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Abstract In this article we revisit some classical conjectures in harmonic analysis in the
setting of mixed norm spaces L p

rad L
2
ang (Rn). We produce sharp bounds for the restriction

of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting
and study an extension of the disc multiplier. We also present some results for the discrete
restriction conjecture and state an intriguing open problem.

1 Introduction

The well-known restriction conjecture, first proposed by E. M. Stein, asserts that the restric-
tion of the Fourier transform of a given integrable function f to the unit sphere, f̂ |Sn−1 , yields
a bounded operator from L p (Rn), n ≥ 2, to Lq

(
Sn−1

)
so long as

1 ≤ p <
2n

n + 1
,
1

q
≥ n + 1

n − 1

(
1 − 1

p

)
.

This conjecture has been fully proved only in dimension n = 2 by Fefferman [10] (see also
[6] for an alternative geometrical proof). In higher dimensions, the best known result is the
particular case q = 2 and 1 ≤ p ≤ 2(n+1)

n+3 , which proof was obtained independently by
Tomas and Stein [16].
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1480 A. Córdoba, E. Latorre Crespo

The periodic analogue, i.e. for Fourier series, was observed by Zygmund [19], but also in
two dimensions. It asserts that for any trigonometric polynomial

P (x) =
∑

|ν|=R

aνe
2π iν·x , ν ∈ Z

2,

the following inequality holds:

‖P‖L4(Q) � ‖P‖L2(Q) ,

uniformly on R > 0 and where Q is any unit square in the plane.
The alternative proof given in [6] allows us to connect both the periodic and the nonperiodic

restriction theorems, explaining the reason for the apparently different numerologies of the
corresponding (p, q) exponent ranges. It also raises an interesting question about the location
of lattice points in small arcs of circles [5].

The first result in this paper goes further in that direction: given
{
ξ j
}
a finite set of points

in the circle {‖ξ‖ = R} of the plane, let us consider
M := sup

j
#
{
ξk,

∥
∥ξk − ξ j

∥
∥ ≤ R

1
2

}
.

We have:

Theorem 1 The following inequality holds

sup
μ(Q)=1

[∫

Q

∣∣∣
∑

ake
2π iξk ·x

∣∣∣
4
dμ (x)

] 1
4

� M
1
2

(∑
|ak |2

) 1
2
, (1.1)

where the supremum is taken over all unit squares of R
2 and μ corresponds to the Lebesgue

measure.

The corresponding result in higher dimensions (n ≥ 3) is an interesting open problem:

Conjecture 2 Let
{
ξ j
} ⊂ Sn−1

R and M := sup j #
{
ξk,

∥∥ξk − ξ j
∥∥ ≤ R

1
2

}
, is it true that

sup
μ(Q)=1

[∫

Q

∣∣∣
∑

ake
2π iξk ·x

∣∣∣
2n
n−1

dμ (x)

] n−1
2n

� M
1
2

(∑
|ak |2

) 1
2
. (1.2)

Although there are many interesting publications by several authors throwing some light
on the restriction conjecture, its proof remains open in dimension n ≥ 3. One of the more
remarkable improvements was B. Barcelo’s thesis [15]. He proved that Fefferman’s result
also holds for the cone in R

3. Another interesting result was given by L. Vega in his Ph.D.
thesis [17], where he obtained the best result in the Stein–Tomas restriction inequality when
the space L p (Rn) is replaced by L p

rad L
2
ang (Rn) .

Here we shall consider the restriction of the Fourier transform to other surfaces of revo-
lution in these mixed norm spaces. Several special cases have already been treated [11,12]
but we present a more general and unified proof for “all” compact surfaces of revolution:

� = {
(g (z) , θ, z) ∈ R

n+1, θ ∈ Sn−1, a ≤ z ≤ b, 0 ≤ g ∈ C1 (a, b)
}
.

That is, in R
n+1, n ≥ 2, we consider cylindrical coordinates (r, θ, z) where the first compo-

nents (r, θ) correspond to the standard polar coordinates in R
n ; 0 < r < ∞, θ ∈ Sn−1, and
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Radial multipliers and restriction to surfaces of the Fourier... 1481

z ∈ R denotes the zenithal coordinate. In this coordinate system, the L p
rad L

2
zen L

2
ang

(
R
n+1
)

norm is given by

(∫ ∞

0
rn−1

(∫ ∞

−∞

∫

Sn−1
| f (r, θ, z)|2 dθdz

) p
2

dr

) 1
p

.

We can state our result.

Theorem 3 Let � be a compact surface of revolution, then the restriction of the Fourier
transform to � is a bounded operator from L p

rad L
2
zen L

2
ang

(
R
n+1
)
to L2 (�), i.e. there exists

a finite constant Cp such that

(∫ ∞

−∞

∫

Sn−1
g (z)n−1

√
1 + g′ (z)2

∣
∣
∣ f̂ (g (z) , θ, z)

∣
∣
∣
2
dθdz

) 1
2

� Cp ‖ f ‖L p
rad L

2
zen L

2
ang(Rn+1) , (1.3)

so long as 1 ≤ p < 2n
n+1 .

A central point in this area is C. Fefferman’s observation that the disc multiplier in R
n for

n ≥ 2, given by the formula

T̂0 f (ξ) = χB(0,1) (ξ) f̂ (ξ) ,

is bounded on L p (Rn) only in the trivial case p = 2. However, it was later proved (see
Refs. [8,13]) that T0 is bounded on the mixed norm spaces L p

rad L
2
ang (Rn) if and only if

2n
n+1 < p < 2n

n−1 . Here we extend that result to a more general class of radial multipliers.

Theorem 4 Let Tm be a Fourier multiplier defined by

(Tm f )ˆ(ξ) := m (|ξ |) f̂ (ξ) , (1.4)

for all rapidly decreasing smooth functions f , where m satisfies the following hypothesis:

1. Supp (m) ⊂ [a, b] ⊂ R
+, and m is differentiable in the interior (a, b).

2.
∫ b
a

∣∣m′ (x)
∣∣ dx < ∞.

Tm is then bounded in L p
rad L

2
ang (Rn) so long as 2n

n+1 < p < 2n
n−1 .

Finally, let us observe that this result was already proved by Duoandikoetxea et al. through
the study of radial weights in [9]. We however give a direct proof that relies only on the decay
of Bessel functions. We finally highlight that this theorem admits different extensions taking
into account Littlewood–Paley theory.

2 Restriction in the discrete setting

Proof of Theorem 1 First let us observe that, by an easy argument, we can assume M = 1
without loss of generality. Next we take a smooth cut-off ϕ sot that

ϕ ≡ 1 on B

(
0,

1

2

)
,

ϕ ≡ 0 when ‖x‖ ≥ 1,

ϕ ∈ C∞
0

(
R
2) .
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1482 A. Córdoba, E. Latorre Crespo

We can then write

f (ξ) =
∑

k

akϕ (ξ + ξk) e
2π iξ ·q

=
∑

k

akϕk (ξ) e2π iξ ·q ,

where q is a point in R
2. We have

f̂ (x) =
∑

k

ak ϕ̂ (x − q) e2π iξk ·(x−q).

Note that the L4 norm of f̂ majorizes the left hand side of (1.1),
∫ ∣
∣
∣ f̂ (x)

∣
∣
∣
4
dx ≥

∫

x−q∈Q0

∣
∣
∣
∑

ake
2π iξk ·(x−q)ϕ̂ (x − q)

∣
∣
∣
4
dx

�
∫

Q

∣
∣∣
∑

ake
2π iξk ·x

∣
∣∣
4
dx,

where Q0 = [− 1
2 ,

1
2

]2
and Q = q + Q0.

On the other hand, we have
∫ ∣∣∣ f̂ (x)

∣∣∣
4
dx =

∫
| f ∗ f (ξ)|2 dξ

=
∫
∣∣∣∣∣∣

∑

k, j

aka jϕk ∗ ϕ j (ξ) eiξ ·q
∣∣∣∣∣∣

2

dξ.

Furthermore, because the supports of ϕk and ϕ j have a finite overlapping, uniformly on the
radius R.

∫ ∣∣∣ f̂ (x)
∣∣∣
4
dx �

(∑
|ak |2

)2
,

��
Using similar argumentswe can obtain the following analogous result: InR

2 let us consider
the parabola γ (t) = (

t, t2
)
and a set of real numbers

{
ξ j
}
so that

∣∣t j+1 − t j
∣∣ ≥ 1, then

sup
μ(Q)=1

∥∥∥∥∥∥

∑

j

a j e
2π iγ (t j)·x

∥∥∥∥∥∥
L4(Q)

�
(∑∣∣a j

∣∣2
) 1

2
.

An interesting open question is to decide if the L4 norm could be replaced by an L p norm
(p > 4) in the inequality above. It is known that p = 6 fails, but for 4 < p < 6 it is, as far
as we know, an interesting open problem [2].

3 The restriction conjecture in mixed norm spaces

Recall that in R
n+1 we establish cylindrical coordinates (r, θ, z), where (r, θ) corresponds

to the usual spherical coordinates in R
n and z ∈ R denotes the zenithal component. We will

also use the notation (ρ, φ, ζ ) to refer to the same coordinate system.
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Radial multipliers and restriction to surfaces of the Fourier... 1483

The L p
rad L

2
zen L

2
ang

(
R
n+1
)
norm is therefore given by

‖ f ‖L p,2,2 =
(∫ ∞

0
rn−1

(∫ ∞

−∞

∫

Sn−1
| f (r, θ, z)|2 dθdz

) p
2

dr

) 1
p

. (3.1)

Let g be a continuous positive function supported on a compact interval I of the real line
that is almost everywhere differentiable, and consider the surface of revolution inR

n+1 given
by

� := {
(g (z) , θ, z) ∈ R

n+1, θ ∈ Sn−1,−∞ < z < ∞}
. (3.2)

We are interested in the restriction to � of the Fourier transform of functions in the Schwartz
class S (Rn+1

)
. The restriction inequality

∥
∥
∥ f̂
∥
∥
∥
L2(�)

≤ Cp ‖ f ‖L p,2,2(Rn+1)

for 1 ≤ p < 2n
n+1 is, by duality, equivalent to the extension estimate:

∥
∥
∥ f̂ d�

∥
∥
∥
Lq,2,2(Rn+1)

≤ Cq ‖ f ‖L2(�)

for q > 2n
n−1 .

To compute f̂ d� let us recall

d� = g (z)n−1
√
1 + (g′ (z))2dzdθ

= G1 (z) dzdθ,

so that

f̂ d� (ρ, φ, ζ ) =
∫ ∞

−∞

∫

Sn−1
G1 (z) f (z, θ) e−i zζ e−i(ρg(z))θ ·φdθdz. (3.3)

Next we use the spherical harmonic expansion

f (z, θ) =
∑

k, j

ak, j (z) Y
j
k (θ) ,

where for each k,
{
Y j
k

}

j=1,...,d(k)
is an orthonormal basis of the spherical harmonics degree

k. We then obtain:

f̂ d� (ρ, φ, ζ ) =
∑

k, j

2π i kY j
k (φ) ρ− n−2

2

∫ ∞

−∞
g (z)

n
2

(
1 + (

g′ (z)
)2)

1
2

·ak, j (z) Jk+ n−2
2

(ρg (z)) e−i zζ dz,

where Jν denotes Bessel’s function of order ν (see Ref. [18]). Denoting by G2 (z) :=
g (z)

n
2

(
1 + (

g′ (z)
)2)

1
2
, the Fourier transform f̂ d� becomes

∑

k, j

2π i kY j
k (φ) ρ− n−2

2

∫ ∞

−∞
G2 (z) ak, j (z) Jk+ n−2

2
(ρg (z)) e−i zζ dz. (3.4)

Taking into account the orthogonality of the elements of the basis {Y j
k } together with

Plancherel’s Theorem in the z-variable, we obtain that the mixed norm ‖ f̂ d�‖q
Lq,2,2 is up to
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1484 A. Córdoba, E. Latorre Crespo

a constant equal to

∫ ∞

0
ρ−q n−2

2 +n−1

⎛

⎝
∑

k, j

∫ ∞

−∞
|g (ζ )|n

∣
∣
∣1 + (

g′ (ζ )
)2∣∣
∣
∣
∣ak, j (ζ )

∣
∣2 ∣∣Jνk (ρg (ζ ))

∣
∣2 dζ

⎞

⎠

q
2

dρ,

(3.5)

where νk = k + n−2
2 . On the other hand we have

∫

�

| f |2 =
∫ ∞

−∞

∫

Sn−1

∣
∣
∣
∣
∣
∣

∑

j,k

ak, j (z) Y
j
k (θ)

∣
∣
∣
∣
∣
∣

2

g (z)n−1
√
1 + g′ (z)2dθdz

=
∑

j,k

∫ ∞

−∞
∣
∣ak, j (z)

∣
∣2 g (z)n−1

√
1 + g′ (z)2dz. (3.6)

Therefore our theorem will be a consequence of the following fact:

Lemma 5 Given any sequence of positive indices
{
ν j
}
with ν j ≥ n−2

2 for all j and Schwartz
functions a j , the following inequality holds:

∫ ∞

0
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
|g (z)|n

∣∣∣1 + (
g′ (z)

)2∣∣∣
∣∣a j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q
2

dρ

�

⎛

⎝
∑

j

∫ ∞

−∞
|g (z)|n−1

(
1 + (

g′ (z)
)2)

1
2 ∣∣a j (z)

∣∣2 dz

⎞

⎠

q
2

, (3.7)

for q > 2n
n−1 .

Remark 6 Taking into account the hypothesis about g we will look for estimates depending
upon A = supx∈I |g (x)| and B = supx∈I

∣∣g′ (x)
∣∣, where I is the compact support of g. It is

also easy to see that we can reduce ourselves to consider the sums over the family of indices{
ν j
}∞
j=1 such that ν j ≥ n−2

2 . Therefore it is enough to show

∫ ∞

0
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q
2

dρ

�

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 dz

⎞

⎠

q
2

(3.8)

for a family of smooth functions
{
b j
}
j and indexes ν j ≥ n−2

2 .

In order to show (3.8) we will need a sharp control of the decay of Bessel functions;
namely the following estimates:

Lemma 7 The following estimates hold for ν ≥ 1.

1. Jν (r) ≤ 1
r1/2

, when r ≥ 2ν.

2. Jν (r) ≤ 1
ν
, when r ≤ 1

2ν.
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Radial multipliers and restriction to surfaces of the Fourier... 1485

3. Jν
(
ν + ρν1/3

) ≤ 1
ρ1/4ν1/3

, when 0 ≤ ρ ≤ 3
2ν

2/3.

4. Jν
(
ν − ρν1/3

) ≤ 1
ρν1/3

, when 1 ≤ ρ ≤ 3
2ν

2/3.

5. Jν(r) ≤ rν, as r → 0.

These asymptotics follow by the stationary phase method as it is shown in [1,7,18].

Proof of Lemma 5 To prove 3.8 we shall first decompose the ρ-integration in dyadic parts:
[0,∞) = [0, 1)⋃∪∞

n=0[2n, 2n+1).

∫ 1

0
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q
2

dρ

+
∑

M

∫ 2M

M
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
∣
∣b j (z)

∣
∣2 ∣∣Jν j (ρg (z))

∣
∣2 dz

⎞

⎠

q
2

dρ, (3.9)

where M = 2m, m = 0, 1, . . . ��

For the lower integrand, we have the following splitting:

∫ 1

0
ρ−q n−2

2 +n−1 [. . .]
q
2 dρ =

∫ 1
A

0
ρ−q n−2

2 +n−1 [. . .]
q
2 dρ +

∫ 1

1
A

ρ−q n−2
2 +n−1 [. . .]

q
2 dρ

= I + I I.

In order to bound I we invoke Minkowski’s inequality and property 5. of Lemma 7.

I �

⎡

⎣
∫ ∞

−∞

∑

j

(∫ 1
A

0

{
ρ

−(n−2)+ 2
q (n−1) ∣∣b j (z)

∣∣2 ∣∣Jν j (ρz)
∣∣2
} q

2
dρ

) 2
q

dz

⎤

⎦

q
2

.

≤
⎡

⎣
∫ ∞

−∞

∑

j

∣∣b j (z)
∣∣2 A2ν j

(∫ 1
A

0
ρ−q n−2

2 +(n−1)+qν j dρ

) 2
q

dz

⎤

⎦

q
2

,

where A = ‖g‖∞. Since the sum is taken over all ν j ≥ n−2
2 , the inner integrand is well

defined and we can bound

I � Aq n−1
2 −n

⎡

⎣
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 dz

⎤

⎦

q
2

. (3.10)

The second part is similarly bounded

I I �
(
1 + Aq n−1

2 −n
)
⎡

⎣
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 dz

⎤

⎦

q
2

. (3.11)

Then Lemma 5 will be a consequence of the following claim:
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1486 A. Córdoba, E. Latorre Crespo

Claim 8 For all q > 4, the following inequality holds true

∫ 2M

M
ρ

⎛

⎝
∑

j

∫ ∞

−∞
∣
∣b j (z)

∣
∣2 ∣∣Jν j (ρg (z))

∣
∣2 dz

⎞

⎠

q
2

dρ

� M
4−q
2

⎛

⎝
∫ ∞

−∞

∑

j

∣
∣b j (z)

∣
∣2 dz

⎞

⎠

q
2

. (3.12)

Indeed, if q > 4 we need only to note that

∫ 2M

M
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
∣
∣b j (z)

∣
∣2 ∣∣Jν j (ρg (z))

∣
∣2 dz

⎞

⎠

q
2

dρ

� M (n−2)(− q
2 +1)

∫ 2M

M
ρ

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q
2

dρ,

invoke our claim and sum over all dyadic intervals in (3.9):

∑

m

∫ 2m+1

2m
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2
∣∣Jν j (ρg (z))

∣∣2 dz

⎞

⎠

q
2

dρ

�
∑

m

2m(n−2)(− q
2 +1)+m 4−q

2

⎛

⎝
∫ ∞

−∞

∑

j

∣∣b j (z)
∣∣2 dz

⎞

⎠

q
2

. (3.13)

It is then a simple matter to check that the exponent is negative for q > 2n
n−1 .

If the exponent q is however smaller, 2n
n−1 < q ≤ 4, we need to use an extra trick. Note

that Eq. (3.12) implies

∫ 2M

M

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q1
2

dρ � M1− q1
2

⎛

⎝
∫ ∞

−∞

∑

j

∣∣b j (z)
∣∣2 dz

⎞

⎠

q1
2

,

for all q1 > 4. Then using Hölder’s inequality and the previous inequality,

∫ 2M

M

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q
2

dρ

� M
1− q

q1

⎛

⎜
⎝
∫ 2M

M

⎛

⎝
∑

j

∫ ∞

−∞
∣∣b j (z)

∣∣2 ∣∣Jν j (ρg (z))
∣∣2 dz

⎞

⎠

q1
2

dρ

⎞

⎟
⎠

q
q1

.
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Therefore, summing over all intervals, we obtain

∑

m

∫ 2m+1

2m
ρ−q n−2

2 +n−1

⎛

⎝
∑

j

∫ ∞

−∞
∣
∣b j (z)

∣
∣2 ∣∣Jν j (ρg (z))

∣
∣2 dz

⎞

⎠

q
2

dρ

�
∑

m

2
m
{
−q n−2

2 +n−1+1− q
2

}
⎛

⎝
∫ ∞

−∞

∑

j

∣
∣b j (z)

∣
∣2 dz

⎞

⎠

q
2

,

where the exponent −q n−1
2 + n is negative for all q > 2n

n−1 .
To prove Claim 8 let us split each dyadic integrand in (3.9) in three parts corresponding

to the different ranges of control of Bessel functions.

∫ 2M

M
ρ

⎛

⎝
∫ ∞

−∞

∑

ν j∈I 0

∣
∣b j (z)

∣
∣2 ∣∣Jν j (ρg (z))

∣
∣2 dz

⎞

⎠

q
2

dρ

+
∫ 2M

M
ρ

⎛

⎝
∫ ∞

−∞

∑

ν j∈I c

∣∣b j (z)
∣∣2 ∣∣Jν j (ρg (z))

∣∣2 dz

⎞

⎠

q
2

dρ

+
∫ 2M

M
ρ

⎛

⎝
∫ ∞

−∞

∑

ν j∈I∞

∣∣b j (z)
∣∣2
∣∣Jν j (ρg (z))

∣∣2 dz

⎞

⎠

q
2

dρ

=
∑

M

(
I 0M + I cM + I∞

M

)
,

where I 0M = [0, Mg (z) /2), I cM = [Mg (z) /2, 4Mg (z)), and I∞
M = [4Mg (z) ,∞).

Recall that if 2k < r , |Jk (r)| ≤ r−1/2; in I 0M we have 2ν j < Mg (z) < ρg (z), hence

I 0M ≤ A− q
2

∫ 2M

M
ρ1− q

2

⎛

⎝
∫ ∞

−∞

∑

ν j∈I 0

∣∣b j (z)
∣∣2 dz

⎞

⎠

q
2

dρ

≤ A− q
2 M

4−q
2

⎛

⎝
∫ ∞

−∞

∑

ν j

∣∣b j (z)
∣∣2 dz

⎞

⎠

q
2

. (3.14)

Similarly, I∞
M is also easily bounded as if k > 2r , |Jk (r)| ≤ k−1, and in I∞

M , k >

4Mg (z) > 2ρg (z). Furthermore, since ρg (z) > 1, (ρg (z))−2 < (ρg (z))−1 and, in I∞
M ,

we have |Jk (ρg (z))|2 ≤ (ρg (z))−1. This shows that again

I∞
M ≤ A− q

2 M
4−q
2

⎛

⎝
∫ ∞

−∞

∑

ν j

∣∣b j (z)
∣∣2 dz

⎞

⎠

q
2

. (3.15)
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Finally, we need to work a little bit harder than in the previous cases to obtain a suitable
estimate for I cM . First of all note that Minkowski’s inequality yields

I cM ≤

⎡

⎢
⎢
⎣

∫ ∞

−∞

⎧
⎪⎨

⎪⎩

∫ 2M

M
ρ

⎛

⎝
∑

ν j∈I c

∣
∣b j (z)

∣
∣2 ∣∣Jν j (ρg (z))

∣
∣2
⎞

⎠

q
2

dρ

⎫
⎪⎬

⎪⎭

2
q

dz

⎤

⎥
⎥
⎦

q
2

. (3.16)

In I cM we want to use estimate (3) of Lemma 7, we thus need to split the inner integral so
that ρg (z) ∼ ν j + αν j in the according range of α. Consider the family of sets

Gα =
[
M

2
+ αM

1
3 g (z)−

2
3 ,

M

2
+ (α + 1) M

1
3 g (z)−

2
3

]
,

for α = 0, 1, 2, . . . ,
[
(Mg (z))

2
3

]
, so that

⋃
Gα ⊇ [M, 2M] and in each interval ρg (z) ∼

ν j + αν
1
3
j , and split (3.16) in the following way

I cM �

⎡

⎢⎢
⎣

∫ ∞

−∞

⎧
⎪⎨

⎪⎩

∑

α

∫

Gα

ρ

⎛

⎝
∑

ν j∈I c

∣∣b j (z)
∣∣2 ∣∣Jν j (ρg (z))

∣∣2
⎞

⎠

q
2

dρ

⎫
⎪⎬

⎪⎭

2
q

dz

⎤

⎥⎥
⎦

q
2

,

Let us also define

Aβ =
∑

ν j∈Gβ

∣∣b j (z)
∣∣2 .

We can then invoke Lemma 7 and rearragne the sums to bound I cM by

⎡

⎢⎢
⎣

∫ ∞

−∞

⎧
⎪⎨

⎪⎩

∑

α

∫

Gα

⎛

⎝
∑

β≤α

Aβ

1

(|α − β| + 1)1/2 M
2
3 g (z)− 4

3

⎞

⎠

q
2

ρdρ

⎫
⎪⎬

⎪⎭

2
q

dz

⎤

⎥⎥
⎦

q
2

+

⎡

⎢⎢
⎣

∫ ∞

−∞

⎧
⎪⎨

⎪⎩

∑

α

∫

Gα

⎛

⎝
∑

β≥α

Aβ

1

(|α − β| + 1)2 M
2
3 g (z)− 4

3

⎞

⎠

q
2

ρdρ

⎫
⎪⎬

⎪⎭

2
q

dz

⎤

⎥⎥
⎦

q
2

.

Note that the second sum is easier to control than the first. We shall, therefore, focus on the
first term, I c,1M, . Since the intervals Gα have length M

1
3 g (z)− 2

3 ,

I c,1M � M
4−q
3 A2 (q−1)

3

⎡

⎢⎢
⎣

∫ ∞

−∞

⎧
⎪⎨

⎪⎩

∑

α

⎛

⎝
∑

β≥α

Aβ

1

(|α − β| + 1)2

⎞

⎠

q
2

⎫
⎪⎬

⎪⎭

2
q

dz

⎤

⎥⎥
⎦

q
2

.
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Furthermore, using Young’s inequality, since q > 4, taking 2/q = 1/s − 1/2 we obtain

∑

α

⎛

⎝
∑

β≥α

Aβ

1

(|α − β| + 1)2

⎞

⎠

q
2

�

⎛

⎝
∑

γ

As
γ

⎞

⎠

q
2s

�

⎛

⎝
∑

γ

Aγ

⎞

⎠

q
2

.

We have thus showed that the central integrand I cM can also be bounded in the desired way;

I c,1M � A
2
(
q−1
3

)

M
4−q
3

⎡

⎣
∫ ∞

−∞

∑

k∈I cM
|ak |2 dz

⎤

⎦

q
2

. (3.17)

��

4 Generalized disc multiplier

In the late 80’s it was proved independently in [8,13] that the disc multiplier operator is

bounded in the mixed norm spaces L p
rad L

2
ang (Rn) for all 2n

n+1 < p < 2n
n−1 . Let us here

explore further the theory of radial fourier multipliers following the ideas presented in the
aforementioned articles.

Let m be a radial function and consider the fourier multiplier

(Tm f )ˆ(ξ) = m (|ξ |) f̂ (ξ) .

Once again, recall the expansion of a given function f in terms of its spherical harmonics,

f (x) =
∞∑

k=0

d(k)∑

j=1

fk, j (|x |) Y j
k

(
x

|x |
)

.

Then, the classical formula relating the Fourier transform and the spherical harmonics expan-
sion, [14], yields

f̂ (ξ) =
∞∑

k=0

d(k)∑

j=1

Y j
k

(
ξ

|ξ |
)
2π i k |ξ |−

(
k+ n−2

2

) ∫ ∞

0
fk, j (t) Jk+ n−2

2
(2π |ξ | t) tk+ n

2 dt.

The expression of Tm in terms of its spherical harmonics expansion is then

Tm f (x) =
∞∑

k=0

d(k)∑

j=1

2π i k
∫

Rn
e2π i xξm (|ξ |) Y j

k

(
ξ

|ξ |
)

|ξ |−
(
k+ n−2

2

)

∫ ∞

0
fk, j (t) Jk+ n−2

2
(2π |ξ | t) tk+ n−2

2 dtdξ.

Exchanging the order of integration, the previous expression becomes

∞∑

k=0

d(k)∑

j=1

2π i k
∫ ∞

0
fk, j (t) t

k+ n−2
2 ĝt (x) dx,
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where

gt (ξ) = m (|ξ |) Jk+ n−2
2

(2π |ξ | t) |ξ |−
(
k+ n−2

2

)

Y j
k

(
ξ

|ξ |
)

.

Therefore, computing once more the Fourier transform of a radial function,

Tm f (rθ) =
∞∑

k=0

d(k)∑

j=1

4π2 (−1)k Y j
k (θ) T k, j

m f (r) ,

with

T k, j
m f (r) =

∫ ∞

0
fk, j (t) t

n+2k−1
2 r− n+2k−1

2 Kk+ n−2
2

(t, r) dt,

where

Kν (t, r) = √
r t
∫ b

a
m (s) Jν (2π ts) Jν (2πrs) sds.

In order to simplify the notation, note that

Tm f (rθ) ≈
∞∑

k=0

d(k)∑

j=1

Y j
k (θ) T k, j

m f (r) (4.1)

with T k, j
m defined as before, but

Kν (t, r) = √
r t
∫ b

a
m (s) Jν (ts) Jν (rs) sds.

Let us take a closer look at the kernel of the operator Kα ,

Kα (t, r) = √
r t
∫ b

a
m (s) Jα (ts) Jα (rs) sds. (4.2)

It is suitable to decode these kernels in terms of an auxiliary function Ur (s) = √
rs Jα (rs).

The use of Bessel’s equation yields

∂

∂s

{Ur (s)U ′
t (s) − Ut (s)U ′

r (s)
} = (

t2 − r2
)√

tr Jα (rs) Jα (ts) s.

Therefore, after an integration by parts in (4.2), we obtain

Kα (t, r) =
[
m (s)

1

t2 − r2
{Ur (s)U ′

t (s) − Ut (s)U ′
r (s)

}]b

a

−
∫ b

a
m′ (s)

1

t2 − r2
{Ur (s)U ′

t (s) − Ut (s)U ′
r (s)

}
ds.

Hence, we express the modified disc multiplier in the following way

Tm f (rθ) =
∑

k, j

Y j
k (θ)

∫ ∞

0
fk, j (t) t

n+2k−1
2 r− n+2k−1

2

·
(
m (b) k (r, t, b) − m (a) k (r, t, a) −

∫ b

a
m′ (s) k (r, t, s) ds

)
dt, (4.3)
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where kα (t, r, s) denotes the kernel 1
t2−r2

{Ur (s)U ′
t (s) − Ut (s)U ′

r (s)
}
. A simple expansion

of kα reveals the underlying singularities of the operator Kα;

kα (t, r, s) =
(
s

√
t J ′

α (ts) Jα (rs)
√
r

2 (t − r)
+ s

√
t J ′

α (ts) Jα (rs)
√
r

2 (t + r)

+s

√
t Jα (ts) J ′

α (rs)
√
r

2 (r − t)
+ s

√
t J ′

α (ts) Jα (rs)
√
r

2 (t + r)

)
. (4.4)

A thorough study of the kernel kα (r, t, 1) was carried out in [8] using the decay properties
of Bessel functions (Lemma 7) in order to show that the disc multiplier is bounded in the
mixed norm spaces L p

rad L
2
ang (Rn) in the optimal range 2n

n+1 < p < 2n
n−1 .

Although nothing really new has been done, we have brought to light a more general
family of operators underlying the disc multiplier, that is the family of operators T s defined
as

T s f (rθ) =
∑

k, j

Y j
k (θ)

∫ ∞

0
fk, j (t) t

n+2k−1
2 r− n+2k−1

2 k (r, t, s) dt. (4.5)

Indeed, any bound on operators T s that is uniform in s implies a bound on Tm for a suitable
m.

Proposition 9 Let f be a rapidly decreasing function then, for every 2n
n+1 < p < 2n

n−1
∥∥T s f

∥∥
p,2 ≤ Cp,n ‖ f ‖p,2 , (4.6)

where the constant Cp,n is uniform in s.

Proof In order to simplify the expressions we will just write one of the four core kernels of
kα apparent in (4.4), that is

T s f (rθ) ∼
∑

k, j

Y j
k (θ)

∫ ∞

0
fk, j (t) t

n+2k−1
2 r− n+2k−1

2 s

√
t J ′

α (ts) Jα (rs)
√
r

2 (t − r)
dt, (4.7)

for any fixed s ∈ R. The orthonormality in L2
(
S
n−1
)
of spherical harmonics can now be

used in our advantage to complute the L p
rad L

2
ang norm of T s . Indeed, ‖T s f ‖p,2,is up to the

notation reduction equal to

⎛

⎜
⎝
∫ ∞

0
rn−1

⎧
⎨

⎩

∑

k, j

∣∣∣∣

∫ ∞

0
fk, j (t) t

n+2k−1
2 r− n+2k−1

2 s

√
t J ′

α (ts) Jα (rs)
√
r

2 (t − r)
dt

∣∣∣∣

2
⎫
⎬

⎭

p
2

dr

⎞

⎟
⎠

1
p

.

Two simple changes of variables, t ′ = st and r ′ = sr , yield

s− n
p

⎛

⎜
⎝
∫ ∞

0
rn−1

⎧
⎨

⎩

∑

k, j

∣∣∣∣

∫ ∞

0
fk, j

(
t

s

)
t
n+2k−1

2 r− n+2k−1
2

√
t J ′

α (t) Jα (r)
√
r

2 (t − r)
dt

∣∣∣∣

2
⎫
⎬

⎭

p
2

dr

⎞

⎟
⎠

1
p

.

Note that this expression corresponds to that of the disc multiplier T0 analyzed by in [8]. We
can therefore bound it by

Cp,ns
− n

p

⎛

⎜
⎝
∫ ∞

0
rn−1

⎧
⎨

⎩

∑

k, j

∣∣∣ fk, j
(r
s

)∣∣∣
2

⎫
⎬

⎭

p
2

dr

⎞

⎟
⎠

1
p

,
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for every 2n
n+1 < p < 2n

n−1 . One last change of variables produces the estimate
∥
∥T s f

∥
∥
p,2 ≤ C ‖ f ‖p,2 ,

where C is uniform on s.

It is now a simple matter to produce a bound for the operator Tm .

‖Tm f ‖p,2 � |m (b)|
∥
∥
∥T b f

∥
∥
∥
p,2

+ |m (a)|
∥
∥
∥T b f

∥
∥
∥
p,2

+
∫ b

a

∣
∣m′ (s)

∣
∣
∥
∥T s f

∥
∥
p,2 ds, (4.8)

and Theorem 4 follows from the uniformity in the bound (4.6). That is

‖Tm f ‖p,2 ≤ C

(

sup
s∈[a,b]

|m (s)| +
∫ b

a

∣
∣m′ (s)

∣
∣ ds

)

‖ f ‖p,2 .

Remark 10 Let us highlight that, once obtained the expression (4.5), it is possible to control
the operator T s f (x) by the universal Kakeya maximal function using the techniques devel-
oped by Carbery et al. [3,4]. That is, for every α > 1 and every radial weight g there exists
a finite constant Cα so that for every rapidly decreasing function f ,

∫

Rn

∣∣T s f (x)
∣∣2 g (x) dx ≤ Cα

∫ ∞

0
| f (x)|2 Mαg (x) dx, (4.9)

where the constantC is uniform in s. HereM denotes the universal Kakeyamaximal function

Mg (x) = sup
x∈R∈Rn

1

|R|
∫

R
|g (y)| dy, (4.10)

where the supremum is taken over all recantles in R
n containing the point x , and Mαg =

(M (|g|α))
1
α .

Indeed, this approach has the advantage that one can easily derive Littlewood–Paley
estimates using the boundedness of the universal Kakeya maximal function acting on radial
functions. Such work was already carried out by Duoandikoetxea et al. [9] and produces the
following result:

Corollary 11 Let T be a Fourier multiplier operator with a radial multiplier m, satisfying
m ∈ L∞ (R) and for each dyadic interval I ,

∫

I

∣∣m′ (t)
∣∣ dt ≤ C, (4.11)

uniformly in I . Then m is an L p
rad L

2
ang (Rn) multiplier for all 2n

n+1 < p < 2n
n−1 .
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