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Abstract Let M be a compact complex supermanifold. We prove that the set Aut0̄(M)

of automorphisms of M can be endowed with the structure of a complex Lie group acting
holomorphically on M, so that its Lie algebra is isomorphic to the Lie algebra of even
holomorphic super vector fields on M. Moreover, we prove the existence of a complex
Lie supergroup Aut(M) acting holomorphically on M and satisfying a universal property.
Its underlying Lie group is Aut0̄(M) and its Lie superalgebra is the Lie superalgebra of
holomorphic super vector fields on M. This generalizes the classical theorem by Bochner
and Montgomery that the automorphism group of a compact complex manifold is a complex
Lie group. Some examples of automorphism groups of complex supermanifolds over P1(C)

are provided.
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1 Introduction

The automorphism group of a compact complex manifold M carries the structure of a com-
plex Lie group which acts holomorphically on M and whose Lie algebra consists of the
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holomorphic vector fields on M (see [6]). In this article, we investigate how this result can
be extended to the category of compact complex supermanifolds.

LetM be a compact complex supermanifold, i.e. a complex supermanifold whose under-
lying manifold is compact. An automorphism ofM is a biholomorphic morphismM → M.
A first candidate for the automorphism group of such a supermanifold is the set of automor-
phisms, which we denote by Aut0̄(M). However, every automorphism ϕ of a supermanifold
M (with structure sheafOM) is “even” in the sense that its pullback ϕ∗ : OM → ϕ̃∗(OM) is
a parity-preserving morphism. Therefore, we can (at most) expect this set of automorphisms
ofM to carry the structure of a classical Lie group if we require its action onM to be smooth
or holomorphic. We cannot obtain a Lie supergroup of positive odd dimension.

We prove that the group Aut0̄(M), endowed with an analogue of the compact-open topol-
ogy, carries the structure of a complex Lie group such that the action on M is holomorphic
and its Lie algebra is the Lie algebra of even holomorphic super vector fields onM. It should
be noted that the group Aut0̄(M) is in general different from the group Aut(M) of automor-
phismsof the underlyingmanifoldM . There is a grouphomomorphismAut0̄(M) → Aut(M)

given by assigning the underlying map to an automorphism of the supermanifold; this group
homomorphism is in general neither injective nor surjective.

We define the automorphism group of a compact complex supermanifold M to be a com-
plex Lie supergroup which acts holomorphically on M and satisfies a universal property.
In analogy to the classical case, its Lie superalgebra is the Lie superalgebra of holomorphic
super vector fields on M, and the underlying Lie group is Aut0̄(M), the group of automor-
phisms of M. Using the equivalence of complex Harish-Chandra pairs and complex Lie
supergroups (see [24]), we construct the appropriate automorphism Lie supergroup of M.

More precisely, the outline of this article is the following: First, we introduce a topol-
ogy on the set Aut0̄(M) of automorphisms on a compact complex supermanifold M (cf.
Sect. 3). This topology is an analogue of the compact-open topology in the classical case,
which coincides in the case of a compact complex manifold with the topology of uniform
convergence. We prove that the topological space Aut0̄(M) with composition and inversion
of automorphisms as group operations is a locally compact topological group which satisfies
the second axiom of countability.

In Sect. 4, the non-existence of small subgroups of Aut0̄(M) is proven, which means
that there exists a neighbourhood of the identity in Aut0̄(M) with the property that this
neighbourhood does not contain any non-trivial subgroup. A result on the existence of Lie
group structures on locally compact topological groups without small subgroups (see [25])
then implies that Aut0̄(M) carries the structure of a real Lie group.

In the case of a split compact complex supermanifold M, the fact that Aut0̄(M) carries
the structure of a Lie group follows more easily as described in Remark 8. In this case it
can be proven that Aut0̄(M) is the semi-direct product of a finite-dimensional vector space
and the automorphism group of the vector bundle corresponding to M, which is by [17] a
complex Lie group.

Then, continuous one-parameter subgroups of Aut0̄(M) and their action on the super-
manifoldM are studied (see Sect. 5). This is done in order to obtain results on the regularity
of the Aut0̄(M)-action on M and characterize the Lie algebra of Aut0̄(M). We prove that
the action of each continuous one-parameter subgroup of Aut0̄(M) on M is analytic. As a
corollarywe get that the Lie algebra of Aut0̄(M) is isomorphic to the Lie algebraVec0̄(M) of
even holomorphic super vector fields onM, and Aut0̄(M) carries the structure of a complex
Lie group so that its natural action on M is holomorphic.

Next, we show that the Lie superalgebra Vec(M) of holomorphic super vector fields on
a compact complex supermanifold M is finite-dimensional (see Sect. 6). Since Aut0̄(M)
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Automorphism groups of compact complex supermanifolds 857

carries the structure of a complex Lie group, we already know that Vec0̄(M), the even
part of Vec(M), is finite-dimensional. The key point in the proof in the case of a split
supermanifold M is that the tangent sheaf of M is a coherent sheaf of OM -modules on the
compact complex manifold M , where OM is the sheaf of holomorphic functions on M .

Let α denote the action of Aut0̄(M) on the Lie superalgebra Vec(M) by conjugation:
α(ϕ)(X) = ϕ∗(X) = (ϕ−1)∗ ◦ X ◦ ϕ∗ for ϕ ∈ Aut0̄(M), X ∈ Vec(M). The restriction of
this representation α to Vec0̄(M), the even part of the Lie superalgebra Vec(M), coincides
with the adjoint action of the Lie group Aut0̄(M) on its Lie algebra, which is isomorphic
to Vec0̄(M). Hence α defines a Harish-Chandra pair (Aut0̄(M),Vec(M)). The equivalence
between Harish-Chandra pairs and complex Lie supergroups allows us to define the automor-
phism Lie supergroup of a compact complex supermanifold as follows (see Definition 2):

Definition (Automorphism Lie supergroup) Define the automorphism group Aut(M) of a
compact complex supermanifold to be the unique complex Lie supergroup associated with
the Harish-Chandra pair (Aut0̄(M),Vec(M)) with representation α.

The natural action of the automorphism Lie supergroup Aut(M) on M is holomorphic,
i.e. we have amorphismΨ : Aut(M)×M → M of complex supermanifolds. The automor-
phism Lie supergroup Aut(M) satisfies the following universal property (see Theorem 22):

Theorem If G is a complex Lie supergroup with a holomorphic action ΨG : G × M → M
on M, then there is a unique morphism σ : G → Aut(M) of Lie supergroups such that the
diagram

G × M

σ×idM

ΨG M

Aut(M) × M
Ψ

is commutative.

The automorphism Lie supergroup of a compact complex supermanifold is the unique
complex Lie supergroup satisfying the preceding universal property.

Using the “functor of points” approach to supermanifolds, an alternative definition of the
automorphism group as a functor in analogy to [20,22] is possible, which is studied in Sect. 8.
IfM is a compact complex supermanifold, this functor from the category of supermanifolds
to the category of sets can be defined by the assignment

N �→ {ϕ : N × M → N × M | ϕ is invertible, and prN ◦ ϕ = prN },
where prN : N × M → N denotes the projection onto the first component. The two
approaches to the automorphism group are equivalent and the constructed automorphism
group Aut(M) represents the just defined functor.

In the classical case, another class of complex manifolds where the automorphism group
carries the structure of a Lie group is given by the bounded domains in C

m (see [8]). An
analogue statement is false in the case of supermanifolds. In Sect. 9, we give an example
showing that in the case of a complex supermanifold M whose underlying manifold is a
bounded domain in C

m there does in general not exist a Lie supergroup acting on M and
satisfying the universal property of the preceding theorem.

In Sect. 10, the automorphism group Aut(M) or its underlying Lie group Aut0̄(M) are
determined for some supermanifolds M with underlying manifold M = P1C.
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2 Preliminaries and notation

Throughout, we work with the “Berezin-Leı̆tes-Kostant-approach” to supermanifolds (cf.
[1,15,16]). If a supermanifold is denoted by a calligraphic letter M, then we denote the
underlying manifold by the corresponding uppercase standard letter M , and the structure
sheaf byOM. We call a supermanifoldM compact if its underlying manifold M is compact.
By a complex supermanifold we mean a supermanifold M with structure sheaf OM which
is locally, on small enough open subsets U ⊂ M , isomorphic to OU ⊗ ∧

C
n , where OU

denotes the sheaf of holomorphic functions on U . For a morphism ϕ : M → N between
supermanifoldsM andN , the underlying map M → N is denoted by ϕ̃ and its pullback by
ϕ∗ : ON → ϕ̃∗OM. An automorphism of a complex supermanifold M is a biholomorphic
morphismM → M, i.e. an invertible morphism in the category of complex supermanifolds.

Let E be a vector bundle on a complex manifold M and E its sheaf of sections. Then we
can associate a supermanifold M = (M,OM) by setting OM = ∧

E , which has a natural
Z-grading (and hence a Z/2Z-grading). Split supermanifolds are supermanifolds M such
that there is a vector bundle on M with sheaf of sections E such that M ∼= (M,

∧
E). If

E is e.g. the trivial bundle of rank n on M = C
m , then we get the supermanifold C

m|n =
(Cm,

∧
E) = (Cm,OCm ⊗ ∧

C
n).

For a complex supermanifoldM, let TM denote the tangent sheaf ofM. The Lie superal-
gebra of holomorphic vector fields on M is Vec(M) = TM(M), it consists of the subspace
Vec0̄(M) of even and the subspace Vec1̄(M) of odd super vector fields on M.

Let M be a complex supermanifold of dimension (m|n), and let IM be the subsheaf of
ideals generated by the odd elements in the structure sheaf OM of a supermanifold M. As
described in [19], we have the filtration

OM = (IM)0 ⊃ (IM)1 ⊃ (IM)2 ⊃ · · · ⊃ (IM)n+1 = 0

of the structure sheaf OM by the powers of IM. Define the quotient sheaves grk(OM) =
(IM)k/(IM)k+1. This gives rise to the Z-graded sheaf grOM = ⊕

kgrk(OM). Further-
more, grM = (M, grOM) is a split complex supermanifold of the same dimension as
M.

Note that E := gr1(OM) defines a vector bundle E onM . An automorphismϕ ofM yields
a pullback ϕ∗ onOM. Following [10], its reduction to theOM -module E yields a morphism
of vector bundles ϕ0 ∈ Aut(E) over the reduction ϕ̃ ∈ Aut(M). By [17] the automorphism
group of a principal fibre bundle over a compact complex manifold carries the structure of
a complex Lie group. Since every automorphism of a vector bundle canonically induces an
automorphism of the associated principal fibre bundle and vice versa, the automorphism
group of the associated principal fibre bundle and Aut(E) may be identified. Moreover, this
identification also respects the topology of compact convergence on both groups. Hence,
the group Aut(E) also carries the structure of a complex Lie group. On local coordinate
domains U, V with ϕ̃(U ) ⊂ V we can identify OM|V ∼= ΓΛE |V and OM|U ∼= ΓΛE |U
and following [21] decompose ϕ∗ = ϕ∗

0 exp(Y ) with Z-degree preserving automorphism
ϕ∗
0 : ΓΛE |V → ΓΛE |U induced by ϕ0 and where Y is an even super derivation on ΓΛE |V

increasing the Z-degree by 2 or more. Note that the exponential series exp(Y ) is finite since
Y is nilpotent.

More generally, there is a relation between nilpotent even super vector fields on a super-
manifold andmorphisms of this supermanifold satisfying a certain nilpotency condition. This
is a direct consequence of a technical result on the relation of algebra homomorphisms and
derivations (cf. [23], Proposition 2.1.3 and Lemma 2.1.4). If ϕ : M → M is a morphism of
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supermanifolds with underlying map ϕ̃ = idM and such that ϕ∗ − id∗
M : OM → OM is

nilpotent, i.e. there is N ∈ N with (ϕ∗ − id∗
M)N = 0, then

X = log(ϕ∗) =
N∑

n=1

(−1)n+1

n
(ϕ∗ − id∗

M)n

is a nilpotent even super vector field on M and we have

ϕ∗ = exp(X) =
∑

n≥0

1

n! X
n .

Furthermore, for any nilpotent even super vector fifeld X on M, the (finite) sum exp(X)

defines a map OM → OM which is the pullback of an invertible morphismM → M with
the identity as underlying map, and the pullback of the inverse is exp(−X).

3 The topology on the group of automorphisms

Let M be a compact complex supermanifold. An automorphism of M is a biholomorphic
morphism ϕ : M → M. Denote by Aut0̄(M) the set of automorphisms of M.

In this section, a topology on Aut0̄(M) is introduced, which generalizes the compact-
open topology and topology of compact convergence of the classical case. Then we show
that Aut0̄(M) is a locally compact topological group with respect to this topology.

Let K ⊆ M be a compact subset such that there are local odd coordinates θ1, . . . , θn for
M on an open neighbourhood of K . Moreover, let U ⊆ M be open and f ∈ OM(U ), and
let Uν be open subsets of C for ν ∈ (Z2)

n . Let ϕ : M → M be an automorphism with
ϕ̃(K ) ⊆ U . Then there are holomorphic functions ϕ f,ν on a neighbourhood of K such that

ϕ∗( f ) =
∑

ν∈(Z2)n

ϕ f,νθ
ν .

Let

Δ(K ,U, f, θ j ,Uν) = {ϕ ∈ Aut0̄(M)| ϕ̃(K ) ⊆ U, ϕ f,ν(K ) ⊆ Uν},
and endow Aut0̄(M) with the topology generated by sets of this form, i.e. the sets of the
form Δ(K ,U, f, θ j ,Uν) form a subbase of the topology.

For any open subset U ⊆ M such that there exist coordinates for M on U , fix a set of
coordinates functions f U1 , . . . , f Um+n ∈ OM(U ). Using Taylor expansion one can show that
the sets of the form Δ(K ,U, f Ul , θ j ,Uν) then also form a subbase of the topology.

Remark 1 In particular, the subsets of the form

Δ(K ,U ) = {ϕ ∈ Aut0̄(M)| ϕ̃(K ) ⊆ U }
are open for K ⊆ M compact and U ⊆ M open. Hence the map Aut0̄(M) → Aut(M),
associating with an automorphism ϕ of M the underlying automorphism ϕ̃ of M , is contin-
uous.

Remark 2 The group Aut0̄(M) endowed with the above topology is a second-countable
Hausdorff space since M is second-countable.
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Let U ⊆ M be open. Then we can define a topology on OM(U ) as follows: If K ⊆ U
is compact such that there exist odd coordinates θ1, . . . , θn on a neighbourhood of K , write
f ∈ OM(U ) on K as f = ∑

ν fνθν . LetUν ⊆ C be open subsets. Then define a topology on
OM(U ) by requiring that the sets of the form { f ∈ OM(U )| fν(K ) ⊆ Uν} are a subbase of
the topology. A sequence of functions fk converges to f if and only if in all local coordinate
domainswith odd coordinates θ1, . . . , θn and fk = ∑

ν fk,νθν , f = ∑
ν fνθν , the coefficient

functions fk,ν converge uniformly to fν on compact subsets. Note that for any open subsets
U1,U2 ⊆ M with U1 ⊂ U2 the restriction map OM(U2) → OM(U1), f �→ f |U1 , is
continuous.

Using Taylor expansion (in local coordinates) of automorphisms ofMwe can deduce the
following lemma:

Lemma 3 A sequence of automorphisms ϕk : M → M converges to an automorphism
ϕ : M → M with respect to the topology of Aut0̄(M) if and only if the following condition
is satisfied: For all U, V ⊆ M open subsets of M such that V contains the closure of ϕ̃(U ),
there is an N ∈ N such that ϕ̃k(U ) ⊆ V for all k ≥ N. Furthermore, for any f ∈ OM(V )

the sequence (ϕk)
∗( f ) converges to ϕ∗( f ) on U in the topology of OM(U ).

Lemma 4 If U, V ⊆ M are open subsets, K ⊆ M is compact with V ⊆ K, then the map

Δ(K ,U ) × OM(U ) → OM(V ), (ϕ, f ) �→ ϕ∗( f )

is continuous.

Proof Letϕk ∈ Δ(K ,U )be a sequence of automorphismsofM converging toϕ ∈ Δ(K ,U ),
and fl ∈ OM(U ) a sequence converging to f ∈ OM(U ). Choosing appropriate local
coordinates and using Taylor expansion of the pullbacks (ϕk)

∗( fl), it can be shown that
(ϕk)

∗( fl) converges to ϕ∗( f ) as k, l → ∞. This uses that the derivatives of a sequence of
uniformly converging holomorphic functions also uniformly converge. ��
Lemma 5 The topological space Aut0̄(M) is locally compact.

The following remark about invertible morphisms is useful for the proof of this lemma.

Remark 6 (See e.g. Proposition 2.15.1 in [15] or Corollary 2.3.3 in [16]) Let M be a
complex supermanifold and ϕ : M → M any morphism. Let ξ1, . . . , ξn and θ1, . . . , θn
be local odd coordinates for M, and superfunctions ϕ j,k , ϕ j,ν such that ϕ∗(ξ j ) =∑n

k=1 ϕ j,kθk + ∑
||ν||≥3 ϕ j,νθ

ν, where ||ν|| = ||(ν1, . . . , νn)|| = ν1 + · · · + νn ≥ 3. Then
ϕ is locally biholomorphic if and only if the underlying map ϕ̃ is locally biholomorphic and
det

(
(ϕ j,k(y))1≤ j,k≤n

) �= 0. The morphism ϕ is hence invertible if it is everywhere locally
biholomorphic and ϕ̃ is biholomorphic.

Proof (of Lemma 5) Let ψ ∈ Aut0̄(M). For each fixed x ∈ M there are open neighbour-
hoods Vx and Ux of x and ψ̃(x) respectively such that ψ̃(Kx ) ⊆ Ux for Kx := V x . We
may additionally assume that there are local odd coordinates ξ1, . . . , ξn for M on Ux , and
θ1, . . . , θn local odd coordinates on an open neighbourhood of Kx . For any automorphism
ϕ : M → Mwith ϕ̃(Kx ) ⊆ Ux , let ϕ j,k , ϕ j,ν (for ||ν|| = ||(ν1, . . . , νn)|| = ν1 +· · ·+νn ≥
3) be local holomorphic functions such that

ϕ∗(ξ j ) =
n∑

k=1

ϕ j,kθk +
∑

||ν||≥3

ϕ j,νθ
ν .
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Automorphism groups of compact complex supermanifolds 861

Choose bounded open subsetsUj,k,Uj,ν ⊂ C, such thatψ j,k(x) ∈ Uj,k andψ j,ν(x) ∈ Uj,ν .
Since ψ is an automorphism, we have

det
(
(ψ j,k(y))1≤ j,k≤n

) �= 0

for all y ∈ Kx by Remark 6. For later considerations shrinkUj,k such that det(C) �= 0 for all
C = (c j,k)1≤ j,k≤n with c j,k ∈ Uj,k . After shrinking Vx we may assume ψ j,k(Kx ) ⊆ Uj,k

and ψ j,ν(Kx ) ⊆ Uj,ν . Hence ψ is contained in the set Θ(x) = {ϕ ∈ Aut0̄(M) | ϕ̃(Kx ) ⊆
Ux , ϕ j,k(Kx ) ⊆ U j,k, ϕ j,ν(Kx ) ⊆ U j,ν}, which contains an open neighbourhood of ψ .
Since M is compact, M is covered by finitely many of the sets Vx , say Vx1 , . . . , Vxl . Then ψ

is contained inΘ = Θ(x1)∩· · ·∩Θ(xl). We will now prove thatΘ is sequentially compact:
Let ϕk be any sequence of automorphisms contained in Θ . Then, using Montel’s theorem
and passing to a subsequence, the sequence ϕk converges to a morphism ϕ : M → M. It
remains to show that ϕ is an automorphism of M.

The underlyingmap ϕ̃ : M → M is surjective since if p /∈ ϕ̃(M), thenϕ ∈ Δ(M, M\{p})
and therefore ϕk ∈ Δ(M, M \ {p}) for k large enough which contradicts the assumption that
ϕk is an automorphism. This also implies that there is an x ∈ M such that the differential
Dϕ̃(x) is invertible. UsingHurwitz’s theorem (see e.g. [18], p. 80) it follows det(Dϕ̃(x)) �= 0
for all x ∈ M . Thus ϕ̃ is locally biholomorphic. Moreover, ϕ is locally invertible due to the
special form of the sets Θ(xi ).

In order check that ϕ̃ is injective, let p1, p2 ∈ M , p1 �= p2, such that q = ϕ̃(p1) = ϕ̃(p2).
Let Ω j , j = 1, 2, be open neighbourhoods of p j with Ω1 ∩ Ω2 = ∅. By [18], p. 79,
Proposition 5, there exists k0 with the property that q ∈ ϕ̃k(Ω1) and q ∈ ϕ̃k(Ω2) for all
k ≥ k0. The bijectivity of the ϕk’s now yields a contradiction to Ω1 ∩ Ω2 = ∅. ��
Proposition 7 The set Aut0̄(M) is a topological group with respect to composition and
inversion of automorphisms.

Proof Let ϕk and ψl be two sequences of automorphisms of M converging to ϕ and ψ

respectively. By the classical theory, ϕ̃k ◦ ψ̃l converges to ϕ̃ ◦ ψ̃ , and ϕ̃k
−1 to ϕ̃−1.

Let U, V,W ⊆ M be open subsets with ϕ̃(V ) ⊆ W , ϕ̃k(V ) ⊆ W , ψ̃(U ) ⊆ V , ψ̃l(U ) ⊆
V , for k and l sufficiently large and let f ∈ OM(W ). Then the sequence (ϕk)

∗( f ) ∈ OM(V )

converges to ϕ∗( f ) on V , and by Lemma 4 (ϕk ◦ ψl)
∗( f ) = (ψl)

∗ ((ϕk)
∗( f )) converges

to ψ∗(ϕ∗( f )) = (ϕ ◦ ψ)∗( f ) on U as k, l → ∞ , which shows that the multiplication is
continuous.

Consider now the inversion map Aut0̄(M) → Aut0̄(M), ϕ �→ ϕ−1. Let ϕk be a
sequence in Aut0̄(M) converging to ϕ ∈ Aut0̄(M). Note that since the automorphism
group Aut(M) of the underlying manifold M is a topological group, the inversion map
Aut(M) → Aut(M) is continuous. For any choice of local coordinate charts on U, V ⊆ M
such that the closure of ϕ̃−1(U ) is contained in V we can conclude: Since ϕ̃−1

k converges
to ϕ̃−1, we have ϕ̃k

−1(U ) ⊆ V for k sufficiently large. Identify OM(U ) ∼= ΓΛE (U ), resp.
OM(V ) ∼= ΓΛE (V ) and decompose ϕ∗ = ϕ∗

0 exp(Y ), ϕ∗
k = ϕ∗

k,0 exp(Yk) as in Section 2.
Note that ϕ∗

0 is induced by an automorphism ϕ0 of the vector bundle E . We can verify by an
observation in local coordinates that the map Aut0̄(M) → Aut(E), ϕ �→ ϕ0, is continuous.
Hence, the sequence ϕk,0 converges to ϕ0 and ϕ∗

k,0 converges to ϕ∗
0 . By [17] the inversion

on Aut(E) is continuous. Therefore, (ϕ−1
k,0)

∗ converges to (ϕ−1
0 )∗. Due to the finiteness

of the logarithm and exponential series on nilpotent elements, Yk converges to Y . Hence,
(ϕ−1

k )∗ = exp(−Yk)(ϕ∗
k,0)

−1 converges to exp(−Y )(ϕ∗
0 )

−1 = (ϕ∗)−1. ��
Remark 8 LetM be a split supermanifold and let E → M be a vector bundle with associated
sheaf of sectionsE such that the structure sheafOM is isomorphic to

∧
E . By [17] the group of
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automorphisms Aut(E) of the vector bundle E is a complex Lie group. Each automorphism
ϕ of the supermanifold M induces an automorphism ϕ0 of the vector bundle E over the
underlying map ϕ̃ of ϕ, and the map π : Aut0̄(M) → Aut(E), ϕ �→ ϕ0, is continuous.
An automorphism of the bundle E lifts to an automorphism of the supermanifold M if
we fix a splitting OM ∼= ∧

E . If χ : E → E is an automorphism with pullback χ∗ we
define an automorphism of M by the pullback f1 ∧ . . . ∧ fk �→ χ∗( f1) ∧ . . . ∧ χ∗( fk) for
f1 ∧ . . . ∧ fk ∈ ∧k E . This assignment defines a section of π . In particular, π is surjective
and we have an exact sequence

0 → ker π → Aut0̄(M) → Aut(E) → 0,

which splits. Consequently, the topological group Aut0̄(M) is a semidirect product

Aut0̄(M) ∼= ker π � Aut(E).

The kernel of π consists of those automorphisms ϕ ofM whose underlying map ϕ̃ is the
identity on M and whose pullback ϕ∗ satisfies

(ϕ∗ − id∗)(E) ⊆
⊕

k≥2

(∧
k E

)
.

In this case (ϕ∗ − id∗) is nilpotent and there is an even super vector field X on M with
exp(X) = ϕ∗ as mentioned in Sect. 2. The super vector field X is nilpotent and fulfills

X
(∧

k E
)

⊆
⊕

l≥k+2

(∧
l E

)

for all k. More generally, the map
⎧
⎨

⎩
X ∈ Vec0̄(M)

∣
∣
∣
∣
∣
∣
X

(∧
k E

)
⊆

⊕

l≥k+2

(∧
l E

)
for all k

⎫
⎬

⎭
−→ ker π,

X �→ exp(X),

which assigns to a super vector field X the automorphism of M with pullback exp(X), is
bijective. In Sect. 6, we will prove that the Lie superalgebra Vec(M) of super vector fields on
M and thus subspaces of Vec(M) are finite-dimensional. Therefore, the topological group
Aut0̄(M) ∼= ker π � Aut(E) carries the structure of a complex Lie group.

In the general case of a not necessarily split supermanifoldM, the proof that Aut0̄(M) can
be endowed with the structure of a complex Lie group is more difficult. In order to prove the
corresponding result also for non-split supermanifolds, the structure of Aut0̄(M) is further
studied in the next two sections.

4 Non-existence of small subgroups of Aut0̄(M)

In this section, we prove that Aut0̄(M) does not contain small subgroups, i.e. that there exists
an open neighbourhood of the identity in Aut0̄(M) such that each subgroup contained in
this neighbourhood consists only of the identity. As a consequence, the topological group
Aut0̄(M) carries the structure of a real Lie group by a result of Yamabe (cf. [25]).
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Before proving the non-existence of small subgroups, a few technical preparations are
needed: Consider C

m|n and let z1, . . . , zm, ξ1, . . . , ξn denote coordinates on C
m|n . Let U ⊆

C
m be an open subset. For f = ∑

ν fνξν ∈ OCm|n (U ) define

|| f ||U =
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

ν

fνξ
ν

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
U

:=
∑

ν

|| fν ||U ,

where || fν ||U denotes the supremum norm of the holomorphic function fν on U . For any
morphism ϕ : U = (U,OCm|n |U ) → C

m|n define

||ϕ||U :=
m∑

i=1

||ϕ∗(zi )||U +
n∑

j=1

||ϕ∗(ξ j )||U .

Lemma 9 Let U = (U,OCm|n |U ) be a superdomain in C
m|n. For any relatively compact

open subset U ′ of U there exists ε > 0 such that any morphism ψ : U → C
m|n with the

property ||ψ − id||U < ε is biholomorphic as a morphism from U ′ = (U ′,OCm|n |U ′) onto
its image.

Proof Let r > 0 such that the closure of the polydisc

Δn
r (z) = {(w1, . . . , wm)| |w j − z j | < r}

is contained in U for any z = (z1, . . . , zm) ∈ U ′. Let v ∈ C
m be any non-zero vector. Then

we have z + ζv ∈ U for any z ∈ U ′ and ζ in the closure of Δ r
||v|| (0) = {t ∈ C| |t | < r

||v|| }.
If for given ε > 0 it is ||ψ − id||U < ε then we have in particular ||ψ̃ − id||U < ε for the
supremum norm of the underlying maps ψ̃, id : U → C

m . Then, for the differential Dψ̃ of
ψ̃ and any non-zero vector v ∈ C

m and any z ∈ U ′ we have
∣
∣
∣
∣
∣
∣Dψ̃(z)(v) − v

∣
∣
∣
∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣
d

dt

(
ψ̃(z + tv) − (z + tv)

)∣∣
∣
∣

∣
∣
∣
∣

= 1

2π

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∫

∂Δ r||v|| (0)

ψ̃(z + ζv) − (z + ζv)

ζ 2 dζ

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤ 1

2π

∫

∂Δ r||v|| (0)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ψ̃(z + ζv) − (z + ζv)

ζ 2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
dζ

<
ε||v||
r

.

This implies ||Dψ̃(z) − id|| < ε
r with respect to the operator norm, for any z ∈ U ′. Thus

ψ̃ is locally biholomorphic on U ′ if ε is small enough. Moreover, ε might now be chosen
such that ψ̃ is injective (see e.g. [13], Chapter 2, Lemma 1.3).
Let ψ j,k, ψ j,ν be holomorphic functions on U such that ψ∗(ξ j ) = ∑n

k=1 ψ j,kξk +∑
||ν||≥3 ψ j,νξ

ν . By Remark 6 it is now enough to show

det((ψ j,k)1≤ j,k≤n(z)) �= 0

for all z ∈ U ′ and ε small enough in order to prove that ψ is a biholomorphism form U ′ onto
its image. This follows from the fact that we assumed, via ||ψ − id||U < ε, that ||ψ j,k ||U < ε

if j �= k and ||ψ j, j − 1||U < ε. ��
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This lemma now allows us to prove that Aut0̄(M) contains no small subgroups; for a
similar result in the classical case see [5], Theorem 1.

Proposition 10 The topological group Aut0̄(M) has no small subgroups, i.e. there is a
neighbourhood of the identity which contains no non-trivial subgroup.

Proof Let U ⊂ V ⊂ W be open subsets of M such that U is relatively compact in V
and V is relatively compact in W . Suppose that W = (W,OM|W ) is isomorphic to a
superdomain in C

m|n and let z1, . . . , zm, ξ1, . . . , ξn be local coordinates onW . By definition
Δ(V ,W ) = {ϕ ∈ Aut0̄(M)| ϕ̃(V ) ⊆ W } and Δ(U , V ) are open neighbourhoods of the
identity in Aut0̄(M). Choose ε > 0 as in the preceding lemma such that any morphism
χ : V → C

m|n with ||χ − id||V < ε is biholomorphic as a morphism from U onto its image.
Let Ω ⊆ Δ(V ,W ) ∩ Δ(U , V ) be the subset whose elements ϕ satisfy ||ϕ − id||V < ε. The
set Ω is open and contains the identity. Since Aut0̄(M) is locally compact by Lemma 5, it is
enough to show that each compact subgroup Q ⊆ Ω is trivial. Otherwise for non-compact Q,
let Ω ′ be an open neighbourhood of the identity with compact closure Ω

′
which is contained

in Ω , and suppose Q ⊆ Ω ′. Then Q ⊆ Ω
′ ⊂ Ω is a compact subgroup, and Q is trivial if

Q is trivial.
Define a morphism ψ : V → C

m|n by setting

ψ∗(zi ) =
∫

Q
q∗(zi ) dq and ψ∗(ξ j ) =

∫

Q
q∗(ξ j ) dq,

where the integral is taken with respect to the normalized Haar measure on Q. This yields a
holomorphic morphism ψ : V → C

m|n since each q ∈ Q defines a holomorphic morphism
V → W ⊆ C

m|n . Its underlying map is ψ̃(z) = ∫
Q q̃(z) dq . The morphism ψ satisfies

||ψ∗(zi ) − zi ||V =
∣
∣
∣
∣

∣
∣
∣
∣

∫

Q
(q∗(zi ) − zi ) dq

∣
∣
∣
∣

∣
∣
∣
∣
V

≤
∫

Q
||q∗(zi ) − zi ||V dq

and similarly

||ψ∗(ξ j ) − ξ j ||V ≤
∫

Q
||q∗(ξ j ) − ξ j ||V dq.

Consequently, we have

||ψ − id||V =
m∑

i=1

||ψ∗(zi ) − zi ||V +
n∑

j=1

||ψ∗(ξ j ) − ξ j ||V

≤
∫

Q

⎛

⎝
m∑

i=1

||q∗(zi ) − zi ||V +
n∑

j=1

||q∗(ξ j ) − ξ j ||V
⎞

⎠ dq

=
∫

Q
||q − id||V dq < ε.

Thus by the preceding lemma,ψ |U is a biholomorphic morphism onto its image. Further-
more, on U we have ψ ◦ q ′ = ψ for any q ′ ∈ Q since

(ψ ◦ q ′)∗(zi ) = (q ′)∗(ψ∗(zi )) = (q ′)∗
(∫

Q
q∗(zi ) dq

)

=
∫

Q
(q ′)∗(q∗(zi )) dq

=
∫

Q
(q ◦ q ′)∗(zi ) dq =

∫

Q
q∗(zi ) dq = ψ∗(zi )
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due to the invariance of the Haar measure, and also

(ψ ◦ q ′)∗(ξ j ) = ψ∗(ξ j ).

The equality ψ ◦ q ′ = ψ on U implies q ′|U = idU because of the invertibility of ψ . By the
identity principle it follows that q ′ = idM if M is connected, and hence Q = {idM}.

In general, M has only finitely many connected components since M is compact. There-
fore, a repetition of the preceding argument yields the existence of a neighbourhood of the
identity of Aut0̄(M) without any non-trivial subgroups. ��

By Theorem 3 in [25], the preceding proposition implies the following:

Corollary 11 The topological group Aut0̄(M) can be endowed with the structure of a real
Lie group.

5 One-parameter subgroups of Aut0̄(M)

In order to obtain results on the regularity of the action of Aut0̄(M) on the compact complex
supermanifoldM and to characterize the Lie algebra of Aut0̄(M), we study continuous one-
parameter subgroups ofAut0̄(M). Each continuous one-parameter subgroupR → Aut0̄(M)

is an analytic map between the Lie groups R and Aut0̄(M).
We prove that the action of each continuous one-parameter subgroup of Aut0̄(M) on M

is analytic and induces an even holomorphic super vector field onM. Consequently, the Lie
algebra of Aut0̄(M) may be identified with the Lie algebra Vec0̄(M) of even holomorphic
super vector fields on M, and Aut0̄(M) carries the structure of a complex Lie group whose
action on the supermanifold M is holomorphic.

Definition 1 A continuous one-parameter subgroup ϕ of automorphisms of M is a family
of automorphisms ϕt : M → M, t ∈ R, such that the map ϕ : R → Aut0̄(M), t �→ ϕt , is
a continuous group homomorphism.

Remark 12 Letϕt : M → M, t ∈ R, be a family of automorphisms satisfyingϕs+t = ϕs◦ϕt

for all s, t ∈ R, and such that ϕ̃ : R × M → M , ϕ̃(t, p) = ϕ̃t (p) is continuous. Then ϕt is
a continuous one-parameter subgroup if and only if the following condition is satisfied: Let
U, V ⊂ M be open subsets, and [a, b] ⊂ R such that ϕ̃([a, b]×U ) ⊆ V . Assume moreover
that there are local coordinates z1, . . . , zm, ξ1, . . . , ξn forM onU . Then for any f ∈ OM(V )

there are continuous functions fν : [a, b] × U → C with ( fν)t = fν(t, ·) ∈ OM(U ) for
fixed t ∈ [a, b] such that

(ϕt )
∗( f ) =

∑

ν

fν(t, z)ξ
ν .

We say that the action of the one-parameter subgroup ϕ on M is analytic if each fν(t, z) is
analytic in both components.

This equivalent characterization of continuous one-parameter subgroups of automor-
phisms also allows us to define this notion for non-compact complex supermanifolds.

Proposition 13 Let ϕ be a continuous one-parameter subgroup of automorphisms on M.
Then the action of ϕ on M is analytic.

Remark 14 The statement of Proposition 13 also holds true for complex supermanifoldsM
with non-compact underlying manifold M as compactness of M is not needed for the proof.
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For the proof of the proposition the following technical lemma is needed:

Lemma 15 Let U ⊆ V ⊆ C
m be open subsets, p ∈ U, Ω ⊆ R an open connected

neighbourhood of 0, and let α : Ω ×U → V be a continuous map satisfying

α(t, z) = α(t + s, z) − f (t, s, z)

for (t, s, z) in a neighbourhood of (0, 0, p) and for some continuous function f which is
analytic in (t, z). If α is holomorphic in the second component, then it is analytic on a
neighbourhood of (0, p).

Proof For small t , h > 0, z near p, we have

h · α(t, z) =
∫ h

0
α(t + s, z)ds −

∫ h

0
f (t, s, z)ds

=
∫ h+t

t
α(s, z)ds −

∫ h

0
α(s, z)ds −

∫ h

0
( f (t, s, z) − α(s, z))ds

=
∫ h+t

h
α(s, z)ds −

∫ t

0
α(s, z)ds −

∫ h

0
( f (t, s, z) − α(s, z))ds

=
∫ t

0
(α(s + h, z) − α(s, z))ds −

∫ h

0
( f (t, s, z) − α(s, z))ds

=
∫ t

0
f (s, h, z)ds −

∫ h

0
( f (t, s, z) − α(s, z))ds.

The assumption that f is a continuous function which is analytic in the first and third com-
ponent therefore implies that α is analytic. ��
Proof (of Proposition 13) Due to the action property ϕs+t = ϕs ◦ ϕt it is enough to show
the statement for the restriction of ϕ to (−ε, ε) × M for some ε > 0. Let U, V ⊆ M be
open subsets such thatU is relatively compact in V , and such that there are local coordinates
z1, . . . , zm, ξ1, . . . , ξn on V forM. Choose ε > 0 such that ϕ̃t (U ) ⊆ V for any t ∈ (−ε, ε).
Let αi,ν , β j,ν be continuous functions on (−ε, ε) ×U with

(ϕt )
∗(zi ) =

∑

|ν|=0

αi,ν(t, z)ξ
ν

and

(ϕt )
∗(ξ j ) =

∑

|ν|=1

β j,ν(t, z)ξ
ν,

where |ν| = |(ν1, . . . , νn)| = (ν1 + . . . + νn) mod 2 ∈ Z2. We have to show that α and β

are analytic in (t, z). The induced map ψ ′ : (−ε, ε) ×U × C
n → V × C

n on the underlying
vector bundle is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

z1
...

zm
v1
...

vn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1,0(t, z)
...

αm,0(t, z)∑n
k=1 β1,k(t, z)vk

...∑n
k=1 βn,k(t, z)vk

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Automorphism groups of compact complex supermanifolds 867

where β j,k = β j,ek if ek = (0, . . . , 0, 1, 0, . . . , 0) denotes the k-th unit vector. The map ψ ′
is a local continuous one-parameter subgroup on U × C

n because ϕ is a continuous one-
parameter subgroup.By a result ofBochner andMontgomery themapψ ′ is analytic in (t, z, v)

(see [4], Theorem 4). Hence, the map ψ : (−ε, ε) × U → V given by (ψt )
∗(zi ) = αi (t, z),

(ψt )
∗(ξ j ) = ∑n

k=1 β j,k(t, z)ξk is analytic. Let X be the local vector field on U induced by
ψ , i.e.

X ( f ) = ∂

∂t

∣
∣
∣
∣
0
(ψt )

∗( f ).

We may assume that X is non-degenerate, i.e. the evaluation of X in p, X (p), does not
vanish for all p ∈ U . Otherwise, consider, instead of ϕ, the diagonal action on C × M
acting by addition of t in the first component and ϕt in the second, and note that this action
is analytic precisely if ϕ is analytic. For the differential dψ of ψ in (0, p) we have

dψ

(
∂

∂t

∣
∣
∣
∣
(0,p)

)

= ∂

∂t

∣
∣
∣
∣
(0,p)

◦ ψ∗ = X (p) �= 0.

Therefore, the restricted mapψ |(−ε,ε)×{p} is an immersion and its imageψ((−ε, ε)×{p})
is a subsupermanifold ofV . Let S be a subsupermanifold ofU transversal toψ((−ε, ε)×{p})
in p. The map ψ |(−ε,ε)×S is a submersion in (0, p) since dψ(T(0,p)(−ε, ε) × {p})) =
Tpψ((−ε, ε) × {p}) and dψ(T(0,p){0} × S) = TpS because ψ |{0}×U = id. Hence χ :=
ψ |(−ε,ε)×S is locally invertible around (0, p), and thus invertible as a map onto its image
after possibly shrinking U and ε, and

χ∗
(

∂

∂t

)

= (χ−1)∗ ◦ ∂

∂t
◦ χ∗ = (χ−1)∗ ◦ χ∗ ◦ X = X.

Therefore, after defining new coordinates w1, . . . , wm, θ1, . . . , θn forM on U via χ , we
have X = ∂

∂w1
and (ϕt )

∗ is of the form

(ϕt )
∗(w1) = w1 + t +

∑

|ν|=0,ν �=0

α1,ν(t, w)θν,

(ϕt )
∗(wi ) = wi +

∑

|ν|=0,ν �=0

αi,ν(t, w)θν for i �= 1,

(ϕt )
∗(θ j ) = θ j +

∑

|ν|=1,||ν||�=1

β j,ν(t, w)θν,

for appropriate αi,ν , β j,ν , where ||ν|| = ||(ν1, . . . , νn)|| = ν1 + · · · + νn .
For small s and t we have

ϕ∗
t

(
ϕ∗
s (wi )

) = ϕ∗
t

⎛

⎝wi + δ1,i s +
∑

|ν|=0,||ν||�=0

αi,ν(s, w)θν

⎞

⎠

= wi + δi,1(t + s) +
∑

|ν|=0,||ν||�=0

αi,ν(t, w)θν +
∑

|ν|=0,||ν||�=0

ϕ∗
t (αi,ν(s, w)θν).

(1)

Let fi,ν(t, s, w) be such that
∑

|ν|=0,||ν||�=0

ϕ∗
t (αi,ν(s, w)θν) =

∑

|ν|=0,||ν||�=0

fi,ν(t, s, w)θν. (2)
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Forfixed ν0 the coefficient fi,ν0(t, s, w)of θν0 depends only onαi,ν0(s, w+te1),β j,μ(t, w)

forμwith ||μ|| ≤ ||ν0||−1, andα j,ν(t, w) and its partial derivatives in the second component
for ν with ||ν|| ≤ ||ν0|| − 2. This can be shown by a calculation using the special form of
ϕ∗
t (w j ) and ϕ∗

t (θ j ) and general properties of the pullback of a morphism of supermanifolds.
Assume now that the analyticity near (0, p) of αi,ν , β j,μ is shown for ||ν||, ||μ|| < 2k and
all i, j . Let ν0 be such that ||ν0|| = 2k. Then fi,ν0(t, s, w) is a continuous function which is
analytic in (t, w) near (0, p) for fixed s. Since ϕ∗

t (ϕ
∗
s (wi )) = ϕ∗

t+s(wi ), using (1) and (2) we
get

αi,ν0(t, w) + fi,ν0(t, s, w) = αi,ν0(t + s, w),

and thus αi,ν0(t, w) is analytic near (0, p) by Lemma 15. Similarly, it can be shown that
β j,μ0 is analytic for ||μ0|| = 2k + 1 if αi,ν , β j,μ for ||ν||, ||μ|| < 2k + 1. ��
Corollary 16 The Lie algebra of Aut0̄(M) is isomorphic to the Lie algebra Vec0̄(M) of
even super vector fields on M, and Aut0̄(M) is a complex Lie group.

Proof If γ : R → Aut0̄(M), t �→ γt is a continuous one-parameter subgroup, then by
Proposition 13 the action of ϕ on M is analytic. Therefore, γ induces an even holomorphic
super vector field X (γ ) on M by setting

X (γ ) = ∂

∂t

∣
∣
∣
∣
0
(γt )

∗,

and γ is the flowmap of X (γ ). On the other hand, since M is compact, the underlying vector
field of each X ∈ Vec0̄(M) is globally integrable and the proof of Theorem 5.4 in [12] then
shows that X is also globally integrable. Its flow defines a one-parameter subgroup γ X of
Aut0̄(M), which is continuous. This yields an isomorphism of Lie algebras

Lie(Aut0̄(M)) → Vec0̄(M).

Consequently, we have Lie(Aut0̄(M)) ∼= Vec0̄(M) and since Vec0̄(M) is a complex Lie
algebra, Aut0̄(M) carries the structure of a complex Lie group. ��

The Lie group Aut0̄(M) naturally acts on M; this action ψ : Aut0̄(M) × M → M
is given by evg ◦ ψ∗ = g∗ where evg denotes the evaluation in g ∈ Aut0̄(M) in the first
component.

Corollary 17 The natural action of Aut0̄(M) on M defines a holomorphic morphism of
supermanifolds ψ : Aut0̄(M) × M → M.

Proof Since the action of each continuous one-parameter subgroup of Aut0̄(M) on M is
holomorphic by the preceding considerations, and each g ∈ Aut0̄(M) is a biholomorphic
morphism g : M → M, the action ψ is a holomorphic. ��

If a Lie supergroup G (with Lie superalgebra g of right-invariant super vector fields) acts
on a supermanifold M via ψ : G × M → M, this action ψ induces an infinitesimal action
dψ : g → Vec(M) defined by dψ(X) = (X (e)⊗ id∗

M)◦ψ∗ for any X ∈ g, where X ⊗ id∗
M

denotes the canonical extension of the vector field X on G to a vector field on G × M, and
(X (e) ⊗ id∗

M) is its evaluation in the neutral element e of G.

Corollary 18 Identifying the Lie algebra ofAut0̄(M) withVec0̄(M) as in Corollary 16, the
induced infinitesimal action of the action ψ : Aut0̄(M) × M → M in Corollary 17 is the
inclusion Vec0̄(M) ↪→ Vec(M).
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6 The Lie superalgebra of vector fields

In this section, we prove that the Lie superalgebra Vec(M) of holomorphic super vector
fields on a compact complex supermanifold M is finite-dimensional.

First, we prove that Vec(M) is finite-dimensional ifM is a split supermanifold using that
its tangent sheaf TM is a coherent sheaf ofOM -modules, whereOM denotes again the sheaf
of holomorphic functions on the underlying manifold M . Then the statement in the general
case is deduced using a filtration of the tangent sheaf.

Remark that since Aut0̄(M) is a complex Lie group with Lie algebra isomorphic to the
Lie algebra Vec0̄(M) of even holomorphic super vector fields on M (see Corollary 16), we
already know that the even part of Vec(M) = Vec0̄(M) ⊕ Vec1̄(M) is finite-dimensional.

Lemma 19 LetM be a split complex supermanifold. Then its tangent sheaf TM is a coherent
sheaf of OM-modules.

Proof Since M is split, its structure sheaf OM is isomorphic to
∧

E as an OM -module,
where E is the sheaf of sections of a holomorphic vector bundle on the underlying manifold
M . Thus, the structure sheafOM, and hence also the tangent sheaf TM, carry the structure of
a sheaf ofOM -modules. LetU ⊂ M be an open subset such that there exist even coordinates
z1, . . . , zm and odd coordinates ξ1, . . . , ξn . Any derivation D ∈ TM(U ) on U can uniquely
be written as

D =
∑

ν∈(Z2)n

⎛

⎝
m∑

i=1

fi,ν(z)ξ
ν ∂

∂zi
+

n∑

j=1

g j,ν(z)ξ
ν ∂

∂ξ j

⎞

⎠

where fi,ν , g j,ν are holomorphic functions on U . Therefore, the restricted sheaf TM|U is
isomorphic to (OM |U )2

n(m+n) and TM is coherent over OM . ��
Proposition 20 The Lie superalgebraVec(M) of holomorphic super vector fields on a com-
pact complex supermanifold M is finite-dimensional.

Proof First, assume that M is split. Then the tangent sheaf TM is a coherent sheaf of OM -
modules. Thus, the space of global sections ofTM, Vec(M) = TM(M), is finite-dimensional
since M is compact (cf. [9]).

Now, letM be an arbitrary compact complex supermanifold. We associate the split com-
plex supermanifold grM = (M, grOM) as described in Section 2. Let IM denote as before
the subsheaf of ideal in OM generated by the odd elements. Define the filtration of sheaves
of Lie superalgebras

TM =: (TM)(−1) ⊃ (TM)(0) ⊃ (TM)(1) ⊃ · · · ⊃ (TM)(n+1) = 0

of the tangent sheaf TM by setting

(TM)(k) = {D ∈ TM| D(OM) ⊂ (IM)k, D(IM) ⊂ (IM)k+1}
for k ≥ 0. Moreover, define grk(TM) = (TM)(k)/(TM)(k+1) and set

gr(TM) =
⊕

k≥−1

grk(TM).

By [19], Proposition 1, the sheaf gr(TM) is isomorphic to the tangent sheaf of the asso-
ciated split supermanifold grM. By the preceding considerations, the space of holomorphic
super vector fields on grM,
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Vec(grM) = gr(TM)(M) =
⊕

k≥−1

grk(TM)(M),

is of finite dimension. The projection onto the quotient yields

dim(TM)(k)(M) − dim(TM)(k+1)(M) ≤ dim(grk(TM)(M))

and dim(TM)(n)(M) = dim(grn(TM)(M)) and hence by induction

dim(TM)(k)(M) ≤
∑

j≥k

dim(gr j (TM)(M)),

which gives

dim(TM(M)) = dim
(
(TM)(−1)(M)

) ≤ dim (gr(TM)(M)) .

In particular, dim(TM(M)) is finite. ��
Remark 21 The proof of the preceding proposition also shows the following inequality:

dim(Vec(M)) ≤ dim(Vec(grM))

7 The automorphism group

In this section, the automorphism group of a compact complex supermanifold is defined. This
is done via the formalism of Harish-Chandra pairs for complex Lie supergroups (cf. [24]).
The underlying classical Lie group is Aut0̄(M) and the Lie superalgebra is Vec(M), the Lie
superalgebra of super vector fields onM. Moreover, we prove that the automorphism group
satisfies a universal property.

Consider the representation α of Aut0̄(M) on Vec(M) given by

α(g)(X) = g∗(X) = (g−1)∗ ◦ X ◦ g∗ for g ∈ Aut0̄(M), X ∈ Vec(M).

This representation α preserves the parity on Vec(M), and its restriction to Vec0̄(M) coin-
cides with the adjoint action of Aut0̄(M) on its Lie algebra Lie(Aut0̄(M)) ∼= Vec0̄(M).
Moreover, the differential (dα)id at the identity id ∈ Aut0̄(M) is the adjoint representation
of Vec0̄(M) on Vec(M):

Let X and Y be super vector fields on M. Assume that X is even and let ϕX denote the
corresponding one-parameter subgroup. Then we have

(dα)id(X)(Y ) = ∂

∂t

∣
∣
∣
∣
0
(ϕX

t )∗(Y ) = [X, Y ];

see e.g. [2], Corollary 3.8. Therefore, the pair (Aut0̄(M),Vec(M)) together with the repre-
sentationα is a complexHarish-Chandra pair, and using the equivalence between the category
of complex Harish-Chandra pairs and complex Lie supergroups (cf. [24], § 2), we can define
the automorphism group of a compact complex supermanifold M as follows:

Definition 2 Define the automorphism group Aut(M) of a compact complex superman-
ifold to be the unique complex Lie supergroup associated with the Harish-Chandra pair
(Aut0̄(M),Vec(M)) with adjoint representation α.
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Automorphism groups of compact complex supermanifolds 871

Since the action ψ : Aut0̄(M) × M → M induces the inclusion Vec0̄(M) ↪→
Vec(M) as infinitesimal action (see Corollary 18), there exists a Lie supergroup action
Ψ : Aut(M) × M → M with the identity Vec(M) → Vec(M) as induced infinitesimal
action and Ψ |Aut0̄(M)×M = ψ (cf. Theorem 5.35 in [2]).

The automorphism group together with Ψ satisfies a universal property:

Theorem 22 Let G be a complex Lie supergroup with a holomorphic actionΨG : G×M →
M. Then there is a unique morphism σ : G → Aut(M) of Lie supergroups such that the
diagram

G × M

σ×idM

ΨG M

Aut(M) × M
Ψ

is commutative.

Proof LetG be the underlying Lie group of G. For each g ∈ G, we have a morphismΨG(g) :
M → M by setting (ΨG(g))∗ = evg ◦ (ΨG)∗. This morphism ΨG(g) is an automorphism
of M with inverse ΨG(g−1) and gives rise to a group homomorphism σ̃ : G → Aut0̄(M),
g �→ ΨG(g).

Let g denote the Lie superalgebra (of right-invariant super vector fields) of G, and dΨG :
g → Vec(M) the infinitesimal action induced by ΨG . The restriction of dΨG to the even part
g0̄ = Lie(G) of g coincides with the differential (dσ̃ )e of σ̃ at the identity e ∈ G.

Moreover, if αG denotes the adjoint action of G on g, and α denotes, as before, the adjoint
action of Aut0̄(M) on Vec(M), we have

dΨG(αG(g)(X)) = (ΨG(g−1))∗ ◦ dΨG(X) ◦ (ΨG(g))∗

= (σ̃ (g−1))∗ ◦ dΨG(X) ◦ (σ̃ (g))∗

= α(σ̃ (g))(dΨG(X))

for any g ∈ G, X ∈ g. Using the correspondence between Lie supergroups and Harish-
Chandra pairs, it follows that there is a unique morphism σ : G → Aut(M) of Lie
supergroups with underlying map σ̃ and derivative dΨG : g → Vec(M) (see e.g. [24],
§ 2), and σ satisfies Ψ ◦ (σ × idM) = ΨG .

The uniqueness of σ follows from the fact that each morphism τ : G → Aut(M) of
Lie supergroups fulfilling the same properties as σ necessarily induces the map dΨG :
g → Vec(M) on the level of Lie superalgebras and its underlying map τ̃ has to satisfy
τ̃ (g) = ΨG(g) = σ̃ (g). ��
Remark 23 Since the morphism σ in Theorem 22 is unique, the automorphism group of a
compact complex supermanifold M is the unique Lie supergroup satisfying the universal
property formulated in Theorem 22.

Remark 24 We say that a real Lie supergroupG acts onM by holomorphic transformations if
the underlying Lie groupG acts on the complexmanifoldM by holomorphic transformations
and if there is a homomorphism of Lie superalgebras g → Vec(M) which is compatible
with the action of G on M . Using the theory of Harish-Chandra pairs, we also have the Lie
supergroup GC, the universal complexification of G; see [14]. The underlying Lie group of
GC is the universal complexification GC of the Lie group G. Let g = g0̄ ⊕ g1̄ denote the Lie
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872 H. Bergner, M. Kalus

superalgebra of G, g0̄ the Lie algebra of G. Then the Lie algebra gC
0̄
of GC is a quotient of

g0̄ ⊗ C, and the Lie superalgebra of GC can be realized as gC
0̄

⊕ (g1̄ ⊗ C). The action of G

on M extends to a holomorphic GC-action on M, and the homomorphism g → Vec(M)

extends to a homomorphism gC
0̄

⊕ (g1̄ ⊗ C) → Vec(M) of complex Lie superalgebras,

which is compatible with the GC-action on M. Thus, we have a holomorphic GC-action
on M extending the G-action. Moreover, there is a morphism σ : GC → Aut(M) of Lie
supergroups as in Theorem 22.

Example 25 Let M = C
0|1. Denoting the odd coordinate on C

0|1 by ξ , each super vector
field onC

0|1 is of the form X = aξ ∂
∂ξ

+b ∂
∂ξ

for a, b ∈ C. The flowϕ : C×M → M of aξ ∂
∂ξ

is given by (ϕt )
∗(ξ) = eatξ , and the flow ψ : C

0|1 × M → M of b ∂
∂ξ

by ψ∗(ξ) = bτ + ξ .

Let X0 = ξ ∂
∂ξ

and X1 = ∂
∂ξ
. Then Vec(C0|1) = CX0 ⊕ CX1 = C

1|1, where the Lie

algebra structure on C
1|1 is given by [X0, X1] = −X1 and [X1, X1] = 0. Note that this Lie

superalgebra is isomorphic to the Lie superalgebra of right-invariant vector fields on the Lie
supergroup (C1|1, μ0,1), where the multiplication μ = μ0,1 is given by μ∗(t) = t1 + t2 and
μ∗(τ ) = τ1 + et1τ2; for the Lie supergroup structures on C

1|1 see e.g. [12], Lemma 3.1. In
particular, the Lie superalgebra Vec(C0|1) is not abelian.

Since each automorphism ϕ of C
0|1 is given by ϕ∗(ξ) = c · ξ for some c ∈ C, c �= 0, we

have Aut0̄(C
0|1) ∼= C

∗.

8 The functor of points of the automorphism group

In [22], the diffeomorphism supergroup of a real compact supermanifold is proven to carry
the structure of a Fréchet Lie supergroup. This diffeomorphism supergroup is defined using
the “functor of points” approach to supermanifolds, i.e. a supermanifold is a representable
contravariant functor from the category of supermanifolds to the category of sets. Starting
with a supermanifoldMwe define the corresponding functor Hom(−,M) by the assignment
N �→ Hom(N ,M), where Hom(N ,M) denotes the set of morphisms of supermanifolds
N → M, and for morphisms α : N1 → N2 between supermanifolds N1 and N2 we define
Hom(−,M)(α) : Hom(N2,M) → Hom(N1,M) by ϕ �→ ϕ ◦ α.

In analogy to the definition in [22] for the diffeomorphism supergroup, a functor Aut(M)

associatedwith a complex supermanifoldM can be defined. In the case of a compact complex
supermanifold M, the automorphism Lie supergroup as defined in Section 7 represents the
functor Aut(M), i.e. the functors Aut(M) and Hom(−,Aut(M)) are isomorphic. This is
proven in [3], Section 5.4. Here we give an outline of the main steps in the proof.

Definition 3 Let M be a complex supermanifold. We define the functor Aut(M) from the
category of supermanifolds to the category of groups as follows:
On objects, we define Aut(M) by the assignment

N �→ {ϕ : N × M → N × M | ϕ is invertible, and prN ◦ ϕ = prN },

where prN : N × M → N is the projection. For morphisms α : N1 → N2, we set
Aut(M)(α) : Aut(M)(N2) → Aut(M)(N1),

ϕ �→ (idN1 × (prM ◦ ϕ ◦ (α × idM))) ◦ (diag × idM),
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Automorphism groups of compact complex supermanifolds 873

denoting by diag : N1 → N1×N1 the diagonalmap and by prM the projection ontoM. Thus
Aut(M)(α)(ϕ) is the unique automorphismψ : N1×M → N1×Mwith prN1

◦ψ = prN1

and prM ◦ ψ = prM ◦ ϕ ◦ (α × idM).
The group structure on Aut(M)(N ) is defined by the composition and inversion of auto-

morphismsN×M → N×M, and the neutral element is the identitymapN×M → N×M.

Let χ : N → Aut(M) be an arbitrary morphism of complex supermanifolds and let
Ψ : Aut(M)×M → M denote the natural action of Aut(M) onM. Then the composition

ϕχ = (idN × (Ψ ◦ (χ × idM))) ◦ (diag × idM)

is an invertible map N × M → N × M with prN = prN ◦ ϕχ . This defines a natural
transformation:

Lemma 26 TheassignmentsHom(N ,Aut(M)) → Aut(M)(N ),χ �→ ϕχ , defineanatural
transformation Hom(−,Aut(M)) → Aut(M).

This statement of the lemma can be verified by direct calculations; see also Lemma 5.4.2
in [3].

The natural transformation between Hom(−,Aut(M)) and Aut(M) is actually an iso-
morphism of functors. The injectivity of the assignment χ �→ ϕχ follows from the fact
that the Aut(M)-action on M is effective. As a generalization of the classical definition of
effectiveness, we call an action Ψ of a Lie supergroup G on a supermanifold M effective if
for arbitrary morphisms χ1, χ2 : N → G of supermanifolds the equality

Ψ ◦ (χ1 × idM) = Ψ ◦ (χ2 × idM)

implies χ1 = χ2; cf. Section 2.5 in [3].
In the proof of the surjectivity a “normal form” of the pullback of automorphisms ϕ :

C
0|k ×M → C

0|k ×Mwith prC0|k ◦ϕ = prC0|k is used. LetM be a complex supermanifold
and ϕ : C

0|k × M → C
0|k × M be an invertible morphism with prC0|k ◦ ϕ = prC0|k .

Let ι : M ↪→ {0} × M ⊂ C
0|k × M denote the canonical inclusion. The composition

ϕ̄ = prM ◦ ϕ ◦ ι is an automorphism of M. Then ϕ is uniquely determined by ϕ̄ and a set
of super vector fields on M:

Lemma 27 Let ϕ : C
0|k × M → C

0|k × M be an invertible morphism with prC0|k ◦ ϕ =
prC0|k . Let τ1, . . . , τk denote coordinates on C

0|k ⊂ C
0|k × M. Then there are super vector

fields Xν on M, of parity |ν| for ν ∈ (Z2)
k , ν �= 0, such that

ϕ∗ = (idC0|k × ϕ̄)∗ exp

⎛

⎝
∑

ν �=0

τ νXν

⎞

⎠ ,

By τ νXν we mean the super vector field on C
0|k × M which is induced by the extension

of the super vector field Xν onM to a super vector field on the product C
0|k × M followed

by the multiplication with τ ν = τ
ν1
1 . . . τ

νk
k . In other words for U ⊆ M open we have

τ νXν( f ) = 0 for f ∈ OC0|k ({0}) ⊂ OC0|k×M({0} × U ) and (τ νXν)(g) = τ νXν(g) for
g ∈ OM(U ) ⊂ OC0|k×M({0} ×U ) considering Xν(g) as a function on the product.
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874 H. Bergner, M. Kalus

Moreover,

exp

⎛

⎝
∑

ν �=0

τ νXν

⎞

⎠ =
∑

n≥0

1

n!

⎛

⎝
∑

ν �=0

τ νXν

⎞

⎠

n

is a finite sum since
(∑

ν �=0 τ νXν

)k+1 = 0.

A version of this lemma is also proven in [22], Theorem 5.1. A different proof using the
relation between nilpotent even super vector fields on a supermanifold and morphisms of
this supermanifold satisfying a certain nilpotency condition as formulated in Sect. 2 is also
possible; for details see also [3], Lemma 5.4.3.

Using the normal form of the lemma, we can prove that the assignment χ �→ ϕχ defines
a surjective map by directly constructing a morphism χ with ϕχ = ϕ for any ϕ : N ×M →
N × M with prN ◦ ϕ = prN . It is here enough to prove this statement locally (in N ) and
thus to consider the case where N = N × C

0|k for a classical complex manifold N . In the
following we indicate how such a morphism χ can be defined; for the proof that χ fulfills
the desired property ϕχ = ϕ see Proposition 5.4.4 in [3].

Let ϕ : N ×C
0|k ×M → N ×C

0|k ×M be an invertible morphism with prN×C0|k ◦ϕ =
prN×C0|k . Each z ∈ N induces an invertible morphism ϕz : C

0|k × M → C
0|k × M with

prC0|k ◦ ϕz = prC0|k , and the family ϕz , z ∈ N , uniquely determines ϕ.
Let Xν,z be super vector fields on M of parity |ν|, ν ∈ (Z2)

k , ν �= 0, and ϕ̄z : M → M
automorphisms such that ϕ∗

z = (idC0|k × ϕ̄z)
∗ exp

(∑
ν �=0 τ νXν,z

)
as in Lemma 27. Since

ϕ is holomorphic, the coefficients of the super vector fields Xν,z and the pullbacks ϕ̄∗
z in

local coordiantes depend holomorphically on z ∈ N . Each ϕ̄z is the automorphism of M
induced by the evalutation in (z, 0) ∈ N × C

0|k and an element of Aut0̄(M) by definition.
Let evϕ̄z denote the evaluation in ϕ̄z , i.e. evϕ̄z is the pullback of the canonical inclusion
{ϕ̄z} ↪→ Aut(M), and let prAut(M) : N ×C

0|k ×Aut(M) → Aut(M) be the projection. We
define χ : N × C

0|k → Aut(M) as the morphism whose underlying map is {z} ↪→ {ϕ̄z} ⊂
Aut0̄(M) and whose pullback evaluated in z ∈ N is

χ∗
z = (id∗

C0|k ⊗ evϕ̄z ) ◦ exp

⎛

⎝
∑

ν �=0

τ ν(Xν,z)R

⎞

⎠ ◦ pr∗Aut(M),

where (Xν,z)R denotes the right-invariant super vector field on Aut(M) corresponding to
the super vector field Xν,z on M which is an element of the Lie superalgebra Vec(M) of
Aut(M).

The next proposition is then a consequence of Lemma 26 and the surjectivity of the
assignment χ �→ ϕχ .

Proposition 28 (See [3], Corollary 5.4.5) The functors Aut(M) and Hom(−,Aut(M))

are isomorphic. This isomorphism is realized by the natural transformation introduced in
Lemma 26.

9 The case of a superdomain with bounded underlying domain

In the classical case, the automorphism group of a bounded domain U ⊂ C
m is a (real)

Lie group (see Theorem 13 in “Sur les groupes de transformations analytiques” in [8]). If
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U ⊂ C
m|n is a superdomain whose underlying set U is a bounded domain in C

m , it is in
general not possible to endow its set of automorphisms with the structure of a Lie group such
that the action on U is smooth, as will be illustrated in an example. In particular, there is no
Lie supergroup satisfying the universal property as the automorphism group of a compact
complex supermanifold M does as formulated in Theorem 22.

Example 29 Consider a superdomainU of dimension (1|2)whose underlying set is a bounded
domain U ⊂ C. Let z, θ1, θ2 denote coordinates for M. For any holomorphic function
f on U , define the even super vector field X f = f (z)θ1θ2

∂
∂z . The reduced vector field

X̃ f = 0 is completely integrable and thus the flow of X f can be defined on C × U (cf. [12]
Lemma 5.2). The flow is given by (ϕt )

∗(z) = z + t · f (z)θ1θ2 and (ϕt )
∗(θ j ) = θ j . For all

holomorphic functions f and g we have [X f , Xg] = 0, and thus their flows locally commute
(cf. [2], Corollary 3.8). Therefore, {X f | f ∈ O(U )} ∼= O(U ) is an uncountably infinite-
dimensional abelian Lie algebra. If the set of automorphisms of U carried the structure of a
Lie group such that its action on U was smooth, its Lie algebra would necessarily contain
{X f | f ∈ O(U )} ∼= O(U ) as a Lie subalgebra, which is not possible.

10 Examples

In this section, we determine the automorphism group Aut(M) for some complex superman-
ifolds M with underlying manifold M = P1C.

Let L1 denote the hyperplane bundle on M = P1C with sheaf of sections O(1), and
Lk = (L1)

⊗k the line bundle of degree k, k ∈ Z, on P1C, and sheaf of sections O(k). Each
holomorphic vector bundle onP1C is isomorphic to a direct sumof line bundles Lk1⊕. . .⊕Lkn
(see [11]). Therefore, if M is a split supermanifold with M = P1C and dimM = (1|n),
there exist k1, . . . , kn ∈ Z such that the structure sheaf OM of M is isomorphic to

∧
(O(k1) ⊕ . . . ⊕ O(kn)).

LetUj = {[z0 : z1] ∈ P1C | z j �= 0}, j = 1, 2, and U j = (Uj ,OM|Uj ). Moreover, define
U0

∗ = U0 \ {[1 : 0]} and U1
∗ = U1 \ {[0 : 1]}, and let U j

∗ = (Uj
∗,OM|Uj

∗). We can now
choose local coordinates z, θ1, . . . , θn forM on U0, and local coordinates w, η1, . . . , ηn on
U1 so that the transition map χ : U0

∗ → U1
∗, which determines the supermanifold structure

of M, is given by

χ∗(w) = 1

z
and χ∗(η j ) = zk j θ j .

Example 30 Let M = (P1C,OM) be a complex supermanifold of dimension (1|1). Since
the odd dimension is 1, the supermanifoldM has to be split. Let−k ∈ Z be the degree of the
associated line bundle. Choose local coordinates z, θ forM on U0 and w, η on U1 as above
so that the transition map χ : U0

∗ → U1
∗ is given by χ∗(w) = 1

z and χ∗(η) = 1
zk

θ .
We first want to determine the Lie superalgebra Vec(M) of super vector fields on M.

A calculation in local coordinates verifying the compatibility condition with the transition
map χ yields that the restriction to U0 of any super vector field on M is of the form

(

(α0 + α1z + α2z
2)

∂

∂z
+ (β + kα2z)θ

∂

∂θ

)

+
(

p(z)
∂

∂θ
+ q(z)θ

∂

∂z

)

,

where α0, α1, α2, β ∈ C, p is a polynomial of degree at most k, and q is a polynomial of
degree at most 2 − k. If k < 0 (respectively 2 − k < 0), the polynomial p (respectively q)
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is 0. The Lie algebra Vec0̄(M) of even super vector fields is isomorphic to sl2(C)⊕C, where
an isomorphism sl2(C) ⊕ C → Vec0̄(M) is given by

((
a b
c −a

)

, d

)

�→ (−b − 2az + cz2)
∂

∂z
+ ((d − ka) + kcz)θ

∂

∂θ
.

Note that since the odd dimension ofM is 1 each automorphism ϕ : M → M gives rise
to an automorphism of the line bundle L−k and vice versa. Hence, the automorphism group
Aut(L−k) of the line bundle L−k and Aut0̄(M) coincide.

A calculation yields that the groupAut0̄(M) of automorphismsM → M can be identified
with PSL2(C) × C

∗ if k is even and with SL2(C) × C
∗ if k is odd. Consider the element((

a b
c d

)
, s

)
, where s ∈ C

∗ and
(
a b
c d

)
is either an element of SL2(C) or the representative of

the corresponding class in PSL2(C). The action of the corresponding element ϕ ∈ Aut0̄(M)

on M is then given by

ϕ∗(z) = c + dz

a + bz
and ϕ∗(θ) =

(
1

(a + bz)k
+ s

)

θ

as a morphism over appropriate subsets of U0 and by

ϕ∗(w) = aw + b

cw + d
and ϕ∗(η) =

(
1

(cw + d)k
+ s

)

η

over appropriate subsets of U1.
The Lie supergroup structure on Aut(M) is now uniquely determined by Aut0̄(M),

Vec(M), and the adjoint action of Aut0̄(M) on Vec(M). Since Aut0̄(M) is a connected
Lie group, it is enough to calculate the adjoint action of Vec0̄(M) ∼= sl2C ⊕ C on Vec1̄(M).

Let Pl denote the space of polynomials of degree at most l, and set Pl = {0} for
l < 0. The space of odd super vector fields Vec1̄(M) is isomorphic to Pk ⊕ P2−k via(
p(z) ∂

∂θ
+ q(z)θ ∂

∂z

) �→ (p(z), q(z)).

The element H = (
1 0
0 −1

) ∈ sl2(C) ⊂ sl2(C) ⊕ C ∼= Vec0̄(M) corresponds to −2z ∂
∂z −

kθ ∂
∂θ
. The adjoint action of this super vector field on the first factor Pk of Vec1̄(M) is

given by by −2z ∂
∂z + k · Id, and on the second factor P2−k by −2z ∂

∂z + (2 − k) · Id.
Calculating the weights of the sl2(C)-representation on Pk and P2−k , we get that Pk is
the unique irreducible (k + 1)-dimensional representation and P2−k the unique irreducible
(3−k)-dimensional representation. Moreover, a calculation yields that d ∈ C corresponding
to d · θ ∂

∂θ
∈ Vec0̄(M) acts on Pk by multiplication with −d and on P2−k by multiplication

with d .
If k < 0 or k > 2, we have

[
Vec1̄(M),Vec1̄(M)

] = 0.

In the case k = 0, we have Pk ∼= C. Since [ ∂
∂θ

, q(z)θ ∂
∂z ] = q(z) ∂

∂z for any q ∈ P2, we get

[
Vec1̄(M),Vec1̄(M)

] =
{

a(z)
∂

∂z

∣
∣
∣
∣ a ∈ P2

}
∼= sl2(C),

and the map P0 × P2 → Vec0̄(M), (X, Y ) �→ [X, Y ], corresponds to C × P2 → Vec0̄(M),
(p, q(z)) �→ p · q(z) ∂

∂z .
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Similarly, if k = 2, we have P2−k ∼= C, and

[Vec1̄(M),Vec1̄(M)] =
{

(α0 + α1z + α2z
2)

∂

∂z
+ (α1 + 2α2z)θ

∂

∂θ

∣
∣
∣
∣ α j ∈ C

}

∼= sl2(C)

since [p(z) ∂
∂θ

, θ ∂
∂z ] = p(z) ∂

∂z + p′(z)θ ∂
∂θ
, and the map P2 × P0 → Vec0̄(M), (X, Y ) �→

[X, Y ], corresponds to P2 × C → Vec0̄(M), (p(z), q) �→ q · p(z) ∂
∂z + q · p′(z)θ ∂

∂θ
.

If k = 1, then Pk ⊕ P2−k ∼= C
2 ⊕ C

2. We have
[

∂

∂θ
, θ

∂

∂z

]

= ∂

∂z
,

[

z
∂

∂θ
, θ

∂

∂z

]

= z
∂

∂z
+ θ

∂

∂θ
,

[
∂

∂θ
, zθ

∂

∂z

]

= z
∂

∂z
,

[

z
∂

∂θ
, zθ

∂

∂z

]

= z2
∂

∂z
+ zθ

∂

∂θ
,

and consequently [Vec1̄(M),Vec1̄(M)] = Vec0̄(M).
Remark that Aut(M) carries the structure of a split Lie supergroup if and only if k < 0

or k > 2 (cf. Proposition 4 in [24]).

Example 31 LetM = (P1C,OM)be a split complex supermanifold of dimension dimM =
(1|2) associated withO(−k1)⊕O(−k2), k1, k2 ∈ Z. We will determine the group Aut0̄(M)

of automorphisms M → M.
We choose coordinates z, θ1, θ2 for U0 and w, η1, η2 for U1 as described above such that

the transition map χ is given by χ∗(w) = z−1 and χ∗(η j ) = z−k j θ j .
The action of PSL2(C) on P1C by Möbius transformations lifts to an action of SL2(C) on

M by letting A = (
a b
c d

) ∈ SL2(C) act by the automorphism ϕA : M → M with pullback

ϕ∗
A(z) = c + dz

a + bz
and ϕ∗

A(θ j ) = (a + bz)−k j θ j

as a morphism over appropriate subsets of U0, and

ϕ∗
A(w) = aw + b

cw + d
and ϕ∗

A(η j ) = (cw + d)−k j η j

over appropriate subsets of U1. Using the transition map χ one might also calculate the
representation of ϕ in coordinates as a morphism over subsets U0 → U1 and U1 → U0.

If k1 and k2 are both even, we have ϕA = IdM for A = ( −1 0
0 −1

)
and thus we get an action

of PSL2(C) on M.
Consider the homomorphism of Lie groups Ψ : Aut0̄(M) → Aut(P1C) assigning to

each automorphism ϕ : M → M the underlying biholomorphic map ϕ̃ : P1C → P1C. This
homomorphism Ψ is surjective since Aut(P1C) ∼= PSL2(C) and since the PSL2(C)-action
on P1C lifts to an action (of SL2(C)) on the supermanifold M. The kernel kerΨ of the
homomorphism Ψ consists of those automorphisms ϕ : M → M whose underlying map ϕ̃

is the identity P1C → P1C. This kernel kerΨ is a normal subgroup, SL2(C) acts on kerΨ ,
and we have

Aut0̄(M) ∼= kerΨ � SL2(C)

if k1 and k2 are not both even, and Aut0̄(M) ∼= kerΨ �PSL2(C) if k1 and k2 are even. Thus,
it remains to determine kerΨ .
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Let ϕ : M → M be an automorphism with ϕ̃ = Id. Let f and b jk , j, k = 1, 2, be
holomorphic functions on U0 ∼= C such that the pullback of ϕ over U0 is given by

ϕ∗(z) = z + f (z)θ1θ2 and ϕ∗(θ) = B(z)θ,

where B(z) =
(
b11(z) b12(z)
b21(z) b22(z)

)
and ϕ∗(θ) = B(z)θ is an abbreviation for

ϕ∗(θ j ) = b j1(z)θ1 + b j2(z)θ2 for j = 1, 2.

Similarly, let g and c jk be holomorphic functions on U1 ∼= C such that the pullback of ϕ

over U1 is given by

ϕ∗(w) = w + g(w)η1η2 and ϕ∗(η) = C(z)η,

where C(z) =
(
c11(z) c12(z)
c21(z) c22(z)

)
. The compatibility condition with the transition map χ gives

now the relation

f (z) = −z2−(k1+k2)g

(
1

z

)

for z ∈ C
∗.

Therefore, f and g are both polynomials of degree at most 2 − (k1 + k2), and they are 0 in
the case k1 + k2 > 2. For the matrices B and C we get the relation

B(z) =
(
zk1 0
0 zk2

)

C

(
1

z

)(
z−k1 0
0 z−k2

)

for z ∈ C
∗.

If k1 = k2, this implies B(z) = C
( 1
z

)
for all z ∈ C

∗. Thus, B(z) = B and C(w) = C are
constantmatrices, and B = C ∈ GL2(C) sinceϕ was assumed to be invertible. Consequently,
we have

kerΨ ∼= P2−(k1+k2) � GL2(C)

in the case k1 = k2, where P2−(k1+k2) denotes the space of polynomials of degree at most
2 − (k1 + k2) if k1 + k2 < 2 and P2−(k1+k2) = {0} otherwise. The group structure on the
semidirect product is given by ( f1(z), B1) · ( f2(z), B2) = (det B1 f1(z) + f2(z), B1B2).

Let now k1 �= k2. After possibly changing coordinates we may assume k1 > k2. Then we
have

B(z) =
(
zk1 0
0 zk2

)

C

(
1

z

)(
z−k1 0
0 z−k2

)

=
(

c11
( 1
z

)
zk1−k2c12

( 1
z

)

zk2−k1c21
( 1
z

)
c22

( 1
z

)

)

for all z ∈ C
∗. This implies that b11 = c11 and b22 = c22 are constants. Since we assume

k1 > k2, we also get b21 = c21 = 0 and b12 and c12 are polynomials of degree at most
k1 − k2. Therefore,

kerΨ ∼= P2−(k1+k2) �

{(
λ p(z)
0 μ

) ∣
∣
∣
∣ λ,μ ∈ C

∗, p ∈ Pk1−k2

}

,

and the group structure is again given by

( f1(z), B1) · ( f2(z), B2) = (det B1 f1(z) + f2(z), B1B2)

for f1, f2 ∈ P2−(k1+k2), B1, B2 ∈
{(

λ p(z)
0 μ

) ∣
∣
∣ λ,μ ∈ C

∗, p ∈ Pk1−k2

}
.

The semidirect product kerΨ � SL2(C) (or kerΨ � PSL2(C)) is a direct product if and
only if k1 = k2 and k1 + k2 ≥ 2.
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Example 32 Let M = (P1C,OM) be the complex supermanifold of dimension dimM =
(1|2) given by the transition map χ : U0

∗ → U1
∗ with pullback

χ∗(w) = 1

z
+ 1

z3
θ1θ2 and χ∗(η j ) = 1

z2
θ j .

The supermanifold M is not split and the associated split supermanifold corresponds to
O(−2) ⊕ O(−2); see e.g. [7].

As in the previous example, the action of PSL2(C) on P1C by Möbius transformations
lifts to an action of PSL2(C) on M. Let A denote the class of

(
a b
c d

) ∈ SL2(C) in PSL2(C).
Then A acts by themorphism ϕA : M → Mwhose pullback as amorphism over appropriate
subsets of U0 is given by

ϕ∗
A(z) = c + dz

a + bz
− b

(a + bz)3
θ1θ2 and ϕ∗

A(θ j ) = 1

(a + bz)2
θ j .

Let Ψ : Aut0̄(M) → Aut(P1C) ∼= PSL2(C) denote again the Lie group homomor-
phism which assigns to an automorphism of M the underlying automorphism of P1C. The
assignment A �→ ϕA ∈ Aut0̄(M) defines a section PSL2(C) → Aut0̄(M) of Ψ , and we
have

Aut0̄(M) ∼= kerΨ � PSL2(C).

The section PSL2(C) → Aut0̄(M) induces on the level of Lie algebras the morphism
σ : sl2(C) ↪→ Vec0̄(M), which maps an element

(
a b
c −a

) ∈ sl2(C) to the super vector field
on M whose restriction to U0 is

(
c − 2az − bz2 − bθ1θ2

) ∂

∂z
− 2(a + bz)

(

θ1
∂

∂θ1
+ θ2

∂

∂θ2

)

.

We now calculate the kernel kerΨ . Let ϕ ∈ kerΨ . Its underlying map ϕ̃ is the identity
and we thus have

ϕ∗(z) = z + a0(z)θ1θ2 and ϕ∗(θ) = A0(z)θ

on U0 and

ϕ∗(w) = w + a1(w)η1η2 and ϕ∗(η) = A1(w)η

on U1 for holomorphic functions a0 and a1 and invertible matrices A0 and A1 whose
entries are holomorphic functions. The notation ϕ∗(θ) = A0(z)θ (and similarly ϕ∗(η) =
A1(w)η) is again an abbreviation for ϕ∗(θ j ) = (A0(z)) j1θ1 + (A0(z)) j2θ2, where A0(z) =(
(A0(z)) jk

)
1≤ j,k≤2. A calculation with the transition map χ then yields the relations

A1(w) = A0

(
1

w

)

and a1(w) = 1

w

((

det A0

(
1

w

)

− 1

)

− 1

w
a0

(
1

w

))

for any w ∈ C
∗. Since a0, a1, A0, and A1 are holomorphic on C, we get that A0 = A1 are

constant matrices, det A0 = 1, and a0 = a1 = 0. Therefore, kerΨ ∼= SL2(C), and its Lie
algebra is

{

(a11θ1 + a12θ2)
∂

∂θ1
+ (a21θ1 + a22θ2)

∂

∂θ2

∣
∣
∣
∣

(
a11 a12
a21 a22

)

∈ sl2(C)

}

.

SinceLie(kerΨ ) andσ(Lie(PSL2(C)) commute, the semidirect product kerΨ �PSL2(C)

is direct and we have

Aut0̄(M) ∼= SL2(C) × PSL2(C).
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Remark in particular that this group is different from the automorphism group of the
corresponding split supermanifold N , which is associated with O(−2) ⊕ O(−2), with
Aut0̄(N ) ∼= GL2(C) × PSL2(C).
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