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Abstract We develop the homological theory of KLR algebras of symmetric affine type. For
each PBW basis, a family of standard modules is constructed which categorifies the PBW
basis.
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1 Introduction

Khovanov–Lauda–Rouquier algebras (henceforth KLR algebras), also known as Quiver
Hecke algebras, are a family of Z-graded associative algebras introduced by Khovanov
and Lauda [11] and Rouquier [23] for the purposes of categorifying quantum groups. More
specifically they categorify the upper-triangular part f = Uq(g)

+ of the quantised enveloping
algebra of a symmetrisable Kac–Moody Lie algebra g—see Sect. 5 for a precise statement.
Let I be the set of simple roots of g and NI the monoid of formal sums of elements of I . For
each ν ∈ NI there is an associated KLR algebra R(ν).

In this paper we will assume that g is of symmetric affine type. For now however, we
will describe the theory developed in [4,22] where g is finite dimensional. The results of this
paper generalise these results to the symmetric affine case.

One begins with choosing a convex order ≺ on the set of positive roots satisfying a
convexity property—see Definition 3.1. It is this convex order which determines a PBW
basis of f . The representation theory of KLR algebras is built via induction functors from
the theory of cuspidal representations. Write {α1 � · · · � αN } for the set of positive roots,
remembering that we are temporarily discussing the finite type case.

To each root α there is a subcategory of R(α)-modules which are cuspidal defined in
Definition 8.3. There is a unique irreducible cuspidalmodule L(α). Let�(α) be the projective
cover of L(α) in the category of cuspidal R(α)-modules.

Given any sequence π = (π1, . . . , πN ) of natural numbers, the proper standard and
standard modules are defined respectively by

�(π) = L(α1)
◦π1 ◦ · · · ◦ L(αN )◦πN

�(π) = �(α1)
(π1) ◦ · · · ◦ �(αN )(πN )

where ◦ denotes the induction of a tensor product and (πi ) is a divided power construction.
Then in [22] it is proved that the modules�(π) categorify the dual PBW basis, have a unique
irreducible quotient and that these quotients give a classification of all irreducible modules.
In [4] it is proved that the modules �(π) categorify the PBW basis and their homological
properties are studied, justifying the use of the term standard.

Now let us turn our attention to the results of this paper where g is of symmetric affine
type. Again the starting point is the choice of a convex order ≺ on the set of positive roots.
The theory of PBW bases for affine quantised enveloping algebras dates back to the work of
Beck [3] and is considerably more complicated than the theory in finite type. It is a feature of
the literature that the theory of PBW bases is only developed for convex orders of a particular
form. We rectify this problem by presenting a construction of PBW bases in full generality.

Forα a real root, the category of cuspidal R(α)-modules is again equivalent to the category
of k[z]-modules while the category of semicuspidal R(nα)-modules is again equivalent to
modules over a polynomial algebra.Whereas in finite type the proofs of these results currently
rest on some case by case computations, here we give a uniform proof, the cornerstone of
which is the growth estimates in Sect. 15.

For the imaginary roots, the category of semicuspidal representations is qualitatively very
different. The key observation here is that the R-matrices constructed by Kang, Kashiwara
and Kim [9] enable us to determine an isomorphism

End(M◦n)0 ∼= Q[Sn]
where M is either an irreducible cuspidal R(δ)-module or an indecomposable projective in
the category of cuspidal R(δ)-modules (here δ is the minimal imaginary root). We are then
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Representations of Khovanov–Lauda–Rouquier algebras III... 245

able to use the representation theory of the symmetric group to decompose these modules
M◦n . This presence of the symmetric group as an endomorphism algebra can also be seen to
explain the appearance of Schur functions in the definition of a PBW basis in affine type.

With the semicuspidal modules understood we are able to prove our main theorems which
are analogous to those discussed above in finite type. Namely families of proper standard and
standard modules are constructed which categorify the dual PBW and PBW bases respec-
tively. See Theorem 24.4 and the following paragraph for this result. Compared with the
corresponding theorem in [13, Proposition 4.11], we are able to identify the imaginary con-
stituents of the PBW basis. The proper standard modules have a unique irreducible quotient
which gives a classification of all irreducibles and the standard modules satisfy homological
properties befitting their name, leading to a BGG reciprocity theorem.

As a consequence we obtain a new positivity result, Theorem 24.10, which states that
when an element of the canonical basis of f is expanded in a PBW basis, the coefficients
that appear are polynomials in q and q−1 with non-negative coefficients (and the transition
matrix is unitriangular).

We thank A. Kleshchev, P. Tingley and B. Webster for useful conversations.

2 Preliminaries

The purpose of this section is to collect standard notation about root systems and other objects
which we will be making use of in this paper.

Let (I, ·) be a Cartan Datum of symmetric affine type. Following the approach of Lusztig
[19], this comprises a finite set I and a symmetric pairing · : I × I → Z such that i · i = 2
for all i ∈ I , i · j ≤ 0 if i 	= j and the matrix (i · j)i, j∈I is of corank 1. Such Cartan data are
completely classified and correspond to the extended Dynkin diagrams of type A, D and E.
We extend · : I × I →Z to a bilinear pairing NI × NI → Z.

Let �+ be the set of positive roots in the corresponding root system. We identify I with
the set of simple roots of �+. In this way we are able to meaningfully talk about elements
of NI as being roots.

The set of real roots of �+ is denoted �+
re.

For ν = ∑
i∈I νi · i ∈ I , define |ν| = ∑

i∈I νi . If ν happens to be a root, we also call this
the height of the root and denote it ht(ν).

Let � f be the underlying finite type root system. A chamber coweight is a fundamental
coweight for some choice of positive system on� f . If a positive system is given, let� denote
the set of chamber coweights with respect to this system.

Let p : �→� f denote the projection from the affine root system to the finite root system
whose kernel is spanned by the minimal imaginary root δ. For α ∈ � f , let α̃ denote the
minimal positive root in p−1(α).

LetW = 〈si | i ∈ I 〉 be the Weyl group of �, generated by the simple reflection si which
is the reflection in the hyperplane perpendicular to αi .

Let � f be the standard set of simple roots in � f . Let W f be the finite Weyl group.
LetP denote the set of partitions. Amultipartition λ = {λω}ω∈� is a sequence of partitions

indexed by �. We write λ � n if
∑

ω |λω| = n.
The symmetric group on n letters is denoted Sn . Ifμ, ν ∈ I , the elementw[μ, ν] ∈ S|μ+ν|

is defined by

w[μ, ν](i) =
{
i + |ν| if i ≤ μ

i − |μ| otherwise.
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246 P. J. McNamara

3 Convex orders on root systems

Definition 3.1 A convex order on �+ is a total preorder 
 on �+ such that

• If α 
 β and α + β is a root, then α 
 α + β 
 β.
• If α 
 β and β 
 α then α and β are imaginary roots.

Theorem 3.2 A convex order ≺ on �+ satisfies the following condition:

• Suppose A and B are disjoint subsets of �+ such that α ≺ β for any α ∈ A and β ∈ B.
Then the cones formed by the R≥0 spans of A and B meet only at the origin.

Remark 3.3 In [25], this condition replaces our first condition in their definition of a convex
order. This theorem shows that their definition and our definition agree.

Remark 3.4 The following proof requires being in finite or affine type since it depends on the
positive semidefiniteness of the natural bilinear form. We do not know if a similar statement
is possible for more general root systems.

Proof We will write (·, ·) for the natural bilinear form on the root lattice. Let {αi } be a finite
set of roots in A and let {b j } be a finite set of roots in B. For want of a contradiction, suppose
that for some positive real numbers ci , d j we have

∑

i

ciαi =
∑

j

d jβ j (3.1)

Let

W =
⎧
⎨

⎩
(x1, x2, . . . , y1, y2, . . .) | xi , y j ∈ Q,

∑

i

xiαi =
∑

j

y jβ j

⎫
⎬

⎭
.

Then (c1, c2, . . . , d1, d2, . . .) ∈ W ⊗Q R, since the root system� is defined overQ. AsQ

is dense in R, W is dense in W ⊗Q R. So there is a point in W with all coordinates positive.
Hence we can assume that each ci and d j are rational numbers without loss of generality.
Clearing denominators, we can assume they lie in Z.

Now suppose we have a solution to (3.1) where the ci and d j are positive integers with∑
i ci + ∑

j d j as small as possible.
For any i 	= j , if αi + α j were a root, we could replace one occurrence of αi and α j by

the single root αi + α j to get a smaller solution, contradicting our minimality assumption.
Therefore αi + α j is not a root for any i 	= j . This implies that (αi , α j ) ≥ 0 for i 	= j .

If all αi and β j are imaginary, there is a contradiction since there is only one imaginary
direction. So there exists at least one real root in the equation we are studying, without loss
of generality say it is αk .

Applying (·, αk) leaves us with the inequality
∑

j

d j (β j , αk) ≥ ck(αk, αk) > 0.

Therefore there exists j such that (β j , αk) > 0, which implies that β j − αk is a positive
root. By convexity this root must be greater than β j . So now we may subtract αk from both
sides of (3.1) to obtain a smaller solution, again contradicting minimality.

Therefore no solution to (3.1) can exist, as required. ��
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The imaginary roots are all multiples of a fundamental imaginary root, which we will
denote δ. In any convex order, these imaginary roots must all be equal to each other.

Let ≺ be a convex order. The set of positive real roots is divided into two disjoint subsets,
namely

�≺δ = {α ∈ �+ | α ≺ δ},
and

��δ = {α ∈ �+ | α � δ}.
If we can write�≺δ = {α1 ≺ α2 ≺ · · · } and��δ = {β1 � β2 � · · · } for some sequences

of roots {αi }∞i=1 and {β j }∞j=1, then we say that ≺ is of word type.

Example 3.5 Let (V,≤) be a totally ordered Q-vector space. Let h : Q�→V be an injective
linear transformation. For two positive roots α and β, say that α ≺ β if h(α)/ ht(α) <

h(β)/ ht(β) and α 
 β if h(α)/ ht(α) ≤ h(β)/ ht(β). This defines a convex order on �.

In the above example, we can take V = R with the standard ordering to get the existence
of many convex orders of word type.

An example of a convex order not of word type which we will make use of later on is the
following:

Example 3.6 Let V = R
2 where (x, y) ≤ (x ′, y′) if x < x ′ or x = x ′ and y ≤ y′. Let

� f be a simple system in � f and pick α ∈ � f . Define h : Q� → V by h(α̃) = (0, 1),
h(β̃) = (xβ, 0) for β ∈ � f \{α} where the xβ are generically chosen positive real numbers,
and h(δ) = 0. We extend by linearity, noting that {δ} ∪ {β̃ | β ∈ � f } is a basis of Q�.

In this example, we have

−̃α ≺ −̃α + δ+ ≺ −̃α + 2δ · · · ≺ Z>0δ ≺ · · · ≺ α̃ + 2δ ≺ α̃ + δ ≺ α̃

and all other positive roots are either greater than α̃ or less than −̃α.

Recall that p is the projection from the affine root system to the finite root system.

Lemma 3.7 There exists w ∈ W f such that p(�≺δ) = w�+
f and p(��δ) = w�−

f .

Proof First suppose that α ∈ p(�≺δ) and −α ∈ p(�≺δ). Then there are integers m and n
such that the affine roots −α +mδ and α + nδ are both less than δ in the convex order ≺. By
convexity, their sum (m + n)δ is also less that δ, a contradiction. Since a similar argument
holds for p(��δ), we see that for each finite root α, exactly one of α and −α lies in p(�≺δ).

Now suppose that α, β ∈ p(�≺δ) and α+β is a root. Then for some integersm and n, the
affine rootsα+mδ and β+nδ are both less than δ. By convexity, their sum (α+β)+(m+n)δ,
which is also an affine root, is also less than δ. Therefore α + β ∈ p(�≺δ).

We have shown that p(�≺δ) is a positive system in the finite root system� f . This suffices
to prove the lemma. ��

Define a finite initial segment to be a finite set of roots α1 ≺ α2 ≺ · · · ≺ αN such that for
all positive roots β, either β � αi for all i = 1, . . . , N or β = αi for some i .

For any w ∈ W define �(w) = {α ∈ �+ | w−1α ∈ �−}.
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248 P. J. McNamara

Lemma 3.8 Let α1 ≺ α2 ≺ · · · ≺ αN be a finite initial segment. Then there exists w ∈ W
such that {α1, . . . αN } = �(w). Furthermore there exists a reduced expressionw = si1 · · · siN
such that αk = si1 · · · sik−1αik for k = 1, . . . N.

Proof The proof proceeds by induction on N . For the base case where N = 1, any root α

which is not simple is the sum of two roots α = β +γ . By convexity of ≺, either β ≺ α ≺ γ

or γ ≺ α ≺ β. Either way, α 	= α1 so α1 is simple, α1 = αi for some i ∈ I and we take
w = si .

Now assume that the result is known for initial segments with fewer than N roots. Let
v = si1 . . . siN−1 . Consider v−1αN . By inductive hypothesis, it is a positive root. Suppose for
want of a contradiction that v−1αN is not simple. Then we can find positive roots β and γ

such that v−1αN = β + γ .
We can’t have vβ = αN as this would force γ = 0. If vβ = α j for some j < N then

β = v−1α j which by inductive hypothesis is in �−, a contradiction. Therefore either vβ is
a positive root satisfying vβ � αN or vβ ∈ �−. A similar statement holds for vγ .

To have both vβ and vγ greater than αN contradicts the convexity of ≺. Therefore,
without loss of generality, we may assume vβ ∈ �−. Then −vβ is a positive root with
v−1(−vβ) = −β which is a negative root, so by inductive hypothesis, −vβ = α j for some
j < N . Now consider the equation αN + (−vβ) = vγ . The convexity of ≺ implies that
vγ = α j ′ for some j ′ < N . This option is shown to be impossible in the previous paragraph,
creating a contradiction. Therefore v−1αN must be a simple root.

Define iN ∈ I by αiN = v−1αN and let w = si1 · · · siN . It remains to show that
{α1, . . . αN } = {α ∈ �+ | w−1α ∈ �−}.

If β is a positive root that is not equal to α j for some j ≤ N , then by inductive hypothesis
v−1β ∈ �+. Then w−1β = siN (v−1β) ∈ �− if and only if v−1β = αiN which isn’t the case
since this is equivalent to β = αN .

If β = α j for some j < N then v−1β ∈ �−. So w−1β = siN (v−1β) ∈ �− unless
v−1β = −αiN . This isn’t the case since it is equivalent to β = −αiN .

The above two paragraphs show that for a positive root β, if β ∈ {α1, . . . , αN−1} then
w−1β ∈ �+ while if β /∈ {α1, . . . , αN }, then w−1β ∈ �+. Since w−1αN = −αiN ∈ �−,
this completes the proof. ��
Lemma 3.9 [7] The restriction of a convex order to �≺δ is of the form

α11 ≺ α12 ≺ · · · ≺ α21 ≺ α22 ≺ · · · · · · ≺ αn1 ≺ αn2 ≺ · · ·
for some positive integer n.

For a convex order ≺, define

I (≺) = {α ∈ �+ | {β ∈ �+ | β ≺ α} is finite}
Lemma 3.10 Let ≺ be a convex order. Let β be the smallest root that is not in any initial
segment of �+. Assume that β is real. Let S be a finite set of roots containing β. Then there
exists a convex order ≺′ such that I (≺′) = I (≺) ∪ {β} and the restrictions of ≺ and ≺′ to S
are the same.

Proof Let L be the set of roots in �+ less than or equal to β under ≺. Then by [6, Theorem
3.12], there exists v, t ∈ W with t a translation and L = ∪∞

n=1�(vtn).
Let w be such that S ⊂ {α1 ≺ · · · ≺ αN } = �w . There exists an integer n such that

�(w) ∪ {β} ⊂ �(vtn). Let v′ = vtn . Since �(v′) ⊃ �(w), for any reduced expression of
w, there exists a reduced expression of v′ beginning with that of w.
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We choose the reduced decomposition of w to be compatible with ≺. Then extend the
reduced decomposition as per the above to get a new ordering ≺′ on L . This has the desired
properties. ��
Theorem 3.11 Let S be a finite subset of �+ and let ≺ be a convex order on �+. Then
there exists a convex order ≺′ of word type such that the restrictions of ≺ and ≺′ to S are
equivalent.

Proof Suppose our convex order begins

α1 ≺ α2 ≺ · · · ≺ β1 ≺ β2 ≺ · · ·
and that S ∩ {αi | i ∈ Z

+} ⊂ {α1, . . . , αn}. We now define inductively a sequence of convex
orders ≺i with I (≺i ) = {αi | i ∈ Z

+} ∪ {β1, . . . , βi } as follows:
Set ≺0=≺. Assume that ≺i is constructed. To construct ≺i+1, apply Lemma 3.10 with

S = {α1, . . . , αn+i , β1, . . . , βi }. We will take the convex order denoted ≺′ whose existence
is given to us by Lemma 3.10 as ≺i+1.

Now let ≺′′= limi→∞ ≺i . If ≺ is of n-row type, then ≺′′ will be of (n − 1)-row type
and the restrictions of ≺ and ≺′′ to S are the same. After iterating this process we reach a
new convex order ≺′ whose restriction to S is the same as ≺ and is of word type on �≺δ .
Repeating this construction on the set of roots greater than δ completes the proof of this
theorem. ��
Remark 3.12 Using this theorem it will often be possible to assumewithout loss of generality
that the convex order ≺ is of word type.

4 The algebra f

The algebra fQ(q) is the Q(q) algebra as defined in [19] generated by elements {θi | i ∈ I }.
Lusztig defines it as the quotient of a free algebra by the radical of a bilinear form. By the
quantumGabber–Kac theorem, it can also be defined in terms of the Serre relations. Morally,
fQ(q) should be thought of as the positive part of the quantised enveloping algebra Uq(g).
There is only a slight difference in the coproduct, necessary as the coproduct in Uq(g) does
not map Uq(g)

+ into Uq(g)
+ ⊗Uq(g)

+.
There is a Z[q, q−1]-form of fQ(q), which we denote simply by f . It is the Z[q, q−1]-

subalgebra of fQ(q) generated by the divided powers θ
(n)
i = θni /[n]q !, where [n]qπ ! =∏n

i=1(q
i − q−i )/(q − q−1) is the q-factorial. If A is any Z[q, q−1]-algebra, we use the

notation fA for A ⊗Z[q,q−1] f .
The algebra f is graded byNI where θi has degree i for all i ∈ I .Wewrite f = ⊕ν∈NI fν for

its decomposition into graded components. Of significant importance for us is the dimension
formula ∑

ν∈NI

dim fν tν =
∏

α∈�+
(1 − tα)−mult(α) (4.1)

The tensor product f ⊗ f has an algebra structure given by

(x1 ⊗ y1)(x2 ⊗ y2) = qβ1·α2 x1x2 ⊗ y1y2

where y1 and x2 are homogeneous of degree β1 and α2 respectively.
Given a bilinear form (·, ·) on f , we obtain a bilinear form (·, ·) on f ⊗ f by

(x1 ⊗ x2, y1 ⊗ y2) = (x1, x2)(y1, y2).
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250 P. J. McNamara

There is a unique algebra homomorphism r : f → f ⊗ f such that r(θi ) = θi ⊗ 1 + 1 ⊗ θi
for all i ∈ I .

The algebra f has a symmetric bilinear form 〈·, ·〉 satisfying
〈θi , θi 〉 = (1 − q2)−1

〈x, yz〉 = 〈r(x), y ⊗ z〉.
The form 〈·, ·〉 is nondegenerate. Indeed, in the definition of f in [19], f is defined to be

the quotient of a free algebra by the radical of this bilinear form. It is known that f is a
free Z[q, q−1]-module. Let f∗ be the graded dual of f with respect to 〈·, ·〉. By definition,
f∗ = ⊕ν∈NI f∗

ν . As twisted bialgebras over Q(q), fQ(q) and f∗
Q(q)

are isomorphic, though
there is no such isomorphism between their integral forms.

5 KLR algebras

A good introduction to the basic theory of KLR algebras appears in [16, §4]. Although
it is not customary, we will first give the geometric construction of KLR algebras, then
discuss the standard presentation in terms of generators and relations. In this paper, we must
restrict ourselves to KLR algebras which come from geometry. The primary reason for this
restriction is our reliance on the theory of R-matrices, which we introduce in Sect. 14. The
results presented in Sect. 7 also require the geometric interpretation.

Define a graph with vertex set I and with −i · j edges between i and j for all i 	= j . Let
Q be the quiver obtained by placing an orientation on this graph.

For ν ∈ NI , define Eν and Gν by

Eν =
∏

i→ j

HomC(Cνi , C
ν j ),

Gν =
∏

i

GLνi (C).

With the obvious action of Gν on Eν , Eν/Gν is the moduli stack of representations of Q
with dimension vector ν.

Let Fν be the complex variety whose points consist of a point of Eν , together with a
full flag of subrepresentations of the corresponding representation of Q. The variety Fν is
a disjoint union of smooth connected varieties. Let Fν = �iF i

ν be its decomposition into
connected components and π i :F i

ν →Eν be the natural Gν-equivariant morphism. Define

L =
⊕

i

(π i)!QF i
ν
[dimF i

ν] ∈ Db
Gν

(Eν).

For each ν ∈ NI we define the KLR algebra R(ν) by

R(ν) =
⊕

d∈Z
HomDb

Gν
(Eν )(L,L[d]).

We now introduce the more customary approach via generators and relations. This presen-
tation is due to [26] and [23], andmore recently overZ in [21]. To introduce this presentation,
we first need to define, for any ν ∈ NI ,

Seq (ν) =
⎧
⎨

⎩
i = (i1, . . . , i|ν|) ∈ I |ν| |

|ν|∑

j=1

i j = ν

⎫
⎬

⎭
.
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This is acted upon by the symmetric group S|ν| inwhich the adjacent transposition (i, i+1)
is denoted si .

Define the polynomials Qi, j (u, v) for i, j ∈ I by

Qi, j (u, v) =
{∏

i→ j (u − v)
∏

j→i (v − u) if i 	= j

0 if i = j

where the products are over the sets of edges from i to j and from j to i , respectively.

Theorem 5.1 The KLR algebra R(ν) is the associative Q-algebra generated by elements ei,
y j , τk with i ∈ Seq (ν), 1 ≤ j ≤ |ν| and 1 ≤ k < |ν| subject to the relations

eiej = δi,jei,
∑

i∈Seq (ν)

ei = 1,

yk yl = yl yk, ykei = eiyk,

τl ei = esl iτl , τkφl = τlφk if |k − l| > 1,

τ 2k ei = Qik ,ik+1(yk, yk+1)ei,

(τk yl − ysk (l)τk)ei =

⎧
⎪⎨

⎪⎩

−ei if l = k, ik = ik+1,

ei if l = k + 1, ik = ik+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)ei

=
⎧
⎨

⎩

Qik ,ik+1(yk, yk+1) − Qik ,ik+1(yk+2, yk+1)

yk − yk+2
ei if ik = ik+2,

0 otherwise.

(5.1)

Remark 5.2 Although the polynomials Qi, j (u, v) are not exactly as they appear in [11], the
reader should not be concerned when we quote results from [11] as all of the arguments
go through without change. The discussion in [12] shows that changing the ordering of the
quiver Q does not change the isomorphism type of R(ν).

The KLR algebras R(ν) are Z-graded, where ei is of degree zero, y j ei is of degree i j · i j
and φkei is of degree −ik · ik+1.

They satisfy the property that R(ν)d = 0 for d sufficiently negative (depending on ν) and
R(ν)d is finite dimensional for all d . Relevant implications of these properties are that there
are a finite number of isomorphism classes of simple modules and that projective covers
exist.

All representations of KLR algebras that we consider will be finitely generated Z-graded
representations. If needed, we write M = ⊕dMd for the decomposition of a module M into
graded pieces. A submodule of a finitely generated R(ν)-module is finitely generated by [11,
Corollary 2.11].

For amoduleM , we denote its grading shift by i by qi M , this is themodulewith (qi M)d =
Md−i .

Given two modules M and N , we consider Hom(M, N ), and more generally Exti (M, N )

as graded vector spaces. All Ext groupswhich appear in the paperwill be taken in the category
of R(ν)-modules.

Let τ be the antiautomorphism of R(ν) which is the identity on all generators ei, yi , φ j .
For any R(ν)-module M , there is a dual module M� = HomQ(M, Q), where the R(ν)

action is given by (xλ)(m) = λ(τ(x)m) for all x ∈ R(ν), λ ∈ M� and m ∈ M .
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For every irreducible R(ν)-module L , there is a unique choice of grading shift such that
L� ∼= L [11].

Let λ,μ ∈ NI . Then there is a natural inclusion ιλ,μ : R(λ) ⊗ R(μ) → R(λ + μ),
defined by ιλ,μ(ei ⊗ ej) = eij, ιλ,μ(yi ⊗ 1) = yi , ιλ,μ(1 ⊗ yi ) = yi+|λ|, ιλ,μ(φi ⊗ 1) = φi ,
ιλ,μ(1 ⊗ φi ) = φi+|λ|.

Define the induction functor Indλ,μ : R(λ) ⊗ R(μ)-mod → R(λ + μ)-mod by

Indλ,μ(M) = R(λ + μ)
⊗

R(λ)⊗R(μ)

M.

Define the restriction functor Resλ,μ : R(λ + μ)-mod → R(λ) ⊗ R(μ)-mod by

Resλ,μ(M) = ιλ,μ(1R(λ)⊗R(μ))M.

The induction and restriction functors are both exact.
For a R(λ)-module A and a R(μ)-module B, we write A ◦ B for Indλ,μ(A ⊗ B). Under

duality, the behaviour is
(A ◦ B)� ∼= qλ·μB� ◦ A�. (5.2)

Khovanov and Lauda [11] prove the existence of a dual pair of isomorphisms
⊕

ν∈NI

G0(R(ν)-pmod) ∼= f (5.3)

and ⊕

ν∈NI

K0(R(ν)-fmod) ∼= f∗. (5.4)

The category R(ν)-pmod is the category of finitely generated projective R(ν)-modules
and G0 means to take the split Grothendieck group. The category R(ν)-fmod is the category
of finite dimensional R(ν)-modules and K0 means to take theGrothendieck group.We denote
the class of a module M , identified with its image under the above isomorphisms, by [M].
The action of q ∈ A is by grading shift.

The functors of induction and restriction decategorify to a product and coproduct. The
isomorphisms above are then isomorphisms of twisted bialgebras.

If M is a general finitely generated R(ν)-module, then it has a well-defined composition
series, where each composition factor appears with amultiplicity that is an element ofZ((q)).
Thus we can consider [M] to be an element of f∗

Z((q))
.

Of great importance will be the followingMackey theorem. The general case stated below
has the same proof as the special case presented in [11].

Theorem 5.3 [11, Proposition 2.18] Let λ1, . . . , λk, μ1 . . . , μl ∈ NI be such that∑
i λi = ∑

j μ j and let M be a R(λ1) ⊗ · · · ⊗ R(λk)-module. Then the module
Resμ1,...,μl ◦ Indλ1,...,λk (M) has a filtration indexed by tuples νi j satisfying λi = ∑

j νi j
and μ j = ∑

i νi j . The subquotients of this filtration are isomorphic, up to a grading shift,
to the composition Indμ

ν ◦τ ◦Resλν(M). Here Resλν : ⊗i R(λi )-mod→⊗i (⊗ j R(νi j ))-mod is
the tensor product of the Resνi• , τ : ⊗i (⊗ j R(νi j ))-mod→⊗ j (⊗i R(νi j ))-mod is given by
permuting the tensor factors and Indμ

ν : ⊗ j (⊗i R(νi j ))-mod→⊗ j R(μ j )-mod is the tensor
product of the Indν•i .

We refer to the filtration appearing in the above theorem as the Mackey filtration. It will
be very common for us to make arguments using vanishing properties of modules under
restriction to greatly restrict the number of these subquotients which can be nonzero.
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For each w ∈ S|ν|, make a choice of a reduced decomposition w = s1 . . . sn as a product
of simple reflections. Define τw = τ1 · · · τn . In general τw depends on the choice of reduced
decomposition though this is not the case for permutations of the form w[β, γ ].
Theorem 5.4 [11, Theorem 2.5][23, Theorem 3.7] The set of elements of the form
ya11 · · · ya|ν|

|ν| τwei with a1, . . . , a|ν| ∈ N, w ∈ S|ν| and i ∈ Seq (ν) is a basis of R(ν).

Theorem 5.5 [11, Corollary 2.11] The KLR algebra is Noetherian.

We work over the ground field Q. It is proved in [11] that any irreducible module is
absolutely irreducible, so there is no change to the theory in passing to a field extension.
This also means that any irreducible module for a tensor product of KLR algebras is a tensor
product of irreducibles, a fact we use without comment.

6 Adjunctions

In addition to the induction and restriction functor defined in the previous section, there is
also a coinduction functor CoIndλ,μ R(λ) ⊗ R(μ)-mod → R(λ + μ)-mod, defined by

CoIndλ,μ(M) = HomR(λ)⊗R(μ)(R(λ + μ), M)

where the R(λ + μ) module structure on CoIndλ,μ(M) is given by (r f )(t) = f (tr) for
f ∈ CoIndλ,μ(M) and r, t ∈ R(λ + μ).
The following adjunctions are standard:

Proposition 6.1 The functor Indλ,μ is left adjoint to Resλ,μ, while the functor CoIndλ,μ is
right adjoint to Resλ,μ.

As a R(λ)⊗ R(μ) module, R(λ+μ) is free of finite rank. This implies that the induction,
restriction and coinduction functors all send projective modules to projective modules. As a
consequence, there are natural isomorphisms of higher Ext groups

Exti (A ◦ B,C) ∼= Exti (A ⊗ B,Resλ,μ C) (6.1)

for all A ∈ R(λ)-mod, B ∈ R(μ)-mod and C ∈ R(λ + μ)-mod.
Let σν : R(ν)→ R(ν) be the involutive isomorphism of R(ν)with σν(ei) = ew0i, σν(yi ) =

y|ν|+1−i and σν(τ j ei) = (1 − 2δi j ,i j+1)τ|ν|− j ew0i. This induces an autoequivalence σ ∗
ν of

R(ν)-mod.

Theorem 6.2 [20, Theorem 2.2] There is a natural equivalence of functors

σ ∗
λ+μ ◦ Indλ,μ

∼= q(λ·μ) CoIndλ,μ ◦(σ ∗
λ ⊗ σ ∗

μ).

Proof The statement of this theorem in [20] includes a hypothesis that the modules in ques-
tion are all finite dimensional. Exactly the same proof works for graded modules all of whose
pieces are finite dimensional, which covers all the modules we will ever come across. The
general case follows by writing a module as the direct limit of its finitely generated submod-
ules (noting that R(λ + μ) is finite over R(λ) ⊗ R(μ)). ��
Remark 6.3 Most importantly, applied to a module of the form A⊗B yields an isomorphism

Indλ,μ(A ⊗ B) ∼= q(λ·μ) CoIndμ,λ(B ⊗ A).
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In particular, there is an isomorphism

Exti (A, B ◦ C) ∼= q−(λ·μ) Exti (Resλ,μ A,C ⊗ B) (6.2)

for any R(λ)-module C , R(μ)-module B and R(λ + μ)-module A.

There are parabolic analogues of all the functors and results discussed in this section.

7 The Ext bilinear form

By the decomposition theorem [1], we have

L ∼=
⊕

b∈Bν

Lb ⊗ Pb

where each Lb is a nonzero finite dimensional graded vector space and Pb is an irreducible
Gν-equivariant perverse sheaf on Eν . The indexing set Bν can be taken to be the set of
elements of weight ν in the crystal B(∞), though for our purposes it is not necessary to know
this fact.

The maximal semisimple quotient of R(ν) is ⊕b∈Bν End(Lb) and hence the simple rep-
resentations of R(ν) are the multiplicity spaces Lb. The projective cover of Lb is the module
⊕d∈Z HomDb

Gν
(Eν )(L,Pb[d]). In this way we get a bijection between simple perverse sum-

mands of π!Q and irreducible representations of R(ν). By Lusztig’s geometric construction
of canonical bases, the class of a simple representation under the isomorphism (5.4) lies in
the dual canonical basis while the class of its projective cover under (5.3) lies in the canonical
basis.

As has been noted by Kato [8], each algebra R(ν) is graded Morita equivalent to the
algebra

A(ν) =
⊕

d∈Z
HomDb

Gν
(Eν )

⎛

⎝
⊕

b∈Bν

Pb,
⊕

b∈Bν

Pb[d]
⎞

⎠ .

The algebra A(ν) is a N-graded algebra with A(ν)0 semisimple. Under this Morita equiv-
alence the self-dual irreducible module Lb gets sent to a one-dimensional representation of
A(ν) concentrated in degree zero.

Lemma 7.1 Let M be a finitely generated representation of R(ν) and let N be a finite
dimensional representation of R(ν). Fix an integer d. Then there exists i0 such that
Exti (M, N )d = 0 for all i > i0.

Proof Replace R(ν) with the Morita equivalent algebra A(ν) and assume that M and N are
A(ν)-modules. Let · · · → P1 → P0 → M → 0 be a minimal projective resolution of
M . As M is finitely generated, there exists d0 such that Mj = 0 for j < d0. Since A(ν)

is nonnegatively graded with A(ν)0 semisimple, Pi
j = 0 for j < d0 + i . The vector space

Exti (M, N ) is a subquotient of Hom(Pi , N ) and for sufficiently large i , Hom(Pi , N )d = 0
by degree considerations. ��

By the above lemma, ifM is a finitely generated R(ν)-module and N is a finite dimensional
R(ν)-module, then the infinite sum

(M, N ) =
∞∑

i=0

(−1)i dimq Ext
i (M, N ).
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is a well-defined element of Z((q)). We thus get a pairing on Grothendieck groups

(·, ·) : f∗
Z((q)) × f∗ →Z((q)).

Lemma 7.2 The pairing (·, ·) satisfies the following properties

( f (q)x, g(q)y) = f (q)g(q−1)(x, y)

(θi , θ
∗
i ) = 1

(xy, z) = (x ⊗ y, r(z))

(x, yz) = qβ·γ (r(x), z ⊗ y)

for all x, y, z ∈ f , f (q) ∈ Z((q)), g(q) ∈ Z[q, q−1], where y and z are homogeneous of
degree β and γ .

Proof The first formula is obvious. The second is a simple computation in R(i) ∼= k[z]. The
third follows from (6.1) and the fourth follows from (6.2). ��

Let 〈x, y〉 = (x, ȳ). The pairing 〈·, ·〉 can be extended byZ((q))-linearity to give a bilinear
pairing on f∗

Z((q))
.

Lemma 7.3 The pairing 〈·, ·〉 satisfies the following properties

〈 f (q)x, g(q)y〉 = f (q)g(q)〈x, y〉
〈θi , θi 〉 = (1 − q2)−1

〈xy, z〉 = 〈x ⊗ y, r(z)〉
〈x, yz〉 = 〈r(x), y ⊗ z〉

Proof These follow from the analogous formulae in Lemma 7.2. To derive the third we need
to know that r commutes with the bar involution while to derive the fourth we need to know
that yz = qβ·γ z̄ ȳ for homogeneous elements y and z of degree β and γ . ��
Corollary 7.4 The pairing 〈·, ·〉 defined using the Ext-pairing is equal to the usual pairing
on f as in the end of Sect. 4.

Proof It is immediate that there is a unique pairing satisfying the properties of Lemma 7.3
and these properties define the pairing in [19]. ��
Lemma 7.5 Let M be a finite dimensional R(ν)-module with

[M] =
n∑

i=m

∑

L

ai,Lq
i [L]

where the second sum is over all self-dual simple modules L. If an,L 	= 0 then qnL is a
submodule of M while if am,L 	= 0 then qmL is a quotient of M.

Proof If this lemma is false, then there exist self-dual irreducible representations L1 and
L2 of R(ν), and an integer d ≤ 0 such that Ext1(L1, L2)d 	= 0. Now replace R(ν) by
the Morita equivalent A(ν). We compute Ext1(L1, L2) by computing a minimal projective
resolution of L1. Since A(ν) is non-negatively graded with A(ν)0 semisimple, we see from
this computation that Ext1(L1, L2) is concentrated in degrees greater than zero. ��
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8 Proper standard modules

Definition 8.1 Let α be a positive root and n be an integer. A representation L of R(nα) is
called semicuspidal if Resλ,μ L 	= 0 implies that λ is a sum of roots less than or equal to α

and μ is a sum of roots greater than or equal to α.

Lemma 8.2 Let α be a positive root, m1, . . . ,mn ∈ Z
+ and Li be a semicuspidal represen-

tation of R(miα) for each i = 1, 2, . . . , n. Then the module L1 ◦ · · · ◦ Ln is semicuspidal.

Proof This immediate from Theorem 5.3 and the definition of semicuspidality. ��
Definition 8.3 Let α be a positive root. A representation L of R(α) is called cuspidal if
whenever Resλ,μ L 	= 0 and λ,μ 	= 0, we have that λ is a sum of roots less than α and μ is
a sum of roots greater than α.

Remark 8.4 It is clear that if α is an indivisible root then any semicuspidal representation
of R(α) is cuspidal. If α = nδ for n ≥ 2 we will see in Theorem 19.10 that there are no
cuspidal representations of R(α).

Definition 8.5 A sequence of modules L1, . . . , Ln is called admissible if each Li is an
irreducible semicuspidal representation of R(miαi ) with mi ∈ Z

+ and the positive roots αi

satisfy α1 � α2 � · · · � αn .

Lemma 8.6 Let α1 � α2 � · · · � αk and β1 � β2 � · · · � βl be positive roots and
m1, . . . ,mk, n1, . . . , nl be positive integers. Let L1, . . . , Lk be semicuspidal representations
of R(m1α1), · · · , R(mkαk) respectively. Then

Resn1β1,...,nlβl L1 ◦ · · · ◦ Lk =
{
0 unless β ≤ α

L1 ⊗ · · · ⊗ Lk if β = α,

where we are considering bilexicographical ordering on the multisets α and β.

Proof Consider a nonzero layer of the Mackey filtration for Resn1β1,...,nlβl L1 ◦ · · · ◦ Ln . It
is indexed by a set of elements νi j ∈ NI such that miαi = ∑

j νi j and n jβ j = ∑
i νi j . For

the piece of the filtration to be nonzero, it must be that Resνi,1,...,νi,n Li 	= 0 for each i .
Suppose that t is an index such thatmiαi = niβi for i < t .Wewill prove that in order for us

to have a nonzero piece of the filtration, it must be that either βt ≺ αt ormtαt = ntβt = νt,t .
By induction on t , we may assume that νi i = miαi = niβi for i < t . Therefore νi, j = 0

for all i and j with i ≥ t and j < t .
Suppose i ≥ t . Since the module Li is cuspidal, this implies that νi,t is a sum of roots less

than or equal to αi , which are all less than or equal to αt .
Now ntβt = ∑

i≥t νi,t is written as a sum of positive roots all less than or equal to αt .
Therefore, by convexity of the ordering, either βt ≺ αt or ntβt = mtαt . In this latter case,
equality in our inequalities must hold everywhere, hence νt,t = ntβt as required.

This is enough to conclude that α ≥ β under lexicographical ordering. Similarly we get
α ≥ β under reverse lexicographical ordering, so we have α ≥ β under the bilexicographical
order. ��
Lemma 8.7 Let α1 � α2 � · · · � αn be roots, m1, . . . ,mn be positive integers and
L1, . . . , Ln be irreducible semicuspidal representations of R(m1α1), . . . , R(mnαn) respec-
tively. Then
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(1) the module L1 ◦ · · · ◦ Ln has a unique irreducible quotient L, and
(2) Resm1α1,...,mnαn L1 ◦ · · · ◦ Ln = Resm1α1,...,mnαn L = L1 ⊗ · · · ⊗ Ln.

Proof Suppose that Q is a nonzero quotient of L1 ◦ · · · ◦ Ln . Then by adjunction there is
a nonzero map from L1 ⊗ · · · ⊗ Ln to Res Q. As L1 ⊗ · · · ⊗ Ln is irreducible, this map is
injective.

The restriction functor is exact and by Lemma 8.6, Res(L1 ◦ · · ·◦ Ln) is simple. Therefore
the head of L1 ◦ · · · ◦ Ln must be simple. ��

If L1, . . . , Ln is a sequence of representations, we define A(L1, . . . , Ln) = cosoc(L1 ◦
· · · Ln). The below two theorems appear also in [13] and [25]. We provide proofs of both
after the statement of Theorem 8.9.

Theorem 8.8 Every irreducible module for R(ν) is of the form A(L1, . . . , Ln) for exactly
one set of irreducible semicuspidal representations L1, . . . , Ln of R(m1α1), . . . , R(mnαn)

respectively, where α1 � · · · � αn are positive roots.

Theorem 8.9 If α is a positive real root and n is a positive integer, there is one simple
semicuspidal module for R(nα). For the imaginary roots, let f (n) be the number of simple
semicuspidal representations of R(nδ) (and set f (0) = 1). Then

∞∑

n=0

f (n)tn =
∞∏

i=1

(1 − t i )1−|I |.

Proof Here we prove Theorems 8.8 and 8.9 by a simultaneous induction on ν.
First let us consider the case where ν is not of the form nα for some root α. The number

of irreducible representations of R(ν) is equal to dim fν , which is the coefficient of tν in the
power series (4.1).

By inductive hypothesis applied to Theorem 8.9, the number of admissible sequences of
semicuspidal modules (L1, . . . , Ln) is equal to dim fν . By Lemma 8.7, each of the mod-
ules A(L1, . . . , Ln) are irreducible, and by applying various restriction functors, we see
via Lemma 8.6 that these modules are all distinct. Therefore we have identified all of the
irreducible R(ν)-modules in this case, proving Theorem 8.8.

Now we turn our attention to the case where ν = kα for some root α. By the same argu-
ments as in the previous case, the modules of the form A(L1, . . . , Ln) where n ≥ 2 yield all
the irreduciblemodules for R(kα) except one, unless ν = nδ, when the construction yields all
irreducible modules except f (n). It suffices to prove that if L is an irreducible representation
of R(ν) with L not of the form A(L1, . . . , Ln) with n ≥ 2, then L is semicuspidal.

Suppose that λ andμ are such that Resλμ L 	= 0. We need to prove that λ is a sum of roots
less than or equal to α (the result forμ is similar) and we may suppose that neither of λ andμ

is zero. Let Lλ ⊗ Lμ be an irreducible submodule of Resλμ L . By inductive hypothesis Lλ =
A(L1, . . . , Lk) for some admissible sequence of semicuspidal representations. Suppose that
L1 is a R(mβ) module where β is a root. Then Resmβ,ν−mβ L 	= 0. If β 
 α, then λ is a sum
of roots less than or equal to β and hence a sum of roots less than or equal to α.

Therefore without loss of generality we may assume that λ = mβ and that Lλ is semicus-
pidal. For want of a contradiction, assume β � α. We may further assume without loss of
generality that β is the maximal root for which Resmβ,ν−mβ L 	= 0 for some positive integer
m. We may further assume that m is as large as possible.

By inductive hypothesis, write Lμ = A(M1, . . . , Mn) where M1 is a R(kγ )-module for
some root γ and positive integer k.
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Therefore Resλ+kγ,μ−kγ L 	= 0. If kγ 	= μ, then by maximality of β, λ + kγ is a sum
of roots less than or equal to β. By maximality of m, γ ≺ β. By adjunction this implies that
L is a quotient of Lλ ◦ M1 ◦ · · · ◦ Mn . As (Lλ, M1, . . . , Mn) is an admissible sequence of
semicuspidal modules, this is a contradiction.

Therefore Lμ is semicuspidal, with μ = kγ . By convexity γ ≺ α ≺ β. By adjunction
there is a nonzero map from Lλ ◦ Lμ to L . As L is irreducible, this exhibits L as A(Lλ, Lμ),
a contradiction. This completes the proof. ��

9 Real cuspidals

For i ∈ I , there is an automorphism Ti of the entire quantum group Uq(g) satisfying

Tiθ j =
−i · j∑

k=0

(−q)kθ
(k)
i θ jθ

(−i · j−k)
i

for all i 	= j . In the notation of [19], Ti is the automorphism T ′
i,+.

Now we will define the PBW root vectors for the real roots. Let α be a positive real root
and suppose that α ≺ δ. Let Sα = {β ∈ �+ | α − β ∈ NI }. Then Sα is a finite set of roots.
By Theorem 3.11, we can find a word convex order ≺′ whose restriction to Sα agrees with
the restriction of ≺ to Sα .

By Lemma 3.8 there exists w ∈ W such that �(w) = {β ∈ �+ | β 
′ α} and a reduced
expressionw = si1 . . . siN such that α = si1si2 · · · siN−1αiN . We define the root vector Eα ∈ f
by

Eα = Ti1Ti2 · · · TiN−1θiN

If α happens to be greater than δ, then in a similar vein we get a reduced expression but
now define Eα ∈ f by

Eα = T−1
i1

T−1
i2

· · · T−1
iN−1

θiN

In all cases, we then define the dual root vector E∗
α = (1 − q2α)Eα ∈ f∗.

A proof that the elements Eα and E∗
α are well defined based on [19, Proposition 40.2.1]

is possible. Alternatively, this result will follow from Theorem 9.1.
For α ∈ �+

re, let L(α) be the unique self-dual cuspidal irreducible representation of R(α).
The existence of a cuspidal irreducible module is Theorem 8.9 above while the fact that it
can be chosen to be self-dual is in [11, §3.2].

Theorem 9.1 Let α be a positive real root. Then [L(α)] = E∗
α .

Proof Let i1, . . . , iN be as in the construction of Eα above. For 1 ≤ k ≤ N let αk =
si1 · · · sik−1αik . Then α1 ≺ · · · ≺ αN = α.

First we will prove by induction on n for 1 ≤ n ≤ N that there exists xn ∈ f∗
Q(q)

such that
[L(α)] = Ti1 · · · Tin−1(xn).

For the case n = 1, let x1 = [L(α)]. Now assume that the result is known for n = k and
consider the case n = k + 1.

By [19, Ch 38] we can write xk = θ∗
ik
y + Tik (z) where y, z ∈ f∗

Q(q)
. Then

[L(α)] = (Ti1 · · · Tik−1(θ
∗
ik ))(Ti1 · · · Tik−1(y)) + Ti1 · · · Tik (z).
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Since L(α) is cuspidal and αk ≺ α, Resαk ,αN−αk L(α) = 0. Therefore [L(α)] is orthog-
onal to the product (Ti1 · · · Tik−1(θ

∗
ik
))(Ti1 · · · Tik−1(y)). Since this product is orthogonal to

Ti1 · · · Tik (z), it must be that (y, y) = 0.
IfQ(q) is embedded intoR by sending q to a sufficiently small real number, then the form

(·, ·) on fν is positive definite. Therefore y = 0. We let xk+1 = z.
We have now proved the desired preliminary result by the principle of mathematical

induction. Applying this when k = N , we see that [L(α)] = Ti1 · · · Tin−1(xN ) for some
xN ∈ (f∗

Q(q)
)αiN

. Therefore xN is a scalar multiple of θiN .

Since [L(α)] is an element of aZ[q, q−1]-basis of f∗, the scalarmust be a unit inZ[q, q−1],
thus of the form±qi for some i ∈ Z. Since [L(α)] is invariant under the bar involution, i = 0.
The argument of [13, Lemma 2.35] shows that the sign is the positive one. ��
Proposition 9.2 Let α be a real root and n be a positive integer. The module L(α)◦n is the
unique simple semicuspidal representation of R(nδ).

Proof By Lemma 8.2, L(α)◦n is semicuspidal. Therefore [L(α)◦n] = f (q)[L] where L is
the unique semicuspidal representation of R(nα) and f (q) ∈ N[q, q−1]. By Theorem 9.1,
[L(α)◦n] = Ti1Ti2 · · · TiN−1(θ

∗
iN

)n which is indivisible in f∗, hence L(α)◦n is irreducible. ��
Remark 9.3 This gives the existence of many modules called real in the nomenclature of
[10].

10 Root partitions

Let S be an indexing set for the set of self-dual irreducible semicuspidal representations of
R(nδ), for all n. It will not be until Theorem 19.10 that we exhibit a bijection between S and
P�. We write L(s) for the representation indexed by s ∈ S.

We now introduce the notion of a root partition, which allows us to index irreducibles by a
finite collection of real roots (with multiplicities), together with an irreducible semicuspidal
imaginary module.We first define a root partition π to be an admissible sequence of self-dual
irreducible semicuspidal representations.

To each root partition π we define a function fπ :�+
nd →Nwhere if fπ (α) is nonzero then

there is a representation of R( fπ (α)α) in π . Given two root partitions π and σ we say that
π < σ if there exist indivisible roots α and α′ such that fπ (α) < fσ (α), fπ (α′) < fσ (α′)
and fπ (β) = fσ (β) for all roots β satisfying either β ≺ α or β � α′. If fπ = fσ we say
π ∼ σ .

Since there is exactly one irreducible semicuspidal representation of R(nα) for each n and
each real root α, we can write the datum of a root partition in a more combinatorial manner.
Concretely we write a root partition in the form π = (β

m1
1 , . . . , β

mk
k , s, γ nl

l , . . . , γ
n1
1 ). Here

k and l are natural numbers, s ∈ S, β1, . . . , βk, γ1, . . . , γl are the set of real roots on which
fπ is nonzero, fπ (βi ) = mi , fπ (γi ) = ni and

β1 � · · · � βk � δ � γl � · · · � γ1

When we do have a bijection between S and P� then we will have a purely combinatorial
description of a root partition.

Let π = (β
m1
1 , . . . , β

mk
k , s, γ nl

l , . . . , γ
n1
1 ) be a root partition. Let sλ = ∑k

i=1

(mi
2

) +
∑l

j=1

(n j
2

)
. Define the proper standard module �(π) to be

�(π) = qsλL(β1)
◦m1 ◦ · · · ◦ L(βk)

◦mk ◦ L(s) ◦ L(γl)
◦nl ◦ · · · ◦ (γ1)

◦n1 .
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Let L(π) be the head of �(π). This is an irreducible module by Lemma 8.7.

Theorem 10.1 [13] The proper standard modules have the following property.

(1) Up to isomorphism and grading shift, the set {L(π)} as π runs over all root partitions
of ν is a complete and irredundant set of irreducible R(ν)-modules.

(2) The module L(π) is self dual, i.e. L(π)� ∼= L(π).
(3) If the multiplicity [�(π) : L(σ )] is nonzero, then σ ≤ π . Furthermore [�(π) : L(π)] =

1.

Proof Part (1) is Theorem 8.8. For part (2) note that since L(π) is irreducible, by [11, §3.2]
L(π)� ∼= qi L(π) for some i . By Lemma 8.7(2) and the fact that restriction commutes with
duality, i = 0. Part (3) follows from Lemma 8.6. ��

11 Levendorskii–Soibelman formula

By Theorem 10.1 the classes [�(π)] of the proper standard modules is a basis of f∗. We call
this the categorical dual PBWbasis. Let {Eπ } be the basis of f dual to this with respect to 〈·, ·〉.
We shall call this basis the categorical PBWbasis. Later we will identify the categorical PBW
basis both with a basis coming from a family of standard modules, as well as an algebraically
defined basis which generalises the approach of [3].

The results in this section are an affine type analogue of the Levendorskii-Soibelman
formula [17, Proposition 5.5.2]. We refer to both Theorems 11.1 and 11.6 as a Levendorskii-
Soibelman formula.

Theorem 11.1 Let θ, ψ ∈ �+
re∪S with θ � ψ . Expand [L(θ)][L(ψ)]−q(θ ·ψ)[L(ψ)][L(θ)]

in the standard basis

[L(θ)][L(ψ)] − q(θ ·ψ)[L(ψ)][L(θ)] =
∑

π

cπ [�(π)].

If cπ 	= 0 for some root partition π then π < (θ,ψ) where < is the partial order on root
partitions from Sect. 10.

Proof By Theorem 10.1,

[L(θ)][L(ψ)] − [L(θ, ψ)] ∈
∑

π<(θ,ψ)

Z[q, q−1][L(π)].

Applying the bar involution on f∗ yields

q(θ ·ψ)[L(ψ)][L(θ)] − [L(θ, ψ)] ∈
∑

π<(θ,ψ)

Z[q, q−1][L(π)].

Theorem 10.1 also shows that
∑

π<(θ,ψ)

Z[q, q−1][L(π)] =
∑

π<(θ,ψ)

Z[q, q−1][�̄(π)]

so upon subtraction we obtain the desired result. ��
Lemma 11.2 Let σ and π be two root partitions. Then 〈[�(σ)], [�(π)]〉 = 0 unless σ ∼ π .
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Proof Wehave 〈[�(σ)], [�(π)]〉 = 〈[L(σ1)⊗· · ·⊗L(σl)], [Resσ �(π)]〉which, by Lemma
8.6, is zero unless σ ≤ π .

Also 〈[�(σ)], [�(π)]〉 = 〈[Resπ (�(σ)], [L(π1) ◦ · · · ◦ L(πk)]〉 which again by
Lemma 8.6 is zero unless π ≤ σ . ��
Lemma 11.3 If θ ∈ �+

re ∪ S then

Eθ ∈ spanψ∼θ [L(ψ)].

Proof By definition of Eθ , we have 〈Eθ , [�(π)]〉 = 0 unless π = θ . By Lemma 11.2 and
the fact that the classes [�(σ)] are a basis of f∗, this forces

Eθ ∈ spanψ∼θ [�(ψ)] = spanψ∼θ [L(ψ)].
��

Corollary 11.4 If σ, π ∈ S then Eσ Eπ is a linear combination of Eτ for τ ∈ S.

Proof This follows from Lemmas 8.2 and 11.3. ��
Lemma 11.5 Let π = (π1, . . . , πk) be a root partition. Then Eπ = Eπ1 · · · Eπk .

Proof By Lemma 11.3, the element Eπ1 · · · Eπk is a linear combination of elements of the
form [�(σ)] where σ ∼ π . Therefore by Lemma 11.2, Eπ1 · · · Eπk is orthogonal to all
elements of the from [�(η)] where η � π . For η ∼ π , we compute

〈Eπ1 · · · Eπk , [�(η)]〉 =
k∏

i=1

〈Eπi , [L(ηi )]〉

which is zero unless η = π in which case it is equal to one. We have shown that the product
Eπ1 · · · Eπk has all the properties which define Eπ , hence is equal to Eπ . ��
Theorem 11.6 Let θ, ψ ∈ �+

re ∪ S with θ � ψ . Then

Eθ Eψ − q(θ ·ψ)Eψ Eθ ∈
∑

π<(θ,ψ)

Z[q, q−1]Eπ .

Proof This is immediate from Theorem 11.1 and Lemma 11.3. ��
This yields an algorithm for expanding anymonomial in the Eθ in the PBWbasis. Namely

given a monomial Eκ1Eκ2 · · · Eκk , repeatedly apply the following types of moves:

• If κl ≺ κl+1, replace Eκl Eκl+1 with qκl ·κl+1Eκl+1Eκl plus the correction term from The-
orem 11.6.

• If κl and κl+1 are both imaginary replace the product Eκl Eκl+1 with a sum of terms Eθ ,
which is possible by Corollary 11.4.

12 Minimal pairs

Let α be a positive root. Define S(α) to be the quotient of R(α) by the two-sided ideal
generated by the set of ei such that eiL = 0 for all semicuspidal modules L .
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Lemma 12.1 There is an equivalence of categories between the category of S(α) modules
and the full subcategory of semicuspidal R(α)-modules.

Proof It is clear from the definition that any semicuspidal R(α)-module is a S(α)-module.
Conversely suppose that M is a S(α)-module. Suppose that λ = (λ1, . . . , λl) is a root

partition such that qnL(λ) appears as a subquotient of M . Then eiM 	= 0 for some i which is
the concatenation of i1, . . . , il in Seq (λ1), . . . , Seq (λl) respectively. If λ 	= α, then eiL = 0
for all semicuspidal R(α)-modules L . Therefore ei has zero image in S(α), contradicting
eiM 	= 0. Hence all composition factors of M are semicuspidal, so M is semicuspidal. ��
Definition 12.2 Let α be a positive root. A minimal pair for α is an ordered pair of roots
(β, γ ) satisfyingα = β+γ , γ ≺ β and there is no pair of roots (β ′, γ ′) satisfyingα = β ′+γ ′
and γ ≺ γ ′ ≺ β ′ ≺ β.

Lemma 12.3 Let α be a positive root and let (β, γ ) be a minimal pair for α. Let L be a
cuspidal representation of R(α). Then Resγ,β L is a S(γ ) ⊗ S(β)-module.

Proof Expand [Resγ,β L] in the categorical dual PBW basis

[Resγ,β L] =
∑

π,σ

cπσ E
∗
π E

∗
σ .

Then

cπσ = 〈Eπ ⊗ Eσ , [Resγ,β L]〉 = 〈Eπ Eσ , [L]〉.
In the previous section we showed how the Levendorskii-Soibelman formula gave an

algorithm for expanding the product Eπ Eσ into the PBW basis. Each term Eκ1 · · · Eκn which
appears at some point in this expansion has κ1 � π1 � β and κn 
 σl 
 γ .

The only PBW basis elements which fail to be orthogonal to [L] are those of the form Eα

if α is real and Es with s ∈ S if α is imaginary. For such a term to appear, it must arise as a
result of applying Theorem 11.6 to a term Eκ1Eκ2 with κ1 + κ2 = α.

We have already showed that κ1 � β and κ2 
 γ . To apply the Levendorskii-Soibelman
formula we need κ1 ≺ κ2 and we also know κ1 + κ2 = α. Since (β, γ ) is a minimal pair,
this forces κ1 = β and κ2 = γ . Therefore the coefficient cπσ can only be nonzero if π = κ1
and σ = κ2. Hence [Resγβ L] is a linear combination of elements of the form [Lγ ] ⊗ [Lβ ]
where Lγ and Lβ are cuspidal representations of R(γ ) and R(β). This implies that Resγβ L
is a S(γ ) ⊗ S(β)-module, as required. ��

A chamber coweight ω is said to be adapted to the convex order ≺ if it is a fundamental
coweight for the positive system p(��δ) in � f . Let ω be such a chamber coweight. Then
there exists a root α ∈ p(��δ) such that 〈ω, α〉 = 1 and 〈ω, β〉 = 0 for all β ∈ p(��δ)\{α}.
Let ω+ = α̃ and ω− = −̃α. We will always assume that all chamber coweights are adapted
to the given convex order.

Lemma 12.4 Let α be a positive real root which is not simple that does not have a real
minimal pair. Then there exists a chamber coweight ω adapted to ≺ such that α = ω+ + nδ

or α = ω− + nδ for some n ∈ N.

Proof Since every root which is not simple has a minimal pair, if α has no real minimal pair
it must be that α − δ is also a root.

Without loss of generality suppose α � δ. The p(α) is a positive root in � f . We have to
prove that p(α) is simple. Suppose for want of a contradiction that p(α) = β + γ for two
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positive roots β and γ . Then α = β̃ + γ̃ + nδ for some n. If n ≥ 0 then we can use this
expression to write α as a sum of two roots both greater than δ, which proves that α has a
real minimal pair.

Therefore the only case left to consider is if β̃ + γ̃ − 2δ is a positive root. When writing
β̃ + γ̃ in the form nδ + x with x ∈ � f , n ≥ 2 with equality if and only if β and γ are
negative under the usual positive system on � f . Therefore it is impossible for β̃ + γ̃ − 2δ
to be a root. ��

13 Independence of convex order

In this section, we prove some results detailing how some modules which a priori depend on
the entire convex order ≺, only depend on the positive system p(�≺δ).

Theorem 13.1 Let ω be a chamber coweight. The algebras S(ω+) and S(ω−) only depend
on the set p(�≺δ).

Remark 13.2 For a balanced convex order, this is [13, Lemma 5.2].

Proof It suffices to prove that the simplemodules L(ω−) and L(ω+) depend only on p(�≺δ).
We write E≺

α for the root vector defined using the convex order ≺. Let ≺ and ≺′ be two
convex orderswith p(�≺δ) = p(�≺′δ).Without loss of generalitywemay assume that≺ and
≺′ are of word type. Label the roots smaller than δ as α1 ≺ α2 ≺ · · · and α′

1 ≺′ α′
2 ≺′ · · · .

Let n and N be such that

ω− ∈ {α1, . . . , αn} ⊂ {α′
1, . . . , α

′
N }

Let w be the element of W such that �(w) = {α1, . . . , αn} and let u ∈ W be such that
�(u) = {α′

1, . . . , α
′
N }. Then �(w) ⊂ �(u). Hence if we fix a reduced expression for w (in

particular the one used to define E≺
ω− ) then there exists a reduced expression for u beginning

with this fixed reduced expression for w.
By [19, Prop 40.2.1] there exists a subspaceU+(u) of f which contains E≺

ω− and E≺′
ω− . The

dimensionofU+(u)ω− is equal to the number ofways ofwritingω− as aN-linear combination
of roots in �+(u). Any nontrivial expression contradicts the simplicity of p(ω−), hence this
space is one-dimensional, so E≺

ω− and E≺′
ω− are scalar multiples of one another.

By Theorem 9.1, (1 − q2)Eω− is the character of the irreducible module L(ω−), hence
this scalar must be one and the module L(ω−) is the same for the convex orders ≺ and ≺′.
This completes the proof for ω− and the proof for ω+ is similar. ��
Lemma 13.3 Let (β, γ ) be a minimal pair for δ. Let Lβ and Lγ be cuspidal R(β) and
R(γ )-modules respectively. Then Resγβ(Lγ ◦ Lβ) ∼= Lγ ⊗ Lβ and Resγβ(Lβ ◦ Lγ ) ∼=
q−β·γ Lγ ⊗ Lβ .

Proof By Lemma 13.1, without loss of generality, assume our convex order ≺ is as in
Example 3.6. Thus the only roots between γ and β are of the form γ + nδ, β + nδ or nδ.

Consider a nonzero quotient in the Mackey filtration of Resγ,β(Lγ ◦ Lβ). Then we have
λ,μ, ν ∈ NI such that λ + μ = γ , μ + ν = β, λ is a sum of roots less than or equal to γ ,
ν is a sum of roots greater than or equal to β, while μ is both a sum of roots greater than or
equal to γ and a (possibly different) sum of roots less than or equal to β.

Consider γ = λ + μ which has been written as a sum of roots less than or equal to β. No
roots between γ and β can appear in this sum. By convexity of the convex order, the only
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options are μ = 0, μ = γ and μ = β. We will have to show that the last two options are not
possible.

So suppose for want of a contradiction that μ = γ . Then ν = β − γ = ∑
i νi with each

νi larger than β. Note that there is at least two terms in this sum as β − γ is not a root.
Since (γ, β − γ ) = −4, there exists an index j such that (γ, ν j ) < 0. Therefore γ + ν j

is a root. Now consider
β = (γ + ν j ) +

∑

i 	= j

νi . (13.1)

By convexity this implies γ + ν j ≺ β and as ν j � β � γ it must be that γ + ν j � γ .
The Eq. (13.1) implies |γ + ν j | < |β|. But on the other hand we’ve classified all roots α

between β and γ and none of them satisfy |α| < β, a contradiction. The case μ = β is
handled similarly.

Therefore there is only one term in the Mackey filtration, which is the one where μ = 0,
whence we obtain the lemma. ��

14 Simple imaginary modules

We start by following [9] and defining the R-matrices for KLR algebras. First we need to
introduce some useful elements of R(ν).

For 1 ≤ a < n = |ν| we define elements ϕa ∈ R(ν) by

ϕaei =
{

(τa ya − yaτa)ei if ia = ia+1,

τaei otherwise.

These elements satisfy the following properties

Lemma 14.1 [9, Lemma 1.3.1]

(1) ϕ2
aei = (Qνa ,νa+1(xa, xa+1) + δνa ,νa+1)ei.

(2) {ϕk}1≤k<n satisfies the braid relations.
(3) For w ∈ Sn, let w = sa1 · · · sa�

be a reduced expression of w and set ϕw = ϕa1 · · · ϕa�
.

Then ϕw does not depend on the choice of reduced expressions of w.
(4) For w ∈ Sn and 1 ≤ k ≤ n, we have ϕwxk = xw(k)ϕw .
(5) For w ∈ Sn and 1 ≤ k < n, if w(k + 1) = w(k) + 1, then ϕwτk = τw(k)ϕw.
(6) ϕw−1ϕwei = ∏

a<b,
w(a)>w(b)

(Qia ,ib (xa, xb) + δia ,ib )ei.

Let M and N be modules for R(λ) and R(μ) respectively. Let (λ, μ)n be the degree of
φw[λ,μ]. Define the morphism RM,N : M ◦ N →q−(λ,μ)n N ◦ M by

RM,N (u ⊗ v) = ϕw[λ,μ]v ⊗ u.

In [9] an algebra homomorphismψz : R(ν)→Q[z]⊗ R(ν) is constructed whereψz(ei) =
ei, ψz(y j ) = y j + z and ψz(τk) = τk . If M is an R(ν)-module we define the R(ν)-module
Mz = ψ∗

z (Q[z] ⊗ M). The morphism rM,N : M ◦ N →q2s−(λ,μ)n N ◦ M is now defined by

rM,N = (
(z − w)−s RMz ,Nw

) |z=w=0.

where s is the largest possible integer for which this definition is possible. In [9] it is shown
that rM,N is a nonzero morphism and that these collections of morphisms satisfy the braid
relation.
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Lemma 14.2 Let L1 and L2 be two irreducible cuspidal representations of R(δ). Then the
morphisms rL1,L2 and rL2,L1 are inverse to one another.

Proof By adjunction

Hom(L1 ◦ L2, L2 ◦ L1) ∼= Hom(L1 ⊗ L2,Resδ,δ L2 ◦ L1).

As L1 and L2 are cuspidal, the Mackey filtration of Resδ,δ(L2 ◦ L1) has two nonzero
pieces, namely L2 ⊗ L1 and L1 ⊗ L2. In particular this implies that Hom(L1 ◦ L2, L2 ◦ L1)

is concentrated in degree zero. Since rL1,L2 	= 0, the integer s in the construction of rL1,L2

must be equal to (δ, δ)n/2.
For j = 1, 2, pick a nonzero vector v j ∈ L j such that yiv j = 0 for all i . The morphism

rL2,L1rL1,L2 maps v1 ⊗ v2 to
(
(z′ − z)−2sϕ2

w[δ,δ]v1 ⊗ v2

)
|z=z′=0 where the computation

is taking place in (L1)z ◦ (L2)z′ (by abuse of notation, we write v for 1 ⊗ v ∈ Lz). We
can compute this using Lemma 14.1(vi). Since yiv j = 0 in L j , we have yiv j = zv j in
(L j )z. Then the product on the right hand side of 14.1(vi) acts by the scalar (z′ − z)(δ,δ)n

on the vector v1 ⊗ v1 ∈ (L1)z ◦ (L2)z′ . We’ve already computed (δ, δ)n = 2s and hence
rL2,L1rL1,L2v1 ⊗ v2 = v1 ⊗ v2.

Since L1 and L2 are irreducible, v1 ⊗ v2 generates L1 ◦ L2. Therefore rL2,L1rL1,L2 is the
identity. ��

From the evident maps from End(L ◦ L) to End(L◦n), the morphisms rL ,L define n − 1
elements, denoted r1, r2, . . . , rn−1 ∈ End(L◦n). The following result was first noticed in a
special case in [15, Theorem 4.13], and is fundamental to the paper [14].

Theorem 14.3 Let L be an irreducible cuspidal representation of R(δ). There is an isomor-
phism End(L◦n) ∼= Q[Sn] sending ri to the transposition (i, i + 1).

Proof ByadjunctionEnd(L◦n) = Hom(L⊗n,Resδ,...,δ L◦n). Since L is cuspidal, theMackey
filtration of Resδ,...,δ L◦n has exactly n! nonzero subquotients, each isomorphic to L⊗n .
Therefore dim End(L◦n) ≤ n!.

By Lemma 14.2, r2i = 1. The identity ri r j = r j ri for | j − i | > 1 is trivial and the braid
relation ri ri+1ri = ri+1ri ri+1 is a general fact about the morphisms rM,N constructed in [9].
This allows us to define rw for each w ∈ Sn .

Recall that in the proof of Lemma 14.2, we showed that s = (δ, δ)n/2, where s is the
integer appearing in the definition of rL ,L . Therefore by induction on the length of w, using
[9, Proposition 1.4.4(iii)], we obtain

rwv ⊗ · · · ⊗ v − τι(w)v ⊗ · · · ⊗ v ∈
∑

�(w′)<�(ι(w))

τw′L ⊗ · · · ⊗ L

where ι : Sn → Sn|δ| is the obvious embedding. Therefore the endomorphisms rw are linearly
independent.

Since the ri satisfy theCoxeter relations there is a homomorphism fromQ[Sn] toEnd(L◦n).
We have just shown it is injective. Surjectivity follows from the dimension estimate in the
first paragraph of this proof. ��

Let ω be a chamber coweight. Let L(ω) be the head of the module L(ω−) ◦ L(ω+).

Lemma 14.4 The module L(ω) is an irreducible module with L(ω)� ∼= L(ω). Furthermore
Resω−,ω+ L(ω) ∼= L(ω−) ⊗ L(ω+).
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Remark 14.5 The irreducibility of L(ω) is in [25] and can also be derived from [10, Theorem
3.2]. Our preference for giving this proof is that we wish to make use of the extra properties
of L(ω) that we establish.

Proof Using Theorem 13.1 and the convex order from Example 3.6, we may assume without
loss of generality that (ω+, ω−) is a minimal pair for δ.

For any quotient Q of L(ω−) ◦ L(ω+) there is, by adjunction, a nonzero morphism from
L(ω−) ⊗ L(ω+) to Resω−,ω+ Q which is injective as the source is irreducible. Lemma 13.3
implies that Resω−,ω+ L(ω−) ◦ L(ω+) ∼= L(ω−) ⊗ L(ω+). By exactness of the restric-
tion functor, this forces the head of L(ω−) ◦ L(ω+) to be irreducible and furthermore
Resω−,ω+ L(ω) ∼= L(ω−) ⊗ L(ω+). The self-duality of L(ω) follows since every simple
module is self-dual up to a grading shift, duality commutes with restriction and the modules
L(ω±) are self-dual. ��

15 The growth of a quotient

Let z be the element y1 + · · · + y|ν| ∈ R(ν). It is straightforward to check that z is central.
The following lemma and proof appeared in an early version of [4].

Lemma 15.1 Let R′(ν) be the subalgebra of R(ν) generated by ei, i ∈ Seq (ν), τi and
yi − yi+1, 1 ≤ i < |ν|. Thenmultiplication induces an algebra isomorphismQ[z]⊗R′(ν) →
R(ν).

Proof An inspection of the presentation (5.1) of R(ν) shows that the set of elements of the
form

(y1 − y2)
a1(y2 − y3)

a2 · · · (yn−1 − yn)
an−1τwei

witha1, . . . , an−1 ∈ N,w ∈ Sn and i ∈ Seq (ν) is a spanning set for R′(ν). SinceTheorem5.4
provides us with a basis of R(ν), we can see that the collection of elements above forms a
linearly independent set, hence is a basis for R′(ν). We compute

nyn = z +
n−1∑

i=1

i(yi − yi+1)

and thus yn is in the image of Q[z] ⊗ R′(ν). Therefore the multiplication map from Q[z] ⊗
R′(ν) to R(ν) is surjective. A dimension count using Lemma 5.4 shows that it must be an
isomorphism. ��
Lemma 15.2 Let α be a positive root. There is an injection fromQ[z] into the centre of S(α).

Proof Let S′(α) be the quotient of R′(α) by the two sided ideal generated by all ei such
that eiL = 0 for all cuspidal representations L of R(α). Lemma 15.1 implies that S(α) ∼=
Q[z] ⊗ S′(α). The image of Q[z] ⊗ Q provides us with our desired central subalgebra. ��

Let α be an indivisible root, L a cuspidal representation of R(α) and let (β, γ ) be a
minimal pair for α. Let L ′′ ⊗ L ′ be an irreducible subquotient of Resγ,β L . By Lemma 12.3,
L ′′ and L ′ are cuspidal modules for R(γ ) and R(β). We will call (L ′, L ′′) a minimal pair for
L . We inductively define a word iL ∈ Seq (α) as the concatenation iL ′′ iL ′ .

Let T (L) be the subalgebra of eiL S(α)eiL generated by y1eiL , . . . , y|α|eiL .
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Lemma 15.3 Let L be a cuspidal representation and (L ′, L ′′) be a minimal pair for L. The
inclusion R(γ ) ⊗ R(β) → R(α) induces a homomorphism from T (L ′′) ⊗ T (L ′) to T (L).

Proof Suppose x ∈ ker(R(γ ) → S(γ )). Consider x ⊗ 1 ∈ R(γ ) ⊗ R(β) ↪→ R(α). On
M ∈ S(α)-mod, x ⊗ 1 acts in the way it does on Resγβ M , which is a S(γ ) ⊗ S(β)-module.
Therefore x ⊗ 1 acts by zero and hence is in the kernel of R(α) → S(α). ��
Lemma 15.4 Let L be a cuspidal representation of α. The scheme Proj T (L) has a unique
Q-point [x1 : · · · : x|α|], namely x1 = · · · = x|α|.

Proof We prove this by induction on the height of α. Choose a minimal pair (β, γ ) for α and
(L ′, L ′′) for L . Suppose that [x1 : · · · : x|α|] is a Q-point of Proj T (L). Then by Lemma 15.3
[x1 : · · · : x|γ |] and [x|γ |+1 : · · · : x|α|] are points in Proj T (L ′′) and Proj T (L ′) respectively.
By inductive assumption, x1 = · · · = x|γ | and x|γ |+1 = · · · = x|α|.

Let w = w[|γ |, |β|] and consider the element ϕ2
weiL . By Lemma 14.1(vi) it lives in T (iL)

and since ϕ2
weiL = ϕweiL′ iL′′ ϕw , it lives in the kernel of themap from R(α) to S(α). Therefore

ϕ2
weiL is zero in T (iL). Lemma 14.1(vi) writes ϕ2

weiL as a product of elements of the form
xi − x j where i ≤ |γ | and j > |γ |. Therefore any Q-point of Proj T (iL ) has x1 = · · · = x|α|
as required. ��
Theorem 15.5 Let α be an indivisible root. Then dim S(α)d is bounded as a function of d.

Proof Consider a composition series for S(α) as a S(α)-module. Every composition factor
must be cuspidal, so

[S(α)] =
∑

L

fL(q)[L] (15.1)

where fL(q) ∈ N((q)) and the sum is over irreducible cuspidal representations L . For any
i ∈ Seq(ν), we therefore get the equality

dim(eiS(α)) =
∑

L

fL(q) dim eiL . (15.2)

Pick an irreducible cuspidal representation L and let iL be the corresponding word
in Seq (ν). By Lemma 15.4 and the theory of the Hilbert polynomial, dim T (iL )d is a
bounded function of d . From Theorem 5.4 we see that eiL S(α) is finite over T (iL ) and
hence dim(eiL S(α))d is a bounded function of d .

We take i = iL in (15.2) and since eiL L 	= 0, the Laurent series fL(q) = ∑
d f (d)

L qd has

f (d)
L a bounded function of d . Equation (15.1) completes the proof. ��

16 An important short exact sequence

Let α be a real root. Define �(α) to be the projective cover of L(α) in the category of S(α)-
modules. Let ω be a chamber coweight. Define �(ω) to be the projective cover of L(ω) in
the category of S(δ)-modules.

Lemma 16.1 Let α be an indivisible root. Suppose that (β, γ ) is a minimal pair for α. Let
�β and �γ be finitely generated projective S(β) and S(γ )-modules. Then there is a short
exact sequence

0 → q−β·γ �β ◦ �γ → �γ ◦ �β → C → 0

for some projective S(α)-module C.
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Proof By adjunction,

Hom(q−β·γ �β ◦ �γ ,�γ ◦ �β) ∼= Hom(q−β·γ �β ⊗ �γ ,Resβγ �γ ◦ �β).

Since the modules �γ and �β are cuspidal, the Mackey filtration of Resβγ �γ ◦ �β has
only one nonzero term, yielding an isomorphism

Resβγ �γ ◦ �β
∼= q−β·γ �β ⊗ �γ .

Let φ : q−β·γ �β ◦�γ →�γ ◦�β be the image of the identity map on q−β·γ �β ⊗�γ under
the isomorphisms discussed above.

This map φ satisfies

φ(1 ⊗ (vβ ⊗ vγ )) = τw[β,γ ]1 ⊗ (vγ ⊗ vβ) (16.1)

for all vβ ∈ �β and vγ ∈ �γ .
There are filtrations of �β and �γ where each successive subquotient is an irreducible

cuspidal module for R(β) or R(γ ) respectively. This induces a pair of filtrations on�β ⊗�γ

and �γ ⊗ �β where the successive subquotients are of the form Lβ ◦ Lγ or Lγ ◦ Lβ for
cuspidal irreducible representations Lβ and Lγ of R(β) and R(γ ).

From the explicit formula (16.1), we see that φ induces a morphism φ̄ on each subquotient
φ̄ : q−β·γ Lβ ◦ Lγ → Lγ ◦ Lβ satisfying

φ̄(1 ⊗ (vβ ⊗ vγ )) = τw[β,γ ]1 ⊗ (vγ ⊗ vβ).

By Theorem 10.1, the module Lβ ◦ Lγ has an irreducible head A(Lβ, Lγ ). Since (β, γ )

is a minimal pair, all other composition factors are cuspidal. Taking duals, qβ·γ Lγ ◦ Lβ has
A(Lβ, Lγ ) as its socle with all other composition factors cuspidal.

The morphism φ̄ therefore sends the head of q−β·γ Lβ ◦ Lγ onto the socle of Lγ ◦ Lβ .
Hence φ induces a bijection between all occurrences of non-cuspidal subquotients as sections
of filtrations of q−β·γ �β ◦ �γ and �γ ◦ �β . This shows that ker φ and coker φ are both
cuspidal R(α)-modules.

Suppose for want of a contradiction that ker φ is nonzero. It is a submodule of the finitely
generated module q−β·γ �β ◦ �γ . By [11, Corollary 2.11], R(α) is Noetherian and hence
ker φ is finitely generated.

As ker φ is cuspidal it is a S(α)-module, so by Theorem 15.5 we deduce that dim(ker φ)d
is bounded as a function of d .

The adjunction (6.2) yields a canonical nonzero map from Resγ,β ker φ to �γ ⊗ �β . If
X is the image of this map then we have dim Xd is a bounded function of d .

The modules �β and �γ are free over the central subalgebra Q[z] of S(β) and S(γ ).
Therefore �β ⊗ �γ is a free Q[z1, z2]-module. Hence there are no nonzero submodules M
of �β ⊗ �γ for which dim Md is a bounded function of d . This is a contradiction, implying
φ is injective.

Now let L be a cuspidal R(α)-module. We apply Hom(−, L) to the short exact sequence

0 → q�β ◦ �γ
φ−→ �γ ◦ �β → coker φ → 0.

and obtain a long exact sequence. As Resβ,γ L = 0, we have

Exti (�β ◦ �γ , L) = Exti (�β ⊗ �γ ,Resβ,γ L) = 0.

Therefore our long exact sequence degenerates into a sequence of isomorphisms

Exti (coker φ, L) ∼= Exti (�γ ◦ �β, L) (16.2)
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and by adjunction we have

Exti (�γ ◦ �β, L) ∼= Exti (�γ ⊗ �β,Resγ,β L). (16.3)

Lemma 12.3 shows that Resγ,β L is a S(γ )⊗ S(β)-module. Since�γ ⊗�β is a projective
S(γ ) ⊗ S(β)-module, we derive that Ext1(�γ ⊗ �β,Resγ,β L) = 0. Tracing through the
above isomorphisms yields Ext1(coker φ, L) = 0 and therefore coker φ is a projective
S(α)-module. ��

17 Cuspidal representations of R(δ)

We first explain the intertwined logical structure of this section and the following one. Each
statement in Sect. 18 involves a positive root α. We prove all the results in this section under
an assumption that the results in Sect. 18 are known for all roots α of height less than the
height of δ. The reader will not be worried about the forward references once the logical
structure of Sect. 18 is known.

The results of Sect. 18 will be proved by a simultaneous induction on the height of the
root α. In particular, when Theorem 18.1 is proved for a root α, it will be safe to assume that
Theorem 18.2 is known for all roots of smaller height. There are references to the results
of this section in Sect. 18. However they only appear when the root α under question is of
height at least that of δ. Thus there is no circularity and the argument is valid.

Let ω be a chamber coweight. Recall from Sect. 14 that L(ω) is the head of the module
L(ω−) ◦ L(ω+) and is irreducible. Let �(ω) be the projective cover of L(ω) in the category
of S(δ)-modules. We caution the reader that while L(ω) will depend only on the chamber
coweight ω (as in [25]), the module �(ω) will depend not just on ω but also on the positive
system p(��δ).

Theorem 17.1 Let ω be a chamber coweight. There is a short exact sequence

0 → q2�(ω+) ◦ �(ω−) → �(ω−) ◦ �(ω+) → �(ω) → 0.

Proof As in the proof of Lemma 14.4, we may assume without loss of generality that
(ω+, ω−) is a minimal pair for δ.

By Lemma 16.1, there is a short exact sequence

0 → q2�(ω+) ◦ �(ω−) → �(ω−) ◦ �(ω+) → C → 0 (17.1)

for some projective S(δ)-module C .
As C is cuspidal, Resω+ω− C = 0. By adjunction, this implies that Exti (q2�(ω+) ◦

�(ω−),C) = 0. From the long exact sequence obtained by applying Hom(−,C) to (17.1),
we therefore get an isomorphism

End(C) ∼= Hom(�(ω−) ◦ �(ω+),C). (17.2)

By Lemma 13.3 and adjunction,

Ext1(�(ω−) ◦ �(ω+), q2�(ω+) ◦ �(ω−)) = Ext1(�(ω−) ⊗ �(ω+), q4�(ω−) ⊗ �(ω+))

which is zero since �(ω+) ⊗ �(ω−) is a projective S(ω+) ⊗ S(ω−)-module. From the long
exact sequence obtained by applying Hom(�(ω−) ◦�(ω+),−) to (17.1), we therefore have
a surjection from End(�(ω−) ◦ �(ω+)) onto Hom(�(ω−) ◦ �(ω+),C).
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Again we apply Lemma 13.3 and adjunction to obtain

End(�(ω−) ◦ �(ω+)) ∼= End(�(ω−) ⊗ �(ω+))

By Theorem 18.3 this is isomorphic to Q[x, y] with x and y in degree 2. Concentrating our
attention to degree zero, we obtain End(C)0 ∼= Q. Therefore C is indecomposable.

The module L(ω) is by construction a quotient of �(ω−) ◦ �(ω+). Since it is cuspidal,
the same argument that produced the isomorphism (17.2) yields an isomorphism

Hom(C, L(ω)) ∼= Hom(�(ω−) ◦ �(ω+), L(ω)).

Therefore L(ω) is a quotient ofC . SinceC is an indecomposable projective S(δ)-module,
it must be that C is the projective projective cover of L(ω). ��

Corollary 17.2 Let ω be a chamber coweight. Then [�(ω)] ∈ f and when specialised to
q = 1 is equal to hω ⊗ t .

Proof This is immediate from Theorems 18.2 and 17.1. ��

As a consequence we also obtain the following theorem, which also appears in [25].

Theorem 17.3 The set of all modules L(ω), as ω runs over the chamber coweights adapted
to the convex order ≺, is a complete list of the cuspidal irreducible representations of R(δ).

Proof Corollary 17.2 shows that the modules �(ω) are a complete set of indecomposable
projective modules for S(δ). In the last paragraph of the proof of Theorem 17.1, we showed
that themodule L(ω) is a quotient of�(ω).Wealso proved that L(ω) is simple inLemma14.4.
Therefore the set of such L(ω) is a complete set of irreducible cuspidal representations of
R(δ). ��

Let {nω}ω∈� be a sequence of natural numbers. Lemma 14.2 shows that the induced
product

©
w∈�

L(ω)◦nω

is independent of the order of the factors.
Now we know the modules L(ω) are pairwise nonisomorphic, we can use the same

argument as in Theorem 14.3 to obtain a natural isomorphism

End

(

©
w∈�

L(ω)nω

)
∼=

⊗

w∈�

Q[Snω ]. (17.3)

If {mω}ω∈� and {nω}ω∈� are two sequences of natural numbers then there is a natural
inclusion

End

(

©
w∈�

L(ω)mω

)

⊗ End

(

©
w∈�

L(ω)nω

)

↪→ End

(

©
w∈�

L(ω)mω+nω

)

(17.4)

which, under the isomorphism (17.3) is the tensor product of the natural inclusions

Q[Smω ] ⊗ Q[Snω ] ↪→ Q[Smω+nω ]. (17.5)
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If ω is a chamber coweight and λ is a partition of n, we define

Lω(λ) = HomQ[Sn ](Sλ, L(ω)◦n)

where Sλ is the Specht module for Sn .
Let λ = {λω}ω∈� be a multipartition. Then we define

L(λ) = ©
ω∈�

Lω(λω) = Hom⊗Q[Snω ]

(
⊗

ω∈�

Sλω , ©
ω∈�

L(ω)◦nω

)

.

Define the multi-Littlewood-Richardson coefficients by

c
ν

λμ =
∏

ω∈�

cνω

λωμω

where cν
λμ is the ordinary Littlewood-Richardson coefficient, which we take to be zero if

|ν| 	= |λ| + |μ|.
Theorem 17.4 The family of modules L(λ) enjoy the following properties under induction
and restriction:

L(λ) ◦ L(μ) =
⊕

ν

L(ν)
⊕c

ν

λμ

Reskδ,(n−k)δ L(ν) =
⊕

λ�k,μ�n−k

L(λ) ⊗ L(μ)
⊕c

ν

λμ

Proof This follows from the observation above that the inclusions (17.4) and (17.5) are
equivalent under the isomorphism (17.3), together with the known formulae for the induction
and restriction of Specht modules for the inclusions Sm × Sn → Sm+n . ��

As a particular case of Theorem 17.4, we have

Reskδ,(n−k)δ Lω(1n) ∼= Lω(1k) ⊗ Lω(1n−k). (17.6)

18 Homological modules

See the beginning of the previous section for a discussion of the inductive structure of the
arguments in this section.

Theorem 18.1 Let α be an indivisible positive root. Let � and L be S(α)-modules with �

projective. Then for all i > 0,

Exti (�, L) = 0.

We remind readers that these Ext groups are taken in the category of R(α)-modules which
makes this result nontrivial.

Proof Let (β, γ ) be a minimal pair for α. If α is a real root, then by the inductive hypothesis
applied to Theorem 18.2 and Corollary 17.2, there exist projective S(β) and S(γ )-modules,
�β and �γ such that [�β ][�γ ] 	= qβ·γ [�γ ][�β ]. Therefore in the short exact sequence of
Lemma 16.1, C is a nonzero direct sum of copies of �(α).
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If α is imaginary, then without loss of generality assume that � is indecomposable pro-
jective, hence isomorphic to �(ω) for some ω. Then we use the short exact sequence of
Theorem 17.1 and so in all cases we have a short exact sequence

0 → q−β·γ �β ◦ �γ → �γ ◦ �β → C → 0 (18.1)

and it suffices to prove that Exti (C, L) = 0 for all cuspidal R(α)-modules L .
By adjunction there is an isomorphism

Exti (�γ ◦ �β, L) ∼= Exti (�γ ⊗ �β,Resγβ L).

Lemma 12.3 shows that Resγβ L is a S(γ )⊗ S(β)-module. Thus by inductive hypothesis we
know that this Ext group is zero.

On the other hand, the group Exti−1(q−β·γ �β ◦ �γ , L) is zero by adjunction and the
cuspidality of L .

Now consider the short exact sequence (18.1) and apply Hom(−, L) to get a long exact
sequence of Ext groups. In the long exact sequence the group Exti (C, L) is sandwiched
between two groups which we have shown to be zero, hence must be zero itself. ��

Theorem 18.2 Let α be a real root. Inside f∗
Z((q))

we have [�(α)] = Eα .

Proof ByTheorem 18.1, 〈[�(α)], [L(α)]〉 = 1.We know that�(α) only has L(α) appearing
as a composition factor, and by Theorem 9.1, [L(α)] = E∗

α . Therefore �(α) is a scalar
multiple of Eα . By [19, Proposition 38.2.1], the automorphisms Ti preserve (·, ·), hence
〈Eα, E∗

α〉 = 1 and the scalar is 1. ��

Theorem 18.3 Let α be a real root. The endomorphism algebra of �(α) is isomorphic to
Q[z], where z is in degree two.

Proof As �(α) is the projective cover of L(α) which is the unique simple S(α)-module,
the dimension of End(�(α)) is equal to the multiplicity of L(α) in �(α). Theorems 9.1
and 18.2 tell us that [�(α)] = Eα and [L(α)] = E∗

α . Since E∗
α = (1 − q2)Eα , we have

dim End(�(α)) = (1 − q2)−1.
There is an injection from the centre of S(α) into End(�(α)). By Lemma 15.2, there is

an injection from Q[z] into End(�(α)). A dimension count shows that this injection must
be a bijection, as required. ��

Corollary 18.4 Let α be a positive real root. Then the algebras S(α) and Q[z] are graded
Morita equivalent.

Proof The module �(α) is a projective generator for the category of S(α)-modules and its
endomorphism algebra is Q[z]. ��

19 Standard imaginary modules

Lemma 19.1 Let d ≤ 0 be an integer and let ω and ω′ be two chamber coweights. Then

dimHom(�(ω),�(ω′))d =
{

Q if d = 0 and ω = ω′,
0 otherwise.
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Proof Since�(ω) is a projective S(δ)-module, the dimension ofHom(�(ω),�(ω′)) is equal
to the multiplicity of L(ω) in �(ω′).

We have

〈[L(ω)], [L(ω′)]〉 ∈ δωω′ + qZ[[q]]
and by Lemma 18.1, the bases {�(ω)} and {L(ω)} are dual bases for the subspace of fδ
spanned by the cuspidal modules. Therefore

[�(ω)] ∈ [L(ω)] +
∑

x∈�

qZ[[q]] · [L(x)]

which shows the desired properties of the multiplicities. ��
Lemma 19.2 The module ©

ω∈�

�(ω)◦nω is a projective object in the category of S(nδ)-

modules.

Remark 19.3 We choose an arbitrary ordering of the factors in ◦ω∈��(ω)◦nω . Lemma 19.4
below shows that this choice of ordering is immaterial.

Proof Let L be a semicuspidal R(nδ)-module. Therefore Resδ,...,δ L is a S(δ) ⊗ · · · ⊗ S(δ)-
module. By adjunction

Ext1( ©
ω∈�

�(ω)◦nω , L) = Ext1(
⊗

w∈�

�(ω)⊗nω ,Resδ,...,δ L)

and since each �(ω) is a projective S(δ)-module, this Ext1 group is trivial, as required. ��
Lemma 19.4 Letω andω′ be two chamber coweights. Then�(ω)◦�(ω′) ∼= �(ω′)◦�(ω).

Proof We assume that ω 	= ω′ as otherwise the result is trivial. By Lemma 19.1 and a
computation using adjunction and theMackey filtration, we compute End(�(ω)◦�(ω′))0 ∼=
Q. Hence �(ω) ◦ �(ω′) is indecomposable. By Lemma 19.2 the module �(ω) ◦ �(ω′)
is a projective S(2δ)-module which surjects onto L(ω) ◦ L(ω′), hence is the projective
cover of L(ω) ◦ L(ω′) in the category of S(2δ)-modules. By Lemma 14.2, L(ω) ◦ L(ω′) ∼=
L(ω′) ◦ L(ω), hence their projective covers are isomorphic. ��
Theorem 19.5 Let {mω}ω∈� and {nω}ω∈� be two collections of natural numbers with∑

ω mω = ∑
ω nω and let d ≤ 0 be an integer. Then

Hom( ©
ω∈�

�(ω)◦mω , ©
ω∈�

�(ω)◦nω )d ∼=
{⊗

ω∈� Q[Snω ] if mω = nω for all ω and d = 0

0 otherwise

Proof The Mackey filtration for Resδ,...,δ(◦ω∈��(ω)◦nω ) has (
∑

ω nω)! nonzero subquo-
tients, each a tensor product of projective S(δ)-modules where the factor �(ω) appears nω

times.
Therefore the filtration splits, and by Lemma 19.1 and adjunction, the Hom space under

question is zero unless mω = nω for all ω and d = 0. Furthermore in this case its dimension
is
∏

w nω!.
Since ◦ω∈��(ω)◦nω is a projective S(nδ)-module and ◦ω∈�L(ω)◦nω is a quotient

of ◦ω∈��(ω)◦nω , every endomorphism of ◦ω∈�L(ω)◦nω lifts to an endomorphism of
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◦ω∈��(ω)◦nω . From the dimension counts in the previous paragraph and (17.3), this lift
is unique in degree zero and hence we get an algebra isomorphism

End( ©
ω∈�

�(ω)◦nω )0 ∼= End( ©
ω∈�

L(ω)◦nω ).

So the result follows from (17.3). ��
For a multipartition λ = {λω}ω∈� where each λw is a partition of nω, we define

�(λ) = Hom⊗Q[Snω ](⊗Sλw , ©
ω∈�

�(ω)◦nω )

Theorem 19.6 The modules �(λ) behave in the following way under induction and restric-
tion.

�(λ) ◦ �(μ) ∼=
⊕

ν

�(ν)
⊕c

ν

λμ

Reskδ,(n−k)δ �(ν) =
⊕

λ�k,μ�n−k

�(λ) ⊗ �(μ)
⊕c

ν

λμ

Proof The proof is the same as that of Theorem 17.4 ��
Let fλ be the dimension of the Specht module Sλ and for a multipartition λ = {λω}ω∈�,

let fλ = ∏
ω fλw .

As a Q[Sn]-module, Q[Sn] decomposes as Q[Sn] = ⊕λ(Sλ)⊕ fλ . Therefore we obtain the
decomposition

©
w∈�

�(ω)◦nw ∼=
⊕

λ�n
�(λ)⊕ fλ . (19.1)

Lemma 19.7 Let λ be a multipartition of n. The module �(λ) is indecomposable.

Proof From the decomposition (19.1) we obtain inclusions
⊕

λ

Mat fλ (Q) ⊂
⊕

λ

Mat fλ (End(�(λ)) ⊂ End( ©
ω∈�

�(ω)◦nω ). (19.2)

Comparing dimensions shows that these inclusions are isomorphisms in degree zero.
Therefore End(�(λ))0 is isomorphic to Q, hence �(λ) is indecomposable. ��
Lemma 19.8 If λ 	= μ, then �(λ) is not isomorphic to any grading shift of �(μ).

Proof Let i ≤ 0 be an integer. The inclusions in (19.2) are all isomorphisms in degrees less
than or equal to zero. Therefore Hom(�(λ),�(μ))i = 0 and thus �(λ) is not isomorphic to
qi�(μ). Similarly �(μ) is not isomorphic to qi�(λ). ��
Theorem 19.9 The set�(λ) is a complete set of indecomposable projective S(nδ)-modules.

Proof The module �(λ) is a direct summand of ◦ω∈��(ω)◦nω which is projective by
Lemma 19.2, hence �(λ) is projective. Lemmas 19.7 and 19.8 ensure that the set {�(λ)} is
an irredundant set of indecomposable projective S(nδ)-modules, up to a grading shift. The
number of indecomposable projective S(nδ)-modules is equal to the number of irreducible
semicuspidal R(nδ)-modules. This number is known by Theorem 8.9, hence we have found
all of the indecomposable projectives. ��
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Theorem 19.10 The set {L(λ)}λ�n is a complete set of self-dual irreducible S(nδ)-modules.

Proof The set �(λ) is a complete set of indecomposable projectives, so the set hd�(λ) is a
complete set of irreducible S(nδ)-modules. Since �(λ) surjects onto L(λ), the set hd(L(λ))

is a complete set of irreducible S(nδ)-modules. So it suffices to prove that L(λ) is irreducible.
Let X be a simple submodule of L(λ). Then X is semicuspidal so is of the form hd(L(μ))

for some multipartition μ. Therefore we get a nonzero morphism from L(μ) to L(λ). From

the decomposition ©
ω∈�

L(ω)◦nω ∼= ⊕λ�(λ)⊕ fλ we obtain inclusions

⊕

λ�n
Mat fλ (Q) ⊂

⊕

λ�n
Mat fλ (End(L(λ)) ⊂ End( ©

ω∈�

L(ω)◦nω ). (19.3)

Comparing dimensions shows that these inclusions are equalities and hence all morphisms
from L(μ) to L(λ) are either zero or isomorphisms. Hence L(λ) must be irreducible, as
required. The self-duality of L(λ) is immediate from the self-duality of L(ω) and (5.2). ��
Theorem 19.11 Let λ and μ be two multipartitions. Then

Exti (�(λ), L(μ)) =
{

Q if λ = μ and i = 0,

0 otherwise.

Proof In the course of proving Theorem 19.10, the module �(λ) was shown to be the
projective cover of the irreducible module L(λ) in the category of S(nδ)-modules. This takes
care of the i = 0 case.

Now suppose that i > 0. Since �(λ) is a direct summand of ◦ω∈��(ω)◦nω , it suffices to
show that

Exti ( ©
ω∈�

�(ω)◦nω , L(μ)) = 0.

The module Resδ,...,δ L(μ) has all composition factors a tensor product of cuspidal R(δ)-
modules. The result now follows from adjunction and Theorem 18.1. ��
Corollary 19.12 Let λ and μ be two multipartitions. Then 〈[�(λ)], [L(μ)]〉 = δλ,μ.

20 The imaginary part of the PBW basis

We now follow [2] and define the imaginary root vectors. For comparison with their paper,
we note that our q is their q−1. We will not be able to cite results from [2] since they only
work with convex orders of a particular type. The aim of this section is to describe a purely
algebraic construction of the PBWbasis.Wewill prove that this algebraic construction agrees
with the one coming from KLR algebras in Theorem 24.4.

Let ω be a chamber coweight adapted to ≺. We first define elements ψω
n by

ψω
n = Enδ−ω+Eω+ − q2Eω+ Enδ−ω+ .

Before we continue, we show that the ψω
n lie in a commutative subalgebra of f .

Theorem 20.1 If L1 and L2 are irreducible semicuspidal representations of R(n1δ) and
R(n2δ) respectively, then L1 ◦ L2 ∼= L2 ◦ L1.
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Proof Themodules L1 and L2 are both direct summands of modules of the form ◦ωL(ω)◦nω .
The space of homomorphisms between two modules of this form has already been computed
to be concentrated in degree zero. Therefore Hom(L1, L2) is concentrated in degree zero.
By the same argument as in the proof of Lemma 14.2, the R-matrices rL1,L2 and rL2,L1 are
inverse isomorphisms. ��
Corollary 20.2 The subalgebra of f spanned by all semicuspidal representations of R(nδ)

is commutative.

Lemma 20.3 Let ω ∈ � and n ∈ N. There exist semicuspidal representations X and Y of
R(nδ) with [X ] − [Y ] = ψω

n .

Proof The same argument as in the proof of Lemma 16.1 shows that we can take X and Y to
be the cokernel and kernel of a map from q2�(ω+) ◦ �(nδ − ω+) to �(nδ − ω+) ◦ �(ω+).

��
Corollary 20.4 The elements ψω

n commute with each other.

Now we return to defining the imaginary part of the PBW basis and recursively define
elements Pω

n by Pω
0 = 1 and

Pω
n = 1

[n]
n∑

s=1

qn−sψω
s Pω

n−s .

Let λ = (λ1 ≥ λ2 ≥ · · · ) be a partition and let t ≥ �(λ) be an integer. We define

Sω
λ = det(Pω

λi−i+ j )1≤i, j≤t .

By Corollary 20.4 the entries in this matrix all commute with each other so there is no
ambiguity in the definition of the determinant.

The elements Pω
n here should be thought of as playing the role of the complete symmetric

functions in the ring of all symmetric functions. This determinental definition shows that the
elements Sω

λ are playing the role of the Schur functions. This point of view makes it clear
that the definition of Sω

λ does not depend on t .
Let π = (β

m1
1 , . . . , λ, . . . , γ

n1
1 ) be a root partition. The PBW basis element Eπ is defined

to be

Eπ = E (m1)
β1

· · · E (mk )
βk

(
∏

ω∈�

Sω
λω

)

E (ml )
γl

· · · E (n1)
γ1

. (20.1)

This agrees with the definition in [5] for the special convex orders which they use.

21 MV polytopes

Definition 21.1 Let M be an R(ν)-module. The MV polytope of M , denoted P(M), is the
convex hull of the set

{μ | Resμ,ν−μ M 	= 0}
Let ω be a chamber coweight. The ω-face of a polytope P is defined to be the intersection

of P with the plane spanned by ω+ and ω−. For a general polytope, this construction is a
cross-section. We choose to call it a face because of the following result.
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Proposition 21.2 Suppose that ω is adapted to the convex order ≺. If L(π) is a simple
module for some root partition π such that the support of π is contained in the span of ω−
and ω+, then the ω face of P(L(π)) is a (possibly degenerate) 2-face of P(L(π)).

Definition 21.3 Let λ be the functional on the span of ω− and ω+ such that λ(ω+) = 1 and
λ(ω−) = −1. The width of the ω-face of a polytope P is equal to the maximum value of
λ(p) − λ(q) where p and q are two points in the ω-face of P .

Example 21.4 The width of the ω-face of P(L(nδ − ω+)) is n.

We know this because a MV polytope is completely determined by its 2-faces, which are
MV polytopes for rank two root systems.

In the rest of this section, we fix a choice of chamber coweight ω adapted to ≺. Without
loss of generality, we may assume that our convex order is of the form of Example 3.6.

Note that in our labelling of the irreducible semicuspidal modules for R(δ) by multi-
partitions, there are choices involved. Namely replacing rL(ω),L(ω) by its negative results in
replacing the partition λω by its transpose. We make a choice of sign in rL(ω),L(ω) such that
Lω((2)) has ω-width 2.

The reason that such a choice is always possible is that the module L(ω′) ◦ L(ω′′) will
only have ω-width at least two if ω = ω′ = ω′′ and by the Tingley-Webster classification,
there exists a unique MV polytope for 2δ of ω-width 2. It must thus come from one of the
summands of L(ω) ◦ L(ω) and we may replace our R-matrix with its negative if necessary
to ensure that this summand is the one indexed by the partition (2).

This means that the ω-face of the MV polytope for L(ω, (12)) is

•

•

•

•
(1) (1, 1)

Proposition 21.5 Let λ be a partition and ω be a chamber coweight. The module Lω(λ) has
ω-width 1 if and only if λ = (1n).

Proof We prove this proposition by an induction on n. The case n = 1 is trivial and the case
n = 2 is true by the choice of normalisation of the R-matrix.

Note that for ω′ 	= ω, the module L(ω′) has ω-width zero. Therefore the ω-width of
©
x∈�

L(λx ) is equal to the ω-width of L(λw).

Therefore by induction we know exactly how many ω-faces of modules of the form
©
x∈�

L(λx ) with |λw| < n have width less than or equal to one. By [25] this comprises all

MV polytopes of ω-width less than or equal to one except for one polytope of ω-width one.
Therefore there exists some partition μ � n for which Lω(μ) has ω-width one.

The restriction Reskδ,(n−k)δ L(μ) can only have composition factors L1 ⊗ L2 where L1

and L2 have ω-width at most one. These restrictions are given by the Littlewood-Richardson
rule (17.4). So by induction the only option is Reskδ,(n−k)δ L(μ) ∼= Lω(1k) ⊗ Lω(1n−k)

which for n > 2 forces μ = (1n), completing the proof. ��
Theorem 21.6

Resnδ−ω+,ω+ Lω(1n) ∼= A(Lω(1n), L(ω−)) ⊗ L(ω+).
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Proof We perform an expansion in the dual PBW basis

[Resnδ−ω+,ω+ Lω(1n)] =
∑

σ,π

cσ,π E
∗
σ ⊗ E∗

π .

Then

cσ,π = 〈Eσ ⊗ Eπ , [Resnδ−ω+,ω+ Lω(1n)]〉 = 〈Eσ Eπ , [Lω(1n)]〉.
We consider the algorithm of Sect. 11 which teaches us how to write the product Eσ Eπ in
terms of the PBW basis.

Let πk be the smallest root appearing in π . If π 	= ω+ then as ω+ − πk ∈ NI , it must be
that πk 
 ω−. Therefore at all stages in applying the algorithm for writing Eσ Eπ in terms of
the PBW basis, any term Eγ1 · · · Eγl which appears has γl 
 ω− ≺ δ. Therefore no purely
imaginary terms in the PBW basis can appear, and as [Lω(1n)] is orthogonal to all PBW
elements which are not purely imaginary, cσ,π = 0 for such π .

So we may assume π = ω+.
Let σk be the smallest root appearing in σ . Suppose that σk is not of the form mδ + ω−.

Then σk ≺ ω−. At the first stage of applying our algorithm, up to two terms Eγ1 · · · Eγl

appear. One term has γl = σk ≺ w− while the other term, if it exists, has γl = σl +ω+ which
is also less than ω−, since by convexity it is less than ω+ and we know all roots between ω+
and ω−. By the same argument as in the previous paragraph, cσ,π = 0 in this case too.

Therefore, when cσ,π 	= 0, all roots that appear in σ are all in the span of ω− and
ω+. This implies that every irreducible subquotient of Resnδ−ω+,ω+ Lω(1n) is of the form
L(σ ) ⊗ L(ω+) for some such root partition σ .

The largest root appearing in σ is at most δ as Lω(1n) is cuspidal. Therefore σ = (λ,mδ−
ω+) for some multipartition λ and positive integer m.

The ω-face of P(L(mδ − ω+)) has width m. Therefore the ω-face of P(L(σ )) has width
at least m. As the ω-face of P(L(σ )) is a subset of the ω-face of P(Lω(1n)) which as width
one, m = 1.

Now by Theorem 17.4,

Res(n−1)δ,δ Lω(1n) ∼= Lω(1n−1) ⊗ L(ω).

Therefore the only option for λ is 1n at ω and zero elsewhere, and furthermore L(1nω, ω−) ⊗
L(ω+) must appear with multiplicity one, completing the proof. ��
Lemma 21.7 Let ω be a chamber coweight and α = ω−. There is a short exact sequence

0 → qL(α + δ) → L(ω) ◦ L(α) → L(ω, α) → 0.

Proof Theorem 10.1 tells us that L(ω, α) is the head of the module L(ω) ◦ L(α) and that
every other subquotient of L(ω)◦ L(α) is cuspidal. Therefore there is a short exact sequence

0 → X → L(ω) ◦ L(α) → L(ω, α) → 0

for some cuspidal R(α + δ)-module X . Since the head of L(ω) ◦ L(α) is known, Lemma 7.5
implies that [X ] ∈ qN[q]E∗

α+δ. Taking duals there is a short exact sequence

0 → L(ω, α) → L(α) ◦ L(ω) → X� → 0.

We now consider

Hom(L(α) ◦ L(ω), L(ω) ◦ L(α)) ∼= Hom(L(α) ⊗ L(ω),Resα,δ L(ω) ◦ L(α)).

123



Representations of Khovanov–Lauda–Rouquier algebras III... 279

The restriction has two nonzero pieces in its Mackey filtration. The module L(α) ⊗ L(ω)

appears as a quotient and we use Lemma 14.4 to identify the submodule as L(α) ⊗ (L(δ −
α) ◦ L(α)).

Now we consider

Hom(L(ω), L(δ − α) ◦ L(α)) ∼= Hom(q2L(α) ⊗ L(δ − α), L(α) ⊗ L(δ − α))

where we have used the adjunction (6.2) and Lemma 14.4 to reach this isomorphism. There-
fore there is a unique (up to scalar) morphism from L(α) ◦ L(ω) to L(ω) ◦ L(α) in degree
2, and the only other possible morphisms are in degree zero from the other term in the
Mackey filtration. When comparing this with [X ] ∈ qN[q]E∗

α+δ , the only option is that
X ∼= qL(α + δ), as required. ��
Lemma 21.8 Let ω be a chamber coweight and α = ω− + nδ for some natural number n.
Then there are short exact sequences

0 → qL(α + δ) → L(ω) ◦ L(α) → L(ω, α) → 0

0 → �(ω) ◦ �(α) → �(α) ◦ �(ω) → q�(α + δ) ⊕ q−1�(α + δ) → 0.

Proof We prove the existence of these short exact sequences by an induction on n. The case
n = 0 for the first sequence is Lemma 21.7. First we prove the existence of the first sequence
for some n > 0, assuming that both sequences are known for lesser values of n.

As in the proof of Lemma 21.7, we have a short exact sequence

0 → X → L(ω) ◦ L(α) → L(ω, α) → 0

where [X ] ∈ qN[q]E∗
α+δ , and we wish to study

Hom(L(α) ◦ L(ω), L(ω) ◦ L(α)) ∼= Hom(L(α) ⊗ L(ω),Resα,δ L(ω) ◦ L(α)).

TheMackey filtration of Resα,δ(L(ω)◦L(α)) has two nonzero pieces. Themodule L(α)⊗
L(ω) appears as a quotient, and to understand the submodule, we need to first understand
Resα−δ,δ L(α).

By Lemma 12.3, we can write

[Resα−δ,δ L(α)] =
∑

x∈�

gx (q)[L(α − δ)] ⊗ [L(x)]

for some polynomials gx (q) ∈ N[q, q−1] which satisfy gx (q) = gx (q−1) since restriction
commutes with duality.

For x ∈ �, let Cx be the projective S(α − δ)-module which appears in the short exact
sequence of Lemma 16.1:

0 → �(x) ◦ �(α − δ) → �(α − δ) ◦ �(x) → Cx → 0.

We compute

gx (q) = 〈Eα−δ ⊗ Ex , [Resα−δ L(α)]〉
= 〈Eα−δEx , [L(α)]〉
= 〈Eα−δEx − Ex Eα−δ, [L(α)]〉
= 〈[Cx ], [L(α)]〉.

Therefore Cx ∼= gx (q)�(α).
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If x 	= ω then we can compute the value of [Cx ] after specialising q = 1 in f to obtain
gx (1) is 0 or 1, which forces gx (q) to be 0 or 1.

For x = ω, we use the inductive hypothesis applied to the second short exact sequence
to conclude that gω(q) = q + q−1. Therefore Resα,δ L(ω) ◦ L(α − δ) has a submodule
isomorphic to q(L(ω) ◦ L(α − δ)) ⊗ L(ω).

By the inductive hypothesis this module receives a map from q2L(α) ⊗ L(ω) and hence
there exists a morphism from L(α)◦L(ω) to L(ω)◦L(α) of degree two. In fact this argument
shows us we know even more, namely that all other morphisms between these modules are of
degree zero. So the same argument as in Lemma 21.7 allows us to conclude X ∼= qL(α + δ),
as required.

Now we deduce the second short exact sequence from the first. By Lemma 16.1, there
exists a short exact sequence

0 → �(ω) ◦ �(α) → �(α) ◦ �(ω) → C → 0

where C is a projective S(α + δ)-module, hence isomorphic to f (q) copies of �(α + δ)

for some f (q) ∈ N[q, q−1]. The same argument computing pairings as above shows that
f (q) is equal to the multiplicity of L(α) ⊗ L(ω) in Resα,δ L(α + δ). The computation in f
specialised at q = 1 shows f (1) = 2, and since f (q) = f (q−1), we have f (q) = qi + q−i

for some i ∈ Z.
The first exact sequence gives us a morphism from qL(α + δ) to L(ω) ◦ L(α) which by

adjunction induces a nonzero morphism Resα,δ L(α + δ) → L(α) ⊗ L(ω). Therefore i = 1,
as required. ��
Proposition 21.9 Let k and l be positive integers. There is a short exact sequence

0 → q A(Lω(1k), L((l + 1)δ − ω+)) → Lω(1k+1) ◦ L(lδ − ω+) → A(Lω(1k+1),

L(lδ − ω+)) → 0.

Proof This proof proceeds by an induction. By Theorem 10.1, the module Lω(1k+1)◦L(lδ−
ω+) surjects onto A(Lω(1k+1), L(lδ − ω+)) and all other subquotients are of the form
Xi

λ,m = qi A(L(λ), L((l + m)δ − α)) for some m > 0 and λ a multipartition of k + 1 − m.
Setting n = k + 1−m, the following computation is straightforward as there is only one

nonzero piece in the Mackey filtration.

Resnδ,(l+m)δ−ω+(Lω(1k+1) ◦ L(lδ − ω+)) ∼= Lω(1n) ⊗ (
Lω(1m)) ◦ L(lδ − ω+)

)

Note that if Xi
λ,m is a subquotient of Lω(1k+1) ◦ L(lδ − ω+) then L(λ) ⊗ L((l +m)δ − ω+)

must appear as a subquotient of this restriction. Immediately we see that λω = (1n) and
λx = 0 for all other chamber coweights x .

Consider a subquotient of the form Xi
λ,m with λ 	= 0. Then by inductive hypothesis we

know all that there is only a cuspidal subquotient of Lω(1m) ◦ L(lδ − ω+) when m = 1.
Furthermore this cuspidal subquotient appears withmultiplicity q , which completes the proof
in this case.

So now turn our attention to the remaining case when n = 0. The module Lω(1k+1) ◦
L(lδ−ω+) hasω-width l+1 and the module L((l+m)δ−ω+) hasω-width l+m. Therefore
m = 1. The result now follows from Lemma 21.8. ��

22 Inner product computations

For any natural number n and chamber coweight ω, define eω
n = [Lω(1n)].
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Lemma 22.1 Let ω be a chamber coweight and {nx }x∈� a collection of natural numbers
with sum n. Then

〈

ψω
n ,

∏

x∈�

exnx

〉

=
{

(−q)n−1 if nx = 0 for all x 	= ω,

0 otherwise.

Proof By Theorem 13.1, we assume without loss of generality that our convex order is as in
Example 3.6.

By definition ψω
n = Enδ−ω+Eω+ − q2Eω+Enδ−ω+ . Since Resω+,nδ−ω+ L = 0 for any

semicuspidal representation L , we have
〈

ψω
n ,

∏

x∈�

exnx

〉

=
〈

Enδ−ω+ ⊗ Eω+ ,
∏

x∈�

r(exnx )

〉

.

The terms in the product all commute so without loss of generality we may assume that
the r(eω

nω
) term is last.

Each term appearing in the product of the r(exnx )’s is a product of terms y ⊗ z with y of
degree at most δ and z of degree at least δ. Since we need a term of degree (nδ − ω+, ω+),
the only option is that exactly one of the terms does not have degree (nxδ, 0).

That particular term will have degree (nx − ω+, ω+). Now for rnx−ω+,ω+(exnx )
to not be zero, it must be that Resnx δ−ω+,ω+ Lx (1nx ) 	= 0 and hence the restric-
tion Resnx δ−ω+,ω+ L(x)◦nx is also not zero. By a Mackey argument this implies that
Resω−,ω+ L(x) 	= 0. ByLemma 12.3 there is an injection L(ω−)⊗L(ω+) → Resω−,ω+ L(x)
and so by adjunction there is a nonzero map from L(ω−)◦ L(ω+) to L(x). By Theorem 17.3
x = ω.

Now Theorem 21.6 and Proposition 21.9 tell us that

rnωδ−w+,ω+(eω
nω

) =
nω∑

j=1

(−q) j−1eω
n− j E

∗
jδ−ω+ ⊗ E∗

ω+ .

Therefore

〈

ψω
n ,

∏

x∈�

exnx

〉

=
〈

Enδ−ω+ ,

⎛

⎜
⎜
⎝

∏

x∈�,
x 	=ω

exnx

⎞

⎟
⎟
⎠

⎛

⎝
nω∑

j=1

(−q) j−1eω
n− j E

∗
jδ−ω+

⎞

⎠

〉

.

Since Resδ,(n−1)δ−ω+ �(nδ−ω+) = 0, there is only one possible termwhich can be nonzero,
it only occurs when nx = 0 for all x 	= ω and j = nω. The resulting inner product is easily
evaluated to (−q)n−1. ��
Lemma 22.2 For n ≥ 0, we have

〈

Pω
n ,

∏

x∈�

exnx

〉

=
{
1 if nx = 0 for all x 	= ω and nω ≤ 1,

0 otherwise.

Proof From the definition of Pω
n ,

〈

Pω
n ,

∏

x∈�

exnx

〉

= 1

n

n∑

s=1

qn−s

〈

ψω
s Pω

n−s,
∏

x∈�

exnx

〉

.

= 1

n

n∑

s=1

qn−s

〈

ψω
s ⊗ Pω

n−s,
∏

x∈�

r(exnx )

〉

.
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Since each Lx (1nx ) is semicuspidal, the only relevant terms in r(exnx ) are of bidegree
(kδ, lδ) for some k, l ∈ N, and all these terms are known by (17.6). Therefore

〈

Pω
n ,

∏

x∈�

exnx

〉

= 1

n

n∑

s=1

qn−s

〈

ψω
s ⊗ Pω

n−s,
∏

x∈�

nx∑

k=0

exk ⊗ exnx−k

〉

.

This can easily be computed by an induction on n together with Lemma 22.1. ��

23 Symmetric functions

Let � be the Hopf algebra of symmetric functions. We consider it over the ground ring
Z[q, q−1]. It is isomorphic to Z[q, q−1][h1, h2, . . .] where hn is the complete symmetric
function. Let sλ be the Schur function indexed by the partition λ. Let (·, ·) denote the usual
inner product on � for which the Schur functions form an orthonormal basis. We denote the
coproduct on � by �.

Let B be the subalgebra of f∗ generated by the elements eω
n . For x ∈ B we define

rδ(x) ∈ B ⊗ B to be the sum of all terms in r(x) of bidegree (aδ, bδ).

Lemma 23.1 There is an isomorphism of Hopf algebras ψ : �⊗� → B with

ψ(⊗ωsλw ) = [L(λ)]
where the coproduct on B is rδ .

Proof This is immediate from Theorem 17.4. ��
Define an algebra homomorphism ϕ : �⊗� → f by

ϕ(⊗ωhnω ) =
∏

ω∈�

Pω
nω

.

That such a homomorphism exists is because the hnω freely generate �⊗� as a commutative
algebra and Corollary 20.4 which implies that the Pω

nω
lie in a commutative subalgebra of f .

Lemma 23.2 For all x, y ∈ �⊗� we have

〈ϕ(x), ψ(y)〉 = (x, y).

Proof Lemma 22.2 establishes this formula in the special case when x = Pω
n . To deduce the

general case from this particular case, we use (xy, z) = (x ⊗ y, z) and

〈ϕ(xy), ψ(z)〉 = 〈ϕ(x)ϕ(y), ψ(z)〉 = 〈ϕ(x) ⊗ ϕ(y), rδ(ψ(z))〉 = 〈ϕ(x) ⊗ ϕ(y), ψ(�(z))〉
where in the last step we used Lemma 23.1. ��
Corollary 23.3 Let ω and ω′ be two chamber coweights and let λ and μ be partitions. Then
〈Sω

λ , [Lω′(μ)]〉 = δωω′δλμ.

Proof The Schur functions are orthonormal. ��
Theorem 23.4 Let λ = {λω}ω∈� be a purely imaginary root partition. Then

[�(λ)] =
∏

w∈�

Sω
λω
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Proof The nondegeneracy of (·, ·) together with Lemma 23.2 implies that ϕ is injective.
By Lemmas 20.3 and 8.2, the image of ϕ lies in the subspace of f∗

Z((q))
spanned by the

semicuspidal modules. A dimension count shows that the image is precisely the span of the
semicuspidal modules. Therefore �ω(λ) is a linear combination of the elements Sμ.

The pairings in Corollary 19.12 and 23.3 force �(λ) = Sλ. ��

24 Standard modules

The nil Hecke algebra NHn is the algebra R(ni) for any i ∈ I . It is well known that the nil
Hecke algebra is a matrix algebra over its centre, see for example [24, Proposition 2.21]. In
particular, there is an isomorphism

NHn ∼= Mat [n]!(Q[x1, . . . , xn]Sn )
where each xi is in degree two.

Let en be a primitive idempotent in NHn .

Theorem 24.1 Let α be a real root. There is an isomorphism End(�(α)◦n) ∼= NHn.

Proof The proof of [4, §3] works in this generality without any change. ��
For any positive real rootα and any positive integer n, we define the divided power standard

module �(α)(n) to be

�(α)(n) = qn(n−1)/2en(�(α)◦n)

Lemma 24.2 Let α be a real root and n a positive integer. Then

Exti (�(α)(n), L(α)◦n) ∼=
{

Q if i = 0

0 otherwise

Proof We compute by adjunction

Exti (�(α)◦n, L(α)◦n) ∼= Exti (�(α)⊗n,Resδ,...,δ L(α)◦n).

The module Resδ,...,δ L(α)◦n has a composition series with n! subquotients, each isomor-
phic to some q j L(α)⊗n and [Resδ,...,δ L(α)◦n] = [n]!E∗

α ⊗ · · · ⊗ E∗
α . So by Theorem 18.1,

for i > 0 we have

Exti (�(α)◦n, L(α)◦n) = 0

while for i = 0 we also use the fact that �(α) is the projective cover of L(α) in the category
of S(α)-modules to obtain

Hom(�(α)◦n, L(α)◦n) ∼= q(n2)[n]!Q.

Since �(α)◦n ∼= q(n2)[n]!�(α)(n), we obtain the desired result. ��
Letπ = (β

m1
1 , . . . , β

mk
k , λ, γ

nl
l , . . . , γ

n1
1 ) be a root partition.We define the corresponding

standard module to be

�(π) = �(β1)
(m1) ◦ · · · ◦ �(βk)

(mk ) ◦ �(λ) ◦ �(γl)
(nl ) ◦ · · · ◦ �(γ1)

(n1).

Also define

∇(π) = �(π)�.
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Proposition 24.3 Let π and σ be two root partitions. Then

Exti (�(π),∇(σ )) =
{

Q if i = 0 and π = σ

0 otherwise

Proof Let π = (β
m1
1 , · · · , γ

n1
1 ). Then by adjunction,

Exti (�(π),∇(σ )) = Exti (�(β1)
(m1) ⊗ · · · ⊗ �(γ1)

(n1),Resπ ∇(σ ))

and by Theorem 10.1, Resπ ∇(σ ) = 0 unless π ≤ σ .
On the other hand, by the adjunction (6.2),

Exti (�(π),∇(σ )) = Exti (Resσ �(π), L(γ1)
⊗n1 ⊗ · · · ⊗ L(β1)

⊗m1)

and so again using Theorem 10.1, Resσ �(π) = 0 unless σ ≤ π .
Thus the only case to consider is when σ ∼ π . Remember that this means that σ and π

agree except for the multipartition they contain. Let λ be the multipartition in π and μ be the
multipartition in σ .

By Theorem 10.1,

Resπ ∇(π) ∼= Resπ (�(π)�) ∼= (Resπ �(π))� ∼= L(β1)
◦m1 ⊗ · · · ⊗ L(γ1)

◦n1 .

Therefore

Ext∗(�(π),∇(σ )) ∼=
⊗

α

Ext∗(�(α)( fπ (α)), L(α)◦ fσ (α)) ⊗ Ext∗(�(λ), L(μ))

where the tensor product is over all real roots α.
The result now follows from Lemma 24.2 and Theorem 19.11. ��

Theorem 24.4 Let π be a root partition. The class of the standard module �(π) is the PBW
monomial Eπ , defined algebraically in (20.1).

Proof This follows from Theorems 18.2 and 23.4. ��
Proposition 24.3 proves that the classes of the standard modules �(π) and the proper

standardmodules�(σ) are orthogonal under (·, ·). Therefore the class of each proper standard
module is an element of the dual PBW basis. So we have categorified both the PBW and dual
PBW basis.

A module M is said to have a �-flag if it has a sequence of submodules 0 = M0 ⊆ M1 ⊆
· · · ⊆ Mn−1 ⊆ Mn = M such that each subquotient Mi+1/Mi is isomorphic to qm�(π) for
some integer m and some root partition π .

Theorem 24.5 Let M be a finitely generated R(ν)-module such thatExt1(M,∇(π)) = 0 for
all root partitionsπ . Then M has a�-flag. Furthermore [M : �(π)] = dimHom(M,∇(π)).

Proof This is a standard argument, for example see [4, Theorem 3.13]. ��
As a consequence we obtain the following BGG reciprocity for KLR algebras.

Theorem 24.6 Let π be a root partition and let P(π) be the projective cover of L(π). Then
P(π) has a �-flag. For any root partition σ the multiplicity [P(π) : �(σ)] is equal to the
multiplicity [�(σ) : L(π)].
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Proof Since P(π) is finitely generated and projective it satisfies the hypotheses of Theo-
rem 24.5 and hence has a �-flag. Furthermore the multiplicity of the module �(σ) in the
flag is

[P(π) : �(σ)] = dimHom(P(π),∇(σ )).

As P(π) is the projective cover of L(π), the dimension of this homomorphism space is
equal to the multiplicity [∇(σ )� : L(π)]. By duality [∇(σ ) : L(π)] = [�(σ) : L(π)�] and
since L(π) ∼= L(π)� we are done. ��
Theorem 24.7 The PBW basis (20.1) is a basis of f as a Z[q, q−1]-module.
Proof By Theorem 24.6 and Theorem 10.1(3), the matrix expressing the set {[�(π)]} in
terms of the basis {[P(π)]} is upper-triangular, with ones along the diagonal. Therefore the
set {[�(π)]} is a basis of f as a Z[q, q−1]-module. ��
Remark 24.8 This is a generalisation, with a different proof, of a result of [5].

Proposition 24.9 With respect to the PBW basis, the bar involution is unitriangular.

Proof By Proposition 24.3, the PBW basis is dual to the basis [∇(π)] under the pairing 〈·, ·〉.
It suffices to prove that the bar involution on f∗ is unitriangular with respect to this basis.
Since each ∇(π) is an induction product of self-dual simples up to an overall grading shift,
it is easy to see that the bar involution is unitriangular by Theorem 10.1(3). ��

Once we have that the bar-involution is unitriangular, it is straightforward to show that
there exists a unique basis bπ of f which is bar-invariant and for which

bπ = Eπ +
∑

σ<π

cπσ Eσ

where cπσ ∈ qZ[q]. Theorem 24.10 below shows that the basis {bπ } is the canonical basis,
providing an algebraic characterisation of the canonical basis.

Thus from Theorem 24.6 and the fact that the indecomposable projective modules cate-
gorify the canonical basis, we obtain the following positivity result.

Theorem 24.10 The change of basis matrix from the canonical basis to a PBW basis is
unitriangular with off diagonal entries lying in qN[q].
Proof The fact that the coefficients are all nonnegative is from Theorem 24.6 and the fact that
the indecomposable projective modules categorify the canonical basis. That the coefficients
lie in qZ[q] follows from Lemma 7.5. ��

This positivity result is new in affine type. In finite type this result is [18, Corollary 10.7] for
particular convex orders and for all convex orders is due to Kato and the author independently
in [8,22].
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