆ Σ ∩ X we have (D ·C) ≥ 0. It is easy to see that 1

n (D ·C) = 1
4 degC −mult pC .

As deg(Σ ∩ X) ≤ 4 we see that (D.C) ≥ 0 if and only if Σ ∩ X is an irreducible curve
that is smooth at p. Suppose p = [c0 : · · · : cn+1], then Σ ∩ X is given by the equa-
tion q(y1, y2) + h(c0, . . . , cn−1)y1y20 = f (c0, . . . , cn−1)y40 in Σ ∼= P(1, 2, 2). From this
it is clear that ε(−KX , p) ≥ n for general p ∈ X if and only if q is not a square or
hq �= 0. After another change of variable we see that X is a quartic hypersurface of the form
xnxn+1 = f (x0, . . . , xn−1) or x2n+1 + xnh(x0, . . . , xn−1) = f (x0, . . . , xn−1) (h �= 0).

(3) X is the blowup of a hypersurface S of degree d ≤ n in a hyperplane of P
n . Let V

be the exceptional divisor over S, H the pullback of OPn (1) on X and H ′ ⊂ X the strict
transform of the hyperplane containing S. Let p ∈ X be a point outside H ′ ∪ V . We have
D = σ ∗(−KX )−nE ∼ σ ∗H ′+n(σ ∗H−E).Wewant to show that D is nef. Since σ ∗H−E
is already nef, it remains to show that (D · l) > 0 where l is a line in σ ∗H ′. Then a direct
computation shows that (D · l) = (−KX · l) = (((n + 1)H − V ) · l) = n + 1− d > 0. Thus
D is nef and ε(−KX , p) ≥ n.

(4) X = Q/τ where Q is a quadric hypersurface and τ ∈ Aut(Q) an involution that is
fixed point free in codimension one. Let p1 be a smooth point of Q, let p2 = τ(p1) and p be
their image in X . Let ψ : Q̂ → Q be the blowup of p1 and p2 with exceptional divisors E1

and E2. Since h : Q → X is étale in codimension one, the divisor D = σ ∗(−KX )−nE pulls
back to D′ = ψ∗(−KQ) − nE1 − nE2 = n(ψ∗H − E1 − E2) where H is the hyperplane
class on Q. Similar to case (1), D′ is the restriction of a line bundle (also denoted by D′)
on blowup of P

n+1 at p1, p2 whose base locus is the strict transform of the line l joining p1
and p2. We also have (D′ · l) = −n < 0. Hence D is nef and ε(−KX , p) ≥ n if and only if
l � Q. We may diagonalize τ and choose homogeneous coordinate xi so that τ(xi ) = δi xi
where δi = ±1. It is then not hard to verify that l � Q for general choice of p if and only if
Q is given by the equation

∑k
i=0 x

2
i = 0 for some 2 ≤ k ≤ n + 1 such that δi take different

values for i = 0, . . . , k.
(5) X is a Gorenstein log del Pezzo surface of degree (K 2

X ) ≥ 4. We claim that if S is
a Gorenstein log del Pezzo surface of degree d ≥ 3, then there exists an irreducible curve
C ∈ | − KS | with a double point p lying in the smooth locus of S. After blowing up d − 3
general points on S, it suffices to prove the claim when d = 3, in which case S is a nodal
cubic surface in P

3 by [10, Theorem 4.4]. But then there are only finitely many lines on S
whereas by dimension count there exists C ∈ | − KX | that is singular at any given p ∈ S,
hence the claim follows immediately. Using such C ∈ | − KX | and take p = Sing(C), we
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have σ ∗(−KX )−2E ∼ C ′ where C ′ is the strict transform of C and (C ′2) = (K 2
X )−4 ≥ 0,

hence C ′ is nef and ε(−KX , p) ≥ n = 2.
It remains to show that all Fano varieties listed in the statement of Theorem 3 have only klt

singularities. From the equations there we see that the singularities of X are always quotients
of cA-type singularities that are étale in codimension 1 (hence are klt by [15, 1.42] and [16,
Proposition 5.20]) except when X is a quartic hypersurface x2n+1 + xnh = f in P(1n, 22)
and x ∈ (xn = xn+1 = 0) ∩ X satisfies multxh = 2 and multx f ≥ 3. In the latter case,
we may assume x = [1 : 0 : · · · : 0] and locally X is a double cover of C

n ramified along
D = (xnh = f ). If h is not a perfect square, then the pair (Cn, D) degenerates to (Cn, D0)

where D0 = (xnh = 0) (consider the C
∗-action (x1, . . . , xn) �→ (t2x1, . . . , t2xn−1, t xn)

for t �= 0). Clearly (Cn, 1
2D0) is klt, so it follows from adjunction that (Cn, 1

2D) is also klt
which implies that X is klt by [16, Proposition 5.20]. If h is a perfect square, then by [16,
page 168] we know that X is a cDV singularity which is klt as well. ��

4 Seshadri constants below n

In this section, we prove Theorem 4 using the following examples.

Example 22 Let X be the weighted projective space P(1, a1, . . . , an) where a1 ≤ · · · ≤ an
are positive integers satisfying gcd(a1, . . . , an) = 1. Let p ∈ X be the smooth point with
coordinate [1 : 0 : · · · : 0]. We claim that the Seshadri constant of−KX at p is ε(−KX , p) =
1
an

(1 + ∑n
i=1 ai ). As before let σ : X̂ → X be the blowup of X at p and E the exceptional

divisor. Since X̂ is a toric variety, the torus invariant divisor Lx = σ ∗(−KX ) − x E is nef if
and only if it has non-negative intersection number with all torus invariant lines, and as−KX

is ample on X and E has ample conormal bundle, it suffices to check (Lx · li ) ≥ 0 where li is
the strict transform of the line on X joining p and the point whose only nonzero coordinate
is at the i-th entry (i > 0). It is straightforward to compute (Lx · li ) = 1

ai
(1+ ∑n

i=1 ai ) − x ,

so ε(−KX , p) = 1
an

(1 + ∑n
i=1 ai ). Taking a1 = · · · = am−1 = 1, am = r − m, am+1 =

· · · = an = s where 1 ≤ m < n and s ≥ r > m we get ε(−KX , p) = n −m + r
s , hence the

Seshadri constant ε(−KX , p) can be any rational number in the interval (1, n].
Example 23 More generally, let X be the weighted projective space P(a0, . . . , an) where
a0 ≤ · · · ≤ an have no common factor and p ∈ X a smooth point on the line l : x2 =
· · · = xn = 0 (such p exists exactly when gcd(a0, a1) = 1). We claim that ε(−KX , p) is the
smaller one of 1

an

∑n
i=0 ai and

1
a0a1

∑n
i=0 ai . Indeed, since X is toric and p is invariant under

an (n − 1)-dimensional subtorus T , the Mori cone of X̂ = Blp X is generated by a line in E
and the strict transform Ĉ of a curve C ⊆ X containing p that is invariant under the action
of T . Hence C is the line joining p and a T -invariant point. For D = σ ∗(−KX ) − δE , we
have (D · Ĉ) = 1

a0a1

∑n
i=0 ai − δ if C = l, otherwise (D · Ĉ) = 1

a j

∑n
i=0 ai − δ for some

j . The claim then follows by setting (D · Ĉ) ≥ 0. Taking a0 = s − 1, a1 = · · · = an−1 = s,
an = (r − 1)(s − 1) − (n − 1)s with s ≥ r  0 we get ε(−KX , p) = r

s , hence the Seshadri
constant ε(−KX , p) can be any rational number in the interval (0, 1] as well.
Remark 24 As the previous examples give some possible values of ε(−KX , p), it is natural
to ask whether these are all possible values. When ε(−KX , p) ≥ n − 1, the Rationality
Theorem [16, Theorem 3.5] implies that ε(−KX , p) is necessarily a rational number. When
ε(−KX , p) < n − 1, it is not clear to us whether ε(−KX , p) is rational, although there are
no known examples of irrational Seshadri constants according to [17, Remark 5.1.13].
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