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Abstract In this paper we give a detailed proof of the fact that the Milnor fiber Xt of an
analytic complex isolated singularity function defined on a reduced n-equidimensional ana-
lytic complex space X is a regular neighborhood of a polyhedron Pt ⊂ Xt of real dimension
n − 1. Moreover, we describe the degeneration of Xt onto the special fiber X0, by giving a
continuous collapsing map ψt : Xt → X0 which sends Pt to {0} and which restricts to a
homeomorphism Xt\Pt → X0\{0}.

1 Introduction

Let f : (X, x) → (C, 0) be a germ of complex analytic function f at a point x of a reduced
equidimensional complex analytic space X ⊂ C

N (with arbitrary singularity). In [11] the
first author proved that there exist sufficiently small positive real numbers ε and η with
0 < η � ε � 1 such that the restriction:

f| : Bε(x) ∩ X ∩ f −1(D∗
η) → D

∗
η

is a locally trivial topological fibration, where Bε(x) is the closed ball of radius ε around
x ∈ C

N , Dη is the closed disk of radius η around 0 ∈ C and D
∗
η := Dη\{0}.

The topology of the fiber Xt := Bε(x)∩X∩ f −1(t) does not depend on ε small enough (see
Theorem 2.3.1 of [14]). We call Xt the Milnor fiber of f , with boundary ∂Xt := Xt ∩Sε(x).
We also set X0 := Bε(x) ∩ X ∩ f −1(0).
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Lê Dũng Tráng
ledt@ictp.it

1 Université Aix-Marseille, Marseille, France

2 Universidade Federal da Paraíba, João Pessoa, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-016-1793-8&domain=pdf


1004 L. D. Tráng, A. M. Neto

Fig. 1 The semi-disk D
+

The first author sketched a proof of the following theorem in [13]:

Theorem 1 Let X ⊂ C
N be a reduced equidimensional complex analytic space and let

S = (Sα)α∈A be a Whitney stratification of X. Let f : (X, x) → (C, 0) be a germ of complex
analytic function at a point x ∈ X. If f has an isolated singularity at x relatively to S and
if ε and η are sufficiently small positive real numbers as above, then for each t ∈ D

∗
η there

exist:

(i) a polyhedron Pt of real dimension dimC Xt in the Milnor fiber Xt , compatible with the
Whitney stratification S, and a continuous simplicial map:

ξ̃t : ∂Xt → Pt

compatible with S, such that Xt is homeomorphic to the mapping cylinder of ξ̃t ;
(ii) a continuous map ψt : Xt → X0 that sends Pt to {0} and that restricts to a homeo-

morphism Xt\Pt → X0\{0}.
The purpose of this paper is to give a complete and detailed proof of Theorem 1, following

the strategy proposed in [13].
That theorem was conjectured by Thom in a seminar, in the early 70’s, when X is smooth.

He noticed that Pham gave an explicit construction of such a vanishing polyhedron in [19]
when f : Cn → C is a polynomial of the form:

f (z1, . . . , zn) = zν11 + · · · + zνnn ,

with νi ≥ 2 integer, for i = 1, . . . , n.
In this paper, we are going to prove the following stronger version of Theorem 1. Let D+

be a closed semi-disk in Dη2 as in Fig. 1 (with 0 ∈ ∂D+).
So our main theorem is:

Theorem 2 Let X ⊂ C
N be a n-dimensional reduced equidimensional complex analytic

space and let S = (Sα)α∈A be a Whitney stratification of X. Let f : (X, x) → (C, 0) be a
germ of complex analytic function with an isolated singularity at x, relatively to S. Let ε and
η be sufficiently small positive real numbers as above, and let D+ be a closed semi-disk in
Dη ⊂ C such that 0 is in its boundary. Then there exist:

(i) A polyhedron P+ in X+ := X ∩ f −1(D+)∩Bε(x) of real dimension n+1, compatible
with theWhitney stratificationS, such that for each t ∈ D

+\{0} the intersection P+∩Xt

is a polyhedron Pt of real dimension n − 1, compatible with the Whitney stratification
S.
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Vanishing polyhedron and collapsing map 1005

(ii) A continuous simplicial map:

ξ̃+ : ∂X+ → P+

compatible with S, such that X+ is homeomorphic to the mapping cylinder of ξ̃+, and
such that for each t ∈ D

+\{0} the map ξ̃+ restricts to a continuous simplicial map:

ξ̃t : ∂Xt → Pt

compatible with S, such that Xt is homeomorphic to the mapping cylinder of ξ̃t , where
∂X+ := X+ ∩ Sε(x), ∂Xt := Xt ∩ Sε(x) and Sε(x) is the boundary of Bε(x).

(iii) A continuous map ψt : Xt → X0 that sends Pt to {0} and that restricts to a homeo-
morphism Xt\Pt → X0\{0}, for any t ∈ D

+\{0}.
InSect. 2we recall someclassical definitions and results. InSect. 3weconstruct the relative

polar curve of f , which is the main tool to prove Theorem 2. In Sect. 4 we prove Theorem 2
when X is two-dimensional. Then in Sect. 5 we present two propositions (Propositions 29
and 30) and we use them to prove Theorem 2 in the general case. In Sect. 6 we prove those
Propositions by finite induction on the dimension of X . Finally, in Sect. 7 we make the
detailed construction of a vector field (Lemma 35) that is used in Sect. 6.

The authors are grateful to the reviewer’s valuable comments and suggestions, which
improved the readability and quality of the manuscript.

2 Background

In this section we recall some definitions, references and theorems that will be used in this
paper.

2.1 Whitney stratification

Following [14] (Section 1, p. 67), we have:

Definition 3 Let X be a subanalytic set (resp. a reduced complex analytic space). We say
that a locally finite family of non-singular subanalytic connected subsets S = (Sα)α∈A of X
is a subanalytic stratification (resp. complex analytic stratification) of X if:

(i) the family S is a partition of X ; and
(ii) the closure S̄α of Sα in X and S̄α\Sα are subanalytic (resp. complex analytic) subspaces

of X , for any α ∈ A.

The subsets Sα are called strata of the stratification S of X .
In this paper we will use both subanalytic and complex analytic stratifications. Although

we work with a complex analytic space X ⊂ C
N , when we intersect it with a closed ball Bε

in C
N we obtain a subanalytic set.

We say that a (subanalytic or complex analytic) stratification S = (Sα)α∈A as above
satisfies the frontier condition if for any (α, β) ∈ A× A such that Sα ∩ S̄β 	= ∅ ones has that
Sα ⊂ S̄β . In this case, S̄α and S̄α\Sα are union of strata of the stratification S, for any α ∈ A.

We have:

Definition 4 Let X be a subanalytic set (resp. reduced complex analytic space). We say that
a subanalytic (resp. complex analytic) stratification S = (Sα)α∈A of X is a subanalytic (resp.
complex analytic) Whitney stratification if:
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1006 L. D. Tráng, A. M. Neto

(i) the stratification S satisfies the frontier condition; and
(ii) for any (α, β) ∈ A × A such that Sα ∩ S̄β 	= ∅ the pair of strata (Sα, Sβ) satisfies

the Whitney condition, which is the following: for any y ∈ Sα there exists a local
embedding of (X, y) in (RN , 0) such that for any sequence (xn, yn)n∈N in Sβ × Sα that
converges to (y, y) and such that the limit T of the tangent spaces Txn Sβ and the limit
λ of the real secants xn yn in R

N exist, one has the inclusion λ ⊂ T .

One can verify that, for any y ∈ Sα fixed, if the condition above is satisfied for some local
embedding, then it is satisfied for any local embedding.

In [23] and in [7] (for the complex case and for the subanalytic case respectively) it is
proved the following:

Theorem 5 Let X be a subanalytic set (resp. reduced complex analytic space) and let (�i )i∈I
be a locally finite family of subanalytic (resp. complex analytic) closed subsets of X. There
exists a subanalytic (resp. complex analytic) Whitney stratification of X such that each�i is
a union of strata, for i ∈ I .

Next we give a lemma due to Cheniot [4] (see also Lemma 4.2.2. of Chapter III of [21])
that will be implicitly used many times in the paper:

Lemma 6 Let X and Y be two subanalytic sets in R
N (or reduced complex analytic spaces

in C
N , in the complex case) such that X has a subanalytic (resp. complex analytic) Whitney

stratification S = (Sα)α∈A and such that Y is non-singular. If Y intersects each stratum Sα
transversally in R

N (resp. in C
N ), then the Whitney stratification of X induces a subanalytic

(resp. complex analytic) Whitney stratification P = (Pα)α∈A of X ∩Y , where Pα := Sα ∩Y ,
for each α ∈ A.

Next we will present a stronger version of the Whitney stratification. But first we need the
following definition. Given two vector subspaces A and B of RN set:

δ(A, B) := sup x∈A‖x‖=1
d(x, B),

where d(x, B) is the distance between x and B. Then we have:

Definition 7 Let X ⊂ R
N be a subanalytic set (resp. reduced complex analytic space)

with a Whitney stratification S = (Sα)α∈A. We say that S has the property (w) if for any
(α, β) ∈ A × A such that Sα ∩ S̄β 	= ∅ the pair of strata (Sα, Sβ) satisfies the Kuo–Verdier
condition below:

For any y′ ∈ Sα there exists a neighborhood U of y′ in R
N and a real constant C > 0

such that for any (x, y) ∈ (Sβ ∩U, Sα ∩U ) one has that:

δ
(
Tx (Sβ), Ty(Sα)

) ≤ C‖x − y‖.
In Theorem 1.2 of chapter V of [21], Teissier proved the following:

Lemma 8 Let X ⊂ C
N be a reduced complex analytic spacewith a complex analyticWhitney

stratification S = (Sα)α∈A. Then S has the property (w).

The analogous of this result in the subanalytic case is not true (see Example 1 of [3] for
instance).

Definition 9 Let X and Y be subanalytic sets and let A ⊂ X be endowed with a Whitney
stratification S = (Sα)α∈A. We say that a morphism f : X → Y is transversal to S if, for any
α ∈ A, f induce a smooth morphism fα : Sα → Y .
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According to Remark (3.7) of [22], we have:

Lemma 10 Let X be a subanalytic set (resp. complex analytic set) and let A ⊂ X be
endowed with a subanalytic (resp. complex analytic) Whitney stratification S = (Sα)α∈A

with the property (w). If Y is smooth and if f : X → Y is transversal to S, then for any
smooth and locally closed subset Z ⊂ Y one has that f −1(Z) ∩ S is a subanalytic (resp.
complex analytic) Whitney stratification of A ∩ f −1(Z) with the property (w).

Considering f : X → R the square of the distance function to a point x ∈ X and Z a
closed interval [0, ε2], we have:
Corollary 11 If X ⊂ C

N is a reduced complex analytic space with a complex analytic
Whitney stratification S = (Sα)α∈A and if Bε(x) is a ball around x ∈ X in C

N of small
enough radius ε > 0, then S induces a subanalytic Whitney stratification on X ∩Bε(x) with
the property (w).

Let X be a subanalytic set endowed with a Whitney stratification S = (Sα)α∈A that has
the property (w). We say that a Whitney stratification S ′ = (S′

β)β∈A′ with the property (w)
is finer then S (or that S ′ is a refinement for S) if for any β ∈ A′ there exists α ∈ A such that
S′
β ⊂ Sα .
As in Remark (3.6) of [22], we have:

Remark 12 Let X and Y be subanalytic sets and let A ⊂ X be a closed subset. Let S =
(Sα)α∈A be a Whitney stratification of A and let Z = (Zβ)β∈B be a Whitney stratification of
Y , both of them with the property (w). If f : X → Y is a morphism such that the restriction
f|A : A → Y is proper, thenwe can consider a refinementS = (S′

α)α∈A′ ofS and a refinement
Z ′ = (Z ′

β)β∈B′ of Z such that, for any β ∈ B ′, one has that:

(i) f −1(Z ′
β) ∩ A is a union of strata of S ′;

(ii) the restriction f| : f −1(Z ′
β) → Z ′

β is transversal to S ′ ∩ f −1(Z ′
β).

Now let f : X → C be a complex analytic function defined on a complex analytic space
X with a Whitney stratification S = (Sα)α∈A. Following [12], we have:

Definition 13 Wesay that f has an isolated singularity at x ∈ X relatively to the stratification
S if:

(i) the restriction of f to Sα is a submersion, for any α ∈ A such that Sα does not contain
x ;

(ii) the restriction of f to Sα(x) has an isolated critical point at x , where Sα(x) is the stratum
that contains x .

2.2 Rugose vector fields

Following [5], we will briefly define a rugose vector field on a subanalytic set X ⊂ R
N

endowed with a Whitney stratification S = (Sα)α∈A with the property (w). See [22] for the
detailed definitions.

We say that a real-valued function f : X → R is a rugose function if for any α ∈ A one
has that:

(i) the restriction of f to Sα is smooth;
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1008 L. D. Tráng, A. M. Neto

(ii) for any x ∈ Sα there exists a neighborhood U of x in R
N and a real constant C > 0

such that for any x ′ ∈ U ∩ Sα and for any y ∈ U ∩ X one has that:

‖ f (x ′) − f (y)‖ ≤ C‖x − y‖.
We say that a map f : X → R

M is a rugose map if each of its coordinate functions is a
rugose function. We say that a vector bundle F over X is rugose if its chart change maps are
rugose.

A rugose vector bundle F on X tangent to the stratification S is a vector bundle over X
such that, for every stratum Sα there is an injection iα : F |Sα → T Sα such that the vector
bundle morphism F → i∗TRN |X induced by iα is rugose.

A stratified vector field �ν on X is a section of the tangent bundle TRN |X such that at each
x ∈ X , the vector �ν(x) is tangent to the stratum that contains x .

A stratified vector field �ν on X is called rugose near y ∈ Sα if there exists a neighborhood
U of y in R

N and a real constant C > 0 such that:

‖�ν(y′) − �ν(x)‖ ≤ C‖y′ − x‖,
for every (x, y′) ∈ (U ∩ Sβ,U ∩ Sα) with Sα ⊂ S̄β .

On the other hand, we say that a rugose stratified vector field �ν on X is integrable if there
exists an open neighborhoodU of X × {0} in X ×R and a rugose map θ : U → X such that
for any α ∈ A one has that:

(i) θ ((Sα × R) ∩U ) ⊂ Sα;
(ii) for any x ∈ Sα such that (x, t) ∈ (Sα ∩ R) ∩U one has that ∂

∂t θ(x, t) = �ν (θ(x, t)).
We say that the map θ is the flow associated to the vector field �ν.
For each x0 ∈ X we say that the restriction θ |({x0}×R)∩U : ({x0} × R) ∩ U → X is an

integral curve for the vector field �ν with initial condition x0. Condition (i) above assures that
if x0 is in a stratum Sα then the image of the integral curve for �ν with initial condition x0 is
contained in Sα .

We have (Proposition 4.8 of [22]):

Proposition 14 Any rugose stratified vector field on a closed subanalytic set X of RN is
integrable. Moreover, given a rugose vector field, if θ and θ ′ are rugose maps defined in open
neighborhoods U and U ′ of X × {0} in X × R, satisfying the properties (i) and (ii) above,
then θ and θ ′ coincide in U ∩U ′.

2.3 Stratified maps

We have:

Definition 15 Let X and Y be subanalytic sets (or reduced complex analytic spaces) with
Whitney stratifications (Xα)α∈A and (Yβ)β∈B respectively. A real analytic (resp. complex
analytic) morphism h : X → Y is a stratified map if:

(i) h sends each stratum Xα to a unique stratum Yβ(α), for some β(α) ∈ B;
(ii) the restriction of h to each stratum Xα induces a smooth map hα : Xα → Yβ(α).

We say that a stratified map h as above is a stratified submersion if each hα is a (surjective)
submersion.

We say that a stratified map h as above is a stratified homeomorphism if h is a homeo-
morphism and each hα is a smooth diffeomorphism.
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Vanishing polyhedron and collapsing map 1009

Let h : X → Y be a stratifiedmap as above and let �ν be a stratified vector field onY .We say
that a stratified vector field �μ on X lifts �ν if for each x ∈ X one has that dh ( �μ(x)) = �ν (h(x)).

We have (see [22], Proposition 4.6):

Proposition 16 Let X be a real analytic space endowed with a Whitney stratification S =
(Sα)α∈A with the property (w), and let Z be a locally closed subset of X which is union of
strata Sα . Let Y be a non-singular real analytic space and let h : X → Y be a stratified
submersion. If �ν is a smooth vector field in Y , then there exists a rugose stratified vector field
�μ on Z that lifts �ν.

There is a more general version of the theorem above, which includes the case when Y
is not smooth or the case when the vector field �ν is non-everywhere smooth, as we present
below (see [22], Remark 4.7):

Proposition 17 Let X and Y be real analytic spaces with Whitney stratifications S =
(Sα)α∈A andW = (Wβ)β∈B, respectively, both of themwith the property (w). Let h : X → Y
be a stratified submersion. Also, let Z be a locally closed subset of X which is a union of
strata Sα . Suppose that each restriction:

f|Wβ : Z ∩ f −1(Wβ) → Wβ,

with β ∈ B, is transversal to S ∩ Z ∩ f −1(Wβ) (that is, f|Wβ induces a smooth map on each
stratum of f −1(Wβ)∩ Z). If �ν is a rugose stratified vector field on f (Z), then there exists a
rugose stratified vector field �μ on Z that lifts �ν.
2.4 Simplicial maps

Let X be a topological space. A triangulation for X is a pair (K, h), where K is a simplicial
complex and h is a homeomorphism h : K → X . We say thatX is triangulable if there exists
a triangulation (K, h) for X .

Hironaka proved in [7] that any subanalytic set is triangulable.
In this paper, a polyhedron is a compact topological space that is triangulable. We are only

interested in the existence of a simplicial structure; a particular decomposition into faces is
not important in this work.

We say that a map f : P → P ′ between two polyhedra is a simplicial map if there exist
triangulations (K, h) and (K′, h′) for P and P ′, respectively, such that the induced map
f̃ : K → K′ is a simplicial map in the usual sense (that is, f̃ has the property that whenever
the vertices v0, . . . , vn of K span a simplex of K, the points f (v0), . . . , f (vn) are vertices
of a simplex of K′).

Notice that our definition is slightly different from the usual definition of a simplicial map,
since it relates spaces which do not have fixed simplicial structures (compare with Lemma
2.7 of [17]).

Finally, we have:

Definition 18 Let P be a polyhedron contained in a subanalytic space X endowed with a
Whitney stratification S = (Sα)α∈A. We say that P is adapted to the stratification S if the
interior of each simplex of P is contained in Sα for some α ∈ A.

2.5 Some useful results

Now we will state two results that will be used later. The first one is Thom–Mather’s first
isotopy lemma (Proposition 11.1 of [15]):
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1010 L. D. Tráng, A. M. Neto

Lemma 19 (Thom–Mather’s first isotopy lemma) Let M and P be smooth manifolds and
let X be a closed subset of M with a Whitney stratification (real or complex). If f : X → P
is proper stratified map and if it is a submersion on each stratum, then f is a locally trivial
fibration.

The second one is Remmert’s theorem (see Corollary 1.68 of [6] for instance):

Theorem 20 (Finite mapping theorem) Let f : X → Y be a finite morphism of complex
analytic spaces and Z ⊂ X a closed analytic complex subspace of X. Then f (Z) ⊂ Y is an
analytic subset of Y .

3 Polar curves

In the rest of the paper, X will be a fixed reduced equidimensional complex analytic space
in C

N such that 0 ∈ X , and f : (X, 0) → (C, 0) will be the germ of a complex analytic
function. Notice that if we prove Theorem 2 with this assumption, then we clearly prove it
in the general case f : (X, x) → (C, 0), and we do so just to simplify the notation.

Moreover, we will endow the germ (X, 0) with a fixed complex analytic Whitney strati-
fication S = (Sα)α∈A such that f −1(0) is a union of strata (see Lemma 5).

The notion of polar curve for a complex analytic function defined on an open neighborhood
of CN relatively to a linear form � was introduced by Teissier and by the first author in [20]
and [9], respectively. Later, in [10] the first author extended this concept to a germ of complex
analytic function f : (X, 0) → (C, 0) relatively to the Whitney stratification S = (Sα)α∈A.
We are going to recall that.

Notice that by nowwe are not supposing that f has an isolated singularity (in the stratified
sense). This hypothesis will be asked after the lemma below.

Let f : X → C be a representative of the germ of function f such that X is closed in an
open neighborhood U of 0 in C

N . For any linear form:

� : CN → C

the function f and the restriction of � to X induce the analytic morphism:

φ� : X → C
2

defined by φ�(z) = (
�(z), f (z)

)
, for any z ∈ X .

We have the following lemma:

Lemma 21 There is a representative X of (X, 0) in an open neighborhood U of 0 ∈ C
N and

a non-empty Zariski open set � in the space of non-zero linear forms of CN to C such that,
for any � ∈ � and for any stratum Sα which is disjoint from f −1(0), the analytic morphism
φ� : X → C

2 satisfies:

(i) The critical locus of the restriction of φ� to Sα is either empty or a smooth reduced
complex curve, whose closure in X is denoted by �α .

(ii) The image (�α, 0) of (�α, 0) by φ� is the germ of a complex curve.

Proof Let us choose an open neighborhood U of 0 ∈ C
N such that the intersection U ∩ Sα

is not empty for finitely many indices α. Furthermore, we may assume that the closure Sα in
U is defined by an ideal I (Sα) generated by complex analytic functions g1, . . . , gm defined
on U , that is, I (Sα) = (g1, . . . , gm).
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Now consider a linear form � = a1x1 +· · ·+aN xN and a stratum Sα that is not contained
in f −1(0) and such that 0 ∈ Sα . Let C�,α be the critical set of the restriction of φ� to Sα .
Consider the matrix:

Jα =
⎛

⎜
⎝

∂g1/∂x1 . . . ∂g1/∂xN
...

. . .
...

∂gm/∂x1 . . . ∂gm/∂xN

⎞

⎟
⎠ .

A point z of Sα is a point where the rank of Jα at z is ρ := maxz∈Sα rank
(
Jα(z)

)
, since

it is a non-singular point of Sα . A point of C�,α is a point of Sα where the matrix:

Jφ,α =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂g1/∂x1 . . . ∂g1/∂xN
...

. . .
...

∂gm/∂x1 . . . ∂gm/∂xN
∂ f/∂x1 . . . ∂ f/∂xN

a1 . . . aN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

has rank at most ρ + 1. So the determinants of the (ρ + 2)-minors:
⎛

⎜⎜⎜⎜⎜
⎝

∂gi1/∂x j1 . . . ∂gi1/∂x jρ+2

...
. . .

...

∂giρ /∂x j1 . . . ∂giρ /∂x jρ+2

∂ f/∂x j1 . . . ∂ f/∂xiρ+2

ai1 . . . aiρ+2

⎞

⎟⎟⎟⎟⎟
⎠

are zero, that is:

ρ+2∑

k=1

(−1)k+1 · aik · det

⎛

⎜⎜
⎜
⎝

∂gi1/∂x j1 . . . ∂gi1/∂x jk−1 ∂gi1/∂x jk+1 . . . ∂gi1/∂x jρ+2

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

∂giρ /∂x j1 . . . ∂giρ /∂x jk−1 ∂giρ /∂x jk+1 . . . ∂giρ /∂x jρ+2

∂ f/∂x j1 . . . ∂ f/∂x jk−1 ∂ f/∂x jk+1 . . . ∂ f/∂x jρ+2

⎞

⎟⎟
⎟
⎠

= 0.

An analytic version of a classical theorem of Bertini (see [1] and [2]) states that if
h1, . . . , hr are holomorphic functions defined on a complex analytic space Y and if the
complex numbers λi are sufficiently generic, for i = 1, . . . , r , then the singular locus of the
subvariety

{∑r
i=1 λi hi = 0

}
is contained in the union of the singular set of Y and the set:

{h1 = · · · = hr = 0}.
So it follows from the analytic theorem of Bertini that there exists a non-empty Zariski

open set�α in the space of non-zero linear forms fromC
N toC such that for any � ∈ �α one

has that the singular points �C�,α
of C�,α are contained in the union of the set of the points

where the determinants above are zero and of the singular locus of Sα . That is:

�C�,α
⊂

(
Crit

(
f|Sα

)
∪ �Sα

)
∩ Sα.

Since this intersection is contained in f −1(0) ∩ Sα , which is empty, it follows that C�,α is
either smooth or empty.

Now, since φ−1
� (0, 0) ∩ (�α, 0) ⊂ {0}, it follows from the geometric version of the

Weierstrass preparation theorem given in [8] that the restriction of φ� to the germ (�α, 0) is
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1012 L. D. Tráng, A. M. Neto

finite. So the finite mapping theorem (Theorem 20) implies that the image�α of the analytic
set �α by φ� is a complex curve.

Finally, notice that there is a finite number of indices α ∈ A such that Sα is not contained
in f −1(0) and such that 0 is contained in Sα . Let A0 be the finite subset of A formed by such
indices. So the set:

� :=
⋂

α∈A0

�α

is the desired non-empty Zariski open set in the space of non-zero linear forms from C
N to

C. ��
For any � ∈ � we say that the germ of curve at 0 given by:

�� :=
⋃

α∈A

�α

is the polar curve of f relatively to � at 0 and that the germ of curve at 0 given by:

�� :=
⋃

α∈A

�α

is the polar discriminant of f relatively to � at 0.
From now on, we fix a linear form � ∈ � and we set φ := φ�, � := �� and � := ��.
Notice that there exists an open neighborhood U of 0 in C

2 and a representative X of
(X, 0) such that the map φ = (�, f ) : X → U is stratified and such that it induces a stratified
submersion X\φ−1(�) → φ(X)\�.

From now on we will assume that f has an isolated singularity at 0 relatively to the
stratification S. So by an analytic version of Corollary 2.8 of [16], there exist ε and η2 small
enough positive real numbers with 0 < η2 � ε � 1 such that, for any t ∈ Dη2 , the sphere
Sε of radius ε around 0 intersects f −1(t) ∩ Sα transversally, for any α ∈ A.

We can also choose the linear form � in such a way that there exists η1 sufficiently small,
with 0 < η2 � η1 � ε � 1, such that φ−1(s, t) ∩ Sα = �−1(s) ∩ f −1(t) ∩ Sα intersects
Sε transversally, for any (s, t) ∈ Dη1 × Dη2 , where Dη1 and Dη2 are the closed disks in C

centered at 0 and with radii η1 and η2, respectively.
So we have:

Proposition 22 The map φ = (�, f ) induces a stratified submersion:

φ| : Bε ∩ X ∩ φ−1(Dη1 × Dη2\�) → Dη1 × Dη2\�.

In particular, the first isotopy lemma of Thom–Mather (Lemma 19) gives:

Corollary 23 The restriction φ| above is a topological locally trivial fibration.

Therefore the curve � plays the role of a local topological discriminant for the stratified
map φ.

For any t in the disk Dη2 set:

Dt := Dη1 × {t}.
If t 	= 0, the Milnor fiber f −1(t)∩Bε of f is homeomorphic to φ−1(Dt )∩Bε (see Theorem
2.3.1 of [14]). So, in order to simplify notation, we reset:

Xt := φ−1(Dt ) ∩ Bε .
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Notice that with this notation, the boundary ∂Xt of Xt is given by the union of φ−1(D̊t )∩Sε

and φ−1(∂Dt ) ∩ Bε .
By Lemma 10 together with Corollary 11, the (complex analytic) Whitney stratification

S of X induces a (subanalytic) Whitney stratification S(t) of Xt . Precisely, the strata of such
stratification are the following intersections, for α ∈ A:

(i) Sα ∩ (Xt\∂Xt )

(ii) Sα ∩ φ−1(D̊t ) ∩ Sε

(iii) Sα ∩ φ−1(∂Dt ) ∩ B̊ε

(iv) Sα ∩ φ−1(∂Dt ) ∩ Sε

Now, for any t ∈ D
∗
η2

one has that φ induces a stratified map:

�t : Xt → Dt .

By construction, the restriction of �t to each stratum of Xt is a submersion at any point that
is not in �. Therefore it induces a locally trivial fibration over Dt\(� ∩ Dt ). That is, if we
set:

� ∩ Dt = {y1(t), . . . , yk(t)}
then the restriction of �t given by:

ϕt : Xt\�−1
t

({y1(t), . . . , yk(t)}
) → Dt\{y1(t), . . . , yk(t)}

is a stratified submersion (see Definition 15) and a locally trivial fibration, by Thom–Mather
first isotopy lemma (Lemma 19).

We notice that at this moment the parameter t is fixed, and the points y j (t) are numbered
in an arbitrary way, as there is no natural way to do it. But in Sect. 4.2 and 6.2 those points
will be defined in a continuous manner for t varying on a closed semi-disk D

+ ⊂ Dη2 as in
Fig. 1 above.

Remark 24 In the case that � is empty, one has that:

φ| : Bε ∩ X ∩ φ−1(Dη1 × Dη2) → Dη1 × Dη2

is a locally trivial topological fibration, which implies a locally trivial topological fibration
�t : Xt → Dt . Hence in this case the Milnor fiber Xt is homeomorphic to the product of Dt

and the general fiber of �t .

So from now on we shall assume that the polar curve � is not empty.

4 The two-dimensional case

We shall prove Theorem 2 by induction on the dimension n of the analytic space X . We could
start by proving the theorem for n = 1 and then proceed by induction for n ≥ 2, but we
choose to start with the 2-dimensional case, in order to provide the reader a better intuition
of the constructions.

So in this section we prove Theorem 2when (X, 0) is a 2-dimensional reduced equidimen-
sional germ of complex analytic space and f : (X, 0) → (C, 0) has an isolated singularity at
0 in the stratified sense.

One particularity of this 2-dimensional case is that the singular set� of X has dimension
at most one. If � has dimension one, we can put it inside the polar curve �. More precisely,
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only in this section we denote by � the union of the polar curve of f with�. We also denote
by� the union of the polar discriminant of f with φ(�). Notice that if� is not empty, then
it is a complex curve.

In order to make the constructions easier to understand, wewill proceed in three steps. The
first step will be to construct a polyhedron Pt in Xt , which we call a vanishing polyhedron,
and a simplicial map ξ̃t in Xt , for any t ∈ Dη2\{0} fixed. In the second step, we do the
construction of Pt and ξ̃t simultaneously, for t varying in a closed semi-disk D

+ of Dη2 as in
Fig. 1 above (with 0 ∈ ∂D+). This will give a polyhedron P+ in X+ := X ∩ f −1(D+)∩Bε .
In the third step, we will construct the map ψt : Xt → X0, for any t ∈ D

+\{0}. We call ψt

a collapsing map for f .

4.1 First step: constructing the vanishing polyhedron Pt and the map ξ̃t

Let us fix t ∈ D
∗
η2

fixed. We recall that:

� ∩ Dt = {y1(t), . . . , yk(t)}.
Let λt be a point in Dt\{y1(t), . . . , yk(t)} and for each j = 1, . . . , k, let δ(y j (t)) be the line
segment in Dt starting at λt and ending at y j (t). We can choose λt in such a way that any
two of these line segments intersect only at λt .

Set:

Qt :=
k⋃

j=1

δ(y j (t))

and

Pt := �−1
t (Qt ).

Since �t is finite, one can see that Pt is a one-dimensional polyhedron in Xt (see Sect. 2.4).
And since the map ϕt : Xt\�−1

t
({y1(t), . . . , yk(t)}

) → Dt\{y1(t), . . . , yk(t)} is a stratified
submersion, the interior of each 1-simplex of Pt is contained in some stratum Xt ∩Sα of Xt ,
so Pt is adapted to the stratification S (see Definition 18).

We shall call Pt a vanishing polyhedron for f .
Recall that in this 2-dimensional case, by definition, the curve � contains the singular set

� of X , so Pt contains the intersection � ∩ Xt . Hence Xt\Pt is a smooth manifold.

Lemma 25 There exists a subanalytic Whitney stratification Z = (Zβ)β∈B of Dt with the
property (w), and a continuous vector field �νt on Dt such that:

1. It is non-zero on Dt\Qt ;
2. It vanishes on Qt ;
3. It is transversal to ∂Dt and points inwards;
4. It restricts to a rugose stratified vector field on the interior D̊t of Dt (relatively to the

stratification Z);
5. The associated flow qt : [0,∞) × (Dt\Qt ) → Dt\Qt defines a map:

ξt : ∂Dt −→ Qt

u �−→ lim
τ→∞ qt (τ, u),

such that ξt is continuous, simplicial (as defined in Sect. 2.4) and surjective.
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Fig. 2 The line-segments Ñi

Proof Let dt : Dt → R be the function given by the distance to the set Qt , that is dt (x) :=
d(x, Qt ). Consider the small closed neighborhood of Qt in Dt given by:

Rt := (dt )
−1([0, r ])

for some small r > 0. Since both Qt and dt are subanalytic, it follows thatRt is subanalytic.
Since we have k-many points y1(t), . . . , yk(t), it follows that there exist exactly k-many

points in ∂Rt whose distance to the point λt is r . Let us call them p1, . . . , pk . For each pi ,
let Ni be the closed line-segment in Rt that joins the points pi and λt , and let Ñi be the
closed line-segment in Dt that contains both the points λt and pi , and also some point of the
boundary of Dt . See Fig. 2.

We consider theWhitney stratificationZ of Dt with the property (w) that has the smallest
number of strata, such that Qt and the line-segments Ñi are union of strata.

We will prove the lemma in two steps.
First step:We will endow Rt with a vector field �v1, as follows:
For each point y j (t), let L j be the line-segment inRt that is ortogonal to the line-segment

δ(y j (t)) at y j (t). Notice that the line-segments L1, . . . , Lk together with the line-segments
N1, . . . , Nk give a decomposition of Rt in 2k-many polygons R1, . . . , R2k that contain the
point λt and k-many semi-disks M1, . . . ,Mk such that y j (t) ∈ Mj , for j = 1, . . . , k. See
Fig. 3.

Now we endow each polygon Rm , for m = 1, . . . , 2k, with a vector field ωm as follows:
Let h1 be the combination of the rotation and the translation in R

2 that takes λt to the
origin and that takes the line-segment δ(y j (t)) contained in Rm to a line-segment [x0, 0]
in the first coordinate-axis. Notice that h1 takes the line-segment Ni contained in Rm to a
line-segment contained in the real line of equation y = αx , for some α ∈ R. See Fig. 4.

Also, let h2 be the diffeomorphism from the rectangle [x0, 0] × [0, r ] onto h1(Rm) given
by:

h2(x, y) :=
(
x + α

(x0 − x)

x0
y, y

)
.
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Fig. 3 Decomposition ofRt

Fig. 4 The diffeomorphism h

Setting h := h−1
1 ◦h2, we have that h : [x0, 0]× [0, r ] → Rm is a diffeomorphism such that:

• h takes [x0, 0] × {0} onto δ(y j (t));
• h takes {x0} × [0, r ] onto L j ;
• h takes {0} × [0, r ] onto Ni .

Now let ρ : [x0, 0] × [0, r ] → R be the function given by the square of the distance to
[x0, 0] × {0}, that is, ρ(x, y) := y2, and let �ω be the vector field in [x0, 0] × [0, r ] given by
the opposite of the gradient vector field associated to ρ. Notice that �ω is continuous, smooth
outside [x0, 0] × {0}, non-zero outside [x0, 0] × {0} and zero on [x0, 0] × {0}.

The differential of h takes �ω to a vector field �ωm on Rm that is smooth and non-zero
outside δ(y j (t)) and zero on δ(y j (t)).

Moreover, the restriction of �ωm to the line-segment L j coincides with the vector field on
L j given by the opposite of the gradient of the square of the function given by the distance to
the point y j (t). Also, the restriction of �ωm to the line-segment Ni coincides with the vector
field on Ni given by the opposite of the gradient of the square of the function given by the
distance to the point λt . See Fig. 5.
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Fig. 5 The vector field �ωm

On the other hand, we endow each semi-disk Mj , for j = 1, . . . , k, with the vector field
�w j given by the opposite of the gradient of the square of the function given by the distance
to the point y j (t).

So putting all the polygons Rm and all the semi-disks Mj together, each of them endowed
with the corresponding vector field �ωm or �w j , we get a continuous vector field �v1 onRt such
that:

• �v1 is smooth on each stratum of the stratification of Rt induced by Z;
• �v1 is non-zero outside Qt ;
• �v1 is zero on Qt ;
• �v1 never points in the direction of the gradient of the function given by the square of the

distance to the point λt .

Let us show that:

• �v1 is a rugose vector field.
Set W1 := Dt\(Qt ∪ Ñ1 ∪ · · · ∪ Ñk) and set W2 := Qt ∪ Ñ1 ∪ · · · ∪ Ñk .
If z ∈ W2 ∩Rt is not λt , letU be a neighborhood of z in Dt that is contained in the union

of two polygons Rm and Rm′ . Then for any z1 ∈ W1 ∩U and z2 ∈ W2 ∩U , we have that the
line-segment z1z2 that joints z1 and z2 is contained either in Rm or in Rm′ . Let us suppose
that it is contained in Rm . Then we have:

‖�ωm(z1) − �ωm(z2)‖ ≤ Km‖z1 − z2‖,
where Km is the Lipschitz constant of the Lipshitz vector field �ωm .

If z = λt , letU be the open ball around λt of radius r . Given z1 ∈ W1∩U and z2 ∈ W2∩U ,
consider the line-segment z1z2, starting from z1 and going to z2. It intersects the set Q at
points q1, . . . , qs , and it intersects the line-segments Ni at the points t1, . . . , ts′ , in this order.
That is:

z1z2 = z1q1t1q2t2 . . . qs−1ts−1qsz2 or z1z2 = z1t1q1t2q2 . . . tsqs z2.

Let us consider the first case (z1z2 = z1q1t1q2t2 . . . qs−1ts−1qsz2); the second case is analo-
gous.

Let re-order the polygons Rm in such a way that, for each i = 1, . . . , s, we have:

– R0 is the polygon that contains z1;
– R2i−1 is the polygon that contains the line-segment qi ti ;
– R2i is the polygon that contains the line-segment ti qi+1.

Setting K := maxm=1,...,2k{Km}, we have:

‖�ω0(z1) − �ωs(z2)‖
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≤ ‖�ω0(z1) − �ω0(q1)‖ + ‖�ω1(q1) − �ω1(t1)‖ + ‖�ω2(t1) − �ω2(q2)‖ + ‖�ω3(q2) − �ω3(t2)‖ + · · ·
· · · + ‖�ω2s−2(ts−1) − �ω2s−2(qs)‖ + ‖�ω2s−1(qs) − �ω2s−1(z2)‖
≤ K0‖z1 − q1‖ + K1‖q1 − t1‖ + K2‖t1 − q2‖ + · · · + K2s−2‖ts−1 − qs‖ + K2s−1‖qs − z2‖
≤ 2sK‖z1 − z2‖ ≤ 2kK‖z1 − z2‖.
Second step: Constructing the vector field �νt on Dt .
Let r ′ be a small real number with 0 < r ′ < r and with r − r ′ � 1, and set R′

t :=
(dt )−1

([0, r ′]), so R′
t ⊂ Rt . We endow Dt\int (R′

t ) with the vector field �v2 given by the
opposite of the gradient vector field of the function on Dt\int (R′

t ) given by the square of
the distance to the point λt .

Since the vector fields �v1 and �v2 never have opposite directions, the vector field �νt is
obtained by gluing the vector fields �v1 and �v2, using a partition of unity. That is, we consider
a pair (ρ1, ρ2) of continuous functions from the compact disk Dt to the closed unit interval
[0, 1] such that:
• for every point p ∈ Dt one has that ρ1(p) + ρ2(p) = 1,
• the support of ρ1 is contained in int (Rt ),
• the support of ρ2 is contained in Dt\R′

t .

Hence for any p ∈ R′
t we have that

(
ρ1(p), ρ2(p)

) = (1, 0) and for any p ∈ Dt\int (Rt )

we have that
(
ρ1(p), ρ2(p)

) = (0, 1). So we set �νt := ρ1�v1 + ρ2�v2 .
Clearly, �νt is a continuous vector field on Dt that is non-zero on Dt\Qt , zero on Qt and

transversal to ∂Dt , pointing inwards, and that restricts to a rugose stratified vector field on
the interior of Dt (relatively to the stratification Z of Dt ). Moreover, each orbit associated
to �νt has a limit point in Qt .

So the flow qt : [0,∞) × (Dt\Qt ) → Dt\Qt associated to �νt defines a continuous,
simplicial and surjective map:

ξt : ∂Dt −→ Qt

u �−→ lim
τ→∞ qt (τ, u).

��
Remark 26 Lemma 25 is still true if the set Qt is taken as the union of simple paths that
intersect only at a point λt , instead of considering line-segments. It is enough to consider a
suitable homeomorphism of the disk Dt onto itself which is a diffeomorphism outside the
point λt and which sends the union of those paths to a union of line-segments.

Now recall the proper map �t : Xt → Dt and recall that Xt has a subanalytic Whitney
stratification S(t) with the property (w) induced by the Whitney stratification S of X . By
Remark 12, we can consider a refinement S ′(t) of S(t) and a refinement Z ′ = (Z ′

β)β∈B′ of
Z such that:

(i) �−1
t (Z ′

β) is a union of strata of S ′(t);
(ii) the restriction �t | : �−1

t (Z ′
β) → Z ′

β is transversal to S ′(t) ∩ f −1(Z ′
β).

One has:

Proposition 27 We can choose a lifting of the vector field �νt of Lemma 25 to a continuous
vector field �ϑt on Xt so that:

1. It is non-zero outside Pt and zero on Pt ;
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2. It is transversal to ∂Xt and points inwards;
3. It restricts to a stratified rugose vector field on the interior of Xt (relatively to the

stratification S ′(t));
4. The flow q̃t : [0,∞) × (Xt\Pt ) → Xt associated to �ϑt defines a map:

ξ̃t : ∂Xt −→ Pt

z �−→ lim
τ→∞ q̃t (τ, z)

such that ξ̃t is continuous, simplicial and surjective;
5. The fiber Xt is homeomorphic to the mapping cylinder of ξ̃t .

Proof Recall from Proposition 22 that the restriction �t of the linear form � to the Milnor
fiber Xt induces a stratified submersion:

ϕt : Xt\�−1
t

({y1(t), . . . , yk(t)}
) → Dt\{y1(t), . . . , yk(t)}.

So, by Proposition 17, we can lift the vector field �νt to a continuous vector field �ϑt in Xt

that satisfies properties (1), (2) and (3).
Let us show that we can choose �ϑt satisfying also condition (4). Fix z ∈ ∂Xt . We want to

show that limτ→∞ q̃t (τ, z) exists, that is, that there exists a point p̃ ∈ Pt such that for any
open neighborhood Ũ of p̃ in Xt there exists θ > 0 such that τ > θ implies that q̃t (τ, z) ∈ Ũ .

From Lemma 25 we know that there exists p ∈ Qt such that limτ→∞ qt (τ, �t (z)) = p,
where qt : [0,∞) × (Dt\Qt ) → Dt is the flow associated to the vector field �νt . So for
any small open neighborhood U of p in Dt there exists θ > 0 such that τ > θ implies
that qt (τ, �t (z)) ∈ U . Setting { p̃1, . . . , p̃r } := �−1

t (p), we can considerU sufficiently small
such that there are disjoint connected components Ũ1, . . . , Ũr of �

−1
t (U ) such that each Ũ j

contains p̃ j .
Since �ϑt is a lifting of �νt , we have that qt (τ, �t (z)) = �t (q̃t (τ, z)) for any τ ≥ 0. So

τ > θ implies that �−1
t

(
�t (q̃t (τ, z))

) ⊂ �−1
t (U ). Hence for some j ∈ {1, . . . , r}we have that

q̃t (τ, z) ∈ Ũ j . Therefore limτ→∞ q̃t (τ, z) = p̃ j . This proves (4).
Now we show that Xt is homeomorphic to the mapping cylinder of ξ̃t . In fact, the inte-

gration of the vector field �ϑt on Xt gives a surjective continuous map:

α : [0,∞] × ∂Xt → Xt

that restricts to a homeomorphism:

α| : [0,∞) × ∂Xt → Xt\Pt .
Since the restriction α∞ : {∞}× ∂Xt → Pt is equal to ξ̃t , which is surjective, it follows that
the induced map:

[α∞] : (
({∞} × ∂Xt )

/ ∼ ) → Pt

is a homeomorphism, where ∼ is the equivalence relation given by identifying (∞, z) ∼
(∞, z′) if α∞(z) = α∞(z′). Hence the map:

[α] : (
([0,∞] × ∂Xt )

/ ∼ ) → Xt

induced by α defines a homeomorphism between Xt and the mapping cylinder of ξ̃t . This
proves (5). ��
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Fig. 6 The triangles Tj

4.2 Second step: constructing P+ and ξ̃+

Recall from Lemma 21 that the polar curve � is not contained in f −1(0). Hence � is not
contained in Dη1 × {0}, and so the natural projection π : Dη1 × Dη2 → Dη2 restricted to �
induces a ramified covering:

π| : � → Dη2

of degree k, whose ramification locus is {0} ⊂ �.
So the intersection of the polar discriminant�with the productDη1 ×D

+ give semi-disks
Y1, . . . , Yk in Dη1 ×D

+ such that Y j projects differentially onto D
+ outside 0 ∈ Y j , for each

j = 1, . . . , k. The set� := {0}×D
+ is also a semi-disk inDη1 ×D

+, which can be supposed
to intersect Y j only at 0 ∈ C

2, for any j = 1, . . . , k.
We can choose the simple paths δ(y1(t)), . . . , δ(yk(t)) for each t ∈ D

+ in such a way
that δ(y j (t)) depends continuously on the parameter t ∈ D

+, for each j = 1, . . . , k; and it
forms a 3-dimensional triangle T j in Dη1 ×D

+ bounded by the semi-disks Y j and� and by
the union of paths

⋃
t∈D+∩∂Dη2

δ j (y j (t)).
The Fig. 6 below represents the 2-dimensional triangles Tj := T j ∩ (Dη1 × γ ), for

j = 1, . . . , k, where γ is a simple path in D
+ going joining some t0 ∈ D

+ ∩ ∂Dη2 to 0 ∈ C
2.

It helps the reader to understand the construction of each T j .
Setting Q+ := ⋃k

j=1 T j , we define:

P+ := φ−1(Q+),

which is contained in X+ := X∩ f −1(D+)∩Bε . It is a polyhedron adapted to the stratification
S+ of X+ induced by S, and the intersection P+ ∩ Xt is a vanishing polyhedron Pt as in
Sect. 4.1, for any t ∈ D

+\{0}. Moreover, P+ ∩ X0 = {0}.
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Notice that the complexWhitney stratificationS of X in fact induces a subanalyticWhitney
stratification S+ of X+ with the property (w). This is because S has the property (w), by
Lemma 8, and hence one can use Lemma 10.

Now, analogously to Lemma 25, we can construct aWhitney stratificationZ+ ofDη1 ×D
+

with the property (w), and an integrable vector field �ν+ inDη1 ×D
+ that deformation retracts

Dη1 ×D
+ onto Q+. That is, we can consider a continuous vector field �ν+ in Dη1 ×D

+ such
that:

• It is non-zero outside Q+ and it is zero on Q+;
• It is transversal to ∂Dη1 × D

+;
• It restricts to a rugose stratified vector field on the interior of Dη1 × D

+ (with respect to
Z+);

• The projection of �ν+ onto D
+ is zero;

• The flow q+ : [0,∞) × (
(Dη1 × D

+)\Q+) → Dη1 × D
+ associated to �ν+ defines a

map:

ξ+ : ∂Dη1 × D
+ −→ Q+

z �−→ lim
τ→∞ q+(τ, z)

that is continuous, simplicial and surjective.

As we did above, we can use Remark 12 to obtain a refinement (S+)′ of S+ and a
refinement (Z+)′ = (Z+′

β )β∈B′ of Z+ such that:

(i) φ−1(Z+′
β ) is a union of strata of (S+)′;

(ii) the restriction φ| : φ−1(Z+′
β ) → (Z+′

β ) is transversal to (S+)′ ∩ f −1(Z+′
β ).

So by Proposition 16 we have:

Proposition 28 The vector field �ν+ can be lifted to an integrable vector field �ϑ+ in X+ such
that:

(i) For any t ∈ D
+\{0}, the restriction of �ϑ+ to Xt gives a vector field �ϑt as in Proposi-

tion 27, relatively to the polyhedron Pt = P+ ∩ Xt .
(ii) The vector field �ϑ+ is non-zero on X+\P+, zero on P+, transversal to ∂X+, pointing

inwards, and it restricts to a rugose stratified vector field on the interior of X+ (relatively
to the refinement (S+)′).

Analogously to the proof of (6) of Proposition 27, one can show that the flow associated
to the vector field �ϑ+ defines a map ξ̃+ with the desired properties.

This proves (i) and (ii) of Theorem 2 in the 2-dimensional case.

4.3 Third step: constructing the collapsing map ψt

First, let us recall that Xt := Bε ∩ φ−1(Dη1 × {t}) and that the map:

φ = (�, f ) : X → C
2

induces a stratified submersion φ| : Bε ∩ X ∩ φ−1(Dη1 × Dη2\�) → Dη1 × Dη2\� (see
Proposition 22).

Let γ be a simple path in Dη2 joining 0 and some t0 ∈ ∂Dη2 , such that γ is transverse to
∂Dη2 . See Fig. 7.Wewant to describe the collapsing of f along γ , that is, how Xt degenerates
to X0 as t ∈ γ goes to 0.

123
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Fig. 7 The path γ

Recall the sets Q+ and P+ defined above, and set Qγ := Q+ ∩ (Dη1 × γ ). It is a union
of triangles T1, . . . , Tk , as in Fig. 6. Also set Pγ := P+ ∩ f −1(γ ).

The vector field �ν+ constructed above restricts to a continuous stratified vector field �νγ in
Dη1 × γ such that:

• It is non-zero outside Qγ and it is zero on Qγ ;
• It is transversal to ∂Dη1 × γ ;
• It restricts to a rugose stratified vector field on the interior of Dη1 × γ (relatively to the

Whitney stratification Z+ ∩ (Dη1 × γ ) (with the property (w)) induced by Z+);
• The projection of �νγ onto γ is zero;
• The flow qγ : [0,∞) × (

(Dη1 × γ )\Qγ

) → Dη1 × γ associated to �νγ defines a map:

ξγ : ∂Dη1 × γ −→ Qγ

z �−→ lim
τ→∞ qγ (τ, z)

that is continuous, simplicial and surjective.

Now, for any real number A > 0 set:

VA(Qγ ) := (Dη1 × γ )\qγ
([0, A) × ∂Dη1 × γ

)
,

which is a closed neighborhood of Qγ inDη1×γ . This gives a systemof closed neighborhoods
of Qγ in Dη1 × γ , such that:

(i) The boundary ∂VA(Qγ ) of VA(Qγ ) is a stratified topological manifold, for any A ≥ 0,
since it is the image of ∂Dη1 × γ by ξγ ;

(ii) V0(Qγ ) = Dη1 × γ ;
(iii) For any A1 > A2 one has VA1(Qγ ) ⊂ VA2(Qγ );
(iv) For any open neighborhood U of Qγ in Dη1 × γ , there exists AU ≥ 0 sufficiently big

such that VAU (Qγ ) is contained in U .

Notice that ∂VA(Qγ ) fibers over γ with fiber a circle, by the restriction of the projection
π : Dη1 × Dη2 → Dη2 .

Now, setting:

Xγ := X ∩ f −1(γ ) ∩ Bε,

wecanfinally construct a stratified rugose vector field �ζγ in Xγ \Pγ (relatively to the stratifica-
tionS ′(γ ) of Xγ induced by the stratification (S+)′ of X+) whose flowgives the degeneration
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of Xt0 to X0. We will say that �ζγ is a collapsing vector field that gives the degeneration of f
along the path γ .

Recall that the restriction:

φ| : φ−1((Dη1 × Dη2)\Q
) → (Dη1 × Dη2)\Q

is a stratified submersion (relatively to the stratification S), and that the restriction of π ◦ φ
to φ−1

(
∂VA(Qγ )

) ∩ Bε is a proper locally trivial fibration over γ .
Let �θ be a vector field on γ that goes from t0 to 0 in time a > 0 and fix A > 0. We are

going to construct a smooth and integrable vector field �ζγ in Xγ \Pγ that lifts �θ outside {0},
and such that �ζγ is tangent to φ−1

(
∂V ′

A(Qγ )
)
, for anyA′ ≥ A. We will construct it locally,

that is, for each point p ∈ Xγ \Pγ we will construct a vector field �ζp in some neighborhood
Up of p, and then we will glue all of them using a partition of unity associated to the covering
given by the neighborhoods Up (see Lemma 41.6 of [18] for the proof of the existence of a
partition of unity associated to an infinite covering, since Xγ \Pγ is not compact).

Each �ζp is constructed in the following way:

(a) If p /∈ φ−1
(
VA(Qγ )

) ∩Bε , there is an open neighborhoodUp of p in Xγ that does not
intersect the closed set φ−1

(
VA(Qγ )

) ∩ Bε . Then we define a smooth vector field �ζp
on Up that lifts �θ .

(b) If p ∈ [
φ−1

(
VA(Qγ )

) ∩ Bε

] \Pγ , there is an open neighborhood Up of p in Xγ that
does not intersect Pγ . We define a smooth vector field �ζp on Up that lifts �θ and that
is tangent to each stratum of φ−1

(
∂VA′(Qγ )

) ∩ Bε , for any A′ ≥ A. This is possible
because the restriction of π ◦ φ to φ−1

(
VA(Qγ )\Qγ

) ∩ Bε is a stratified submersion,
which restricts to a locally trivial fibration φ−1

(
∂VA′(Qγ )

)∩Bε → γ , for each A′ ≥ A.

Then the collapsing vector field �ζγ is obtained by gluing the vector fields �ζp using a
partition of unity. Notice that �ζγ lifts �θ outside {0}.

Hence the flow h : [0, a] × Xγ \Pγ → Xγ \Pγ associated to �ζγ defines a stratified
homeomorphism ψ̃t0 from Xt0\Pt0 to X0\{0}.

Moreover, we can show that the extension ψt0 : Xt0 → X0 given by:

ψt0(x) :=
{
ψ̃t0(x) if x ∈ Xt0\Pt0
0 if x ∈ Pt0

is continuous. It is enough to show that if (xr )r∈R is a sequence of points in Xt0\Pt0 such
that xr ∈ φ−1

(
∂Vr (Qγ )

)
, for r sufficiently large (so xr converges to a point x ∈ Pt0 ), then

the sequence of points
(
ψ̃t0(xr )

)

r∈R in X0 converges to 0. Since the collapsing vector field

�ζγ is tangent to φ−1
(
∂Vr (Qγ )

)
, for each r sufficiently large, it follows that:

ψ̃t0(xr ) ∈ φ−1 (
∂Vr (Qγ )

) ∩ X0.

On the other hand, by the condition (iv) above, we have that the system of neighborhoods
Vr (Qγ ) is such that ∩r∈NVr (Qγ ) = Qγ , so φ−1

(
∂Vr (Qγ )

) ∩ X0 goes to {0} when r goes
to infinity, in the sense of condition (iv) above. Precisely, for any open neighborhood U of
0 in X0 there exists R > 0 sufficiently large such that φ−1

(
∂VR(Qγ )

) ∩ X0 is contained in
U . Therefore, the sequence of points (ψ̃t0(xr ))r∈R in X0 converges to 0.

This finishes the proof of Theorem 2 in the 2-dimensional case.
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5 Elements of the proof of the main theorem

Now we go back to the general case of a germ of complex analytic function

f : (X, x) → (C, 0)

at a point x of a reduced equidimensional complex analytic space X ⊂ C
N of any dimension.

Let S = (Sα)α∈A be a Whitney stratification of X and suppose that f has an isolated
singularity at x in the stratified sense.

In order to simplify the notations, suppose further that x is the origin in C
N .

Recall the polar curve � of f relatively to a generic linear form �, as well as the polar
discriminant � := φ(�), where φ is the stratified map:

φ := (�, f ) : (X, 0) → (C2, 0).

As before, we assume that the polar curve � is non-empty.
In the next section, we will prove the following proposition:

Proposition 29 For any t ∈ D
∗
η2
, there exists a refinement S ′(t) of the Whitney stratification

S(t) of Xt (with the property (w)) induced by S, such that there are:

(i) A polyhedron Pt of dimension dimC X − 1 that is contained in the Milnor fiber Xt :=
Bε ∩ f −1(t) and that is adapted to the stratification S ′(t);

(ii) A continuous vector field �ϑt in Xt so that:

1. It is non-zero outside Pt and it is zero on Pt ;
2. It is transversal to ∂Xt (in the stratified sense) and pointing inwards;
3. It restricts to a rugose stratified vector field on the interior of Xt (relatively to the

stratification S ′(t))
4. The flow q̃t : [0,∞) × (Xt\Pt ) → Xt associated to �ϑt defines a map:

ξ̃t : ∂Xt −→ Pt

z �−→ lim
τ→∞ q̃t (τ, z)

such that ξ̃t is continuous, stratified, simplicial and surjective;
5. The Milnor fiber Xt is homeomorphic to the mapping cylinder of ξ̃t .

We say that the polyhedron Pt above is a vanishing polyhedron for f .
The idea of the construction of Pt is quite simple and we will briefly describe it here. First

recall the stratified map �t : Xt → Dt given by the restriction of φ to Xt .
By induction hypothesis, we have a vanishing polyhedron P ′

t for the restriction of f to
the hyperplane section X ∩ {� = 0}.

For each point y j (t) in the intersection of the polar discriminant � with the disk Dt :=
Dη1 ×{t} as above, let x j (t) be a point in the intersection of the polar curve�with �−1

t
(
y j (t)

)
.

To simplify, we can assume that x j (t) is the only point in such intersection (see Conjecture 34
below).

Also by the induction hypothesis, we have a collapsing cone Pj for the restriction of
the map �t to a small neighborhood of x j (t). The “basis” of a such cone is the polyhedron
Pj (a j ) := Pj ∩ �−1

t (a j ), where a j is a point in δ(y j (t))\y j (t) close to y j (t).
Since �t is a locally trivial fiber bundle over δ(y j (t))\y j (t), we can “extend” the cone Pj

until it reaches the “central” polyhedron P ′
t . This gives a polyhedron C j . The union of all

the polyhedra C j together with P ′
t gives our vanishing polyhedron Pt (see Fig. 8).
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Fig. 8 The vanishing polyhedron Pt

The detailed construction of Pt will be given in the next section. We will also show in the
next section that the construction of the polyhedron Pt and the vector field �ϑt can be done
simultaneously, for any t in a closed semi-disk D

+ of Dη2 such that 0 is in its boundary, as
in Fig. 1.

Precisely, we will prove the following:

Proposition 30 Let D+ be a closed semi-disk in Dη2 such that 0 is in its boundary, and set
X+ := X ∩ f −1(D+) ∩ Bε . There exists a refinement (S+)′ of the Whitney stratification
S+ of X+ (with the property (w)) induced by the stratification S of X such that there are a
polyhedron P+, adapted to the stratification (S+)′, and an integrable vector field �ϑ+ in X+,
so that:

(i) the intersection P+ ∩ Xt is a vanishing polyhedron Pt as in Proposition 29, for any
t ∈ D

+\{0}, and P+ ∩ X0 = {0};
(ii) for any t ∈ D

+\{0}, the restriction of �ϑ+ to Xt gives a vector field �ϑt as in Proposi-
tion 29, relatively to the polyhedron Pt = P+ ∩ Xt ;

(iii) the vector field �ϑ+ is non-zero outside P+, zero on P+, transversal to ∂X+ := X+ ∩Sε

in the stratified sense, pointing inwards, and it restricts to a rugose stratified vector
field on the interior of X+ (relatively to the stratification (S+)′).

We say that the polyhedron P+ is a collapsing cone for f along the semi-disk D+.
As an immediate corollary, we have:

Corollary 31 Let γ be a simple path in Dη2 joining 0 and some t0 ∈ Dη2 (as in Fig. 7), and
set Xγ := X ∩ f −1(γ ) ∩ Bε . There exists a refinement S ′(γ ) of the Whitney stratification
S(γ ) of Xγ (with the property (w)) induced by the stratification S of X such that there are a
polyhedron Pγ in Xγ , adapted to the stratification S ′(γ ), and an integrable vector field �ϑγ
in Xγ , so that:

(i) the intersection Pγ ∩ Xt is a vanishing polyhedron Pt as in Proposition 29, for any
t ∈ γ \{0}, and Pγ ∩ X0 = {0};

(ii) for any t ∈ γ \{0}, the restriction of �ϑγ to Xt gives a vector field �ϑt as in the proposition
above, relatively to the polyhedron Pt = Pγ ∩ Xt ;

(iii) the vector field �ϑγ is non-zero outside Pγ , zero on Pγ , transversal to ∂Xγ := Xγ ∩ Sε

in the stratified sense, pointing inwards, and it restricts to a rugose stratified vector
field on the interior of Xγ .
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We say that the polyhedron Pγ above is a collapsing cone for f along the path γ .
One can check that the flow q̃γ : [0,∞) × (Xγ \Pγ ) → Xγ given by the integration of

the vector field �ϑγ on Xγ \Pγ defines a continuous, simplicial and surjective map:

ξ̃γ : ∂Xγ −→ Pγ

z �−→ lim
τ→∞ q̃γ (τ, z)

such that Xγ is homeomorphic to the mapping cylinder of ξ̃γ (see Proposition 27).

Remark 32 In order to prove Theorem 1, we just need Corollary 31. Nevertheless, we will
need Proposition 29 to prove Proposition 30 andwewill need Proposition 30when dimC X =
n − 1 to prove Proposition 29 when dimC X = n.

So let us assume now that Proposition 30 is true. Itens (i) and (ii) of Theorem 2 follow
easily fromProposition 30 (the proof that X+ is homeomorphic to themapping cylinder of the
map ξ̃+ given by the vector field �ϑ+ is analogous to the proof of item (7) of Proposition 27).
Then we can easily prove (iii) of Theorem 2 as follows:

Fix t ∈ D
∗
η2

and let γ be a simple path inDη2 connecting t and 0. Consider the polyhedron

Pγ and the vector field �ϑγ in Xγ given by Corollary 31, as well as the flow q̃γ given by the
integration of �ϑγ .

For any positive real A > 0 set:

ṼA(Pγ ) := Xγ \q̃γ
([0, A) × ∂Xγ

)
,

which is a closed neighborhood of Pγ in Xγ . Notice that using the first isotopy lemma of
Thom–Mather (Lemma 19), the boundary ∂ ṼA(Pγ ) of ṼA(Pγ ) is a locally trivial topological
fibration over γ .

Following the steps (a) and (b) of the end of Sect. 4.3 and using Proposition 16, we can
construct a collapsing vector field �ζγ on Xγ \Pγ such that:

• it is a rugose stratified vector field (relatively to the stratification S ′(γ ) of Xγ ):
• it projects on a smooth vector field �θ on γ that goes from t0 to 0 in a time a > 0;
• it is tangent to ∂ ṼA(Pγ ), for any A > 0.

So the flow g : [0, a] × Xγ \Pγ → Xγ \Pγ associated to the collapsing vector field �ζγ
defines a homeomorphism ψt from Xt\Pt to X0\{0} that extends to a continuous map from
Xt to X0 and that sends Pt to {0}, for any t ∈ γ \{0}. This proves (iii) of Theorem 2.

Remark 33 Notice that the collapsing vector field �ζγ on Xγ \Pγ that gives the collapsing of
f along the path γ can be extended to a collapsing vector field �ζ+ on X+\P+ that gives the
collapsing of f along the semi-disk D

+.

6 Proof of Propositions 29 and 30

We will prove Propositions 29 and 30 by induction on the dimension of X , in the following
way:wewill prove that if Proposition30 is truewhenever dimC X = n−1, thenProposition29
is truewhenever dimC X = n, and this implies that Proposition 30 is truewhenever dimC X =
n.

Notice that in Sects. 4.1 and 4.2 we have proved Propositions 29 and 30, respectively,
when dimC X = 2.
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6.1 Proof of Proposition 29: constructing the vanishing polyhedron

As we said above, the polyhedron Pt will consist of a “central” polyhedron P ′
t on which we

will attach the polyhedra C j . The first step will be to construct the central polyhedron P ′
t ,

and then we will construct the polyhedra C j .
Recall that we have fixed a linear form � : C

N → C that satisfies the conditions of
Lemma 21. Then � is the polar curve of f relatively to � at 0 and� is the polar discriminant
of f relatively to � at 0.

Also recall from Proposition 22 that the map φ = (�, f ) induces a stratified submersion
(relatively to the stratification induced by S):

φ| : Bε ∩ X ∩ φ−1(Dη1 × Dη2\�) → Dη1 × Dη2\�
and that for each t ∈ D

∗
η2

fixed, the restriction �t of � to the Milnor fiber Xt induces a
topological locally trivial fibration:

ϕt : Xt\�−1
t

({y1(t), . . . , yk(t)}
) → Dt\{y1(t), . . . , yk(t)},

where Dt = Dη1 × {t} and {y1(t), . . . , yk(t)} = � ∩ Dt .
For any t ∈ Dη2 set λt := (0, t). Since the complex line {0} ×C is not a component of�,

we can suppose that λt /∈ {y1(t), . . . , yk(t)}.
For each j = 1, . . . , k, let δ(y j (t)) be a smooth simple path in Dt starting at λt and ending

at y j (t), such that two of them intersect only at λt .
First step: constructing the central polyhedron Pt ’:
Consider the restriction f ′ of f to the intersection X ∩ {� = 0}, which has complex

dimension n − 1. Then we can apply the induction hypothesis to f ′ to obtain a vanishing
polyhedron P ′

t in the fiber Xt ∩ {� = 0} and an integrable vector field �ϑ ′
t in Xt ∩ {� = 0}

that deformation retracts Xt ∩ {� = 0} onto P ′
t .

Second step: constructing the polyhedra C j :
First of all, in order to make it easier for the reader to understand the constructions, we

will suppose that � intersects �−1
t

(
y j (t)

)
in only one point, which we call x j (t). The proof

of the general case follows the same steps. In fact, we make the following conjecture:

Conjecture 34 For � general enough, the map-germ φ� = (�, f ) : (X, x) → (C2, 0)
induces a bijective morphism from � onto �.

Now recall that �t induces a locally trivial fibration over δ(y j (t))\{y j (t)}. If we look
at the local situation at x j (t), we can apply the induction hypothesis to the germ �t | :
(Xt , x j (t)) → (Dt , y j (t)), which has an isolated singularity at x j (t) in the stratified sense,
in lower dimension. That is, considering a small ball Bj in CN centered at x j (t); a small disk
Ds in Dt centered at y j (t) and a semi-disk D+

s of Ds which contains δ(y j (t)) ∩ D̊s in its
interior, we obtain:

• a collapsing cone P+
j for �t along the semi-disk D+

s ;
• a collapsing cone Pj for �t along the path Ds ∩ δ(y j (t)), of real dimension n − 1;

which give the collapsing of the map �t | : Bj ∩�−1
t (Ds) → Ds along the path Ds ∩δ(y j (t)).

See Fig. 9.
Now we are going to extend the cone Pj until it hits P ′

t , as follows.
First we need to construct the following vector fields on A j := �−1

t
(
δ(y j (t))\{y j (t)}

)

that will be used to extend the cone Pj and glue it on the central polyhedron P ′
t :
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Fig. 9 The restriction �t

Fig. 10 The vector field ��

• Vector field ��: let �ξ be a smooth non-singular vector field on δ(y j (t))\{y j (t)} that
goes from y j (t) to λt = (0, t). Since the restriction of �t to each Whitney stratum
of S has maximum rank over δ(y j (t))\{y j (t)}, we can lift �ξ to an rugose (and hence
integrable) stratified vector field �� on A j (see Proposition 16). In particular, for any
u ∈ δ(y j (t))\{y j (t)}we can use the vector field �� to obtain a stratified homeomorphism
αu : �−1

t (λt ) → �−1
t (u), which takes P ′

t to a polyhedron αu(P ′
t ) in �

−1
t (u). See Fig. 10.

• Vector field �κ: we can transport the vector field �ϑ ′
t of �

−1
t (λt ) = Xt ∩ {� = 0} given

by the induction hypothesis to all the fibers �−1
t (u), for any u ∈ δ(y j (t))\{y j (t)}. The

transportation of �ϑ ′
t to �

−1
t (u) is the vector field on �−1

t (u) given by the flow obtained as
image by αu of the flow given by �ϑ ′

t . So we obtain a vector field �κ on A j whose restriction
to �−1

t (λt ) is �ϑ ′
t . The flow associated to �κ takes a point z ∈ �−1

t (u) to the polyhedron
αu(P ′

t ). See Fig. 11.
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Fig. 11 The vector field �κ

Fig. 12 The vector field �κ1

• Vector field �κ1: let θ be a smooth function on δ(y j (t)) such that θ(λt ) = 0 and such that
θ is non-singular and positive on δ(y j (t))\{λt }. It induces a function θ̃ := θ ◦ �t defined
on A j . Set:

�κ1 := �κ + θ̃ · ��,
which is an integrable vector field, tangent to the strata of the interior of A j induced by S.
Furthermore, this vector field �κ1 is pointing inwards on the boundary ∂A j , i.e. transversal
in A j to the strata of ∂A j induced by S. See Fig. 12.

Since the vectors �κ(z) and ��(z) are not parallel for any z ∈ A j\P ′
t , the vector field �κ1 is

zero only on the vanishing polyhedron P ′
t of �

−1
t (λt ). Then if z is a point in A j\�−1

t (λt ), the
orbit of �κ1 that passes through z has its limit point z′1 in P ′

t .
Moreover, since the integral curve associated to �κ that contains z ∈ A j has its limit point

z′ in the polyhedron α�t (z)(P
′
t ) (which is the transportation of P ′

t to �
−1
t

(
�t (z)

)
by the flow
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Fig. 13 Decomposition of the vanishing polyhedron Pt

associated to ��), it follows that z′1 is the point corresponding to z′ by ��, that is, z′1 = α�t (z)(z
′).

In fact, if u := �t (z) and if w := (αu)
−1(z) is the corresponding point in �−1

t (λt ), then by
construction the integral curve Cκ (z) associated to �κ that contains z is given by αu(C(w)),
where C(w) is the integral curve associated to �ϑ ′

t that contains w.
Set a j := ∂Ds ∩ δ(y j (t)) and Pj (a j ) := Pj ∩ �−1

t (a j ), where Pj is the collapsing cone
for �t at x j (t) along the path Ds ∩ δ(y j (t)), as defined above. By the previous paragraph, �κ1
takes Pj (a j ) to P ′

t .
Since the action of the flow given by �κ is simplicial, we can assume that the action of the

flow given by �κ1 is simplicial. Then the image of Pj (a j ) by the flow of �κ1 is a subpolyhedron
P ′
j of P

′
t . Moreover, the orbits of the points in Pj (a j ) give a polyhedron R j . See Fig. 13.

Set:

C j := Pj ∪ R j ∪ P ′
j .

It is a polyhedron in Pt of real dimension n − 1. We call C j a wing of the polyhedron Pt . In
the case when X is smooth, it corresponds to a Lefschetz thimble.

Then the polyhedron we are going to consider is:

Pt := P ′
t

k⋃

j=1

C j .

It is adapted to the stratification S, since Pj is adapted to S and the vector field �κ1 is tangent
to the strata of S.

Now we have:

Lemma 35 There exists a refinement S ′(t) of the Whitney stratification S(t) of Xt (with the
property (w)) induced by S, such that there is a continuous vector field �ϑt on Xt such that:

(i) It is non-zero on Xt\Pt and it is zero on Pt ;
(ii) It is transversal to the strata of ∂Xt , pointing inwards;
(iii) It restricts to a rugose stratified vector field on the interior of Xt (relatively to the

stratification S ′(t));
(iv) The orbits associated to �ϑt have a limit point at Pt when the parameter goes to infinity.
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The vector field �ϑt is obtained by gluing several vector fields on Xt given by the lifting
by ϕt of suitable vector fields on Dt . The detailed proof of Lemma 35 is quite involved since
it contains too many technical steps and constructions, so we present it separately in Sect. 7.

The flow defined by the vector field �ϑt of Lemma 35 gives a continuous, surjective and
simplicial map ξ̃t from ∂Xt to Pt such that Xt is homeomorphic to the mapping cylinder of
ξ̃t (see the proof of Proposition 27). This proves Proposition 29.

We remark that although we have used just Corollary 31 (in lower dimension) in the con-
struction of the polyhedron Pt , we will need the stronger Proposition 30 (in lower dimension)
for the construction of the vector field �ϑt of Lemma 35, in Sect. 7.

6.2 Proof of Proposition 30: constructing the polyhedron P+

Given a closed semi-disk D
+ in Dη2 as in Fig. 1 above (with 0 in its boundary), we want to

construct a polyhedron P+ in X+ := X∩ f −1(D+)∩Bε , adapted to the stratification induced
by S, and a continuous vector field �ϑ+ in X+, tangent to each stratum of X+, satisfying the
conditions (i), (ii) and (iii) of Proposition 30.

Recall that in Sect. 4.2 we already did that when X has complex dimension 2. Also recall
the 3-dimensional triangles T1, . . . , Tk in Dη1 × D

+, bounded by the semi-disks Y j and �,
where Y1, . . . , Yk are the semi-disks given by the intersection of the polar discriminant �
with Dη1 × D

+ and � := {0} × D
+. For each j = 1, . . . , k and for each t ∈ D

+, the
intersection T j ∩ Dt gives a simple path δ(y j (t)) used to construct a vanishing polyhedron
Pt as in Sect. 6.1.

Finally, also recall from Proposition 22 that the map φ = (�, f ) induces a stratified
submersion:

φ| : Bε ∩ X ∩ φ−1(Dη1 × Dη2\�) → Dη1 × Dη2\�,

where � ⊂ Dη1 × Dη2 is the polar discriminant of f relatively to the linear form �.
We are going to construct P+. The construction of the vector field �ϑ+ is analogous to the

construction of the vector field �ϑt of Lemma 35, which is described with details in the next
section, so we leave it to the reader.

The construction of the polyhedron P+ will be made in three steps:
First step: fixing an initial polyhedron Pt0 :
Fix some t0 ∈ D

+ ∩ ∂Dη2 . By Proposition 29, we can choose a vanishing polyhedron Pt0
in the Milnor fiber:

Xt0 = X ∩ f −1(t0) ∩ Bε,

which has the form:

Pt0 = P ′
t0

k⋃

j=1

C j ,

where each C j is a wing glued to the central polyhedron P ′
t0 along a subpolyhedron (Pj )

′
t0

of P ′
t0 (recall that P

′
t0 is a vanishing polyhedron for the restriction f ′ of f to X ∩ {� = 0}).

Second step: extending Pt0 over D
+ ∩ ∂Dη2 .

By the induction hypothesis, the vanishing polyhedron P ′
t0 ⊂ Xt0 ∩ {� = 0} can be

extended to a collapsing cone (P+)′ ⊂ X+ ∩ {� = 0} for the restriction of f to {� = 0}
along the semi-disk D

+.
Now set X̃ := φ−1

(
Dη1 × (D+ ∩ ∂Dη2)

)
and recall that φ induces a topological trivial

fibration from X̃ onto D
+ ∩ ∂Dη2 (see Fig. 7).
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Fig. 14 Some suitable
neighborhoods

Sowe can extend the polyhedron Pt0 constructed above for t varying inD
+∩∂Dη2 . That is,

we consider a polyhedron P̃ in X̃ such that P̃∩Xt0 = Pt0 and such that for any t ∈ D
+∩∂Dη2

one has that P̃ ∩ Xt is a vanishing polyhedron Pt in Xt with central P ′
t := (P+)′ ∩ Xt and

k-many wings, each one of them conic from the corresponding point x j (t) ∈ � ∩ Xt .
Third step: constructing some suitable neighborhoods:
For each x j (t) over y j (t), with t ∈ D

+, choose a small radius r(t) such that the set:

B j :=
⋃

t∈D+
Br(t)(x j (t))

is a neighborhood of:
⋃

t∈D+\{0}
{x j (t)}

conic from 0, where r(t) can be taken as a real analytic function of t with r(0) = 0, by
Puiseux’s theorem.

To each B j one can associate a neighborhood:

A j :=
⋃

t∈D+
Ds(t)(y j (t))

in Dη1 × D
+, where s(t) is an analytic function of t ∈ D

+ with 0 < s(t) � r(t), if t 	= 0,
and s(0) = 0.

Finally, let U be a neighborhood of �\{0}, conic from 0, that meets all the A j ’s, but not
containing any y j (t). See Fig. 14.

Fourth step: constructing a suitable vector field:
By the induction hypothesis, we have a collapsing cone (P+)′ in X+ ∩ {� = 0} and a

collapsing vector field �ζ ′+ in X+ ∩ {� = 0} that give the degeneration of f ′ along D
+. That

is, �ζ ′+ is a rugose (and hence integrable) vector field, tangent to each stratum of the interior of
X+ ∩ {� = 0}, whose associated flow defines a homeomorphism from (Xt0 ∩ {� = 0})\P ′

t0
to (Xt0 ∩ {� = 0})\{0} that extends to a continuous map from Xt0 ∩ {� = 0} to X0 ∩ {� = 0}
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and that sends P ′
t0 to {0} (see Remark 33). Notice that the vector field �ζ ′+ lifts a radial vector

field in {0} × D
+ that goes to 0.

Set:

Ũ := φ−1(U) ∩ X+.

Since U is a cone over a contractible space, we can extend the collapsing vector field �ζ ′+ to a
integrable vector field �ζU on Ũ , tangent to each stratum of its interior, and that lifts a radial
vector field in {0}×D

+ that goes to 0. Notice that the flow given by the vector field �ζU sends
the intersection P ′

t0 ∩ Ũ to {0}, where P ′
t0 = Pt0 ∩ {� = 0}.

Since each B j\{0} is a stratified topological locally trivial fibration over D+\{0}, one can
also construct a rugose vector field �σ j on B j\{0} that trivializes it over D+\{0} and that is
tangent to the intersection of the polar curve � with B j\{0} (which is the set of the points
x j (t) ∈ B j for t ∈ D

+\{0}).
Then, using a partition of unity (ρU , ρ1, . . . , ρk) adapted to Ũ,B1, . . . ,Bk , we glue all

the vector fields �σ j ’s and �ζU together. We obtain a continuous trivializing vector field:

�σ := ρU �ζU +
k∑

j=1

ρ j �σ j

in X+ ∩ (Ũ ∪k
j=1 B j ) such that:

• it is tangent on each stratum of the interior of X+ ∩ (Ũ ∪k
j=1 B j );

• it is rugose and hence integrable;
• it projects to a radial vector field in D

+ that converges to 0.

So the flow associated to the vector field �σ goes from X̃ ∩ (Ũ ∪k
j=1B j ) to 0, and the action

of this flow over P̃ give the polyhedron P+.

7 Proof of Lemma 35: constructing the vector field �ϑt

In this section we give the detailed construction of the vector field �ϑt on Xt := φ−1(Dη1 ×
{t}) ∩ Bε of Lemma 35, whose flow gives a continuous, surjective and simplicial map ξ̃t
from the boundary of the Milnor fiber ∂Xt := φ−1(Dη1 × {t}) ∩ Sε to the polyhedron Pt
constructed in the previous section, such that Xt is homeomorphic to the simplicial map
cylinder of ξ̃t .

Recall that we have fixed a linear form � : C
N → C that satisfies the conditions of

Lemma 21. Then � is the polar curve of f relatively to � at 0 and� is the polar discriminant
of f relatively to � at 0.

Also recall from Proposition 22 that the map φ = (�, f ) induces a stratified submersion
(relatively to the stratification induced by the Whitney stratification S of X ):

φ| : Bε ∩ X ∩ φ−1(Dη1 × Dη2\�) → Dη1 × Dη2\�.

As before, fix t ∈ Dη2\{0} and take a point λt in Dt := Dη1 × {t} such that λt /∈
{y1(t), . . . , yk(t)}, where {y1(t), . . . , yk(t)} := � ∩ Dt . Also, for each j = 1, . . . , k, let
δ(y j (t)) be a simple path in Dt starting at λt and ending at y j (t), such that two of them
intersect only at λt . We defined the set Qt := ∪k

j=1δ(y j (t)).

Recall that in Lemma 25 we constructed a Whitney stratification Z = (Zβ)β∈B of Dt

(with the property (w)) and a continuous vector field �νt on Dt such that:
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1. It is non-zero on Dt\Qt ;
2. It vanishes on Qt ;
3. It is transversal to ∂Dt and points inwards;
4. It restricts to a rugose stratified vector field on the interior D̊t of Dt (relatively to the

stratification Z);
5. The associated flow qt : [0,∞) × (Dt\Qt ) → Dt\Qt defines a map:

ξt : ∂Dt −→ Qt

u �−→ lim
τ→∞ qt (τ, u),

such that ξt is continuous, simplicial (as defined in Sect. 2.4) and surjective.

After that, we considered a refinement S ′(t) of the Whitney stratification S(t) (with the
property (w)) induced by S, and we considered a refinement Z ′ = (Z ′

β)β∈B′ of Z such that
the restriction �t : Xt → Dt of � to the Milnor fiber Xt is a stratified map. So �t induces a
stratified submersion:

ϕt : Xt\�−1
t

({y1(t), . . . , yk(t)}
) → Dt\{y1(t), . . . , yk(t)}.

Finally, recall that we can apply the induction hypothesis to the restriction f ′ of f to
the intersection X ∩ {� = 0}, which has complex dimension n − 1. We obtain a vanishing
polyhedron P ′

t in the intersection Xt ∩{� = 0} and a vector field �ϑ ′
t that deformation retracts

it onto P ′
t .

The vector field �ϑt is obtained by gluing several vector fields on Xt given by the lift of
suitable vector fields on the disk Dt by ϕt . By Proposition 16, the resulting vector fields are
rugose, and hence integrable.

Recall that the polyhedron Pt is the union of the wings C j and that the polyhedron P ′
t

is given by the induction hypothesis (as in Sect. 6.1). Moreover, each wing C j consists of a
collapsing cone Pj , a product R j and the gluing polyhedron P ′

j on P ′
t , that is:

C j = Pj ∪ R j ∪ P ′
j .

See Fig. 13.
Then it is natural that the construction of the vector field �ϑt concerns at least three subsets

of the Milnor fiber Xt : the points that are taken to P ′
t \P ′

j by the flow associated to �ϑt ; the
points that are taken to P ′

j and the points that are taken toC j\P ′
j . This justifies the complexity

of the construction given below.

7.1 First step: decomposing Dt

Let qt : [0,∞)×∂Dt → Dt be the flow associated to the vector field �νt defined in Lemma 25.
Set:

V := Dt − qt ([0, A) × ∂Dt ),

for some A � 0, which is a closed neighborhood of Qt whose boundary:

∂V = qt ({A} × ∂Dt )

is transversal to each ∂Ds(y j (t)), that is, the vector field �νt is transversal to the boundary
∂Ds(y j (t)) of each disk Ds(y j (t)). See Fig. 15.

Then we will construct the vector field �ϑt on Xt by gluing a vector field �τ in �−1
t (Dt\V ′),

where V ′ := Dt − qt ([0, A′[×∂Dt ), with A′ > A, A′ − A � 1; and a vector field �υ in
�−1
t (V ), using a partition of unity.
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Fig. 15 The neighborhood V

Fig. 16 The branch Vj

The vector field �τ in �−1
t (Dt\V ′) is a lifting of the vector field �νt . It is transversal to

the boundary of Xt , pointing inwards, and it restricts to a rugose stratified vector field on
φ−1(Dt\V ′) ∩ B̊ε .

The construction of the vector field �υ in �−1
t (V ) is much more complicated. We are going

to do it in the rest of this subsection.

7.2 Second step: decomposing V

We first decompose V into “branches” Vj as follows: each “branch” Vj is a closed neighbor-
hood of δ(y j (t))\{0} whose boundary is composed by ∂V ∩ Vj and two simple paths that
one can suppose to be orbits of the vector field �νt constructed above. See Fig. 16.

We will construct the vector field �υ by gluing the vector fields �υ j that we are going to
construct on each �−1

t (Vj ). In other words, we will construct a vector field �υ j on �
−1
t (Vj ),

for each j fixed, which is continuous, integrable, tangent to the strata of S, non-zero and
smooth on �−1

t (Vj )\C j , and zero on C j , where C j is the polyhedron defined in Sect. 6.1.

7.3 Third step: covering �−1
t (Vj ) by open sets Wj,i

Fix j ∈ {1, . . . , k}. The approach of the construction of each vector field �υ j will be the
following: we will cover �−1

t (Vj ) by open sets Wj,1, Wj,2, Wj,3 and Wj,4. Then we will
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Fig. 17 The vector field �ω j

construct the vector fields �υ j,i on Wj,i , for i = 1, . . . , 4, in such a way that each orbit of the
vector field �υ j obtained by gluing them with a partition of unity has a limit point in Pt .

As before, given positive real numbers r and s, let Br denote the ball around x j (t) in C
N

of radius r and let Ds denote the disk around y j (t) in Dt of radius s.
Let r and r ′ be small enough positive real numbers such that r ′ < r and r − r ′ � 1. Let

us cover �−1
t (Vj ) by the open sets Wj,1, Wj,2, Wj,3 and Wj,4 defined as follows:

• Wj,1 := �−1
t (D̊s ∩ V̊ j ) ∩ B̊r

and

• Wj,2 := �−1
t (D̊s ∩ V̊ j )\Br ′ .

To define Wj,3 and Wj,4 we have to do a construction first. Set:

W ′
j,3 := �−1

t (V̊ j\Ds′),

where s′ < s and s − s′ � 1.
We can construct a vector field �ω j in Vj\D̊s′ which is smooth, non zero outside {0}, zero

on {0}, with trajectories transversal to ∂V ∩ (Vj\Ds′) and to ∂Ds′ ∩ Vj , as in Fig. 17.
Since the Whitney stratification S ′(t) of Xt with the property (w) induces a Whit-

ney stratification on �−1
t (Vj\D̊s′) with the property (w), and since the restriction of �t to

�−1
t (Vj\D̊s′)∩ Sα is a submersion for each α ∈ A, we can lift �ω j to a continuous vector field
�� j in �

−1
t (Vj\D̊s′) that is rugose, smooth and tangent to each stratum, and that trivializes

�−1
t (Vj\D̊s′) over Vj\D̊s′ .
Recall that the induction hypothesis applied to the restriction of f to X ∩ {� = 0} gives

a vanishing polyhedron P ′
t in Xt ∩ {� = 0} and a vector field �ϑ ′

t that deformation retracts
Xt ∩ {� = 0} onto P ′

t .
Then one can transport the vector field �ϑ ′

t on �
−1
t (0) to all the fibers �−1

t (u) for u ∈ Vj\D̊s′ .
This way we obtain a vector field �V j in �−1

t (Vj\D̊s′) which is integrable, tangent to each
stratum of �−1

t (u) ∩ B̊ε and transversal to each stratum of �−1
t (u) ∩ Sε , for any u ∈ Vj\D̊s′ .

Now consider the vector field �ϒ j in �
−1
t (Vj\D̊s′) given by:

�ϒ j := �V j + �� j ,
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Fig. 18 The vector field �ν j

which is integrable, tangent to the strata of the stratification S ′(t), transversal to the strata of
Sε ∩ �−1

t (Vj\D̊s′), non-zero outside P ′
t and zero on P ′

t .
One can see (as in the case of the vector field �κ1 of Sect. 6.1) that each orbit of the vector

field �ϒ j has a limit point in P ′
t .

The orbits by the action of �ϒ j which intersect �−1
t (V̊ j ∩ ∂Ds) ∩ B̊r define a set that we

call A(Vj , r). We set W ′
j,4 := A(Vj , r) and:

• Wj,4 := W ′
j,4 ∪ Wj,1.

Finally, the set Wj,3 is given by:

• Wj,3 := W ′
j,3\A(V ′

j , r
′),

where r ′ < r , with r−r ′ � 1, andV ′
j := Dt\qt ([0, A′[×∂Dt ), with A′ < A and A−A′ � 1.

One can check that both Wj,3 and Wj,4 are open sets.

7.4 Fourth step: constructing the vector fields �υ j,i

1. Construction of �υ j,1: We can consider a continuous vector field �ν j on Vj which is
smooth and non-zero outsideδ(y j (t)), zero on δ(y j (t)), transversal to ∂Vj and tangent
to ∂Ds ∩ Vj , like in Fig. 18 (see the construction of the vector field �νt of Lemma 25).

Let D+
s be a semi-disk of Ds which contains δ(y j (t))∩ D̊s in its interior. We will lift �ν j to

a rugose vector field �χ j in �
−1
t (D̊s ∩ V̊ j )∩ Br , which is zero on �

−1
t

(
D̊s ∩ δ(y j (t))

)
, tangent

to the strata of S ′(t) and of �−1
t (D̊s ∩ V̊ j ) ∩ Sr , where Sr := ∂Br , in the following way:

• Recall that we can apply the induction hypothesis to the restriction:

(�t )| : �−1
t (D+

s ∩ D̊s ∩ V̊ j ) ∩ B̊r → D+
s ∩ D̊s ∩ V̊ j ,

which has an isolated singularity at x j (t) in the stratified sense, since �
−1
t (D+

s ∩ D̊s ∩ V̊ j )

has complex dimension n − 1, where n is the dimension of X .
• Then we obtain a collapsing vector field �ϑ+( j) and a collapsing cone P+

j . Let:

q j : [0,+∞[×(
�−1
t (D̊+

s ∩ V̊ j ) ∩ Sr
) → �−1

t (D̊+
s ∩ V̊ j ) ∩ Br
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be the flow associated to �ϑ+( j) and set:

Pj (u) := q j
({u} × �−1

t (D̊+
s ∩ V̊ j ) ∩ Sr

)
,

where u ≥ 0.
• The Whitney stratification S ′(t) induces a Whitney stratification of Pj (u) (see Lemma 6

and notice that Pj (0) = �−1
t (D̊+

s ∩ V̊ j )∩ Sr is the intersection of �−1(D̊+
s ∩ V̊ j )with the

stratified space Xt ∩ Sr ). Moreover, the restriction of �t to each stratum has maximum

rank. So by Proposition 16 we can lift the vector field �ν j over D̊+
s ∩ V̊ j to a rugose

stratified vector field that is tangent to the strata of Pj (u).

• On the other hand, for any point in �−1
t

(
(D̊s\D̊+

s ) ∩ V̊ j
)
we just ask the vector field �χ j

to be tangent to the strata of S ′(t) and to lift �ν j . This can be done locally and then �χ j is
obtained by a partition of unity.

Notice that at any point of B̊r ∩ �−1
t

(
D̊+
s ∩ V̊ j

) − {x j (t)} and at any point of (B̊r\Br ′) ∩
�−1
t

(
(D̊s\D+

s ) ∩ V̊ j
)
, for r ′ < r with r − r ′ � 1, one can extend the vector field �ϑ+( j) on

a small open neighborhood. Now we construct �υ j,1 as follows:

• Over a small open neighborhood Ux j (t) of x j (t), consider the zero vector field.

• For any z ∈ B̊r ∩ �−1
t (D+

s ∩ D̊s ∩ V̊ j )\{x j (t)}, take an open neighborhoodUz of z small
enough such that it does not contain x j (t), it is contained in B̊r ∩ �−1

t (D̊s ∩ V̊ j ) and
�ϑ+( j) is well defined on it. Then in Uz we define the vector field:

�ιz := �ϑ+( j)|Uz + �χ j |Uz ,

where �ϑ+( j)|Uz and �χ j |Uz denote the restrictions of the vector fields �ϑ+( j) and �χ j ,
respectively, to the neighborhood Uz . This vector field is rugose, tangent to the strata of
S ′(t), non-zero outside the intersection of Uz and Pj and zero on Pj ∩Uz , where:

Pj := P+
j ∩ �−1

t

(
δ(y j (t))

)
.

• For any z ∈ B̊r ′ ∩ �−1
t

(
(D̊s\D+

s )∩ Vj
)
, take a small open neighborhoodUz of z and set

�ιz := �χ j |Uz .

• For any z ∈ (B̊r\Br ′) ∩ �−1
t

(
(D̊s\D+

s ) ∩ Vj
)
, take a small open neighborhood Uz of z

contained in (B̊r\Br ′) ∩ �−1
t

(
(D̊s\D+

s ) ∩ Vj
)
and set:

�ιz := �ϑ+( j)|Uz + �χ j |Uz .

• Then considering a partition of unity (ρz) associated to the covering (Uz), we set the
vector field:

�υ j,1 :=
∑

ρz�ιz
in �−1

t (D̊s∩V̊ j )∩ B̊r , which is continuous, rugose outside the point x j (t) (and therefore in
Wj,1\Pj ), tangent to the strata of S ′(t), non-zero outside Pj and zero on Pj ∩

(
�−1
t (D̊s ∩

V̊ j )
) ∩ B̊r .

• Notice that if z ∈ �−1
t (D̊s\D+

s ) ∩ B̊r , its orbit by �υ j,1 has {x j (t)} as limit point, and the
orbit by �υ j,1 of a point z ∈ �−1

t (D+
s ) ∩ B̊r has its limit point in Pj .
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Fig. 19 The vector field �η j

2. Construction of �υ j,2: Consider a smooth non-zero vector field �η j in V̊ j ∩ D̊s as Fig. 19
and such that, for any u ∈ V̊ j ∩ D̊s one has the following implication:

λ�ν j (u)+ μ�η j (u) = 0, λ ≥ 0, μ ≥ 0 �⇒ λ = μ = 0,

where �ν j is the vector field defined above.

Then �υ j,2 is a lifting of �η j in Wj,2, which is rugose vector field, tangent to the strata of
S ′(t) and of �−1

t (D̊s) ∩ Sr .

3. Construction of �υ j,3: We set �υ j,3 to be the restriction of the vector field �ϒ j constructed
above to Wj,3.

4. Construction of �υ j,4: Recall the vector field �ϑ+( j) in �−1
t (D+

s ) ∩ B̊r , obtained by the
induction hypothesis, and restrict it to �−1

t (∂Ds ∩ V̊ j ). Then transport it by the action
of the vector field �ϒ j . We obtain a vector field �σ on W ′

j,4 that is rugose and tangent to
the strata of S ′(t).

Over Wj,4 = W ′
j,4 ∪ Wj,1, the vector fields �σ and �υ j,1 glue in a vector field �υ j,4 that is

continuous, rugose and non-zero on Wj,4\Pt . The orbits of the points of Wj,4 by �υ j,4 has
limit points in Pt .

7.5 Fifth step: gluing all the vector fields to obtain �ϑt

Now, considering ρ2, ρ3 and ρ4 a partition of unity associated to Wj,2, Wj,3 and Wj,4, we
obtain the vector field:

�υ j := ρ2 �υ j,2 + ρ3 �υ j,3 + ρ4 �υ j,4

in �−1
t (V̊ j ), which is continuous, rugose, non-zero on �−1

t (Vj )\Pt and zero on Pt .
Gluing these vector fields �υ j , for j = 1, . . . , k, we get the vector field �υ.
Finally, gluing the vector field �υ in �−1

t (V ) and the vector field �τ in �−1
t (Dt\V ′) con-

structed in Section 6.1, we obtain a continuous vector field �ϑt in Xt with the properties (i)
to (v) of Proposition 35. We just have to check that the orbits of this vector field have a limit
point when the parameter goes to infinity:

(a) If z ∈ �−1
t (Dt\V ′), the orbit of z arrives to Wj,2 ∪ Wj,3 ∪ Wj,4 after a finite time.

(b) If z ∈ Wj,2, the orbit of z arrives to Wj,3 ∪ Wj,4 after a finite time.
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(c) If z ∈ Wj,3\Wj,4, it has a limit point on ∪k
j=1C j .

(d) If z ∈ Wj,4\Wj,3, it has a limit point on P ′
t .

(e) If z ∈ Wj,3 ∩Wj,4, we have that the orbit passing through z has a limit point that is the
limit point by �ϒ j of the limit point of the orbit of z by �σ . Hence this limit point is on
P ′
j = P ′

t ∩ C j .

References

1. Bertini, E.: Introduction to the Projective Geometry of Hyperspaces. Messina (1923)
2. Bertini, E.: Algebraic surfaces. Proc. Steklov Inst. Math. 75 (1967) (Trudy Mat. Inst. Steklov 75 (1965))
3. Brodersen, H., Trotman, D.: Whitney (b)-regularity is weaker than Kuo’s ratio test for real algebraic

stratifications. Math. Scand. 45(1), 27–34 (1979)
4. Cheniot, D.: Sur les sections transversales d’un ensemble stratifié. C. R. Acad. Sci. Paris Sér. A-B 275,

A915–A916 (1972)
5. Cisneros-Molina, J.L., Seade, J., Snoussi, J.: Refinements of Milnor’s fibration theorem for complex

singularities. Adv. Math. 222(3), 937–970 (2009)
6. Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer Mono-

graphs in Mathematics. Springer, Berlin (2007)
7. Hironaka, H.: Subanalytic sets, number theory, algebraic geometry and commutative algebra. In: Honor

of Yasuo Akizuki, pp. 453–493. Kinokuniya (1973)
8. Houzel, C.: Geométrie analytique locale. Sémin. Henri Cartan 13(2), 1–12 (1960–1961)
9. Lê, D.T.: Calcul du nombre de cycles évanouissants d’une hypersurface complexe. Ann. Inst. Fourier

(Grenoble) 23(4), 261–270 (1973)
10. Lê, D.T.: Vanishing cycles on complex analytic sets, various problems in algebraic analysis. In: Proc.

Sympos., Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1975. Sûrikaisekikenkyûsho Kókyûroku No. 266,
pp. 299–318 (1976)

11. Lê, D.T.: Some remarks on relative monodromy, real and complex singularities. In: Proc. 9th Nordic
Summer School/NAVF Sympos. Math., Oslo, 1976, pp. 397–403. Sijthoff and Noordhoff, Alphen aan
den Rijn (1977)

12. Lê, D.T.: Le concept de singularité isolée de fonction analytique. In: Complex Analytic Singularities.
Adv. Stud. Pure Math. 8, pp. 215–227. North-Holland, Amsterdam (1987)

13. Lê, D.T.: Polyèdres Évanescents et Effondrements, A fête of Topology. Academic, Boston (1988). pp.
293–329

14. Lê, D.T., Teissier, B.: Cycles evanescents, sections planes et conditions de Whitney. II. In: Singularities,
Part 2. Proc. Sympos. Pure Math. 40, pp. 65–103. Amer. Math. Soc., Arcata (1981)

15. Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. 49(4), 475–506 (2012)
16. Milnor, J.W.: Singular Points of Complex Hypersurfaces. Ann. of Math. Studies 61, Princeton (1968)
17. Munkres, J.R.: Elements of Algebraic Topology. Perseus Books Pub., New York (1993)
18. Munkres, J.R.: Topology, 2nd edn. Pearson, Upper Saddle River (2000)
19. Pham, F.: Formules de Picard–Lefschetz généralisées et ramification des intégrales. Bull. Soc. Math. Fr.

93, 333–367 (1965)
20. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. In: Singularités à Cargèse

(Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pp. 285–362. Asterisque, Nos. 7
et 8, Soc. Math. (1973)

21. Teissier, B.: Variétés polaires II. Multiplicités polaires, sections planes et conditions de Whitney. Lecture
Notes in Math. 961. Springer, Berlin (1982)

22. Verdier, J.L.: Stratifications de Whitney et théorème de Bertini–Sard. Inv. Math. 36, 295–312 (1976)
23. Whitney, H.: Tangents to an analytic variety. Ann. Math. (2) 81, 496–549 (1965)

123


	Vanishing polyhedron and collapsing map
	Abstract
	1 Introduction
	2 Background
	2.1 Whitney stratification
	2.2 Rugose vector fields
	2.3 Stratified maps
	2.4 Simplicial maps
	2.5 Some useful results

	3 Polar curves
	4 The two-dimensional case
	4.1 First step: constructing the vanishing polyhedron Pt and the map tildeξt
	4.2 Second step: constructing P+ and tildeξ+
	4.3 Third step: constructing the collapsing map ψt

	5 Elements of the proof of the main theorem
	6 Proof of Propositions 29 and 30
	6.1 Proof of Proposition 29: constructing the vanishing polyhedron
	6.2 Proof of Proposition 30: constructing the polyhedron P+

	7 Proof of Lemma 35: constructing the vector field vvec vartheta t
	7.1 First step: decomposing Dt
	7.2 Second step: decomposing V
	7.3 Third step: covering ellt-1(Vj) by open sets Wj,i
	7.4 Fourth step: constructing the vector fields "0245υj,i
	7.5 Fifth step: gluing all the vector fields to obtain vvec vartheta t

	References




