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Abstract In this paper, we study the singularities of pairs in arbitrary characteristic via jet
schemes. For a smooth variety X in characteristic 0, Ein, Lazarsfeld andMustaţǎ showed that
there is a correspondence between irreducible closed cylinders and divisorial valuations on X .
Via this correspondence, one can relate the codimension of a cylinder to the log discrepancy
of the corresponding divisorial valuation.We now extend this result to positive characteristic.
In particular, we prove Mustaţǎ’s log canonical threshold formula avoiding the use of log
resolutions, making the formula available also in positive characteristic. As a consequence,
we get a comparison theorem via reductionmodulo p and a version of inversion of adjunction
in positive characteristic.

Introduction

Let k be a perfect field of arbitrary characteristic. Given m ≥ 0 and a scheme X over k, we
denote by Xm the mth order jet scheme of X . The set of k-points of Xm is

Xm(k) = Hom(Spec k[t]/(tm+1), X).

If X is a smooth integral variety of dimension n, then Xm is a smooth variety of dimension
n(m + 1) and the truncation morphism ρm+1

m : Xm+1 → Xm is locally trivial with fiber An .
The space of arcs X∞ is the projective limit of the jet schemes Xm and thus parameterizes

all formal arcs on X . One writesψm : X∞ → Xm for the natural map. The inverse images of
constructible subsets by the canonical projections ψm : X∞ → Xm are called cylinders. If
C is the cylinder ψ−1

m (S) defined by a constructible subset S ⊂ Xm , then the codimension of
C in X∞ is the codimension of S in Xm . Interesting examples of cylinders arise as follows.
Consider a non-zero ideal sheaf a ⊂ OX defining a subscheme Y ⊂ X . For every p ≥ 0, the
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contact locus of order p of a is the locally closed cylinder

Contp(Y ) = Contp(a) :=
{
γ ∈ X∞

∣∣∣ ordγ (a) = p
}

.

Similarly, we define the closed cylinder

Cont≥p(Y ) = Cont≥p(a) :=
{
γ ∈ X∞

∣∣∣ ordγ (a) ≥ p
}

.

Jet schemes and arc spaces are fundamental objects for the theory of motivic integration,
due to Kontsevich [12] and Denef and Loeser [3]. Furthermore, in characteristic 0, using the
central result of this theory, the Change of Variable formula, one can show that there is a close
link between the log discrepancy defined in terms of divisorial valuations and the geometry
of the contact loci in arc spaces. This link was first explored by Mustaţǎ in [13,14], and then
further studied in [2,5,7,9].

The main purpose of this paper is to show that the correspondence between irreducible
closed cylinders and divisorial valuations in [5] holds for smooth varieties of arbitrary char-
acteristic. We now explain it as follows. Let X be a smooth integral variety of dimension n
over k. An important class of valuations of the function field k(X) of X consists of divisorial
valuations. These are the valuations of the form

ν = q · ordE : k(X)∗ → Z

where E is a divisor over X , (that is, a prime divisor on a normal variety X ′, having a
birational morphism to X ) and q is a positive integer number. One can associate an integer
number to a divisorial valuation ν = q · ordE , called the log discrepancy of ν, equal to q ·
(1+ ordE (KX ′/X )), where KX ′/X is the relative canonical divisor. These numbers determine
the log canonical threshold lct(X, Y ) of a pair (X, Y ), where Y is a closed subscheme of X .

For every closed irreducible nonempty cylinder C ⊂ X∞ which does not dominate X ,
one defines

ordC : k(X)∗ → Z

by taking the order of vanishing along the generic point of C . These valuations are called
cylinder valuations. If C is an irreducible component of Cont≥p(Y ) for some subscheme
Y of X , then C is a cylinder. The valuation ordC is called a contact valuation. It is easy
to see that every divisorial valuation is a cylinder valuation. When the ground field is of
characteristic zero, Ein, Lazarsfeld and Mustaţǎ showed the above classes of valuations
coincide, by showing that:

(a) Every contact valuation is a divisorial valuation [5, Theorem A];
(b) Every cylinder valuation is a contact valuation [5, Theorem C].

We thus have a correspondence between irreducible closed cylinders that do not dominate
X and divisorial valuations. Via this correspondence, one can relate the codimension of
the cylinder to the log discrepancy of the divisorial valuation. This yields a quick proof of
Mustaţǎ’s log canonical threshold formula.

Theorem 0.1 ([14, Corollary 3.6], [5, Corollary B]) If X is a smooth complex variety and
Y ⊂ X is a closed subscheme, then the log canonical threshold of the pair (X, Y ) is given by

lct(X, Y ) = min
m

{
codim(Ym, Xm)

m + 1

}
.
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The key ingredients in the proofs of the above theorems in [5] are the Change of Variable
formula developed in the theory of motivic integration and the existence of log resolutions.
While a version of the Change of Variable formula also holds in positive characteristic,
the use of log resolutions in the proofs in [5,14] restricted the result to ground fields of
characteristic zero. In this paper, we show by induction on the codimensions of cylinders and
only using the Change of Variable formula for blow-ups along smooth centers that the above
correspondence between divisorial valuations and cylinders holds in arbitrary characteristic.

Theorem A Let X be a smooth variety of dimension n over a perfect field k. There is a
correspondence between irreducible closed cylinders C ⊂ X∞ that do not dominate X and
divisorial valuations as follows:

(1) If C is an irreducible closed cylinder which does not dominate X, then there is a divisor
E over X and a positive integer q such that

ordC = q · ordE .

Furthermore, we have codimC ≥ q · (1 + ordE (K−/X )).
(2) To every divisor E over X and every positive integer q, we can associate an irreducible

closed cylinder C which does not dominate X such that

ordC = q · ordE and codimC = q · (1 + ordE (K−/X )).

Given E and q , the cylinder C we construct in the proof of Theorem A has the following
maximality property: any cylinder C ′ with ordC ′ = q · ordE is contained in our C , as in [2].
We are able to prove the log canonical threshold formula avoiding use the log resolutions.

Theorem B Let X be a smooth variety of dimension n defined over a perfect field k, and Y
be a closed subscheme. Then

lct(X, Y ) = inf
C⊂X∞

codimC

ordC (Y )
= inf

m≥0

codim(Ym, Xm)

m + 1

where C varies over the irreducible closed cylinders which do not dominate X, and
ordC (Y ) := ordγ (Y ) where γ is the generic point of C.

Moreover, wewill show that log canonical threshold only depends on the asymptotic behavior
of jet schemes, i.e., lct(X, Y ) = lim infm→∞ codim(Ym ,Xm )

m+1 .
The paper is organized as follows. In the first section, we review some basic definitions

and notations concerning jet schemes, cylinders and valuations. In Sect. 2 we prove a version
of the Change of Variable formula and construct the correspondence between cylinders and
divisorial valuations. The proofs of Theorems A and B are also given in Sect. 2. In Sect. 3, we
apply the log canonical threshold formula and obtain a semicontinuity result which leads to a
comparison theorem via reduction modulo p, as well as a version of inversion of adjunction
in positive characteristic.

1 Introduction to jet schemes and log canonical threshold

In this section, we first recall the definition and some basic properties of jet schemes and arc
spaces. For a more detailed discussion of jet schemes, see [6,13].

We start with the absolute setting and explain the relative version of jet schemes later. Let
k be a field of arbitrary characteristic. In this paper, a variety is a separated scheme of finite
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type over k. Given a scheme X of finite type over k and an integer m ≥ 0, the mth order jet
scheme Xm of X is a scheme of finite type over k satisfying the following adjunction

HomSch /k(Y, Xm) ∼= HomSch /k(Y × Spec k[t]/(tm+1), X) (1)

for every scheme Y of finite type over k. It follows that if Xm exists, then it is unique up to a
canonical isomorphism. We will show the existence in Proposition 1.2.

Let L be a field extension of k. A morphism Spec L[t]/(tm+1) → X is called an L-valued
m-jet of X . If γm is a point in Xm , we call it an m-jet of X . If κ is the residue field of γm ,
then γm induces a morphism (γm)κ : Spec κ[t]/(tm+1) → X .

It is easy to check that X0 = X . For every j ≤ m, the natural ring homomorphism
k[t]/(tm+1) → k[t]/(t j+1) induces a closed embedding

Spec k[t]/(t j+1) → Spec k[t]/(tm+1)

and the adjunction (1) induces a truncation map ρm
j : Xm → X j . For simplicity, we usually

write π X
m or simply πm for the projection ρm

0 : Xm → X = X0. A morphism of schemes
f : X → Y induces morphisms fm : Xm → Ym for everym. At the level of L-valued points,
this takes an L[t]/(tm+1)-valued point γ of Xm to f ◦ γ . For every point x ∈ X , we write
Xm,x for the fiber of πm over x , the m-jets of X centered at x .

In Sect. 3, we will use the relative version of jet schemes. We now recall some basic facts
about this context.

We work over a fixed separated scheme S of finite type over a noetherian ring R. Let
f : W → S be a scheme of finite type over S. If s is a point in S, we denote by Ws the fiber
of f over s.

Definition 1.1 The mth relative jet scheme (W/S)m satisfies the following adjunction

HomSch /S(Y ×R Spec R[t]/(tm+1),W ) ∼= HomSch /S(Y, (W/S)m), (2)

for every scheme of finite type Y over S.

As in the absolute setting, we have (W/S)0 ∼= W . If (W/S)m and (W/S) j exist with m ≥ j ,
then there is a canonical projection ρm

j : (W/S)m → (W/S) j . For simplicity, we usually
write πm for the projection ρm

0 : (W/S)m → W .
The proof of the existence of the relative jet schemes is similar to that of the absolute case.

For details, see [14].

Proposition 1.2 If f : W → S is a scheme of finite type over S, then the mth order relative
jet scheme (W/S)m exists for every m ∈ N.

For every scheme morphism S′ → S and every W/S as above, we denote by W ′ the fiber
product W ×S S′. For every point s ∈ S, we denote by Ws the fiber of W over s. By the
functorial definition of relative jet schemes, we can check that

(W ′/S′)m ∼= (W/S)m ×S S′

for every m. In particular, for every s ∈ S, we conclude that the fiber of (W/S)m → S over
s is isomorphic to (Ws)m .

Recall that πm : (W/S)m → W is the canonical projection. We now show that there is an
S-morphism, called the zero-section map, σm : W → (W/S)m such that πm ◦σm = idW . We
have a natural map gm : W × Spec R[t]/(tm+1) → W , the projection onto the first factor.
By (2), gm induces a morphism σW

m : W → (W/S)m , the zero-section of πm . For simplicity,
we usually write σm for σW

m . One can check that πm ◦ σm = idW .
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Log canonical thresholds in positive characteristic 1239

Note that for every m and every scheme W over S, there is a natural action:

	m : A1
S ×S (W/S)m → (W/S)m

of the monoid scheme A1
S on the jet schemes (W/S)m defined as follows. For an A-valued

point (a, γm) of A1
S ×S (W/S)m where a ∈ A and γm : Spec A[t]/(tm+1) → W , we define

	m(a, γm) as the composition map Spec A[t]/(tm+1)
a∗−→ Spec A[t]/(tm+1)

γm−→ W , where
a∗ corresponds to the A-algebra homomorphism A[t]/(tm+1) → A[t]/(tm+1) mapping t to
at . One can check that the image of the zero section σm is equal to 	m({0} × (W/S)m).

Lemma 1.3 Let f : W → S be a family of schemes and τ : S → W a section of f . For
every m ≥ 1, the function

d(s) = dim
(
πWs
m

)−1
(τ (s))

is upper semi-continuous on S.

Proof Due to the local nature of the assertion, we may assume that S = Spec A is an affine
scheme. Given a point s ∈ S, we denote by w = τ(s) in W . Let W ′ be an open affine
neighborhood of w inW . Consider the restriction map f ′ : W ′ → S of f , one can show that
there is an nonzero element h ∈ A such that τ maps the affine neighborhood S′ ∼= Spec Ah of
s intoW ′. LetW ′′ be the affine neighborhood ( f ′)−1(S′) ofw and f ′′ : W ′′ → S′ the induced
map. The restriction of τ defines a section τ ′ : S′ → W ′′. Replacing f by f ′′ and τ by τ ′,
we may and will assume that both W and S are affine schemes. Let W = Spec B, where B
is a finitely generated A-algebra. The section τ induces a ring homomorphism τ ∗ : B � A.
Choose a set of A-algebra generators u1, . . . , un of B such that τ ∗(ui ) = 0. Let C be the
polynomial ring A[x1, . . . , xn]. We define a ring homomorphism ϕ : C → B which maps xi
to ui for every i . Let I = ( f1, . . . , fr ) be the kernel ofϕ. One can check that fl ∈ (x1, . . . , xn)
for every l with 1 ≤ l ≤ r . Hence W is a closed subscheme of An

S = Spec A[x1, . . . , xn]
defined by the system of polynomials ( fl) and the zero section o : S → An

S factors through

τ . It is clear that (An
S)m = Spec A[ai, j ] ∼= An(m+1)

S for 1 ≤ i ≤ n and 0 ≤ j ≤ m and

σ
An
S

m ◦ o : S → An(m+1)
S is the zero-section.

We thus obtain an embedding (W/S)m ⊂ A(m+1)n
S which induces an embedding

(πW
m )−1(τ (S)) ⊂ (π

An
S

m )−1(o(S)) ∼= Amn
S = Spec A[ai, j ] for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Given any vi = ∑m
j=0 ai, j t

j in A[t]/(tm+1) for 1 ≤ i ≤ n, we can write

fl(v1, . . . , vn) =
m∑
p=0

gl,p(ai, j )t
p, (3)

for some polynomials gl,p in A[ai, j ] with 1 ≤ i ≤ n and 0 ≤ j ≤ m. Recall that (W/S)m as

a subscheme of An(m+1)
S is defined by the polynomials gl,p in Eq. (3). Let deg ai, j = j for

1 ≤ i ≤ n and 1 ≤ j ≤ m. Since fl has no constant terms, we can check that each gl,p is
homogenous of degree p. We deduce that the coordinate ring of (πW

m )−1(τ (S)), denoted by
T , is isomorphic to A[ai, j ]/(gl,p). Hence T is a graded A-algebra.

For every s ∈ S corresponding to a prime ideal p of A, we obtain that

d(s) = dim
(
πWs
m

)−1
(τ (s)) = dim(T ⊗A A/p).

Our assertion follows from a semi-continuity result on the dimension of fibers of a projective
morphism (see [4, Theorem 14.8]). 
�
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Remark 1.4 Let X be a smooth variety over a field k and Y a closed subscheme of X . If T
is an irreducible component of Ym for some m, then T is invariant under the action of A1.
Since πm(T ) = σ−1

m (T ∩ σm(X)), it follows that πm(T ) is closed in X .

We now turn to the projective limit of jet schemes in the absolute setting. It follows from
the description in the proof of Proposition 1.2 that the projective system

· · · → Xm → Xm−1 → · · · → X0

consists of affine morphisms. Hence the projective limit exists in the category of schemes
over k. This is called the space of arcs of X , denoted by X∞. Note that in general, it is not of
finite type over k. There are natural projection morphisms ψm : X∞ → Xm . It follows from
the projective limit definition and the functorial description of the jet schemes that for every
field extension L of k, we have

Hom(Spec(L), X∞) � Hom←−−(Spec L[t]/(tm+1), X) � Hom(Spec L[[t]], X)

An L-valued point of X∞ which corresponds to a morphism from Spec L[[t]] to X is called
an L-valued arc. We denote the closed point of Spec L[[t]] by 0 and the generic point by η.
A point in X∞ is called an arc in X. If γ is a point in X∞ with residue field κ , γ induces
a κ-valued arc, i.e., a morphism γκ : Spec κ[[t]] → X . If f : X → Y is a morphism of
schemes of finite type, by taking the projective limit of the morphisms fm : Xm → Ym
we get a morphism f∞ : X∞ → Y∞. If X is a smooth variety of pure dimension n over k,
then all truncation maps ρm

m−1 are locally trivial with fiber An . In particular, all projections
ψm : X∞ → Xm are surjective and dim Xm = (m + 1)n.

For every scheme X , a cylinder in X∞ is a subset of the form C = ψ−1
m (S), for some m

and some constructible subset S ⊆ Xm . From now on, we will assume that X is smooth and
of pure dimension n. We say that a cylinderC = ψ−1

m (S) is irreducible (closed, open, locally
closed) if so is S. It is clear that all these properties of C do not depend on the particular
choice of m and S. We define the codimension of C by

codimC := codim(S, Xm) = (m + 1)n − dim S.

Since the truncation maps are locally trivial, codimC is independent of the particular choice
of m and S.

Let a be the defining ideal sheaf of a closed subscheme Z of X . Given an L-valued
arc γ : Spec L[[t]] → X , the inverse image of Z by γ is defined by a principal ideal in
L[[t]]. If this ideal is generated by te with e ≥ 0, then we define the vanishing order of γ

along Z to be ordγ (Z) = ordγ (a) := e. On the other hand, if this is the zero ideal, we put
ordγ (Z) = ordγ (a) = ∞. If γ is a point in X∞ having the residue field L , then we define
ordγ (Z) by considering the corresponding morphism Spec L[[t]] → X . The contact locus of
order e with Z is the subset of X∞

Conte(Z) = Conte(a) := {γ ∈ X∞ | ordγ (Z) = e}.
We similarly define

Cont≥e(Z) = Cont≥e(a) := {γ ∈ X∞ | ordγ (Z) ≥ e}.
For m ≥ e, we can define constructible subsets Conte(Z)m and Cont≥e(Z)m of Xm in the
obvious way. (In fact, the former one is locally closed, while the latter one is closed.) By
definition, we have

Conte(Z) = ψ−1
m

(
Conte(Z)m

)
and Cont≥e(Z) = ψ−1

m

(
Cont≥e(Z)m

)
.
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This implies that Cont≥e(Z) is a closed cylinder and Conte(Z) is a locally closed cylinder
in X∞.

Let k be a perfect field. In the rest of this section, we review some definitions in the theory
of singularities of pairs (X, Y ) over k. We refer the reader to [10, Section 2.3] for a more
detailed introduction. For varieties over a non-perfect field, a more general definition of log
canonical threshold will be introduced in Sect. 3. From now on, we always assume varieties
areQ-Gorenstein. Suppose X ′ is a normal variety over k and f : X ′ → X is a birational (not
necessarily proper) map. Let E be a prime divisor on X ′. Any such E is called a divisor over
X . The local ringOX ′,E ⊂ k(X ′) is a DVR which corresponds to a divisorial valuation ordE
on k(X) = k(X ′). The closure of f (E) in X is called the center of E , denoted by cX (E).
If f ′ : X ′′ → X is another birational morphism and F ⊂ X ′′ is a prime divisor such that
ordE = ordF as valuations of k(X), then we consider E and F to define the same divisor
over X .

Let E be a prime divisor over X as above. If Z is a closed subscheme of X , then we
define ordE (Z) as follows. We may assume that E is a divisor on X ′ and that the scheme-
theoretic inverse image f −1(Z) is an effective Cartier divisor on X ′. Then ordE (Z) is the
coefficient of E in f −1(Z). Recall that the relative canonical divisor KX ′/X is the unique
Q-divisor supported on the exceptional locus of f such that mKX ′/X is linearly equivalent
withmKX ′ − f ∗(mKX ) for some positive integerm. When X is smooth, we can alternatively
describe KX ′/X as follows. LetU be a smooth open subset of X ′ such that codim(X ′\U, X ′) ≥
2. The restriction of f to U is a birational morphism of smooth varieties, we denote it by g.
In this case, the relative canonical divisor KU/X is the effective Cartier divisor defined by
det(dg) on U . Since codim(X ′\U, X ′) ≥ 2, KU/X uniquely determines a divisor KX ′/X on
X ′.

We also define ordE (K−/X ) as the coefficient of E in KU/X . Note that both ordE (Y ) and
ordE (K−/X ) do not depend on the particular choice of f , X ′ and U .

For every real number c > 0, the log discrepancy of the pair (X, cY ) with respect to E is

a(E; X, cY ) := ordE (K−/X ) + 1 − c · ordE Y.

Let Z be a closed subset of X . A pair (X, cY ) is Kawamata log terminal (klt for short)
around Z if a(E; X, cY ) > 0 for every divisor E over X such that cX (E) ∩ Z �= ∅.

The log canonical threshold of (X, Y ) at Z , denoted by lctZ (X, Y ), is defined as follows:
if Y = X , we set lctZ (X, Y ) = 0, otherwise

lctZ (X, Y ) = sup{c ∈ R≥0 | (X, cY ) is klt around Z}.
In particular, lctZ (X, Y ) = ∞ if and only if Z ∩Y = ∅. If Z = X , we simply write lct(X, Y )

for lctZ (X, Y ). Given a closed point x ∈ X , we write lctx (X, Y ) for lct{x}(X, Y ).
By the definition of a(E; X, Y ), we obtain that

lctZ (X, Y ) = sup
{
c ∈ R | c · ordE (Y ) < ordE (K−/X ) + 1 for all E with cX (E) ∩ Z �= ∅}

= inf
E/X

ordE (K−/X ) + 1

ordE Y

where E varies over all divisors over X such that cX (E) ∩ Z �= ∅. This also implies that
lctZ (X, Y ) = inf x∈Z lctx (X, Y ) where x varies over all closed points of X in Z .

Remark 1.5 The definition of log canonical threshold involves all exceptional divisors over
X . In characteristic zero, it is enough to only consider the divisors on a log resolution, see [11,
Proposition 8.5]. In particular, we deduce that lctZ (X, Y ) is a positive rational number. In
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positive characteristics, it is not clear that lctZ (X, Y ) > 0. We will see in §3 as a corollary of
inversion of adjunction that we have, as in characteristic zero, lctx (X, Y ) ≥ 1/ordx (Y ) > 0,
for every point x ∈ Y . Here ordx (Y ) is the maximal integer value q such that the ideal
IY,x ⊆ mq

X,x .

2 Cylinder valuations and divisorial valuations

The main goal of this section is to establish the correspondence between cylinders and
divisorial valuations as described in the introduction. Let X be a variety over a field k. Recall
that a subsetC of X∞ is thin if there is a proper closed subscheme Z of X such thatC ⊂ Z∞.

Lemma 2.1 Let X be a smooth variety over k. If C is a nonempty cylinder in X∞, then C is
not thin.

For the proof of Lemma 2.1, see [5, Proposition 1].

Lemma 2.2 Let f : X ′ → X be a proper birational morphism of schemes over k. Let Z be a
closed subset of X and F = f −1(Z). If f is an isomorphism over X\Z, then the restriction
map of f∞

ϕ : X ′∞\F∞ → X∞\Z∞
is bijective on the L-valued points for every field extension L of k. In particular,ϕ is surjective.

Proof Since f is proper, the valuative criterion for properness implies that an arc γ :
Spec L[[t]] → X lies in the image of f∞ if and only if the induced morphism γη :
Spec L((t)) → X can be lifted to X ′. An arc γ is not contained in Z∞ implies that γη

factors through X\Z ↪→ X . Since f is an isomorphism over X\Z , hence there is a unique
lifting of γη to X ′. This shows that ϕ is surjective. The injectivity of ϕ follows from the
valuative criterion for separatedness of f . The last assertion follows from the fact that a
morphism of schemes (not necessary to be of finite type) over k is surjective if the induced
map on L-valued points is surjective for every field extension L . 
�

The Change of Variable Theorem due to Kontsevich [12] and Denef and Loeser [3] will
play an important role in our arguments. We now state a special case of this theorem as
Lemma 2.3.

Lemma 2.3 Let X be a smooth variety of dimension n over k and Z a smooth irreducible
closed subvariety of codimension c ≥ 2. Let f : X ′ → X be the blow up of X along Z and
E the exceptional divisor. Hence KX ′/X = (c − 1)E.

(a) For every positive integer e and every m ≥ 2e, the induced morphism

ψ X ′
m

(
Conte

(
KX ′/X

)) → fm
(
ψ X ′
m

(
Conte

(
KX ′/X

)))

is a piecewise trivial Ae fibration.
(b) For every m ≥ 2e, the fiber of fm over a point γm ∈ fm(ψ X ′

m (Conte(KX ′/X ))) is
contained in a fiber of X ′

m → X ′
m−e.

For the proof of Lemma 2.3, see [1, Theorem 3.3].
Let X be a smooth variety of dimension n over k. For every irreducible cylinder C which

does not dominate X , we define a discrete valuation as follows. Let γ be the generic point
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of C and L the residue field of γ . We thus have an induced ring homomorphism γ ∗ :
OX,γ (0) → L[[t]]. Lemma 2.1 implies that ker γ ∗ is zero. Hence γ ∗ extends to an injective
homomorphism γ ∗ : k(X) → L((t)). We define a map

ordC : k(X)∗ → Z

by ordC ( f ) := ordγ ( f ) = ordt (γ ∗( f )). If C does not dominate X , then ordC is a discrete
valuation. If C ′ is a dense subcylinder of C , then they define the same valuation. Given an
element f ∈ k(X)∗, we can check that ordC ( f ) = ordγ ′( f ) for general point γ ′ in C . Let Y
be a subscheme of X defined by an ideal sheaf a, we define

ordC (Y ) = ordC (a) := ordγ (Y )

where γ is the generic point of C . Similarly, we have ordC (Y ) = ordγ ′(Y ) for general points
γ ′ of C .

In the rest of this section, we assume that k is a perfect field. We first prove that every
valuation defined by a cylinder is a divisorial valuation.

Lemma 2.4 If C is an irreducible closed cylinder in X∞ which does not dominate X, then
there exist a divisor E over X and a positive integer q such that

ordC = q · ordE . (4)

Furthermore, we have codim(C) ≥ q · (1 + ordE (K−/X )).

Proof Wewill prove that such divisor E can be reached by a sequence of blow ups of smooth
centers after shrinking to suitable open subsets. Let (R,m) be the valuation ring associated
to the valuation ordC . Suppose that C is ψ−1

m (S) for some closed irreducible subset S in Xm .
Since X is smooth, we have ψm(C) = S. Chevalley’s Theorem implies that the image of the
cylinder C by the projection ψ0(C) = πm(S) is a constructible set. We denote its closure in
X by Z . This is the center of ordC . If C is irreducible and does not dominate X , then Z is
a proper reduced irreducible subvariety of X . The generic smoothness theorem implies that
there is a nonempty open subset U of X such that U ∩ Z is smooth. Since U contains the
the generic point of Z , then C ∩U∞ is an open dense subcylinder of C . Note that U∞ is an
open subset of X∞, we have

codim(C, X∞) = codim(C ∩U∞,U∞)

and the cylinders C ⊆ X∞ and C ∩ U∞ ⊆ U∞ define the same valuation of k(X) = k(U ).
This implies that we can replace X by U and C by C ∩U∞. As a consequence, we may and
will assume that Z is a smooth subvariety of X .

If Z is a prime divisor on X , then the local ring OX,Z is a discrete valuation ring of k(X)

with maximal ideal mX,Z . Given two local rings (A, p) and (B, q) of k(X), we denote by
(A, p) � (B, q) if A ⊆ B is a local inclusion, i.e., p = q ∩ A. This defines a partial order
on the set of local rings of k(X). By the definition of Z , we deduce that

(OX,Z ,mX,Z ) � (R,m).

Since every valuation ring is maximal with respect to the partial order �, it follows that
OX,Z is equal to the valuation ring R of ordC , and ordC = q · ordZ for some integer q > 0.
Therefore we may take X ′ = X and E = Z , in which case ordE (K−/X ) = 0. The equality
ordC Z = q ·ordZ Z = q implies that C is a subcylinder of Cont≥q(E). Since E is a smooth
divisor, we obtain that codim Cont≥q(E) = q . This proves the inequality

codim(C) ≥ q · (1 + ordE (K−/X )) = q.
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We now assume that Z is not a divisor, i.e., codim Z ≥ 2. Let f : X ′ → X be the blow
up of X along Z . We claim that there exists an irreducible closed cylinder C ′ in X ′∞ such
that the morphism f∞ maps C ′ into C dominantly.

Let e be the vanishing order ordC (KX ′/X ). We can assume that C = (ψ X
m )−1(S) for some

closed irreducible subset S in Xm with m ≥ 2e. The smoothness of X implies that C\Z∞
is a dense subset of C . Let F = f −1(Z) be the exceptional divisor on X ′. It is clear that
f −1∞ (Z∞) = F∞. We denote by

ϕ : X ′∞\F∞ → X∞\Z∞

the restriction of f∞. Let γ be the generic point of C and L the residue field of γ . Hence γ

induces a morphism

γL : Spec L[[t]] → X.

Lemma 2.1 implies that γ ∈ X∞\Z∞. By Lemma 2.2, we deduce that ϕ is bijective on the
L-valued points, hence there is a unique L-valued point of X ′∞ mapping to γL via ϕ. We
denote by γ ′ its underlying point in X ′∞. It is clear that f∞(γ ′) = γ . For simplicity we write
γm for ψ X

m (γ ) and γ ′
m for ψ X ′

m (γ ′). By Lemma 2.3 part (a), we deduce that f −1
m (γm) is an

affine space of dimension e over the residue field of γm . Hence the image of f −1
m (γm) in X ′

m ,
denoted by T , is irreducible. Since γm is the generic point of S, there is a unique component
of f −1

m (S) which contains T . Let S′ be this component and C ′ the cylinder (ψ X ′
m )−1(S′) in

X ′∞. We now check that the closed irreducible cylinderC ′ satisfies the above conditions. The
fact

fm
(
γ ′
m

) = fm ◦ ψ X ′
m (γ ′) = ψ X

m (γ ) = γm

implies that γ ′
m ∈ T . We deduce that γ ′ ∈ C ′. It follows that f∞ maps C ′ into C dominantly.

The fact that the center of ordC on X is Z implies that ordC (F) > 0, hence e =
ordC (KX ′/X ) > 0. Lemma 2.3 implies that fm : S′ → S is a dominant morphism with
general fibers of dimension e. We thus have dim S′ = dim S + e, hence

codimC ′ = dim X ′
m − dim S′ = dim Xm − (dim S + e) = codimC − e

We now set X (0) = X, X (1) = X ′,C (0) = C and C (1) = C ′. By the construction of C ′,
we deduce that ordC and ordC ′ are equal as valuations of k(X). If the center of ordC ′ on X ′
is not a divisor, then we blow up this center again (we may need to shrink X ′ to make the
center smooth). We now run the above argument for the variety X (1) and C (1) and obtain
X (2) and C (2). Since every such blow up decreases the codimension of the cylinder, which is
an non-negative integer, we deduce that after s blow ups, the center of the valuation ordC(s)

on X (s) is a divisor, denoted by E . We have

ordC = ordC(1) = · · · = ordC(s) = q · ordE .

We now check the inequality codimC ≥ q · (1 + ordE (K−/X )). At each step, we have

codim(C) = codim(C (1)) + ordC
(
KX (1)/X

)

codim(C (1)) = codim(C (2)) + ordC
(
KX (2)/X (1)

)

· · ·
codim(C (s−1)) = codim(C (s)) + ordC

(
KX (s)/X (s−1)

)
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We thus obtain that

codim(C) = codim(C (s)) +
s∑

i=1

ordC
(
KX (i)/X (i−1)

)

= codim(C (s)) + ordC
(
KX (s)/X

)

It is clear that ordC (E) = q · ordE (E) = q , hence C (s) ⊆ Cont≥q(E), and therefore
codimC (s) ≥ codim Cont≥q(E) = q . This completes the proof. 
�

Lemma 2.5 Let X be a smooth variety and S a constructible subset of Xm for some m.

(a) ψ−1
m (S) = ψ−1

m (S).
(b) If U is an open subset of X and C is a cylinder in U∞, then the closure C in X∞ is a

closed cylinder in X∞.

Proof We first prove part (a). Since ψm is continuous with respect to the Zariski topologies,

we deduce that ψ−1
m (S) is closed. We thus have ψ−1

m (S) ⊆ ψ−1
m (S). If ψ−1

m (S) �= ψ−1
m (S),

then there is an arc γ ∈ ψ−1
m (S)\ψ−1

m (S). Let U be an affine neighborhood of ψ0(γ ) in X
and W = S ∩Um . It is clear that

γ ∈
(
ψU
m

)−1
(W )\(ψU

m

)−1
(W ).

In order to get a contradiction, we can replace X by U and S by W . We thus may assume
that X is an affine variety. It follows from the construction of jet schemes that Xm are smooth
affine varieties. Let Xm = Spec Am for every m ≥ 0. Hence X∞ = Spec A where A is the

inductive limit lim−→Am . We claim that if ψ−1
m (S) �= ψ−1

m (S), then there is an integer n ≥ m
such that

ψn

(
ψ−1
m (S)

)
�= ψn

(
ψ−1
m (S)

)
.

Since ψn(ψ
−1
m (S)) = (ρn

m)−1(S) and ψn(ψ
−1
m (S)) = (ρn

m)−1(S), we deduce that

(
ρn
m

)−1
(S) = ψn

(
ψ−1
m (S)

)
⊆ ψn

(
ψ−1
m (S)

)
�

(
ρn
m

)−1
(S).

On the other hand, since ρn
m is a locally trivial affine bundle with fiber Adim X (n−m), we have

(ρn
m)−1(S) = (ρn

m)−1(S). We thus get an contraction.

We now prove the claim. Let I be the radical ideal defining ψ−1
m (S) in X∞ and J the

radical ideal definingψ−1
m (S). Ifψ−1

m (S) �= ψ−1
m (S), then there is an element f ∈ I\J . There

exist an integer n ≥ m such that f ∈ An . Let In = I ∩ An and Jn = J ∩ An . It is clear that

ψn(ψ
−1
m (S)) is the closed subset of Xn defined by Jn . Similarly ψn(ψ

−1
m (S)) = (ρn

m)−1(S)

is the closed subset of Xn defined by the ideal In . Since f ∈ In\Jn , we thus have the assertion
of the claim. This completes the proof of part (a).

For the proof of part (b), let C = (ψU
m )−1(S) for some integer m ≥ 0 and some con-

structible subset S ofUm . We now consider S as a constructible subset of Xm and apply part

(a), we thus obtain C = ψ−1
m (S) = (ψ X

m )−1(S). This completes the proof. 
�
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Lemma 2.6 Let X and X ′ be smooth varieties over a field k, and f : X ′ → X a blow up
with smooth center. If C ′ is an irreducible closed cylinder of X ′, then the closure of the image
f∞(C ′), denoted by C, is an irreducible cylinder in X ′. We also have

ordC = ordC ′ ; codimC = codimC ′ + ordC ′
(
KX ′/X

)
.

Proof Let e = ordC ′(KX ′/X ). For simplicity, we write ψ ′
m for ψ X ′

m and ψm for ψ X
m for

every m ≥ 0. We first show that C is a closed cylinder. We choose an integer p ≥ e
and a constructible subset T ′ of X ′

p such that C ′ = (ψ ′
p)

−1(T ′). Let m = e + p. We
denote by S′ the inverse image of T ′ by the canonical projection ρm

p : X ′
m → X ′

p . Let
S = fm(S′). Lemma 2.3 part (b) implies that f −1

m ( fm(S′)) ⊆ (ρm
p )−1(T ′) = S′. We thus

have f −1
m ( fm(S′)) = S′. It follows that f∞(C ′) = ψ−1

m (S). This implies that

C = f∞(C ′) = ψ−1
m (S) = ψ−1

m (S)

is an irreducible closed cylinder in X∞. Here the last equality follows from Lemma 2.5 part
(a). Since C ′ dominates C , we have ordC = ordC ′ . The codimension equality follows from
the fact that dim S′ = dim S + e by Lemma 2.3. 
�

Lemma 2.7 Let X be a smooth variety over a perfect field k. If f : Y → X is a birational
morphism from a normal variety Y and E is a prime divisor on Y , then for every positive
integer q, there exist an irreducible cylinder C ⊂ X∞ such that ordC = q · ordE and

codim(C) = q · (1 + ordE (KY/X )) (5)

Proof Let ν be the divisorial valuation q · ordE on the function field k(X). We define a
sequence of varieties and maps as follows. Let Z (0) be the center of ν on X and X (0) = X .
We choose an open subsetU (0) of X (0) such that Z (0)∩U (0) is a nonempty smooth subvariety
of U (0). If Z (0) ∩ U (0) is not a divisor, then let f1 : X (1) → U (0) be the blow up of U (0)

along Z (0) ∩U (0) and h1 : X (1) → X the composition of f1 with the embeddingU (0) ↪→ X .
If fi : X (i) → U (i−1) and hi : X (i) → X (i−1) are already defined, then we denote by Z (i)

the center of ν on X (i). We pick an open subsetU (i) ⊂ X (i) such that Z (i) ∩U (i) is a smooth
subvariety of U (i). If Z (i) is not a divisor, then we denote by fi+1 : X (i+1) → U (i) the
blow up of Ui along Z (i) ∩U (i) and hi+1 : X (i+1) → X (i) the composition of fi+1 with the
embedding U (i) → X (i). By [10, Lemma 2.45], we know there is an integer s ≥ 0 such that
Z (s) is a prime divisor on U (s) and ordZ (s) = ordE . Hence we can replace Y by a smooth
varietyU (s) and E = Z (s) ∩U (s). We write gi : Y → X (i) for the composition of morphisms
h j for j with i < j ≤ s and the embedding U (s) ⊂ X (s).

Let Cs be the locally closed cylinder Contq(E) in Y∞ and C0 the closure of its image
(g0)∞(Cs) in X∞. It is clear that codimCs = q . We now show thatC = C0 is a cylinder that
satisfies our conditions. For every i with 1 ≤ i ≤ s, we denote by Ci the closure of the image
of Cs in X (i)∞ under the map (gi )∞ : Y∞ → X (i)∞ . Similarly, we denote by Di the closure of
the image ofCs inU

(i)∞ . It is clear that Di is the closure of the image ofCi+1 inU
(i)∞ under the

map ( fi+1)∞ : X (i+1)∞ → U (i)∞ and Ci is the closure of Di in X (i)∞ . By Lemmas 2.6 and 2.5
part (b), using descending induction on i < s, we deduce that Di is a cylinder inU

(i)∞ and Ci

is a cylinder in (X (i))∞. We also deduce that ordCi = ordDi = ordCi+1 and

codimCi = codim Di = codimCi+1 + ordCi

(
KX (i+1)/X (i)

)
.
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We thus obtain ordC = ordC1 = · · · = ordCs = q · ordE and

codimC = codimC1 + ordC
(
KX (1)/X

)

· · ·
= codimCs +

s−1∑
i=0

ordC
(
KX (i+1)/X (i)

)
= q + q · ordE (KY/X ).


�

It is clear that Theorem A follows from Lemmas 2.4 and 2.7. We now prove Theorem B.

Proof If Y = X , the assertion is trivial. Hence we may and will assume Y is a proper closed
subscheme of X . By Theorem A, we deduce that

lct(X, Y ) := inf
E

1 + ordE (K−/X )

ordE (Y )
= inf

C

codimC

ordC (Y )
.

where C varies over the irreducible closed cylinders which do not dominate X .
We first show that

lct(X, Y ) ≤ inf
m≥0

codim(Ym, Xm)

m + 1
(†)

For everym ≥ 0, let Sm be an irreducible component of Ym which computes the codimension
of Ym in Xm and Cm the closed irreducible cylinder ψ−1

m (Sm) in X∞. We thus obtain

codim(Cm) = codim(Sm, Xm) = codim(Ym, Xm).

The image ψ0(Cm) = ρm
0 (Sm) is contained in Y , which implies that Cm does not dominate

X . By the definition of contact loci, we know that Ym = Cont≥m+1(Y )m in Xm . This implies
that ordCm (Y ) ≥ m + 1. We conclude that

lct(X, Y ) ≤ codim(Cm)

ordCm (Y )
= codim(Ym, Xm)

m + 1
.

Taking infimum over all integers m ≥ 0, we now have the inequality (†).
We now prove the reverse inequality. Let C be an irreducible closed cylinder which does

not dominate X . If ordC (Y ) = 0, then codimC
ordC (Y )

= ∞. Hence

codimC

ordC (Y )
≥ inf

m≥0

codim(Ym, Xm)

m + 1
.

From now on, we may and will assume that ordC (Y ) > 0. Let m = ordC (Y ) − 1. Since C
is a subcylinder of the contact locus Cont≥m+1(Y ) = ψ−1

m (Ym), we have

codimC

ordC (Y )
≥ codim(Ym, Xm)

m + 1
≥ inf

m≥0

codim(Ym, Xm)

m + 1
.

We now take infimum over all cylinders C which do not dominate X and obtain

lct(X, Y ) = inf
C

codimC

ordC (Y )
≥ inf

m≥0

codim(Ym, Xm)

m + 1
.


�
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Let X be a smooth variety over a perfect field k, Y a closed subscheme of X , and Z a
closed subset of X . Recall that

lctZ (X, Y ) = inf
E/X

ordE (K−/X ) + 1

ordE Y

where E varies over all divisors over X whose center in X intersects Z . By the correspon-
dence in Theorem A(2), we deduce that for every such divisor E over X , the corresponding

irreducible closed cylinder C satisfies ψ X
0 (C) ∩ Z �= ∅. Applying the argument in the proof

of Theorem B, we can show the following generalized log canonical threshold formula in
terms of jet schemes.

Proposition 2.8 Let (X, Y ) be a pair over a perfect field k and Z a closed subset of X. We
have

lctZ (X, Y ) = inf
C⊂X∞

codimC

ordC (Y )
= inf

m≥0

codimZ (Ym, Xm)

m + 1

where C varies over all irreducible closed cylinders with ψ0(C) ∩ Z �= ∅, ψ0(C) �= X, and
codimZ (Ym, Xm) is the minimum codimension of an irreducible component T of Ym such
that πm(T ) ∩ Z �= ∅.

Remark 2.9 We have seen that

lct(X, Y ) := inf
E

1 + ordE (K−/X )

ordE (Y )
= inf

C

codimC

ordC (Y )
= inf

m≥0

codim(Ym, Xm)

m + 1
.

If one of the infimums can be achieved, then so are the other two. For example, when the base
field k is of characteristic 0, the existence of log resolutions of (X, Y ) implies that lct(X, Y )

can be computed at some divisors E on a log resolution. Hence in characteristic zero, all the
infimums can be replaced by minimums.

We now show that log canonical threshold only depends on the asymptotic behavior of jet
schemes, i.e., lct(X, Y ) = lim infm→∞ codim(Ym ,Xm )

m+1 . This is clear if there is nom computing
lct(X, Y ). Now we assume that there is one positive integer m such that

lct(X, Y ) = codim(Ym, Xm)

m + 1
,

then there is a divisor E over X that computes the log canonical threshold. TheoremA implies
that for every integer q ≥ 0, there is a cylinder Cq ⊂ X∞ such that ordCq = q ordE and
codimCq = q · (ordE (K−/X ) + 1). Let mq := ordCq (Y ) − 1 = q ordE (Y ) − 1. We obtain

that lct(X, Y ) = codimCq
ordCq (Y )

≥ codim(Ymq ,Xmq )

mq+1 for every q . Hence there is a sequence {mq} such
that lct(X, Y ) = codim(Ymq ,Xmq )

mq+1 . In particular, we deduce that

lct(X, Y ) = lim inf
m→∞

codim(Ym, Xm)

m + 1
.

Similarly lctZ (X, Y ) = lim infm→∞ codimZ (Ym ,Xm )
m+1 . We leave the proof to the reader.

Moreover, we can compute lctx (X, Y ) at a closed point x in terms of the asymptotic
behavior of the jet schemes centered at x .
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Proposition 2.10 Let X be a smooth variety over a perfect field k and Y a closed subscheme
of X. For every closed point x,

lctx (X, Y ) = dim X − lim sup
m→∞

dim Ym,x

m + 1
.

Proof Since x is a closed point, we have dim Ym,x ≤ dim Tm ≤ dim Ym,x + dim Y for any
component Tm of Ym that computing codimx (Ym, Xm). We have

lctx (X, Y ) = lim inf
m→∞

codim(Tm, Xm)

m + 1

= dim X − lim sup
m→∞

dim Tm
m + 1

= dim X − lim sup
m→∞

dim Ym,x

m + 1
.


�

3 The log canonical threshold via jets

In this section, we apply TheoremB to deduce properties of log canonical threshold for pairs.
We first assume that k is a perfect field. We denote by k the algebraic closure of k. For every
scheme X over k, we write X for the fiber product X ×k Spec k.

Corollary 3.1 Let X be a smooth variety over a perfect field k and Y a closed subscheme of
X. We have

lct(X, Y ) = lct(X , Y ).

Proof For every scheme Z over the field k, we know that dim Z = dim Z . We thus have for
every m ≥ 0,

codim(Ym, Xm) = codim(Ym, Xm).

Our assertion follows from Theorem B. 
�

We now generalize the notion of log canonical threshold for pairs over perfect fields to
those defined over arbitrary fields. Let X be a smooth variety over a field k, Y a closed
subscheme of X and Z a closed subset of X . Recall that when k is perfect, we have
lctZ (X, Y ) = infx∈Z lctx (X, Y ) where x varies over the closed points in Z . We first define
the log canonical threshold of (X, Y ) at a closed point by passing to the algebraic closure. If
x is a closed point of X , then the fiber of the map X → X over x are a finite set {x1, . . . , xl}.
We define

lctx (X, Y ) := lctz(X , Y )

for some z in the fiber of X over x . Let G be the Galois group of the field extension k over
k. It is clear that G acts on the fiber {x1, . . . , xl} transitively. For every g ∈ G and every
z ∈ {x1, . . . , xl}, g induces an isomorphism between the jet schemes Ym,g(z) and Ym,z . By
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Proposition 2.10, we have

lctz(X , Y ) = dim X − lim sup
m→∞

dim Ym,z

m + 1

= dim X − lim sup
m→∞

dim Ym,g(z)

m + 1

= lctg(z)(X , Y ).

Hence our definition of lctx (X, Y ) does not depend on the choice of z. We define

lctZ (X, Y ) := inf
x∈Z lctx (X, Y )

where x varies over the closed points in Z . We can check that lctZ (X, Y ) = lctZ (X , Y ).
Since dimension does not change if we pass to the algebraic closure, the description of log
canonical threshold in terms of jet schemes still holds. Hence we generalize Theorem B,
Propositions 2.8, and 2.10 to an arbitrary field.

Remark 3.2 There is a naive definition of log canonical threshold of pairs over an arbitrary

field, that is lctZ (X, Y ) := infE/X
ordE (K−/X )+1

ordE (Y )
where E varies over all divisors over X with

CX (E) ∩ Z �= ∅. However this definition is not compatible with inseparable extensions. For
instance, let k be an algebraically closed field of characteristic p and K = k(s) the function
field of A1

k . Let X be the affine space Spec K [x] and Y the closed subscheme of X defined
by x p − s. We consider the pair (X, Y ) over K . Since Y is a prime divisor on X and X is a
smooth curve over K , we have lct(X, Y ) = 1. Let K be the algebraic closure of K . We thus
have XK = A1

K
and YK is a nonreduced subscheme of XK defined by (x − s1/p)p . One can

check that lct(XK , YK ) = 1/p.

Our next corollary of Theorem B is a semicontinuity result for log canonical thresholds.
Let f : X → S be a smooth morphism and Y a closed subscheme. Let τ : S → Y be a
section of f |Y , which is the restriction of f to Y . For every point s ∈ S, we denote by Xs the
fiber of X over s and by Ys the fiber of Y over s. We also denote by κs the residue field of s.

Corollary 3.3 Let f : X → S be a smooth morphism of relative dimension n and Y a closed
subscheme of X. Let τ : S → Y be a section of f |Y . If t is a point in S, then for every point
s in the closure {t}, we have

lctτ(t)(Xt , Yt ) ≥ lctτ(s)(Xs, Ys).

Proof The smoothness of f implies that for every s ∈ S, Xs is a smooth variety of dimension
n over the field κs . In particular,

dim(Xs)m = (m + 1)n = dim(Xt )m .

Applying the generalized Proposition 2.10, we obtain

lctτ(s)(Xs, Ys) = n − lim sup
m→∞

dim(Ys)m,τ (s)

m + 1
.

Similarly, we have

lctτ(t)(Xt , Yt ) = n − lim sup
m→∞

dim(Yt )m,τ (t)

m + 1
.
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In order to complete the proof, it is enough to show that for every m ≥ 0,

dim(Ys)m,τ (s) ≥ dim(Yt )m,τ (t).

Recall that (Y/S)m is the mth relative jet scheme of Y/S. By Lemma 1.3, we deduce that
for every m ≥ 0, the function

d(s) = dim(Ys)m,τ (s)

is upper semi-continuous on S. This completes the proof. 
�

Remark 3.4 If every point in S has a residue field of characteristic 0, then Corollary 3.3 has a
stronger version that the function defined by g(s) = lctτ(s)(Xs, Ys) is lower-semicontinuous.
We refer the reader to [14, Theorem 4.9] for a more detailed proof.

We now prove a comparison result in the setting of reduction to prime characteristic.
Suppose that X is the affine variety An

Z over the ring Z and a ⊂ Z[x1, . . . , xn] is an ideal
such that a ⊂ (x1, . . . , xn). Let Y be the subscheme of X defined by a and

τ : SpecZ → Y

the section corresponding to the ring homomorphism Z[x1, . . . , xn]/a → Z which maps
the image of xi to zero for each i . For every prime number p, let Xp be the affine space
An
Fp

and Yp the subscheme of Xp defined by a · Fp[x1, . . . , xn]. Note that a log resolution
of (XQ, YQ) induces a log resolution of the pair (Xp, Yp) for p large enough. Let E be
a divisor on a log resolution of (X, Y ) which computes lct0(XQ, YQ). When p is large
enough, the divisor obtained by reduction modulo p of E also computes the log canonical
threshold lct0(Xp, Yp). It follows that lct0(XQ, YQ) = lct0(Xp, Yp) for all but finitely many
p. Applying Corollary 3.3, we obtain the following inequality for every prime p.

Corollary 3.5 If (X, Y ) is a pair as above, then for every prime integer p, we have

lct0(XQ, YQ) ≥ lct0(Xp, Yp).

A similar corollary holds when the base scheme has dimension 1, with generic points of
characteristic 0. Corollary 3.5 has an application to an open problem about the connection
between log canonical thresholds and F-pure thresholds. Recall that in positive characteristic,
Takagi andWatanabe [15] introduced an analogue of the log canonical threshold, the F-pure
threshold. With the above notation, it follows from [8] that lct0(Xp, Yp) ≥ fpt0(Xp, Yp) for
every prime p, where fpt0(Xp, Yp) is the F-pure threshold of the pair (Xp, Yp) at 0. By
combining this with Corollary 3.5, we obtain the following result, which seems to have been
an open question.

Corollary 3.6 With the above notation, we have lct0(XQ, YQ)) ≥ fpt0(Xp, Yp) for every
prime p.

Corollary 3.7 Let X be a smooth variety over a field k and Y a closed subscheme of X. If
H is a smooth irreducible divisor on X which intersects Y and Z ⊂ H is a nonempty closed
subset, then

lctZ (X, Y ) ≥ lctZ (H, H ∩ Y ).
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Proof The case H ∩ Y = H is trivial since lctZ (H, H ∩ Y ) = 0. We may thus assume
Y ∩ H �= H . Similarly, if Z ∩ Y = ∅, then both lctZ (X, Y ) and lctZ (H, H ∩ Y ) are equal
to ∞. We will assume Z ∩ Y �= ∅ from now on.

By Proposition 2.8, we only have to prove that for every m ≥ 0,

codimZ (Ym, Xm) ≥ codimZ ((H ∩ Y )m, Hm).

Let T be an irreducible component of Ym such that

πm(T ) ∩ Z �= ∅ and codim T = codimZ (Ym, Xm).

Since H is a Cartier divisor on X , H ∩Y is defined locally in Y by one equation. This implies
that (H ∩ Y )m = Hm ∩ Ym is defined locally in Ym by m + 1 equations. If

πm(T ∩ Hm) ∩ Z �= ∅,

then there is a component of T ∩ Hm , denoted by S, such that πm(S) ∩ Z �= ∅ and dim S ≥
dim T − (m + 1). Note that dim Xm = dim Hm + m + 1 and we conclude that

codimZ ((H ∩ Y )m, Hm) ≤ codim(S, Hm) ≤ codim(T ∩ Hm, Hm) ≤ codim(T, Xm).

We now prove that πm(T ∩ Hm) ∩ Z �= ∅. Let γm ∈ T such that πm(γm) ∈ Z . Recall
that σm : Y → Ym is the zero section. Since T is invariant under the action of A1, the orbit
of γm is a subset of T . In particular, σm(πm(γm)) ∈ T . Since the zero section is functorial
by its construction, we get σm(Y ∩ H) ⊂ Ym ∩ Hm . In particular, σm(πm(γm)) is in T ∩ Hm

and its image under πm is in Z . This completes our proof. 
�
Corollary 3.8 If X is a smooth projective variety over a field k and Y ⊂ X is a proper closed
subscheme, then we have lct(X, Y ) > 0.

Proof Since log canonical thresholds are computed after passing to an algebraic closure of
k, we can assume k is algebraically closed. It follows from the definition that

lct(X, Y ) = inf
x∈Y lctx (X, Y ).

For every closed point x ∈ Y , we will show that

lctx (X, Y ) ≥ 1

ordx (Y )
. (6)

We thus have lctx (X, Y ) ≥ 1
d where d = maxx∈Y ordx (Y ). Here ordx (Y ) is the maximal

integer q such that IY,x ⊆ mq
X,x , where mX,x is the ideal sheaf defining x .

We prove the inequality (6) by induction on dim X . If X is a smooth curve, then it follows
from definition that lctx (X, Y ) = 1

ordx (Y )
. We now assume that dim X ≥ 2. After replacing

X by an open neighborhood of x , we may find H , a smooth divisor passing through x , such
that ordx (H ∩ Y ) = ordx (Y ). By Corollary 3.7, we have

lctx (X, Y ) ≥ lctx (H, H ∩ Y ) ≥ 1

ordx (H ∩ Y )
= 1

ordx (Y )
.

This completes the proof. 
�
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