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Abstract Using the results of Colette Moeglin on the representations of p-adic classical
groups (based on methods of James Arthur) and its relation with representations of affine
Hecke algebras established by the author, we show that the category of smooth complex
representations of a quasi-split p-adic classical group and its pure inner forms is naturally
decomposed into subcategories which are equivalent to a tensor product of categories of
unipotent representations of classical groups. A statement of this kind had been conjectured
byG. Lusztig. All classical groups (general linear, orthogonal, symplectic and unitary groups)
appear in this context. We get also parameterizations of representations of affine Hecke
algebras, which seem not all to be in the literature yet. All this sheds some light on what is
known as the stable Bernstein center.

Let F be a non-Archimedean local field of characteristic 0—this assumption on the character-
istic is used in [25] but not in [15]—, and n ≥ 1 an integer. The symbolG will denote the group
of F-rational points of a quasi-split classical group G of semi-simple rank n defined over F .
We will mean by that either a symplectic group or a (at least in the even rank case, the full, i.e.
non connected) orthogonal group. (The case of unitary groupswill be treated in the appendix.)
If G is orthogonal, we will denote by G− its unique pure inner form [V, GGP]. If G is sym-
plectic, we will leave G− undefined (there is no pure inner form �= G). We will often write
G+ for G and denote by Rep(G±) the category of smooth complex representations of G±.

Using methods of Arthur [1], Moeglin has determined in [25] the Langlands-Deligne
parameterswhich correspond to supercuspidal representations (for bothG andG−), including
information on reducibility points. The author has used this information in [14] to deduce
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1030 V. Heiermann

the parameters of the affine Hecke algebras that have been shown in [15] to correspond to
the Bernstein components of the category Rep(G±).

The aim of the present work is to show that, putting together different Bernstein compo-
nents, one obtains a natural decomposition of Rep(G±) into subcategoriesRϕ0

F (G)which are
equivalent to a tensor product of categories of unipotent representations of classical groups
(in the sense of [21]). (Because of the categorical nature of the tensor product, we have in fact
to restrict to the full subcategory of finitely generated representations.) A statement of this
kind had been conjectured by Lusztig [23, section 19]. The ϕ0 can be seen as inertial classes
of Langlands parameters for G (i.e. modulo restriction to the inertial subgroup). When L G
is orthogonal, a quasi-split outer form (equal to G if G is symplectic) will be added to obtain
uniform statements. All classical groups (general linear, orthogonal, symplectic and unitary
groups) appear in this context. Once the results in [21] appropriately generalized to symplec-
tic, unitary and the (full) even orthogonal group, one should be able to compute multiplicities
in standard modules from intersection cohomology as described in [23, section 19].

Taking into account the local Langlands correspondence (which can be considered as
established now, see remarks in 1.7 for further remarks, although no final account has be
written yet), we get from this parameterizations of representations of affine Hecke algebras,
which seem not all to be in the literature yet. In addition, we explain, how to get a direct
correspondence for the irreducible representations inRϕ0

F (G) by conjugacy classes of param-
eters (s, u, �) in a given complex reductive group (where s is a semi-simple element, u a
unipotent element such that sus−1 = uq and � an irreducible representation of the group of
components of the common centralizer of s and u).

The plan of this paper is the following: in section 1., we summarize the results of Moeglin
on the Langlands correspondence for supercuspidal representations of G. We recall the
author’s results relating the Bernstein components of Rep(G±) to representations of affine
Hecke algebras and give the definition of the categories Rϕ0

F (G). In section 2., we explain
how to get a direct correspondence for the irreducible representations inRϕ0

F (G) by param-
eters (s, u, �) in a given complex reductive group. The last section 3. is devoted to the
parametrization of representations of affine Hecke algebras, taking into account the local
Langlands correspondence. At the end, corollary 3.5, we give the final decomposition result
(which does not depend on a final written account of the local Langlands correspondence).
There are three Appendices A, B and C. In Appendix A, it is explained how results in [15]
generalize to the full orthogonal group which is not connected. In the Appendix B, we give
an account of the notion of tensor product in the context of linear abelian categories and
show that it applies to the categories that we are considering. Unitary groups are treated in
Appendix C, although the results are used progressively in the main body of the paper.

Remark that those results of this paper which apply to non quasi-split inner forms of G
are slightly conditional as some argument needed for orthogonal groups is not written in the
literature, although this should be easy (cf.[25, p. 346, l.-22-20]). Remark that this does not
depend on the generalization of the work of Arthur [1] to inner forms or an ultimate version
of the fundamental. A similar remark applies to the pure inner form of the even unitary group
treated in [24,26].

One may expect that a similar pattern holds for a general quasi-split p-adic reductive
group and its pure inner forms according to Lusztig’s conjecture. The present work is much
based on an equivalence with the category of representations of an appropriate affine Hecke
algebra proved in [15] and the knowledge of the Langlands parameters of supercuspidal
representations subsequent to the work of [1]. But, [15] has a big potential to generalize. The
method of [1] is not known or expected to generalize, but, as for example shown in [12,13], it
should be possible to get a clear idea what are the affine Hecke algebras appearing in the case
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Local Langlands correspondence for classical... 1031

of a generic supercuspidal support. The results of Opdam [28,29] on representations of affine
Hecke algebra should give then a clear ideawhich generic discrete series representations have
non-generic supercuspidal representations in their L-packet. In this context, a generalization
of [21,22] to groups which are not adjoint would also be helpful. (In the present work, this
generalization was not necessary because the results could be deduced from what is known
on the Langlands correspondence for classical groups.)

The author thanks S. Riche for many helpful discussions on Lusztig’s work [21,22].

1.We will denote by L G the “L-group” of G, which means that its connected component is
the Langlands dual group of the connected component of G and that it is either a symplectic
or a full (disconnected) orthogonal group. We will write ZL G for the center of the connected
component of L G (which is trivial if and only if G is symplectic and of order two otherwise)
and denote by ι : L G → GL N (C) the canonical embedding, i.e. N equals 2n if G is
orthogonal and N equals 2n +1 if G is symplectic. If l is an integer between 1 and n, Hl will
denote (the group of F rational points) of a split classical group of semi-simple rank l of the
same type (symplectic, even or odd orthogonal) as G. The symbols H+

l and H−
l will have the

appropriate meaning. We will also denote by ι the canonical embedding L Hl → GL L(C),
hoping that this will not be a source of confusion.

The connected component of L G, the Langlands dual group, will be denoted ̂G.
Let WF be the Weil group of F . It’s the semi-direct product of the inertial subgroup IF

with the cyclic subgroup generated by a Frobénius automorphism Fr , WF = 〈Fr〉 � IF . A
character of WF is called unramified, if it is trivial on IF . By local class field theory, such a
character is identified with a character of F×, trivial on the units of its ring of integers OF ,
the character sending Fr−1 to q being identified with the absolute value | · |F .

We will call Langlands parameter for G a continuous homomorphism ρ of WF into L G
which sends Fr to a semi-simple element and assume in addition in the even-orthogonal case
that the kernel of det ◦ ρ equals the Weil group of the splitting field of G. (It follows from
the continuity that the image of IF is finite.) In the case, where L G is the odd orthogonal
group, parameters with det (ρ) �= 1 just correspond to representations of an identical copy
of the symplectic group. A homomorphism ρ : WF × SL2(C) → L G will be called a
Langlands–Deligne parameter, if its restriction to the first factor is a Langlands parameter
and the restriction to the second factor a morphism of algebraic groups. A Langlands or
Langlands–Deligne parameter for L G will be called discrete, if its image is not included in a
proper Levi subgroup. Two Langlands or Langlands–Deligne parameters are said equivalent
if they are conjugated by an element of L G. (Usually, one considers only conjugation by an
element of ̂G, but, as we take here for G the full (non-connected) even orthogonal group,
one has to take conjugation in L G. For the other groups, this does not matter [10, 8.1 (ii)].)

If ρ is an irreducible representation of WF , the set of equivalence classes of representations
of the form ρs := ρ| · |sF , s ∈ C, will be called the inertial class of ρ. The group of unramified
characters of WF acts on the inertial class of ρ by torsion. We will denote by tρ the order
of the stabilizer of the equivalence class of ρ. If ρ and ρ′ are in the same inertial class, then
tρ = tρ′ , and the definition of tρ does not depend neither on the choice of Fr .

If ρ is a self-dual representation, we will say that it is of type L G, if it factors through a
group of type L G (meaning that the image of ρ is contained in an orthogonal group if L G
is orthogonal and in a symplectic group if L G is symplectic). Otherwise, we will say that
ρ is not of type L G. We stress that the use of either of these notions will presume that ρ is
self-dual.

If a is an integer ≥ 1, sp(a) will denote the unique irreducible representation of SL2(C)

of dimension a.
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1032 V. Heiermann

1.1 Theorem [25, 2.5.1]

(1) A Langlands–Deligne parameter ϕ : WF × SL2(C) → L G corresponds to a supercus-
pidal representation of G+ or G−, if and only if

ι ◦ ϕ =
⊕

ρ not o f type L G

( aρ
⊕

k=1

(ρ ⊗ sp(2k))

)

⊕
⊕

ρ of type L G

( aρ
⊕

k=1

(ρ ⊗ sp(2k − 1))

)

,

where the ρ are irreducible representations and the aρ non-negative integers.
(2) Given ϕ as in (1), denote by zϕ,ρ,k the diagonal matrix in L G that acts by −1 on the

space of the direct summand ρ ⊗ sp(2k) (resp. ρ ⊗ sp(2k − 1)) of ι ◦ ϕ and by 1 else-
where. Put Sϕ = CL G(I m(ϕ))/CL G(I m(ϕ))◦. The elements zϕ,ρ,k lie in CL G(I m(ϕ))

and their images zϕ,ρ,k generate the commutative group Sϕ .
A pair (ϕ, ε) formed by a discrete Langlands–Deligne parameter as in (1) and a char-
acter ε of Sϕ corresponds to a supercuspidal representation of either G+ or G−, if
and only if ε is alternating, i.e. ε(zϕ,ρ,k) = (−1)k−1ε(zϕ,ρ,1) with ε(zϕ,ρ,1) = −1
for ρ not of type L G and ε(zϕ,ρ,1) ∈ {1,−1} for ρ of type L G. It corresponds to a
supercuspidal representation of G+ if ε|ZL G

= 1 and to a supercuspidal representation
of G− otherwise.

(3) Suppose that ϕ satisfies the property in (1). Let to be the number of ρ of type L G with
aρ odd, put to = 1 if there are none of them, and let te be the number of the remaining
ρ of type L G for which aρ is even.
If G is symplectic, there are 2to−12te non isomorphic supercuspidal representations of
G+ with Langlands–Deligne parameter ϕ.

If G is orthogonal, put εϕ,ρ = (−1)
aρ (aρ+1)

2 , if ρ is not of type L G, and put εϕ,ρ =
(−1)

aρ
2 , if ρ is of type L G and aρ even. There exists a supercuspidal representation of

G+ with Langlands–Deligne parameter ϕ if and only if either there is a ρ of type L G
with aρ odd or

∏

ρ εϕ,ρ = 1.
If the above existence condition is satisfied, the number of supercuspidal representations
with Langlands–Deligne parameter ϕ equals 2to−12te and all these representations of
G+ are non isomorphic.
The remaining alternating characters correspond to representations of G−, remarking
that there are 2t0+te alternating characters for orthogonal G.

Proof (1) and (2) are stated as this in the paper of Moeglin. Concerning (3), if G is an
orthogonal group, the theorem in the paper of Moeglin says that there is a supercuspidal
representation of G+ associated to ϕ, if and only if there exists an alternating character εϕ

corresponding to ϕ which takes value 1 on−1. The number of non isomorphic supercuspidal
representations corresponding to ϕ equals the number of alternating characters with this
property.

For ρ not of type L G, there is a unique choice of an alternating character and its value on
−1 is

∏aρ

k=1(−1)k . For ρ of type L G, there are always two choices of an alternating character.
If aρ is even and not divisible by 4 the value taken on −1 is always −1. If aρ is divisible by
4, the value taken on −1 is always 1. If aρ is odd, there is one alternating character which
takes value 1 on −1 and another one which takes value −1 on −1.

One concludes by remarking that, if there are alternating characters attached to a ρ which
take respectively value 1 and −1 on −1, then one can of course always find an alternating
character for ϕ with value 1 on −1.

If G is symplectic, one can conclude as above, after having observed that there is then
always a ρ of type L G with aρ odd. �
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Local Langlands correspondence for classical... 1033

1.2 Definition We will fix for the rest of the paper in each inertial classO of an irreducible
representation of WF a base point ρO. It will always be assumed to be the equivalence class
of a unitary representation, which is in addition self-dual if O contains such an element. In
this last case, we take ρ of the same type as L G if there is such a representation in O. This
base point will be called in the sequel a normed representation (w.r.t. L G).

A discrete Langlands parameter τ : WF → L G will be called normed,if ι ◦ τ is the
direct sum of inequivalent normed representations of WF . If L M � GLk1(C) × · · · ×
GLkr (C) × L Hl is a Levi subgroup of L G, then a discrete Langlands parameter ϕ : WF →
L M is called normed if it is of the form γ �→ (ρ1(γ ), . . . , ρr (γ ), τ (γ )), where the ρi

are irreducible normed representations and τ is a discrete normed Langlands parameter. A
Langlands parameter ϕ : WF → L G will be called normed, if there is a minimal Levi
subgroup L M of L G containing the image of ϕ, such that ϕ is a discrete normed Langlands
parameter with respect to L M .

If s is a semi-simple element in GL N (C), then χs will denote the unramified character
of WF , such that χs(Fr) = s. If ϕ is a normed Langlands parameter and s is a semi-simple
element in CGL N (C)(I m(ϕ)) such that (ι ◦ ϕ)χs is a self-dual representation of WF of the
same type as L G, then we will denote by ϕs the Langlands parameter WF → L G such that
ι ◦ ϕs is equivalent to the representation γ �→ ϕs(γ ) = ϕ(γ )χs(γ ) of WF .

The set of equivalence classes of Langlands parameters of the form ϕs with s as above
will be called the inertial orbit of ϕ.

If ρ′ is an irreducible representation of WF , m(ρ′;ϕ) will denote the multiplicity of ρ′
(up to equivalence) in the representation ρ1 ⊕ · · · ⊕ ρr ⊕ ρ∨

r ⊕ · · · ⊕ ρ∨
1 ⊕ (ι ◦ τ).

Remark Normed Langlands parameters will play a similar role as the trivial Langlands
parameter for the set of unipotent representations. Unfortunately, it seems not possible to fix
in general a “canonical” base point (see also remark after 1.4). The choice of a base point
has no influence on the essentially intrinsic nature of our results.

1.3 Proposition Two Langlands parameters WF → L G are in the same inertial orbit, if
and only if their restrictions to the inertial subgroup IF are conjugate by an element of L G.

Proof For the proof, it is enough to consider the case where one of the two Langlands
parameters is normed. So, let ϕ and ϕ′ be two Langlands parameters.

Suppose first that ϕ and ϕ′ are in the same inertial orbit as defined above. Then, as
representations of IF , ι ◦ ϕ|IF and ι ◦ ϕ′|IF

are certainly isomorphic. One deduces from this,
analog to [10, 8.1 (ii)] in the case of Langlands parameters, that ϕ|IF and ϕ′|IF

are conjugate

by an element of L G. This proves one direction.
For the other direction suppose that ϕ|IF and ϕ′|IF

are conjugate by an element of L G.
Then, as representations of IF , ι ◦ ϕ|IF and ι ◦ ϕ′|IF

are certainly isomorphic. Remark that
an irreducible representation of WF is determined, up to twist by an unramified character,
by its restriction to IF and more particular by an irreducible component of this restriction. It
follows that for each irreducible component ρ of ι ◦ ϕ, there is an irreducible component ρ′
of ι ◦ ϕ′ such that the two irreducible representations have a common irreducible component
when restricted to IF . In addition, ρ′ is in the inertial class of ρ (as irreducible representation
of WF ) and the restrictions ρ|IF and ρ′|IF

are isomorphic. The same is true, if one starts from
an irreducible component of ι ◦ ϕ′. This induces a bijection between irreducible components
of ι ◦ ϕ and irreducible components of ι ◦ ϕ′, sending an irreducible component of ι ◦ ϕ to an
irreducible representation in its inertial orbit. It follows that there is a semi-simple element s

123



1034 V. Heiermann

in CGL N (C)(I m(ϕ)) such that ι ◦ϕ′ is isomorphic to the representation γ �→ ϕ(γ )χs(γ ). By
definition, this means that ϕ′ is in the inertial orbit of the normed Langlands parameter ϕ. �
1.4 Proposition Let O be the inertial orbit of an irreducible representation of WF and
denote by ρO the normed representation in its inertial orbit. The map O → C, defined by
ρ �→ fρ := ρ(Frtρ )ρO(Frtρ )−1, where ρ denotes a representative of the equivalence class
which is an unramified twist of ρO, is a well-defined bijection. If ρO is self-dual, then ρ is
self-dual, if and only if fρ ∈ {±1}.
Proof By definition, there is a complex number s such that ρ = ρO ⊗ | · |sF . It follows from
this that the map ρ �→ fρ is well defined and that, for ρ as above, fρ = q−stρ . One sees that
the map is surjective. Put ρ′ = ρO ⊗| · |s′

F . Then fρ = fρ′ is equivalent to q(s−s′)tρ = 1. This

implies that | · |s′−s
F stabilizes the equivalence class of ρ. Consequently, ρ′ = ρ⊗|·|s′−s

F � ρ.
So, the map is also injective.

Assume now ρO self-dual and that χ is an unramified character such that ρ := ρO ⊗ χ is
also self-dual. This implies that χ2 stabilizes ρO and consequently one has f 2ρ = 1. One sees

that it is enough to twist ρO by | · |
iπ

tρ log(q)

F to get a representation ρ′ that satisfies fρ′ = −1. �
Remark In general, it is not possible to distinguish an element ρ ofO, such that fρ = 1, even
if ρ is self-dual: although ρ is then induced from an irreducible representation of the Weil
group of an unramified extension of degree tρ , there is no reason why ρ(Frtρ ) should be a
scalar. (For example, in the case tρ = 1, conjugation by Fr gives an isomorphic representation
of the restriction to the inertia group, but it is not necessarily the same representation.) That
is the reason, why we had to make a choice in our definition of a normed representation.

1.5 Definition If ρ is self-dual, we will denote by ρ− the unique element in its inertial orbit
such that fρ− = −1. When H is an even orthogonal quasi-split group and ζ is the quadratic
character of WF whose kernel corresponds to the splitting field of H , we will denote by H−
the quasi-split outer form of H whose splitting field corresponds to the kernel of ζ−. We
will leave H− undefined when H is odd-orthogonal and put H− = H if H is symplectic,
although H− will be distinguished from H . We will also write H+ for H . The notation H±±
will then have the appropriate meaning.

Remark If ρ is self-dual, ρ is either orthogonal or symplectic. However, it happens that ρ−
is not of the same type (i.e. orthogonal or symplectic) as ρ, and both cases, det(ρ) = det(ρ−)

and det(ρ) �= det(ρ−), happen. (Examples can be easily deduced from [27, theorem 1].) By
our convention of a normed representation, this can only appear if ρ0 is of type L G.

1.6 If ϕ0 : WF → L G is a normed Langlands parameter, denote by supp(ϕ0) the set
of irreducible representations ρ of WF , up to isomorphism, with m(ρ;ϕ0) �= 0 and by
supp′(ϕ0) the subset formed by those representations which are selfdual. We will put an
equivalence ∼ on supp(ϕ0) defined by ρ ∼ ρ∨.

Denote byS(ϕ0) the set of families of pairs (aρ,+, aρ,−)ρ of non-negative integers indexed
by supp′(ϕ0), such that

m(ρ;ϕ0) ≥
⎧

⎨

⎩

aρ,+(aρ,+ + 1) + aρ,−(aρ,− + 1), if ρ and ρ− not of type L G,

a2
ρ,+ + aρ,−(aρ,− + 1), if ρ of type L G, but not ρ−,

a2
ρ,+ + a2

ρ,−, if ρ and ρ− of type L G,

with the additional condition that the terms of both sides in the above inequalities have same
parity (if ρ and ρ− are both not of type L G, this is always satisfied).
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Local Langlands correspondence for classical... 1035

Put κ ′
ρ = 1 if ρ is of type L G and κ ′

ρ = 0 otherwise. If S = (aρ,+, aρ,−)ρ lies in S(ϕ0),
then the dimension L S of the representation

⊕

ρ∈supp′(ϕ0)

(aρ,+
⊕

k=1

(ρ ⊗ sp(2k − κ ′
ρ)) ⊕

(aρ,−
⊕

k=1

ρ− ⊗ sp(2k − κ ′
ρ−)

))

has the same parity as N . If we denote by lS the semi-simple rank of the group HlS whose
Langlands dual embeds canonically into GL L S (C), then there is, up to equivalence, a unique
discrete Langlands–Deligne parameter ϕS : WF → L HlS [10, 8.1.ii] (as we consider the full
orthogonal group, the restriction for the even orthogonal group does not apply), such that the
above representation is equivalent to ι◦ϕS . Denote bŷS the set of alternating characters of SϕS

(see theorem 1.1, 2) for the definition of this group) and, for ε ∈ ̂S, by εZ its restriction to ZL G
(which can be 1 or−1). Put dS = + or dS = −1 according to whether det (ϕS) = det (ϕ0) or
not. (Remark that in the latter case necessarily det (ϕS) = det (ϕ0)− seen as representation
of WF .) Then ϕS defines a Langlands–Deligne parameter for the quasi-split group HlS ,dS .
Write τS,ε for the irreducible supercuspidal representation of H εZ

lS ,dS
which corresponds to

the Langlands–Deligne parameter ϕS and the alternating character ε of SϕS .
Denote by kρ the dimension of ρ and put m±(ρ;ϕS) = m(ρ;ϕS) + m(ρ−;ϕS). Define

L MS to be the Levi subgroup of L G that is isomorphic to
∏

ρ∈(supp(ϕ0)−supp′(ϕ0))/∼
GLkρ (C)m(ρ;ϕ0)

×
∏

ρ∈supp′(ϕ0)
GLkρ (C)[(m(ρ;ϕ0)−m±(ρ;ϕS))]/2 × L HlS .

(Here /∼ stands for the equivalence classes w.r.t. the relation ρ ∼ ρ∨ defined above.) Let
ϕS be the discrete Langlands–Deligne parameter WF × SL2(C) → L M S such that

ι ◦ ϕS =
⊕

ρ∈supp(ϕ0)

[m(ρ;ϕ0) − m(ρ;ϕS)]ρ ⊕ (ι ◦ ϕS).

Denote by MεZ
S the standard Levi subgroup of GεZ

dS
with L-group L M . It is isomorphic to a

product of general linear groups with one factor isomorphic to H εZ
lS ,dS

. For S ∈ S(ϕ0), ε ∈ ̂S,
denote by σS,ε the supercuspidal representation of MεZ

S which corresponds to ϕS and ε (i.e.
the factor H εZ

lS ,dS
acts by τS,ε) and by OS,ε the corresponding inertial orbit, i.e. OS,ε is the

set of equivalence classes of representations of MεZ
S which are unramified twists of σS,ε .

In general, if σ ′ is an irreducible supercuspidal representation of M ′, we will denote by
ϕσ ′ the Langlands–Deligne parameter of σ ′ obtained by applying 1.1 and the local Langlands
correspondence to the GLk .

Theorem The family (MεZ
S ,OσS,ε

)S,ε exhausts the set of inertial orbits of supercuspidal
representations σ ′ of standard Levi subgroups M ′ of G, G−, G− and G−− with ̂M ′ ⊇ ̂M,
such that (ϕσ ′)|WF lies in the inertial orbit of ϕ0.

One has (MS,OσS,ε
) = (MS′ ,OσS′,ε′ ), if and only if (S, ε) = (S′, ε′).

Proof The first part follows directly from the constructions and theorem 1.1. For the second
part: to have (MS,OσS,ε

) = (MS′ ,OσS′,ε′ ), one needs lS = lS′ and τS,ε = τS′,ε′ , but then the
other factors of σS,ε and σS′,ε′ must be unramified twists of each other. �
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1036 V. Heiermann

1.7 We summarize below the properties of the local Langlands correspondence for G,
which is known now (see remarks below after the statement), although no final account has
been written yet. IfO is the inertial orbit of a supercuspidal representation of a Levi subgroup
of G±±, we will denote by RepO(G±±) the corresponding Bernstein component of Rep(G±±)

[2].
If ϕ0 : WF → L G is a normed Langlands parameter for G, put S+(ϕ0) = {S ∈

S(ϕ0)| det (ϕS) = det (ϕ0)}, S−(ϕ0) = {S ∈ S(ϕ0)| det (ϕS) �= det (ϕ0)}, and, for
S ∈ S(ϕ0), ̂S± = {ε ∈ ̂S|εZ = ±1},

Rϕ0,±
F,± (G) =

∑

S∈S±(ϕ0),ε∈̂S±
RepOS,ε

(G±±).

Denote by Rϕ0,·
F (G) the direct sum of Rϕ0,·

F,+(G) and Rϕ0,·
F,−(G) and by Rϕ0

F (G) the direct

sum ofRϕ0,+
F (G) andRϕ0,−

F (G).

Local Langlands correspondence

For a fixed normed Langlands parameter ϕ0:WF → L G for G, the set of equivalence classes
of pairs (ϕ,�) with ϕ : WF × SL2(C) → L G a Deligne-Langlands parameter with ϕ|WF in
the inertial orbit of ϕ0, and � an irreducible representation of C

̂G(I m(ϕ))/(C
̂G(I m(ϕ)))0,

is in natural bijection withRϕ0
F (G) .

Pairs (ϕ,�) with �|ZL G
= 1 (resp. �|ZL G

= −1) correspond to representations of G+±
(resp. G−±), the ones with det (ϕ) = det (ϕ0) (resp. det (ϕ) �= det (ϕ0)) to representations of
G±+ (resp. G±−), those with ϕ discrete to square integrable representations and the ones with
ϕ(WF ) bounded to tempered representations.

All smooth irreducible representations of G+ and G− appear when ϕ0 varies.
In addition, the following equalities of local constants hold: if L M is the standard Levi

subgroup of amaximal standard parabolic subgroup L P of L G, denote by r1, r2 the irreducible
components of the regular representation of L M on the Lie algebra of the unipotent radical
of L P . Let π be an irreducible smooth representation of the corresponding maximal Levi
subgroup M of G and ϕπ : WF × SL2(C) → L M its Langlands–Deligne parameter. Then,
the local factors defined by the Langlands-Shahidi method satisfy, for i = 1, 2,

γ (ri ◦ ϕπ , s) = γ (π, ri , s), ε(ri ◦ ϕπ , s) = ε(π, ri , s) and L(ri ◦ ϕπ , s) = L(π, ri , s).

Remark (i) The representations � have to be taken relative to the group of connected com-
ponents defined by the centralizer of I m(ϕ) in ̂G, although the image of ϕ may not lie
in ̂G. Remark that this difference did not matter for 1.1.

(ii) It is explained in [30, 8] how to define the local factors for non generic representations
and also for representations of inner forms (see also [13, section 4]).

(iii) If G is quasi-split and L M = GLk(C) × L Hl , then r1 is the standard representation
idGLk (C) ⊗ ι and r2 = Sym2 ◦ idGLk (C) or∧2 ◦ idGLk (C), depending if L G is symplectic
or orthogonal.

(iv) The local Langlands correspondence for orthogonal and symplectic groups can be con-
sidered as known now in consequence of the work of Moeglin [25] and what is known
on the R-groups [3]. (There is only a slight restriction on some argument which has not
been written for the inner forms in [25], but this is not a real problem as remarked in
the introduction of this paper.)
Results on the preservation of local factors for symplectic and orthogonal Galois rep-
resentations have been established by Cogdell–Shahidi–Tsai [5], completing work of
Henniart [18]. No final account has been written on all this yet.
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Remark that, for G = SO2n+1(F), the case of ϕ0 = 1 has been solved in [21] with
additional work in [32]. As the constructions in [32] are compatible with [13] and the
local Langlands correspondence for quasi-split tori is known to preserve local factors,
it follows from [13] that local factors are preserved for this correspondence (which
coincides, at least on the level of Langlands–Deligne parameters, with the one in 1.7).

(v) For the group Sp4(F), Gan and Takeda gave in [9] properties for the local Langlands
correspondence, which makes it unique.

1.8 The following result of [14] is obtained by linking the results of Moeglin to [15] (see
the remark after theorem A.7 in the appendix for the case of the non connected orthogonal
group). Recall that it can well happen that ρ is orthogonal and ρ− symplectic or vice versa
[27]. The terminology for affine Hecke algebras with parameters used below is the one from
[20], after evaluation in q1/2 as done in [21,22].

Recall the equivalence relation on supp(ϕ0) given by ρ ∼ ρ∨ introduced in 1.6.

Theorem [14, Theorem5.2 and remark thereafter]Let ϕ0 be a normed Langlands parameter,
S ∈ S(ϕ0), S = (aρ,+, aρ,−)ρ and ε ∈ ̂S.

The category RepOS,ε
(GεZ

dS
) is equivalent to the category of right modules over the tensor

product ⊗ρ∈supp(ϕ0)/∼ Hϕ0,S,ρ (taken in the category of C-algebras) where Hϕ0,S,ρ are
extended affine Hecke algebras of the following type:

– if ρ is not self-dual, Hϕ0,S,ρ is an affine Hecke algebra with root datum equal to the one
of GLm(ρ;ϕ0) and equal parameters qtρ ;

– if ρ and ρ− are both of the same type as L G and aρ,+ = aρ,− = 0, then Hϕ0,S,ρ is
the semi-direct product of an affine Hecke algebra with root datum equal to the one of
SOm(ρ;ϕ0) and equal parameters qtρ by the group algebra of a finite cyclic group of order
2, which acts by the outer automorphism of the root system;

– otherwise, putting κρ,±1 = 0 (resp. = 1) if ρ± is of type L G (resp. not of type L G),Hϕ0,S,ρ

is an affine Hecke algebra with root datum equal to the one of SOm(ρ;ϕ0)−m±(ρ;ϕS)+1 and

unequal parameters qtρ , . . . , qtρ , qtρ(aρ,++aρ,−+(
κρ,++κρ,−

2 )); qtρ |aρ,+−aρ,−+(
κρ,+−κρ,−

2 )|,
remarking that m(ρ;ϕ0) − m±(ρ;ϕS) + 1 is necessarily an odd number.

Remark (i) If ρ is not of type L G and aρ,+ = aρ,− = 0, then it is well known that the affine
Hecke algebraHρ expressed above is isomorphic to an affine Hecke algebra with root
datum equal to the one of Spm(ρ;ϕ0) and equal parameter qtρ .

(ii) The κρ,· in the above theorem is related to the κ ′
ρ in 1.6 by the relation κ ′

ρ = 1 − κρ,+
and κ ′

ρ− = 1 − κρ,−.
(iii) By [16], the above equivalence of categories preserves temperedness and discreteness

(in the definition for square integrability modulo the “center” for Hecke algebra-
representations, the “center” has of course to be taken trivial, so that there are no
discrete series representations if the based root system which defines the Hecke algebra
has a factor of type An). Unitarity is conjectured.

1.9 The notion of a tensor product of linear abelian categories is treated in [8] and recalled in
the Appendix B. It applies to the category of modules of finite presentation over a coherent
C-algebra and in particular to the category of finitely generated modules over a noetherian
C-algebra (for ex. an extended affine Hecke algebra or a finite tensor product of such algebras
(cf. B.3)). Denote byRϕ0

F (G) f the full subcategory ofRϕ0
F (G)whose objects are the finitely

generated representations (by [2, 3.10], these are precisely the representations which are
admissible relative to the action of the Bernstein center) and recall the equivalence relation
on supp(ϕ0) given by ρ ∼ ρ∨ introduced in 1.6.
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Corollary The category Rϕ0
F (G) f is equivalent to the category

⊕

S∈S(ϕ0),ε∈̂S±

⎛

⎝

⊗

ρ∈supp(ϕ0)/∼
(right − Hϕ0,S,ρ −modules) f

⎞

⎠ .

Proof It follows from B.2 and B.3 that the tensor product exists and can be applied by 1.8
to the categoryRϕ0

F (G) (defined in 1.7) to give the statement of the corollary. �
1.10 The above results generalize to pure inner forms of quasi-split unitary groups over F ,
as remarked in Appendix C, C.1–C.5.

2. The object of this section is to relate, for a given normed Langlands parameter ϕ0, the
Deligne–Langlands–Lusztig parameters for the irreducible representations in Rϕ0

F (G) to
data given by semi-simple and unipotent elements in a given complex group. Recall that we
have put in 1.6 an equivalence relation on the set of normed representations of WF (up to
isomorphism) defined by ρ ∼ ρ∨.

2.1 Proposition ([10, section 4]) Let L M = GLk1(C)×· · ·×GLkr (C)× L Hl be a standard
Levi subgroup of L G, ϕ : WF → L M a discrete normed Langlands parameter, ι ◦ ϕ =
ρ1 ⊕ · · · ⊕ ρr ⊕ (ι ◦ τ).

Then, one has CL G(I m(ϕ)) = ∏

ρ Hρ;ϕ(m(ρ;ϕ)), the product going over representatives
of the equivalence classes of irreducible normed representations ρ of WF , while the Hρ;ϕ(m)

are complex classical groups with Hρ;ϕ(m) isomorphic to GLm(C) if ρ is not self-dual,
to Spm(C) if ρ is not of type L G and to Om(C) if ρ is of type L G (with the convention
O1(C) = {±1} if m = 1).

Finally, CGL N (C)(I m(ϕ)) = ∏

ρ Gρ;ϕ(m(ρ;ϕ)), the product going over representatives
of the equivalence classes of irreducible representations ρ of WF , while Gρ;ϕ(m) is isomor-
phic to GLm(C), if ρ is self-dual, to GLm(C) × GLm(C) if ρ is not self-dual, and the group
Gρ;ϕ(m) contains Hρ;ϕ(m) in each case.

On the other side, CGL N (C)(I m(ϕs)) ⊆ ∏

ρ Gρ;ϕ(m(ρ;ϕ)) for every unramified twist ϕs

of ϕ with s in the centralizer of I m(ϕ).

2.2 Recall that the invariant fρ of an irreducible representation ρ of WF has been defined in
1.4.

Lemma Let L M � GLk1(C) × · · · × GLkd (C) × L Hl be a standard Levi subgroup of L G
and let ϕ : WF → L M be a discrete Langlands parameter, γ �→ (ρ1(γ ), . . . , ρd(γ ), τ (γ )).
Denote by ϕ0 the normed Langlands parameter associated to ϕ. Write ι ◦ τ = τ1 ⊕ · · · ⊕ τr

for the decomposition of ι ◦ τ into irreducible representations. Denote by sτ the element of
CL Hl

(I m(τ )) which corresponds to the diagonal matrix ( fτ1 , . . . , fτr ) and by sϕ the element
of CL M (I m(ϕ)) that corresponds to ( fρ1 , . . . , fρd , sτ ).

The element sϕ lies in CL G(I m(ϕ0)) and in CL G(I m(ϕ)).
Suppose: if ρi is self-dual, then it is of the same type as the normed representation in its

inertial orbit. Then, CL G(I m(ϕ)) and CCL G (I m(ϕ0))(sϕ) are canonically isomorphic.

Remark As ϕ and consequently τ are discrete, the representations τi are all of type L G and
non isomorphic. In addition, fτi ∈ {±1} for i = 1, . . . , r .

Proof By the proposition 2.1, one has CL G(I m(ϕ0)) = ∏

i GLli (C) × ∏

j Spm j (C)

×∏

k Onk (C), where the first product goes over the ρi which are not self-dual, the sec-
ond one over the ρ j which are not of the same type as L G and the third one over the ρk
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which are of the same type as L G . The centralizer of I m(ϕ0) is determined by the partition
of the summands of ι ◦ ϕ0 obtained by putting together representations which are either iso-
morphic or isomorphic to the dual of the other one. The different parts of this partition of the
summands of ι ◦ ϕ0 give then rise to factors which are respectively isomorphic to GLli (C),
Spm j (C) or Onk (C) depending if the representations in the part are not self-dual, orthogonal
or symplectic, where li denotes half the number of elements in the corresponding part and
m j and nk the total number of elements in the part. The analog result holds for the centralizer
of I m(ϕ). As ϕ0 is normed, it is clear that the partition of ι ◦ ϕ is finer than the partition of
ι ◦ ϕ0.

Writing CL G(I m(ϕ0)) as above as a product, one sees that the centralizer of sϕ in
CL G(I m(ϕ0)) is the product of the centralizers of the components of sϕ in the different
factors. So, one can reduce to consider the following three cases:

(i) All summands of ι ◦ ϕ are in the same inertial orbit and the normed representation in
this orbit is not self-dual. In particular, τ is trivial.

(ii) All summands of ι ◦ ϕ are in the same inertial orbit and the normed representation in
this orbit is not of type L G. In particular, τ is trivial.

(iii) All summands of ι ◦ ϕ are in the same inertial orbit and the normed representation in
this orbit is of type L G. In particular, ι ◦ τ is either trivial or equal to an element of the
inertial orbit of this normed representation of type L G.

In all three cases, the centralizer of sϕ is determined by the partition of the coefficients of sϕ ,
obtained by putting equal coefficients in the same part. By proposition 1.4, equal coefficients
correspond to equal summands of ι ◦ ϕ, so that the two partitions correspond canonically to
each other and have the same number of elements. The factors of the centralizer of sϕ which
correspond to the different parts of the partition of the coefficients of sϕ are all general linear
groups of order equal to the length of the partition in case (i). In case (ii) and (iii) they are
general linear groups if the coefficients are �= ±1, and groups of the same type as the group
in the other cases, as by our assumption the appearance of groups of another type is excluded.
This proves the proposition. �
2.3 Lemma With the same notations as in 2.2, assume that ρ is an irreducible representation
of WF of type L G, such that ρ− is not of type L G and ι ◦ ϕ0 � mρ.

Then, CGL N (C)(I m(ϕ0)) is canonically isomorphic to GLm(C), while CL G (I m(ϕ0)) is
isomorphic to Om(C).

Define sϕ as in 2.2. The element sϕ lies in CL G(I m(ϕ0)) and in CL G(I m(ϕ)).
Write sϕ = diag(x1, . . . , x[ m

2 ],̂1, x−1
[ m
2 ], . . . , x−1

1 ) ∈ GLm(C) (with 1 appearing only

when m is odd and [m
2 ] denoting the integer part of m

2 ). For x ∈ {x1, . . . , x[ m
2 ]}, denote by

m(x; sϕ) the multiplicity of x as an entry of sϕ and put

Gx =
{

GLm(x;sϕ) × GLm(x−1;sϕ), if x /∈ {±1},
GLm(±1;sϕ), if x = ±1.

The group CGL N (C)(sϕ) is canonically isomorphic to
∏

x Gx , the product going over equiv-
alence classes of elements in the set {x1, . . . , x[ m

2 ]} with respect to the relation x ∼ x−1, and
to CGL N (C)(I m(ϕ)).

Denote by Hx (resp. H ′
x ) the subgroup of Gx defined (with J an appropriate matrix which

needs not to be made more precise here) by
⎧

⎨

⎩

{(h, Jh−1 J )|h ∈ GLm(x;sϕ)} if x /∈ {±1},
Om(1,sϕ) if x = 1,
Spm(−1,sϕ) (resp.Om(−1,sϕ)), if x = −1,
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and by H (resp. H ′) the image of
∏

x Hx (resp.
∏

x H ′
x ) in CGL N (C)(sϕ) by the above iso-

morphism.
Then, CL G(I m(ϕ)) is isomorphic to H and CL G(sϕ) to H ′ .
In particular, CCL G (I m(ϕ0))(sϕ) and CL G(I m(ϕ)) are only isomorphic if m(−1, sϕ) = 0.

Proof This follows immediately from the arguments in the proof of lemma 2.2. �
2.4 Remark that at the end of the following definition, we will use results from C.6 and C.7.
However, at a first reading, one may avoid to look in the Appendix C.

Definition Let L M � GLk1(C) × · · · × GLkd (C) × L Hl be a standard Levi subgroup
of L G and let ϕ0 : WF → L M be a discrete normed Langlands parameter, γ �→
(ρ1(γ ), . . . , ρd(γ ), τ (γ )).

Recall that by 2.1, CL G(I m(ϕ0)) = ∏

ρ Hρ;ϕ(m(ρ;ϕ)), the product going over repre-
sentatives of the equivalence classes of irreducible normed representations ρ of WF (w.r.t.
the relation defined in 1.6), while the Hρ;ϕ(m) are complex classical groups with Hρ;ϕ(m)

isomorphic to GLm(C) if ρ is not self-dual, to Spm(C) if ρ is not of type L G, and to Om(C)

if ρ is of type L G (with the convention O1(C) = {±1} if m = 1).
Let s be a semi-simple element in CL G(I m(ϕ0)) and denote by sρ the projection of s

on Hρ;ϕ(m(ρ;ϕ)). Define C ′
Hρ;ϕ(m(ρ;ϕ))

(sρ) = CHρ;ϕ(m(ρ;ϕ))(sρ) except if ρ and ρ− are

not of the same type. In that case, put m = m(ρ;ϕ) and denote by H ′
ρ;ϕ(m) the con-

nected component of the L-group of the unramified quasi-split unitary group Um and define
C ′

Hρ;ϕ(m)(sρ) = CH ′
ρ;ϕ(m)((−1)m−1

sρ ) (where (−1)sρ is the Langlands parameter for Um

defined in C.7).
PutC ′

CL G (I m(ϕ0))
(s) = ∏

ρ C ′
Hρ;ϕ(m(ρ;ϕ))

(sρ). For a subset I ofC ′
CL G (I m(ϕ0))

(s), denote its

centralizer by C ′
CL G (I m(ϕ0))

(s, I ) (there is some subtlety if ρ and ρ− are self-dual, but not of

the same type), andwriteC ′+
CL G (I m(ϕ0))

(s, I ) for the subgroup of elementswith determinant 1.

2.5 Lemme: Let L M � GLk1(C) × · · · × GLkd (C) × L Hl be a standard Levi sub-
group of L G and let ϕ0 : WF → L M be a discrete normed Langlands parameter,
γ �→ (ρ1(γ ), . . . , ρd(γ ), τ (γ )).

The set of equivalence classes of Langlands–Deligne parameters ϕ : WF ×SL2(C)→ L G
with ϕ|WF in the inertial orbit of ϕ0 is in bijection with the set of equivalence classes of pairs
(s, ϕSL2) consisting of a semisimple element s and an algebraic homomorphism SL2(C) →
C ′

CL G (I m(ϕ0))
(s) by mapping ϕ to (sϕ, ϕ|SL2(C)), so that C

̂G(I m(ϕ))/C
̂G(I m(ϕ))0 is canon-

ically isomorphic to

C ′+
CL G (I m(ϕ0))

(sϕ, ϕ(SL2(C)))/C ′+
CL G (I m(ϕ0))

(sϕ, ϕ(SL2(C)))0.

Proof This is straightforward by the definitions, the above lemmas and C.7, C.8, remarking
that ϕ0,s is, as element of the inertial orbit of ϕ0, determined by sϕ0,s and that the map
s �→ sϕ0,s is surjective. �
2.6 Theorem Let L M � GLk1(C) × · · · × GLkd (C) × L Hl be a standard Levi sub-
group of L G and let ϕ0 : WF → L M be a discrete normed Langlands parameter,
γ �→ (ρ1(γ ), . . . , ρd(γ ), τ (γ )).

The set of equivalence classes of pairs (s, u) consisting of a semisimple element s and a
unipotent element u in C ′

L G
(I m(ϕ0)) such that sus−1 = uq is in bijection with the set of

equivalence classes of Langlands–Deligne parameters ϕ : WF × SL2(C) → L G with ϕ|WF
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in the inertial orbit of ϕ0, so that one has a canonical isomorphism between the group of
connected components of the centralizers of the images,

C
̂G(I m(ϕ))/C

̂G(I m(ϕ))0 � C ′+
CL G (ϕ0(WF ))(s, u)/C ′+

CL G (ϕ0(WF ))(s, u)0.

Remark Remark that C ′ = C , if ρi,− is of type L G whenever ρi is.

Proof By the preceding lemma, it remains to show that the equivalence classes of pairs (s, u)

in the (possibly non connected) complex reductive groupC ′
L G

(I m(ϕ0)) such that sus−1 = uq

is in bijection with the set of equivalence classes of pairs (s, ϕSL2) with s in C ′
L G

(I m(ϕ0))

and ϕSL2 : SL2(C) → C ′
CL G (I m(ϕ0))

(s) a morphism or algebraic groups. This is proved

in [19, 2.4]. The general assumption of this paper being that the group is semi-simple and
simply connected, it has been checked in [13, 3.5] that this is still valid for a connected
reductive group. As Mostow’s theorem is valid for possibly non-connected algebraic groups,
the assumption “connected” can be relaxed, too. (The connected component of the group
noted MϕSL2

in [19, 2.4] being reductive, MϕSL2
is reductive.) �

3. In this section we will show at the end that the previous results allow to relate the category
Rϕ0

F (G) to categories of unipotent representations of p-adic classical groups.However, before
that, we will state some parameterizations of representations of collections of (possibly
extended) affine Hecke algebras that follow from section 1. and from the additional remarks
about unitary groups in Appendix C.

The parametrization is given by a set of conjugation classes of triples (s, u, �) associated
to a given complex group, where s is a semi-simple element, u a unipotent element such that
sus−1 = uq and � an irreducible representation of the group of components of the common
centralizer of s and u.

3.1 The following is the special case of 1.7, 1.8 for G = SO2d+1, M = T and ρ the trivial
representation that is treated in [21] with modifications in [32].

Theorem Fix an integer d ≥ 1. If (d+, d−) �= 0 is a pair of integers which are each
one products of two consecutive integers, d+ = a+(a+ + 1) and d− = a−(a− + 1), with
d+ + d− ≤ 2d + 1, denote by H(d+, d−) the affine Hecke algebra with root datum equal to
the one of SO2d+1−d+−d− and unequal parameters q, . . . , q, qa++a−+1; q |a+−a−|. Denote
by H(0, 0) the affine Hecke algebra with root datum equal to the one of Sp2d(C) and equal
parameters q, . . . , q.

Then, the set of triples (s, u, �) associated to the group Sp2d(C) with �(−1) = 1 is in
natural bijection with the set

⋃

(d+,d−),
d++d−

2 even

(irreducible right − H(d+, d−) − modules)

and the one with �(−1) = −1 is in nature bijection with the set
⋃

(d+,d−),
d++d−

2 odd

(irreducible right − H(d+, d−) − modules).

Remark By natural bijection, we mean what is implied by the properties of the local Lang-
lands correspondence stated in 1.7. We will not explain this here more, except that compact s
should correspond to tempered representations, discrete (s, u) (i.e. those which do not lie in
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a proper parabolic subgroup) to discrete series representations and that Langlands-Shahidi
local factors (defined for Hecke-algebra representations by equivalence of categories) equal
theArtinian ones (deduced from (s, u)). The bijection associates implicitly to a triple (s, u, �)

a “supercuspidal support” according to 1.6, but we will not give a precise construction here,
neither in the subsequent cases. (For the above case, it can be found in [21] and [32].)

3.2 The following follows by combining 1.7 and 1.8 to the special case G = Sp2d(F) (for
(i)) and G = O2d(F) (for (ii)) with ρ the trivial representation and M the maximal split
torus. Remark that the result below cannot be deduced from the work of Lusztig [21] that
applies only to p-adic groups of adjoint type.

Theorem Fix an integer d ≥ 1.
If (d+, d−) �= 0 is a pair of integers, which are squares, such that d++d− ≤ 2d+1, denote

by H(d+, d−) the affine Hecke algebra with root datum equal to the one of SO2d+1−d+−d− ,
if d+ + d− is even, and equal to the one of SO2d+2−d+−d− , if d+ + d− is odd,and unequal

parameters q, . . . , q, q
√

d++√
d−; q |√d+−√

d−|.
In addition, denote by H(0, 0) the semi-direct product of an affine Hecke algebra with

equal parameter q and root datum equal to the one of SO2d with the group algebra of a finite
cyclic group of order 2, which acts by the outer automorphism of the root system. Define

ε+
d+,d− =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4 if d+even, d+ + d− ∈ 8Z, d+ · d− �= 0,
1 if d+ = d− = 0,
0 if d+even, d+ + d− ∈ 4Z \ 8Z,

2 otherwise.

and put ε−
d+,d− = 4− ε+

d+,d− if d+ · d− �= 0, ε−
d+,d− = 2− ε+

d+,d− if exactly one of d+ and d−
is 0, and ε−

0,0 = 0.

(i) Denote by So the set of pairs of integers (d+, d−) such that d+ and d− are squares,
d+ + d− is odd and ≤ 2d + 1. (Consequently ε±

d+,d− = 2. The set of triples (s, u, �)

associated to the group SO2d+1(C) is in natural bijection with the multiset
⋃

(d+,d−)∈So

2 (irreducible right − H(d+, d−) − modules).

(ii) Denote by Se the set of pairs of integers (d+, d−) such that d+ and d− are squares,
d+ + d− is even and ≤ 2d + 1. The set of triples (s, u, �) associated to the group
O2d(C) with �|Z

̂G
= ±1 is in natural bijection with the multiset

⋃

(d+,d−)∈Se

ε±
d+,d− (irreducible right − H(d+, d−) − modules).

3.3 The following follows by combining 1.7 and 1.8 as generalized to quasi-split unitary
groups in Appendix C. Here Um will denote the unramified quasi-split unitary group of
semi-simple rank m.

Fix m. A triple (s, u, �) as above relative to LUm , will be said associated to LUm , if s is
not an element of the connected component (LUm)0 of LUm .

Theorem If d+ is a square integer and d− the product of two consecutive integers, d− =
a−(a− + 1), denote by H(d+, d−) the affine Hecke algebra with root datum equal to the one
of SO2d+1−d+−d− , if d+ + d− is even, and to the one of SO2d+2−d+−d− , if d+ + d− is odd,

and unequal parameters q, . . . , q, q
√

d++a−+ 1
2 ; q |√d+−a−− 1

2 |.
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In addition, denote by H(0, 0) the affine Hecke algebra with root datum equal to the one
of SO2d+1 and unequal parameters q, q, . . . , q, q1/2.

Denote by Se the set of pairs (d+, d−) with d+ an even square, d− the product of two
consecutive integers, d+ + d− ≤ 2d + 1, and by So the set of pairs (d+, d−) with d+ an odd
square, d− the product of two consecutive integers, d+ + d− ≤ 2d + 1.

(i) If m is an odd integer, m = 2d + 1, then the set of triples (s, u, �) associated to LUm

with �|{±1} fixed is in natural bijection with the multiset
⋃

(d+,d−)∈So

(irreducible right − H(d+, d−) − modules).

(ii) If m is an even integer, m = 2d, put εd+,d− = 2, if d+ �= 0, and εd+,d− = 1 otherwise.
Then the set of triples (s, u, �) associated to LUm with �(−1) = 1 is in natural
bijection with the multiset

⋃

(d+,d−)∈Se,
d+
2 even

εd+,d− (irreducible right − H(d+, d−) − modules)

and the one with �(−1) = −1 is in natural bijection with the multiset
⋃

(d+,d−)∈Se,
d+
2 odd

2 (irreducible right − H(d+, d−) − modules).

3.4 If tρ is an integer ≥ 1, denote by Ftρ the unramified extension of F of degree tρ , which is
unique in a given algebraic closure of F . If ϕ is a Langlands parameter which is not normed
and ϕ0 is the normed Langlands parameter in its orbit, we put Rϕ = Rϕ0 . We also put
ϕ0 = 1, if ϕ0 is the Langlands parameter relative to the minimal standard Levi subgroup that
corresponds to the trivial representation.

Theorem Assume that there is an irreducible representation ρ such that all irreducible
components of ι ◦ ϕ0 are either isomorphic to ρ or to ρ∨. Then, with m = m(ρ;ϕ), one has

(i) if ρ is not self-dual, then the category Rϕ0
F (G) is equivalent to R1

Ftρ
(GLm).

(ii) if ρ is self-dual and not of type L G, then the category Rϕ0
F (G) is equivalent to

R1
Ftρ

(SOm+1).

(iii) if ρ and ρ− are both of type L G, then the categoryRϕ0
F (G) is equivalent toR1

Ftρ
(Spm−1)

if m is odd, and to R1
Ftρ

(Om) otherwise.
(iv) if ρ and ρ− are self-dual but not of the same type, then, with Um equal to the unramified

quasi-split unitary group of absolute rank m, the category Rϕ0
F (G) is equivalent to

R1
Ftρ

(Um).

The same holds, if one replaces R· by R·,+ or R·,−.

Proof This follows from theorem 1.9 (and its generalization to unitary groups inC.5 together
with proposition C.6) applied to the above cases for ϕ0, after remarking that in each of the
cases the sets S·(ϕ0) and S·(1) are equal, while the alternating characters associated to their
elements are the same. There is no need here to restrict to finitely generated representations,
as the tensor product is not involved. �
3.5 Recall the equivalence relation on supp(ϕ0) given by ρ ∼ ρ∨ introduced in 1.6 and that
the index f denotes the full subcategory of finitely generated representations.
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Corollary The category Rϕ0
F (G) f is equivalent to

⊗

ρ∈supp(ϕ0)/∼
R1

Ftρ
(Hρ(m(ρ;ϕ0))) f

with Hρ(m) equal to GLm, SOm+1, Spm−1, Om or the unramified quasi-split unitary group
Um, if respectively ρ is not self-dual, not of type L G, ρ and ρ− are both of type L G with m
odd, with m even, or ρ and ρ− are self-dual but not of the same type.

The same holds, if one replaces R· by R·,+ or R·,−.

Remark As follows from remark (iii) after theorem1.8, this equivalence of category preserves
temperedness. Discreteness is preserved if none of the Hρ is a general linear group - otherwise
there are no discrete series representations inRϕ0

F (G) f . Unitarity is conjectured.

Proof Denote byS(ϕ0)ρ the projection ofS(ϕ0)on theρ’s component andbyϕ0,ρ the discrete
Langlands parameter (unique up to equivalence) into some L-group L Hρ of the same type
as L G that satisfies the following condition (which determines also the semi-simple rank of
L Hρ)

ι ◦ ϕ0,ρ =
{

m(ρ;ϕ0)ρ, if ρ � ρ∨;
m(ρ;ϕ0)ρ ⊕ m(ρ∨;ϕ0)ρ

∨, otherwise.

Then one has S(ϕ0) = ∏

ρ S(ϕ0)ρ , S(ϕ0)ρ = S(ϕ0,ρ). In addition, if S = (Sρ)ρ ∈ S(ϕ0),

then Hϕ0,S,ρ = Hϕ0,ρ ,Sρ ,ρ and the group of alternating characters ̂S is the product of the
groups ̂Sρ , where Sρ is seen as element of S(ϕ0,ρ).

Applying B.4 to 1.9, one gets from this

Rϕ0
F (G) f �

⊕

S∈S(ϕ0),ε∈̂S±

⎛

⎝

⊗

ρ∈supp(ϕ0)/∼
(right − Hϕ0,S,ρ −modules) f

⎞

⎠

�
⊗

ρ∈supp(ϕ0)/∼

⎛

⎜

⎝

⊕

Sρ∈S(ϕ0,ρ ),ε∈̂S±
ρ

(right − Hϕ0,ρ ,Sρ ,ρ −modules) f

⎞

⎟

⎠ .

Using 3.4 and B.5, the statement of the corollary follows. �
Remark (1) A statement of this kind had been conjectured by Lusztig [23, section 19]. Once

the results in [21] appropriately generalized to symplectic, unitary and the (full) even
orthogonal group, one should be able to describe multiplicities in standard modules from
intersection cohomology as described in [23, section 19].

(2) In general, of course all unramified quasi-split groups may appear in this conjecture of G.
Lusztig. With some additional work, as described at the end of the introduction, it should
be possible to figure out, which group should appear for a given quasi-split reductive
p-adic group and a given generic supercuspidal support. It is quite clear how to define
ρ and ρ− in this context (as Langlands parameters or as representations) and one may
expect that non-split quasi-split groups appear in general for Hρ if the reducibility points
of the representations associated to ρ and ρ− are not the same.

(3) In [7], the appearance of the field extensions in 3.4, 3.5 has been worked out in more
detail in terms of restriction of scalars for the general linear group. Some ideas for the
general case are also given.
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Appendix A: Equivalence of categories for the full orthogonal group

A.1 The aim of this appendix is to show how the results of [14,15] generalize to the full
orthogonal group, which is not connected. So, in this appendix, H will denote a pure inner
form of a full split orthogonal group, either split or not. The case when its connected compo-
nent H0 is an odd orthogonal group is quite easy. Then H is isomorphic to a direct product
H0 × {±1}. The Levi subgroups of H are of the form M = M0 × {±1}, where M0 is a Levi
subgroup of H0, so that the supercuspidal representations of M are of the form σ 0η, where
σ 0 is a supercuspidal representation of M0 and η a character of {±1}. One sees immediately
that the restriction to {±1} of a representation in the supercuspidal support of an irreducible
representation π of H is determined by the restriction of π to this group. So, one may decom-
pose Rep(H) as a direct sum of subcategories RepM0,O(H0)⊕ RepM0,O,−1(H0), where the
RepM0,O(H0) denote the Bernstein components for H0 and the RepM0,O,−1(H0) denote the
part with non-trivial restriction to {±1}. As the results of [14,15] apply to Rep(H0), we are
done.

A.2 Assume now for the rest of this appendix that n is even. Then, H is isomorphic to a
semi-direct product H0

� {1, r0}, where H0 is an even orthogonal group and r0 is of order 2
and acts on H0 by the outer isomorphism. We refer to [11] for results for the representation
theory of a non connected reductive group. We consider only Levi subgroups which are
cuspidal in the terminology of [11]. In particular, one deduces from this paper that the
Bernstein decomposition is still valid and that, if M is a Levi subgroup of H andO denotes
the inertial orbit of an irreducible supercuspidal representation of M , then, with the notations
in [15], i H

P EBO is a projective generator of Rep(M,O)(H), which implies that the category
Rep(M,O)(H) is equivalent to the category of right-modules over EndH (i H

P EBO) by Morita
theory.

The aim of this appendix is to show that EndH (i H
P EBO) has the form given in theorem

1.8.

A.3 Denote by W 0 the Weyl group of H0 and define W := W 0
� {1, r0}, and similar for

the Weyl group W M of a Levi subgroup M of H . If M is a Levi subgroup of H , define
W (M) = W M\{w ∈ W |w−1Mw = M} and similarly W 0(M0), which will also be denoted
(abusively) W 0(M).

Lemma One has W (M) = W 0(M), except if M is isomorphic to a product of general linear
groups and at least one of them has odd rank. In particular, W (M) = W 0(M) if H is not
quasi-split.

Proof If M has a factor Hl with l ≥ 2, then r0 ∈ M . So, M has to be a product of linear
groups if W (M) �= W 0(M). If M is a product of general linear groups of even rank, then
every element of w that satisfies w−1Mw = M must have an even number of sign changes
x �→ x−1 on the maximal torus. This means that it lies in W 0. If M is a product of general
linear groups, one of them being of odd rank k, one sees that there is an element in W which
induces the outer automorphism on GLk and which does not lie in W 0. �
A.4 Let O be the inertial orbit of a supercuspidal representation of a Levi subgroup M of
H . Its restriction to M0 decomposes into one or two inertial orbits. Fix an orbit O0 in the
restriction. Denote by W (M,O) (resp. W 0(M,O)) the subset of elements of W (M) (resp.
W 0(M)) which stabilizeO (resp.O0).
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Lemma One has W (M,O) = W 0(M,O) except if M is a product of general linear groups
and at least one factor of O0 is the inertial orbit of a self-dual representation of a general
linear group of odd rank.

Proof The group W (M,O) is a subgroup of W (M). It follows that the equality W (M,O) =
W 0(M,O) can only fail if M is a product of general linear groups and at least one of them
has odd rank k. In addition, one sees that at least one factor ofO corresponding to a GLk(F)

with k odd must be the orbit of a self-dual representation. �
A.5 Denote by R(O) the subgroup of elements r of W (M,O) that send positive roots for
M to positive roots. Define R0(O) = R(O) ∩ W 0(M,O). Recall [15] that W 0(M,O) is a
semi-direct product W 0

O � R0(O), so that one has W (M,O) = W 0
O � R(O). As ind M

M0 EBO0

is either equal to EBO or a direct sum EBO ⊕ EBO′ , one can define, for w ∈ W 0(O0) and

r ∈ R0(O), operators Tw and Jr in EndH (i H
P EBO) from the ones for EndG0(i H0

P0 EBO0 ) by

induction. If r ∈ R(O) \ R0(O), note λ(r) the action of r on i H
P EBO by left-translation and

by τr the one of r on BO by right translation [15], and put Jr = τrλ(r). These operators
Jr commute obviously with the other operators Jr ′ , r ′ ∈ R(O), and satisfy the commuting
relation Tw Jr = Jr Tr−1wr for w ∈ W 0

O .

Lemma The operators spχ Jr Tw, r ∈ R(O), w ∈ W (M,O), are linearly independent for
all χ ∈ Xnr(M).

Proof The proof of [15, 5.9] generalizes, as the commuting relations for the operators Jr ,
r ∈ R(O) are still the same. �
A.6 Lemma One has HomH (i H

P EBO , i G
P EK (BO)) = ⊕

w,r K (BO)Jr Tw.

Proof This follows from the linear independence and the computation of the Jacquet module
with help of the geometric lemma in the non connected case [6, 4.1], taking into account
lemma A.4. �
A.7 Theorem One has EndH (i H

P EBO) = ⊕

w,r BO Jr Tw.

Proof The proof of [15, 5.10] generalizes, as the commuting relations for the operators Jr ,
r ∈ R(O) are still the same. �
Remark As the Tw satisfy the same relations as their restrictions to the space of the represen-
tation of the connected component, it follows that EndH (i G

H EBO) is an (possibly extended)

affine Hecke algebra isomorphic to EndH0(i G0

P0 EBO0 ), except if M is a product of general
linear groups and at least one factor of O is the inertial orbit of a self-dual representation
of a general linear group of odd rank. In this case, one has additional operators Jr with
r ∈ R(O)\R0(O) as stated in 1.8.

In fact, we have an erratum to [14,15] w.r.t. the statements for the even dimensional
special orthogonal group, the connected component of H : if M = M0 (i.e. M is a product
of general linear groups), EndH0(i H0

P0 EBO0 ) is in general isomorphic to a tensor product
⊗

ρ Hρ ⊗((⊗ρ′ H0
ρ′) � C[Rnq ]), the first product going over elements ρ in the support of

the normed Langlands parameter ϕ0 associated to O which are not odd orthogonal and the
second product over the odd orthogonal ones, Rnq being generated by Weyl group elements
that send positive roots in�O (in the notations of [15]) to positive roots and have sign changes

123



Local Langlands correspondence for classical... 1047

x �→ x−1 on two factors GLk(F) and GLk′(F), on which odd orthogonal representations
with distinct inertial orbits are defined. Here the Hρ denote the (possibly extended) affine
Hecke algebras from 1.8 andH0

ρ the affine Hecke algebra part (i.e. omitting the finite group
algebra part, if there is any). One remarks that the above semi-direct product is with a tensor
product of affine Hecke algebras associated to odd orthogonal representations in the support,
but does not decompose into a tensor product of semi-direct products of the different affine
Hecke algebras with a group algebra.

Appendix B: Tensor product of abelian categories

B.1 Definition [8, 5.] Let k be a commutative ring and (Ai )i∈I a finite family of k-linear
abelian categories. A k-linear abelian categoryA equipped with a k-multilinear functor right
exact in each variable

⊗ :
∏

Ai → A
is called tensor product over k of the categories Ai if and only if the following condition
is satisfied: denote for a k-linear abelian category C by Homk,e à d(A, C) the category of
right exact functors from A to C and by Homk,e à d((A)i∈I , C) the category of right exact
functors multilinear in each variable from the product of theAi to C .

One asks then that for every category C the composed functor with the above

Homk,e à d(A, C) → Homk,e à d((Ai )i∈I , C)

is an equivalence of categories.

B.2 Proposition [8, 5.3] Let (Ai )i∈I be a finite family of coherent k-algebras that have
a coherent tensor product over k. Denote by (Ai )coh (resp. (⊗Ai )coh) the corresponding
abelian category of right modules of finite presentation. The tensor product over k

⊗ :
∏

(Ai )coh → (⊗Ai )coh

defines (⊗Ai )coh as tensor product over k of the (Ai )coh.

B.3 Proposition (i) An extended affine Hecke algebra with unequal parameters is a coher-
ent C-algebra.

(ii) Any finitely generated right module over an extended affine Hecke algebra with unequal
parameters is coherent.

Proof (i) An affine Hecke algebra with unequal parameters is a free module of finite rank
over the group ring of a finitely generated lattice. As the group ring of a finitely generated
lattice is noetherian as quotient of a polynomial ring, the extended affine Hecke algebra
is noetherian as a module. But every ideal of this algebra is a submodule. So, it is finitely
generated. One concludes that an affine Hecke algebra is noetherian and in particular
coherent. As an extended affine Hecke algebra is, as a module, the sum of an affine
Hecke algebra with a finite dimensional C-vector space, we are done.

(ii) A finitely generated right-module over a noetherian C-algebra is coherent. �
B.4 Proposition Let k be a commutative ring and (Ai )i∈I a finite family of k-linear abelian
categories. Assume that each Ai is a direct sum of k-linear categories Ai, j , j = 1, . . . , li .
Suppose that for each family of integers j = ( ji )i∈I , 1 ≤ ji ≤ li , the family (Ai, ji )i∈I has a
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tensor product A j . Then, the tensor product of the categories Ai is isomorphic to the direct
sum of the categories A j .

Proof Write J for the set of the j . One has an equivalence of categories between
∏

i (
⊕li

j=1A j,i ) and
⊕

j∈J
∏

i A ji ,i , and consequently between Homk,e à d

((
⊕li

j=1A j,i )i∈I , C) and
⊕

j∈J Homk,e à d((A ji ,i )i∈I , C). Denote byA j the tensor prod-

uct of (A ji ,i )i∈I . One sees immediately that
⊕

j∈J A j satisfies the universal property for

the tensor product of (
⊕li

j=1A j,i )i∈I . �
B.5 Proposition Let (Hi )i∈I be a finite family of extended affine Hecke algebras with param-
eters. Let Bi be a finite family of k-linear abelian categories with each Bi equivalent to the
category (Hi ) f of finitely generated modules over Hi . Then, the tensor product of the k-
linear abelian categories Bi exists and is equivalent to the tensor product of the categories
(Hi ) f .

Proof The equivalence of categoriesBi → (Hi ) f gives equivalences of categories
∏Bi →

∏

(Hi ) f and Homk,e à d(((Hi ) f )i∈I , C) → Homk,e à d((Bi )i∈I , C). With this, it is imme-
diate that the (Bi )i∈I satisfy the universal property with respect to the tensor product of the
Hi . �

Appendix C: The case of the unitary group

C.1 In this appendix, we will show that the results of the section 1. and 2. generalize to
quasi-split unitary groups. We will give a few remarks, justifying that [15] generalizes to
pure inner forms of unitary groups. To obtain the generalization of [14], the reference to [25]
has to be replaced by [24] (see also [26]) and for the full Langlands correspondence one has
to take into account the results on R-groups in [4].

To generalize section 2., we rely on [10] for appropriate results for Langlands parameters
for unitary groups.

C.2 In this section, H will denote the group of F-rational points of a quasi-split unitary
group H with respect to a quadratic extension E/F . As H is not split, the L-group of H is
a semi-direct product GLn(C) � Gal(E/F), where GLn(C) is the Langlands dual group of
H .

According to the parity of n, we will say that H is an even or odd unitary group. We will
denote by WE the Weil group of E . The notion of a conjugate-orthogonal and a conjugate-
symplectic representation of WE is defined in [10]. A conjugate-dual representation ρ of WE

will be said of type L H if either n is even and ρ is conjugate-sympletic, or n is odd and ρ

is conjugate-orthogonal. Otherwise, we will say that ρ is not of type L H . We stress that the
use of either these notions will presume that ρ is conjugate-dual. The same terminology will
also be used when WE is replaced by the Weil-Deligne group WE × SL2(C).

There is a unique pure inner form of H which we will denote by H−. If n is odd, then H−
is isomorphic to H and if n is even then H− is not quasi-split. We will write again sometimes
H+ for H .

C.3 A Langlands parameter for H is a morphism WF → L H such that the projection to the
first factor is a Langlands parameter (as defined in 1.) and the projection to the second factor
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is the projection WF → Gal(E/F). The definition of a Langlands–Deligne parameter is
straightforward.

It is explained in [10, section 8] that Langlands and Langlands–Deligne parameters for
H are in bijective correspondence with conjugate-dual representations of type L H of WE

or WE × SL2(C) respectively. It follows from this also that it does not matter to define
equivalence for Langlands parameters or Langlands–Deligne parameters by conjugation by
an element of ̂H or L H . If ϕ is a Langlands or a Langlands–Deligne parameter for H we
will denote by ϕE the corresponding conjugate-dual representation of type L H .

With this terminology, replacing ι ◦ ϕ by ϕE , it is shown in [24, 8.4.4] (see also [26]) that
the part of theorem 1.1 that applies to H+ generalizes. As H is isomorphic to H− in the
odd case, one sees easily that this implies the whole theorem 1.1 in the odd case. For the
pure inner form of the even quasi-split unitary group, the result is slightly conditional on an
argument which has not been written in [24,26] in this case, but which is not crucial after
the author of these papers.

C.4 The definition in 1.2 has to be modified to choose in each inertial class of an irreducible
representation of WE a base point that is conjugate-dual if there is such a representation in
the inertial class and, if possible, even conjugate dual of the same type as L H .

A standard Levi subgroup M of H has the form GLk1(E) × · · · × GLkr (E) × Hl , where
Hl is a unitary group of the same type (even or odd) as H . One has the equality n = 2(k1 +
· · · + kr ) + L , where L is defined by ̂Hl = GL L(C). One has then L M = GLk1(C) × · · · ×
GLkr (C)× L Hl . If ϕ = (ρ1, . . . , ρk, τ ) : WF → L M is a discrete Langlands parameter, we
will denote by ρi,E the corresponding irreducible representation WE → GLki (C), by cρi,E

the conjugate representation and by ϕE the conjugate-dual representation WE → GL N (C)

of type L H that is isomorphic to τE ⊕ ⊕k
i=1(ρi,E ⊕ cρ∨

i,E ). We will call ϕ normed, if ϕE is
normed in the sense defined by 1.2.

If s is an element in the centralizer of ϕE (WF ) in ̂G such that the representation ϕE,s

in the inertial class of ϕE is conjugate-dual of type L G, then we will denote by ϕs the
corresponding Langlands parameter for L G. The set of the ϕs will be the inertial orbit of
ϕ. The proof of proposition 1.3 generalizes, after replacing ι ◦ ϕ by ϕE and remarking that
WE ∩ IF = IE , and one sees that two Langlands parameters relative to H lie in the same
inertial orbit, if and only if their restriction to the inertia subgroup of IF are conjugated
by an element of L H . One defines the multiplicity m(ρ;ϕ) to be the multiplicity of ρ

in ϕE .
The proposition 1.4 generalizes obviously to representations of WE , replacing self-dual by

dual-conjugate, remarking that | · |E is self-conjugate. One defines then for a conjugate-dual
representation ρ the representation ρ− accordingly.

Replacing self-dual by dual-conjugate, the generalizations of the notions defined in 1.6 is
straightforward and the theorem at the end remains valid.

The definition of the category Repϕ0
F (H), for ϕ0 a normed Langlands parameter for L H ,

and its subcategories Repϕ0,±
F (H) in the statement of the local Langlands correspondence

1.7 is then clear. (The cases with index “-” do not appear, i.e. these notions can remain
undefined.) The L-functions and local factors which have to be used here are those coming
from the Asai representation.

C.5The theorem 1.8 is based on [15] and [14], which do not explicitly include unitary groups.
However, [15] generalizes with only minor changes to pure inner forms of quasi-split unitary
groups: as the Levi subgroups of H are of the form GLk1(E) × · · · × GLkr (E) × Hl , the
assumptions made in [15, 1.13 - 17] and the results therein remain valid when taken the
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absolute value and a uniformizer for E at appropriate places. One remarks that the relative
reduced roots for H form a root system of type B in the odd case and of type C in the
even case. From this, the generalization of [15, 1.13] is straightforward. The same applies to
section 6. and 7. of [15].

The Plancherel measure of a representation of type σS,ε of a Levi subgroup MS can
be computed as in [14] according to the results in [24,26] (especially [24, 8.4.4] already
mentioned above in C.3), the relation with reducibility points remaining the same as in
the orthogonal or symplectic case, using | · |E instead of | · |F . Replacing self-dual by
conjugate-dual, the generalization of 1.8 is straightforward. The corollary 1.9 is then a direct
consequence.

C.6 Proposition [10, 3.4] The trivial character of E× is always a conjugate-orthogonal
representation. The nontrivial unramified quadratic character of E× is conjugate-symplectic,
if and only if E/F is unramified. Otherwise, it is conjugate-orthogonal.

C.7 The unitary group H is called unramified if E/F is an unramified extension. Denote by
1 the Langlands parameter for H such that 1E is n times the trivial representation of WE .
We will write −1 for the Langlands parameter 1−1 for H in the above notations. From C.6
and the definitions, it is immediate that the normed representation in the inertial class of 1 is
(−1)n−1, if H is unramified.

Proposition Assume that H is unramified. Denote by ̂T the Langlands dual of the maximal
torus of H. Let s be in ̂T such that (−1)n−1

s,E is a conjugate-dual representation of type L H.

Write s = diag(x1, . . . , x[ n
2 ],̂1, x−1

[ n
2 ], . . . , x−1

1 ) ∈ GLn(C) (with 1 appearing only when

n is odd and [ n
2 ] denoting the integer part of n

2 ). For x ∈ {x1, . . . , x[ n
2 ]}, denote by m(x, s)

the multiplicity of x as an entry of s and put

Cx =
⎧

⎨

⎩

GLm(x;s), if x /∈ {±1}
Om(1,s), if x = 1,
Spm(−1,s), if x = −1.

Then, C
̂H (I m((−1)n

s )) is isomorphic to
∏

x Cx , the product going over equivalence
classes of elements in the set {x1, . . . , x[ n

2 ]} with respect to the relation x ∼ x−1.

Proof This follows from [10, 8.1(iii) and section 4]. �

C.8 Proposition 2.1 remains valid, after replacing the Langlands parameter ϕ by ϕE and
self-dual by conjugate-dual in appropriate places [10, sections 4 and 8]. In the same spirit,
one gets the generalization of 2.2–2.6 with C ′+ := C ′.

C.9 With all these changes, the corollary 3.5 is valid for the quasi-split unitary group.
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