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Abstract We establish a new transcendence criterion of p-adic continued fractions which
are called Ruban continued fractions. By this result, we give explicit transcendental Ruban
continued fractions with bounded p-adic absolute value of partial quotients. This is p-adic
analogy of Baker’s result. We also prove that p-adic analogy of Lagrange theorem for Ruban
continued fractions is not true.
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1 Introduction

Maillet [7] is the first person who gave explicit transcendental continued fractions with
bounded partial quotients. After that, Baker [1] extended Maillet’s results with LeVeque
Theorem [5] which is Roth Theorem for algebraic number fields.

There exist continued fraction expansions in p-adic number fieldQp, not just inR. Schnei-
der [9]wasmotivated byMahler’swork [6] andgave an algorithmof p-adic continued fraction
expansion. In the same year, Ruban [8] also gave an different algorithm of p-adic contin-
ued fraction expansion. Ubolsri, Laohakosol, Deze, and Wang gave several transcendence
criteria for Ruban continued fractions (see [3,12,14,15]). The proofs are mainly based on
the theory of p-adic Diophantine approximations. However, they only studied Ruban con-
tinued fractions with unbounded p-adic absolute value of partial quotients. In this paper, we
study analogy of Baker’s transcendence criterion for Ruban continued fractionswith bounded
p-adic absolute value of partial quotients.
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1054 T. Ooto

Let p be a prime. We denote by | · |p the valuation normalized to satisfy |p|p = 1/p. A
function �·�p is given by the following:

�·�p : Qp → Q ; �α�p =
{∑0

n=m cn pn (m ≤ 0),

0 (m > 0),

where α = ∑∞
n=m cn pn, cn ∈ {0, 1, . . . , p − 1}, m ∈ Z, cm �= 0. The function is called a

p-adic floor function. If α �= �α�p , then we can write α in the form

α = �α�p + 1

α1

with α1 ∈ Qp . Note that |α1|p ≥ p and �α1�p �= 0. Similarly, if α1 �= �α1�p , then we have

α1 = �α1�p + 1

α2

with α2 ∈ Qp . We continue the above process provided αn �= �αn�p . In this way, it follows
that α can be written in the form

α = �α�p + 1

�α1�p + 1

�α2�p + 1

. . . �αn−1�p + 1

αn

.

For simplicity of notation, we write the continued fraction

[�α�p, �α1�p, �α2�p, . . . , �αn−1�p, αn].
αn is called the n-th complete quotient and either �α�p or �αn�p is called a partial quotient.
If the above process stopped in a certain step, then

α = [�α�p, �α1�p, �α2�p, . . . , �αn−1�p, �αn�p]
is called a finite Ruban continued fraction. Otherwise, in the same way, we have

α = [�α�p, �α1�p, �α2�p, . . . , �αn−1�p, �αn�p, . . .]
which is called an infinite Ruban continued fraction. As a remark, according to the fact
that the Hensel expansion of a p-adic number is unique, we have the uniqueness of Ruban
continued fraction expansions.

We define Sp = {�α�p | α ∈ Qp}, S′
p = {�α�p | |α|p ≥ p for α ∈ Qp}. Let (ai )i≥0 be a

sequence with a0 ∈ Sp and ai ∈ S′
p for all i ≥ 1, and (ni )i≥0 be an increasing sequence of

positive integers. Let (λi )i≥0 and (ki )i≥0 be sequences of positive integers. Assume that for
all i ,

ni+1 ≥ ni + λi ki

am+ki = am for ni ≤ m ≤ ni + (λi − 1)ki − 1.

Consider a p-adic number α defined by

α = [a0, a1, a2, . . . , an, . . .].
Then α is called a quasi-periodic Ruban continued fraction.

The main theorem is the following.
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Transcendental p-adic continued fractions 1055

Theorem 1 Let (ai )i≥0, (ni )i≥0, (λi )i≥0, and (ki )i≥0 be as in the above, and A ≥ p be a
real number. Assume that (ai )i≥0 is a non-ultimately periodic sequence such that |ai |p ≤ A
for each i . If ani = ani+1 = · · · = ani+ki−1 = (p−1)+(p−1)p−1 = p− p−1 for infinitely
many i and

lim inf
i→∞

λi

ni
> B = B(A),

where B is defined by

B = 2 log A

log p
− 1,

then α is transcendental.

As a remark, a sequence (an)n≥0 is said to be ultimately periodic if there exist integers
k ≥ 0 and l ≥ 1 such that an+l = an for all n ≥ k.

For example, the following p-adic numbers are transcendental:[
0, p − p−1

2·30
, p−1

2·31
, p − p−1

2·32
, p−1

2·33
, . . . , p − p−1

2·32m
, p−1

2·32m+1

, . . .

]
,

(1)[
0, p−1, p−2

8·170
, p − p−1,p − p−1

8·171
, p−1, p−2

8·172
, p − p−1, p − p−1

8·173

, . . . , p−1, p−2
8·172m

, p − p−1, p − p−1
8·172m+1

, . . .

]
, (2)

where 2·3i and 8·17i indicate the number of times a block of partial quotients is repeated. (1) is
the case that for i ≥ 0, an2i = p− p−1, an2i−1 = p−1, ni = 3i , λi = 2 ·3i , ki = 1, A = p
in Theorem 1. (2) is the case that for i ≥ 0, an2i = p−1, an2i+1 = p−2, an2i+1 = an2i+1+1 =
p − p−1, ni = 17i , λi = 8 · 17i , ki = 2, A = p2 in Theorem 1.

A well-known Lagrange’s theorem states that the continued fraction expansion for a real
number is ultimately periodic if and only if the number is quadratic irrational. For Schneider
continued fractions, p-adic analogy of Lagrange’s theorem is not true, that is, there exists
a quadratic irrational number whose Schneider continued fraction is not ultimately periodic
(See e.g. Weger [2], Tilborghs [11], van der Poorten [13]). This paper deals with analogy of
Lagrange’s theorem for Ruban continued fractions.

We prove that analogy of Lagrange’s theorem for Ruban continued fractions is not true
in Sect. 2. Auxiliary results for main results are gathered in Sect. 3. In Sect. 4, we prove
Theorem 1 and give criteria of quadratic or transcendental in a certain class of Ruban con-
tinued fractions. These proofs are mainly based on the proof of Baker’s results and the
non-Archimedean version of Roth’s theorem for an algebraic number field [10].

2 Rational and quadratic irrational numbers

Wang [14] andLaohakosol [4] characterized rational numberswithRuban continued fractions
as follows.

Proposition 2 Let α be a p-adic number. Then α is rational if and only if its Ruban continued
fraction expansion is finite or ultimately periodic with the period p − p−1.
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1056 T. Ooto

Proof See [14] or [4]. ��
Next, we prove that analogy of Lagrange’s theorem for Ruban continued fractions is not

true by the similar method as in [2]. We consider a Ruban continued fraction for α = √
D

where D ∈ Z not a square, but a quadratic residue modulo p, if p is odd, 1 modulo 8, if
p = 2, so that α ∈ Qp . If the Ruban continued fraction of α is [a0, a1, a2, . . .], then there
exist rational numbers Rn, Qn such that

αn = Rn + √
D

Qn

for n ∈ Z≥0. Obviously, R0 = 0, Q0 = 1, and for all n we have the recursion formula

Rn+1 = −(Rn − anQn), Qn+1 = D − R2
n+1

Qn

by induction on n.

Proposition 3 If RmQm ≤ 0, and R2
m+1 > D for some m, then the Ruban continued

fraction expansion of α is not ultimately periodic.

Proof We show Rm+1Qm+1 < 0, R2
m+2 > D, and |Rm+2| > |Rm+1|. Let us assume

RmQm < 0. Then we have Rm Rm+1 < 0 by the recursion formula for Rm+1. We also
obtain QmQm+1 < 0 by the recursion formula for Qm+1 and R2

m+1 > D. Hence, we get
Rm+1Qm+1 < 0. Furthermore, by am+1 �= 0, we have

|Rm+2| = |Rm+1| + am+1|Qm+1| > |Rm+1|,
so that R2

m+2 > D. Next, let us assume RmQm = 0. By Rm = 0,we have Rm+1 = amQm . By
the recursion formula for Qm+1, we have QmQm+1 < 0. Thus, we obtain Rm+1Qm+1 < 0.
In the same way, we see |Rm+2| > |Rm+1| and R2

m+2 > D. Since (|Rn |)n≥m is strictly

increasing, the Ruban continued fraction expansion for
√
D is not ultimately periodic. ��

Corollary 4 If D < 0, then the Ruban continued fraction expansion of p-adic number
√
D

is not ultimately periodic.

Proof Since R0Q0 = 0, and R2
1 ≥ 0, the corollary follows. ��

3 Auxiliary results

For an infinite Ruban continued fraction α = [a0, a1, a2, . . .], we define nonnegative rational
numbers qn, rn by using recurrence equations:{

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2, n ≥ 1,

r−1 = 1, r0 = a0, rn = anrn−1 + rn−2, n ≥ 1.

Let λ be a variable. Then the Ruban continued fraction has the following properties which
are the same properties as the continued fraction expansions for real numbers: For all n ≥ 0,

[a0, a1, . . . , an] = rn
qn

, (3)

[a0, a1, . . . , an, λ] = λrn + rn−1

λqn + qn−1
, (4)

rn−1qn − rnqn−1 = (−1)n . (5)
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Transcendental p-adic continued fractions 1057

Those are easily seen by induction on n.

Lemma 5 The following equalities hold:

|qn |p = |a1a2 · · · an |p, n ≥ 1, (6){
|rn |p = |a0a1 · · · an |p, n ≥ 1, (a0 �= 0)

|r1|p = 1, |rn |p = |a2a3 · · · an |p, n ≥ 2, (otherwise)
(7)

∣∣∣∣α − rn
qn

∣∣∣∣
p

= 1

|an+1|p|qn |2p
, n ≥ 0. (8)

Proof See [14]. ��
Lemma 6 If α′ is a Ruban continued fraction in which the first n + 1 partial quotients are
the same as those of α, then

|α − α′|p ≤ |qn |−2
p .

Proof Since rn/qn is a n-th convergent to both α and α′, and (8), the lemma follows. ��
Lemma 7 The following inequalities hold:

qn ≤ |qn |p, rn ≤ |rn |p, for all n ≥ −1.

Proof The proof is by induction on n. It is obvious that for n = −1, 0. By Lemma 5 and the
definition of Ruban continued fraction expansions, we have

qn ≤ an |qn−1|p + |qn−2|p ≤
(
p − 1

|an |p
)

|qn−1|p + |qn−2|p

≤ |qn−1|p
(
p + 1

p
− 1

|an |p
)

≤ |qn |p.

The proof for rn is similar. ��
For β ∈ Q, let fβ(X) = ∑n

i=0 di X
i be a minimum polynomial of β in Z[X ]. Put

H(β) := max
0≤i≤n

|di |.

H(β) is called a primitive height of β.

Lemma 8 Suppose a0 = 0. Let h, k be positive integers and consider the Ruban continued
fraction

η = [0, a1, . . . , ah−1, ah, . . . , ah+k−1].
Then η is rational or quadratic irrational. Furthermore, we have

H(η) ≤

⎧⎪⎨
⎪⎩

p (if η is rational and h = 1)

|qh−1|2p (if η is rational and h ≥ 2)

2|qh+k−1|4p (if η is quadratic irrational).

Proof By ηh = ηh+k and (4), we obtain

η = ηhrh−1 + rh−2

ηhqh−1 + qh−2
= ηhrh+k−1 + rh+k−2

ηhqh+k−1 + qh+k−2
.
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1058 T. Ooto

Eliminating ηh , we have

Aη2 + Bη + C = 0,

where

A = qh−2qh+k−1 − qh−1qh+k−2,

B = qh−1rh+k−2 + rh−1qh+k−2 − rh−2qh+k−1 − qh−2rh+k−1,

C = rh−2rh+k−1 − rh−1rh+k−2.

Therefore, η is either rational or quadratic irrational. By the assumption a0 = 0, it follows
that rn ≤ qn, |rn |p ≤ |qn |p for all n ≥ 0. By induction on n, it is easy to check that
rn |rn |p, qn |qn |p ∈ Z for all n ≥ 0.

Let us assume that η is a quadratic irrational. By |qh+k−1|2p A, |qh+k−1|2p B, |qh+k−1|2pC ∈
Z and Lemma 7, we obtain

H(η) ≤ |qh+k−1|2p max(|A|, |B|, |C |)
≤ 2q2h+k−1|qh+k−1|2p ≤ 2|qh+k−1|4p.

Now let us assume that η is rational. By Proposition 2, we have

η = [a0, . . . , ah−1,−1/p],
that is,

η = prh−2 − rh−1

pqh−2 − qh−1
.

When h = 1, we see that H(η) = p. Next we consider the case h ≥ 2. Since (prh−2 −
rh−1)|qh−1|p and (pqh−2 − qh−1)|qh−1|p are integers, we have

H(η) ≤ max(|prh−2 − rh−1||qh−1|p, |pqh−2 − qh−1||qh−1|p)
≤ |qh−1|2p,

and the lemma follows. ��
We recall a height of algebraic numbers which is different from the primitive height. Let

K be an algebraic number field and OK be the integer ring of K , and M(K ) be the set of
places of K . For x ∈ K and v ∈ M(K ), we define the absolute value |x |v by

(i) |x |v = |σ(x)| if v corresponds the embedding σ : K ↪→ R

(ii) |x |v = |σ(x)|2 = |σ(x)|2 if v corresponds the pair of conjugate embeddings σ, σ :
K ↪→ C

(iii) |x |v = (N(p))−ordp(x) if v corresponds to the prime ideal p of OK .

Set

HK (β) :=
∏

v∈M(K )

max {1, |β|v}

for β ∈ K . HK (β) is called an absolute height of β. Then there are the following relations
between primitive and absolute height.

Proposition 9 For b ∈ Q and β ∈ Q with [Q(β),Q] = D, we have

H(b) = HQ(b),

HQ(β)(β) ≤ (D + 1)1/2H(β), H(β) ≤ 2DHQ(β)(β).
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Transcendental p-adic continued fractions 1059

Proof See Part B of [10]. ��
The main tool for the proof of main results is the non-Archimedean version of Roth’s

theorem for algebraic number fields.

Theorem 10 (Roth Theorem) Let K be an algebraic number field, and v be in M(K ) with
it extended in some way to K . Let β ∈ K\K and δ,C > 0 be given. Then there are only
finite many γ ∈ K with the solution of the following inequality:

|β − γ |v ≤ C

HK (γ )2+δ
.

Proof See Part D of [10]. ��

4 Main results

Proof of Theorem 1 We may assume that a0 = 0. By the assumption, there are infinitely
many positive integers j which satisfy

an j = an j+1 = · · · = an j+k j−1 = p − p−1. (9)

Let Λ be an infinite set of j which satisfy (9).
For i ∈ Λ, we put

η(i) :=
[
0, a1, . . . , ani−1, p − p−1

]
.

By Proposition 2, α is not rational. Suppose that α is an algebraic number of degree at least
two. We show that if χ > 2, then we have

|α − η(i)|p > |qni−1|−2χ
p (10)

for all sufficiently large i ∈ Λ. Suppose the claim is false. By Proposition 2, η(i) is rational
for each i ∈ Λ. By Lemma 8 and Proposition 9, we have

|α − η(i)|p ≤ |qni−1|−2χ
p ≤ HQ(η(i))−χ

for infinitely many i , which contradicts Theorem 10.
By Lemma 6, we obtain |α − η(i)|p ≤ |qmi |−2

p for i ∈ Λ, where mi = ni + kiλi − 1.
Therefore, we get

|qmi |p < |qni−1|χp
for sufficiently large i ∈ Λ. By Lemma 5, we see pi ≤ |qi |p ≤ Ai for i ≥ 1. Thus, for all
sufficiently large i ∈ Λ, it follows that

λi

ni
< B + (χ − 2)

log A

log p
.

Since there exists δ > 0 such that λi > (B + δ)ni for all sufficiently large i , we have for all
sufficiently large i ∈ Λ,

2 + log p

log A
δ < χ.

This inequality holds for each χ > 2, a contradiction. ��
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1060 T. Ooto

We also obtain the following results.

Theorem 11 Let α be a quasi-periodic Ruban continued fraction, and A ≥ p be a real
number. Assume that (ai )i≥0 is a non-ultimately periodic sequence such that |ai |p ≤ A for
each i , and (ki )i≥0 is bounded. If

lim sup
i→∞

λi

ni
> B ′ = B ′(A),

where B ′ is defined by

B ′ = 4 log A

log p
− 1,

then α is quadratic irrational or transcendental.

Theorem 12 Consider a quasi-periodic Ruban continued fraction

α = [
a0, . . . , an0−1, an0 , . . . , an0+k0−1

λ0 , an1 , . . . , an1+k1−1
λ1 , . . .

]
,

where the notation means that ni = ni−1+λi−1ki−1. Assume that (ai )i≥0 is not an ultimately
periodic sequence, the sequences (|ai |p)i≥0 and (ki )i≥0 are bounded, and that

lim inf
i→∞

λi

λi−1
> 4.

Then α is quadratic irrational or transcendental.

Remark 13 There exist quadratic irrational numbers whose Ruban continued fraction expan-
sions are not ultimately periodic by Corollary 4. Therefore, it is difficult to determine whether
a given Ruban continued fraction is quadratic irrational or transcendental. However, we see
that there exist a transcendental number in the set of Ruban continued fractions which sat-
isfy the assumption of Theorem 11 and 12. For example, (2) satisfies the assumption of
Theorem 11 and 12.

In the following, c1, c2, . . . , c6 denote positive real numbers which depend only on α, and
we may assume that a0 = 0.

Proof of Theorem 11 By the assumption, there exists δ > 0 such that λi > (B ′ + δ)ni for
infinitely many i . For each positive integer i , there are only finitely many possibilities for ki
and for

ani , ani+1, . . . , ani+ki−1.

Therefore, there exist a positive integer k and b1, b2, . . . , bk ∈ S′
p such that there are infinitely

many j which satisfy

k j = k, an j = b1, . . . , an j+k j−1 = bk, λ j > (B ′ + δ)n j . (11)

Let Λ be an infinite set of j which satisfy (11).
For i ∈ Λ, we put

η(i) := [
0, a1, . . . , ani−1, b1, . . . , bk

]
.

By Proposition 2, α is not rational. Suppose that α is an algebraic number of degree at least
three. We show that if χ > 2, then we have
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|α − η(i)|p > |qni+ki−1|−4χ
p (12)

for all sufficiently large i ∈ Λ. Suppose the claim is false. By Lemma 8, η(i) is rational or
quadratic irrational for each i ∈ Λ. Let us assume that η(i) is quadratic irrational. Then there
exists a quadratic field K such that η(i) ∈ K for all i ∈ Λ. Take a real number ε which
satisfies 0 < ε < χ − 2. Then we have 2χ−ε < |qni+ki−1|4εp for all sufficiently large i ∈ Λ.
Put v ∈ M(K ) with v | p. We denote again by v one of the place extended to K (α). By
[K (α)v : Qp] = 1, Lemma 8, and Proposition 9, we obtain

|α − η(i)|v = |α − η(i)|p ≤ |qni+ki−1|−4χ
p

≤ (2|qni+ki−1|4p)ε−χ ≤ H(η(i))ε−χ

≤ c1
HK (η(i))χ−ε

for infinitely many i , which contradicts Theorem 10. In the same way, we see (12) in the
case that η(i) is rational. By Lemma 6, we have |α − η(i)|p ≤ |qmi |−2

p for i ∈ Λ, where
mi = ni + kλi − 1. Therefore, we obtain

|qmi |p < |qni+k−1|2χp
for sufficiently large i ∈ Λ. By Lemma 5, we see pi ≤ |qi |p ≤ Ai for i ≥ 1. Thus, for all
sufficiently large i ∈ Λ, we have

λi < c2 +
(
1

2
(B ′ + 1)χ − 1

)
,

so (
1 − χ

2

)
(B ′ + 1) + δ <

c2
ni

.

This inequality holds for each χ > 2, and contradicts if i is sufficiently large in Λ. ��
Proof of Theorem 12 Put

P(i)
h := [

ani+h−1, ani+h−2, . . . , ani , ani+ki−1, ani+ki−2, . . . , ani
]

for i = 0, 1, 2, . . . and h = 1, 2, . . . , ki . Put

P(i) :=
ki∏

h=1

P(i)
h .

For each positive integer i , there exist only finitely many possibilities for ki and for

ani , ani+1, . . . , ani+ki−1.

P(i) is a function which depends only on ki , ani , ani+1, . . . , ani+ki−1. Hence, there exists a
real number P such that the greatest of those values |P(i)|p which are attained for infinitely
many i . Then there exists an integer l such that

|P(i)|p ≤ P for all i ≥ l.

There exist a positive integer k and b1, b2, . . . , bk ∈ S′
p such that there are infinitely many j

which satisfy
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1062 T. Ooto

|P( j)|p = P, k j = k, an j = b1, . . . , an j+k j−1 = bk . (13)

Let Λ be an infinite set of j which satisfy (13). We may assume that l = 0.
Let us show that

|qni+1−1|p ≤ c3P
λi |qni−1|p for all i, (14)

|qni+1−1|p ≥ c4P
λi |qni−1|p for all i ∈ Λ. (15)

Firstly, an induction allows us to establish the mirror formula

qm
qm−1

= [am, . . . , a1], for all m ≥ 1.

Put

W (i)
h := qni+h−1

qni+h−2
,

for i = 0, 1, 2, . . . and h = 1, 2, . . . , kiλi , and

W (i) :=
kiλi∏
h=1

W (i)
h .

Clearly, we have qni+1−1 = W (i)qni−1. It follows from Lemma 5 and 6 that for any i ,

|W (i)|p =
ki∏

h=1

λi−1∏
s=0

|W (i)
h+ski

|p ≤
ki∏

h=1

λi−1∏
s=0

(
|P(i)

h |p + |U (i)
h,s |−2

p

)

≤
ki∏

h=1

λi−1∏
s=0

|P(i)
h |p

(
1 + p−2(h+ski−1)

)
≤ |P(i)|λip

kiλi∏
h=1

(
1 + p2−2h

)

≤ c3P
λi ,

where U (i)
1,0 = 1 and otherwise U (i)

h,s is the denominator of (h + ski − 1)-th convergent to

P(i)
h . Likewise, for all i , we have

|W (i)|p ≥
ki∏

h=1

λi−1∏
s=0

(
|P(i)

h |p − |U (i)
h,s |−2

p

)

≥ |P(i)|λip
(
1 − 1

|P(i)
1 |p

) kiλi∏
h=2

(1 − p2−2h).

If i ∈ Λ, then |P(i)|p = P and P(i)
1 is independent of i . Therefore, we obtain

|W (i)|p ≥ c4P
λi for all i ∈ Λ.

If A and K are the upper bounds of the sequences (|ai |p)i≥0 and (ki )i≥0, then for all i , we
have

|qni+ki−1|p ≤ AK |qni−1|p. (16)

Now, there exist a real number δ > 0 and an integer N ≥ 1 such that λi > (4 + δ)λi−1

for all i > N . Set χ := 2 + δ/4. For i ∈ Λ, we put
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Transcendental p-adic continued fractions 1063

η(i) := [
0, a1, . . . , ani−1, b1, . . . , bk

]
.

By Proposition 2, α is not rational. Suppose that α is an algebraic number of degree at least
three. Then we have

|α − η(i)|p > |qni+ki−1|−4χ
p

for all sufficiently large i ∈ Λ. This follows by the same way as in the proof of Theorem 11.
By Lemma 6, we see |α − η(i)|p ≤ |qni+1−1|−2

p for all i . Therefore, we obtain

|qni+1−1|p < |qni+ki−1|2χp (17)

for all sufficiently large i ∈ Λ. Applying (14), (15), (16), and (17), we have for all sufficiently
large i ∈ Λ,

Pλi < c5c
i
6P

(2χ−1)(λi−1+λi−2+···+λN ).

Taking logarithms, we see that for all sufficiently large i ∈ Λ,

λi

λi−1
<

log c5 + i log c6
λi−1 log P

+ (2χ − 1)
∞∑
j=0

(
1

4 + δ/2

) j

= log c5 + i log c6
λi−1 log P

+ 4 + δ

2
.

Since i/λi → 0 as i → ∞, we have

λi

λi−1
<

δ

2
+ 4 + δ

2
= 4 + δ

for all sufficiently large i ∈ Λ. This contradicts, and the proof is complete. ��
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