CrossMark

Automorphism groups of compact complex supermanifolds

Hannah Bergner¹ · Matthias Kalus²

Received: 21 March 2016 / Accepted: 14 January 2017 / Published online: 15 February 2017 © Springer-Verlag Berlin Heidelberg 2017

Abstract Let \mathcal{M} be a compact complex supermanifold. We prove that the set $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ of automorphisms of \mathcal{M} can be endowed with the structure of a complex Lie group acting holomorphically on \mathcal{M} , so that its Lie algebra is isomorphic to the Lie algebra of even holomorphic super vector fields on \mathcal{M} . Moreover, we prove the existence of a complex Lie supergroup $\operatorname{Aut}(\mathcal{M})$ acting holomorphically on \mathcal{M} and satisfying a universal property. Its underlying Lie group is $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ and its Lie superalgebra is the Lie superalgebra of holomorphic super vector fields on \mathcal{M} . This generalizes the classical theorem by Bochner and Montgomery that the automorphism group of a compact complex manifold is a complex Lie group. Some examples of automorphism groups of complex supermanifolds over $\mathbb{P}_1(\mathbb{C})$ are provided.

Keywords Compact complex supermanifold · Automorphism group

Mathematics Subject Classification 32M05 · 32C11 · 54H15

1 Introduction

The automorphism group of a compact complex manifold M carries the structure of a complex Lie group which acts holomorphically on M and whose Lie algebra consists of the

Matthias Kalus Matthias.Kalus@rub.de

> Hannah Bergner Hannah.Bergner@math.uni-freiburg.de

Financial support by SFB/TR 12 "Symmetries and Universality in Mesoscopic Systems" of the DFG is gratefully acknowledged.

¹ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany

² Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany

holomorphic vector fields on M (see [6]). In this article, we investigate how this result can be extended to the category of compact complex supermanifolds.

Let \mathcal{M} be a compact complex supermanifold, i.e. a complex supermanifold whose underlying manifold is compact. An automorphism of \mathcal{M} is a biholomorphic morphism $\mathcal{M} \to \mathcal{M}$. A first candidate for the automorphism group of such a supermanifold is the set of automorphisms, which we denote by $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$. However, every automorphism φ of a supermanifold \mathcal{M} (with structure sheaf $\mathcal{O}_{\mathcal{M}}$) is "even" in the sense that its pullback $\varphi^* : \mathcal{O}_{\mathcal{M}} \to \tilde{\varphi}_*(\mathcal{O}_{\mathcal{M}})$ is a parity-preserving morphism. Therefore, we can (at most) expect this set of automorphisms of \mathcal{M} to carry the structure of a classical Lie group if we require its action on \mathcal{M} to be smooth or holomorphic. We cannot obtain a Lie supergroup of positive odd dimension.

We prove that the group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$, endowed with an analogue of the compact-open topology, carries the structure of a complex Lie group such that the action on \mathcal{M} is holomorphic and its Lie algebra is the Lie algebra of even holomorphic super vector fields on \mathcal{M} . It should be noted that the group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is in general different from the group $\operatorname{Aut}(\mathcal{M})$ of automorphisms of the underlying manifold \mathcal{M} . There is a group homomorphism $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \to \operatorname{Aut}(\mathcal{M})$ given by assigning the underlying map to an automorphism of the supermanifold; this group homomorphism is in general neither injective nor surjective.

We define the automorphism group of a compact complex supermanifold \mathcal{M} to be a complex Lie supergroup which acts holomorphically on \mathcal{M} and satisfies a universal property. In analogy to the classical case, its Lie superalgebra is the Lie superalgebra of holomorphic super vector fields on \mathcal{M} , and the underlying Lie group is $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$, the group of automorphisms of \mathcal{M} . Using the equivalence of complex Harish-Chandra pairs and complex Lie supergroups (see [24]), we construct the appropriate automorphism Lie supergroup of \mathcal{M} .

More precisely, the outline of this article is the following: First, we introduce a topology on the set $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ of automorphisms on a compact complex supermanifold \mathcal{M} (cf. Sect. 3). This topology is an analogue of the compact-open topology in the classical case, which coincides in the case of a compact complex manifold with the topology of uniform convergence. We prove that the topological space $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ with composition and inversion of automorphisms as group operations is a locally compact topological group which satisfies the second axiom of countability.

In Sect. 4, the non-existence of small subgroups of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is proven, which means that there exists a neighbourhood of the identity in $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ with the property that this neighbourhood does not contain any non-trivial subgroup. A result on the existence of Lie group structures on locally compact topological groups without small subgroups (see [25]) then implies that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ carries the structure of a real Lie group.

In the case of a split compact complex supermanifold \mathcal{M} , the fact that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ carries the structure of a Lie group follows more easily as described in Remark 8. In this case it can be proven that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is the semi-direct product of a finite-dimensional vector space and the automorphism group of the vector bundle corresponding to \mathcal{M} , which is by [17] a complex Lie group.

Then, continuous one-parameter subgroups of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ and their action on the supermanifold \mathcal{M} are studied (see Sect. 5). This is done in order to obtain results on the regularity of the $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ -action on \mathcal{M} and characterize the Lie algebra of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$. We prove that the action of each continuous one-parameter subgroup of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on \mathcal{M} is analytic. As a corollary we get that the Lie algebra of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is isomorphic to the Lie algebra $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ of even holomorphic super vector fields on \mathcal{M} , and $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ carries the structure of a complex Lie group so that its natural action on \mathcal{M} is holomorphic.

Next, we show that the Lie superalgebra $Vec(\mathcal{M})$ of holomorphic super vector fields on a compact complex supermanifold \mathcal{M} is finite-dimensional (see Sect. 6). Since $Aut_{\bar{0}}(\mathcal{M})$

857

carries the structure of a complex Lie group, we already know that $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$, the even part of $\operatorname{Vec}(\mathcal{M})$, is finite-dimensional. The key point in the proof in the case of a split supermanifold \mathcal{M} is that the tangent sheaf of \mathcal{M} is a coherent sheaf of \mathcal{O}_M -modules on the compact complex manifold \mathcal{M} , where \mathcal{O}_M is the sheaf of holomorphic functions on \mathcal{M} .

Let α denote the action of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on the Lie superalgebra $\operatorname{Vec}(\mathcal{M})$ by conjugation: $\alpha(\varphi)(X) = \varphi_*(X) = (\varphi^{-1})^* \circ X \circ \varphi^*$ for $\varphi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M}), X \in \operatorname{Vec}(\mathcal{M})$. The restriction of this representation α to $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$, the even part of the Lie superalgebra $\operatorname{Vec}(\mathcal{M})$, coincides with the adjoint action of the Lie group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on its Lie algebra, which is isomorphic to $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$. Hence α defines a Harish-Chandra pair ($\operatorname{Aut}_{\bar{0}}(\mathcal{M})$, $\operatorname{Vec}(\mathcal{M})$). The equivalence between Harish-Chandra pairs and complex Lie supergroups allows us to define the automorphism Lie supergroup of a compact complex supermanifold as follows (see Definition 2):

Definition (Automorphism Lie supergroup) Define the automorphism group Aut(\mathcal{M}) of a compact complex supermanifold to be the unique complex Lie supergroup associated with the Harish-Chandra pair (Aut₀(\mathcal{M}), Vec(\mathcal{M})) with representation α .

The natural action of the automorphism Lie supergroup Aut(\mathcal{M}) on \mathcal{M} is holomorphic, i.e. we have a morphism Ψ : Aut(\mathcal{M}) $\times \mathcal{M} \to \mathcal{M}$ of complex supermanifolds. The automorphism Lie supergroup Aut(\mathcal{M}) satisfies the following universal property (see Theorem 22):

Theorem If \mathcal{G} is a complex Lie supergroup with a holomorphic action $\Psi_{\mathcal{G}} : \mathcal{G} \times \mathcal{M} \to \mathcal{M}$ on \mathcal{M} , then there is a unique morphism $\sigma : \mathcal{G} \to \operatorname{Aut}(\mathcal{M})$ of Lie supergroups such that the diagram

is commutative.

The automorphism Lie supergroup of a compact complex supermanifold is the unique complex Lie supergroup satisfying the preceding universal property.

Using the "functor of points" approach to supermanifolds, an alternative definition of the automorphism group as a functor in analogy to [20,22] is possible, which is studied in Sect. 8. If \mathcal{M} is a compact complex supermanifold, this functor from the category of supermanifolds to the category of sets can be defined by the assignment

 $\mathcal{N} \mapsto \{\varphi : \mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M} \mid \varphi \text{ is invertible, and } \mathrm{pr}_{\mathcal{N}} \circ \varphi = \mathrm{pr}_{\mathcal{N}} \},\$

where $pr_{\mathcal{N}} : \mathcal{N} \times \mathcal{M} \to \mathcal{N}$ denotes the projection onto the first component. The two approaches to the automorphism group are equivalent and the constructed automorphism group $Aut(\mathcal{M})$ represents the just defined functor.

In the classical case, another class of complex manifolds where the automorphism group carries the structure of a Lie group is given by the bounded domains in \mathbb{C}^m (see [8]). An analogue statement is false in the case of supermanifolds. In Sect. 9, we give an example showing that in the case of a complex supermanifold \mathcal{M} whose underlying manifold is a bounded domain in \mathbb{C}^m there does in general not exist a Lie supergroup acting on \mathcal{M} and satisfying the universal property of the preceding theorem.

In Sect. 10, the automorphism group Aut(\mathcal{M}) or its underlying Lie group Aut₀(\mathcal{M}) are determined for some supermanifolds \mathcal{M} with underlying manifold $M = \mathbb{P}_1 \mathbb{C}$.

2 Preliminaries and notation

Throughout, we work with the "Berezin-Leĭtes-Kostant-approach" to supermanifolds (cf. [1,15,16]). If a supermanifold is denoted by a calligraphic letter \mathcal{M} , then we denote the underlying manifold by the corresponding uppercase standard letter \mathcal{M} , and the structure sheaf by $\mathcal{O}_{\mathcal{M}}$. We call a supermanifold \mathcal{M} compact if its underlying manifold \mathcal{M} is compact. By a complex supermanifold we mean a supermanifold \mathcal{M} with structure sheaf $\mathcal{O}_{\mathcal{M}}$ which is locally, on small enough open subsets $U \subset \mathcal{M}$, isomorphic to $\mathcal{O}_U \otimes \bigwedge \mathbb{C}^n$, where \mathcal{O}_U denotes the sheaf of holomorphic functions on U. For a morphism $\varphi : \mathcal{M} \to \mathcal{N}$ between supermanifolds \mathcal{M} and \mathcal{N} , the underlying map $\mathcal{M} \to \mathcal{N}$ is denoted by $\tilde{\varphi}$ and its pullback by $\varphi^* : \mathcal{O}_{\mathcal{N}} \to \tilde{\varphi}_* \mathcal{O}_{\mathcal{M}}$. An automorphism of a complex supermanifold \mathcal{M} is a biholomorphic morphism $\mathcal{M} \to \mathcal{M}$, i.e. an invertible morphism in the category of complex supermanifolds.

Let *E* be a vector bundle on a complex manifold *M* and *E* its sheaf of sections. Then we can associate a supermanifold $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}})$ by setting $\mathcal{O}_{\mathcal{M}} = \bigwedge \mathcal{E}$, which has a natural \mathbb{Z} -grading (and hence a $\mathbb{Z}/2\mathbb{Z}$ -grading). Split supermanifolds are supermanifolds \mathcal{M} such that there is a vector bundle on *M* with sheaf of sections \mathcal{E} such that $\mathcal{M} \cong (M, \bigwedge \mathcal{E})$. If *E* is e.g. the trivial bundle of rank *n* on $M = \mathbb{C}^m$, then we get the supermanifold $\mathbb{C}^{m|n} = (\mathbb{C}^m, \bigwedge \mathcal{E}) = (\mathbb{C}^m, \mathcal{O}_{\mathbb{C}^m} \otimes \bigwedge \mathbb{C}^n)$.

For a complex supermanifold \mathcal{M} , let $\mathcal{T}_{\mathcal{M}}$ denote the tangent sheaf of \mathcal{M} . The Lie superalgebra of holomorphic vector fields on \mathcal{M} is $\operatorname{Vec}(\mathcal{M}) = \mathcal{T}_{\mathcal{M}}(\mathcal{M})$, it consists of the subspace $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ of even and the subspace $\operatorname{Vec}_{\bar{1}}(\mathcal{M})$ of odd super vector fields on \mathcal{M} .

Let \mathcal{M} be a complex supermanifold of dimension (m|n), and let $\mathcal{I}_{\mathcal{M}}$ be the subsheaf of ideals generated by the odd elements in the structure sheaf $\mathcal{O}_{\mathcal{M}}$ of a supermanifold \mathcal{M} . As described in [19], we have the filtration

$$\mathcal{O}_{\mathcal{M}} = (\mathcal{I}_{\mathcal{M}})^0 \supset (\mathcal{I}_{\mathcal{M}})^1 \supset (\mathcal{I}_{\mathcal{M}})^2 \supset \cdots \supset (\mathcal{I}_{\mathcal{M}})^{n+1} = 0$$

of the structure sheaf $\mathcal{O}_{\mathcal{M}}$ by the powers of $\mathcal{I}_{\mathcal{M}}$. Define the quotient sheaves $\operatorname{gr}_k(\mathcal{O}_{\mathcal{M}}) = (\mathcal{I}_{\mathcal{M}})^k / (\mathcal{I}_{\mathcal{M}})^{k+1}$. This gives rise to the \mathbb{Z} -graded sheaf $\operatorname{gr} \mathcal{O}_{\mathcal{M}} = \bigoplus_k \operatorname{gr}_k(\mathcal{O}_{\mathcal{M}})$. Furthermore, $\operatorname{gr} \mathcal{M} = (\mathcal{M}, \operatorname{gr} \mathcal{O}_{\mathcal{M}})$ is a split complex supermanifold of the same dimension as \mathcal{M} .

Note that $\mathcal{E} := \operatorname{gr}_1(\mathcal{O}_{\mathcal{M}})$ defines a vector bundle E on M. An automorphism φ of \mathcal{M} yields a pullback φ^* on $\mathcal{O}_{\mathcal{M}}$. Following [10], its reduction to the \mathcal{O}_M -module E yields a morphism of vector bundles $\varphi_0 \in \operatorname{Aut}(E)$ over the reduction $\tilde{\varphi} \in \operatorname{Aut}(M)$. By [17] the automorphism group of a principal fibre bundle over a compact complex manifold carries the structure of a complex Lie group. Since every automorphism of a vector bundle canonically induces an automorphism of the associated principal fibre bundle and vice versa, the automorphism group of the associated principal fibre bundle and $\operatorname{Aut}(E)$ may be identified. Moreover, this identification also respects the topology of compact convergence on both groups. Hence, the group $\operatorname{Aut}(E)$ also carries the structure of a complex Lie group. On local coordinate domains U, V with $\tilde{\varphi}(U) \subset V$ we can identify $\mathcal{O}_{\mathcal{M}}|_V \cong \Gamma_{AE}|_V$ and $\mathcal{O}_{\mathcal{M}}|_U \cong \Gamma_{AE}|_U$ and following [21] decompose $\varphi^* = \varphi_0^* \exp(Y)$ with \mathbb{Z} -degree preserving automorphism $\varphi_0^*: \Gamma_{AE}|_V \to \Gamma_{AE}|_U$ induced by φ_0 and where Y is an even super derivation on $\Gamma_{AE}|_V$ increasing the \mathbb{Z} -degree by 2 or more. Note that the exponential series $\exp(Y)$ is finite since Y is nilpotent.

More generally, there is a relation between nilpotent even super vector fields on a supermanifold and morphisms of this supermanifold satisfying a certain nilpotency condition. This is a direct consequence of a technical result on the relation of algebra homomorphisms and derivations (cf. [23], Proposition 2.1.3 and Lemma 2.1.4). If $\varphi : \mathcal{M} \to \mathcal{M}$ is a morphism of supermanifolds with underlying map $\tilde{\varphi} = \mathrm{id}_M$ and such that $\varphi^* - \mathrm{id}_M^* : \mathcal{O}_M \to \mathcal{O}_M$ is nilpotent, i.e. there is $N \in \mathbb{N}$ with $(\varphi^* - \mathrm{id}_M^*)^N = 0$, then

$$X = \log(\varphi^*) = \sum_{n=1}^{N} \frac{(-1)^{n+1}}{n} (\varphi^* - \mathrm{id}_{\mathcal{M}}^*)^n$$

is a nilpotent even super vector field on \mathcal{M} and we have

$$\varphi^* = \exp(X) = \sum_{n \ge 0} \frac{1}{n!} X^n.$$

Furthermore, for any nilpotent even super vector fifeld X on \mathcal{M} , the (finite) sum exp(X) defines a map $\mathcal{O}_{\mathcal{M}} \to \mathcal{O}_{\mathcal{M}}$ which is the pullback of an invertible morphism $\mathcal{M} \to \mathcal{M}$ with the identity as underlying map, and the pullback of the inverse is exp(-X).

3 The topology on the group of automorphisms

Let \mathcal{M} be a compact complex supermanifold. An automorphism of \mathcal{M} is a biholomorphic morphism $\varphi : \mathcal{M} \to \mathcal{M}$. Denote by $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ the set of automorphisms of \mathcal{M} .

In this section, a topology on $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is introduced, which generalizes the compactopen topology and topology of compact convergence of the classical case. Then we show that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is a locally compact topological group with respect to this topology.

Let $K \subseteq M$ be a compact subset such that there are local odd coordinates $\theta_1, \ldots, \theta_n$ for \mathcal{M} on an open neighbourhood of K. Moreover, let $U \subseteq M$ be open and $f \in \mathcal{O}_{\mathcal{M}}(U)$, and let U_{ν} be open subsets of \mathbb{C} for $\nu \in (\mathbb{Z}_2)^n$. Let $\varphi : \mathcal{M} \to \mathcal{M}$ be an automorphism with $\tilde{\varphi}(K) \subseteq U$. Then there are holomorphic functions $\varphi_{f,\nu}$ on a neighbourhood of K such that

$$\varphi^*(f) = \sum_{\nu \in (\mathbb{Z}_2)^n} \varphi_{f,\nu} \theta^{\nu}.$$

Let

$$\Delta(K, U, f, \theta_i, U_\nu) = \{ \varphi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M}) | \tilde{\varphi}(K) \subseteq U, \varphi_{f,\nu}(K) \subseteq U_\nu \}$$

and endow Aut₀(\mathcal{M}) with the topology generated by sets of this form, i.e. the sets of the form $\Delta(K, U, f, \theta_j, U_\nu)$ form a subbase of the topology.

For any open subset $U \subseteq M$ such that there exist coordinates for \mathcal{M} on U, fix a set of coordinates functions $f_1^U, \ldots, f_{m+n}^U \in \mathcal{O}_{\mathcal{M}}(U)$. Using Taylor expansion one can show that the sets of the form $\Delta(K, U, f_l^U, \theta_j, U_v)$ then also form a subbase of the topology.

Remark 1 In particular, the subsets of the form

$$\Delta(K, U) = \{ \varphi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M}) | \, \tilde{\varphi}(K) \subseteq U \}$$

are open for $K \subseteq M$ compact and $U \subseteq M$ open. Hence the map $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \to \operatorname{Aut}(M)$, associating with an automorphism φ of \mathcal{M} the underlying automorphism $\tilde{\varphi}$ of M, is continuous.

Remark 2 The group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ endowed with the above topology is a second-countable Hausdorff space since *M* is second-countable.

Let $U \subseteq M$ be open. Then we can define a topology on $\mathcal{O}_{\mathcal{M}}(U)$ as follows: If $K \subseteq U$ is compact such that there exist odd coordinates $\theta_1, \ldots, \theta_n$ on a neighbourhood of K, write $f \in \mathcal{O}_{\mathcal{M}}(U)$ on K as $f = \sum_{\nu} f_{\nu} \theta^{\nu}$. Let $U_{\nu} \subseteq \mathbb{C}$ be open subsets. Then define a topology on $\mathcal{O}_{\mathcal{M}}(U)$ by requiring that the sets of the form $\{f \in \mathcal{O}_{\mathcal{M}}(U) | f_{\nu}(K) \subseteq U_{\nu}\}$ are a subbase of the topology. A sequence of functions f_k converges to f if and only if in all local coordinate domains with odd coordinates $\theta_1, \ldots, \theta_n$ and $f_k = \sum_{\nu} f_{k,\nu}\theta^{\nu}$, $f = \sum_{\nu} f_{\nu}\theta^{\nu}$, the coefficient functions $f_{k,\nu}$ converge uniformly to f_{ν} on compact subsets. Note that for any open subsets $U_1, U_2 \subseteq M$ with $U_1 \subset U_2$ the restriction map $\mathcal{O}_{\mathcal{M}}(U_2) \to \mathcal{O}_{\mathcal{M}}(U_1)$, $f \mapsto f|_{U_1}$, is continuous.

Using Taylor expansion (in local coordinates) of automorphisms of \mathcal{M} we can deduce the following lemma:

Lemma 3 A sequence of automorphisms $\varphi_k : \mathcal{M} \to \mathcal{M}$ converges to an automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ with respect to the topology of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ if and only if the following condition is satisfied: For all $U, V \subseteq M$ open subsets of M such that V contains the closure of $\tilde{\varphi}(U)$, there is an $N \in \mathbb{N}$ such that $\tilde{\varphi}_k(U) \subseteq V$ for all $k \geq N$. Furthermore, for any $f \in \mathcal{O}_{\mathcal{M}}(V)$ the sequence $(\varphi_k)^*(f)$ converges to $\varphi^*(f)$ on U in the topology of $\mathcal{O}_{\mathcal{M}}(U)$.

Lemma 4 If $U, V \subseteq M$ are open subsets, $K \subseteq M$ is compact with $V \subseteq K$, then the map

$$\Delta(K, U) \times \mathcal{O}_{\mathcal{M}}(U) \to \mathcal{O}_{\mathcal{M}}(V), \ (\varphi, f) \mapsto \varphi^*(f)$$

is continuous.

Proof Let $\varphi_k \in \Delta(K, U)$ be a sequence of automorphisms of \mathcal{M} converging to $\varphi \in \Delta(K, U)$, and $f_l \in \mathcal{O}_{\mathcal{M}}(U)$ a sequence converging to $f \in \mathcal{O}_{\mathcal{M}}(U)$. Choosing appropriate local coordinates and using Taylor expansion of the pullbacks $(\varphi_k)^*(f_l)$, it can be shown that $(\varphi_k)^*(f_l)$ converges to $\varphi^*(f)$ as $k, l \to \infty$. This uses that the derivatives of a sequence of uniformly converging holomorphic functions also uniformly converge.

Lemma 5 The topological space $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is locally compact.

The following remark about invertible morphisms is useful for the proof of this lemma.

Remark 6 (See e.g. Proposition 2.15.1 in [15] or Corollary 2.3.3 in [16]) Let \mathcal{M} be a complex supermanifold and $\varphi : \mathcal{M} \to \mathcal{M}$ any morphism. Let ξ_1, \ldots, ξ_n and $\theta_1, \ldots, \theta_n$ be local odd coordinates for \mathcal{M} , and superfunctions $\varphi_{j,k}, \varphi_{j,v}$ such that $\varphi^*(\xi_j) = \sum_{k=1}^n \varphi_{j,k}\theta_k + \sum_{||v||\geq 3} \varphi_{j,v}\theta^v$, where $||v|| = ||(v_1, \ldots, v_n)|| = v_1 + \cdots + v_n \geq 3$. Then φ is locally biholomorphic if and only if the underlying map $\tilde{\varphi}$ is locally biholomorphic and det $((\varphi_{j,k}(y))_{1\leq j,k\leq n}) \neq 0$. The morphism φ is hence invertible if it is everywhere locally biholomorphic.

Proof (of Lemma 5) Let $\psi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M})$. For each fixed $x \in M$ there are open neighbourhoods V_x and U_x of x and $\tilde{\psi}(x)$ respectively such that $\tilde{\psi}(K_x) \subseteq U_x$ for $K_x := \overline{V}_x$. We may additionally assume that there are local odd coordinates ξ_1, \ldots, ξ_n for \mathcal{M} on U_x , and $\theta_1, \ldots, \theta_n$ local odd coordinates on an open neighbourhood of K_x . For any automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ with $\tilde{\varphi}(K_x) \subseteq U_x$, let $\varphi_{j,k}, \varphi_{j,\nu}$ (for $||\nu|| = ||(\nu_1, \ldots, \nu_n)|| = \nu_1 + \cdots + \nu_n \geq$ 3) be local holomorphic functions such that

$$\varphi^*(\xi_j) = \sum_{k=1}^n \varphi_{j,k} \theta_k + \sum_{||\nu|| \ge 3} \varphi_{j,\nu} \theta^{\nu}.$$

🖄 Springer

Choose bounded open subsets $U_{j,k}$, $U_{j,\nu} \subset \mathbb{C}$, such that $\psi_{j,k}(x) \in U_{j,k}$ and $\psi_{j,\nu}(x) \in U_{j,\nu}$. Since ψ is an automorphism, we have

$$\det\left((\psi_{j,k}(\mathbf{y}))_{1\leq j,k\leq n}\right)\neq 0$$

for all $y \in K_x$ by Remark 6. For later considerations shrink $U_{j,k}$ such that $\det(C) \neq 0$ for all $C = (c_{j,k})_{1 \leq j,k \leq n}$ with $c_{j,k} \in U_{j,k}$. After shrinking V_x we may assume $\psi_{j,k}(K_x) \subseteq U_{j,k}$ and $\psi_{j,\nu}(K_x) \subseteq U_{j,\nu}$. Hence ψ is contained in the set $\Theta(x) = \{\varphi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M}) | \tilde{\varphi}(K_x) \subseteq \overline{U}_{x}, \varphi_{j,k}(K_x) \subseteq \overline{U}_{j,k}, \varphi_{j,\nu}(K_x) \subseteq \overline{U}_{j,\nu}\}$, which contains an open neighbourhood of ψ . Since M is compact, M is covered by finitely many of the sets V_x , say V_{x_1}, \ldots, V_{x_l} . Then ψ is contained in $\Theta = \Theta(x_1) \cap \cdots \cap \Theta(x_l)$. We will now prove that Θ is sequentially compact: Let φ_k be any sequence of automorphisms contained in Θ . Then, using Montel's theorem and passing to a subsequence, the sequence φ_k converges to a morphism $\varphi : \mathcal{M} \to \mathcal{M}$. It remains to show that φ is an automorphism of \mathcal{M} .

The underlying map $\tilde{\varphi} : M \to M$ is surjective since if $p \notin \tilde{\varphi}(M)$, then $\varphi \in \Delta(M, M \setminus \{p\})$ and therefore $\varphi_k \in \Delta(M, M \setminus \{p\})$ for *k* large enough which contradicts the assumption that φ_k is an automorphism. This also implies that there is an $x \in M$ such that the differential $D\tilde{\varphi}(x)$ is invertible. Using Hurwitz's theorem (see e.g. [18], p. 80) it follows $\det(D\tilde{\varphi}(x)) \neq 0$ for all $x \in M$. Thus $\tilde{\varphi}$ is locally biholomorphic. Moreover, φ is locally invertible due to the special form of the sets $\Theta(x_i)$.

In order check that $\tilde{\varphi}$ is injective, let $p_1, p_2 \in M$, $p_1 \neq p_2$, such that $q = \tilde{\varphi}(p_1) = \tilde{\varphi}(p_2)$. Let $\Omega_j, j = 1, 2$, be open neighbourhoods of p_j with $\Omega_1 \cap \Omega_2 = \emptyset$. By [18], p. 79, Proposition 5, there exists k_0 with the property that $q \in \tilde{\varphi}_k(\Omega_1)$ and $q \in \tilde{\varphi}_k(\Omega_2)$ for all $k \geq k_0$. The bijectivity of the φ_k 's now yields a contradiction to $\Omega_1 \cap \Omega_2 = \emptyset$.

Proposition 7 The set $Aut_{\bar{0}}(\mathcal{M})$ is a topological group with respect to composition and inversion of automorphisms.

Proof Let φ_k and ψ_l be two sequences of automorphisms of \mathcal{M} converging to φ and ψ respectively. By the classical theory, $\tilde{\varphi_k} \circ \tilde{\psi_l}$ converges to $\tilde{\varphi} \circ \tilde{\psi}$, and $\tilde{\varphi_k}^{-1}$ to $\tilde{\varphi}^{-1}$.

Let $U, V, W \subseteq M$ be open subsets with $\tilde{\varphi}(V) \subseteq W, \tilde{\varphi}_k(V) \subseteq W, \tilde{\psi}(U) \subseteq V, \tilde{\psi}_l(U) \subseteq V$, for k and l sufficiently large and let $f \in \mathcal{O}_{\mathcal{M}}(W)$. Then the sequence $(\varphi_k)^*(f) \in \mathcal{O}_{\mathcal{M}}(V)$ converges to $\varphi^*(f)$ on V, and by Lemma 4 $(\varphi_k \circ \psi_l)^*(f) = (\psi_l)^*((\varphi_k)^*(f))$ converges to $\psi^*(\varphi^*(f)) = (\varphi \circ \psi)^*(f)$ on U as $k, l \to \infty$, which shows that the multiplication is continuous.

Consider now the inversion map $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \to \operatorname{Aut}_{\bar{0}}(\mathcal{M}), \varphi \mapsto \varphi^{-1}$. Let φ_k be a sequence in $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ converging to $\varphi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M})$. Note that since the automorphism group $\operatorname{Aut}(M)$ of the underlying manifold M is a topological group, the inversion map $\operatorname{Aut}(M) \to \operatorname{Aut}(M)$ is continuous. For any choice of local coordinate charts on $U, V \subseteq M$ such that the closure of $\tilde{\varphi}^{-1}(U)$ is contained in V we can conclude: Since $\tilde{\varphi}_k^{-1}$ converges to $\tilde{\varphi}^{-1}$, we have $\tilde{\varphi}_k^{-1}(U) \subseteq V$ for k sufficiently large. Identify $\mathcal{O}_{\mathcal{M}}(U) \cong \Gamma_{AE}(U)$, resp. $\mathcal{O}_{\mathcal{M}}(V) \cong \Gamma_{AE}(V)$ and decompose $\varphi^* = \varphi_0^* \exp(Y), \varphi_k^* = \varphi_{k,0}^* \exp(Y_k)$ as in Section 2. Note that φ_0^* is induced by an automorphism φ_0 of the vector bundle E. We can verify by an observation in local coordinates that the map $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \to \operatorname{Aut}(E), \varphi \mapsto \varphi_0$, is continuous. Hence, the sequence $\varphi_{k,0}$ converges to φ_0^{-1} converges to $(\varphi_0^{-1})^*$. Due to the finiteness of the logarithm and exponential series on nilpotent elements, Y_k converges to Y. Hence, $(\varphi_k^{-1})^* = \exp(-Y_k)(\varphi_{k,0}^*)^{-1}$ converges to $\exp(-Y)(\varphi_0^*)^{-1} = (\varphi^*)^{-1}$.

Remark 8 Let \mathcal{M} be a split supermanifold and let $E \to M$ be a vector bundle with associated sheaf of sections \mathcal{E} such that the structure sheaf $\mathcal{O}_{\mathcal{M}}$ is isomorphic to $\bigwedge \mathcal{E}$. By [17] the group of

automorphisms Aut(*E*) of the vector bundle *E* is a complex Lie group. Each automorphism φ of the supermanifold \mathcal{M} induces an automorphism φ_0 of the vector bundle *E* over the underlying map $\tilde{\varphi}$ of φ , and the map π : Aut₀(\mathcal{M}) \rightarrow Aut(*E*), $\varphi \mapsto \varphi_0$, is continuous. An automorphism of the bundle *E* lifts to an automorphism of the supermanifold \mathcal{M} if we fix a splitting $\mathcal{O}_{\mathcal{M}} \cong \bigwedge \mathcal{E}$. If $\chi : E \to E$ is an automorphism with pullback χ^* we define an automorphism of \mathcal{M} by the pullback $f_1 \wedge \ldots \wedge f_k \mapsto \chi^*(f_1) \wedge \ldots \wedge \chi^*(f_k)$ for $f_1 \wedge \ldots \wedge f_k \in \bigwedge^k \mathcal{E}$. This assignment defines a section of π . In particular, π is surjective and we have an exact sequence

$$0 \rightarrow \ker \pi \rightarrow \operatorname{Aut}_{\bar{0}}(\mathcal{M}) \rightarrow \operatorname{Aut}(E) \rightarrow 0,$$

which splits. Consequently, the topological group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is a semidirect product

$$\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \cong \ker \pi \rtimes \operatorname{Aut}(E).$$

The kernel of π consists of those automorphisms φ of \mathcal{M} whose underlying map $\tilde{\varphi}$ is the identity on M and whose pullback φ^* satisfies

$$(\varphi^* - \mathrm{id}^*)(\mathcal{E}) \subseteq \bigoplus_{k \ge 2} \left(\bigwedge^k \mathcal{E}\right).$$

In this case $(\varphi^* - id^*)$ is nilpotent and there is an even super vector field X on \mathcal{M} with $\exp(X) = \varphi^*$ as mentioned in Sect. 2. The super vector field X is nilpotent and fulfills

$$X\left(\bigwedge^{k}\mathcal{E}\right)\subseteq\bigoplus_{l\geq k+2}\left(\bigwedge^{l}\mathcal{E}\right)$$

for all k. More generally, the map

$$\left\{ X \in \operatorname{Vec}_{\bar{0}}(\mathcal{M}) \middle| X\left(\bigwedge^{k} \mathcal{E}\right) \subseteq \bigoplus_{l \ge k+2} \left(\bigwedge^{l} \mathcal{E}\right) \text{ for all } k \right\} \longrightarrow \ker \pi,$$
$$X \mapsto \exp(X),$$

which assigns to a super vector field X the automorphism of \mathcal{M} with pullback exp(X), is bijective. In Sect. 6, we will prove that the Lie superalgebra $\operatorname{Vec}(\mathcal{M})$ of super vector fields on \mathcal{M} and thus subspaces of $\operatorname{Vec}(\mathcal{M})$ are finite-dimensional. Therefore, the topological group $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \cong \ker \pi \rtimes \operatorname{Aut}(E)$ carries the structure of a complex Lie group.

In the general case of a not necessarily split supermanifold \mathcal{M} , the proof that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ can be endowed with the structure of a complex Lie group is more difficult. In order to prove the corresponding result also for non-split supermanifolds, the structure of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is further studied in the next two sections.

4 Non-existence of small subgroups of $Aut_{\bar{0}}(\mathcal{M})$

In this section, we prove that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ does not contain small subgroups, i.e. that there exists an open neighbourhood of the identity in $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ such that each subgroup contained in this neighbourhood consists only of the identity. As a consequence, the topological group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ carries the structure of a real Lie group by a result of Yamabe (cf. [25]). Before proving the non-existence of small subgroups, a few technical preparations are needed: Consider $\mathbb{C}^{m|n}$ and let $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ denote coordinates on $\mathbb{C}^{m|n}$. Let $U \subseteq \mathbb{C}^m$ be an open subset. For $f = \sum_{\nu} f_{\nu} \xi^{\nu} \in \mathcal{O}_{\mathbb{C}^{m|n}}(U)$ define

$$||f||_U = \left\| \sum_{\nu} f_{\nu} \xi^{\nu} \right\|_U := \sum_{\nu} ||f_{\nu}||_U,$$

where $||f_{\nu}||_U$ denotes the supremum norm of the holomorphic function f_{ν} on U. For any morphism $\varphi : \mathcal{U} = (U, \mathcal{O}_{\mathbb{C}^{m|n}}|_U) \to \mathbb{C}^{m|n}$ define

$$||\varphi||_U := \sum_{i=1}^m ||\varphi^*(z_i)||_U + \sum_{j=1}^n ||\varphi^*(\xi_j)||_U.$$

Lemma 9 Let $\mathcal{U} = (U, \mathcal{O}_{\mathbb{C}^{m|n}}|_U)$ be a superdomain in $\mathbb{C}^{m|n}$. For any relatively compact open subset U' of U there exists $\varepsilon > 0$ such that any morphism $\psi : \mathcal{U} \to \mathbb{C}^{m|n}$ with the property $||\psi - id||_U < \varepsilon$ is biholomorphic as a morphism from $\mathcal{U}' = (U', \mathcal{O}_{\mathbb{C}^{m|n}}|_{U'})$ onto its image.

Proof Let r > 0 such that the closure of the polydisc

$$\Delta_r^n(z) = \{ (w_1, \dots, w_m) | |w_j - z_j| < r \}$$

is contained in U for any $z = (z_1, ..., z_m) \in U'$. Let $v \in \mathbb{C}^m$ be any non-zero vector. Then we have $z + \zeta v \in U$ for any $z \in U'$ and ζ in the closure of $\Delta_{\frac{r}{||v||}}(0) = \{t \in \mathbb{C} | |t| < \frac{r}{||v||}\}$. If for given $\varepsilon > 0$ it is $||\psi - \mathrm{id}||_U < \varepsilon$ then we have in particular $||\tilde{\psi} - \mathrm{id}||_U < \varepsilon$ for the supremum norm of the underlying maps $\tilde{\psi}$, id : $U \to \mathbb{C}^m$. Then, for the differential $D\tilde{\psi}$ of $\tilde{\psi}$ and any non-zero vector $v \in \mathbb{C}^m$ and any $z \in U'$ we have

$$\begin{split} \left| \left| D\tilde{\psi}(z)(v) - v \right| \right| &= \left| \left| \frac{d}{dt} \left(\tilde{\psi}(z + tv) - (z + tv) \right) \right| \right| \\ &= \frac{1}{2\pi} \left| \left| \int_{\partial \Delta_{\frac{r}{\|V\|}}(0)} \frac{\tilde{\psi}(z + \zeta v) - (z + \zeta v)}{\zeta^2} d\zeta \right| \right| \\ &\leq \frac{1}{2\pi} \int_{\partial \Delta_{\frac{r}{\|V\|}}(0)} \left| \left| \frac{\tilde{\psi}(z + \zeta v) - (z + \zeta v)}{\zeta^2} \right| \right| d\zeta \\ &< \frac{\varepsilon ||v||}{r}. \end{split}$$

This implies $||D\tilde{\psi}(z) - \mathrm{id}|| < \frac{\varepsilon}{r}$ with respect to the operator norm, for any $z \in U'$. Thus $\tilde{\psi}$ is locally biholomorphic on U' if ε is small enough. Moreover, ε might now be chosen such that $\tilde{\psi}$ is injective (see e.g. [13], Chapter 2, Lemma 1.3).

Let $\psi_{j,k}, \psi_{j,\nu}$ be holomorphic functions on U such that $\psi^*(\xi_j) = \sum_{k=1}^n \psi_{j,k} \xi_k + \sum_{||\nu|| \ge 3} \psi_{j,\nu} \xi^{\nu}$. By Remark 6 it is now enough to show

$$\det((\psi_{j,k})_{1 \le j,k \le n}(z)) \neq 0$$

for all $z \in U'$ and ε small enough in order to prove that ψ is a biholomorphism form \mathcal{U}' onto its image. This follows from the fact that we assumed, via $||\psi - id||_U < \varepsilon$, that $||\psi_{j,k}||_U < \varepsilon$ if $j \neq k$ and $||\psi_{j,j} - 1||_U < \varepsilon$. This lemma now allows us to prove that $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ contains no small subgroups; for a similar result in the classical case see [5], Theorem 1.

Proposition 10 The topological group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ has no small subgroups, i.e. there is a neighbourhood of the identity which contains no non-trivial subgroup.

Proof Let $U \subset V \subset W$ be open subsets of M such that U is relatively compact in Vand V is relatively compact in W. Suppose that $\mathcal{W} = (W, \mathcal{O}_{\mathcal{M}}|_W)$ is isomorphic to a superdomain in $\mathbb{C}^{m|n}$ and let $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ be local coordinates on W. By definition $\Delta(\overline{V}, W) = \{\varphi \in \operatorname{Aut}_{\overline{0}}(\mathcal{M}) | \widetilde{\varphi}(\overline{V}) \subseteq W\}$ and $\Delta(\overline{U}, V)$ are open neighbourhoods of the identity in $\operatorname{Aut}_{\overline{0}}(\mathcal{M})$. Choose $\varepsilon > 0$ as in the preceding lemma such that any morphism $\chi : \mathcal{V} \to \mathbb{C}^{m|n}$ with $||\chi - \operatorname{id}||_V < \varepsilon$ is biholomorphic as a morphism from \mathcal{U} onto its image. Let $\Omega \subseteq \Delta(\overline{V}, W) \cap \Delta(\overline{U}, V)$ be the subset whose elements φ satisfy $||\varphi - \operatorname{id}||_V < \varepsilon$. The set Ω is open and contains the identity. Since $\operatorname{Aut}_{\overline{0}}(\mathcal{M})$ is locally compact by Lemma 5, it is enough to show that each compact subgroup $Q \subseteq \Omega$ is trivial. Otherwise for non-compact Q, let Ω' be an open neighbourhood of the identity with compact closure $\overline{\Omega}'$ which is contained in Ω , and suppose $Q \subseteq \Omega'$. Then $\overline{Q} \subseteq \overline{\Omega}' \subset \Omega$ is a compact subgroup, and Q is trivial if \overline{Q} is trivial.

Define a morphism $\psi : \mathcal{V} \to \mathbb{C}^{m|n}$ by setting

$$\psi^*(z_i) = \int_Q q^*(z_i) \, dq$$
 and $\psi^*(\xi_j) = \int_Q q^*(\xi_j) \, dq$

where the integral is taken with respect to the normalized Haar measure on Q. This yields a holomorphic morphism $\psi : \mathcal{V} \to \mathbb{C}^{m|n}$ since each $q \in Q$ defines a holomorphic morphism $\mathcal{V} \to \mathcal{W} \subseteq \mathbb{C}^{m|n}$. Its underlying map is $\tilde{\psi}(z) = \int_{Q} \tilde{q}(z) dq$. The morphism ψ satisfies

$$||\psi^*(z_i) - z_i||_V = \left\| \int_{\mathcal{Q}} (q^*(z_i) - z_i) \, dq \right\|_V \le \int_{\mathcal{Q}} ||q^*(z_i) - z_i||_V \, dq$$

and similarly

$$||\psi^*(\xi_j) - \xi_j||_V \le \int_Q ||q^*(\xi_j) - \xi_j||_V dq.$$

Consequently, we have

$$\begin{split} ||\psi - \mathrm{id}||_{V} &= \sum_{i=1}^{m} ||\psi^{*}(z_{i}) - z_{i}||_{V} + \sum_{j=1}^{n} ||\psi^{*}(\xi_{j}) - \xi_{j}||_{V} \\ &\leq \int_{Q} \left(\sum_{i=1}^{m} ||q^{*}(z_{i}) - z_{i}||_{V} + \sum_{j=1}^{n} ||q^{*}(\xi_{j}) - \xi_{j}||_{V} \right) dq \\ &= \int_{Q} ||q - \mathrm{id}||_{V} dq < \varepsilon. \end{split}$$

Thus by the preceding lemma, $\psi|_U$ is a biholomorphic morphism onto its image. Furthermore, on U we have $\psi \circ q' = \psi$ for any $q' \in Q$ since

$$\begin{aligned} (\psi \circ q')^*(z_i) &= (q')^*(\psi^*(z_i)) = (q')^* \left(\int_Q q^*(z_i) \, dq \right) = \int_Q (q')^*(q^*(z_i)) \, dq \\ &= \int_Q (q \circ q')^*(z_i) \, dq = \int_Q q^*(z_i) \, dq = \psi^*(z_i) \end{aligned}$$

🖄 Springer

due to the invariance of the Haar measure, and also

$$(\psi \circ q')^*(\xi_j) = \psi^*(\xi_j).$$

The equality $\psi \circ q' = \psi$ on U implies $q'|_U = id_U$ because of the invertibility of ψ . By the identity principle it follows that $q' = id_M$ if M is connected, and hence $Q = \{id_M\}$.

In general, M has only finitely many connected components since M is compact. Therefore, a repetition of the preceding argument yields the existence of a neighbourhood of the identity of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ without any non-trivial subgroups.

By Theorem 3 in [25], the preceding proposition implies the following:

Corollary 11 The topological group $Aut_{\bar{0}}(\mathcal{M})$ can be endowed with the structure of a real *Lie group.*

5 One-parameter subgroups of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$

In order to obtain results on the regularity of the action of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on the compact complex supermanifold \mathcal{M} and to characterize the Lie algebra of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$, we study continuous oneparameter subgroups of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$. Each continuous one-parameter subgroup $\mathbb{R} \to \operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is an analytic map between the Lie groups \mathbb{R} and $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$.

We prove that the action of each continuous one-parameter subgroup of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on \mathcal{M} is analytic and induces an even holomorphic super vector field on \mathcal{M} . Consequently, the Lie algebra of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ may be identified with the Lie algebra $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ of even holomorphic super vector fields on \mathcal{M} , and $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ carries the structure of a complex Lie group whose action on the supermanifold \mathcal{M} is holomorphic.

Definition 1 A continuous one-parameter subgroup φ of automorphisms of \mathcal{M} is a family of automorphisms $\varphi_t : \mathcal{M} \to \mathcal{M}, t \in \mathbb{R}$, such that the map $\varphi : \mathbb{R} \to \operatorname{Aut}_{\bar{0}}(\mathcal{M}), t \mapsto \varphi_t$, is a continuous group homomorphism.

Remark 12 Let $\varphi_t : \mathcal{M} \to \mathcal{M}, t \in \mathbb{R}$, be a family of automorphisms satisfying $\varphi_{s+t} = \varphi_s \circ \varphi_t$ for all $s, t \in \mathbb{R}$, and such that $\tilde{\varphi} : \mathbb{R} \times \mathcal{M} \to \mathcal{M}, \tilde{\varphi}(t, p) = \tilde{\varphi}_t(p)$ is continuous. Then φ_t is a continuous one-parameter subgroup if and only if the following condition is satisfied: Let $U, V \subset \mathcal{M}$ be open subsets, and $[a, b] \subset \mathbb{R}$ such that $\tilde{\varphi}([a, b] \times U) \subseteq V$. Assume moreover that there are local coordinates $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ for \mathcal{M} on U. Then for any $f \in \mathcal{O}_{\mathcal{M}}(V)$ there are continuous functions $f_{\nu} : [a, b] \times U \to \mathbb{C}$ with $(f_{\nu})_t = f_{\nu}(t, \cdot) \in \mathcal{O}_{\mathcal{M}}(U)$ for fixed $t \in [a, b]$ such that

$$(\varphi_t)^*(f) = \sum_{\nu} f_{\nu}(t, z) \xi^{\nu}.$$

We say that the action of the one-parameter subgroup φ on \mathcal{M} is analytic if each $f_{\nu}(t, z)$ is analytic in both components.

This equivalent characterization of continuous one-parameter subgroups of automorphisms also allows us to define this notion for non-compact complex supermanifolds.

Proposition 13 Let φ be a continuous one-parameter subgroup of automorphisms on \mathcal{M} . Then the action of φ on \mathcal{M} is analytic.

Remark 14 The statement of Proposition 13 also holds true for complex supermanifolds \mathcal{M} with non-compact underlying manifold M as compactness of M is not needed for the proof.

For the proof of the proposition the following technical lemma is needed:

Lemma 15 Let $U \subseteq V \subseteq \mathbb{C}^m$ be open subsets, $p \in U$, $\Omega \subseteq \mathbb{R}$ an open connected neighbourhood of 0, and let $\alpha : \Omega \times U \to V$ be a continuous map satisfying

$$\alpha(t, z) = \alpha(t + s, z) - f(t, s, z)$$

for (t, s, z) in a neighbourhood of (0, 0, p) and for some continuous function f which is analytic in (t, z). If α is holomorphic in the second component, then it is analytic on a neighbourhood of (0, p).

Proof For small t, h > 0, z near p, we have

$$\begin{aligned} h \cdot \alpha(t, z) &= \int_{0}^{h} \alpha(t + s, z) ds - \int_{0}^{h} f(t, s, z) ds \\ &= \int_{t}^{h+t} \alpha(s, z) ds - \int_{0}^{h} \alpha(s, z) ds - \int_{0}^{h} (f(t, s, z) - \alpha(s, z)) ds \\ &= \int_{h}^{h+t} \alpha(s, z) ds - \int_{0}^{t} \alpha(s, z) ds - \int_{0}^{h} (f(t, s, z) - \alpha(s, z)) ds \\ &= \int_{0}^{t} (\alpha(s + h, z) - \alpha(s, z)) ds - \int_{0}^{h} (f(t, s, z) - \alpha(s, z)) ds \\ &= \int_{0}^{t} f(s, h, z) ds - \int_{0}^{h} (f(t, s, z) - \alpha(s, z)) ds. \end{aligned}$$

The assumption that f is a continuous function which is analytic in the first and third component therefore implies that α is analytic.

Proof (of Proposition 13) Due to the action property $\varphi_{s+t} = \varphi_s \circ \varphi_t$ it is enough to show the statement for the restriction of φ to $(-\varepsilon, \varepsilon) \times \mathcal{M}$ for some $\varepsilon > 0$. Let $U, V \subseteq M$ be open subsets such that U is relatively compact in V, and such that there are local coordinates $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ on V for \mathcal{M} . Choose $\varepsilon > 0$ such that $\tilde{\varphi}_t(U) \subseteq V$ for any $t \in (-\varepsilon, \varepsilon)$. Let $\alpha_{i,v}, \beta_{j,v}$ be continuous functions on $(-\varepsilon, \varepsilon) \times U$ with

$$(\varphi_t)^*(z_i) = \sum_{|\nu|=0} \alpha_{i,\nu}(t,z) \xi^{\nu}$$

and

$$(\varphi_t)^*(\xi_j) = \sum_{|\nu|=1} \beta_{j,\nu}(t,z)\xi^{\nu},$$

where $|\nu| = |(\nu_1, ..., \nu_n)| = (\nu_1 + ... + \nu_n) \mod 2 \in \mathbb{Z}_2$. We have to show that α and β are analytic in (t, z). The induced map $\psi' : (-\varepsilon, \varepsilon) \times U \times \mathbb{C}^n \to V \times \mathbb{C}^n$ on the underlying vector bundle is given by

$$\begin{pmatrix} z_1 \\ \vdots \\ z_m \\ v_1 \\ \vdots \\ v_n \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{1,0}(t,z) \\ \vdots \\ \alpha_{m,0}(t,z) \\ \sum_{k=1}^n \beta_{1,k}(t,z) v_k \\ \vdots \\ \sum_{k=1}^n \beta_{n,k}(t,z) v_k \end{pmatrix}$$

🖄 Springer

where $\beta_{j,k} = \beta_{j,e_k}$ if $e_k = (0, ..., 0, 1, 0, ..., 0)$ denotes the *k*-th unit vector. The map ψ' is a local continuous one-parameter subgroup on $U \times \mathbb{C}^n$ because φ is a continuous one-parameter subgroup. By a result of Bochner and Montgomery the map ψ' is analytic in (t, z, v) (see [4], Theorem 4). Hence, the map $\psi : (-\varepsilon, \varepsilon) \times \mathcal{U} \to \mathcal{V}$ given by $(\psi_t)^*(z_i) = \alpha_i(t, z)$, $(\psi_t)^*(\xi_j) = \sum_{k=1}^n \beta_{j,k}(t, z)\xi_k$ is analytic. Let X be the local vector field on \mathcal{U} induced by ψ , i.e.

$$X(f) = \left. \frac{\partial}{\partial t} \right|_0 (\psi_t)^*(f).$$

We may assume that X is non-degenerate, i.e. the evaluation of X in p, X(p), does not vanish for all $p \in U$. Otherwise, consider, instead of φ , the diagonal action on $\mathbb{C} \times \mathcal{M}$ acting by addition of t in the first component and φ_t in the second, and note that this action is analytic precisely if φ is analytic. For the differential $d\psi$ of ψ in (0, p) we have

$$d\psi\left(\left.\frac{\partial}{\partial t}\right|_{(0,p)}\right) = \left.\frac{\partial}{\partial t}\right|_{(0,p)} \circ \psi^* = X(p) \neq 0.$$

Therefore, the restricted map $\psi|_{(-\varepsilon,\varepsilon)\times\{p\}}$ is an immersion and its image $\psi((-\varepsilon,\varepsilon)\times\{p\})$ is a subsupermanifold of \mathcal{V} . Let \mathcal{S} be a subsupermanifold of \mathcal{U} transversal to $\psi((-\varepsilon,\varepsilon)\times\{p\})$ in p. The map $\psi|_{(-\varepsilon,\varepsilon)\times\mathcal{S}}$ is a submersion in (0, p) since $d\psi(T_{(0,p)}(-\varepsilon,\varepsilon)\times\{p\})) = T_p\psi((-\varepsilon,\varepsilon)\times\{p\})$ and $d\psi(T_{(0,p)}\{0\}\times\mathcal{S}) = T_p\mathcal{S}$ because $\psi|_{\{0\}\times\mathcal{U}} = \text{id.}$ Hence $\chi := \psi|_{(-\varepsilon,\varepsilon)\times\mathcal{S}}$ is locally invertible around (0, p), and thus invertible as a map onto its image after possibly shrinking U and ε , and

$$\chi_*\left(\frac{\partial}{\partial t}\right) = (\chi^{-1})^* \circ \frac{\partial}{\partial t} \circ \chi^* = (\chi^{-1})^* \circ \chi^* \circ X = X.$$

Therefore, after defining new coordinates $w_1, \ldots, w_m, \theta_1, \ldots, \theta_n$ for \mathcal{M} on U via χ , we have $X = \frac{\partial}{\partial w_1}$ and $(\varphi_t)^*$ is of the form

$$\begin{aligned} (\varphi_t)^*(w_1) &= w_1 + t + \sum_{|\nu|=0,\nu\neq 0} \alpha_{1,\nu}(t,w)\theta^{\nu}, \\ (\varphi_t)^*(w_i) &= w_i + \sum_{|\nu|=0,\nu\neq 0} \alpha_{i,\nu}(t,w)\theta^{\nu} \quad \text{for } i \neq 1, \\ (\varphi_t)^*(\theta_j) &= \theta_j + \sum_{|\nu|=1, ||\nu||\neq 1} \beta_{j,\nu}(t,w)\theta^{\nu}, \end{aligned}$$

for appropriate $\alpha_{i,\nu}$, $\beta_{j,\nu}$, where $||\nu|| = ||(\nu_1, \dots, \nu_n)|| = \nu_1 + \dots + \nu_n$. For small *s* and *t* we have

$$\varphi_{t}^{*}\left(\varphi_{s}^{*}(w_{i})\right) = \varphi_{t}^{*}\left(w_{i} + \delta_{1,i}s + \sum_{|\nu|=0,||\nu||\neq 0} \alpha_{i,\nu}(s,w)\theta^{\nu}\right)$$
$$= w_{i} + \delta_{i,1}(t+s) + \sum_{|\nu|=0,||\nu||\neq 0} \alpha_{i,\nu}(t,w)\theta^{\nu} + \sum_{|\nu|=0,||\nu||\neq 0} \varphi_{t}^{*}(\alpha_{i,\nu}(s,w)\theta^{\nu}).$$
(1)

Let $f_{i,\nu}(t, s, w)$ be such that

$$\sum_{|\nu|=0, ||\nu|| \neq 0} \varphi_t^*(\alpha_{i,\nu}(s, w)\theta^{\nu}) = \sum_{|\nu|=0, ||\nu|| \neq 0} f_{i,\nu}(t, s, w)\theta^{\nu}.$$
 (2)

Deringer

For fixed v_0 the coefficient $f_{i,v_0}(t, s, w)$ of θ^{v_0} depends only on $\alpha_{i,v_0}(s, w+te_1), \beta_{j,\mu}(t, w)$ for μ with $||\mu|| \le ||v_0|| - 1$, and $\alpha_{j,\nu}(t, w)$ and its partial derivatives in the second component for ν with $||\nu|| \le ||v_0|| - 2$. This can be shown by a calculation using the special form of $\varphi_t^*(w_j)$ and $\varphi_t^*(\theta_j)$ and general properties of the pullback of a morphism of supermanifolds. Assume now that the analyticity near (0, p) of $\alpha_{i,\nu}, \beta_{j,\mu}$ is shown for $||\nu||, ||\mu|| < 2k$ and all i, j. Let v_0 be such that $||v_0|| = 2k$. Then $f_{i,v_0}(t, s, w)$ is a continuous function which is analytic in (t, w) near (0, p) for fixed s. Since $\varphi_t^*(\varphi_s^*(w_i)) = \varphi_{t+s}^*(w_i)$, using (1) and (2) we get

$$\alpha_{i,\nu_0}(t,w) + f_{i,\nu_0}(t,s,w) = \alpha_{i,\nu_0}(t+s,w),$$

and thus $\alpha_{i,\nu_0}(t, w)$ is analytic near (0, p) by Lemma 15. Similarly, it can be shown that β_{j,μ_0} is analytic for $||\mu_0|| = 2k + 1$ if $\alpha_{i,\nu}, \beta_{j,\mu}$ for $||\nu||, ||\mu|| < 2k + 1$.

Corollary 16 The Lie algebra of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is isomorphic to the Lie algebra $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ of even super vector fields on \mathcal{M} , and $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is a complex Lie group.

Proof If $\gamma : \mathbb{R} \to \operatorname{Aut}_{\bar{0}}(\mathcal{M}), t \mapsto \gamma_t$ is a continuous one-parameter subgroup, then by Proposition 13 the action of φ on \mathcal{M} is analytic. Therefore, γ induces an even holomorphic super vector field $X(\gamma)$ on \mathcal{M} by setting

$$X(\gamma) = \left. \frac{\partial}{\partial t} \right|_0 (\gamma_t)^*,$$

and γ is the flow map of $X(\gamma)$. On the other hand, since M is compact, the underlying vector field of each $X \in \operatorname{Vec}_{\bar{0}}(\mathcal{M})$ is globally integrable and the proof of Theorem 5.4 in [12] then shows that X is also globally integrable. Its flow defines a one-parameter subgroup γ^X of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$, which is continuous. This yields an isomorphism of Lie algebras

$$\operatorname{Lie}(\operatorname{Aut}_{\bar{0}}(\mathcal{M})) \to \operatorname{Vec}_{\bar{0}}(\mathcal{M}).$$

Consequently, we have $\text{Lie}(\text{Aut}_{\bar{0}}(\mathcal{M})) \cong \text{Vec}_{\bar{0}}(\mathcal{M})$ and since $\text{Vec}_{\bar{0}}(\mathcal{M})$ is a complex Lie algebra, $\text{Aut}_{\bar{0}}(\mathcal{M})$ carries the structure of a complex Lie group.

The Lie group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ naturally acts on \mathcal{M} ; this action $\psi : \operatorname{Aut}_{\bar{0}}(\mathcal{M}) \times \mathcal{M} \to \mathcal{M}$ is given by $\operatorname{ev}_g \circ \psi^* = g^*$ where ev_g denotes the evaluation in $g \in \operatorname{Aut}_{\bar{0}}(\mathcal{M})$ in the first component.

Corollary 17 The natural action of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on \mathcal{M} defines a holomorphic morphism of supermanifolds $\psi : \operatorname{Aut}_{\bar{0}}(\mathcal{M}) \times \mathcal{M} \to \mathcal{M}$.

Proof Since the action of each continuous one-parameter subgroup of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on \mathcal{M} is holomorphic by the preceding considerations, and each $g \in \operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is a biholomorphic morphism $g : \mathcal{M} \to \mathcal{M}$, the action ψ is a holomorphic.

If a Lie supergroup \mathcal{G} (with Lie superalgebra \mathfrak{g} of right-invariant super vector fields) acts on a supermanifold \mathcal{M} via $\psi : \mathcal{G} \times \mathcal{M} \to \mathcal{M}$, this action ψ induces an infinitesimal action $d\psi : \mathfrak{g} \to \operatorname{Vec}(\mathcal{M})$ defined by $d\psi(X) = (X(e) \otimes \operatorname{id}_{\mathcal{M}}^*) \circ \psi^*$ for any $X \in \mathfrak{g}$, where $X \otimes \operatorname{id}_{\mathcal{M}}^*$ denotes the canonical extension of the vector field X on \mathcal{G} to a vector field on $\mathcal{G} \times \mathcal{M}$, and $(X(e) \otimes \operatorname{id}_{\mathcal{M}}^*)$ is its evaluation in the neutral element e of \mathcal{G} .

Corollary 18 Identifying the Lie algebra of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ with $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ as in Corollary 16, the induced infinitesimal action of the action ψ : $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \times \mathcal{M} \to \mathcal{M}$ in Corollary 17 is the inclusion $\operatorname{Vec}_{\bar{0}}(\mathcal{M}) \hookrightarrow \operatorname{Vec}(\mathcal{M})$.

6 The Lie superalgebra of vector fields

In this section, we prove that the Lie superalgebra $Vec(\mathcal{M})$ of holomorphic super vector fields on a compact complex supermanifold \mathcal{M} is finite-dimensional.

First, we prove that $Vec(\mathcal{M})$ is finite-dimensional if \mathcal{M} is a split supermanifold using that its tangent sheaf $\mathcal{T}_{\mathcal{M}}$ is a coherent sheaf of \mathcal{O}_M -modules, where \mathcal{O}_M denotes again the sheaf of holomorphic functions on the underlying manifold M. Then the statement in the general case is deduced using a filtration of the tangent sheaf.

Remark that since $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ is a complex Lie group with Lie algebra isomorphic to the Lie algebra $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ of even holomorphic super vector fields on \mathcal{M} (see Corollary 16), we already know that the even part of $\operatorname{Vec}(\mathcal{M}) = \operatorname{Vec}_{\bar{0}}(\mathcal{M}) \oplus \operatorname{Vec}_{\bar{1}}(\mathcal{M})$ is finite-dimensional.

Lemma 19 Let \mathcal{M} be a split complex supermanifold. Then its tangent sheaf $\mathcal{T}_{\mathcal{M}}$ is a coherent sheaf of \mathcal{O}_M -modules.

Proof Since \mathcal{M} is split, its structure sheaf $\mathcal{O}_{\mathcal{M}}$ is isomorphic to $\bigwedge \mathcal{E}$ as an \mathcal{O}_M -module, where \mathcal{E} is the sheaf of sections of a holomorphic vector bundle on the underlying manifold M. Thus, the structure sheaf $\mathcal{O}_{\mathcal{M}}$, and hence also the tangent sheaf $\mathcal{T}_{\mathcal{M}}$, carry the structure of a sheaf of \mathcal{O}_M -modules. Let $U \subset M$ be an open subset such that there exist even coordinates z_1, \ldots, z_m and odd coordinates ξ_1, \ldots, ξ_n . Any derivation $D \in \mathcal{T}_{\mathcal{M}}(U)$ on U can uniquely be written as

$$D = \sum_{\nu \in (\mathbb{Z}_2)^n} \left(\sum_{i=1}^m f_{i,\nu}(z) \xi^{\nu} \frac{\partial}{\partial z_i} + \sum_{j=1}^n g_{j,\nu}(z) \xi^{\nu} \frac{\partial}{\partial \xi_j} \right)$$

where $f_{i,\nu}$, $g_{j,\nu}$ are holomorphic functions on U. Therefore, the restricted sheaf $\mathcal{T}_{\mathcal{M}}|_U$ is isomorphic to $(\mathcal{O}_M|_U)^{2^n(m+n)}$ and $\mathcal{T}_{\mathcal{M}}$ is coherent over \mathcal{O}_M .

Proposition 20 The Lie superalgebra $Vec(\mathcal{M})$ of holomorphic super vector fields on a compact complex supermanifold \mathcal{M} is finite-dimensional.

Proof First, assume that \mathcal{M} is split. Then the tangent sheaf $\mathcal{T}_{\mathcal{M}}$ is a coherent sheaf of \mathcal{O}_M -modules. Thus, the space of global sections of $\mathcal{T}_{\mathcal{M}}$, $\operatorname{Vec}(\mathcal{M}) = \mathcal{T}_{\mathcal{M}}(M)$, is finite-dimensional since M is compact (cf. [9]).

Now, let \mathcal{M} be an arbitrary compact complex supermanifold. We associate the split complex supermanifold gr $\mathcal{M} = (\mathcal{M}, \operatorname{gr} \mathcal{O}_{\mathcal{M}})$ as described in Section 2. Let $\mathcal{I}_{\mathcal{M}}$ denote as before the subsheaf of ideal in $\mathcal{O}_{\mathcal{M}}$ generated by the odd elements. Define the filtration of sheaves of Lie superalgebras

$$\mathcal{T}_{\mathcal{M}} := (\mathcal{T}_{\mathcal{M}})_{(-1)} \supset (\mathcal{T}_{\mathcal{M}})_{(0)} \supset (\mathcal{T}_{\mathcal{M}})_{(1)} \supset \cdots \supset (\mathcal{T}_{\mathcal{M}})_{(n+1)} = 0$$

of the tangent sheaf $\mathcal{T}_{\mathcal{M}}$ by setting

$$(\mathcal{T}_{\mathcal{M}})_{(k)} = \{ D \in \mathcal{T}_{\mathcal{M}} | D(\mathcal{O}_{\mathcal{M}}) \subset (\mathcal{I}_{\mathcal{M}})^k, \ D(\mathcal{I}_{\mathcal{M}}) \subset (\mathcal{I}_{\mathcal{M}})^{k+1} \}$$

for $k \ge 0$. Moreover, define $\operatorname{gr}_k(\mathcal{T}_M) = (\mathcal{T}_M)_{(k)}/(\mathcal{T}_M)_{(k+1)}$ and set

$$\operatorname{gr}(\mathcal{T}_{\mathcal{M}}) = \bigoplus_{k \ge -1} \operatorname{gr}_k(\mathcal{T}_{\mathcal{M}}).$$

By [19], Proposition 1, the sheaf $gr(T_M)$ is isomorphic to the tangent sheaf of the associated split supermanifold gr \mathcal{M} . By the preceding considerations, the space of holomorphic super vector fields on gr \mathcal{M} ,

Deringer

$$\operatorname{Vec}(\operatorname{gr} \mathcal{M}) = \operatorname{gr}(\mathcal{T}_{\mathcal{M}})(M) = \bigoplus_{k \ge -1} \operatorname{gr}_{k}(\mathcal{T}_{\mathcal{M}})(M),$$

is of finite dimension. The projection onto the quotient yields

$$\dim(\mathcal{T}_{\mathcal{M}})_{(k)}(M) - \dim(\mathcal{T}_{\mathcal{M}})_{(k+1)}(M) \le \dim(\operatorname{gr}_{k}(\mathcal{T}_{\mathcal{M}})(M))$$

and $\dim(\mathcal{T}_{\mathcal{M}})_{(n)}(M) = \dim(\operatorname{gr}_n(\mathcal{T}_{\mathcal{M}})(M))$ and hence by induction

$$\dim(\mathcal{T}_{\mathcal{M}})_{(k)}(M) \leq \sum_{j \geq k} \dim(\operatorname{gr}_{j}(\mathcal{T}_{\mathcal{M}})(M)),$$

which gives

$$\dim(\mathcal{T}_{\mathcal{M}}(M)) = \dim\left((\mathcal{T}_{\mathcal{M}})_{(-1)}(M)\right) \leq \dim\left(\operatorname{gr}(\mathcal{T}_{\mathcal{M}})(M)\right).$$

In particular, dim($\mathcal{T}_{\mathcal{M}}(M)$) is finite.

.

Remark 21 The proof of the preceding proposition also shows the following inequality:

$$\dim(\operatorname{Vec}(\mathcal{M})) \leq \dim(\operatorname{Vec}(\operatorname{gr} \mathcal{M}))$$

7 The automorphism group

In this section, the automorphism group of a compact complex supermanifold is defined. This is done via the formalism of Harish-Chandra pairs for complex Lie supergroups (cf. [24]). The underlying classical Lie group is $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ and the Lie superalgebra is $\operatorname{Vec}(\mathcal{M})$, the Lie superalgebra of super vector fields on \mathcal{M} . Moreover, we prove that the automorphism group satisfies a universal property.

Consider the representation α of Aut₀(\mathcal{M}) on Vec(\mathcal{M}) given by

$$\alpha(g)(X) = g_*(X) = (g^{-1})^* \circ X \circ g^* \quad \text{for} \quad g \in \text{Aut}_{\bar{0}}(\mathcal{M}), \ X \in \text{Vec}(\mathcal{M}).$$

This representation α preserves the parity on Vec(\mathcal{M}), and its restriction to Vec₀(\mathcal{M}) coincides with the adjoint action of Aut₀(\mathcal{M}) on its Lie algebra Lie(Aut₀(\mathcal{M})) \cong Vec₀(\mathcal{M}). Moreover, the differential ($d\alpha$)_{id} at the identity id \in Aut₀(\mathcal{M}) is the adjoint representation of Vec₀(\mathcal{M}) on Vec(\mathcal{M}):

Let X and Y be super vector fields on \mathcal{M} . Assume that X is even and let φ^X denote the corresponding one-parameter subgroup. Then we have

$$(d\alpha)_{\rm id}(X)(Y) = \left. \frac{\partial}{\partial t} \right|_0 (\varphi_t^X)_*(Y) = [X, Y];$$

see e.g. [2], Corollary 3.8. Therefore, the pair $(Aut_{\bar{0}}(\mathcal{M}), Vec(\mathcal{M}))$ together with the representation α is a complex Harish-Chandra pair, and using the equivalence between the category of complex Harish-Chandra pairs and complex Lie supergroups (cf. [24], § 2), we can define the automorphism group of a compact complex supermanifold \mathcal{M} as follows:

Definition 2 Define the automorphism group $\operatorname{Aut}(\mathcal{M})$ of a compact complex supermanifold to be the unique complex Lie supergroup associated with the Harish-Chandra pair $(\operatorname{Aut}_{\bar{0}}(\mathcal{M}), \operatorname{Vec}(\mathcal{M}))$ with adjoint representation α .

Since the action ψ : Aut₀(\mathcal{M}) × $\mathcal{M} \to \mathcal{M}$ induces the inclusion Vec₀(\mathcal{M}) \hookrightarrow Vec(\mathcal{M}) as infinitesimal action (see Corollary 18), there exists a Lie supergroup action ψ : Aut(\mathcal{M}) × $\mathcal{M} \to \mathcal{M}$ with the identity Vec(\mathcal{M}) \to Vec(\mathcal{M}) as induced infinitesimal action and $\psi|_{Aut_0}(\mathcal{M}) \times \mathcal{M} = \psi$ (cf. Theorem 5.35 in [2]).

The automorphism group together with Ψ satisfies a universal property:

Theorem 22 Let \mathcal{G} be a complex Lie supergroup with a holomorphic action $\Psi_{\mathcal{G}} : \mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$. Then there is a unique morphism $\sigma : \mathcal{G} \rightarrow \operatorname{Aut}(\mathcal{M})$ of Lie supergroups such that the diagram

is commutative.

Proof Let *G* be the underlying Lie group of \mathcal{G} . For each $g \in G$, we have a morphism $\Psi_{\mathcal{G}}(g)$: $\mathcal{M} \to \mathcal{M}$ by setting $(\Psi_{\mathcal{G}}(g))^* = \operatorname{ev}_g \circ (\Psi_{\mathcal{G}})^*$. This morphism $\Psi_{\mathcal{G}}(g)$ is an automorphism of \mathcal{M} with inverse $\Psi_{\mathcal{G}}(g^{-1})$ and gives rise to a group homomorphism $\tilde{\sigma} : G \to \operatorname{Aut}_{\bar{0}}(\mathcal{M}),$ $g \mapsto \Psi_{\mathcal{G}}(g)$.

Let \mathfrak{g} denote the Lie superalgebra (of right-invariant super vector fields) of \mathcal{G} , and $d\Psi_{\mathcal{G}}$: $\mathfrak{g} \to \operatorname{Vec}(\mathcal{M})$ the infinitesimal action induced by $\Psi_{\mathcal{G}}$. The restriction of $d\Psi_{\mathcal{G}}$ to the even part $\mathfrak{g}_{\bar{0}} = \operatorname{Lie}(G)$ of \mathfrak{g} coincides with the differential $(d\tilde{\sigma})_e$ of $\tilde{\sigma}$ at the identity $e \in G$.

Moreover, if $\alpha_{\mathcal{G}}$ denotes the adjoint action of *G* on \mathfrak{g} , and α denotes, as before, the adjoint action of Aut_{$\overline{0}$}(\mathcal{M}) on Vec(\mathcal{M}), we have

$$d\Psi_{\mathcal{G}}(\alpha_{\mathcal{G}}(g)(X)) = (\Psi_{\mathcal{G}}(g^{-1}))^* \circ d\Psi_{\mathcal{G}}(X) \circ (\Psi_{\mathcal{G}}(g))^*$$
$$= (\tilde{\sigma}(g^{-1}))^* \circ d\Psi_{\mathcal{G}}(X) \circ (\tilde{\sigma}(g))^*$$
$$= \alpha(\tilde{\sigma}(g))(d\Psi_{\mathcal{G}}(X))$$

for any $g \in G$, $X \in \mathfrak{g}$. Using the correspondence between Lie supergroups and Harish-Chandra pairs, it follows that there is a unique morphism $\sigma : \mathcal{G} \to \operatorname{Aut}(\mathcal{M})$ of Lie supergroups with underlying map $\tilde{\sigma}$ and derivative $d\Psi_{\mathcal{G}} : \mathfrak{g} \to \operatorname{Vec}(\mathcal{M})$ (see e.g. [24], § 2), and σ satisfies $\Psi \circ (\sigma \times \operatorname{id}_{\mathcal{M}}) = \Psi_{\mathcal{G}}$.

The uniqueness of σ follows from the fact that each morphism $\tau : \mathcal{G} \to \operatorname{Aut}(\mathcal{M})$ of Lie supergroups fulfilling the same properties as σ necessarily induces the map $d\Psi_{\mathcal{G}}$: $\mathfrak{g} \to \operatorname{Vec}(\mathcal{M})$ on the level of Lie superalgebras and its underlying map $\tilde{\tau}$ has to satisfy $\tilde{\tau}(g) = \Psi_{\mathcal{G}}(g) = \tilde{\sigma}(g)$.

Remark 23 Since the morphism σ in Theorem 22 is unique, the automorphism group of a compact complex supermanifold \mathcal{M} is the unique Lie supergroup satisfying the universal property formulated in Theorem 22.

Remark 24 We say that a real Lie supergroup \mathcal{G} acts on \mathcal{M} by holomorphic transformations if the underlying Lie group G acts on the complex manifold M by holomorphic transformations and if there is a homomorphism of Lie superalgebras $\mathfrak{g} \to \operatorname{Vec}(\mathcal{M})$ which is compatible with the action of G on M. Using the theory of Harish-Chandra pairs, we also have the Lie supergroup $\mathcal{G}^{\mathbb{C}}$, the universal complexification of \mathcal{G} ; see [14]. The underlying Lie group of $\mathcal{G}^{\mathbb{C}}$ is the universal complexification $\mathcal{G}^{\mathbb{C}}$ of the Lie group G. Let $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ denote the Lie superalgebra of \mathcal{G} , $\mathfrak{g}_{\bar{0}}$ the Lie algebra of G. Then the Lie algebra $\mathfrak{g}_{\bar{0}}^{\mathbb{C}}$ of $G^{\mathbb{C}}$ is a quotient of $\mathfrak{g}_{\bar{0}} \otimes \mathbb{C}$, and the Lie superalgebra of $\mathcal{G}^{\mathbb{C}}$ can be realized as $\mathfrak{g}_{\bar{0}}^{\mathbb{C}} \oplus (\mathfrak{g}_{\bar{1}} \otimes \mathbb{C})$. The action of G on \mathcal{M} extends to a holomorphic $G^{\mathbb{C}}$ -action on \mathcal{M} , and the homomorphism $\mathfrak{g} \to \operatorname{Vec}(\mathcal{M})$ extends to a homomorphism $\mathfrak{g}_{\bar{0}}^{\mathbb{C}} \oplus (\mathfrak{g}_{\bar{1}} \otimes \mathbb{C}) \to \operatorname{Vec}(\mathcal{M})$ of complex Lie superalgebras, which is compatible with the $G^{\mathbb{C}}$ -action on \mathcal{M} . Thus, we have a holomorphic $\mathcal{G}^{\mathbb{C}}$ -action on \mathcal{M} extending the \mathcal{G} -action. Moreover, there is a morphism $\sigma : \mathcal{G}^{\mathbb{C}} \to \operatorname{Aut}(\mathcal{M})$ of Lie supergroups as in Theorem 22.

Example 25 Let $\mathcal{M} = \mathbb{C}^{0|1}$. Denoting the odd coordinate on $\mathbb{C}^{0|1}$ by ξ , each super vector field on $\mathbb{C}^{0|1}$ is of the form $X = a\xi \frac{\partial}{\partial\xi} + b \frac{\partial}{\partial\xi}$ for $a, b \in \mathbb{C}$. The flow $\varphi : \mathbb{C} \times \mathcal{M} \to \mathcal{M}$ of $a\xi \frac{\partial}{\partial\xi}$ is given by $(\varphi_t)^*(\xi) = e^{at}\xi$, and the flow $\psi : \mathbb{C}^{0|1} \times \mathcal{M} \to \mathcal{M}$ of $b \frac{\partial}{\partial\xi}$ by $\psi^*(\xi) = b\tau + \xi$. Let $X_0 = \xi \frac{\partial}{\partial\xi}$ and $X_1 = \frac{\partial}{\partial\xi}$. Then $\operatorname{Vec}(\mathbb{C}^{0|1}) = \mathbb{C}X_0 \oplus \mathbb{C}X_1 = \mathbb{C}^{1|1}$, where the Lie algebra structure on $\mathbb{C}^{1|1}$ is given by $[X_0, X_1] = -X_1$ and $[X_1, X_1] = 0$. Note that this Lie superalgebra is isomorphic to the Lie superalgebra of right-invariant vector fields on the Lie supergroup $(\mathbb{C}^{1|1}, \mu_{0,1})$, where the multiplication $\mu = \mu_{0,1}$ is given by $\mu^*(t) = t_1 + t_2$ and $\mu^*(\tau) = \tau_1 + e^{t_1}\tau_2$; for the Lie supergroup structures on $\mathbb{C}^{1|1}$ see e.g. [12], Lemma 3.1. In particular, the Lie superalgebra $\operatorname{Vec}(\mathbb{C}^{0|1})$ is not abelian.

Since each automorphism φ of $\mathbb{C}^{0|1}$ is given by $\varphi^*(\xi) = c \cdot \xi$ for some $c \in \mathbb{C}, c \neq 0$, we have $\operatorname{Aut}_{\bar{0}}(\mathbb{C}^{0|1}) \cong \mathbb{C}^*$.

8 The functor of points of the automorphism group

In [22], the diffeomorphism supergroup of a real compact supermanifold is proven to carry the structure of a Fréchet Lie supergroup. This diffeomorphism supergroup is defined using the "functor of points" approach to supermanifolds, i.e. a supermanifold is a representable contravariant functor from the category of supermanifolds to the category of sets. Starting with a supermanifold \mathcal{M} we define the corresponding functor $\operatorname{Hom}(-, \mathcal{M})$ by the assignment $\mathcal{N} \mapsto \operatorname{Hom}(\mathcal{N}, \mathcal{M})$, where $\operatorname{Hom}(\mathcal{N}, \mathcal{M})$ denotes the set of morphisms of supermanifolds $\mathcal{N} \to \mathcal{M}$, and for morphisms $\alpha : \mathcal{N}_1 \to \mathcal{N}_2$ between supermanifolds \mathcal{N}_1 and \mathcal{N}_2 we define $\operatorname{Hom}(-, \mathcal{M})(\alpha) : \operatorname{Hom}(\mathcal{N}_2, \mathcal{M}) \to \operatorname{Hom}(\mathcal{N}_1, \mathcal{M})$ by $\varphi \mapsto \varphi \circ \alpha$.

In analogy to the definition in [22] for the diffeomorphism supergroup, a functor $Aut(\mathcal{M})$ associated with a complex supermanifold \mathcal{M} can be defined. In the case of a compact complex supermanifold \mathcal{M} , the automorphism Lie supergroup as defined in Section 7 represents the functor $\overline{Aut}(\mathcal{M})$, i.e. the functors $\overline{Aut}(\mathcal{M})$ and $Hom(-, Aut(\mathcal{M}))$ are isomorphic. This is proven in [3], Section 5.4. Here we give an outline of the main steps in the proof.

Definition 3 Let \mathcal{M} be a complex supermanifold. We define the functor $\overline{\operatorname{Aut}}(\mathcal{M})$ from the category of supermanifolds to the category of groups as follows: On objects, we define $\overline{\operatorname{Aut}}(\mathcal{M})$ by the assignment

 $\mathcal{N} \mapsto \{\varphi : \mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M} \,|\, \varphi \text{ is invertible, and } \mathrm{pr}_{\mathcal{N}} \circ \varphi = \mathrm{pr}_{\mathcal{N}} \},\$

where $\operatorname{pr}_{\mathcal{N}} : \mathcal{N} \times \mathcal{M} \to \mathcal{N}$ is the projection. For morphisms $\alpha : \mathcal{N}_1 \to \mathcal{N}_2$, we set $\overline{\operatorname{Aut}}(\mathcal{M})(\alpha) : \overline{\operatorname{Aut}}(\mathcal{M})(\mathcal{N}_2) \to \overline{\operatorname{Aut}}(\mathcal{M})(\mathcal{N}_1)$,

$$\varphi \mapsto (\mathrm{id}_{\mathcal{N}_1} \times (\mathrm{pr}_{\mathcal{M}} \circ \varphi \circ (\alpha \times \mathrm{id}_{\mathcal{M}}))) \circ (\mathrm{diag} \times \mathrm{id}_{\mathcal{M}}),$$

denoting by diag : $\mathcal{N}_1 \to \mathcal{N}_1 \times \mathcal{N}_1$ the diagonal map and by $\operatorname{pr}_{\mathcal{M}}$ the projection onto \mathcal{M} . Thus $\overline{\operatorname{Aut}}(\mathcal{M})(\alpha)(\varphi)$ is the unique automorphism $\psi : \mathcal{N}_1 \times \mathcal{M} \to \mathcal{N}_1 \times \mathcal{M}$ with $\operatorname{pr}_{\mathcal{N}_1} \circ \psi = \operatorname{pr}_{\mathcal{N}_1}$ and $\operatorname{pr}_{\mathcal{M}} \circ \psi = \operatorname{pr}_{\mathcal{M}} \circ \varphi \circ (\alpha \times \operatorname{id}_{\mathcal{M}})$.

The group structure on $\overline{\operatorname{Aut}}(\mathcal{M})(\mathcal{N})$ is defined by the composition and inversion of automorphisms $\mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M}$, and the neutral element is the identity map $\mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M}$.

Let $\chi : \mathcal{N} \to \operatorname{Aut}(\mathcal{M})$ be an arbitrary morphism of complex supermanifolds and let $\Psi : \operatorname{Aut}(\mathcal{M}) \times \mathcal{M} \to \mathcal{M}$ denote the natural action of $\operatorname{Aut}(\mathcal{M})$ on \mathcal{M} . Then the composition

$$\varphi_{\chi} = (\mathrm{id}_{\mathcal{N}} \times (\Psi \circ (\chi \times \mathrm{id}_{\mathcal{M}}))) \circ (\mathrm{diag} \times \mathrm{id}_{\mathcal{M}})$$

is an invertible map $\mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M}$ with $\operatorname{pr}_{\mathcal{N}} = \operatorname{pr}_{\mathcal{N}} \circ \varphi_{\chi}$. This defines a natural transformation:

Lemma 26 The assignments $\operatorname{Hom}(\mathcal{N}, \operatorname{Aut}(\mathcal{M})) \to \operatorname{Aut}(\mathcal{M})(\mathcal{N}), \chi \mapsto \varphi_{\chi}$, define a natural transformation $\operatorname{Hom}(-, \operatorname{Aut}(\mathcal{M})) \to \operatorname{Aut}(\mathcal{M})$.

This statement of the lemma can be verified by direct calculations; see also Lemma 5.4.2 in [3].

The natural transformation between Hom $(-, \operatorname{Aut}(\mathcal{M}))$ and Aut (\mathcal{M}) is actually an isomorphism of functors. The injectivity of the assignment $\chi \mapsto \varphi_{\chi}$ follows from the fact that the Aut (\mathcal{M}) -action on \mathcal{M} is effective. As a generalization of the classical definition of effectiveness, we call an action Ψ of a Lie supergroup \mathcal{G} on a supermanifold \mathcal{M} effective if for arbitrary morphisms $\chi_1, \chi_2 : \mathcal{N} \to \mathcal{G}$ of supermanifolds the equality

$$\Psi \circ (\chi_1 \times \mathrm{id}_{\mathcal{M}}) = \Psi \circ (\chi_2 \times \mathrm{id}_{\mathcal{M}})$$

implies $\chi_1 = \chi_2$; cf. Section 2.5 in [3].

In the proof of the surjectivity a "normal form" of the pullback of automorphisms φ : $\mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ with $\operatorname{pr}_{\mathbb{C}^{0|k}} \circ \varphi = \operatorname{pr}_{\mathbb{C}^{0|k}}$ is used. Let \mathcal{M} be a complex supermanifold and φ : $\mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ be an invertible morphism with $\operatorname{pr}_{\mathbb{C}^{0|k}} \circ \varphi = \operatorname{pr}_{\mathbb{C}^{0|k}}$. Let ι : $\mathcal{M} \hookrightarrow \{0\} \times \mathcal{M} \subset \mathbb{C}^{0|k} \times \mathcal{M}$ denote the canonical inclusion. The composition $\bar{\varphi} = \operatorname{pr}_{\mathcal{M}} \circ \varphi \circ \iota$ is an automorphism of \mathcal{M} . Then φ is uniquely determined by $\bar{\varphi}$ and a set of super vector fields on \mathcal{M} :

Lemma 27 Let $\varphi : \mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ be an invertible morphism with $\operatorname{pr}_{\mathbb{C}^{0|k}} \circ \varphi = \operatorname{pr}_{\mathbb{C}^{0|k}}$. Let τ_1, \ldots, τ_k denote coordinates on $\mathbb{C}^{0|k} \subset \mathbb{C}^{0|k} \times \mathcal{M}$. Then there are super vector fields X_{ν} on \mathcal{M} , of parity $|\nu|$ for $\nu \in (\mathbb{Z}_2)^k$, $\nu \neq 0$, such that

$$\varphi^* = (\mathrm{id}_{\mathbb{C}^{0|k}} \times \bar{\varphi})^* \exp\left(\sum_{\nu \neq 0} \tau^{\nu} X_{\nu}\right),\,$$

By $\tau^{\nu}X_{\nu}$ we mean the super vector field on $\mathbb{C}^{0|k} \times \mathcal{M}$ which is induced by the extension of the super vector field X_{ν} on \mathcal{M} to a super vector field on the product $\mathbb{C}^{0|k} \times \mathcal{M}$ followed by the multiplication with $\tau^{\nu} = \tau_1^{\nu_1} \dots \tau_k^{\nu_k}$. In other words for $U \subseteq \mathcal{M}$ open we have $\tau^{\nu}X_{\nu}(f) = 0$ for $f \in \mathcal{O}_{\mathbb{C}^{0|k}}(\{0\}) \subset \mathcal{O}_{\mathbb{C}^{0|k} \times \mathcal{M}}(\{0\} \times U)$ and $(\tau^{\nu}X_{\nu})(g) = \tau^{\nu}X_{\nu}(g)$ for $g \in \mathcal{O}_{\mathcal{M}}(U) \subset \mathcal{O}_{\mathbb{C}^{0|k} \times \mathcal{M}}(\{0\} \times U)$ considering $X_{\nu}(g)$ as a function on the product.

Deringer

Moreover,

$$\exp\left(\sum_{\nu\neq 0}\tau^{\nu}X_{\nu}\right) = \sum_{n\geq 0}\frac{1}{n!}\left(\sum_{\nu\neq 0}\tau^{\nu}X_{\nu}\right)^{n}$$

is a finite sum since $\left(\sum_{\nu\neq 0} \tau^{\nu} X_{\nu}\right)^{k+1} = 0.$

A version of this lemma is also proven in [22], Theorem 5.1. A different proof using the relation between nilpotent even super vector fields on a supermanifold and morphisms of this supermanifold satisfying a certain nilpotency condition as formulated in Sect. 2 is also possible; for details see also [3], Lemma 5.4.3.

Using the normal form of the lemma, we can prove that the assignment $\chi \mapsto \varphi_{\chi}$ defines a surjective map by directly constructing a morphism χ with $\varphi_{\chi} = \varphi$ for any $\varphi : \mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M}$ with $\operatorname{pr}_{\mathcal{N}} \circ \varphi = \operatorname{pr}_{\mathcal{N}}$. It is here enough to prove this statement locally (in \mathcal{N}) and thus to consider the case where $\mathcal{N} = N \times \mathbb{C}^{0|k}$ for a classical complex manifold N. In the following we indicate how such a morphism χ can be defined; for the proof that χ fulfills the desired property $\varphi_{\chi} = \varphi$ see Proposition 5.4.4 in [3].

Let $\varphi : N \times \mathbb{C}^{0|k} \times \mathcal{M} \to N \times \mathbb{C}^{\hat{0}|k} \times \mathcal{M}$ be an invertible morphism with $\operatorname{pr}_{N \times \mathbb{C}^{0|k}} \circ \varphi = \operatorname{pr}_{N \times \mathbb{C}^{0|k}}$. Each $z \in N$ induces an invertible morphism $\varphi_z : \mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ with $\operatorname{pr}_{\mathbb{C}^{0|k}} \circ \varphi_z = \operatorname{pr}_{\mathbb{C}^{0|k}}$, and the family $\varphi_z, z \in N$, uniquely determines φ .

Let $X_{\nu,z}$ be super vector fields on \mathcal{M} of parity $|\nu|, \nu \in (\mathbb{Z}_2)^k, \nu \neq 0$, and $\bar{\varphi}_z : \mathcal{M} \to \mathcal{M}$ automorphisms such that $\varphi_z^* = (\mathrm{id}_{\mathbb{C}^{0|k}} \times \bar{\varphi}_z)^* \exp\left(\sum_{\nu \neq 0} \tau^{\nu} X_{\nu,z}\right)$ as in Lemma 27. Since φ is holomorphic, the coefficients of the super vector fields $X_{\nu,z}$ and the pullbacks $\bar{\varphi}_z^*$ in local coordiantes depend holomorphically on $z \in N$. Each $\bar{\varphi}_z$ is the automorphism of \mathcal{M} induced by the evaluation in $(z, 0) \in N \times \mathbb{C}^{0|k}$ and an element of $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ by definition. Let $\operatorname{ev}_{\bar{\varphi}_z}$ denote the evaluation in $\bar{\varphi}_z$, i.e. $\operatorname{ev}_{\bar{\varphi}_z}$ is the pullback of the canonical inclusion $\{\bar{\varphi}_z\} \hookrightarrow \operatorname{Aut}(\mathcal{M})$, and let $\operatorname{pr}_{\operatorname{Aut}(\mathcal{M})} : N \times \mathbb{C}^{0|k} \times \operatorname{Aut}(\mathcal{M}) \to \operatorname{Aut}(\mathcal{M})$ be the projection. We define $\chi : N \times \mathbb{C}^{0|k} \to \operatorname{Aut}(\mathcal{M})$ as the morphism whose underlying map is $\{z\} \hookrightarrow \{\bar{\varphi}_z\} \subset \operatorname{Aut}_{\bar{0}}(\mathcal{M})$ and whose pullback evaluated in $z \in N$ is

$$\chi_{z}^{*} = (\mathrm{id}_{\mathbb{C}^{0|k}}^{*} \otimes \mathrm{ev}_{\bar{\varphi}_{z}}) \circ \exp\left(\sum_{\nu \neq 0} \tau^{\nu} (X_{\nu,z})_{R}\right) \circ \mathrm{pr}_{\mathrm{Aut}(\mathcal{M})}^{*},$$

where $(X_{\nu,z})_R$ denotes the right-invariant super vector field on Aut(\mathcal{M}) corresponding to the super vector field $X_{\nu,z}$ on \mathcal{M} which is an element of the Lie superalgebra Vec(\mathcal{M}) of Aut(\mathcal{M}).

The next proposition is then a consequence of Lemma 26 and the surjectivity of the assignment $\chi \mapsto \varphi_{\chi}$.

Proposition 28 (See [3], Corollary 5.4.5) The functors $Aut(\mathcal{M})$ and $Hom(-, Aut(\mathcal{M}))$ are isomorphic. This isomorphism is realized by the natural transformation introduced in Lemma 26.

9 The case of a superdomain with bounded underlying domain

In the classical case, the automorphism group of a bounded domain $U \subset \mathbb{C}^m$ is a (real) Lie group (see Theorem 13 in "Sur les groupes de transformations analytiques" in [8]). If

 $\mathcal{U} \subset \mathbb{C}^{m|n}$ is a superdomain whose underlying set U is a bounded domain in \mathbb{C}^m , it is in general not possible to endow its set of automorphisms with the structure of a Lie group such that the action on \mathcal{U} is smooth, as will be illustrated in an example. In particular, there is no Lie supergroup satisfying the universal property as the automorphism group of a compact complex supermanifold \mathcal{M} does as formulated in Theorem 22.

Example 29 Consider a superdomain \mathcal{U} of dimension (1|2) whose underlying set is a bounded domain $U \subset \mathbb{C}$. Let z, θ_1, θ_2 denote coordinates for \mathcal{M} . For any holomorphic function f on U, define the even super vector field $X_f = f(z)\theta_1\theta_2\frac{\partial}{\partial z}$. The reduced vector field $\tilde{X}_f = 0$ is completely integrable and thus the flow of X_f can be defined on $\mathbb{C} \times \mathcal{U}$ (cf. [12] Lemma 5.2). The flow is given by $(\varphi_t)^*(z) = z + t \cdot f(z)\theta_1\theta_2$ and $(\varphi_t)^*(\theta_j) = \theta_j$. For all holomorphic functions f and g we have $[X_f, X_g] = 0$, and thus their flows locally commute (cf. [2], Corollary 3.8). Therefore, $\{X_f | f \in \mathcal{O}(U)\} \cong \mathcal{O}(U)$ is an uncountably infinite-dimensional abelian Lie algebra. If the set of automorphisms of \mathcal{U} carried the structure of a Lie group such that its action on \mathcal{U} was smooth, its Lie algebra would necessarily contain $\{X_f | f \in \mathcal{O}(U)\} \cong \mathcal{O}(U)$ as a Lie subalgebra, which is not possible.

10 Examples

In this section, we determine the automorphism group $\operatorname{Aut}(\mathcal{M})$ for some complex supermanifolds \mathcal{M} with underlying manifold $M = \mathbb{P}_1 \mathbb{C}$.

Let L_1 denote the hyperplane bundle on $M = \mathbb{P}_1\mathbb{C}$ with sheaf of sections $\mathcal{O}(1)$, and $L_k = (L_1)^{\otimes k}$ the line bundle of degree $k, k \in \mathbb{Z}$, on $\mathbb{P}_1\mathbb{C}$, and sheaf of sections $\mathcal{O}(k)$. Each holomorphic vector bundle on $\mathbb{P}_1\mathbb{C}$ is isomorphic to a direct sum of line bundles $L_{k_1} \oplus \ldots \oplus L_{k_n}$ (see [11]). Therefore, if \mathcal{M} is a split supermanifold with $M = \mathbb{P}_1\mathbb{C}$ and dim $\mathcal{M} = (1|n)$, there exist $k_1, \ldots, k_n \in \mathbb{Z}$ such that the structure sheaf $\mathcal{O}_{\mathcal{M}}$ of \mathcal{M} is isomorphic to

$$\bigwedge (\mathcal{O}(k_1) \oplus \ldots \oplus \mathcal{O}(k_n)).$$

Let $U_j = \{[z_0 : z_1] \in \mathbb{P}_1 \mathbb{C} | z_j \neq 0\}, j = 1, 2, \text{ and } \mathcal{U}_j = (U_j, \mathcal{O}_{\mathcal{M}}|_{U_j})$. Moreover, define $U_0^* = U_0 \setminus \{[1:0]\}$ and $U_1^* = U_1 \setminus \{[0:1]\}$, and let $\mathcal{U}_j^* = (U_j^*, \mathcal{O}_{\mathcal{M}}|_{U_j^*})$. We can now choose local coordinates $z, \theta_1, \ldots, \theta_n$ for \mathcal{M} on U_0 , and local coordinates $w, \eta_1, \ldots, \eta_n$ on U_1 so that the transition map $\chi : \mathcal{U}_0^* \to \mathcal{U}_1^*$, which determines the supermanifold structure of \mathcal{M} , is given by

$$\chi^*(w) = \frac{1}{z}$$
 and $\chi^*(\eta_j) = z^{k_j} \theta_j$.

Example 30 Let $\mathcal{M} = (\mathbb{P}_1\mathbb{C}, \mathcal{O}_{\mathcal{M}})$ be a complex supermanifold of dimension (1|1). Since the odd dimension is 1, the supermanifold \mathcal{M} has to be split. Let $-k \in \mathbb{Z}$ be the degree of the associated line bundle. Choose local coordinates z, θ for \mathcal{M} on U_0 and w, η on U_1 as above so that the transition map $\chi : \mathcal{U}_0^* \to \mathcal{U}_1^*$ is given by $\chi^*(w) = \frac{1}{z}$ and $\chi^*(\eta) = \frac{1}{z^k} \theta$.

We first want to determine the Lie superalgebra $Vec(\mathcal{M})$ of super vector fields on \mathcal{M} . A calculation in local coordinates verifying the compatibility condition with the transition map χ yields that the restriction to U_0 of any super vector field on \mathcal{M} is of the form

$$\left((\alpha_0 + \alpha_1 z + \alpha_2 z^2)\frac{\partial}{\partial z} + (\beta + k\alpha_2 z)\theta\frac{\partial}{\partial \theta}\right) + \left(p(z)\frac{\partial}{\partial \theta} + q(z)\theta\frac{\partial}{\partial z}\right),$$

where $\alpha_0, \alpha_1, \alpha_2, \beta \in \mathbb{C}$, p is a polynomial of degree at most k, and q is a polynomial of degree at most 2 - k. If k < 0 (respectively 2 - k < 0), the polynomial p (respectively q)

is 0. The Lie algebra $\operatorname{Vec}_{\bar{0}}(\mathcal{M})$ of even super vector fields is isomorphic to $\mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C}$, where an isomorphism $\mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C} \to \operatorname{Vec}_{\bar{0}}(\mathcal{M})$ is given by

$$\left(\begin{pmatrix} a & b \\ c & -a \end{pmatrix}, d \right) \mapsto (-b - 2az + cz^2) \frac{\partial}{\partial z} + ((d - ka) + kcz)\theta \frac{\partial}{\partial \theta}.$$

Note that since the odd dimension of \mathcal{M} is 1 each automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ gives rise to an automorphism of the line bundle L_{-k} and vice versa. Hence, the automorphism group $\operatorname{Aut}(L_{-k})$ of the line bundle L_{-k} and $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ coincide.

A calculation yields that the group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ of automorphisms $\mathcal{M} \to \mathcal{M}$ can be identified with $\operatorname{PSL}_2(\mathbb{C}) \times \mathbb{C}^*$ if *k* is even and with $\operatorname{SL}_2(\mathbb{C}) \times \mathbb{C}^*$ if *k* is odd. Consider the element $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, *s*, where $s \in \mathbb{C}^*$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is either an element of $\operatorname{SL}_2(\mathbb{C})$ or the representative of the corresponding class in $\operatorname{PSL}_2(\mathbb{C})$. The action of the corresponding element $\varphi \in \operatorname{Aut}_{\bar{0}}(\mathcal{M})$ on \mathcal{M} is then given by

$$\varphi^*(z) = \frac{c+dz}{a+bz}$$
 and $\varphi^*(\theta) = \left(\frac{1}{(a+bz)^k} + s\right)\theta$

as a morphism over appropriate subsets of U_0 and by

$$\varphi^*(w) = \frac{aw+b}{cw+d}$$
 and $\varphi^*(\eta) = \left(\frac{1}{(cw+d)^k} + s\right)\eta$

over appropriate subsets of U_1 .

The Lie supergroup structure on Aut(\mathcal{M}) is now uniquely determined by Aut₀(\mathcal{M}), Vec(\mathcal{M}), and the adjoint action of Aut₀(\mathcal{M}) on Vec(\mathcal{M}). Since Aut₀(\mathcal{M}) is a connected Lie group, it is enough to calculate the adjoint action of Vec₀(\mathcal{M}) \cong $\mathfrak{sl}_2\mathbb{C} \oplus \mathbb{C}$ on Vec₁(\mathcal{M}).

Let P_l denote the space of polynomials of degree at most l, and set $P_l = \{0\}$ for l < 0. The space of odd super vector fields $\operatorname{Vec}_{\overline{1}}(\mathcal{M})$ is isomorphic to $P_k \oplus P_{2-k}$ via $\left(p(z)\frac{\partial}{\partial \theta} + q(z)\theta\frac{\partial}{\partial z}\right) \mapsto (p(z), q(z)).$

The element $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{C}) \subset \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C} \cong \operatorname{Vec}_{\bar{0}}(\mathcal{M})$ corresponds to $-2z\frac{\partial}{\partial z} - k\theta \frac{\partial}{\partial \theta}$. The adjoint action of this super vector field on the first factor P_k of $\operatorname{Vec}_{\bar{1}}(\mathcal{M})$ is given by by $-2z\frac{\partial}{\partial z} + k \cdot \operatorname{Id}$, and on the second factor P_{2-k} by $-2z\frac{\partial}{\partial z} + (2-k) \cdot \operatorname{Id}$. Calculating the weights of the $\mathfrak{sl}_2(\mathbb{C})$ -representation on P_k and P_{2-k} , we get that P_k is the unique irreducible (k + 1)-dimensional representation and P_{2-k} the unique irreducible (3-k)-dimensional representation. Moreover, a calculation yields that $d \in \mathbb{C}$ corresponding to $d \cdot \theta \frac{\partial}{\partial \theta} \in \operatorname{Vec}_{\bar{0}}(\mathcal{M})$ acts on P_k by multiplication with -d and on P_{2-k} by multiplication with d.

If k < 0 or k > 2, we have

$$\left[\operatorname{Vec}_{\overline{1}}(\mathcal{M}), \operatorname{Vec}_{\overline{1}}(\mathcal{M})\right] = 0.$$

In the case k = 0, we have $P_k \cong \mathbb{C}$. Since $\left[\frac{\partial}{\partial \theta}, q(z)\theta \frac{\partial}{\partial z}\right] = q(z)\frac{\partial}{\partial z}$ for any $q \in P_2$, we get

$$\left[\operatorname{Vec}_{\bar{1}}(\mathcal{M}), \operatorname{Vec}_{\bar{1}}(\mathcal{M})\right] = \left\{a(z)\frac{\partial}{\partial z} \mid a \in P_2\right\} \cong \mathfrak{sl}_2(\mathbb{C}),$$

and the map $P_0 \times P_2 \to \operatorname{Vec}_{\bar{0}}(\mathcal{M}), (X, Y) \mapsto [X, Y]$, corresponds to $\mathbb{C} \times P_2 \to \operatorname{Vec}_{\bar{0}}(\mathcal{M}), (p, q(z)) \mapsto p \cdot q(z) \frac{\partial}{\partial z}$.

Similarly, if k = 2, we have $P_{2-k} \cong \mathbb{C}$, and

$$\left[\operatorname{Vec}_{\bar{1}}(\mathcal{M}), \operatorname{Vec}_{\bar{1}}(\mathcal{M})\right] = \left\{ \left(\alpha_0 + \alpha_1 z + \alpha_2 z^2\right) \frac{\partial}{\partial z} + \left(\alpha_1 + 2\alpha_2 z\right) \theta \frac{\partial}{\partial \theta} \middle| \alpha_j \in \mathbb{C} \right\}$$
$$\cong \mathfrak{sl}_2(\mathbb{C})$$

since $[p(z)\frac{\partial}{\partial\theta}, \theta\frac{\partial}{\partial z}] = p(z)\frac{\partial}{\partial z} + p'(z)\theta\frac{\partial}{\partial\theta}$, and the map $P_2 \times P_0 \to \operatorname{Vec}_{\bar{0}}(\mathcal{M}), (X, Y) \mapsto$ [X, Y], corresponds to $P_2 \times \mathbb{C} \to \operatorname{Vec}_{\bar{0}}(\mathcal{M}), (p(z), q) \mapsto q \cdot p(z) \frac{\partial}{\partial z} + q \cdot p'(z) \theta \frac{\partial}{\partial \theta}.$

If k = 1, then $P_k \oplus P_{2-k} \cong \mathbb{C}^2 \oplus \mathbb{C}^2$. We have

$$\begin{bmatrix} \frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial z} \end{bmatrix} = \frac{\partial}{\partial z}, \begin{bmatrix} z \frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial z} \end{bmatrix} = z \frac{\partial}{\partial z} + \theta \frac{\partial}{\partial \theta}, \\ \begin{bmatrix} \frac{\partial}{\partial \theta}, z\theta \frac{\partial}{\partial z} \end{bmatrix} = z \frac{\partial}{\partial z}, \begin{bmatrix} z \frac{\partial}{\partial \theta}, z\theta \frac{\partial}{\partial z} \end{bmatrix} = z^2 \frac{\partial}{\partial z} + z\theta \frac{\partial}{\partial \theta}$$

and consequently $[\operatorname{Vec}_{\overline{1}}(\mathcal{M}), \operatorname{Vec}_{\overline{1}}(\mathcal{M})] = \operatorname{Vec}_{\overline{0}}(\mathcal{M}).$

Remark that Aut(\mathcal{M}) carries the structure of a split Lie supergroup if and only if k < 0or k > 2 (cf. Proposition 4 in [24]).

Example 31 Let $\mathcal{M} = (\mathbb{P}_1 \mathbb{C}, \mathcal{O}_{\mathcal{M}})$ be a split complex supermanifold of dimension dim $\mathcal{M} =$ (1) associated with $\mathcal{O}(-k_1) \oplus \mathcal{O}(-k_2), k_1, k_2 \in \mathbb{Z}$. We will determine the group $\operatorname{Aut}_{\bar{0}}(\mathcal{M})$ of automorphisms $\mathcal{M} \to \mathcal{M}$.

We choose coordinates z, θ_1, θ_2 for \mathcal{U}_0 and w, η_1, η_2 for \mathcal{U}_1 as described above such that the transition map χ is given by $\chi^*(w) = z^{-1}$ and $\chi^*(\eta_i) = z^{-k_j} \theta_i$.

The action of $PSL_2(\mathbb{C})$ on $\mathbb{P}_1\mathbb{C}$ by Möbius transformations lifts to an action of $SL_2(\mathbb{C})$ on \mathcal{M} by letting $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{C})$ act by the automorphism $\varphi_A : \mathcal{M} \to \mathcal{M}$ with pullback

$$\varphi_A^*(z) = \frac{c+dz}{a+bz}$$
 and $\varphi_A^*(\theta_j) = (a+bz)^{-k_j}\theta_j$

as a morphism over appropriate subsets of U_0 , and

$$\varphi_A^*(w) = \frac{aw+b}{cw+d}$$
 and $\varphi_A^*(\eta_j) = (cw+d)^{-k_j}\eta_j$

over appropriate subsets of U_1 . Using the transition map χ one might also calculate the

representation of φ in coordinates as a morphism over subsets $U_0 \to U_1$ and $U_1 \to U_0$. If k_1 and k_2 are both even, we have $\varphi_A = \operatorname{Id}_{\mathcal{M}}$ for $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and thus we get an action of $PSL_2(\mathbb{C})$ on \mathcal{M} .

Consider the homomorphism of Lie groups Ψ : Aut₀(\mathcal{M}) \rightarrow Aut($\mathbb{P}_1\mathbb{C}$) assigning to each automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ the underlying biholomorphic map $\tilde{\varphi} : \mathbb{P}_1 \mathbb{C} \to \mathbb{P}_1 \mathbb{C}$. This homomorphism Ψ is surjective since $\operatorname{Aut}(\mathbb{P}_1\mathbb{C}) \cong \operatorname{PSL}_2(\mathbb{C})$ and since the $\operatorname{PSL}_2(\mathbb{C})$ -action on $\mathbb{P}_1\mathbb{C}$ lifts to an action (of $SL_2(\mathbb{C})$) on the supermanifold \mathcal{M} . The kernel ker Ψ of the homomorphism Ψ consists of those automorphisms $\varphi : \mathcal{M} \to \mathcal{M}$ whose underlying map $\tilde{\varphi}$ is the identity $\mathbb{P}_1\mathbb{C} \to \mathbb{P}_1\mathbb{C}$. This kernel ker Ψ is a normal subgroup, $SL_2(\mathbb{C})$ acts on ker Ψ , and we have

$$\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \cong \ker \Psi \rtimes \operatorname{SL}_2(\mathbb{C})$$

if k_1 and k_2 are not both even, and $\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \cong \ker \Psi \rtimes \operatorname{PSL}_2(\mathbb{C})$ if k_1 and k_2 are even. Thus, it remains to determine ker Ψ .

Let $\varphi : \mathcal{M} \to \mathcal{M}$ be an automorphism with $\tilde{\varphi} = \text{Id.}$ Let f and b_{jk} , j, k = 1, 2, be holomorphic functions on $U_0 \cong \mathbb{C}$ such that the pullback of φ over U_0 is given by

$$\varphi^*(z) = z + f(z)\theta_1\theta_2$$
 and $\varphi^*(\theta) = B(z)\theta$,

where $B(z) = \begin{pmatrix} b_{11}(z) & b_{12}(z) \\ b_{21}(z) & b_{22}(z) \end{pmatrix}$ and $\varphi^*(\theta) = B(z)\theta$ is an abbreviation for

$$\varphi^*(\theta_i) = b_{i1}(z)\theta_1 + b_{i2}(z)\theta_2$$
 for $j = 1, 2$

Similarly, let g and c_{jk} be holomorphic functions on $U_1 \cong \mathbb{C}$ such that the pullback of φ over U_1 is given by

$$\varphi^*(w) = w + g(w)\eta_1\eta_2$$
 and $\varphi^*(\eta) = C(z)\eta$,

where $C(z) = \begin{pmatrix} c_{11}(z) & c_{12}(z) \\ c_{21}(z) & c_{22}(z) \end{pmatrix}$. The compatibility condition with the transition map χ gives now the relation

$$f(z) = -z^{2-(k_1+k_2)}g\left(\frac{1}{z}\right) \text{ for } z \in \mathbb{C}^*.$$

Therefore, f and g are both polynomials of degree at most $2 - (k_1 + k_2)$, and they are 0 in the case $k_1 + k_2 > 2$. For the matrices B and C we get the relation

$$B(z) = \begin{pmatrix} z^{k_1} & 0\\ 0 & z^{k_2} \end{pmatrix} C \begin{pmatrix} \frac{1}{z} \end{pmatrix} \begin{pmatrix} z^{-k_1} & 0\\ 0 & z^{-k_2} \end{pmatrix} \text{ for } z \in \mathbb{C}^*.$$

If $k_1 = k_2$, this implies $B(z) = C(\frac{1}{z})$ for all $z \in \mathbb{C}^*$. Thus, B(z) = B and C(w) = C are constant matrices, and $B = C \in GL_2(\mathbb{C})$ since φ was assumed to be invertible. Consequently, we have

$$\ker \Psi \cong P_{2-(k_1+k_2)} \rtimes \operatorname{GL}_2(\mathbb{C})$$

in the case $k_1 = k_2$, where $P_{2-(k_1+k_2)}$ denotes the space of polynomials of degree at most $2 - (k_1 + k_2)$ if $k_1 + k_2 < 2$ and $P_{2-(k_1+k_2)} = \{0\}$ otherwise. The group structure on the semidirect product is given by $(f_1(z), B_1) \cdot (f_2(z), B_2) = (\det B_1 f_1(z) + f_2(z), B_1 B_2)$.

Let now $k_1 \neq k_2$. After possibly changing coordinates we may assume $k_1 > k_2$. Then we have

$$B(z) = \begin{pmatrix} z^{k_1} & 0 \\ 0 & z^{k_2} \end{pmatrix} C \begin{pmatrix} \frac{1}{z} \end{pmatrix} \begin{pmatrix} z^{-k_1} & 0 \\ 0 & z^{-k_2} \end{pmatrix} = \begin{pmatrix} c_{11} \begin{pmatrix} \frac{1}{z} \end{pmatrix} & z^{k_1 - k_2} c_{12} \begin{pmatrix} \frac{1}{z} \end{pmatrix} \\ z^{k_2 - k_1} c_{21} \begin{pmatrix} \frac{1}{z} \end{pmatrix} & c_{22} \begin{pmatrix} \frac{1}{z} \end{pmatrix} \end{pmatrix}$$

for all $z \in \mathbb{C}^*$. This implies that $b_{11} = c_{11}$ and $b_{22} = c_{22}$ are constants. Since we assume $k_1 > k_2$, we also get $b_{21} = c_{21} = 0$ and b_{12} and c_{12} are polynomials of degree at most $k_1 - k_2$. Therefore,

$$\ker \Psi \cong P_{2-(k_1+k_2)} \rtimes \left\{ \begin{pmatrix} \lambda & p(z) \\ 0 & \mu \end{pmatrix} \middle| \lambda, \mu \in \mathbb{C}^*, \ p \in P_{k_1-k_2} \right\},$$

and the group structure is again given by

$$(f_1(z), B_1) \cdot (f_2(z), B_2) = (\det B_1 f_1(z) + f_2(z), B_1 B_2)$$

for $f_1, f_2 \in P_{2-(k_1+k_2)}, B_1, B_2 \in \left\{ \begin{pmatrix} \lambda & p(z) \\ 0 & \mu \end{pmatrix} \middle| \lambda, \mu \in \mathbb{C}^*, p \in P_{k_1-k_2} \right\}.$ The semidirect product ker $\Psi \rtimes SL_2(\mathbb{C})$ (or ker $\Psi \rtimes PSL_2(\mathbb{C})$) is a direct product if and

The semidirect product ker $\Psi \rtimes SL_2(\mathbb{C})$ (or ker $\Psi \rtimes PSL_2(\mathbb{C})$) is a direct product if and only if $k_1 = k_2$ and $k_1 + k_2 \ge 2$.

Example 32 Let $\mathcal{M} = (\mathbb{P}_1 \mathbb{C}, \mathcal{O}_{\mathcal{M}})$ be the complex supermanifold of dimension dim $\mathcal{M} = (1|2)$ given by the transition map $\chi : \mathcal{U}_0^* \to \mathcal{U}_1^*$ with pullback

$$\chi^*(w) = \frac{1}{z} + \frac{1}{z^3} \theta_1 \theta_2$$
 and $\chi^*(\eta_j) = \frac{1}{z^2} \theta_j$.

The supermanifold \mathcal{M} is not split and the associated split supermanifold corresponds to $\mathcal{O}(-2) \oplus \mathcal{O}(-2)$; see e.g. [7].

As in the previous example, the action of $PSL_2(\mathbb{C})$ on $\mathbb{P}_1\mathbb{C}$ by Möbius transformations lifts to an action of $PSL_2(\mathbb{C})$ on \mathcal{M} . Let A denote the class of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{C})$ in $PSL_2(\mathbb{C})$. Then A acts by the morphism $\varphi_A : \mathcal{M} \to \mathcal{M}$ whose pullback as a morphism over appropriate subsets of U_0 is given by

$$\varphi_A^*(z) = \frac{c+dz}{a+bz} - \frac{b}{(a+bz)^3} \theta_1 \theta_2 \text{ and } \varphi_A^*(\theta_j) = \frac{1}{(a+bz)^2} \theta_j.$$

Let Ψ : Aut_{$\bar{0}$}(\mathcal{M}) \rightarrow Aut($\mathbb{P}_1\mathbb{C}$) \cong PSL₂(\mathbb{C}) denote again the Lie group homomorphism which assigns to an automorphism of \mathcal{M} the underlying automorphism of $\mathbb{P}_1\mathbb{C}$. The assignment $A \mapsto \varphi_A \in \text{Aut}_{\bar{0}}(\mathcal{M})$ defines a section PSL₂(\mathbb{C}) \rightarrow Aut_{$\bar{0}$}(\mathcal{M}) of Ψ , and we have

$$\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \cong \ker \Psi \rtimes \operatorname{PSL}_2(\mathbb{C}).$$

The section $\text{PSL}_2(\mathbb{C}) \to \text{Aut}_{\bar{0}}(\mathcal{M})$ induces on the level of Lie algebras the morphism $\sigma : \mathfrak{sl}_2(\mathbb{C}) \hookrightarrow \text{Vec}_{\bar{0}}(\mathcal{M})$, which maps an element $\begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{C})$ to the super vector field on \mathcal{M} whose restriction to \mathcal{U}_0 is

$$(c-2az-bz^2-b\theta_1\theta_2)\frac{\partial}{\partial z}-2(a+bz)\left(\theta_1\frac{\partial}{\partial \theta_1}+\theta_2\frac{\partial}{\partial \theta_2}\right).$$

We now calculate the kernel ker Ψ . Let $\varphi \in \ker \Psi$. Its underlying map $\tilde{\varphi}$ is the identity and we thus have

$$\varphi^*(z) = z + a_0(z)\theta_1\theta_2$$
 and $\varphi^*(\theta) = A_0(z)\theta_1$

on U_0 and

$$\varphi^*(w) = w + a_1(w)\eta_1\eta_2$$
 and $\varphi^*(\eta) = A_1(w)\eta_1$

on U_1 for holomorphic functions a_0 and a_1 and invertible matrices A_0 and A_1 whose entries are holomorphic functions. The notation $\varphi^*(\theta) = A_0(z)\theta$ (and similarly $\varphi^*(\eta) = A_1(w)\eta$) is again an abbreviation for $\varphi^*(\theta_j) = (A_0(z))_{j1}\theta_1 + (A_0(z))_{j2}\theta_2$, where $A_0(z) = ((A_0(z))_{jk})_{1 \le i,k \le 2}$. A calculation with the transition map χ then yields the relations

$$A_1(w) = A_0\left(\frac{1}{w}\right)$$
 and $a_1(w) = \frac{1}{w}\left(\left(\det A_0\left(\frac{1}{w}\right) - 1\right) - \frac{1}{w}a_0\left(\frac{1}{w}\right)\right)$

for any $w \in \mathbb{C}^*$. Since a_0, a_1, A_0 , and A_1 are holomorphic on \mathbb{C} , we get that $A_0 = A_1$ are constant matrices, det $A_0 = 1$, and $a_0 = a_1 = 0$. Therefore, ker $\Psi \cong SL_2(\mathbb{C})$, and its Lie algebra is

$$\left\{ \left(a_{11}\theta_1 + a_{12}\theta_2\right) \frac{\partial}{\partial\theta_1} + \left(a_{21}\theta_1 + a_{22}\theta_2\right) \frac{\partial}{\partial\theta_2} \middle| \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{C}) \right\}.$$

Since Lie(ker Ψ) and σ (Lie(PSL₂(\mathbb{C})) commute, the semidirect product ker $\Psi \rtimes PSL_2(\mathbb{C})$ is direct and we have

$$\operatorname{Aut}_{\bar{0}}(\mathcal{M}) \cong \operatorname{SL}_2(\mathbb{C}) \times \operatorname{PSL}_2(\mathbb{C}).$$

🖄 Springer

Remark in particular that this group is different from the automorphism group of the corresponding split supermanifold \mathcal{N} , which is associated with $\mathcal{O}(-2) \oplus \mathcal{O}(-2)$, with $\operatorname{Aut}_{\bar{0}}(\mathcal{N}) \cong \operatorname{GL}_2(\mathbb{C}) \times \operatorname{PSL}_2(\mathbb{C})$.

References

- Berezin, F.A.: Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, vol. 9, D. Reidel Publishing Co., Dordrecht, Translation edited by Dimitri Leĭtes (1987)
- Bergner, H.: Globalizations of infinitesimal actions on supermanifolds. J. Lie Theory 24(3), 809–847 (2014)
- 3. Bergner, H.: Symmetries of supermanifolds, PhD Thesis, Ruhr-Universität Bochum, November (2015)
- Bochner, S., Montgomery, D.: Groups of differentiable and real or complex analytic transformations. Ann. Math. 46, 685–694 (1945)
- Bochner, S., Montgomery, D.: Locally compact groups of differentiable transformations. Ann. Math. 47, 639–653 (1946)
- 6. Bochner, S., Montgomery, D.: Groups on analytic manifolds. Ann. Math. 48, 659-669 (1947)
- Bunegina, V.A., Onishchik, A.L.: Homogeneous supermanifolds associated with the complex projective line. J. Math. Sci. 82(4), 3503–3527 (1996). Algebraic geometry, 1
- Cartan, H.: Œuvres. Vol. I, II, III, Springer-Verlag, Berlin, New York, Edited by Reinhold Remmert and Jean-Pierre Serre (1979)
- Cartan, H., Serre, J.-P.: Un théorème de finitude concernant les variétés analytiques compactes. C. R. Acad. Sci. Paris 237, 128–130 (1953)
- 10. Green, P.: On holomorphic graded manifolds. Proc. Am. Math. Soc. 85(4), 587–590 (1982)
- Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math. 79, 121–138 (1957)
- Garnier, S., Wurzbacher, T.: Integration of vector fields on smooth and holomorphic supermanifolds. Doc. Math. 18, 519–545 (2013)
- Hirsch, M. W.: Differential Topology. Springer, New York (1976). Graduate Texts in Mathematics, No. 33
- 14. Kalus, M.: On the relation of real and complex Lie supergroups. Can. Math. Bull. 58(2), 281–284 (2015)
- Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Differential geometrical methods in mathematical physics. (Proceedings of symposium, University of Bonn, Bonn, 1975) Lecture Notes in Mathematics, vol. 570, pp. 177–306. Springer, Berlin (1977)
- Leites, D.A.: Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk 35, no. 1(211), 3–57, 255 (1980)
- Morimoto, A.: Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe. Nagoya Math. J. 13, 157–168 (1958)
- Narasimhan, R.: Several Complex Variables. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1971)
- Onishchik, A.L.: A spectral sequence for the tangent sheaf cohomology of a supermanifold. Lie groups and Lie algebras, Math. Appl., vol. 433, pp. 199–215. Kluwer Academic Publishers, Dordrecht (1998)
- 20. Ostermayr, D.: Automorphism supergroups of supermanifolds, arXiv:1504.02653v1 (2015)
- 21. Rothstein, M.J.: Deformations of complex supermanifolds. Proc. Am. Math. Soc. 95(2), 255–260 (1985)
- Sachse, C., Wockel, C.: The diffeomorphism supergroup of a finite-dimensional supermanifold. Adv. Theor. Math. Phys. 15(2), 285–323 (2011)
- van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, vol. 190. Birkhäuser Verlag, Basel (2000)
- Vishnyakova, E.G.: On complex Lie supergroups and split homogeneous supermanifolds. Transform. Groups 16(1), 265–285 (2011)
- 25. Yamabe, H.: A generalization of a theorem of Gleason. Ann. Math. 58, 351–365 (1953)