CrossMark

Automorphism groups of compact complex supermanifolds

Hannah Bergner1 · Matthias Kalus2

Received: 21 March 2016 / Accepted: 14 January 2017 / Published online: 15 February 2017 © Springer-Verlag Berlin Heidelberg 2017

Abstract Let *M* be a compact complex supermanifold. We prove that the set $Aut_{\bar{0}}(\mathcal{M})$ of automorphisms of M can be endowed with the structure of a complex Lie group acting holomorphically on M , so that its Lie algebra is isomorphic to the Lie algebra of even holomorphic super vector fields on *M*. Moreover, we prove the existence of a complex Lie supergroup $Aut(\mathcal{M})$ acting holomorphically on $\mathcal M$ and satisfying a universal property. Its underlying Lie group is $Aut_{\bar{0}}(\mathcal{M})$ and its Lie superalgebra is the Lie superalgebra of holomorphic super vector fields on *M*. This generalizes the classical theorem by Bochner and Montgomery that the automorphism group of a compact complex manifold is a complex Lie group. Some examples of automorphism groups of complex supermanifolds over $\mathbb{P}_1(\mathbb{C})$ are provided.

Keywords Compact complex supermanifold · Automorphism group

Mathematics Subject Classification 32M05 · 32C11 · 54H15

1 Introduction

The automorphism group of a compact complex manifold *M* carries the structure of a complex Lie group which acts holomorphically on *M* and whose Lie algebra consists of the

 \boxtimes Matthias Kalus Matthias.Kalus@rub.de

> Hannah Bergner Hannah.Bergner@math.uni-freiburg.de

Financial support by SFB/TR 12 "Symmetries and Universality in Mesoscopic Systems" of the DFG is gratefully acknowledged.

¹ Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany

² Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany

holomorphic vector fields on M (see [\[6](#page-25-0)]). In this article, we investigate how this result can be extended to the category of compact complex supermanifolds.

Let *M* be a compact complex supermanifold, i.e. a complex supermanifold whose underlying manifold is compact. An automorphism of M is a biholomorphic morphism $M \to M$. A first candidate for the automorphism group of such a supermanifold is the set of automorphisms, which we denote by Aut_ō (\mathcal{M}) . However, every automorphism φ of a supermanifold *M* (with structure sheaf O_M) is "even" in the sense that its pullback $\varphi^* : O_M \to \tilde{\varphi}_*(O_M)$ is a parity-preserving morphism. Therefore, we can (at most) expect this set of automorphisms of*M*to carry the structure of a classical Lie group if we require its action on*M*to be smooth or holomorphic. We cannot obtain a Lie supergroup of positive odd dimension.

We prove that the group $Aut_{\overline{0}}(\mathcal{M})$, endowed with an analogue of the compact-open topology, carries the structure of a complex Lie group such that the action on M is holomorphic and its Lie algebra is the Lie algebra of even holomorphic super vector fields on *M*. It should be noted that the group Aut₀ (M) is in general different from the group Aut (M) of automorphisms of the underlying manifold M. There is a group homomorphism $Aut_{\bar{0}}(\mathcal{M}) \to Aut(M)$ given by assigning the underlying map to an automorphism of the supermanifold; this group homomorphism is in general neither injective nor surjective.

We define the automorphism group of a compact complex supermanifold *M* to be a complex Lie supergroup which acts holomorphically on *M* and satisfies a universal property. In analogy to the classical case, its Lie superalgebra is the Lie superalgebra of holomorphic super vector fields on *M*, and the underlying Lie group is $Aut_{\bar{0}}(\mathcal{M})$, the group of automorphisms of *M*. Using the equivalence of complex Harish-Chandra pairs and complex Lie supergroups (see [\[24\]](#page-25-1)), we construct the appropriate automorphism Lie supergroup of *M*.

More precisely, the outline of this article is the following: First, we introduce a topology on the set $Aut_{\bar{0}}(\mathcal{M})$ of automorphisms on a compact complex supermanifold \mathcal{M} (cf. Sect. [3\)](#page-4-0). This topology is an analogue of the compact-open topology in the classical case, which coincides in the case of a compact complex manifold with the topology of uniform convergence. We prove that the topological space $Aut_{\bar{0}}(\mathcal{M})$ with composition and inversion of automorphisms as group operations is a locally compact topological group which satisfies the second axiom of countability.

In Sect. [4,](#page-7-0) the non-existence of small subgroups of $Aut_{\tilde{0}}(\mathcal{M})$ is proven, which means that there exists a neighbourhood of the identity in $Aut_{\overline{0}}(\mathcal{M})$ with the property that this neighbourhood does not contain any non-trivial subgroup. A result on the existence of Lie group structures on locally compact topological groups without small subgroups (see [\[25\]](#page-25-2)) then implies that $Aut_{\overline{0}}(\mathcal{M})$ carries the structure of a real Lie group.

In the case of a split compact complex supermanifold M , the fact that $Aut_{\bar{0}}(\mathcal{M})$ carries the structure of a Lie group follows more easily as described in Remark [8.](#page-6-0) In this case it can be proven that $Aut_{\bar{0}}(\mathcal{M})$ is the semi-direct product of a finite-dimensional vector space and the automorphism group of the vector bundle corresponding to M , which is by [\[17\]](#page-25-3) a complex Lie group.

Then, continuous one-parameter subgroups of $Aut_{\overline{0}}(\mathcal{M})$ and their action on the supermanifold M are studied (see Sect. [5\)](#page-10-0). This is done in order to obtain results on the regularity of the Aut₀^{(M)}-action on *M* and characterize the Lie algebra of Aut₀^{(M)}. We prove that the action of each continuous one-parameter subgroup of $Aut_{0}(\mathcal{M})$ on \mathcal{M} is analytic. As a corollary we get that the Lie algebra of Aut_{$\bar{0}$} (M) is isomorphic to the Lie algebra Vec $_{\bar{0}}(M)$ of even holomorphic super vector fields on M , and $Aut₀(M)$ carries the structure of a complex Lie group so that its natural action on *M* is holomorphic.

Next, we show that the Lie superalgebra $Vec(\mathcal{M})$ of holomorphic super vector fields on a compact complex supermanifold *M* is finite-dimensional (see Sect. [6\)](#page-14-0). Since Aut_o (M)

carries the structure of a complex Lie group, we already know that Vec_{$\tilde{0}$} (\mathcal{M}) , the even part of $Vec(\mathcal{M})$, is finite-dimensional. The key point in the proof in the case of a split supermanifold M is that the tangent sheaf of M is a coherent sheaf of \mathcal{O}_M -modules on the compact complex manifold *M*, where \mathcal{O}_M is the sheaf of holomorphic functions on *M*.

Let α denote the action of Aut₀(\mathcal{M}) on the Lie superalgebra Vec(\mathcal{M}) by conjugation: $\alpha(\varphi)(X) = \varphi_*(X) = (\varphi^{-1})^* \circ X \circ \varphi^*$ for $\varphi \in \text{Aut}_{\bar{0}}(\mathcal{M}), X \in \text{Vec}(\mathcal{M})$. The restriction of this representation α to Vec₀(\mathcal{M}), the even part of the Lie superalgebra Vec(\mathcal{M}), coincides with the adjoint action of the Lie group $Aut_{\overline{0}}(\mathcal{M})$ on its Lie algebra, which is isomorphic to Vec₀(M). Hence α defines a Harish-Chandra pair ($Aut_{0}(\mathcal{M})$, Vec($\mathcal{M})$). The equivalence between Harish-Chandra pairs and complex Lie supergroups allows us to define the automorphism Lie supergroup of a compact complex supermanifold as follows (see Definition [2\)](#page-15-0):

Definition *(Automorphism Lie supergroup)* Define the automorphism group Aut(*M*) of a compact complex supermanifold to be the unique complex Lie supergroup associated with the Harish-Chandra pair ($Aut_{\bar{0}}(\mathcal{M})$, Vec(\mathcal{M})) with representation α .

The natural action of the automorphism Lie supergroup $Aut(\mathcal{M})$ on $\mathcal M$ is holomorphic, i.e. we have a morphism Ψ : Aut $(M) \times M \rightarrow M$ of complex supermanifolds. The automorphism Lie supergroup $Aut(\mathcal{M})$ satisfies the following universal property (see Theorem [22\)](#page-16-0):

Theorem *If G is a complex Lie supergroup with a holomorphic action* $\Psi_{\mathcal{G}}$: $\mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$ *on M*, then there is a unique morphism $\sigma : \mathcal{G} \to \text{Aut}(\mathcal{M})$ *of Lie supergroups such that the diagram*

is commutative.

The automorphism Lie supergroup of a compact complex supermanifold is the unique complex Lie supergroup satisfying the preceding universal property.

Using the "functor of points" approach to supermanifolds, an alternative definition of the automorphism group as a functor in analogy to [\[20](#page-25-4)[,22\]](#page-25-5) is possible, which is studied in Sect. [8.](#page-17-0) If M is a compact complex supermanifold, this functor from the category of supermanifolds to the category of sets can be defined by the assignment

$$
\mathcal{N} \mapsto \{\varphi : \mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M} \mid \varphi \text{ is invertible, and } pr_{\mathcal{N}} \circ \varphi = pr_{\mathcal{N}}\},\
$$

where $pr_{\mathcal{N}} : \mathcal{N} \times \mathcal{M} \to \mathcal{N}$ denotes the projection onto the first component. The two approaches to the automorphism group are equivalent and the constructed automorphism group $Aut(\mathcal{M})$ represents the just defined functor.

In the classical case, another class of complex manifolds where the automorphism group carries the structure of a Lie group is given by the bounded domains in \mathbb{C}^m (see [\[8\]](#page-25-6)). An analogue statement is false in the case of supermanifolds. In Sect. [9,](#page-19-0) we give an example showing that in the case of a complex supermanifold M whose underlying manifold is a bounded domain in \mathbb{C}^m there does in general not exist a Lie supergroup acting on $\mathcal M$ and satisfying the universal property of the preceding theorem.

In Sect. [10,](#page-20-0) the automorphism group Aut(\mathcal{M}) or its underlying Lie group Aut₀ (\mathcal{M}) are determined for some supermanifolds *M* with underlying manifold $M = \mathbb{P}_1 \mathbb{C}$.

2 Preliminaries and notation

Throughout, we work with the "Berezin-Leĭtes-Kostant-approach" to supermanifolds (cf. $[1,15,16]$ $[1,15,16]$ $[1,15,16]$ $[1,15,16]$). If a supermanifold is denoted by a calligraphic letter M , then we denote the underlying manifold by the corresponding uppercase standard letter *M*, and the structure sheaf by \mathcal{O}_M . We call a supermanifold M compact if its underlying manifold M is compact. By a complex supermanifold we mean a supermanifold M with structure sheaf \mathcal{O}_M which is locally, on small enough open subsets $U \subset M$, isomorphic to $\mathcal{O}_U \otimes \bigwedge \mathbb{C}^n$, where \mathcal{O}_U denotes the sheaf of holomorphic functions on *U*. For a morphism $\varphi : \mathcal{M} \to \mathcal{N}$ between supermanifolds *M* and *N*, the underlying map $M \to N$ is denoted by $\tilde{\varphi}$ and its pullback by φ^* : \mathcal{O}_N → $\tilde{\varphi}_* \mathcal{O}_M$. An automorphism of a complex supermanifold *M* is a biholomorphic morphism $M \to M$, i.e. an invertible morphism in the category of complex supermanifolds.

Let *E* be a vector bundle on a complex manifold *M* and *E* its sheaf of sections. Then we can associate a supermanifold $M = (M, \mathcal{O}_M)$ by setting $\mathcal{O}_M = \bigwedge \mathcal{E}$, which has a natural \mathbb{Z} -grading (and hence a $\mathbb{Z}/2\mathbb{Z}$ -grading). Split supermanifolds are supermanifolds M such that there is a vector bundle on *M* with sheaf of sections \mathcal{E} such that $\mathcal{M} \cong (M, \bigwedge \mathcal{E})$. If *E* is e.g. the trivial bundle of rank *n* on $M = \mathbb{C}^m$, then we get the supermanifold $\mathbb{C}^{m|n}$ = $(\mathbb{C}^m, \bigwedge \mathcal{E}) = (\mathbb{C}^m, \mathcal{O}_{\mathbb{C}^m} \otimes \bigwedge \mathbb{C}^n).$

For a complex supermanifold M , let T_M denote the tangent sheaf of M . The Lie superalgebra of holomorphic vector fields on *M* is Vec(*M*) = $T_M(M)$, it consists of the subspace Vec_{$\bar{0}$}(*M*) of even and the subspace Vec₁(*M*) of odd super vector fields on *M*.

Let *M* be a complex supermanifold of dimension $(m|n)$, and let $\mathcal{I}_{\mathcal{M}}$ be the subsheaf of ideals generated by the odd elements in the structure sheaf \mathcal{O}_M of a supermanifold \mathcal{M} . As described in [\[19](#page-25-10)], we have the filtration

$$
\mathcal{O}_{\mathcal{M}} = (\mathcal{I}_{\mathcal{M}})^0 \supset (\mathcal{I}_{\mathcal{M}})^1 \supset (\mathcal{I}_{\mathcal{M}})^2 \supset \cdots \supset (\mathcal{I}_{\mathcal{M}})^{n+1} = 0
$$

of the structure sheaf $\mathcal{O}_\mathcal{M}$ by the powers of $\mathcal{I}_\mathcal{M}$. Define the quotient sheaves $gr_k(\mathcal{O}_\mathcal{M}) =$ $(\mathcal{I}_{\mathcal{M}})^k/(\mathcal{I}_{\mathcal{M}})^{k+1}$. This gives rise to the Z-graded sheaf gr $\mathcal{O}_{\mathcal{M}} = \bigoplus_k \text{gr}_k(\mathcal{O}_{\mathcal{M}})$. Furthermore, $gr \mathcal{M} = (M, gr \mathcal{O}_M)$ is a split complex supermanifold of the same dimension as *M*.

Note that $\mathcal{E} := \text{gr}_1(\mathcal{O}_M)$ defines a vector bundle E on M. An automorphism φ of M yields a pullback φ^* on $\mathcal{O}_\mathcal{M}$. Following [\[10](#page-25-11)], its reduction to the \mathcal{O}_M -module *E* yields a morphism of vector bundles $\varphi_0 \in Aut(E)$ over the reduction $\tilde{\varphi} \in Aut(M)$. By [\[17\]](#page-25-3) the automorphism group of a principal fibre bundle over a compact complex manifold carries the structure of a complex Lie group. Since every automorphism of a vector bundle canonically induces an automorphism of the associated principal fibre bundle and vice versa, the automorphism group of the associated principal fibre bundle and Aut(*E*) may be identified. Moreover, this identification also respects the topology of compact convergence on both groups. Hence, the group $Aut(E)$ also carries the structure of a complex Lie group. On local coordinate domains *U*, *V* with $\tilde{\varphi}(U) \subset V$ we can identify $\mathcal{O}_{\mathcal{M}}|_V \cong \Gamma_{AE}|_V$ and $\mathcal{O}_{\mathcal{M}}|_U \cong \Gamma_{AE}|_U$ and following [\[21\]](#page-25-12) decompose $\varphi^* = \varphi_0^* \exp(Y)$ with Z-degree preserving automorphism φ_0^* : $\Gamma_{AE}|_V \to \Gamma_{AE}|_U$ induced by φ_0 and where *Y* is an even super derivation on $\Gamma_{AE}|_V$ increasing the $\mathbb Z$ -degree by 2 or more. Note that the exponential series $exp(Y)$ is finite since *Y* is nilpotent.

More generally, there is a relation between nilpotent even super vector fields on a supermanifold and morphisms of this supermanifold satisfying a certain nilpotency condition. This is a direct consequence of a technical result on the relation of algebra homomorphisms and derivations (cf. [\[23\]](#page-25-13), Proposition 2.1.3 and Lemma 2.1.4). If $\varphi : \mathcal{M} \to \mathcal{M}$ is a morphism of supermanifolds with underlying map $\tilde{\varphi} = id_M$ and such that $\varphi^* - id^*_{\mathcal{M}} : \mathcal{O}_{\mathcal{M}} \to \mathcal{O}_{\mathcal{M}}$ is nilpotent, i.e. there is $N \in \mathbb{N}$ with $(\varphi^* - id^*_{\mathcal{M}})^N = 0$, then

$$
X = \log(\varphi^*) = \sum_{n=1}^{N} \frac{(-1)^{n+1}}{n} (\varphi^* - \mathrm{id}^*_{\mathcal{M}})^n
$$

is a nilpotent even super vector field on *M* and we have

$$
\varphi^* = \exp(X) = \sum_{n \ge 0} \frac{1}{n!} X^n.
$$

Furthermore, for any nilpotent even super vector fifeld *X* on *M*, the (finite) sum $exp(X)$ defines a map $\mathcal{O}_M \to \mathcal{O}_M$ which is the pullback of an invertible morphism $M \to M$ with the identity as underlying map, and the pullback of the inverse is $\exp(-X)$.

3 The topology on the group of automorphisms

Let M be a compact complex supermanifold. An automorphism of M is a biholomorphic morphism $\varphi : \mathcal{M} \to \mathcal{M}$. Denote by Aut_o (\mathcal{M}) the set of automorphisms of \mathcal{M} .

In this section, a topology on $Aut_{\bar{0}}(\mathcal{M})$ is introduced, which generalizes the compactopen topology and topology of compact convergence of the classical case. Then we show that $Aut_{\bar{0}}(\mathcal{M})$ is a locally compact topological group with respect to this topology.

Let $K \subseteq M$ be a compact subset such that there are local odd coordinates $\theta_1, \ldots, \theta_n$ for *M* on an open neighbourhood of *K*. Moreover, let $U \subseteq M$ be open and $f \in \mathcal{O}_M(U)$, and let U_{ν} be open subsets of $\mathbb C$ for $\nu \in (\mathbb Z_2)^n$. Let $\varphi : \mathcal M \to \mathcal M$ be an automorphism with $\tilde{\varphi}(K) \subseteq U$. Then there are holomorphic functions $\varphi_{f,\nu}$ on a neighbourhood of K such that

$$
\varphi^*(f) = \sum_{v \in (\mathbb{Z}_2)^n} \varphi_{f,v} \theta^v.
$$

Let

$$
\Delta(K, U, f, \theta_j, U_\nu) = \{ \varphi \in \text{Aut}_{\bar{0}}(\mathcal{M}) | \tilde{\varphi}(K) \subseteq U, \varphi_{f, \nu}(K) \subseteq U_\nu \},
$$

and endow $Aut_{\bar{0}}(\mathcal{M})$ with the topology generated by sets of this form, i.e. the sets of the form $\Delta(K, U, f, \theta_i, U_\nu)$ form a subbase of the topology.

For any open subset $U \subseteq M$ such that there exist coordinates for M on U, fix a set of coordinates functions $f_1^U, \ldots, f_{m+n}^U \in \mathcal{O}_\mathcal{M}(U)$. Using Taylor expansion one can show that the sets of the form $\Delta(K, U, f_l^U, \theta_j, U_\nu)$ then also form a subbase of the topology.

Remark 1 In particular, the subsets of the form

$$
\Delta(K, U) = \{ \varphi \in \text{Aut}_{\bar{0}}(\mathcal{M}) | \tilde{\varphi}(K) \subseteq U \}
$$

are open for $K \subseteq M$ compact and $U \subseteq M$ open. Hence the map $Aut_{0}(\mathcal{M}) \to Aut(M)$, associating with an automorphism φ of $\mathcal M$ the underlying automorphism $\tilde{\varphi}$ of M , is continuous.

Remark 2 The group $Aut_{\bar{0}}(\mathcal{M})$ endowed with the above topology is a second-countable Hausdorff space since *M* is second-countable.

Let $U \subseteq M$ be open. Then we can define a topology on $\mathcal{O}_M(U)$ as follows: If $K \subseteq U$ is compact such that there exist odd coordinates $\theta_1, \ldots, \theta_n$ on a neighbourhood of *K*, write $f \in \mathcal{O}_\mathcal{M}(U)$ on K as $f = \sum_v f_v \theta^v$. Let $U_v \subseteq \mathbb{C}$ be open subsets. Then define a topology on $\mathcal{O}_M(U)$ by requiring that the sets of the form { $f \in \mathcal{O}_M(U)$ | $f_\nu(K) \subseteq U_\nu$ } are a subbase of the topology. A sequence of functions f_k converges to f if and only if in all local coordinate domains with odd coordinates $\theta_1, \ldots, \theta_n$ and $f_k = \sum_{\nu} f_{k,\nu} \theta^{\nu}, f = \sum_{\nu} f_{\nu} \theta^{\nu}$, the coefficient functions $f_{k,y}$ converge uniformly to f_y on compact subsets. Note that for any open subsets $U_1, U_2 \subseteq M$ with $U_1 \subset U_2$ the restriction map $\mathcal{O}_\mathcal{M}(U_2) \to \mathcal{O}_\mathcal{M}(U_1), f \mapsto f|_{U_1}$, is continuous.

Using Taylor expansion (in local coordinates) of automorphisms of *M* we can deduce the following lemma:

Lemma 3 *A sequence of automorphisms* $\varphi_k : \mathcal{M} \to \mathcal{M}$ *converges to an automorphism* $\varphi : \mathcal{M} \to \mathcal{M}$ with respect to the topology of $Aut_{\overline{0}}(\mathcal{M})$ if and only if the following condition *is satisfied: For all U, V* \subseteq *M* open subsets of *M* such that *V* contains the closure of $\tilde{\varphi}(U)$ *, there is an* $N \in \mathbb{N}$ *such that* $\tilde{\varphi}_k(U) \subseteq V$ *for all* $k \geq N$ *. Furthermore, for any* $f \in \mathcal{O}_{\mathcal{M}}(V)$ *the sequence* $(\varphi_k)^*(f)$ *converges to* $\varphi^*(f)$ *on U in the topology of* $\mathcal{O}_\mathcal{M}(U)$ *.*

Lemma 4 *If* $U, V \subseteq M$ are open subsets, $K \subseteq M$ is compact with $V \subseteq K$ *, then the map*

$$
\Delta(K, U) \times \mathcal{O}_{\mathcal{M}}(U) \to \mathcal{O}_{\mathcal{M}}(V), \, (\varphi, f) \mapsto \varphi^*(f)
$$

is continuous.

Proof Let $\varphi_k \in \Delta(K, U)$ be a sequence of automorphisms of M converging to $\varphi \in \Delta(K, U)$, and $f_l \in \mathcal{O}_\mathcal{M}(U)$ a sequence converging to $f \in \mathcal{O}_\mathcal{M}(U)$. Choosing appropriate local coordinates and using Taylor expansion of the pullbacks $(\varphi_k)^*(f_l)$, it can be shown that $(\varphi_k)^*(f_l)$ converges to $\varphi^*(f)$ as $k, l \to \infty$. This uses that the derivatives of a sequence of uniformly converging holomorphic functions also uniformly converge. uniformly converging holomorphic functions also uniformly converge.

Lemma 5 *The topological space* $Aut_{\bar{0}}(\mathcal{M})$ *is locally compact.*

The following remark about invertible morphisms is useful for the proof of this lemma.

Remark 6 (See e.g. Proposition 2.15.1 in [\[15](#page-25-8)] *or Corollary 2.3.3 in* [\[16\]](#page-25-9)*)* Let *M* be a complex supermanifold and $\varphi : \mathcal{M} \to \mathcal{M}$ any morphism. Let ξ_1, \ldots, ξ_n and $\theta_1, \ldots, \theta_n$ be local odd coordinates for *M*, and superfunctions $\varphi_{j,k}$, $\varphi_{j,v}$ such that $\varphi^*(\xi_j) = \sum_{j=1}^n a_{j,k} \varphi_{j,k}$, $\varphi_{j,v}$ and the $\varphi^*(\xi_j) = \varphi^*(\xi_j)$ $\sum_{k=1}^{n} \varphi_{j,k} \theta_k + \sum_{\|v\| \ge 3} \varphi_{j,v} \theta^v$, where $\|\nu\| = \|(\nu_1, \dots, \nu_n)\| = \nu_1 + \dots + \nu_n \ge 3$. Then φ is locally biholomorphic if and only if the underlying map $\tilde{\varphi}$ is locally biholomorphic and det $((\varphi_{j,k}(y))_{1 \leq j,k \leq n}) \neq 0$. The morphism φ is hence invertible if it is everywhere locally biholomorphic and $\tilde{\varphi}$ is biholomorphic.

Proof (of Lemma [5\)](#page-5-0) Let $\psi \in Aut_{0}(\mathcal{M})$. For each fixed $x \in M$ there are open neighbourhoods V_x and U_x of x and $\tilde{\psi}(x)$ respectively such that $\tilde{\psi}(K_x) \subseteq U_x$ for $K_x := \overline{V}_x$. We may additionally assume that there are local odd coordinates ξ_1, \ldots, ξ_n for *M* on U_x , and $\theta_1, \ldots, \theta_n$ local odd coordinates on an open neighbourhood of K_x . For any automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ with $\tilde{\varphi}(K_x) \subseteq U_x$, let $\varphi_{j,k}, \varphi_{j,\nu}$ (for $||\nu|| = ||(v_1, \ldots, v_n)|| = v_1 + \cdots + v_n \ge$ 3) be local holomorphic functions such that

$$
\varphi^*(\xi_j) = \sum_{k=1}^n \varphi_{j,k} \theta_k + \sum_{||v|| \ge 3} \varphi_{j,v} \theta^v.
$$

 \mathcal{L} Springer

Choose bounded open subsets $U_{j,k}$, $U_{j,\nu} \subset \mathbb{C}$, such that $\psi_{j,k}(x) \in U_{j,k}$ and $\psi_{j,\nu}(x) \in U_{j,\nu}$. Since ψ is an automorphism, we have

$$
\det\left((\psi_{j,k}(y))_{1\leq j,k\leq n}\right)\neq 0
$$

for all $y \in K_x$ by Remark [6.](#page-5-1) For later considerations shrink $U_{i,k}$ such that $\det(C) \neq 0$ for all $C = (c_{j,k})_{1 \leq j,k \leq n}$ with $c_{j,k} \in U_{j,k}$. After shrinking V_x we may assume $\psi_{j,k}(K_x) \subseteq U_{j,k}$ and $\psi_{i,\nu}(K_x) \subseteq U_{i,\nu}$. Hence ψ is contained in the set $\Theta(x) = {\varphi \in Aut_{\overline{0}}(\mathcal{M}) \mid \widetilde{\varphi}(K_x) \subseteq \Theta}$ \overline{U}_x , $\varphi_{j,k}(K_x) \subseteq \overline{U}_{j,k}, \varphi_{j,\nu}(K_x) \subseteq \overline{U}_{j,\nu}$, which contains an open neighbourhood of ψ . Since *M* is compact, *M* is covered by finitely many of the sets V_x , say V_{x_1}, \ldots, V_{x_l} . Then ψ is contained in $\Theta = \Theta(x_1) \cap \cdots \cap \Theta(x_l)$. We will now prove that Θ is sequentially compact: Let φ_k be any sequence of automorphisms contained in Θ . Then, using Montel's theorem and passing to a subsequence, the sequence φ_k converges to a morphism $\varphi : \mathcal{M} \to \mathcal{M}$. It remains to show that φ is an automorphism of \mathcal{M} .

The underlying map $\tilde{\varphi}: M \to M$ is surjective since if $p \notin \tilde{\varphi}(M)$, then $\varphi \in \Delta(M, M \setminus \{p\})$ and therefore $\varphi_k \in \Delta(M, M \setminus \{p\})$ for *k* large enough which contradicts the assumption that φ_k is an automorphism. This also implies that there is an $x \in M$ such that the differential $D\tilde{\varphi}(x)$ is invertible. Using Hurwitz's theorem (see e.g. [\[18](#page-25-14)], p. 80) it follows det($D\tilde{\varphi}(x)$) $\neq 0$ for all $x \in M$. Thus $\tilde{\varphi}$ is locally biholomorphic. Moreover, φ is locally invertible due to the special form of the sets $\Theta(x_i)$.

In order check that $\tilde{\varphi}$ is injective, let $p_1, p_2 \in M$, $p_1 \neq p_2$, such that $q = \tilde{\varphi}(p_1) = \tilde{\varphi}(p_2)$. Let Ω_i , $j = 1, 2$, be open neighbourhoods of p_j with $\Omega_1 \cap \Omega_2 = \emptyset$. By [\[18](#page-25-14)], p. 79, Proposition 5, there exists k_0 with the property that $q \in \tilde{\varphi}_k(\Omega_1)$ and $q \in \tilde{\varphi}_k(\Omega_2)$ for all $k \geq k_0$. The bijectivity of the φ_k 's now yields a contradiction to $\Omega_1 \cap \Omega_2 = \emptyset$.

Proposition 7 *The set* $Aut_{0}(\mathcal{M})$ *is a topological group with respect to composition and inversion of automorphisms.*

Proof Let φ_k and ψ_l be two sequences of automorphisms of *M* converging to φ and ψ respectively. By the classical theory, $\tilde{\varphi_k} \circ \tilde{\psi_l}$ converges to $\tilde{\varphi} \circ \tilde{\psi}$, and $\tilde{\varphi_k}^{-1}$ to $\tilde{\varphi}^{-1}$.

Let *U*, *V*, $W \subseteq M$ be open subsets with $\tilde{\varphi}(V) \subseteq W$, $\tilde{\varphi}_k(V) \subseteq W$, $\tilde{\psi}_l(U) \subseteq V$, $\tilde{\psi}_l(U) \subseteq$ *V*, for *k* and *l* sufficiently large and let $f \in \mathcal{O}_M(W)$. Then the sequence $(\varphi_k)^*(f) \in \mathcal{O}_M(V)$ converges to $\varphi^*(f)$ on *V*, and by Lemma [4](#page-5-2) $(\varphi_k \circ \psi_l)^*(f) = (\psi_l)^*((\varphi_k)^*(f))$ converges to $\psi^*(\varphi^*(f)) = (\varphi \circ \psi)^*(f)$ on *U* as $k, l \to \infty$, which shows that the multiplication is continuous.

Consider now the inversion map Aut₀(M) \rightarrow Aut₀(M), $\varphi \mapsto \varphi^{-1}$. Let φ_k be a sequence in Aut₀(M) converging to $\varphi \in$ Aut₀(M). Note that since the automorphism group Aut(*M*) of the underlying manifold *M* is a topological group, the inversion map Aut $(M) \to$ Aut (M) is continuous. For any choice of local coordinate charts on *U*, $V \subseteq M$ such that the closure of $\tilde{\varphi}^{-1}(U)$ is contained in *V* we can conclude: Since $\tilde{\varphi}_k^{-1}$ converges to $\tilde{\varphi}^{-1}$, we have $\tilde{\varphi_k}^{-1}(U) \subseteq V$ for *k* sufficiently large. Identify $\mathcal{O}_\mathcal{M}(U) \cong \Gamma_{AE}(U)$, resp. $\mathcal{O}_{\mathcal{M}}(V) \cong \Gamma_{AE}(V)$ and decompose $\varphi^* = \varphi_0^* \exp(Y), \varphi_k^* = \varphi_{k,0}^* \exp(Y_k)$ as in Section [2.](#page-3-0) Note that φ_0^* is induced by an automorphism φ_0 of the vector bundle *E*. We can verify by an observation in local coordinates that the map $Aut_{\bar{0}}(\mathcal{M}) \to Aut(E), \varphi \mapsto \varphi_0$, is continuous. Hence, the sequence $\varphi_{k,0}$ converges to φ_0 and $\varphi_{k,0}^*$ converges to φ_0^* . By [\[17\]](#page-25-3) the inversion on Aut(*E*) is continuous. Therefore, $(\varphi_{k,0}^{-1})^*$ converges to $(\varphi_0^{-1})^*$. Due to the finiteness of the logarithm and exponential series on nilpotent elements, Y_k converges to Y . Hence, $(\varphi_k^{-1})^* = \exp(-Y_k)(\varphi_{k,0}^*)^{-1}$ converges to $\exp(-Y)(\varphi_0^*)^{-1} = (\varphi^*)^{-1}$. □

Remark 8 Let *M* be a split supermanifold and let $E \to M$ be a vector bundle with associated sheaf of sections $\mathcal E$ such that the structure sheaf $\mathcal O_\mathcal M$ is isomorphic to $\bigwedge \mathcal E$. By [\[17](#page-25-3)] the group of

automorphisms $Aut(E)$ of the vector bundle E is a complex Lie group. Each automorphism φ of the supermanifold *M* induces an automorphism φ_0 of the vector bundle *E* over the underlying map $\tilde{\varphi}$ of φ , and the map π : Aut_{$\bar{0}$} $(\mathcal{M}) \to$ Aut (E) , $\varphi \mapsto \varphi_0$, is continuous. An automorphism of the bundle E lifts to an automorphism of the supermanifold M if we fix a splitting $\mathcal{O}_\mathcal{M} \cong \bigwedge \mathcal{E}$. If $\chi : E \to E$ is an automorphism with pullback χ^* we define an automorphism of *M* by the pullback $f_1 \wedge \ldots \wedge f_k \mapsto \chi^*(f_1) \wedge \ldots \wedge \chi^*(f_k)$ for *f*₁ $\wedge \ldots \wedge f_k \in \bigwedge^k \mathcal{E}$. This assignment defines a section of π . In particular, π is surjective and we have an exact sequence

$$
0 \to \ker \pi \to \mathrm{Aut}_{\bar{0}}(\mathcal{M}) \to \mathrm{Aut}(E) \to 0,
$$

which splits. Consequently, the topological group $Aut_{\overline{0}}(\mathcal{M})$ is a semidirect product

$$
Aut_{\bar{0}}(\mathcal{M}) \cong \ker \pi \rtimes Aut(E).
$$

The kernel of π consists of those automorphisms φ of $\mathcal M$ whose underlying map $\tilde{\varphi}$ is the identity on *M* and whose pullback φ^* satisfies

$$
(\varphi^* - \mathrm{id}^*)(\mathcal{E}) \subseteq \bigoplus_{k \geq 2} \left(\bigwedge^k \mathcal{E} \right).
$$

In this case $(\varphi^* - id^*)$ is nilpotent and there is an even super vector field *X* on *M* with $exp(X) = \varphi^*$ as mentioned in Sect. [2.](#page-3-0) The super vector field X is nilpotent and fulfills

$$
X\left(\bigwedge^k \mathcal{E}\right) \subseteq \bigoplus_{l \geq k+2} \left(\bigwedge^l \mathcal{E}\right)
$$

for all *k*. More generally, the map

$$
\left\{ X \in \text{Vec}_{\bar{0}}(\mathcal{M}) \mid X\left(\bigwedge^k \mathcal{E}\right) \subseteq \bigoplus_{l \geq k+2} \left(\bigwedge^l \mathcal{E}\right) \text{ for all } k \right\} \longrightarrow \text{ ker } \pi,
$$

$$
X \mapsto \exp(X),
$$

which assigns to a super vector field *X* the automorphism of *M* with pullback $exp(X)$, is bijective. In Sect. [6,](#page-14-0) we will prove that the Lie superalgebra Vec(*M*) of super vector fields on M and thus subspaces of Vec(M) are finite-dimensional. Therefore, the topological group $Aut_{\bar{0}}(\mathcal{M}) \cong \ker \pi \rtimes Aut(E)$ carries the structure of a complex Lie group.

In the general case of a not necessarily split supermanifold M , the proof that Aut₀^{(A)} can be endowed with the structure of a complex Lie group is more difficult. In order to prove the corresponding result also for non-split supermanifolds, the structure of $Aut_{\bar{0}}(\mathcal{M})$ is further studied in the next two sections.

4 Non-existence of small subgroups of $Aut_{\bar{0}}(\mathcal{M})$

In this section, we prove that $Aut_{\bar{0}}(\mathcal{M})$ does not contain small subgroups, i.e. that there exists an open neighbourhood of the identity in Aut₀ (M) such that each subgroup contained in this neighbourhood consists only of the identity. As a consequence, the topological group Aut_{$\bar{0}$}(*M*) carries the structure of a real Lie group by a result of Yamabe (cf. [\[25\]](#page-25-2)).

Before proving the non-existence of small subgroups, a few technical preparations are needed: Consider $\mathbb{C}^{m|n}$ and let $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ denote coordinates on $\mathbb{C}^{m|n}$. Let $U \subseteq$ \mathbb{C}^m be an open subset. For $f = \sum_{\nu} f_{\nu} \xi^{\nu} \in \mathcal{O}_{\mathbb{C}^m | n}(U)$ define

$$
||f||_U = \left\| \sum_{\nu} f_{\nu} \xi^{\nu} \right\|_U := \sum_{\nu} ||f_{\nu}||_U,
$$

where $|| f_v ||_U$ denotes the supremum norm of the holomorphic function f_v on *U*. For any morphism $\varphi : \mathcal{U} = (U, \mathcal{O}_{\mathbb{C}^m|n}|_U) \to \mathbb{C}^{m|n}$ define

$$
||\varphi||_U := \sum_{i=1}^m ||\varphi^*(z_i)||_U + \sum_{j=1}^n ||\varphi^*(\xi_j)||_U.
$$

Lemma 9 *Let* $U = (U, \mathcal{O}_{\mathbb{C}^{m|n}}|_U)$ *be a superdomain in* $\mathbb{C}^{m|n}$ *. For any relatively compact open subset U' of U there exists* $\varepsilon > 0$ *such that any morphism* $\psi : \mathcal{U} \to \mathbb{C}^{m|n}$ *with the property* $||\psi - id||_U < \varepsilon$ *is biholomorphic as a morphism from* $\mathcal{U}' = (U', \mathcal{O}_{\mathbb{C}^{m|n}}|_{U'})$ *onto its image.*

Proof Let $r > 0$ such that the closure of the polydisc

$$
\Delta_r^n(z) = \{(w_1, \ldots, w_m) | |w_j - z_j| < r\}
$$

is contained in *U* for any $z = (z_1, \ldots, z_m) \in U'$. Let $v \in \mathbb{C}^m$ be any non-zero vector. Then we have $z + \zeta v \in U$ for any $z \in U'$ and ζ in the closure of $\Delta_{\frac{r}{||v||}}(0) = \{t \in \mathbb{C} \mid |t| < \frac{r}{||v||}\}.$ If for given $\varepsilon > 0$ it is $||\psi - id||_U < \varepsilon$ then we have in particular $||\tilde{\psi} - id||_U < \varepsilon$ for the supremum norm of the underlying maps $\tilde{\psi}$, id : $U \to \mathbb{C}^m$. Then, for the differential $D\tilde{\psi}$ of $\tilde{\psi}$ and any non-zero vector $v \in \mathbb{C}^m$ and any $z \in U'$ we have

$$
\left| \left| D\tilde{\psi}(z)(v) - v \right| \right| = \left| \left| \frac{d}{dt} \left(\tilde{\psi}(z + tv) - (z + tv) \right) \right| \right|
$$

\n
$$
= \frac{1}{2\pi} \left| \left| \int_{\partial \Delta} \frac{\tilde{\psi}(z + \zeta v) - (z + \zeta v)}{\zeta^2} d\zeta \right| \right|
$$

\n
$$
\leq \frac{1}{2\pi} \int_{\partial \Delta} \Big|_{\frac{r}{\|v\|}(0)} \left| \left| \frac{\tilde{\psi}(z + \zeta v) - (z + \zeta v)}{\zeta^2} \right| \right| d\zeta
$$

\n
$$
< \frac{\varepsilon ||v||}{r}.
$$

This implies $||D\tilde{\psi}(z) - id|| < \frac{\varepsilon}{r}$ with respect to the operator norm, for any $z \in U'$. Thus $\tilde{\psi}$ is locally biholomorphic on *U'* if ε is small enough. Moreover, ε might now be chosen such that $\bar{\psi}$ is injective (see e.g. [\[13\]](#page-25-15), Chapter 2, Lemma 1.3).

Let $\psi_{j,k}, \psi_{j,\nu}$ be holomorphic functions on *U* such that $\psi^*(\xi_j) = \sum_{k=1}^n \psi_{j,k} \xi_k$ + $\sum_{||v|| \ge 3} \psi_{j,v} \xi^v$. By Remark [6](#page-5-1) it is now enough to show

$$
\det((\psi_{j,k})_{1\leq j,k\leq n}(z))\neq 0
$$

for all $z \in U'$ and ε small enough in order to prove that ψ is a biholomorphism form \mathcal{U}' onto its image. This follows from the fact that we assumed, via $||\psi - id||_U < \varepsilon$, that $||\psi_{j,k}||_U < \varepsilon$
if $j \neq k$ and $||\psi_{j,k} - 1||_U < \varepsilon$. if $j \neq k$ and $||\psi_{j,j} - 1||_U < \varepsilon$.

This lemma now allows us to prove that $Aut_{\bar{0}}(\mathcal{M})$ contains no small subgroups; for a similar result in the classical case see [\[5](#page-25-16)], Theorem 1.

Proposition 10 *The topological group* $Aut_{\bar{0}}(\mathcal{M})$ *has no small subgroups, i.e. there is a neighbourhood of the identity which contains no non-trivial subgroup.*

Proof Let $U \subset V \subset W$ be open subsets of M such that U is relatively compact in V and *V* is relatively compact in *W*. Suppose that $W = (W, \mathcal{O}_M|_W)$ is isomorphic to a superdomain in $\mathbb{C}^{m|n}$ and let $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ be local coordinates on *W*. By definition $\Delta(\overline{V}, W) = \{ \varphi \in \text{Aut}_{\overline{0}}(\mathcal{M}) | \tilde{\varphi}(\overline{V}) \subseteq W \}$ and $\Delta(\overline{U}, V)$ are open neighbourhoods of the identity in Aut_o (M) . Choose $\varepsilon > 0$ as in the preceding lemma such that any morphism $\chi : \mathcal{V} \to \mathbb{C}^{m|n}$ with $||\chi - id||_V < \varepsilon$ is biholomorphic as a morphism from \mathcal{U} onto its image. Let $\Omega \subseteq \Delta(\overline{V}, W) \cap \Delta(\overline{U}, V)$ be the subset whose elements φ satisfy $||\varphi - id||_V < \varepsilon$. The set Ω is open and contains the identity. Since Aut₀ (\mathcal{M}) is locally compact by Lemma [5,](#page-5-0) it is enough to show that each compact subgroup $Q \subseteq \Omega$ is trivial. Otherwise for non-compact Q, let Ω' be an open neighbourhood of the identity with compact closure $\overline{\Omega}'$ which is contained in Ω , and suppose $Q \subseteq \Omega'$. Then $\overline{Q} \subseteq \overline{\Omega}' \subset \Omega$ is a compact subgroup, and Q is trivial if \overline{O} is trivial.

Define a morphism $\psi : \mathcal{V} \to \mathbb{C}^{m|n}$ by setting

$$
\psi^*(z_i) = \int_Q q^*(z_i) dq
$$
 and $\psi^*(\xi_j) = \int_Q q^*(\xi_j) dq$,

where the integral is taken with respect to the normalized Haar measure on *Q*. This yields a holomorphic morphism $\psi : \mathcal{V} \to \mathbb{C}^{m|n}$ since each $q \in \mathcal{Q}$ defines a holomorphic morphism $V \to W \subseteq \mathbb{C}^{m|n}$. Its underlying map is $\tilde{\psi}(z) = \int_{Q} \tilde{q}(z) dq$. The morphism ψ satisfies

$$
||\psi^*(z_i) - z_i||_V = \left|\left|\int_Q (q^*(z_i) - z_i) \, dq \right|\right|_V \le \int_Q ||q^*(z_i) - z_i||_V \, dq
$$

and similarly

$$
||\psi^*(\xi_j) - \xi_j||_V \le \int_{Q} ||q^*(\xi_j) - \xi_j||_V \, dq.
$$

Consequently, we have

$$
||\psi - id||_V = \sum_{i=1}^m ||\psi^*(z_i) - z_i||_V + \sum_{j=1}^n ||\psi^*(\xi_j) - \xi_j||_V
$$

\n
$$
\leq \int_Q \left(\sum_{i=1}^m ||q^*(z_i) - z_i||_V + \sum_{j=1}^n ||q^*(\xi_j) - \xi_j||_V \right) dq
$$

\n
$$
= \int_Q ||q - id||_V dq < \varepsilon.
$$

Thus by the preceding lemma, $\psi|_U$ is a biholomorphic morphism onto its image. Furthermore, on *U* we have $\psi \circ q' = \psi$ for any $q' \in Q$ since

$$
(\psi \circ q')^*(z_i) = (q')^*(\psi^*(z_i)) = (q')^*\left(\int_Q q^*(z_i) \, dq\right) = \int_Q (q')^*(q^*(z_i)) \, dq
$$
\n
$$
= \int_Q (q \circ q')^*(z_i) \, dq = \int_Q q^*(z_i) \, dq = \psi^*(z_i)
$$

 \mathcal{L} Springer

due to the invariance of the Haar measure, and also

$$
(\psi \circ q')^*(\xi_j) = \psi^*(\xi_j).
$$

The equality $\psi \circ q' = \psi$ on *U* implies $q'|_U = id_U$ because of the invertibility of ψ . By the identity principle it follows that $q' = id_M$ if *M* is connected, and hence $Q = {id_M}$.

In general, *M* has only finitely many connected components since *M* is compact. Therefore, a repetition of the preceding argument yields the existence of a neighbourhood of the identity of $Aut_{\bar{0}}(\mathcal{M})$ without any non-trivial subgroups.

By Theorem 3 in [\[25\]](#page-25-2), the preceding proposition implies the following:

Corollary 11 *The topological group Aut*₀ (M) *can be endowed with the structure of a real Lie group.*

5 One-parameter subgroups of $Aut_{\overline{\mathfrak{a}}}(\mathcal{M})$

In order to obtain results on the regularity of the action of $Aut_{\bar{0}}(\mathcal{M})$ on the compact complex supermanifold M and to characterize the Lie algebra of Aut_{$\bar{0}(M)$, we study continuous one-} parameter subgroups of Aut₀ (M) . Each continuous one-parameter subgroup $\mathbb{R} \to \text{Aut}_{0}(M)$ is an analytic map between the Lie groups $\mathbb R$ and $\text{Aut}_{\bar{0}}(\mathcal{M})$.

We prove that the action of each continuous one-parameter subgroup of $\text{Aut}_{\bar{0}}(\mathcal{M})$ on \mathcal{M} is analytic and induces an even holomorphic super vector field on *M*. Consequently, the Lie algebra of Aut_{$\bar{0}$}(*M*) may be identified with the Lie algebra Vec_{$\bar{0}$}(*M*) of even holomorphic super vector fields on M , and $Aut_{\bar{0}}(M)$ carries the structure of a complex Lie group whose action on the supermanifold *M* is holomorphic.

Definition 1 A continuous one-parameter subgroup φ of automorphisms of \mathcal{M} is a family of automorphisms $\varphi_t : \mathcal{M} \to \mathcal{M}$, $t \in \mathbb{R}$, such that the map $\varphi : \mathbb{R} \to \text{Aut}_{\bar{0}}(\mathcal{M})$, $t \mapsto \varphi_t$, is a continuous group homomorphism.

Remark 12 Let $\varphi_t : \mathcal{M} \to \mathcal{M}, t \in \mathbb{R}$, be a family of automorphisms satisfying $\varphi_{s+t} = \varphi_s \circ \varphi_t$ for all $s, t \in \mathbb{R}$, and such that $\tilde{\varphi}: \mathbb{R} \times M \to M$, $\tilde{\varphi}(t, p) = \tilde{\varphi}_t(p)$ is continuous. Then φ_t is a continuous one-parameter subgroup if and only if the following condition is satisfied: Let *U*, *V* ⊂ *M* be open subsets, and $[a, b]$ ⊂ ℝ such that $\tilde{\varphi}([a, b] \times U) \subseteq V$. Assume moreover that there are local coordinates $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ for *M* on *U*. Then for any $f \in \mathcal{O}_\mathcal{M}(V)$ there are continuous functions $f_v : [a, b] \times U \to \mathbb{C}$ with $(f_v)_t = f_v(t, \cdot) \in \mathcal{O}_\mathcal{M}(U)$ for fixed $t \in [a, b]$ such that

$$
(\varphi_t)^*(f) = \sum_{\nu} f_{\nu}(t,z)\xi^{\nu}.
$$

We say that the action of the one-parameter subgroup φ on *M* is analytic if each $f_v(t, z)$ is analytic in both components.

This equivalent characterization of continuous one-parameter subgroups of automorphisms also allows us to define this notion for non-compact complex supermanifolds.

Proposition 13 Let φ be a continuous one-parameter subgroup of automorphisms on M. *Then the action of* φ *on* M *is analytic.*

Remark 14 The statement of Proposition [13](#page-10-1) also holds true for complex supermanifolds *M* with non-compact underlying manifold *M* as compactness of *M* is not needed for the proof. For the proof of the proposition the following technical lemma is needed:

Lemma 15 *Let* $U ⊆ V ⊆ C^m$ *be open subsets,* $p ∈ U$, $\Omega ⊆ \mathbb{R}$ *an open connected neighbourhood of* 0*, and let* α : $\Omega \times U \rightarrow V$ *be a continuous map satisfying*

$$
\alpha(t, z) = \alpha(t + s, z) - f(t, s, z)
$$

for (*t*,*s*,*z*) *in a neighbourhood of* (0, 0, *p*) *and for some continuous function f which is analytic in* (*t*,*z*)*. If* α *is holomorphic in the second component, then it is analytic on a neighbourhood of* (0, *p*)*.*

Proof For small $t, h > 0$, *z* near *p*, we have

$$
h \cdot \alpha(t, z) = \int_0^h \alpha(t + s, z) ds - \int_0^h f(t, s, z) ds
$$

=
$$
\int_t^{h+t} \alpha(s, z) ds - \int_0^h \alpha(s, z) ds - \int_0^h (f(t, s, z) - \alpha(s, z)) ds
$$

=
$$
\int_h^{h+t} \alpha(s, z) ds - \int_0^t \alpha(s, z) ds - \int_0^h (f(t, s, z) - \alpha(s, z)) ds
$$

=
$$
\int_0^t (\alpha(s + h, z) - \alpha(s, z)) ds - \int_0^h (f(t, s, z) - \alpha(s, z)) ds
$$

=
$$
\int_0^t f(s, h, z) ds - \int_0^h (f(t, s, z) - \alpha(s, z)) ds.
$$

The assumption that f is a continuous function which is analytic in the first and third component therefore implies that α is analytic. \Box

Proof (of Proposition [13\)](#page-10-1) Due to the action property $\varphi_{s+t} = \varphi_s \circ \varphi_t$ it is enough to show the statement for the restriction of φ to ($-\varepsilon$, ε) × *M* for some $\varepsilon > 0$. Let *U*, *V* $\subset M$ be open subsets such that *U* is relatively compact in *V*, and such that there are local coordinates $z_1, \ldots, z_m, \xi_1, \ldots, \xi_n$ on *V* for *M*. Choose $\varepsilon > 0$ such that $\tilde{\varphi}_t(U) \subseteq V$ for any $t \in (-\varepsilon, \varepsilon)$. Let $\alpha_{i, \nu}, \beta_{j, \nu}$ be continuous functions on ($-\varepsilon, \varepsilon$) × *U* with

$$
(\varphi_t)^*(z_i) = \sum_{|\nu|=0} \alpha_{i,\nu}(t,z) \xi^{\nu}
$$

and

$$
(\varphi_t)^*(\xi_j) = \sum_{|\nu|=1} \beta_{j,\nu}(t,z) \xi^{\nu},
$$

where $|v| = |(v_1, \ldots, v_n)| = (v_1 + \ldots + v_n) \mod 2 \in \mathbb{Z}_2$. We have to show that α and β are analytic in (t, z) . The induced map $\psi' : (-\varepsilon, \varepsilon) \times U \times \mathbb{C}^n \to V \times \mathbb{C}^n$ on the underlying vector bundle is given by

$$
\begin{pmatrix} z_1 \\ \vdots \\ z_m \\ v_1 \\ \vdots \\ v_n \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{1,0}(t,z) \\ \vdots \\ \alpha_{m,0}(t,z) \\ \sum_{k=1}^n \beta_{1,k}(t,z) v_k \\ \vdots \\ \sum_{k=1}^n \beta_{n,k}(t,z) v_k \end{pmatrix}
$$

,

 \circledcirc Springer

where $\beta_{i,k} = \beta_{i,e_k}$ if $e_k = (0, \ldots, 0, 1, 0, \ldots, 0)$ denotes the *k*-th unit vector. The map ψ' is a local continuous one-parameter subgroup on $U \times \mathbb{C}^n$ because φ is a continuous oneparameter subgroup. By a result of Bochner and Montgomery the map ψ' is analytic in (t, z, v) (see [\[4\]](#page-25-17), Theorem 4). Hence, the map ψ : $(-\varepsilon, \varepsilon) \times \mathcal{U} \to \mathcal{V}$ given by $(\psi_t)^*(z_i) = \alpha_i(t, z)$, $(\psi_t)^*(\xi_j) = \sum_{k=1}^n \beta_{j,k}(t, z) \xi_k$ is analytic. Let *X* be the local vector field on *U* induced by ψ , i.e.

$$
X(f) = \frac{\partial}{\partial t}\bigg|_0 (\psi_t)^*(f).
$$

We may assume that *X* is non-degenerate, i.e. the evaluation of *X* in *p*, $X(p)$, does not vanish for all $p \in U$. Otherwise, consider, instead of φ , the diagonal action on $\mathbb{C} \times \mathcal{M}$ acting by addition of *t* in the first component and φ_t in the second, and note that this action is analytic precisely if φ is analytic. For the differential $d\psi$ of ψ in $(0, p)$ we have

$$
d\psi\left(\left.\frac{\partial}{\partial t}\right|_{(0,p)}\right) = \left.\frac{\partial}{\partial t}\right|_{(0,p)} \circ \psi^* = X(p) \neq 0.
$$

Therefore, the restricted map $\psi|_{(-\varepsilon,\varepsilon)\times\{p\}}$ is an immersion and its image $\psi((-\varepsilon,\varepsilon)\times\{p\})$ is a subsupermanifold of *V*. Let *S* be a subsupermanifold of *U* transversal to $\psi((-\varepsilon,\varepsilon) \times \{p\})$ in *p*. The map $\psi|_{(-\varepsilon,\varepsilon)\times\mathcal{S}}$ is a submersion in $(0, p)$ since $d\psi(T_{(0,p)}(-\varepsilon,\varepsilon)\times\{p\})=$ $T_p\psi((-\varepsilon,\varepsilon) \times \{p\})$ and $d\psi(T_{(0,p)}\{0\} \times S) = T_pS$ because $\psi|_{\{0\} \times \mathcal{U}} = id$. Hence $\chi :=$ $\psi|_{(-\varepsilon,\varepsilon)\times\mathcal{S}}$ is locally invertible around $(0, p)$, and thus invertible as a map onto its image after possibly shrinking U and ε , and

$$
\chi_*\left(\frac{\partial}{\partial t}\right) = (\chi^{-1})^* \circ \frac{\partial}{\partial t} \circ \chi^* = (\chi^{-1})^* \circ \chi^* \circ X = X.
$$

Therefore, after defining new coordinates $w_1, \ldots, w_m, \theta_1, \ldots, \theta_n$ for *M* on *U* via χ , we have $X = \frac{\partial}{\partial w_1}$ and $(\varphi_t)^*$ is of the form

$$
(\varphi_t)^*(w_1) = w_1 + t + \sum_{|v|=0, v \neq 0} \alpha_{1,v}(t, w)\theta^v,
$$

$$
(\varphi_t)^*(w_i) = w_i + \sum_{|v|=0, v \neq 0} \alpha_{i,v}(t, w)\theta^v \text{ for } i \neq 1,
$$

$$
(\varphi_t)^*(\theta_j) = \theta_j + \sum_{|v|=1, ||v|| \neq 1} \beta_{j,v}(t, w)\theta^v,
$$

for appropriate $\alpha_{i, \nu}, \beta_{j, \nu}$, where $||\nu|| = ||(\nu_1, \ldots, \nu_n)|| = \nu_1 + \cdots + \nu_n$. For small *s* and *t* we have

$$
\varphi_t^* \left(\varphi_s^* (w_i) \right) = \varphi_t^* \left(w_i + \delta_{1,i} s + \sum_{|v|=0, ||v|| \neq 0} \alpha_{i,v}(s, w) \theta^v \right)
$$

= $w_i + \delta_{i,1}(t + s) + \sum_{|v|=0, ||v|| \neq 0} \alpha_{i,v}(t, w) \theta^v + \sum_{|v|=0, ||v|| \neq 0} \varphi_t^* (\alpha_{i,v}(s, w) \theta^v).$ (1)

Let $f_{i,v}(t,s,w)$ be such that

$$
\sum_{|\nu|=0,||\nu||\neq 0} \varphi_t^*(\alpha_{i,\nu}(s,w)\theta^{\nu}) = \sum_{|\nu|=0,||\nu||\neq 0} f_{i,\nu}(t,s,w)\theta^{\nu}.
$$
 (2)

 $\circled{2}$ Springer

For fixed v_0 the coefficient $f_{i,v_0}(t,s,w)$ of θ^{v_0} depends only on $\alpha_{i,v_0}(s,w+t_{e_1}), \beta_{i,\mu}(t,w)$ for μ with $||\mu|| \le ||v_0|| - 1$, and $\alpha_{i, \nu}(t, w)$ and its partial derivatives in the second component for ν with $||v|| \le ||v_0|| - 2$. This can be shown by a calculation using the special form of $\varphi_t^*(w_j)$ and $\varphi_t^*(\theta_j)$ and general properties of the pullback of a morphism of supermanifolds. Assume now that the analyticity near $(0, p)$ of $\alpha_{i, \nu}, \beta_{i, \mu}$ is shown for $||\nu||, ||\mu|| < 2k$ and all *i*, *j*. Let v_0 be such that $||v_0|| = 2k$. Then $f_{i,v_0}(t, s, w)$ is a continuous function which is analytic in (t, w) near $(0, p)$ for fixed s. Since $\varphi_t^*(\varphi_s^*(w_i)) = \varphi_{t+s}^*(w_i)$, using [\(1\)](#page-12-0) and [\(2\)](#page-12-1) we get

$$
\alpha_{i,\nu_0}(t,w)+f_{i,\nu_0}(t,s,w)=\alpha_{i,\nu_0}(t+s,w),
$$

and thus $\alpha_{i, v_0}(t, w)$ is analytic near $(0, p)$ by Lemma [15.](#page-11-0) Similarly, it can be shown that β_{i,μ_0} is analytic for $||\mu_0|| = 2k + 1$ if $\alpha_{i,\nu}, \beta_{i,\mu}$ for $||\nu||, ||\mu|| < 2k + 1$.

Corollary 16 *The Lie algebra of* $Aut_{0}(\mathcal{M})$ *is isomorphic to the Lie algebra* Vec₀ (\mathcal{M}) *of even super vector fields on M, and* $Aut_{\overline{0}}(M)$ *is a complex Lie group.*

Proof If $\gamma : \mathbb{R} \to \text{Aut}_{0}(\mathcal{M}), t \mapsto \gamma_{t}$ is a continuous one-parameter subgroup, then by Proposition [13](#page-10-1) the action of φ on *M* is analytic. Therefore, γ induces an even holomorphic super vector field $X(y)$ on M by setting

$$
X(\gamma) = \frac{\partial}{\partial t}\bigg|_0 (\gamma_t)^*,
$$

and γ is the flow map of $X(\gamma)$. On the other hand, since *M* is compact, the underlying vector field of each $X \in \text{Vec}_{0}(\mathcal{M})$ is globally integrable and the proof of Theorem 5.4 in [\[12](#page-25-18)] then shows that *X* is also globally integrable. Its flow defines a one-parameter subgroup γ^X of Aut_{$\bar{0}$}(*M*), which is continuous. This yields an isomorphism of Lie algebras

$$
Lie(Aut_{\bar{0}}(\mathcal{M})) \to \text{Vec}_{\bar{0}}(\mathcal{M}).
$$

Consequently, we have Lie(Aut₀̃(*M*)) ≅ Vec₀[′](*M*) and since Vec₀[′](*M*) is a complex Lie algebra. Aut₀[′](*M*) carries the structure of a complex Lie group. algebra, $Aut_{\overline{0}}(\mathcal{M})$ carries the structure of a complex Lie group.

The Lie group Aut₀(*M*) naturally acts on *M*; this action ψ : Aut₀(*M*) \times *M* \rightarrow *M* is given by $ev_{\rho} \circ \psi^* = g^*$ where ev_{ρ} denotes the evaluation in $g \in Aut_{\bar{0}}(\mathcal{M})$ in the first component.

Corollary 17 *The natural action of* $Aut_{\bar{0}}(\mathcal{M})$ *on* \mathcal{M} *defines a holomorphic morphism of* $supermanifolds \psi: \text{Aut}_{0}(\mathcal{M}) \times \mathcal{M} \rightarrow \mathcal{M}.$

Proof Since the action of each continuous one-parameter subgroup of Aut₀ (M) on M is holomorphic by the preceding considerations, and each $g \in Aut_{\bar{0}}(\mathcal{M})$ is a biholomorphic morphism $g : \mathcal{M} \to \mathcal{M}$, the action ψ is a holomorphic.

If a Lie supergroup *^G* (with Lie superalgebra ^g of right-invariant super vector fields) acts on a supermanifold *M* via ψ : $\mathcal{G} \times \mathcal{M} \to \mathcal{M}$, this action ψ induces an infinitesimal action $d\psi : \mathfrak{g} \to \text{Vec}(\mathcal{M})$ defined by $d\psi(X) = (X(e) \otimes id_{\mathcal{M}}^*) \circ \psi^*$ for any $X \in \mathfrak{g}$, where $X \otimes id_{\mathcal{M}}^*$ denotes the canonical extension of the vector field *X* on *G* to a vector field on $G \times M$ are denotes the canonical extension of the vector field *X* on *G* to a vector field on $G \times M$, and $(X(e) \otimes id^*_{\mathcal{M}})$ is its evaluation in the neutral element *e* of *G*.

Corollary 18 *Identifying the Lie algebra of* Aut₀^{(M)} *with* Vec₀^{(M)} *as in Corollary* [16](#page-13-0)*, the induced infinitesimal action of the action* ψ : Aut₀ $(\mathcal{M}) \times \mathcal{M} \rightarrow \mathcal{M}$ *in Corollary* [17](#page-13-1) *is the inclusion* $Vec_{\overline{0}}(\mathcal{M}) \hookrightarrow Vec(\mathcal{M})$.

6 The Lie superalgebra of vector fields

In this section, we prove that the Lie superalgebra $Vec(\mathcal{M})$ of holomorphic super vector fields on a compact complex supermanifold *M* is finite-dimensional.

First, we prove that Vec(\mathcal{M}) is finite-dimensional if $\mathcal M$ is a split supermanifold using that its tangent sheaf T_M is a coherent sheaf of \mathcal{O}_M -modules, where \mathcal{O}_M denotes again the sheaf of holomorphic functions on the underlying manifold *M*. Then the statement in the general case is deduced using a filtration of the tangent sheaf.

Remark that since $Aut_{\bar{0}}(\mathcal{M})$ is a complex Lie group with Lie algebra isomorphic to the Lie algebra Vec_o (\mathcal{M}) of even holomorphic super vector fields on \mathcal{M} (see Corollary [16\)](#page-13-0), we already know that the even part of Vec(\mathcal{M}) = Vec_{$\bar{0}$} $(\mathcal{M}) \oplus$ Vec₁ (\mathcal{M}) is finite-dimensional.

Lemma 19 Let M be a split complex supermanifold. Then its tangent sheaf T_M is a coherent *sheaf of O^M -modules.*

Proof Since *M* is split, its structure sheaf O_M is isomorphic to $\bigwedge \mathcal{E}$ as an O_M -module, where $\mathcal E$ is the sheaf of sections of a holomorphic vector bundle on the underlying manifold *M*. Thus, the structure sheaf *OM*, and hence also the tangent sheaf *TM*, carry the structure of a sheaf of \mathcal{O}_M -modules. Let $U \subset M$ be an open subset such that there exist even coordinates z_1, \ldots, z_m and odd coordinates ξ_1, \ldots, ξ_n . Any derivation $D \in \mathcal{T}_M(U)$ on *U* can uniquely be written as

$$
D = \sum_{v \in (\mathbb{Z}_2)^n} \left(\sum_{i=1}^m f_{i,v}(z) \xi^v \frac{\partial}{\partial z_i} + \sum_{j=1}^n g_{j,v}(z) \xi^v \frac{\partial}{\partial \xi_j} \right)
$$

where $f_{i, \nu}$, $g_{j, \nu}$ are holomorphic functions on *U*. Therefore, the restricted sheaf $\mathcal{T}_{M}|_{U}$ is isomorphic to $(\mathcal{O}_{M}|_{U})^{2^{n}(m+n)}$ and \mathcal{T}_{M} is coherent over \mathcal{O}_{M} isomorphic to $(\mathcal{O}_M|_U)^{2^n(m+n)}$ and \mathcal{T}_M is coherent over \mathcal{O}_M .

Proposition 20 *The Lie superalgebra* Vec(*M*) *of holomorphic super vector fields on a compact complex supermanifold M is finite-dimensional.*

Proof First, assume that *M* is split. Then the tangent sheaf T_M is a coherent sheaf of \mathcal{O}_M modules. Thus, the space of global sections of \mathcal{T}_M , Vec(\mathcal{M}) = $\mathcal{T}_M(M)$, is finite-dimensional since *M* is compact (cf. [\[9\]](#page-25-19)).

Now, let M be an arbitrary compact complex supermanifold. We associate the split complex supermanifold gr $M = (M, \text{gr } \mathcal{O}_M)$ as described in Section [2.](#page-3-0) Let \mathcal{I}_M denote as before the subsheaf of ideal in O_M generated by the odd elements. Define the filtration of sheaves of Lie superalgebras

$$
\mathcal{T}_{\mathcal{M}} =: (\mathcal{T}_{\mathcal{M}})_{(-1)} \supset (\mathcal{T}_{\mathcal{M}})_{(0)} \supset (\mathcal{T}_{\mathcal{M}})_{(1)} \supset \cdots \supset (\mathcal{T}_{\mathcal{M}})_{(n+1)} = 0
$$

of the tangent sheaf *T^M* by setting

$$
(\mathcal{T}_{\mathcal{M}})_{(k)} = \{ D \in \mathcal{T}_{\mathcal{M}} \mid D(\mathcal{O}_{\mathcal{M}}) \subset (\mathcal{I}_{\mathcal{M}})^{k}, \ D(\mathcal{I}_{\mathcal{M}}) \subset (\mathcal{I}_{\mathcal{M}})^{k+1} \}
$$

for $k \geq 0$. Moreover, define $gr_k(\mathcal{T}_M) = (\mathcal{T}_M)_{(k)}/(\mathcal{T}_M)_{(k+1)}$ and set

$$
\operatorname{gr}(T_{\mathcal{M}}) = \bigoplus_{k \ge -1} \operatorname{gr}_k(T_{\mathcal{M}}).
$$

By [\[19\]](#page-25-10), Proposition 1, the sheaf $gr(\mathcal{I}_{\mathcal{M}})$ is isomorphic to the tangent sheaf of the associated split supermanifold gr*M*. By the preceding considerations, the space of holomorphic super vector fields on gr*M*,

$$
\text{Vec}(\text{gr}\,\mathcal{M}) = \text{gr}(T_{\mathcal{M}})(M) = \bigoplus_{k \ge -1} \text{gr}_k(T_{\mathcal{M}})(M),
$$

is of finite dimension. The projection onto the quotient yields

$$
\dim(\mathcal{T}_{\mathcal{M}})_{(k)}(M) - \dim(\mathcal{T}_{\mathcal{M}})_{(k+1)}(M) \le \dim(\text{gr}_k(\mathcal{T}_{\mathcal{M}})(M))
$$

and dim $(\mathcal{T}_{\mathcal{M}})_{(n)}(M) = \dim(\text{gr}_n(\mathcal{T}_{\mathcal{M}})(M))$ and hence by induction

$$
\dim(\mathcal{T}_{\mathcal{M}})_{(k)}(M) \leq \sum_{j \geq k} \dim(\text{gr}_j(\mathcal{T}_{\mathcal{M}})(M)),
$$

which gives

$$
\dim(\mathcal{T}_{\mathcal{M}}(M)) = \dim\left((\mathcal{T}_{\mathcal{M}})_{(-1)}(M)\right) \leq \dim\left(\mathrm{gr}(\mathcal{T}_{\mathcal{M}})(M)\right).
$$

In particular, dim $(\mathcal{T}_{\mathcal{M}}(M))$ is finite.

Remark 21 The proof of the preceding proposition also shows the following inequality:

$$
\dim(\text{Vec}(\mathcal{M})) \leq \dim(\text{Vec}(gr\,\mathcal{M}))
$$

7 The automorphism group

In this section, the automorphism group of a compact complex supermanifold is defined. This is done via the formalism of Harish-Chandra pairs for complex Lie supergroups (cf. [\[24](#page-25-1)]). The underlying classical Lie group is $Aut_{\bar{0}}(\mathcal{M})$ and the Lie superalgebra is Vec(\mathcal{M}), the Lie superalgebra of super vector fields on *M*. Moreover, we prove that the automorphism group satisfies a universal property.

Consider the representation α of Aut₀(\mathcal{M}) on Vec(\mathcal{M}) given by

$$
\alpha(g)(X) = g_*(X) = (g^{-1})^* \circ X \circ g^* \quad \text{for} \quad g \in \text{Aut}_{\bar{0}}(\mathcal{M}), \ X \in \text{Vec}(\mathcal{M}).
$$

This representation α preserves the parity on Vec(\mathcal{M}), and its restriction to Vec₀(\mathcal{M}) coincides with the adjoint action of Aut_{$\bar{0}$} (\mathcal{M}) on its Lie algebra Lie(Aut_{$\bar{0}$} $(\mathcal{M}) \cong \text{Vec}_{\bar{0}}(\mathcal{M})$. Moreover, the differential $(d\alpha)_{id}$ at the identity id \in Aut_o (\mathcal{M}) is the adjoint representation of $Vec_{0}(\mathcal{M})$ on $Vec(\mathcal{M})$:

Let *X* and *Y* be super vector fields on *M*. Assume that *X* is even and let φ^X denote the corresponding one-parameter subgroup. Then we have

$$
(d\alpha)_{\text{id}}(X)(Y) = \frac{\partial}{\partial t}\bigg|_{0} (\varphi_{t}^{X})_{*}(Y) = [X, Y];
$$

see e.g. [\[2](#page-25-20)], Corollary 3.8. Therefore, the pair $(Aut_{\bar{0}}(\mathcal{M}), \text{Vec}(\mathcal{M}))$ together with the representation α is a complex Harish-Chandra pair, and using the equivalence between the category of complex Harish-Chandra pairs and complex Lie supergroups (cf. [\[24](#page-25-1)], § 2), we can define the automorphism group of a compact complex supermanifold *M* as follows:

Definition 2 Define the automorphism group Aut(*M*) of a compact complex supermanifold to be the unique complex Lie supergroup associated with the Harish-Chandra pair $(Aut_{\overline{0}}(\mathcal{M}), \text{Vec}(\mathcal{M}))$ with adjoint representation α .

Since the action ψ : Aut_o $(\mathcal{M}) \times \mathcal{M} \rightarrow \mathcal{M}$ induces the inclusion Vec_o $(\mathcal{M}) \hookrightarrow$ Vec(M) as infinitesimal action (see Corollary [18\)](#page-13-2), there exists a Lie supergroup action Ψ : Aut $(M) \times M \rightarrow M$ with the identity Vec $(M) \rightarrow \text{Vec}(M)$ as induced infinitesimal action and $\Psi|_{\text{Aut}_{\bar{\phi}}(\mathcal{M})\times\mathcal{M}} = \psi$ (cf. Theorem 5.35 in [\[2\]](#page-25-20)).

The automorphism group together with Ψ satisfies a universal property:

Theorem 22 Let G be a complex Lie supergroup with a holomorphic action Ψ_G : $G \times M \rightarrow$ *M. Then there is a unique morphism* σ : $\mathcal{G} \rightarrow \text{Aut}(\mathcal{M})$ *of Lie supergroups such that the diagram*

is commutative.

Proof Let *G* be the underlying Lie group of *G*. For each $g \in G$, we have a morphism $\Psi_G(g)$: *M* → *M* by setting $(\Psi_{G}(g))^{*} = \text{ev}_{g} \circ (\Psi_{G})^{*}$. This morphism $\Psi_{G}(g)$ is an automorphism of *M* with inverse $\Psi_G(g^{-1})$ and gives rise to a group homomorphism $\tilde{\sigma}: G \to \text{Aut}_{\bar{0}}(\mathcal{M})$, $g \mapsto \Psi_G(g)$.

Let g denote the Lie superalgebra (of right-invariant super vector fields) of G , and $d\Psi_G$: $g \to \text{Vec}(\mathcal{M})$ the infinitesimal action induced by $\Psi_{\mathcal{G}}$. The restriction of $d\Psi_{\mathcal{G}}$ to the even part $\mathfrak{g}_{\overline{0}} = \text{Lie}(G)$ of $\mathfrak g$ coincides with the differential $(d\tilde{\sigma})_e$ of $\tilde{\sigma}$ at the identity $e \in G$.

Moreover, if α_G denotes the adjoint action of *G* on g, and α denotes, as before, the adjoint action of $Aut_{\overline{0}}(\mathcal{M})$ on Vec(\mathcal{M}), we have

$$
d\Psi_{\mathcal{G}}(\alpha_{\mathcal{G}}(g)(X)) = (\Psi_{\mathcal{G}}(g^{-1}))^* \circ d\Psi_{\mathcal{G}}(X) \circ (\Psi_{\mathcal{G}}(g))^*
$$

$$
= (\tilde{\sigma}(g^{-1}))^* \circ d\Psi_{\mathcal{G}}(X) \circ (\tilde{\sigma}(g))^*
$$

$$
= \alpha(\tilde{\sigma}(g))(d\Psi_{\mathcal{G}}(X))
$$

for any $g \in G$, $X \in \mathfrak{g}$. Using the correspondence between Lie supergroups and Harish-Chandra pairs, it follows that there is a unique morphism $\sigma : \mathcal{G} \to \text{Aut}(\mathcal{M})$ of Lie supergroups with underlying map $\tilde{\sigma}$ and derivative $d\Psi_G$: $g \to \text{Vec}(\mathcal{M})$ (see e.g. [\[24\]](#page-25-1), § 2), and σ satisfies $\Psi \circ (\sigma \times id_{\mathcal{M}}) = \Psi_{\mathcal{G}}$.

The uniqueness of σ follows from the fact that each morphism $\tau : \mathcal{G} \to \text{Aut}(\mathcal{M})$ of Lie supergroups fulfilling the same properties as σ necessarily induces the map $d\Psi_G$: $\mathfrak{g} \to \text{Vec}(\mathcal{M})$ on the level of Lie superalgebras and its underlying map $\tilde{\tau}$ has to satisfy $\tilde{\tau}(g) = \Psi_G(g) = \tilde{\sigma}(g).$

Remark 23 Since the morphism σ in Theorem [22](#page-16-0) is unique, the automorphism group of a compact complex supermanifold M is the unique Lie supergroup satisfying the universal property formulated in Theorem [22.](#page-16-0)

Remark 24 We say that a real Lie supergroup G acts on M by holomorphic transformations if the underlying Lie group *G* acts on the complex manifold *M* by holomorphic transformations and if there is a homomorphism of Lie superalgebras $g \rightarrow \text{Vec}(\mathcal{M})$ which is compatible with the action of *G* on *M*. Using the theory of Harish-Chandra pairs, we also have the Lie supergroup $\mathcal{G}^{\mathbb{C}}$, the universal complexification of \mathcal{G} ; see [\[14\]](#page-25-21). The underlying Lie group of $G^{\tilde{C}}$ is the universal complexification $G^{\tilde{C}}$ of the Lie group *G*. Let $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ denote the Lie

superalgebra of *G*, \mathfrak{g}_{0}^{-} the Lie algebra of *G*. Then the Lie algebra $\mathfrak{g}_{0}^{\mathbb{C}}$ of $G^{\mathbb{C}}$ is a quotient of G $\mathfrak{g}_{0}^{\mathbb{C}} \otimes \mathbb{C}$, and the Lie superalgebra of $\mathcal{G}^{\mathbb{C}}$ can be realized as $\mathfrak{g}_{0}^{\mathbb{C}} \oplus (\mathfrak{g}_{1}^{-} \otimes \mathbb{C})$. The action of *G*_o and $\mathfrak{g}_{0}^{\mathbb{C}}$ the supermultiple of G on *M* extends to a holomorphic $G^{\mathbb{C}}$ -action on *M*, and the homomorphism $\mathfrak{g} \to \text{Vec}(\mathcal{M})$ extends to a homomorphism $\mathfrak{g}_0^{\mathbb{C}} \oplus (\mathfrak{g}_{\bar{1}} \otimes \mathbb{C}) \to \text{Vec}(\mathcal{M})$ of complex Lie superalgebras, which is compatible with the $G^{\mathbb{C}}$ -action on *M*. Thus, we have a holomorphic $G^{\mathbb{C}}$ -action on *M* extending the *G*-action. Moreover, there is a morphism $\sigma : G^{\mathbb{C}} \to Aut(M)$ of Lie supergroups as in Theorem [22.](#page-16-0)

Example 25 Let $M = \mathbb{C}^{0|1}$. Denoting the odd coordinate on $\mathbb{C}^{0|1}$ by ξ , each super vector field on $\mathbb{C}^{0|1}$ is of the form $X = a\xi \frac{\partial}{\partial \xi} + b\frac{\partial}{\partial \xi}$ for $a, b \in \mathbb{C}$. The flow $\varphi : \mathbb{C} \times \mathcal{M} \to \mathcal{M}$ of $a\xi \frac{\partial}{\partial \xi}$ is given by $(\varphi_t)^*(\xi) = e^{at}\xi$, and the flow $\psi : \mathbb{C}^{0|1} \times \mathcal{M} \to \mathcal{M}$ of $b \frac{\partial}{\partial \xi}$ by $\psi^*(\xi) = b\tau + \xi$. Let $X_0 = \xi \frac{\partial}{\partial \xi}$ and $X_1 = \frac{\partial}{\partial \xi}$. Then $\text{Vec}(\mathbb{C}^{0|1}) = \mathbb{C}X_0 \oplus \mathbb{C}X_1 = \mathbb{C}^{1|1}$, where the Lie algebra structure on $\mathbb{C}^{1|1}$ is given by $[X_0, X_1] = -X_1$ and $[X_1, X_1] = 0$. Note that this Lie superalgebra is isomorphic to the Lie superalgebra of right-invariant vector fields on the Lie supergroup ($\mathbb{C}^{1|1}$, $\mu_{0,1}$), where the multiplication $\mu = \mu_{0,1}$ is given by $\mu^*(t) = t_1 + t_2$ and $\mu^*(\tau) = \tau_1 + e^{t_1} \tau_2$; for the Lie supergroup structures on $\mathbb{C}^{1|1}$ see e.g. [\[12\]](#page-25-18), Lemma 3.1. In particular, the Lie superalgebra $Vec(\mathbb{C}^{0|1})$ is not abelian.

Since each automorphism φ of $\mathbb{C}^{0|1}$ is given by $\varphi^*(\xi) = c \cdot \xi$ for some $c \in \mathbb{C}$, $c \neq 0$, we have Aut_ō($\mathbb{C}^{0|1}$) ≅ \mathbb{C}^* .

8 The functor of points of the automorphism group

In [\[22](#page-25-5)], the diffeomorphism supergroup of a real compact supermanifold is proven to carry the structure of a Fréchet Lie supergroup. This diffeomorphism supergroup is defined using the "functor of points" approach to supermanifolds, i.e. a supermanifold is a representable contravariant functor from the category of supermanifolds to the category of sets. Starting with a supermanifold*M*we define the corresponding functor Hom(−,*M*) by the assignment $\mathcal{N} \mapsto \text{Hom}(\mathcal{N}, \mathcal{M})$, where Hom $(\mathcal{N}, \mathcal{M})$ denotes the set of morphisms of supermanifolds $N \to M$, and for morphisms $\alpha : \mathcal{N}_1 \to \mathcal{N}_2$ between supermanifolds \mathcal{N}_1 and \mathcal{N}_2 we define Hom(\mathcal{M})(α) : Hom(\mathcal{N}_2 , \mathcal{M}) \rightarrow Hom(\mathcal{N}_1 , \mathcal{M}) by $\varphi \mapsto \varphi \circ \alpha$.

In analogy to the definition in [\[22\]](#page-25-5) for the diffeomorphism supergroup, a functor Aut(*M*) associated with a complex supermanifold M can be defined. In the case of a compact complex supermanifold M , the automorphism Lie supergroup as defined in Section [7](#page-15-1) represents the functor Aut(M), i.e. the functors Aut(M) and Hom(–, Aut(M)) are isomorphic. This is proven in [\[3](#page-25-22)], Section 5.4. Here we give an outline of the main steps in the proof.

Definition 3 Let M be a complex supermanifold. We define the functor $Aut(M)$ from the category of supermanifolds to the category of groups as follows: On objects, we define $\overline{\text{Aut}}(\mathcal{M})$ by the assignment

 $\mathcal{N} \mapsto {\varphi : \mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M} | \varphi}$ is invertible, and $\text{pr}_{\mathcal{N}} \circ \varphi = \text{pr}_{\mathcal{N}}},$

where pr_N : $N \times M \rightarrow N$ is the projection. For morphisms $\alpha : N_1 \rightarrow N_2$, we set $\overline{\text{Aut}}(\mathcal{M})(\alpha): \overline{\text{Aut}}(\mathcal{M})(\mathcal{N}_2) \to \overline{\text{Aut}}(\mathcal{M})(\mathcal{N}_1),$

$$
\varphi \mapsto (\mathrm{id}_{\mathcal{N}_1} \times (\mathrm{pr}_{\mathcal{M}} \circ \varphi \circ (\alpha \times \mathrm{id}_{\mathcal{M}}))) \circ (\mathrm{diag} \times \mathrm{id}_{\mathcal{M}}),
$$

denoting by diag : $\mathcal{N}_1 \to \mathcal{N}_1 \times \mathcal{N}_1$ the diagonal map and by pr \mathcal{M}_1 the projection onto M. Thus $\overline{\text{Aut}}(\mathcal{M})(\alpha)(\varphi)$ is the unique automorphism $\psi : \mathcal{N}_1 \times \mathcal{M} \to \mathcal{N}_1 \times \mathcal{M}$ with pr $\mathcal{N}_1 \circ \psi = \text{pr}_{\mathcal{N}_1}$ and pr_M $\circ \psi =$ pr_M $\circ \varphi \circ (\alpha \times id_{\mathcal{M}})$.

The group structure on $\overline{\text{Aut}}(\mathcal{M})(\mathcal{N})$ is defined by the composition and inversion of automorphisms $N \times M \rightarrow N \times M$, and the neutral element is the identity map $N \times M \rightarrow N \times M$.

Let $\chi : \mathcal{N} \to \text{Aut}(\mathcal{M})$ be an arbitrary morphism of complex supermanifolds and let Ψ : Aut $(M) \times M \rightarrow M$ denote the natural action of Aut (M) on M. Then the composition

$$
\varphi_{\chi} = (\mathrm{id}_{\mathcal{N}} \times (\Psi \circ (\chi \times \mathrm{id}_{\mathcal{M}}))) \circ (\mathrm{diag} \times \mathrm{id}_{\mathcal{M}})
$$

is an invertible map $\mathcal{N} \times \mathcal{M} \to \mathcal{N} \times \mathcal{M}$ with pr_{$\mathcal{N} =$ pr $\mathcal{N} \circ \varphi_{\gamma}$. This defines a natural} transformation:

Lemma 26 *The assignments* Hom(\mathcal{N} , Aut(\mathcal{M})) \rightarrow Aut(\mathcal{M})(\mathcal{N})*,* $\chi \mapsto \varphi_{\chi}$ *, define a natural transformation* Hom $(-, Aut(M)) \rightarrow Aut(M)$.

This statement of the lemma can be verified by direct calculations; see also Lemma 5.4.2 in [\[3\]](#page-25-22).

The natural transformation between $Hom(-, Aut(M))$ and $\overline{Aut}(\mathcal{M})$ is actually an isomorphism of functors. The injectivity of the assignment $\chi \mapsto \varphi_{\chi}$ follows from the fact that the Aut(*M*)-action on *M* is effective. As a generalization of the classical definition of effectiveness, we call an action Ψ of a Lie supergroup $\mathcal G$ on a supermanifold $\mathcal M$ effective if for arbitrary morphisms $\chi_1, \chi_2 : \mathcal{N} \to \mathcal{G}$ of supermanifolds the equality

$$
\Psi \circ (\chi_1 \times \mathrm{id}_{\mathcal{M}}) = \Psi \circ (\chi_2 \times \mathrm{id}_{\mathcal{M}})
$$

implies $\chi_1 = \chi_2$; cf. Section 2.5 in [\[3](#page-25-22)].

In the proof of the surjectivity a "normal form" of the pullback of automorphisms φ : $\mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ with pr_{C0|k} ∘ $\varphi =$ pr_{C0|k} is used. Let \mathcal{M} be a complex supermanifold and φ : $\mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ be an invertible morphism with $\text{pr}_{\mathbb{C}^{0|k}} \circ \varphi = \text{pr}_{\mathbb{C}^{0|k}}$. Let $\iota : \mathcal{M} \hookrightarrow \{0\} \times \mathcal{M} \subset \mathbb{C}^{0|k} \times \mathcal{M}$ denote the canonical inclusion. The composition $\bar{\varphi} = \text{pr}_M \circ \varphi \circ \iota$ is an automorphism of *M*. Then φ is uniquely determined by $\bar{\varphi}$ and a set of super vector fields on *M*:

Lemma 27 *Let* $\varphi : \mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ *be an invertible morphism with* pr_{$\varphi \circ \varphi =$} $pr_{\mathbb{C}^{0|k}}$ *. Let* τ_1,\ldots,τ_k *denote coordinates on* $\mathbb{C}^{0|k} \subset \mathbb{C}^{0|k} \times \mathcal{M}$ *. Then there are super vector fields* X_v *on* M *, of parity* $|v|$ *for* $v \in (\mathbb{Z}_2)^k$, $v \neq 0$ *, such that*

$$
\varphi^* = (\mathrm{id}_{\mathbb{C}^{0|k}} \times \bar{\varphi})^* \exp \left(\sum_{\nu \neq 0} \tau^{\nu} X_{\nu} \right),
$$

By $\tau^{\nu}X_{\nu}$ *we mean the super vector field on* $\mathbb{C}^{0|k} \times \mathcal{M}$ *which is induced by the extension of the super vector field* X_v *on* M *to a super vector field on the product* $\mathbb{C}^{0|k} \times M$ *followed* by the multiplication with $\tau^{\nu} = \tau_1^{\nu_1} \ldots \tau_k^{\nu_k}$. In other words for $U \subseteq M$ open we have $\tau^{\nu}X_{\nu}(f) = 0$ *for* $f \in \mathcal{O}_{\mathbb{C}^{0|k}}(\{0\}) \subset \mathcal{O}_{\mathbb{C}^{0|k} \times \mathcal{M}}(\{0\} \times U)$ *and* $(\tau^{\nu}X_{\nu})(g) = \tau^{\nu}X_{\nu}(g)$ *for* $g \in \mathcal{O}_{\mathcal{M}}(U) \subset \mathcal{O}_{\mathbb{C}^{0|k} \times \mathcal{M}}(\{0\} \times U)$ *considering* $X_{\nu}(g)$ *as a function on the product.*

 $\circled{2}$ Springer

Moreover,

$$
\exp\left(\sum_{\nu\neq 0} \tau^{\nu} X_{\nu}\right) = \sum_{n\geq 0} \frac{1}{n!} \left(\sum_{\nu\neq 0} \tau^{\nu} X_{\nu}\right)^n
$$

is a finite sum since $\left(\sum_{v\neq 0} \tau^v X_v\right)^{k+1} = 0$.

A version of this lemma is also proven in [\[22](#page-25-5)], Theorem 5.1. A different proof using the relation between nilpotent even super vector fields on a supermanifold and morphisms of this supermanifold satisfying a certain nilpotency condition as formulated in Sect. [2](#page-3-0) is also possible; for details see also [\[3\]](#page-25-22), Lemma 5.4.3.

Using the normal form of the lemma, we can prove that the assignment $\chi \mapsto \varphi_{\chi}$ defines a surjective map by directly constructing a morphism χ with $\varphi_{\chi} = \varphi$ for any $\varphi : \mathcal{N} \times \mathcal{M} \rightarrow$ $N \times M$ with pr_N o $\varphi =$ pr_N. It is here enough to prove this statement locally (in N) and thus to consider the case where $\mathcal{N} = N \times \mathbb{C}^{0|k}$ for a classical complex manifold *N*. In the following we indicate how such a morphism χ can be defined; for the proof that χ fulfills the desired property $\varphi_{\chi} = \varphi$ see Proposition 5.4.4 in [\[3](#page-25-22)].

Let φ : $\hat{N} \times \mathbb{C}^{0|k} \times \hat{M} \to N \times \mathbb{C}^{0|k} \times \hat{M}$ be an invertible morphism with pr_{$N \times \mathbb{C}^{0|k} \circ \varphi =$} $pr_{N\times\mathbb{C}^{0|k}}$. Each $z \in N$ induces an invertible morphism $\varphi_z : \mathbb{C}^{0|k} \times \mathcal{M} \to \mathbb{C}^{0|k} \times \mathcal{M}$ with $\operatorname{pr}_{\mathbb{C}^{0|k}} \circ \varphi_z = \operatorname{pr}_{\mathbb{C}^{0|k}}$, and the family $\varphi_z, z \in \mathbb{N}$, uniquely determines φ .

Let $X_{\nu,z}$ be super vector fields on *M* of parity $|\nu|, \nu \in (\mathbb{Z}_2)^k, \nu \neq 0$, and $\bar{\varphi}_z : \mathcal{M} \to \mathcal{M}$ automorphisms such that $\varphi_z^* = (\mathrm{id}_{\mathbb{C}^{0|k}} \times \bar{\varphi}_z)^* \exp\left(\sum_{\nu \neq 0} \tau^{\nu} X_{\nu,z}\right)$ as in Lemma [27.](#page-18-0) Since φ is holomorphic, the coefficients of the super vector fields $X_{\nu,z}$ and the pullbacks $\bar{\varphi}_z^*$ in local coordiantes depend holomorphically on $z \in N$. Each $\bar{\varphi}_z$ is the automorphism of $\mathcal M$ induced by the evalutation in $(z, 0) \in N \times \mathbb{C}^{0/k}$ and an element of Aut₀ (\mathcal{M}) by definition. Let ev_{$\bar{\varphi}$} denote the evaluation in $\bar{\varphi}_z$, i.e. ev_{$\bar{\varphi}_z$} is the pullback of the canonical inclusion ${\{\bar{\varphi}_z\}} \hookrightarrow \text{Aut}(\mathcal{M})$, and let $\text{pr}_{\text{Aut}(\mathcal{M})}: N \times \mathbb{C}^{0|k} \times \text{Aut}(\mathcal{M}) \to \text{Aut}(\mathcal{M})$ be the projection. We define $\chi : N \times \mathbb{C}^{0|k} \to \text{Aut}(\mathcal{M})$ as the morphism whose underlying map is $\{z\} \hookrightarrow \{\bar{\varphi}_z\} \subset$ Aut_{$\bar{0}$}(*M*) and whose pullback evaluated in $z \in N$ is

$$
\chi_z^* = (\mathrm{id}_{\mathbb{C}^{0|k}}^* \otimes \mathrm{ev}_{\bar{\varphi}_z}) \circ \mathrm{exp}\left(\sum_{\nu \neq 0} \tau^{\nu}(X_{\nu,z})_R\right) \circ \mathrm{pr}_{\mathrm{Aut}(\mathcal{M})}^*,
$$

where $(X_{\nu,z})_R$ denotes the right-invariant super vector field on Aut(*M*) corresponding to the super vector field $X_{v,z}$ on M which is an element of the Lie superalgebra Vec(M) of Aut(*M*).

The next proposition is then a consequence of Lemma [26](#page-18-1) and the surjectivity of the assignment $\chi \mapsto \varphi_{\chi}$.

Proposition 28 *(See* [\[3\]](#page-25-22)*, Corollary 5.4.5) The functors* Aut(*M*) *and* Hom(−, Aut(*M*)) *are isomorphic. This isomorphism is realized by the natural transformation introduced in Lemma [26.](#page-18-1)*

9 The case of a superdomain with bounded underlying domain

In the classical case, the automorphism group of a bounded domain $U \subset \mathbb{C}^m$ is a (real) Lie group (see Theorem 13 in "Sur les groupes de transformations analytiques" in [\[8](#page-25-6)]). If $U \subset \mathbb{C}^{m|n}$ is a superdomain whose underlying set *U* is a bounded domain in \mathbb{C}^m , it is in general not possible to endow its set of automorphisms with the structure of a Lie group such that the action on U is smooth, as will be illustrated in an example. In particular, there is no Lie supergroup satisfying the universal property as the automorphism group of a compact complex supermanifold *M* does as formulated in Theorem [22.](#page-16-0)

Example 29 Consider a superdomain U of dimension (1|2) whose underlying set is a bounded domain $U \subset \mathbb{C}$. Let z, θ_1, θ_2 denote coordinates for *M*. For any holomorphic function *f* on *U*, define the even super vector field $X_f = f(z)\theta_1\theta_2\frac{\partial}{\partial z}$. The reduced vector field $\tilde{X}_f = 0$ is completely integrable and thus the flow of X_f can be defined on $\mathbb{C} \times \mathcal{U}$ (cf. [\[12\]](#page-25-18) Lemma 5.2). The flow is given by $(\varphi_t)^*(z) = z + t \cdot f(z)\theta_1\theta_2$ and $(\varphi_t)^*(\theta_j) = \theta_j$. For all holomorphic functions *f* and *g* we have $[X_f, X_g] = 0$, and thus their flows locally commute (cf. [\[2](#page-25-20)], Corollary 3.8). Therefore, $\{X_f | f \in \mathcal{O}(U)\} \cong \mathcal{O}(U)$ is an uncountably infinitedimensional abelian Lie algebra. If the set of automorphisms of U carried the structure of a Lie group such that its action on U was smooth, its Lie algebra would necessarily contain ${X_f | f \in \mathcal{O}(U)} \cong \mathcal{O}(U)$ as a Lie subalgebra, which is not possible.

10 Examples

In this section, we determine the automorphism group $Aut(\mathcal{M})$ for some complex supermanifolds *M* with underlying manifold $M = \mathbb{P}_1 \mathbb{C}$.

Let L_1 denote the hyperplane bundle on $M = \mathbb{P}_1 \mathbb{C}$ with sheaf of sections $\mathcal{O}(1)$, and *L_k* = (L_1) ^{⊗*k*} the line bundle of degree *k*, *k* ∈ Z, on $\mathbb{P}_1\mathbb{C}$, and sheaf of sections $\mathcal{O}(k)$. Each holomorphic vector bundle on $\mathbb{P}_1\mathbb{C}$ is isomorphic to a direct sum of line bundles $L_{k_1}\oplus \ldots \oplus L_{k_n}$ (see [\[11](#page-25-23)]). Therefore, if M is a split supermanifold with $M = \mathbb{P}_1 \mathbb{C}$ and dim $\mathcal{M} = (1|n)$, there exist $k_1, \ldots, k_n \in \mathbb{Z}$ such that the structure sheaf $\mathcal{O}_\mathcal{M}$ of $\mathcal M$ is isomorphic to

$$
\bigwedge(\mathcal{O}(k_1) \oplus \ldots \oplus \mathcal{O}(k_n)).
$$

Let *U_j* = {[z_0 : z_1] ∈ $\mathbb{P}_1 \mathbb{C} | z_j \neq 0$ }, *j* = 1, 2, and $\mathcal{U}_j = (U_j, \mathcal{O}_\mathcal{M} | U_j)$. Moreover, define *U*₀^{*} = *U*₀ \ {[1 : 0]} and *U*₁^{*} = *U*₁ \ {[0 : 1]}, and let \mathcal{U}_j ^{*} = $(U_j^*, \mathcal{O}_{\mathcal{M}}|_{U_j}^*)$. We can now choose local coordinates $z, \theta_1, \ldots, \theta_n$ for M on U_0 , and local coordinates $w, \eta_1, \ldots, \eta_n$ on *U*₁ so that the transition map $\chi : U_0^* \to U_1^*$, which determines the supermanifold structure of *M*, is given by

$$
\chi^*(w) = \frac{1}{z}
$$
 and $\chi^*(\eta_j) = z^{k_j} \theta_j$.

Example 30 Let $M = (\mathbb{P}_1 \mathbb{C}, \mathcal{O}_M)$ be a complex supermanifold of dimension (1|1). Since the odd dimension is 1, the supermanifold *M* has to be split. Let $-k \in \mathbb{Z}$ be the degree of the associated line bundle. Choose local coordinates z , θ for M on U_0 and w , η on U_1 as above so that the transition map $\chi : U_0^* \to U_1^*$ is given by $\chi^*(w) = \frac{1}{z}$ and $\chi^*(\eta) = \frac{1}{z^k} \theta$.

We first want to determine the Lie superalgebra Vec(*M*) of super vector fields on *M*. A calculation in local coordinates verifying the compatibility condition with the transition map χ yields that the restriction to U_0 of any super vector field on $\mathcal M$ is of the form

$$
\left((\alpha_0+\alpha_1z+\alpha_2z^2)\frac{\partial}{\partial z}+(\beta+k\alpha_2z)\theta\frac{\partial}{\partial\theta}\right)+\left(p(z)\frac{\partial}{\partial\theta}+q(z)\theta\frac{\partial}{\partial z}\right),
$$

where $\alpha_0, \alpha_1, \alpha_2, \beta \in \mathbb{C}$, *p* is a polynomial of degree at most *k*, and *q* is a polynomial of degree at most 2 – *k*. If $k < 0$ (respectively 2 – $k < 0$), the polynomial *p* (respectively *q*) is 0. The Lie algebra Vec_{$\bar{0}$} (\mathcal{M}) of even super vector fields is isomorphic to $\mathfrak{sl}_2(\mathbb{C})\oplus\mathbb{C}$, where an isomorphism $\mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C} \to \text{Vec}_{\bar{0}}(\mathcal{M})$ is given by

$$
\left(\begin{pmatrix} a & b \\ c & -a \end{pmatrix}, d\right) \mapsto (-b - 2az + cz^2) \frac{\partial}{\partial z} + ((d - ka) + kcz) \theta \frac{\partial}{\partial \theta}.
$$

Note that since the odd dimension of *M* is 1 each automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ gives rise to an automorphism of the line bundle *L*−*^k* and vice versa. Hence, the automorphism group Aut(L_{-k}) of the line bundle L_{-k} and Aut₀(M) coincide.

A calculation yields that the group $Aut_{\bar{0}}(\mathcal{M})$ of automorphisms $\mathcal{M} \to \mathcal{M}$ can be identified with $PSL_2(\mathbb{C}) \times \mathbb{C}^*$ if *k* is even and with $SL_2(\mathbb{C}) \times \mathbb{C}^*$ if *k* is odd. Consider the element $\left(\begin{array}{c} a & b \\ c & d \end{array}\right)$, where $s \in \mathbb{C}^*$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is either an element of SL₂(\mathbb{C}) or the representative of the corresponding class in PSL₂(\mathbb{C}). The action of the corresponding element $\varphi \in \text{Aut}_{\bar{0}}(\mathcal{M})$ on M is then given by

$$
\varphi^*(z) = \frac{c + dz}{a + bz}
$$
 and $\varphi^*(\theta) = \left(\frac{1}{(a + bz)^k} + s\right)\theta$

as a morphism over appropriate subsets of U_0 and by

$$
\varphi^*(w) = \frac{aw + b}{cw + d}
$$
 and $\varphi^*(\eta) = \left(\frac{1}{(cw + d)^k} + s\right)\eta$

over appropriate subsets of *U*1.

The Lie supergroup structure on Aut(\mathcal{M}) is now uniquely determined by Aut₀ (\mathcal{M}) , Vec(M), and the adjoint action of Aut₀(M) on Vec(M). Since Aut₀(M) is a connected Lie group, it is enough to calculate the adjoint action of Vec₀(\mathcal{M}) ≅ $\mathfrak{sl}_2\mathbb{C}\oplus\mathbb{C}$ on Vec₁(\mathcal{M}).

Let P_l denote the space of polynomials of degree at most *l*, and set $P_l = \{0\}$ for *l* < 0. The space of odd super vector fields Vec₁(M) is isomorphic to $P_k ⊕ P_{2-k}$ via $\left(p(z)\frac{\partial}{\partial \theta} + q(z)\theta \frac{\partial}{\partial z}\right) \mapsto (p(z), q(z)).$

The element $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{C}) \subset \mathfrak{sl}_2(\mathbb{C}) \oplus \mathbb{C} \cong \text{Vec}_{\bar{0}}(\mathcal{M})$ corresponds to $-2z \frac{\partial}{\partial z} - \frac{\partial}{\partial z}$ $k\theta \frac{\partial}{\partial \theta}$. The adjoint action of this super vector field on the first factor *P_k* of Vec₁(*M*) is given by by $-2z\frac{\partial}{\partial z} + k \cdot \text{Id}$, and on the second factor P_{2-k} by $-2z\frac{\partial}{\partial z} + (2 - k) \cdot \text{Id}$. Calculating the weights of the $\mathfrak{sl}_2(\mathbb{C})$ -representation on P_k and P_{2-k} , we get that P_k is the unique irreducible $(k + 1)$ -dimensional representation and P_{2-k} the unique irreducible (3−*k*)-dimensional representation. Moreover, a calculation yields that *^d* [∈] ^C corresponding to $d \cdot \theta \frac{\partial}{\partial \theta}$ ∈ Vec₀̃(*M*) acts on *P_k* by multiplication with −*d* and on *P*_{2−*k*} by multiplication with *d*.

If $k < 0$ or $k > 2$, we have

$$
[\text{Vec}_{\bar{1}}(\mathcal{M}), \text{Vec}_{\bar{1}}(\mathcal{M})] = 0.
$$

In the case $k = 0$, we have $P_k \cong \mathbb{C}$. Since $\left[\frac{\partial}{\partial \theta}, q(z)\theta \frac{\partial}{\partial z}\right] = q(z)\frac{\partial}{\partial z}$ for any $q \in P_2$, we get

$$
\left[\text{Vec}_{\bar{1}}(\mathcal{M}), \text{Vec}_{\bar{1}}(\mathcal{M})\right] = \left\{a(z)\frac{\partial}{\partial z} \middle| a \in P_2\right\} \cong \mathfrak{sl}_2(\mathbb{C}),
$$

and the map $P_0 \times P_2 \to \text{Vec}_{\bar{0}}(\mathcal{M}), (X, Y) \mapsto [X, Y]$, corresponds to $\mathbb{C} \times P_2 \to \text{Vec}_{\bar{0}}(\mathcal{M}),$ $(p, q(z)) \mapsto p \cdot q(z) \frac{\partial}{\partial z}.$

Similarly, if $k = 2$, we have $P_{2-k} \cong \mathbb{C}$, and

$$
[Vec_{\tilde{I}}(\mathcal{M}), Vec_{\tilde{I}}(\mathcal{M})] = \left\{ (\alpha_0 + \alpha_1 z + \alpha_2 z^2) \frac{\partial}{\partial z} + (\alpha_1 + 2\alpha_2 z) \theta \frac{\partial}{\partial \theta} \middle| \alpha_j \in \mathbb{C} \right\}
$$

 \cong $\mathfrak{sl}_2(\mathbb{C})$

since $[p(z)\frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial z}] = p(z)\frac{\partial}{\partial z} + p'(z)\theta \frac{\partial}{\partial \theta}$, and the map $P_2 \times P_0 \to \text{Vec}_{0}(\mathcal{M}), (X, Y) \mapsto$ $[X, Y]$, corresponds to $P_2 \times \mathbb{C} \to \text{Vec}_{\bar{0}}(\mathcal{M})$, $(p(z), q) \mapsto q \cdot p(z) \frac{\partial}{\partial z} + q \cdot p'(z) \theta \frac{\partial}{\partial \theta}$.

If $k = 1$, then $P_k \oplus P_{2-k} \cong \mathbb{C}^2 \oplus \mathbb{C}^2$. We have

$$
\begin{bmatrix}\n\frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial z}\n\end{bmatrix} = \frac{\partial}{\partial z}, \left[z \frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial z}\right] = z \frac{\partial}{\partial z} + \theta \frac{\partial}{\partial \theta},
$$
\n
$$
\left[\frac{\partial}{\partial \theta}, z\theta \frac{\partial}{\partial z}\right] = z \frac{\partial}{\partial z}, \left[z \frac{\partial}{\partial \theta}, z\theta \frac{\partial}{\partial z}\right] = z^2 \frac{\partial}{\partial z} + z\theta \frac{\partial}{\partial \theta},
$$

and consequently $[Vec_{\overline{1}}(\mathcal{M}), Vec_{\overline{1}}(\mathcal{M})] = Vec_{\overline{0}}(\mathcal{M}).$

Remark that Aut(M) carries the structure of a split Lie supergroup if and only if $k < 0$ or $k > 2$ (cf. Proposition 4 in [\[24\]](#page-25-1)).

Example 31 Let $M = (\mathbb{P}_1 \mathbb{C}, \mathcal{O}_M)$ be a split complex supermanifold of dimension dim $M =$ (1|2) associated with $O(-k_1) ⊕ O(-k_2)$, $k_1, k_2 ∈ \mathbb{Z}$. We will determine the group Aut₀(*M*) of automorphisms $M \rightarrow M$.

We choose coordinates z , θ_1 , θ_2 for \mathcal{U}_0 and w, η_1 , η_2 for \mathcal{U}_1 as described above such that the transition map χ is given by $\chi^*(w) = z^{-1}$ and $\chi^*(\eta_i) = z^{-k_i} \theta_i$.

The action of $PSL_2(\mathbb{C})$ on $\mathbb{P}_1\mathbb{C}$ by Möbius transformations lifts to an action of $SL_2(\mathbb{C})$ on *M* by letting $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{C})$ act by the automorphism $\varphi_A : \mathcal{M} \to \mathcal{M}$ with pullback

$$
\varphi_A^*(z) = \frac{c + dz}{a + bz}
$$
 and $\varphi_A^*(\theta_j) = (a + bz)^{-k_j}\theta_j$

as a morphism over appropriate subsets of *U*0, and

$$
\varphi_A^*(w) = \frac{aw + b}{cw + d} \quad \text{and} \quad \varphi_A^*(\eta_j) = (cw + d)^{-k_j} \eta_j
$$

over appropriate subsets of U_1 . Using the transition map χ one might also calculate the representation of φ in coordinates as a morphism over subsets $U_0 \rightarrow U_1$ and $U_1 \rightarrow U_0$.

If k_1 and k_2 are both even, we have $\varphi_A = \text{Id}_{\mathcal{M}}$ for $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ and thus we get an action of $PSL_2(\mathbb{C})$ on \mathcal{M} .

Consider the homomorphism of Lie groups Ψ : Aut_{$\bar{0}$} $(\mathcal{M}) \to$ Aut($\mathbb{P}_1 \mathbb{C}$) assigning to each automorphism $\varphi : \mathcal{M} \to \mathcal{M}$ the underlying biholomorphic map $\tilde{\varphi} : \mathbb{P}_1 \mathbb{C} \to \mathbb{P}_1 \mathbb{C}$. This homomorphism Ψ is surjective since Aut($\mathbb{P}_1\mathbb{C}$) ≅ PSL₂(\mathbb{C}) and since the PSL₂(\mathbb{C})-action on $\mathbb{P}_1\mathbb{C}$ lifts to an action (of $SL_2(\mathbb{C})$) on the supermanifold *M*. The kernel ker Ψ of the homomorphism Ψ consists of those automorphisms $\varphi : \mathcal{M} \to \mathcal{M}$ whose underlying map $\tilde{\varphi}$ is the identity $\mathbb{P}_1\mathbb{C} \to \mathbb{P}_1\mathbb{C}$. This kernel ker Ψ is a normal subgroup, $SL_2(\mathbb{C})$ acts on ker Ψ , and we have

$$
Aut_{\bar{0}}(\mathcal{M})\cong ker\,\Psi\,\rtimes\,SL_2(\mathbb{C})
$$

if k_1 and k_2 are not both even, and Aut₀̄(\mathcal{M}) \cong ker $\Psi \rtimes PSL_2(\mathbb{C})$ if k_1 and k_2 are even. Thus, it remains to determine ker Ψ .

Let $\varphi : \mathcal{M} \to \mathcal{M}$ be an automorphism with $\tilde{\varphi} =$ Id. Let f and b_{ik} , $j, k = 1, 2$, be holomorphic functions on $U_0 \cong \mathbb{C}$ such that the pullback of φ over U_0 is given by

$$
\varphi^*(z) = z + f(z)\theta_1\theta_2
$$
 and $\varphi^*(\theta) = B(z)\theta$,

where $B(z) = \begin{pmatrix} b_{11}(z) & b_{12}(z) \\ b_{21}(z) & b_{22}(z) \end{pmatrix}$ and $\varphi^*(\theta) = B(z)\theta$ is an abbreviation for

$$
\varphi^*(\theta_j) = b_{j1}(z)\theta_1 + b_{j2}(z)\theta_2
$$
 for $j = 1, 2$.

Similarly, let *g* and c_{jk} be holomorphic functions on $U_1 \cong \mathbb{C}$ such that the pullback of φ over U_1 is given by

$$
\varphi^*(w) = w + g(w)\eta_1\eta_2 \quad \text{and} \quad \varphi^*(\eta) = C(z)\eta,
$$

where $C(z) = \begin{pmatrix} c_{11}(z) & c_{12}(z) \\ c_{21}(z) & c_{22}(z) \end{pmatrix}$. The compatibility condition with the transition map χ gives now the relation

$$
f(z) = -z^{2-(k_1+k_2)}g\left(\frac{1}{z}\right)
$$
 for $z \in \mathbb{C}^*$.

Therefore, *f* and *g* are both polynomials of degree at most $2 - (k_1 + k_2)$, and they are 0 in the case $k_1 + k_2 > 2$. For the matrices *B* and *C* we get the relation

$$
B(z) = \begin{pmatrix} z^{k_1} & 0 \\ 0 & z^{k_2} \end{pmatrix} C \begin{pmatrix} 1 \\ z \end{pmatrix} \begin{pmatrix} z^{-k_1} & 0 \\ 0 & z^{-k_2} \end{pmatrix} \text{ for } z \in \mathbb{C}^*.
$$

If $k_1 = k_2$, this implies $B(z) = C\left(\frac{1}{z}\right)$ for all $z \in \mathbb{C}^*$. Thus, $B(z) = B$ and $C(w) = C$ are constant matrices, and $B = C \in GL_2(\mathbb{C})$ since φ was assumed to be invertible. Consequently, we have

$$
\ker \Psi \cong P_{2-(k_1+k_2)} \rtimes GL_2(\mathbb{C})
$$

in the case $k_1 = k_2$, where $P_{2-(k_1+k_2)}$ denotes the space of polynomials of degree at most $2 - (k_1 + k_2)$ if $k_1 + k_2 < 2$ and $P_{2-(k_1+k_2)} = \{0\}$ otherwise. The group structure on the semidirect product is given by $(f_1(z), B_1) \cdot (f_2(z), B_2) = (\det B_1 f_1(z) + f_2(z), B_1 B_2).$

Let now $k_1 \neq k_2$. After possibly changing coordinates we may assume $k_1 > k_2$. Then we have

$$
B(z) = \begin{pmatrix} z^{k_1} & 0 \\ 0 & z^{k_2} \end{pmatrix} C \begin{pmatrix} 1 \\ z \end{pmatrix} \begin{pmatrix} z^{-k_1} & 0 \\ 0 & z^{-k_2} \end{pmatrix} = \begin{pmatrix} c_{11} \left(\frac{1}{z}\right) & z^{k_1 - k_2} c_{12} \left(\frac{1}{z}\right) \\ z^{k_2 - k_1} c_{21} \left(\frac{1}{z}\right) & c_{22} \left(\frac{1}{z}\right) \end{pmatrix}
$$

for all $z \in \mathbb{C}^*$. This implies that $b_{11} = c_{11}$ and $b_{22} = c_{22}$ are constants. Since we assume $k_1 > k_2$, we also get $b_{21} = c_{21} = 0$ and b_{12} and c_{12} are polynomials of degree at most $k_1 - k_2$. Therefore,

$$
\ker \Psi \cong P_{2-(k_1+k_2)} \rtimes \left\{ \left(\begin{matrix} \lambda & p(z) \\ 0 & \mu \end{matrix} \right) \middle| \lambda, \mu \in \mathbb{C}^*, \ p \in P_{k_1-k_2} \right\},\
$$

and the group structure is again given by

$$
(f_1(z), B_1) \cdot (f_2(z), B_2) = (\det B_1 f_1(z) + f_2(z), B_1 B_2)
$$

for *f*₁, *f*₂ ∈ *P*₂−(*k*₁+*k*₂), *B*₁, *B*₂ ∈ $\left\{ \left(\begin{array}{c} \lambda & p(z) \\ 0 & \mu \end{array} \right) \middle| \lambda, \mu \in \mathbb{C}^*, p \in P_{k_1 - k_2} \right\}$.
The considiusnt and shot least $V_{k_1} \times V_{k_2}$ (*c*) (calcult λ DSL (*C*)) is a

The semidirect product ker $\Psi \rtimes SL_2(\mathbb{C})$ (or ker $\Psi \rtimes PSL_2(\mathbb{C})$) is a direct product if and only if $k_1 = k_2$ and $k_1 + k_2 \ge 2$.

Example 32 Let $M = (\mathbb{P}_1 \mathbb{C}, \mathcal{O}_M)$ be the complex supermanifold of dimension dim $M =$ (1|2) given by the transition map $\chi : U_0^* \to U_1^*$ with pullback

$$
\chi^*(w) = \frac{1}{z} + \frac{1}{z^3} \theta_1 \theta_2
$$
 and $\chi^*(\eta_j) = \frac{1}{z^2} \theta_j$.

The supermanifold M is not split and the associated split supermanifold corresponds to *O*(−2) ⊕ *O*(−2); see e.g. [\[7\]](#page-25-24).

As in the previous example, the action of $PSL_2(\mathbb{C})$ on $\mathbb{P}_1\mathbb{C}$ by Möbius transformations lifts to an action of $PSL_2(\mathbb{C})$ on *M*. Let *A* denote the class of $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{C})$ in $PSL_2(\mathbb{C})$. Then *A* acts by the morphism $\varphi_A : \mathcal{M} \to \mathcal{M}$ whose pullback as a morphism over appropriate subsets of U_0 is given by

$$
\varphi_A^*(z) = \frac{c + dz}{a + bz} - \frac{b}{(a + bz)^3} \theta_1 \theta_2
$$
 and $\varphi_A^*(\theta_j) = \frac{1}{(a + bz)^2} \theta_j$.

Let Ψ : Aut_ō(M) \rightarrow Aut($\mathbb{P}_1\mathbb{C}$) \cong PSL₂(\mathbb{C}) denote again the Lie group homomorphism which assigns to an automorphism of M the underlying automorphism of $\mathbb{P}_1\mathbb{C}$. The assignment $A \mapsto \varphi_A \in \text{Aut}_{\bar{0}}(\mathcal{M})$ defines a section $PSL_2(\mathbb{C}) \to \text{Aut}_{\bar{0}}(\mathcal{M})$ of Ψ , and we have

$$
\mathrm{Aut}_{\bar{0}}(\mathcal{M})\cong\ker\Psi\rtimes\mathrm{PSL}_2(\mathbb{C}).
$$

The section $PSL_2(\mathbb{C}) \rightarrow Aut_{\bar{0}}(\mathcal{M})$ induces on the level of Lie algebras the morphism $\sigma : \mathfrak{sl}_2(\mathbb{C}) \hookrightarrow \text{Vec}_{\bar{0}}(\mathcal{M})$, which maps an element $\begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{C})$ to the super vector field on *M* whose restriction to *U*₀ is on M whose restriction to U_0 is

$$
\left(c-2az-bz^2-b\theta_1\theta_2\right)\frac{\partial}{\partial z}-2(a+bz)\left(\theta_1\frac{\partial}{\partial \theta_1}+\theta_2\frac{\partial}{\partial \theta_2}\right).
$$

We now calculate the kernel ker Ψ . Let $\varphi \in \ker \Psi$. Its underlying map $\tilde{\varphi}$ is the identity and we thus have

$$
\varphi^*(z) = z + a_0(z)\theta_1\theta_2
$$
 and $\varphi^*(\theta) = A_0(z)\theta$

on U_0 and

$$
\varphi^*(w) = w + a_1(w)\eta_1\eta_2
$$
 and $\varphi^*(\eta) = A_1(w)\eta$

on U_1 for holomorphic functions a_0 and a_1 and invertible matrices A_0 and A_1 whose entries are holomorphic functions. The notation $\varphi^*(\theta) = A_0(z)\theta$ (and similarly $\varphi^*(\eta) = A_1(w)\eta$) is again an abbreviation for $\varphi^*(\theta_i) = (A_0(z))_{i1}\theta_1 + (A_0(z))_{i2}\theta_2$, where $A_0(z) =$ $A_1(w)\eta$ is again an abbreviation for $\varphi^*(\theta_j) = (A_0(z))_{j1}\theta_1 + (A_0(z))_{j2}\theta_2$, where $A_0(z) = ((A_0(z))_{jk})_{1 \le j,k \le 2}$. A calculation with the transition map χ then yields the relations

$$
A_1(w) = A_0\left(\frac{1}{w}\right) \quad \text{and} \quad a_1(w) = \frac{1}{w}\left(\left(\det A_0\left(\frac{1}{w}\right) - 1\right) - \frac{1}{w}a_0\left(\frac{1}{w}\right)\right)
$$

for any $w \in \mathbb{C}^*$. Since a_0, a_1, A_0 , and A_1 are holomorphic on \mathbb{C} , we get that $A_0 = A_1$ are constant matrices, det $A_0 = 1$, and $a_0 = a_1 = 0$. Therefore, ker $\Psi \cong SL_2(\mathbb{C})$, and its Lie algebra is

$$
\left\{ (a_{11}\theta_1 + a_{12}\theta_2) \frac{\partial}{\partial \theta_1} + (a_{21}\theta_1 + a_{22}\theta_2) \frac{\partial}{\partial \theta_2} \middle| \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{C}) \right\}.
$$

Since Lie(ker Ψ) and σ (Lie(PSL₂(C)) commute, the semidirect product ker $\Psi \rtimes PSL_2(\mathbb{C})$ is direct and we have

$$
\text{Aut}_{\bar{0}}(\mathcal{M})\cong SL_2(\mathbb{C})\times PSL_2(\mathbb{C}).
$$

 \mathcal{L} Springer

Remark in particular that this group is different from the automorphism group of the corresponding split supermanifold *N*, which is associated with $\mathcal{O}(-2) \oplus \mathcal{O}(-2)$, with $Aut_{\overline{0}}(\mathcal{N}) \cong GL_2(\mathbb{C}) \times PSL_2(\mathbb{C}).$

References

- 1. Berezin, F.A.: Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, vol. 9, D. Reidel Publishing Co., Dordrecht, Translation edited by Dimitri Leĭtes (1987)
- 2. Bergner, H.: Globalizations of infinitesimal actions on supermanifolds. J. Lie Theory **24**(3), 809–847 (2014)
- 3. Bergner, H.: Symmetries of supermanifolds, PhD Thesis, Ruhr-Universität Bochum, November (2015)
- 4. Bochner, S., Montgomery, D.: Groups of differentiable and real or complex analytic transformations. Ann. Math. **46**, 685–694 (1945)
- 5. Bochner, S., Montgomery, D.: Locally compact groups of differentiable transformations. Ann. Math. **47**, 639–653 (1946)
- 6. Bochner, S., Montgomery, D.: Groups on analytic manifolds. Ann. Math. **48**, 659–669 (1947)
- 7. Bunegina, V.A., Onishchik, A.L.: Homogeneous supermanifolds associated with the complex projective line. J. Math. Sci. **82**(4), 3503–3527 (1996). Algebraic geometry, 1
- 8. Cartan, H.: Œuvres. Vol. I, II, III, Springer-Verlag, Berlin, New York, Edited by Reinhold Remmert and Jean-Pierre Serre (1979)
- 9. Cartan, H., Serre, J.-P.: Un théorème de finitude concernant les variétés analytiques compactes. C. R. Acad. Sci. Paris **237**, 128–130 (1953)
- 10. Green, P.: On holomorphic graded manifolds. Proc. Am. Math. Soc. **85**(4), 587–590 (1982)
- 11. Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math. **79**, 121–138 (1957)
- 12. Garnier, S., Wurzbacher, T.: Integration of vector fields on smooth and holomorphic supermanifolds. Doc. Math. **18**, 519–545 (2013)
- 13. Hirsch, M .W.: Differential Topology. Springer, New York (1976). Graduate Texts in Mathematics, No. 33
- 14. Kalus, M.: On the relation of real and complex Lie supergroups. Can. Math. Bull. **58**(2), 281–284 (2015)
- 15. Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. In: Differential geometrical methods in mathematical physics. (Proceedings of symposium, University of Bonn, Bonn, 1975) Lecture Notes in Mathematics, vol. 570, pp. 177–306. Springer, Berlin (1977)
- 16. Le˘ıtes, D.A.: Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk **35** , no. 1(211), 3–57, 255 (1980)
- 17. Morimoto, A.: Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe. Nagoya Math. J. **13**, 157–168 (1958)
- 18. Narasimhan, R.: Several Complex Variables. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1971)
- 19. Onishchik, A.L.: A spectral sequence for the tangent sheaf cohomology of a supermanifold. Lie groups and Lie algebras, Math. Appl., vol. 433, pp. 199–215. Kluwer Academic Publishers, Dordrecht (1998)
- 20. Ostermayr, D.: Automorphism supergroups of supermanifolds, [arXiv:1504.02653v1](http://arxiv.org/abs/1504.02653v1) (2015)
- 21. Rothstein, M.J.: Deformations of complex supermanifolds. Proc. Am. Math. Soc. **95**(2), 255–260 (1985)
- 22. Sachse, C., Wockel, C.: The diffeomorphism supergroup of a finite-dimensional supermanifold. Adv. Theor. Math. Phys. **15**(2), 285–323 (2011)
- 23. van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, vol. 190. Birkhäuser Verlag, Basel (2000)
- 24. Vishnyakova, E.G.: On complex Lie supergroups and split homogeneous supermanifolds. Transform. Groups **16**(1), 265–285 (2011)
- 25. Yamabe, H.: A generalization of a theorem of Gleason. Ann. Math. **58**, 351–365 (1953)