CrossMark

Vanishing polyhedron and collapsing map

Lê D˜ung Tráng¹ · Aurélio Menegon Neto²

Received: 28 January 2016 / Accepted: 28 September 2016 / Published online: 11 November 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper we give a detailed proof of the fact that the Milnor fiber X_t of an analytic complex isolated singularity function defined on a reduced *n*-equidimensional analytic complex space *X* is a regular neighborhood of a polyhedron $P_t \subset X_t$ of real dimension $n-1$. Moreover, we describe the degeneration of X_t onto the special fiber X_0 , by giving a continuous collapsing map $\psi_t : X_t \to X_0$ which sends P_t to {0} and which restricts to a homeomorphism $X_t \backslash P_t \to X_0 \backslash \{0\}.$

1 Introduction

Let $f: (X, x) \to (\mathbb{C}, 0)$ be a germ of complex analytic function f at a point x of a reduced equidimensional complex analytic space $X \subset \mathbb{C}^N$ (with arbitrary singularity). In [\[11](#page-37-0)] the first author proved that there exist sufficiently small positive real numbers ϵ and η with $0 < \eta \ll \epsilon \ll 1$ such that the restriction:

$$
f_! : \mathbb{B}_{\epsilon}(x) \cap X \cap f^{-1}(\mathbb{D}_\eta^*) \to \mathbb{D}_\eta^*
$$

is a locally trivial topological fibration, where $\mathbb{B}_{\epsilon}(x)$ is the closed ball of radius ϵ around $x \in \mathbb{C}^N$, \mathbb{D}_η is the closed disk of radius η around $0 \in \mathbb{C}$ and $\mathbb{D}_\eta^* := \mathbb{D}_\eta \setminus \{0\}$.

The topology of the fiber $X_t := \mathbb{B}_{\epsilon}(x) \cap X \cap f^{-1}(t)$ does not depend on ϵ small enough (see Theorem 2.3.1 of [\[14\]](#page-37-1)). We call X_t the Milnor fiber of *f*, with boundary $\partial X_t := X_t \cap \mathbb{S}_{\epsilon}(x)$. We also set $X_0 := \mathbb{B}_{\epsilon}(x) \cap X \cap f^{-1}(0)$.

Partial support from CNPq (Brazil).

Lê Dũng Tráng ledt@ictp.it

B Aurélio Menegon Neto aurelio@mat.ufpb.br

¹ Université Aix-Marseille, Marseille, France

² Universidade Federal da Paraíba, João Pessoa, Brazil

Fig. 1 The semi-disk \mathbb{D}^+

The first author sketched a proof of the following theorem in [\[13\]](#page-37-2):

Theorem 1 *Let* $X \subset \mathbb{C}^N$ *be a reduced equidimensional complex analytic space and let* $S = (S_\alpha)_{\alpha \in A}$ *be a Whitney stratification of X. Let* $f: (X, x) \to (\mathbb{C}, 0)$ *be a germ of complex analytic function at a point* $x \in X$ *. If f has an isolated singularity at x relatively to S* and *if* ϵ and η are sufficiently small positive real numbers as above, then for each $t \in \mathbb{D}_{\eta}^{*}$ there *exist:*

(i) *a polyhedron* P_t *of real dimension* dim_C X_t *in the Milnor fiber* X_t *, compatible with the Whitney stratification S, and a continuous simplicial map:*

$$
\tilde{\xi}_t : \partial X_t \to P_t
$$

compatible with S, *such that* X_t *is homeomorphic to the mapping cylinder of* ξ_t ;

(ii) *a continuous map* $\psi_t : X_t \to X_0$ *that sends* P_t *to* {0} *and that restricts to a homeomorphism* $X_t \setminus P_t \to X_0 \setminus \{0\}$ *.*

The purpose of this paper is to give a complete and detailed proof of Theorem [1,](#page-1-0) following the strategy proposed in [\[13\]](#page-37-2).

That theorem was conjectured by Thom in a seminar, in the early 70's, when *X* is smooth. He noticed that Pham gave an explicit construction of such a vanishing polyhedron in [\[19\]](#page-37-3) when $f: \mathbb{C}^n \to \mathbb{C}$ is a polynomial of the form:

$$
f(z_1, ..., z_n) = z_1^{\nu_1} + \cdots + z_n^{\nu_n},
$$

with $v_i \geq 2$ integer, for $i = 1, \ldots, n$.

In this paper, we are going to prove the following stronger version of Theorem [1.](#page-1-0) Let \mathbb{D}^+ be a closed semi-disk in \mathbb{D}_n as in Fig. [1](#page-1-1) (with $0 \in \partial \mathbb{D}^+$).

So our main theorem is:

Theorem 2 *Let* $X \subset \mathbb{C}^N$ *be a n-dimensional reduced equidimensional complex analytic space and let* $S = (S_\alpha)_{\alpha \in A}$ *be a Whitney stratification of X. Let* $f: (X, x) \to (\mathbb{C}, 0)$ *be a germ of complex analytic function with an isolated singularity at x, relatively to* S *. Let* ϵ and η *be sufficiently small positive real numbers as above, and let* D⁺ *be a closed semi-disk in* $\mathbb{D}_n \subset \mathbb{C}$ *such that 0 is in its boundary. Then there exist:*

(i) *A polyhedron* P^+ *in* $X^+ := X \cap f^{-1}(\mathbb{D}^+) \cap \mathbb{B}_{\epsilon}(x)$ *of real dimension* $n + 1$ *, compatible with the Whitney stratification S, such that for each t* $\in \mathbb{D}^+\setminus\{0\}$ *the intersection* $P^+\cap X_t$ *is a polyhedron* P_t *of real dimension* $n-1$ *, compatible with the Whitney stratification S.*

(ii) *A continuous simplicial map:*

$$
\tilde{\xi}_+ : \partial X^+ \to P^+
$$

compatible with S, *such that* X^+ *is homeomorphic to the mapping cylinder of* ξ_+ , *and* $\textit{such that for each } t \in \mathbb{D}^+ \setminus \{0\} \textit{ the map } \tilde{\xi}_+ \textit{ restricts to a continuous simplicial map: }$

$$
\tilde{\xi}_t : \partial X_t \to P_t
$$

compatible with S, such that X_t is homeomorphic to the mapping cylinder of ξ_t , where $\partial X^+ := X^+ \cap \mathbb{S}_{\epsilon}(x)$, $\partial X_t := X_t \cap \mathbb{S}_{\epsilon}(x)$ *and* $\mathbb{S}_{\epsilon}(x)$ *is the boundary of* $\mathbb{B}_{\epsilon}(x)$ *.*

(iii) *A continuous map* ψ_t : $X_t \to X_0$ *that sends* P_t *to* {0} *and that restricts to a homeomorphism* $X_t \backslash P_t \to X_0 \backslash \{0\}$ *, for any t* $\in \mathbb{D}^+ \backslash \{0\}$ *.*

In Sect. [2](#page-2-0)we recall some classical definitions and results. In Sect. [3](#page-7-0)we construct the *relative polar curve* of *f* , which is the main tool to prove Theorem [2.](#page-1-2) In Sect. [4](#page-10-0) we prove Theorem [2](#page-1-2) when *X* is two-dimensional. Then in Sect. [5](#page-21-0) we present two propositions (Propositions [29](#page-21-1)) and [30\)](#page-22-0) and we use them to prove Theorem [2](#page-1-2) in the general case. In Sect. [6](#page-23-0) we prove those Propositions by finite induction on the dimension of *X*. Finally, in Sect. [7](#page-30-0) we make the detailed construction of a vector field (Lemma [35\)](#page-27-0) that is used in Sect. [6.](#page-23-0)

The authors are grateful to the reviewer's valuable comments and suggestions, which improved the readability and quality of the manuscript.

2 Background

In this section we recall some definitions, references and theorems that will be used in this paper.

2.1 Whitney stratification

Following $[14]$ (Section 1, p. 67), we have:

Definition 3 Let *X* be a subanalytic set (resp. a reduced complex analytic space). We say that a locally finite family of non-singular subanalytic connected subsets $S = (S_\alpha)_{\alpha \in A}$ of X is a subanalytic stratification (resp. complex analytic stratification) of *X* if:

- (i) the family S is a partition of X ; and
- (ii) the closure S_α of S_α in *X* and $S_\alpha \setminus S_\alpha$ are subanalytic (resp. complex analytic) subspaces of *X*, for any $\alpha \in A$.

The subsets S_α are called *strata* of the stratification *S* of *X*.

In this paper we will use both subanalytic and complex analytic stratifications. Although we work with a complex analytic space $X \subset \mathbb{C}^N$, when we intersect it with a closed ball \mathbb{B}_{ϵ} in \mathbb{C}^N we obtain a subanalytic set.

We say that a (subanalytic or complex analytic) stratification $S = (S_\alpha)_{\alpha \in A}$ as above satisfies the frontier condition if for any $(\alpha, \beta) \in A \times A$ such that $S_\alpha \cap S_\beta \neq \emptyset$ ones has that $S_{\alpha} \subset S_{\beta}$. In this case, S_{α} and $S_{\alpha} \setminus S_{\alpha}$ are union of strata of the stratification *S*, for any $\alpha \in A$. We have:

Definition 4 Let *X* be a subanalytic set (resp. reduced complex analytic space). We say that a subanalytic (resp. complex analytic) stratification $S = (S_\alpha)_{\alpha \in A}$ of *X* is a subanalytic (resp. complex analytic) Whitney stratification if:

- (i) the stratification S satisfies the frontier condition; and
- (ii) for any $(\alpha, \beta) \in A \times A$ such that $S_\alpha \cap S_\beta \neq \emptyset$ the pair of strata (S_α, S_β) satisfies the Whitney condition, which is the following: for any $y \in S_\alpha$ there exists a local embedding of (X, y) in $(\mathbb{R}^N, 0)$ such that for any sequence $(x_n, y_n)_{n \in \mathbb{N}}$ in $S_\beta \times S_\alpha$ that converges to (y, y) and such that the limit *T* of the tangent spaces $T_{x_n} S_{\beta}$ and the limit λ of the real secants $\overline{x_n y_n}$ in \mathbb{R}^N exist, one has the inclusion $\lambda \subset T$.

One can verify that, for any $y \in S_\alpha$ fixed, if the condition above is satisfied for some local embedding, then it is satisfied for any local embedding.

In [\[23](#page-37-4)] and in [\[7](#page-37-5)] (for the complex case and for the subanalytic case respectively) it is proved the following:

Theorem 5 *Let X be a subanalytic set (resp. reduced complex analytic space) and let* $(\Phi_i)_{i \in I}$ *be a locally finite family of subanalytic (resp. complex analytic) closed subsets of X. There exists a subanalytic (resp. complex analytic) Whitney stratification of X such that each* Φ_i *is a union of strata, for* $i \in I$ *.*

Next we give a lemma due to Cheniot [\[4\]](#page-37-6) (see also Lemma 4.2.2. of Chapter III of [\[21\]](#page-37-7)) that will be implicitly used many times in the paper:

Lemma 6 Let X and Y be two subanalytic sets in \mathbb{R}^N (or reduced complex analytic spaces *in* \mathbb{C}^N , *in the complex case) such that X has a subanalytic (resp. complex analytic) Whitney stratification* $S = (S_\alpha)_{\alpha \in A}$ *and such that Y is non-singular. If Y intersects each stratum* S_α *transversally in* \mathbb{R}^N *(resp. in* \mathbb{C}^N *), then the Whitney stratification of X induces a subanalytic (resp. complex analytic) Whitney stratification* $P = (P_\alpha)_{\alpha \in A}$ *of* $X \cap Y$ *, where* $P_\alpha := S_\alpha \cap Y$ *, for each* $\alpha \in A$.

Next we will present a stronger version of the Whitney stratification. But first we need the following definition. Given two vector subspaces *A* and *B* of \mathbb{R}^N set:

$$
\delta(A, B) := \sup_{\substack{x \in A \\ \|x\| = 1}} d(x, B),
$$

where $d(x, B)$ is the distance between x and B. Then we have:

Definition 7 Let $X \subset \mathbb{R}^N$ be a subanalytic set (resp. reduced complex analytic space) with a Whitney stratification $S = (S_\alpha)_{\alpha \in A}$. We say that *S* has the property (w) if for any $(\alpha, \beta) \in A \times A$ such that $S_\alpha \cap S_\beta \neq \emptyset$ the pair of strata (S_α, S_β) satisfies the Kuo–Verdier condition below:

For any $y' \in S_\alpha$ there exists a neighborhood *U* of y' in \mathbb{R}^N and a real constant $C > 0$ such that for any $(x, y) \in (S_\beta \cap U, S_\alpha \cap U)$ one has that:

$$
\delta\left(T_x(S_{\beta}), T_y(S_{\alpha})\right) \leq C \|x - y\|.
$$

In Theorem 1.2 of chapter V of $[21]$ $[21]$, Teissier proved the following:

Lemma 8 *Let* $X \subset \mathbb{C}^N$ *be a reduced complex analytic space with a complex analytic Whitney stratification* $S = (S_\alpha)_{\alpha \in A}$ *. Then S has the property* (*w*)*.*

The analogous of this result in the subanalytic case is not true (see Example 1 of [\[3](#page-37-8)] for instance).

Definition 9 Let *X* and *Y* be subanalytic sets and let $A \subset X$ be endowed with a Whitney stratification $S = (S_\alpha)_{\alpha \in A}$. We say that a morphism $f: X \to Y$ is transversal to S if, for any $\alpha \in A$, *f* induce a smooth morphism $f_{\alpha}: S_{\alpha} \to Y$.

According to Remark (3.7) of [\[22](#page-37-9)], we have:

Lemma 10 *Let X be a subanalytic set (resp. complex analytic set) and let A* $\subset X$ *be endowed with a subanalytic (resp. complex analytic) Whitney stratification* $S = (S_\alpha)_{\alpha \in A}$ *with the property* (w). If Y is smooth and if $f: X \rightarrow Y$ is transversal to S, then for any *smooth and locally closed subset* $Z \subset Y$ *one has that* $f^{-1}(Z) \cap S$ *is a subanalytic (resp. complex analytic)* Whitney stratification of $A \cap f^{-1}(Z)$ with the property (w) .

Considering $f: X \to \mathbb{R}$ the square of the distance function to a point $x \in X$ and Z a closed interval $[0, \epsilon^2]$, we have:

Corollary 11 *If* $X \subset \mathbb{C}^N$ *is a reduced complex analytic space with a complex analytic Whitney stratification* $S = (S_\alpha)_{\alpha \in A}$ *and if* $\mathbb{B}_{\epsilon}(x)$ *is a ball around* $x \in X$ *in* \mathbb{C}^N *of small enough radius* $\epsilon > 0$, then *S* induces a subanalytic Whitney stratification on $X \cap \mathbb{B}_{\epsilon}(x)$ with *the property* (w)*.*

Let *X* be a subanalytic set endowed with a Whitney stratification $S = (S_\alpha)_{\alpha \in A}$ that has the property (*w*). We say that a Whitney stratification $S' = (S'_{\beta})_{\beta \in A'}$ with the property (*w*) is finer then *S* (or that *S'* is a refinement for *S*) if for any $\beta \in A'$ there exists $\alpha \in A$ such that $S'_\beta \subset S_\alpha$.

As in Remark (3.6) of $[22]$, we have:

Remark 12 Let *X* and *Y* be subanalytic sets and let $A \subset X$ be a closed subset. Let $S =$ $(S_{\alpha})_{\alpha \in A}$ be a Whitney stratification of *A* and let $\mathcal{Z} = (Z_{\beta})_{\beta \in B}$ be a Whitney stratification of *Y*, both of them with the property (w) . If $f: X \rightarrow Y$ is a morphism such that the restriction $f_{|A}: A \to Y$ is proper, then we can consider a refinement $S = (S'_\alpha)_{\alpha \in A'}$ of *S* and a refinement $\mathcal{Z}' = (Z'_{\beta})_{\beta \in B'}$ of *Z* such that, for any $\beta \in B'$, one has that:

- (i) $f^{-1}(Z'_{\beta})$ ∩ *A* is a union of strata of *S'*;
- (ii) the restriction $f_1: f^{-1}(Z'_\beta) \to Z'_\beta$ is transversal to $S' \cap f^{-1}(Z'_\beta)$.

Now let $f: X \to \mathbb{C}$ be a complex analytic function defined on a complex analytic space *X* with a Whitney stratification $S = (S_\alpha)_{\alpha \in A}$. Following [\[12](#page-37-10)], we have:

Definition 13 We say that *f* has an isolated singularity at $x \in X$ relatively to the stratification *S* if:

- (i) the restriction of *f* to S_α is a submersion, for any $\alpha \in A$ such that S_α does not contain *x*;
- (ii) the restriction of *f* to $S_{\alpha(x)}$ has an isolated critical point at *x*, where $S_{\alpha(x)}$ is the stratum that contains *x*.

2.2 Rugose vector fields

Following [\[5\]](#page-37-11), we will briefly define a *rugose vector field* on a subanalytic set $X \subset \mathbb{R}^N$ endowed with a Whitney stratification $S = (S_\alpha)_{\alpha \in A}$ with the property (w). See [\[22](#page-37-9)] for the detailed definitions.

We say that a real-valued function $f: X \to \mathbb{R}$ is a *rugose function* if for any $\alpha \in A$ one has that:

(i) the restriction of f to S_α is smooth;

(ii) for any $x \in S_\alpha$ there exists a neighborhood *U* of *x* in \mathbb{R}^N and a real constant $C > 0$ such that for any $x' \in U \cap S_\alpha$ and for any $y \in U \cap X$ one has that:

$$
|| f(x') - f(y)|| \le C ||x - y||.
$$

We say that a map $f: X \to \mathbb{R}^M$ is a *rugose map* if each of its coordinate functions is a rugose function. We say that a vector bundle *F* over *X* is rugose if its chart change maps are rugose.

A *rugose vector bundle F on X tangent to the stratification S* is a vector bundle over *X* such that, for every stratum S_α there is an injection $i_\alpha : F|_{S_\alpha} \to TS_\alpha$ such that the vector bundle morphism $F \to i^*T \mathbb{R}^N|_X$ induced by i_α is rugose.

A *stratified vector field* \vec{v} *on* X is a section of the tangent bundle $T\mathbb{R}^N|_X$ such that at each $x \in X$, the vector $\vec{v}(x)$ is tangent to the stratum that contains *x*.

A stratified vector field \vec{v} on *X* is called *rugose* near $y \in S_\alpha$ if there exists a neighborhood *U* of *y* in \mathbb{R}^N and a real constant $C > 0$ such that:

$$
\|\vec{\nu}(y') - \vec{\nu}(x)\| \le C\|y' - x\|,
$$

for every $(x, y') \in (U \cap S_{\beta}, U \cap S_{\alpha})$ with $S_{\alpha} \subset S_{\beta}$.

On the other hand, we say that a rugose stratified vector field \vec{v} on *X* is *integrable* if there exists an open neighborhood *U* of $X \times \{0\}$ in $X \times \mathbb{R}$ and a rugose map $\theta : U \to X$ such that for any $\alpha \in A$ one has that:

(i) θ (($S_{\alpha} \times \mathbb{R}$) \cap *U*) \subset S_{α} ;

(ii) for any $x \in S_\alpha$ such that $(x, t) \in (S_\alpha \cap \mathbb{R}) \cap U$ one has that $\frac{\partial}{\partial t} \theta(x, t) = \vec{v} (\theta(x, t))$.

We say that the map θ is the *flow* associated to the vector field \vec{v} .

For each $x_0 \in X$ we say that the restriction $\theta |_{(\{x_0\}\times\mathbb{R}) \cap U} : (\{x_0\} \times \mathbb{R}) \cap U \to X$ is an *integral curve* for the vector field \vec{v} with initial condition x_0 . Condition (i) above assures that if x_0 is in a stratum S_α then the image of the integral curve for \vec{v} with initial condition x_0 is contained in S_{α} .

We have (Proposition 4.8 of [\[22](#page-37-9)]):

Proposition 14 *Any rugose stratified vector field on a closed subanalytic set X of* \mathbb{R}^N *is integrable. Moreover, given a rugose vector field, if* θ *and* θ *are rugose maps defined in open neighborhoods U and U' of X* \times {0} *in X* \times R*, satisfying the properties (i) and (ii) above,* $then \theta$ and θ' *coincide in* $U \cap U'.$

2.3 Stratified maps

We have:

Definition 15 Let *X* and *Y* be subanalytic sets (or reduced complex analytic spaces) with Whitney stratifications $(X_{\alpha})_{\alpha \in A}$ and $(Y_{\beta})_{\beta \in B}$ respectively. A real analytic (resp. complex analytic) morphism $h: X \rightarrow Y$ is a stratified map if:

(i) *h* sends each stratum X_α to a unique stratum $Y_{\beta(\alpha)}$, for some $\beta(\alpha) \in B$;

(ii) the restriction of *h* to each stratum X_α induces a smooth map $h_\alpha : X_\alpha \to Y_{\beta(\alpha)}$.

We say that a stratified map *h* as above is a stratified submersion if each h_{α} is a (surjective) submersion.

We say that a stratified map *h* as above is a stratified homeomorphism if *h* is a homeomorphism and each h_{α} is a smooth diffeomorphism.

Let $h: X \to Y$ be a stratified map as above and let \vec{v} be a stratified vector field on *Y*. We say that a stratified vector field $\vec{\mu}$ on *X lifts* \vec{v} if for each $x \in X$ one has that $dh(\vec{\mu}(x)) = \vec{v}(h(x))$. We have (see [\[22](#page-37-9)], Proposition 4.6):

Proposition 16 Let X be a real analytic space endowed with a Whitney stratification $S =$ $(S_{\alpha})_{\alpha \in A}$ *with the property* (w), and let Z be a locally closed subset of X which is union of *strata* S_α *. Let Y be a non-singular real analytic space and let h :* $X \rightarrow Y$ *be a stratified* $submersion.$ If \vec{v} is a smooth vector field in Y, then there exists a rugose stratified vector field $\vec{\mu}$ *on Z* that lifts $\vec{\nu}$ *.*

There is a more general version of the theorem above, which includes the case when *Y* is not smooth or the case when the vector field \vec{v} is non-everywhere smooth, as we present below (see [\[22\]](#page-37-9), Remark 4.7):

Proposition 17 *Let X and Y be real analytic spaces with Whitney stratifications* $S =$ $(S_{\alpha})_{\alpha \in A}$ and $\mathcal{W} = (W_{\beta})_{\beta \in B}$, respectively, both of them with the property (w). Let $h: X \to Y$ *be a stratified submersion. Also, let Z be a locally closed subset of X which is a union of strata S*α*. Suppose that each restriction:*

$$
f_{|W_{\beta}}:Z\cap f^{-1}(W_{\beta})\to W_{\beta},
$$

with $\beta \in B$, *is transversal to* $S \cap Z \cap f^{-1}(W_{\beta})$ *(that is,* $f_{|W_{\beta}}$ *induces a smooth map on each stratum of* $f^{-1}(W_8) \cap Z$). If \vec{v} *is a rugose stratified vector field on* $f(Z)$ *, then there exists a rugose stratified vector field* $\vec{\mu}$ *on* Z that lifts $\vec{\nu}$.

2.4 Simplicial maps

Let *X* be a topological space. A triangulation for *X* is a pair (K, h) , where *K* is a simplicial complex and *h* is a homeomorphism $h : \mathcal{K} \to \mathcal{X}$. We say that \mathcal{X} is triangulable if there exists a triangulation (K, h) for $\mathcal X$.

Hironaka proved in [\[7](#page-37-5)] that any subanalytic set is triangulable.

In this paper, a polyhedron is a compact topological space that is triangulable. We are only interested in the existence of a simplicial structure; a particular decomposition into faces is not important in this work.

We say that a map $f: P \to P'$ between two polyhedra is a *simplicial map* if there exist triangulations (K, h) and (K', h') for *P* and *P'*, respectively, such that the induced map $\tilde{f}: K \to K'$ is a simplicial map in the usual sense (that is, \tilde{f} has the property that whenever the vertices v_0, \ldots, v_n of K span a simplex of K, the points $f(v_0), \ldots, f(v_n)$ are vertices of a simplex of K').

Notice that our definition is slightly different from the usual definition of a simplicial map, since it relates spaces which do not have fixed simplicial structures (compare with Lemma 2.7 of [\[17](#page-37-12)]).

Finally, we have:

Definition 18 Let *P* be a polyhedron contained in a subanalytic space *X* endowed with a Whitney stratification $S = (S_\alpha)_{\alpha \in A}$. We say that *P* is adapted to the stratification *S* if the interior of each simplex of *P* is contained in S_α for some $\alpha \in A$.

2.5 Some useful results

Now we will state two results that will be used later. The first one is Thom–Mather's first isotopy lemma (Proposition 11.1 of [\[15](#page-37-13)]):

Lemma 19 (Thom–Mather's first isotopy lemma) *Let M and P be smooth manifolds and let X be a closed subset of M with a Whitney stratification (real or complex). If* $f: X \rightarrow P$ *is proper stratified map and if it is a submersion on each stratum, then f is a locally trivial fibration.*

The second one is Remmert's theorem (see Corollary 1.68 of [\[6\]](#page-37-14) for instance):

Theorem 20 (Finite mapping theorem) Let $f: X \rightarrow Y$ be a finite morphism of complex *analytic spaces and* $Z \subset X$ *a closed analytic complex subspace of* X. Then $f(Z) \subset Y$ *is an analytic subset of Y .*

3 Polar curves

In the rest of the paper, *X* will be a fixed reduced equidimensional complex analytic space in \mathbb{C}^N such that 0 ∈ *X*, and *f* : (*X*, 0) → (\mathbb{C} , 0) will be the germ of a complex analytic function. Notice that if we prove Theorem [2](#page-1-2) with this assumption, then we clearly prove it in the general case $f: (X, x) \to (\mathbb{C}, 0)$, and we do so just to simplify the notation.

Moreover, we will endow the germ $(X, 0)$ with a fixed complex analytic Whitney stratification $S = (S_\alpha)_{\alpha \in A}$ such that $f^{-1}(0)$ is a union of strata (see Lemma [5\)](#page-3-0).

The notion of polar curve for a complex analytic function defined on an open neighborhood of \mathbb{C}^N relatively to a linear form ℓ was introduced by Teissier and by the first author in [\[20\]](#page-37-15) and [\[9](#page-37-16)], respectively. Later, in [\[10\]](#page-37-17) the first author extended this concept to a germ of complex analytic function $f: (X, 0) \to (\mathbb{C}, 0)$ relatively to the Whitney stratification $S = (S_\alpha)_{\alpha \in A}$. We are going to recall that.

Notice that by now we are not supposing that *f* has an isolated singularity (in the stratified sense). This hypothesis will be asked after the lemma below.

Let $f: X \to \mathbb{C}$ be a representative of the germ of function f such that X is closed in an open neighborhood *U* of 0 in \mathbb{C}^N . For any linear form:

 $\ell: \mathbb{C}^N \to \mathbb{C}$

the function f and the restriction of ℓ to X induce the analytic morphism:

$$
\phi_{\ell}: X \to \mathbb{C}^2
$$

defined by $\phi_{\ell}(z) = (\ell(z), f(z)),$ for any $z \in X$.

We have the following lemma:

Lemma 21 *There is a representative X of* $(X, 0)$ *in an open neighborhood U of* $0 \in \mathbb{C}^N$ *and a* non-empty Zariski open set Ω in the space of non-zero linear forms of \mathbb{C}^N to $\mathbb C$ such that, *for any* $\ell \in \Omega$ *and for any stratum* S_α *which is disjoint from* $f^{-1}(0)$ *, the analytic morphism* $\phi_{\ell}: X \to \mathbb{C}^2$ *satisfies:*

- (i) *The critical locus of the restriction of* ϕ_{ℓ} *to* S_{α} *is either empty or a smooth reduced complex curve, whose closure in X is denoted by* Γ_{α} *.*
- (ii) *The image* $(\Delta_{\alpha}, 0)$ *of* $(\Gamma_{\alpha}, 0)$ *by* ϕ_{ℓ} *is the germ of a complex curve.*

Proof Let us choose an open neighborhood *U* of $0 \in \mathbb{C}^N$ such that the intersection $U \cap S_\alpha$ is not empty for finitely many indices α . Furthermore, we may assume that the closure \overline{S}_{α} in *U* is defined by an ideal $I(\overline{S}_{\alpha})$ generated by complex analytic functions g_1, \ldots, g_m defined on *U*, that is, $I(\overline{S}_{\alpha}) = (g_1, \ldots, g_m)$.

Now consider a linear form $\ell = a_1x_1 + \cdots + a_Nx_N$ and a stratum S_α that is not contained in $f^{-1}(0)$ and such that $0 \in \overline{S}_{\alpha}$. Let $C_{\ell,\alpha}$ be the critical set of the restriction of ϕ_{ℓ} to S_{α} . Consider the matrix:

$$
J_{\alpha} = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \cdots & \frac{\partial g_m}{\partial x_N} \end{pmatrix}.
$$

A point *z* of S_α is a point where the rank of J_α at *z* is $\rho := \max_{z \in \overline{S}_\alpha} \text{rank}(J_\alpha(z))$, since it is a non-singular point of \overline{S}_{α} . A point of $C_{\ell,\alpha}$ is a point of S_{α} where the matrix:

$$
J_{\phi,\alpha} = \begin{pmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \cdots & \frac{\partial g_m}{\partial x_N} \\ \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_N} \\ a_1 & \cdots & a_N \end{pmatrix}
$$

has rank at most $\rho + 1$. So the determinants of the $(\rho + 2)$ -minors:

$$
\begin{pmatrix}\n\frac{\partial g_{i_1}}{\partial x_{j_1}} & \cdots & \frac{\partial g_{i_1}}{\partial x_{j_{p+2}}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_{i_p}}{\partial x_{j_1}} & \cdots & \frac{\partial g_{i_p}}{\partial x_{j_{p+2}}} \\
\frac{\partial f}{\partial x_{j_1}} & \cdots & \frac{\partial f}{\partial x_{j_{p+2}}}\n\end{pmatrix}
$$

are zero, that is:

$$
\sum_{k=1}^{\rho+2}(-1)^{k+1}\cdot a_{i_k}\cdot \det\begin{pmatrix}\n\frac{\partial g_{i_1}}{\partial x_{j_1}} & \cdots & \frac{\partial g_{i_1}}{\partial x_{j_{k-1}}} & \frac{\partial g_{i_1}}{\partial x_{j_{k+1}}} & \cdots & \frac{\partial g_{i_1}}{\partial x_{j_{\rho+2}}}\\
\vdots & \ddots & \vdots & \ddots & \vdots\\
\frac{\partial g_{i_\rho}}{\partial x_{j_1}} & \cdots & \frac{\partial g_{i_\rho}}{\partial x_{j_{k-1}}} & \frac{\partial g_{i_\rho}}{\partial x_{j_{k+1}}} & \cdots & \frac{\partial g_{i_\rho}}{\partial x_{j_{\rho+2}}}\n\end{pmatrix}=0.
$$

An analytic version of a classical theorem of Bertini (see [\[1\]](#page-37-18) and [\[2\]](#page-37-19)) states that if h_1, \ldots, h_r are holomorphic functions defined on a complex analytic space *Y* and if the complex numbers λ_i are sufficiently generic, for $i = 1, \ldots, r$, then the singular locus of the subvariety $\left\{ \sum_{i=1}^{r} \lambda_i h_i = 0 \right\}$ is contained in the union of the singular set of *Y* and the set:

$$
\{h_1=\cdots=h_r=0\}.
$$

So it follows from the analytic theorem of Bertini that there exists a non-empty Zariski open set Ω_{α} in the space of non-zero linear forms from \mathbb{C}^N to $\mathbb C$ such that for any $\ell \in \Omega_{\alpha}$ one has that the singular points $\Sigma_{C_{\ell,\alpha}}$ of $C_{\ell,\alpha}$ are contained in the union of the set of the points where the determinants above are zero and of the singular locus of S_α . That is:

$$
\Sigma_{C_{\ell,\alpha}} \subset \left(\mathrm{Crit}\left(f_{|\overline{S}_{\alpha}}\right) \cup \Sigma_{\overline{S}_{\alpha}}\right) \cap S_{\alpha}.
$$

Since this intersection is contained in $f^{-1}(0) \cap S_\alpha$, which is empty, it follows that $C_{\ell,\alpha}$ is either smooth or empty.

Now, since $\phi_{\ell}^{-1}(0,0) \cap (\Gamma_{\alpha},0) \subset \{0\}$, it follows from the geometric version of the Weierstrass preparation theorem given in [\[8\]](#page-37-20) that the restriction of ϕ_{ℓ} to the germ (Γ_{α} , 0) is finite. So the finite mapping theorem (Theorem [20\)](#page-7-1) implies that the image Δ_{α} of the analytic set Γ_{α} by ϕ_{ℓ} is a complex curve.

Finally, notice that there is a finite number of indices $\alpha \in A$ such that S_{α} is not contained in $f^{-1}(0)$ and such that 0 is contained in \overline{S}_{α} . Let A_0 be the finite subset of A formed by such indices. So the set:

$$
\Omega:=\bigcap_{\alpha\in A_0}\Omega_\alpha
$$

is the desired non-empty Zariski open set in the space of non-zero linear forms from \mathbb{C}^N to $\mathbb{C}.$

For any $\ell \in \Omega$ we say that the germ of curve at 0 given by:

$$
\Gamma_{\ell} := \bigcup_{\alpha \in A} \Gamma_{\alpha}
$$

is the *polar curve of f relatively to* ℓ *at* 0 and that the germ of curve at 0 given by:

$$
\Delta_{\ell} := \bigcup_{\alpha \in A} \Delta_{\alpha}
$$

is the *polar discriminant of f relatively to* ℓ *at* 0.

From now on, we fix a linear form $\ell \in \Omega$ and we set $\phi := \phi_{\ell}, \Gamma := \Gamma_{\ell}$ and $\Delta := \Delta_{\ell}$.

Notice that there exists an open neighborhood *U* of 0 in \mathbb{C}^2 and a representative *X* of $(X, 0)$ such that the map $\phi = (\ell, f) : X \to U$ is stratified and such that it induces a stratified submersion $X \backslash \phi^{-1}(\Delta) \to \phi(X) \backslash \Delta$.

From now on we will assume that f has an isolated singularity at 0 relatively to the stratification S. So by an analytic version of Corollary 2.8 of [\[16](#page-37-21)], there exist ϵ and η_2 small enough positive real numbers with $0 < \eta_2 \ll \epsilon \ll 1$ such that, for any $t \in \mathbb{D}_n$, the sphere S_κ of radius ϵ around 0 intersects $f^{-1}(t)$ ∩ S_α transversally, for any $\alpha \in A$.

We can also choose the linear form ℓ in such a way that there exists η_1 sufficiently small, with $0 < \eta_2 \ll \eta_1 \ll \epsilon \ll 1$, such that $\phi^{-1}(s, t) \cap S_\alpha = \ell^{-1}(s) \cap f^{-1}(t) \cap S_\alpha$ intersects \mathbb{S}_{ϵ} transversally, for any $(s, t) \in \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2}$, where \mathbb{D}_{η_1} and \mathbb{D}_{η_2} are the closed disks in \mathbb{C} centered at 0 and with radii η_1 and η_2 , respectively.

So we have:

Proposition 22 *The map* $\phi = (\ell, f)$ *induces a stratified submersion:*

 $\phi_1 : \mathbb{B}_{\epsilon} \cap X \cap \phi^{-1}(\mathbb{D}_{n_1} \times \mathbb{D}_{n_2} \backslash \Delta) \to \mathbb{D}_{n_1} \times \mathbb{D}_{n_2} \backslash \Delta.$

In particular, the first isotopy lemma of Thom–Mather (Lemma [19\)](#page-6-0) gives:

Corollary 23 *The restriction* φ[|] *above is a topological locally trivial fibration.*

Therefore the curve Δ plays the role of a local topological discriminant for the stratified map ϕ .

For any *t* in the disk \mathbb{D}_n , set:

$$
D_t := \mathbb{D}_{\eta_1} \times \{t\}.
$$

If *t* \neq 0, the Milnor fiber $f^{-1}(t) \cap \mathbb{B}_{\epsilon}$ of *f* is homeomorphic to $\phi^{-1}(D_t) \cap \mathbb{B}_{\epsilon}$ (see Theorem 2.3.1 of [\[14](#page-37-1)]). So, in order to simplify notation, we reset:

$$
X_t := \phi^{-1}(D_t) \cap \mathbb{B}_{\epsilon}.
$$

Notice that with this notation, the boundary ∂X_t of X_t is given by the union of $\phi^{-1}(\mathring{D}_t) \cap \mathbb{S}_{\epsilon}$ and $\phi^{-1}(\partial D_t) \cap \mathbb{B}_{\epsilon}$.

By Lemma [10](#page-4-0) together with Corollary [11,](#page-4-1) the (complex analytic) Whitney stratification *S* of *X* induces a (subanalytic) Whitney stratification $S(t)$ of X_t . Precisely, the strata of such stratification are the following intersections, for $\alpha \in A$:

- (i) $S_\alpha \cap (X_t \backslash \partial X_t)$ (ii) $S_{\alpha} \cap \phi^{-1}(\mathring{D}_t) \cap \mathbb{S}_{\epsilon}$
- (iii) $S_{\alpha} \cap \phi^{-1}(\partial D_t) \cap \mathbb{B}_{\epsilon}$
- (iv) $S_{\alpha} \cap \phi^{-1}(\partial D_t) \cap \mathbb{S}_{\epsilon}$

Now, for any $t \in \mathbb{D}_{\eta_2}^*$ one has that ϕ induces a stratified map:

$$
\ell_t: X_t \to D_t.
$$

By construction, the restriction of ℓ_t to each stratum of X_t is a submersion at any point that is not in Γ . Therefore it induces a locally trivial fibration over $D_t \setminus (\Delta \cap D_t)$. That is, if we set:

$$
\Delta \cap D_t = \{y_1(t), \ldots, y_k(t)\}\
$$

then the restriction of ℓ_t given by:

$$
\varphi_t: X_t \backslash \ell_t^{-1} \big(\{ y_1(t), \ldots, y_k(t) \} \big) \to D_t \backslash \{ y_1(t), \ldots, y_k(t) \}
$$

is a stratified submersion (see Definition [15\)](#page-5-0) and a locally trivial fibration, by Thom–Mather first isotopy lemma (Lemma [19\)](#page-6-0).

We notice that at this moment the parameter *t* is fixed, and the points $y_i(t)$ are numbered in an arbitrary way, as there is no natural way to do it. But in Sect. [4.2](#page-17-0) and [6.2](#page-28-0) those points will be defined in a continuous manner for *t* varying on a closed semi-disk $\mathbb{D}^+ \subset \mathbb{D}_{\eta_2}$ as in Fig. [1](#page-1-1) above.

Remark 24 In the case that Γ is empty, one has that:

$$
\phi_{\vert} : \mathbb{B}_{\epsilon} \cap X \cap \phi^{-1}(\mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2}) \to \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2}
$$

is a locally trivial topological fibration, which implies a locally trivial topological fibration ℓ_t : $X_t \to D_t$. Hence in this case the Milnor fiber X_t is homeomorphic to the product of D_t and the general fiber of ℓ_t .

So from now on we shall assume that the polar curve Γ is not empty.

4 The two-dimensional case

We shall prove Theorem [2](#page-1-2) by induction on the dimension *n* of the analytic space *X*. We could start by proving the theorem for $n = 1$ and then proceed by induction for $n \geq 2$, but we choose to start with the 2-dimensional case, in order to provide the reader a better intuition of the constructions.

So in this section we prove Theorem [2](#page-1-2) when $(X, 0)$ is a 2-dimensional reduced equidimensional germ of complex analytic space and $f: (X, 0) \rightarrow (\mathbb{C}, 0)$ has an isolated singularity at 0 in the stratified sense.

One particularity of this 2-dimensional case is that the singular set Σ of *X* has dimension at most one. If Σ has dimension one, we can put it inside the polar curve Γ . More precisely,

 $\circled{2}$ Springer

only in this section we denote by Γ the union of the polar curve of f with Σ . We also denote by Δ the union of the polar discriminant of *f* with $\phi(\Sigma)$. Notice that if Δ is not empty, then it is a complex curve.

In order to make the constructions easier to understand, we will proceed in three steps. The first step will be to construct a polyhedron P_t in X_t , which we call a *vanishing polyhedron*, and a simplicial map ξ_t in X_t , for any $t \in D_{\eta_2} \setminus \{0\}$ fixed. In the second step, we do the construction of P_t and $\tilde{\xi}_t$ simultaneously, for *t* varying in a closed semi-disk \mathbb{D}^+ of \mathbb{D}_{η_2} as in Fig. [1](#page-1-1) above (with $0 \in \partial \mathbb{D}^+$). This will give a polyhedron P^+ in $X^+ := X \cap f^{-1}(\mathbb{D}^+) \cap \mathbb{B}_{\epsilon}$. In the third step, we will construct the map $\psi_t : X_t \to X_0$, for any $t \in \mathbb{D}^+\setminus\{0\}$. We call ψ_t a *collapsing map for f* .

4.1 First step: constructing the vanishing polyhedron P_t **and the map** ξ_t

Let us fix $t \in \mathbb{D}_{\eta_2}^*$ fixed. We recall that:

$$
\Delta \cap D_t = \{y_1(t), \ldots, y_k(t)\}.
$$

Let λ_t be a point in $D_t \setminus \{y_1(t), \ldots, y_k(t)\}$ and for each $j = 1, \ldots, k$, let $\delta(y_j(t))$ be the line segment in D_t starting at λ_t and ending at $y_i(t)$. We can choose λ_t in such a way that any two of these line segments intersect only at λ_t .

Set:

$$
Q_t := \bigcup_{j=1}^k \delta(y_j(t))
$$

and

$$
P_t := \ell_t^{-1}(Q_t).
$$

Since ℓ_t is finite, one can see that P_t is a one-dimensional polyhedron in X_t (see Sect. [2.4\)](#page-6-1). And since the map φ_t : $X_t \setminus \ell_t^{-1}(\{y_1(t), \ldots, y_k(t)\}) \to D_t \setminus \{y_1(t), \ldots, y_k(t)\}$ is a stratified submersion, the interior of each 1-simplex of P_t is contained in some stratum $X_t \cap S_\alpha$ of X_t , so P_t is adapted to the stratification *S* (see Definition [18\)](#page-6-2).

We shall call *Pt* a *vanishing polyhedron for f* .

Recall that in this 2-dimensional case, by definition, the curve Γ contains the singular set Σ of *X*, so P_t contains the intersection $\Sigma \cap X_t$. Hence $X_t \backslash P_t$ is a smooth manifold.

Lemma 25 *There exists a subanalytic Whitney stratification* $\mathcal{Z} = (Z_{\beta})_{\beta \in B}$ *of* D_t *with the property* (w), and a continuous vector field \vec{v}_t on D_t such that:

- 1. It is non-zero on $D_t \backslash Q_t$;
- 2. It vanishes on Q_t ;
- 3. It is transversal to ∂D_t and points inwards;
- 4. It restricts to a rugose stratified vector field on the interior \check{D}_t of D_t (relatively to the *stratification Z);*
- 5. *The associated flow* q_t : $[0, \infty) \times (D_t \backslash Q_t) \rightarrow D_t \backslash Q_t$ *defines a map:*

$$
\xi_t : \partial D_t \longrightarrow Q_t \n u \longmapsto \lim_{\tau \to \infty} q_t(\tau, u),
$$

such that ξ*^t is continuous, simplicial (as defined in* Sect. [2.4](#page-6-1)*) and surjective.*

Fig. 2 The line-segments \tilde{N}_i

Proof Let d_t : $D_t \to \mathbb{R}$ be the function given by the distance to the set Q_t , that is $d_t(x) :=$ $d(x, Q_t)$. Consider the small closed neighborhood of Q_t in D_t given by:

$$
\mathcal{R}_t := (d_t)^{-1}([0, r])
$$

for some small $r > 0$. Since both Q_t and d_t are subanalytic, it follows that \mathcal{R}_t is subanalytic.

Since we have *k*-many points $y_1(t), \ldots, y_k(t)$, it follows that there exist exactly *k*-many points in $\partial \mathcal{R}_t$ whose distance to the point λ_t is *r*. Let us call them p_1, \ldots, p_k . For each p_i , let N_i be the closed line-segment in \mathcal{R}_t that joins the points p_i and λ_t , and let \tilde{N}_i be the closed line-segment in D_t that contains both the points λ_t and p_i , and also some point of the boundary of D_t . See Fig. [2.](#page-12-0)

We consider the Whitney stratification Z of D_t with the property (w) that has the smallest number of strata, such that Q_t and the line-segments N_i are union of strata.

We will prove the lemma in two steps.

First step: We will endow \mathcal{R}_t with a vector field \vec{v}_1 , as follows:

For each point $y_i(t)$, let L_i be the line-segment in \mathcal{R}_t that is ortogonal to the line-segment $\delta(y_i(t))$ at $y_i(t)$. Notice that the line-segments L_1, \ldots, L_k together with the line-segments N_1, \ldots, N_k give a decomposition of \mathcal{R}_t in 2*k*-many polygons R_1, \ldots, R_{2k} that contain the point λ_t and *k*-many semi-disks M_1, \ldots, M_k such that $y_j(t) \in M_j$, for $j = 1, \ldots, k$. See Fig. [3.](#page-13-0)

Now we endow each polygon R_m , for $m = 1, \ldots, 2k$, with a vector field ω_m as follows:

Let h_1 be the combination of the rotation and the translation in \mathbb{R}^2 that takes λ_t to the origin and that takes the line-segment $\delta(y_i(t))$ contained in R_m to a line-segment [x₀, 0] in the first coordinate-axis. Notice that h_1 takes the line-segment N_i contained in R_m to a line-segment contained in the real line of equation $y = \alpha x$, for some $\alpha \in \mathbb{R}$. See Fig. [4.](#page-13-1)

Also, let h_2 be the diffeomorphism from the rectangle $[x_0, 0] \times [0, r]$ onto $h_1(R_m)$ given by:

$$
h_2(x, y) := \left(x + \alpha \frac{(x_0 - x)}{x_0} y, y\right).
$$

 $\circled{2}$ Springer

Fig. 3 Decomposition of \mathcal{R}_t

Fig. 4 The diffeomorphism *h*

Setting $h := h_1^{-1} \circ h_2$, we have that $h : [x_0, 0] \times [0, r] \to R_m$ is a diffeomorphism such that:

- *h* takes $[x_0, 0] \times \{0\}$ onto $\delta(y_i(t));$
- *h* takes $\{x_0\} \times [0, r]$ onto L_i ;
- *h* takes $\{0\} \times [0, r]$ onto N_i .

Now let $\rho : [x_0, 0] \times [0, r] \rightarrow \mathbb{R}$ be the function given by the square of the distance to $[x_0, 0] \times \{0\}$, that is, $\rho(x, y) := y^2$, and let $\vec{\omega}$ be the vector field in $[x_0, 0] \times [0, r]$ given by the opposite of the gradient vector field associated to ρ . Notice that $\vec{\omega}$ is continuous, smooth outside $[x_0, 0] \times \{0\}$, non-zero outside $[x_0, 0] \times \{0\}$ and zero on $[x_0, 0] \times \{0\}$.

The differential of *h* takes $\vec{\omega}$ to a vector field $\vec{\omega}_m$ on R_m that is smooth and non-zero outside $\delta(y_i(t))$ and zero on $\delta(y_i(t))$.

Moreover, the restriction of $\vec{\omega}_m$ to the line-segment L_i coincides with the vector field on L_i given by the opposite of the gradient of the square of the function given by the distance to the point $y_i(t)$. Also, the restriction of $\vec{\omega}_m$ to the line-segment N_i coincides with the vector field on N_i given by the opposite of the gradient of the square of the function given by the distance to the point λ_t . See Fig. [5.](#page-14-0)

Fig. 5 The vector field $\vec{\omega}_m$

On the other hand, we endow each semi-disk M_i , for $j = 1, \ldots, k$, with the vector field \vec{w}_i given by the opposite of the gradient of the square of the function given by the distance to the point $y_i(t)$.

So putting all the polygons R_m and all the semi-disks M_j together, each of them endowed with the corresponding vector field $\vec{\omega}_m$ or \vec{w}_i , we get a continuous vector field \vec{v}_1 on \mathcal{R}_t such that:

- \vec{v}_1 is smooth on each stratum of the stratification of \mathcal{R}_t induced by \mathcal{Z} ;
- \vec{v}_1 is non-zero outside Q_t ;
- \vec{v}_1 is zero on Q_t ;
- \vec{v}_1 never points in the direction of the gradient of the function given by the square of the distance to the point λ_t .

Let us show that:

• \vec{v}_1 is a rugose vector field.

Set $W_1 := D_t \setminus (Q_t \cup \tilde{N}_1 \cup \cdots \cup \tilde{N}_k)$ and set $W_2 := Q_t \cup \tilde{N}_1 \cup \cdots \cup \tilde{N}_k$.

If $z \in W_2 \cap \mathcal{R}_t$ is not λ_t , let *U* be a neighborhood of *z* in D_t that is contained in the union of two polygons R_m and $R_{m'}$. Then for any $z_1 \in W_1 \cap U$ and $z_2 \in W_2 \cap U$, we have that the line-segment $\overline{z_1 z_2}$ that joints z_1 and z_2 is contained either in R_m or in $R_{m'}$. Let us suppose that it is contained in R_m . Then we have:

$$
\|\vec{\omega}_m(z_1)-\vec{\omega}_m(z_2)\| \leq K_m \|z_1-z_2\|,
$$

where K_m is the Lipschitz constant of the Lipshitz vector field $\vec{\omega}_m$.

If $z = \lambda_t$, let *U* be the open ball around λ_t of radius *r*. Given $z_1 \in W_1 \cap U$ and $z_2 \in W_2 \cap U$, consider the line-segment $\overline{z_1 z_2}$, starting from z_1 and going to z_2 . It intersects the set *Q* at points q_1, \ldots, q_s , and it intersects the line-segments N_i at the points $t_1, \ldots, t_{s'}$, in this order. That is:

$$
\overline{z_1z_2}=\overline{z_1q_1t_1q_2t_2\ldots q_{s-1}t_{s-1}q_sz_2} \text{ or } \overline{z_1z_2}=\overline{z_1t_1q_1t_2q_2\ldots t_sq_sz_2}.
$$

Let us consider the first case $(\overline{z_1z_2} = \overline{z_1q_1t_1q_2t_2 \ldots q_{s-1}t_{s-1}q_sz_2})$; the second case is analogous.

Let re-order the polygons R_m in such a way that, for each $i = 1, \ldots, s$, we have:

- $-R_0$ is the polygon that contains z_1 ;
- − R_{2i-1} is the polygon that contains the line-segment $\overline{q_i t_i}$;
- R_{2i} is the polygon that contains the line-segment $\overline{t_i q_{i+1}}$.

Setting $K := \max_{m=1,\ldots,2k} \{K_m\}$, we have:

 $\|\vec{\omega}_0(z_1) - \vec{\omega}_s(z_2)\|$

 \Box

 $\leq \|\vec{\omega}_0(z_1) - \vec{\omega}_0(q_1)\| + \|\vec{\omega}_1(q_1) - \vec{\omega}_1(t_1)\| + \|\vec{\omega}_2(t_1) - \vec{\omega}_2(q_2)\| + \|\vec{\omega}_3(q_2) - \vec{\omega}_3(t_2)\| + \cdots$ $\cdots + ||\vec{\omega}_{2s-2}(t_{s-1}) - \vec{\omega}_{2s-2}(q_s)|| + ||\vec{\omega}_{2s-1}(q_s) - \vec{\omega}_{2s-1}(z_2)||$ $\le K_0 \|z_1 - q_1\| + K_1 \|q_1 - t_1\| + K_2 \|t_1 - q_2\| + \cdots + K_{2s-2} \|t_{s-1} - q_s\| + K_{2s-1} \|q_s - z_2\|$ $\leq 2sK||z_1 - z_2|| \leq 2kK||z_1 - z_2||.$

Second step: Constructing the vector field \vec{v}_t on D_t .

Let *r'* be a small real number with $0 < r' < r$ and with $r - r' \ll 1$, and set $\mathcal{R}'_t :=$ $(d_t)^{-1}([0, r'])$, so $\mathcal{R}'_t \subset \mathcal{R}_t$. We endow $D_t \setminus int(\mathcal{R}'_t)$ with the vector field \vec{v}_2 given by the opposite of the gradient vector field of the function on $D_t \setminus int(\mathcal{R}'_t)$ given by the square of the distance to the point λ_t .

Since the vector fields \vec{v}_1 and \vec{v}_2 never have opposite directions, the vector field \vec{v}_t is obtained by gluing the vector fields \vec{v}_1 and \vec{v}_2 , using a partition of unity. That is, we consider a pair (ρ_1, ρ_2) of continuous functions from the compact disk D_t to the closed unit interval $[0, 1]$ such that:

- for every point $p \in D_t$ one has that $\rho_1(p) + \rho_2(p) = 1$,
- the support of ρ_1 is contained in *int*(\mathcal{R}_t),
- the support of ρ_2 is contained in $D_t \backslash R'_t$.

Hence for any $p \in \mathcal{R}'_t$ we have that $(\rho_1(p), \rho_2(p)) = (1, 0)$ and for any $p \in D_t \setminus int(\mathcal{R}_t)$ we have that $(\rho_1(p), \rho_2(p)) = (0, 1)$. So we set $\vec{v}_t := \rho_1 \vec{v}_1 + \rho_2 \vec{v}_2$.

Clearly, \vec{v}_t is a continuous vector field on D_t that is non-zero on $D_t \backslash Q_t$, zero on Q_t and transversal to ∂D_t , pointing inwards, and that restricts to a rugose stratified vector field on the interior of D_t (relatively to the stratification Z of D_t). Moreover, each orbit associated to \vec{v}_t has a limit point in Q_t .

So the flow q_t : $[0, \infty) \times (D_t \backslash Q_t) \rightarrow D_t \backslash Q_t$ associated to \vec{v}_t defines a continuous, simplicial and surjective map:

$$
\xi_t : \partial D_t \longrightarrow Q_t \n u \longmapsto \lim_{\tau \to \infty} q_t(\tau, u).
$$

Remark 26 Lemma [25](#page-11-0) is still true if the set Q_t is taken as the union of simple paths that intersect only at a point λ_t , instead of considering line-segments. It is enough to consider a suitable homeomorphism of the disk D_t onto itself which is a diffeomorphism outside the point λ_t and which sends the union of those paths to a union of line-segments.

Now recall the proper map $\ell_t : X_t \to D_t$ and recall that X_t has a subanalytic Whitney stratification $S(t)$ with the property (w) induced by the Whitney stratification S of X . By Remark [12,](#page-4-2) we can consider a refinement *S'*(*t*) of *S*(*t*) and a refinement $\mathcal{Z}' = (Z'_{\beta})_{\beta \in B'}$ of *Z* such that:

- (i) $\ell_t^{-1}(Z'_\beta)$ is a union of strata of $\mathcal{S}'(t)$;
- (ii) the restriction ℓ_{t} : $\ell_t^{-1}(Z'_\beta) \to Z'_\beta$ is transversal to $S'(t) \cap f^{-1}(Z'_\beta)$.

One has:

Proposition 27 *We can choose a lifting of the vector field* ν*^t of Lemma [25](#page-11-0) to a continuous vector field* $\tilde{\vartheta}_t$ *on* X_t *so that:*

1. It is non-zero outside P_t and zero on P_t ;

- 2. It is transversal to ∂X_t and points inwards;
- 3. It restricts to a stratified rugose vector field on the interior of X_t (relatively to the *stratification S* (*t*)*);*
- 4. *The flow* \tilde{q}_t : $[0, \infty) \times (X_t \backslash P_t) \rightarrow X_t$ *associated to* $\tilde{\vartheta}_t$ *defines a map:*

$$
\xi_t : \partial X_t \longrightarrow P_t
$$

$$
z \longmapsto \lim_{\tau \to \infty} \tilde{q}_t(\tau, z)
$$

such that $ξ_t$ *is continuous, simplicial and surjective;* 5. *The fiber* X_t *is homeomorphic to the mapping cylinder of* ξ_t *.*

Proof Recall from Proposition [22](#page-9-0) that the restriction ℓ_t of the linear form ℓ to the Milnor fiber X_t induces a stratified submersion:

$$
\varphi_t: X_t \backslash \ell_t^{-1} \big(\{ y_1(t), \ldots, y_k(t) \} \big) \to D_t \backslash \{ y_1(t), \ldots, y_k(t) \}.
$$

So, by Proposition [17,](#page-6-3) we can lift the vector field \vec{v}_t to a continuous vector field \vec{v}_t in X_t that satisfies properties (1) , (2) and (3) .

Let us show that we can choose ϑ_t satisfying also condition (4). Fix $z \in \partial X_t$. We want to show that $\lim_{\tau\to\infty} \tilde{q}_t(\tau, z)$ exists, that is, that there exists a point $\tilde{p} \in P_t$ such that for any open neighborhood \tilde{U} of \tilde{p} in X_t there exists $\theta > 0$ such that $\tau > \theta$ implies that $\tilde{q}_t(\tau, z) \in \tilde{U}$.

From Lemma [25](#page-11-0) we know that there exists $p \in Q_t$ such that $\lim_{\tau \to \infty} q_t(\tau, \ell_t(z)) = p$, where q_t : $[0, \infty) \times (D_t \backslash Q_t) \rightarrow D_t$ is the flow associated to the vector field \vec{v}_t . So for any small open neighborhood *U* of *p* in D_t there exists $\theta > 0$ such that $\tau > \theta$ implies that $q_t(\tau, \ell_t(z)) \in U$. Setting $\{\tilde{p}_1, \ldots, \tilde{p}_r\} := \ell_t^{-1}(p)$, we can consider *U* sufficiently small such that there are disjoint connected components $\tilde{U}_1, \ldots, \tilde{U}_r$ of $\ell_t^{-1}(U)$ such that each \tilde{U}_j contains \tilde{p}_i .

Since ϑ_t is a lifting of \vec{v}_t , we have that $q_t(\tau, \ell_t(z)) = \ell_t(\tilde{q}_t(\tau, z))$ for any $\tau \ge 0$. So $\tau > \theta$ implies that $\ell_t^{-1}(\ell_t(\tilde{q}_t(\tau, z))) \subset \ell_t^{-1}(U)$. Hence for some $j \in \{1, ..., r\}$ we have that $\tilde{q}_t(\tau, z) \in U_j$. Therefore $\lim_{\tau \to \infty} \tilde{q}_t(\tau, z) = \tilde{p}_j$. This proves (4).

Now we show that X_t is homeomorphic to the mapping cylinder of ξ_t . In fact, the integration of the vector field $\vec{\theta}_t$ on X_t gives a surjective continuous map:

$$
\alpha : [0, \infty] \times \partial X_t \to X_t
$$

that restricts to a homeomorphism:

$$
\alpha_{\vert}:[0,\infty)\times \partial X_t\to X_t\backslash P_t.
$$

Since the restriction $\alpha_{\infty} : {\infty} \times \partial X_t \to P_t$ is equal to ξ_t , which is surjective, it follows that the induced map:

$$
[\alpha_{\infty}] : ((\{\infty\} \times \partial X_t) / \sim) \to P_t
$$

is a homeomorphism, where \sim is the equivalence relation given by identifying (∞ , *z*) \sim (∞, z') if $\alpha_{\infty}(z) = \alpha_{\infty}(z')$. Hence the map:

$$
[\alpha] : (([0, \infty] \times \partial X_t) / \sim) \to X_t
$$

induced by α defines a homeomorphism between X_t and the mapping cylinder of ξ_t . This proves (5) .

4.2 Second step: constructing P^+ and ξ_+

Recall from Lemma [21](#page-7-2) that the polar curve Γ is not contained in $f^{-1}(0)$. Hence Δ is not contained in $\mathbb{D}_{\eta_1} \times \{0\}$, and so the natural projection $\pi : \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \to \mathbb{D}_{\eta_2}$ restricted to Δ induces a ramified covering:

$$
\pi_{\vert}:\Delta\to\mathbb{D}_{\eta_2}
$$

of degree *k*, whose ramification locus is $\{0\} \subset \Delta$.

So the intersection of the polar discriminant Δ with the product $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$ give semi-disks *Y*₁,..., *Y_k* in $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$ such that *Y_j* projects differentially onto \mathbb{D}^+ outside $0 \in Y_j$, for each $j = 1, \ldots, k$. The set $\Lambda := \{0\} \times \mathbb{D}^+$ is also a semi-disk in $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$, which can be supposed to intersect Y_i only at $0 \in \mathbb{C}^2$, for any $j = 1, \ldots, k$.

We can choose the simple paths $\delta(y_1(t)), \ldots, \delta(y_k(t))$ for each $t \in \mathbb{D}^+$ in such a way that $\delta(y_i(t))$ depends continuously on the parameter $t \in \mathbb{D}^+$, for each $j = 1, \ldots, k$; and it forms a 3-dimensional triangle \mathcal{T}_i in $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$ bounded by the semi-disks Y_i and Λ and by the union of paths $\bigcup_{t \in \mathbb{D}^+ \cap \partial \mathbb{D}_{\eta_2}} \delta_j(y_j(t)).$

The Fig. [6](#page-17-1) below represents the 2-dimensional triangles $T_j := T_j \cap (\mathbb{D}_{\eta_1} \times \gamma)$, for $j = 1, \ldots, k$, where γ is a simple path in \mathbb{D}^+ going joining some $t_0 \in \mathbb{D}^+ \cap \partial \mathbb{D}_{\eta_2}$ to $0 \in \mathbb{C}^2$. It helps the reader to understand the construction of each T_i .

Setting $Q^+ := \bigcup_{j=1}^k T_j$, we define:

$$
P^+ := \phi^{-1}(Q^+),
$$

which is contained in $X^+ := X \cap f^{-1}(\mathbb{D}^+) \cap \mathbb{B}_{\epsilon}$. It is a polyhedron adapted to the stratification S^+ of X^+ induced by *S*, and the intersection $P^+ \cap X_t$ is a vanishing polyhedron P_t as in Sect. [4.1,](#page-11-1) for any *t* ∈ $\mathbb{D}^+\setminus\{0\}$. Moreover, $P^+ \cap X_0 = \{0\}$.

Notice that the complex Whitney stratification S of X in fact induces a subanalytic Whitney stratification S^+ of X^+ with the property (w). This is because *S* has the property (w), by Lemma [8,](#page-3-1) and hence one can use Lemma [10.](#page-4-0)

Now, analogously to Lemma [25,](#page-11-0) we can construct a Whitney stratification \mathcal{Z}^+ of $\mathbb{D}_{n_1} \times \mathbb{D}^+$ with the property (w), and an integrable vector field \vec{v}_+ in $\mathbb{D}_{n_1} \times \mathbb{D}^+$ that deformation retracts $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$ onto Q^+ . That is, we can consider a continuous vector field \vec{v}_+ in $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$ such that:

- It is non-zero outside Q^+ and it is zero on Q^+ ;
- It is transversal to $\partial \mathbb{D}_{n_1} \times \mathbb{D}^+$;
- It restricts to a rugose stratified vector field on the interior of \mathbb{D}_n , $\times \mathbb{D}^+$ (with respect to *Z*+);
- The projection of \vec{v}_+ onto \mathbb{D}^+ is zero;
- The flow $q_+ : [0, \infty) \times ((\mathbb{D}_{\eta_1} \times \mathbb{D}^+) \setminus Q^+) \to \mathbb{D}_{\eta_1} \times \mathbb{D}^+$ associated to \vec{v}_+ defines a map:

$$
\xi_+ : \partial \mathbb{D}_{\eta_1} \times \mathbb{D}^+ \longrightarrow Q^+ z \longmapsto \lim_{\tau \to \infty} q_+(\tau, z)
$$

that is continuous, simplicial and surjective.

As we did above, we can use Remark [12](#page-4-2) to obtain a refinement $(S^+)'$ of S^+ and a refinement $(Z^+)' = (Z^{\pm'}_{\beta})_{\beta \in B'}$ of Z^+ such that:

(i) $\phi^{-1}(Z_{\beta}^{+'})$ is a union of strata of $(S^+)'$;

(ii) the restriction $\phi_1 : \phi^{-1}(Z_\beta^{+'}) \to (Z_\beta^{+'})$ is transversal to $(S^+)' \cap f^{-1}(Z_\beta^{+'})$.

So by Proposition [16](#page-6-4) we have:

Proposition 28 *The vector field* \vec{v}_+ *can be lifted to an integrable vector field* \vec{v}_+ *in* X^+ *such that:*

- (i) *For any t* $\in \mathbb{D}^+\setminus\{0\}$, the restriction of $\vec{\vartheta}_+$ to X_t gives a vector field $\vec{\vartheta}_t$ as in Proposi*tion* [27,](#page-15-0) *relatively to the polyhedron* $P_t = P^+ \cap X_t$.
- (ii) *The vector field* $\bar{\vartheta}_+$ *is non-zero on* $X^+\backslash P^+$ *, zero on* P^+ *, transversal to* ∂X^+ *, pointing inwards, and it restricts to a rugose stratified vector field on the interior of X*+ *(relatively* to the refinement $(S^+)'$).

Analogously to the proof of (6) of Proposition [27,](#page-15-0) one can show that the flow associated to the vector field ϑ_+ defines a map ξ_+ with the desired properties.

This proves (i) and (ii) of Theorem [2](#page-1-2) in the 2-dimensional case.

4.3 Third step: constructing the collapsing map *ψ^t*

First, let us recall that $X_t := \mathbb{B}_{\epsilon} \cap \phi^{-1}(\mathbb{D}_{\eta_1} \times \{t\})$ and that the map:

$$
\phi = (\ell, f) : X \to \mathbb{C}^2
$$

induces a stratified submersion $\phi_1 : \mathbb{B}_{\epsilon} \cap X \cap \phi^{-1}(\mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \setminus \Delta) \to \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \setminus \Delta$ (see Proposition [22\)](#page-9-0).

Let γ be a simple path in \mathbb{D}_{η_2} joining 0 and some $t_0 \in \partial \mathbb{D}_{\eta_2}$, such that γ is transverse to $\partial \mathbb{D}_{\eta_2}$. See Fig. [7.](#page-19-0) We want to describe the collapsing of *f* along γ , that is, how X_t degenerates to X_0 as $t \in \gamma$ goes to 0.

Fig. 7 The path γ

Recall the sets Q^+ and P^+ defined above, and set $Q_\gamma := Q^+ \cap (\mathbb{D}_{\eta_1} \times \gamma)$. It is a union of triangles T_1, \ldots, T_k , as in Fig. [6.](#page-17-1) Also set $P_\gamma := P^+ \cap f^{-1}(\gamma)$.

The vector field \vec{v}_+ constructed above restricts to a continuous stratified vector field \vec{v}_v in $\mathbb{D}_{n_1} \times \gamma$ such that:

- It is non-zero outside Q_{γ} and it is zero on Q_{γ} ;
- It is transversal to $\partial \mathbb{D}_{\eta_1} \times \gamma$;
- It restricts to a rugose stratified vector field on the interior of $\mathbb{D}_{n_1} \times \gamma$ (relatively to the Whitney stratification $\mathcal{Z}^+ \cap (\mathbb{D}_{\eta_1} \times \gamma)$ (with the property (w)) induced by \mathcal{Z}^+);
- The projection of \vec{v}_ν onto γ is zero;
- The flow $q_\gamma : [0, \infty) \times ((\mathbb{D}_{\eta_1} \times \gamma) \setminus Q_\gamma) \to \mathbb{D}_{\eta_1} \times \gamma$ associated to \vec{v}_γ defines a map:

$$
\xi_{\gamma} : \partial \mathbb{D}_{\eta_1} \times \gamma \longrightarrow Q_{\gamma}
$$

$$
z \longmapsto \lim_{\tau \to \infty} q_{\gamma}(\tau, z)
$$

that is continuous, simplicial and surjective.

Now, for any real number $A > 0$ set:

$$
V_A(Q_\gamma) := (\mathbb{D}_{\eta_1} \times \gamma) \backslash q_\gamma ([0, A) \times \partial \mathbb{D}_{\eta_1} \times \gamma),
$$

which is a closed neighborhood of Q_{γ} in $\mathbb{D}_{n_1}\times\gamma$. This gives a system of closed neighborhoods of Q_{γ} in $\mathbb{D}_{\eta_1} \times \gamma$, such that:

- (i) The boundary $\partial V_A(Q_\gamma)$ of $V_A(Q_\gamma)$ is a stratified topological manifold, for any *A* ≥ 0, since it is the image of $\partial \mathbb{D}_{\eta_1} \times \gamma$ by ξ_{γ} ;
- (ii) $V_0(Q_\gamma) = \mathbb{D}_{\eta_1} \times \gamma;$
- (iii) For any $A_1 > A_2$ one has $V_{A_1}(Q_\gamma) \subset V_{A_2}(Q_\gamma)$;
- (iv) For any open neighborhood *U* of Q_{γ} in $\mathbb{D}_{n_1} \times \gamma$, there exists $A_U \geq 0$ sufficiently big such that $V_{A_U}(Q_\gamma)$ is contained in *U*.

Notice that $\partial V_A(Q_\gamma)$ fibers over γ with fiber a circle, by the restriction of the projection $\pi : \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \to \mathbb{D}_{\eta_2}.$

Now, setting:

$$
X_{\gamma} := X \cap f^{-1}(\gamma) \cap \mathbb{B}_{\epsilon},
$$

we can finally construct a stratified rugose vector field ζ_γ in $X_\gamma \setminus P_\gamma$ (relatively to the stratification $S'(y)$ of X_y induced by the stratification $(S^+)'$ of X^+) whose flow gives the degeneration Recall that the restriction:

$$
\phi_{\vert}:\phi^{-1}((\mathbb{D}_{\eta_1}\times \mathbb{D}_{\eta_2})\backslash Q)\to (\mathbb{D}_{\eta_1}\times \mathbb{D}_{\eta_2})\backslash Q
$$

is a stratified submersion (relatively to the stratification *S*), and that the restriction of $\pi \circ \phi$ to $\phi^{-1}(\partial V_A(Q_{\gamma})) \cap \mathbb{B}_{\epsilon}$ is a proper locally trivial fibration over γ .

Let θ be a vector field on γ that goes from t_0 to 0 in time $a > 0$ and fix $A > 0$. We are going to construct a smooth and integrable vector field ζ_{γ} in $X_{\gamma} \backslash P_{\gamma}$ that lifts θ outside {0}, and such that $\bar{\zeta}_\gamma$ is tangent to $\phi^{-1}(\partial V_A'(\mathcal{Q}_\gamma))$, for any *A'* \geq *A*. We will construct it locally, that is, for each point $p \in X_{\gamma} \backslash P_{\gamma}$ we will construct a vector field ζ_p in some neighborhood U_p of p , and then we will glue all of them using a partition of unity associated to the covering given by the neighborhoods U_p (see Lemma 41.6 of [\[18](#page-37-22)] for the proof of the existence of a partition of unity associated to an infinite covering, since $X_{\nu} \backslash P_{\nu}$ is not compact).

Each ζ_p is constructed in the following way:

- (a) If $p \notin \phi^{-1}(V_A(Q_\gamma)) \cap \mathbb{B}_{\epsilon}$, there is an open neighborhood U_p of p in X_γ that does not intersect the closed set $\phi^{-1}(V_A(Q_\gamma)) \cap \mathbb{B}_{\epsilon}$. Then we define a smooth vector field $\bar{\zeta}_p$ on U_p that lifts θ .
- (b) If $p \in [\phi^{-1}(V_A(Q_\gamma)) \cap \mathbb{B}_{\epsilon}] \setminus P_\gamma$, there is an open neighborhood U_p of p in X_γ that does not intersect P_γ . We define a smooth vector field ζ_p on U_p that lifts θ and that is tangent to each stratum of $\phi^{-1}(\partial V_{A'}(Q_{\gamma})) \cap \mathbb{B}_{\epsilon}$, for any $A' \geq A$. This is possible because the restriction of $\pi \circ \phi$ to $\phi^{-1}(V_A(Q_\gamma) \setminus Q_\gamma) \cap \mathbb{B}_{\epsilon}$ is a stratified submersion, which restricts to a locally trivial fibration $\phi^{-1}(\partial V_{A'}(Q_\gamma))\cap \mathbb{B}_{\epsilon} \to \gamma$, for each $A' \geq A$.

Then the collapsing vector field ζ_{γ} is obtained by gluing the vector fields ζ_{p} using a partition of unity. Notice that ζ_{γ} lifts θ outside {0}.

Hence the flow $h : [0, a] \times X_{\gamma} \backslash P_{\gamma} \to X_{\gamma} \backslash P_{\gamma}$ associated to ζ_{γ} defines a stratified homeomorphism $\tilde{\psi}_{t_0}$ from $X_{t_0} \backslash P_{t_0}$ to $X_0 \backslash \{0\}$.

Moreover, we can show that the extension $\psi_{t_0} : X_{t_0} \to X_0$ given by:

$$
\psi_{t_0}(x) := \begin{cases} \tilde{\psi}_{t_0}(x) & \text{if } x \in X_{t_0} \backslash P_{t_0} \\ 0 & \text{if } x \in P_{t_0} \end{cases}
$$

is continuous. It is enough to show that if $(x_r)_{r \in \mathbb{R}}$ is a sequence of points in $X_{t_0} \backslash P_{t_0}$ such that $x_r \in \phi^{-1}(\partial V_r(Q_\gamma))$, for *r* sufficiently large (so x_r converges to a point $x \in P_{t_0}$), then the sequence of points $(\tilde{\psi}_{t_0}(x_r))$ in X_0 converges to 0. Since the collapsing vector field $\vec{\zeta}_{\gamma}$ is tangent to $\phi^{-1}(\partial V_r(Q_{\gamma}))$, for each *r* sufficiently large, it follows that:

$$
\tilde{\psi}_{t_0}(x_r) \in \phi^{-1}(\partial V_r(Q_{\gamma})) \cap X_0.
$$

On the other hand, by the condition (iv) above, we have that the system of neighborhoods $V_r(Q_\gamma)$ is such that $\bigcap_{r \in \mathbb{N}} V_r(Q_\gamma) = Q_\gamma$, so $\phi^{-1}(\partial V_r(Q_\gamma)) \cap X_0$ goes to {0} when *r* goes to infinity, in the sense of condition (iv) above. Precisely, for any open neighborhood *U* of 0 in *X*₀ there exists *R* > 0 sufficiently large such that $\phi^{-1}(\partial V_R(Q_\gamma)) \cap X_0$ is contained in *U*. Therefore, the sequence of points $(\tilde{\psi}_{t_0}(x_r))_{r \in \mathbb{R}}$ in X_0 converges to 0.

This finishes the proof of Theorem [2](#page-1-2) in the 2-dimensional case.

 \mathcal{L} Springer

5 Elements of the proof of the main theorem

Now we go back to the general case of a germ of complex analytic function

$$
f:(X,x)\to(\mathbb{C},0)
$$

at a point *x* of a reduced equidimensional complex analytic space $X \subset \mathbb{C}^N$ of any dimension. Let $S = (S_\alpha)_{\alpha \in A}$ be a Whitney stratification of X and suppose that f has an isolated singularity at *x* in the stratified sense.

In order to simplify the notations, suppose further that *x* is the origin in \mathbb{C}^N .

Recall the polar curve Γ of f relatively to a generic linear form ℓ , as well as the polar discriminant $\Delta := \phi(\Gamma)$, where ϕ is the stratified map:

$$
\phi := (\ell, f) : (X, 0) \to (\mathbb{C}^2, 0).
$$

As before, we assume that the polar curve Γ is non-empty. In the next section, we will prove the following proposition:

Proposition 29 *For any t* $\in \mathbb{D}_{\eta_2}^*$, there exists a refinement *S'*(*t*) *of the Whitney stratification* $S(t)$ *of* X_t (with the property (w)) induced by *S*, such that there are:

- (i) *A polyhedron* P_t *of dimension* dim_C $X 1$ *that is contained in the Milnor fiber* $X_t :=$ $\mathbb{B}_{\epsilon} \cap f^{-1}(t)$ *and that is adapted to the stratification* $S'(t)$;
- (ii) *A continuous vector field* $\hat{\vartheta}_t$ *in X_t so that:*
	- 1. It is non-zero outside P_t and it is zero on P_t ;
	- 2. It is transversal to ∂X_t (in the stratified sense) and pointing inwards;
	- 3. It restricts to a rugose stratified vector field on the interior of X_t (relatively to the *stratification S* (*t*)*)*
	- 4. *The flow* \tilde{q}_t : $[0, \infty) \times (X_t \backslash P_t) \rightarrow X_t$ associated to $\tilde{\vartheta}_t$ defines a map:

$$
\tilde{\xi}_t : \partial X_t \longrightarrow P_t
$$

$$
z \longmapsto \lim_{\tau \to \infty} \tilde{q}_t(\tau, z)
$$

such that ξ˜ *^t is continuous, stratified, simplicial and surjective;*

5. *The Milnor fiber* X_t *is homeomorphic to the mapping cylinder of* ξ_t *.*

We say that the polyhedron P_t above is a *vanishing polyhedron for f*.

The idea of the construction of P_t is quite simple and we will briefly describe it here. First recall the stratified map $\ell_t : X_t \to D_t$ given by the restriction of ϕ to X_t .

By induction hypothesis, we have a vanishing polyhedron P_t for the restriction of f to the hyperplane section $X \cap {\ell = 0}$.

For each point $y_i(t)$ in the intersection of the polar discriminant Δ with the disk $D_t :=$ $\mathbb{D}_{\eta_1} \times \{t\}$ as above, let $x_j(t)$ be a point in the intersection of the polar curve Γ with $\ell_t^{-1}(y_j(t))$. To simplify, we can assume that $x_i(t)$ is the only point in such intersection (see Conjecture [34](#page-24-0) below).

Also by the induction hypothesis, we have a collapsing cone P_j for the restriction of the map ℓ_t to a small neighborhood of $x_j(t)$. The "basis" of a such cone is the polyhedron $P_j(a_j) := P_j \cap \ell_t^{-1}(a_j)$, where a_j is a point in $\delta(y_j(t)) \setminus y_j(t)$ close to $y_j(t)$.

Since ℓ_t is a locally trivial fiber bundle over $\delta(y_i(t))\,y_i(t)$, we can "extend" the cone P_i until it reaches the "central" polyhedron P'_t . This gives a polyhedron C_j . The union of all the polyhedra C_j together with P'_i gives our vanishing polyhedron P_t (see Fig. [8\)](#page-22-1).

Fig. 8 The vanishing polyhedron P_t

The detailed construction of *Pt* will be given in the next section. We will also show in the next section that the construction of the polyhedron P_t and the vector field $\hat{\vartheta}_t$ can be done simultaneously, for any *t* in a closed semi-disk \mathbb{D}^+ of \mathbb{D}_n , such that 0 is in its boundary, as in Fig. [1.](#page-1-1)

Precisely, we will prove the following:

Proposition 30 *Let* \mathbb{D}^+ *be a closed semi-disk in* \mathbb{D}_{η_2} *such that* 0 *is in its boundary, and set* $X^+ := X ∩ f^{-1}(\mathbb{D}^+) ∩ \mathbb{B}_{\epsilon}$. There exists a refinement $(S^+)'$ of the Whitney stratification *S*⁺ *of X*⁺ *(with the property* (w)*) induced by the stratification S of X such that there are a* polyhedron P^+ , adapted to the stratification $(\mathcal{S}^+)'$, and an integrable vector field ϑ_+ in X^+ , *so that:*

- (i) *the intersection* $P^+ \cap X_t$ *is a vanishing polyhedron* P_t *as in Proposition [29,](#page-21-1) for any* $t \in \mathbb{D}^+\backslash\{0\}$ *, and* $P^+ \cap X_0 = \{0\}$ *;*
- (ii) *for any t* $\in \mathbb{D}^+\setminus\{0\}$ *, the restriction of* $\tilde{\vartheta}_+$ *to* X_t *gives a vector field* $\tilde{\vartheta}_t$ *as in Proposition* [29,](#page-21-1) *relatively to the polyhedron* $P_t = P^+ \cap X_t$;
- (iii) *the vector field* $\bar{\vartheta}_+$ *is non-zero outside* P^+ *, zero on* P^+ *, transversal to* $\partial X^+ := X^+ \cap \mathbb{S}_\epsilon$ *in the stratified sense, pointing inwards, and it restricts to a rugose stratified vector* field on the interior of X^+ (relatively to the stratification $(S^+)'$).

We say that the polyhedron P^+ is a *collapsing cone for f along the semi-disk* \mathbb{D}^+ . As an immediate corollary, we have:

Corollary 31 *Let* γ *be a simple path in* \mathbb{D}_{η_2} *joining* 0 *and some* $t_0 \in \mathbb{D}_{\eta_2}$ *(as in Fig. [7\)](#page-19-0), and* $\int \text{Set } X_\gamma := X \cap f^{-1}(\gamma) \cap \mathbb{B}_{\epsilon}$. There exists a refinement $\mathcal{S}'(\gamma)$ of the Whitney stratification *S*(γ) *of X*^γ *(with the property* (w)*) induced by the stratification S of X such that there are a* p olyhedron P_γ in X_γ , adapted to the stratification $\mathcal{S}'(\gamma)$, and an integrable vector field ϑ_γ *in* X_{ν} *, so that:*

- (i) *the intersection* $P_\gamma \cap X_t$ *is a vanishing polyhedron* P_t *as in Proposition [29,](#page-21-1) for any* $t \in \gamma \setminus \{0\}$ *, and* $P_{\gamma} \cap X_0 = \{0\}$ *;*
- (ii) *for any t* $\in \gamma \setminus \{0\}$ *, the restriction of* $\vec{\vartheta}_{\gamma}$ *to* X_t *gives a vector field* $\vec{\vartheta}_t$ *as in the proposition above, relatively to the polyhedron* $P_t = P_\gamma \cap X_t$;
- (iii) *the vector field* ϑ_{γ} *is non-zero outside* P_{γ} *, zero on* P_{γ} *, transversal to* $\partial X_{\gamma} := X_{\gamma} \cap \mathbb{S}_{\epsilon}$ *in the stratified sense, pointing inwards, and it restricts to a rugose stratified vector field on the interior of* X_{γ} *.*

We say that the polyhedron P_{γ} above is a *collapsing cone for f along the path* γ .

One can check that the flow \tilde{q}_{γ} : [0, ∞) × ($X_{\gamma} \setminus P_{\gamma}$) $\to X_{\gamma}$ given by the integration of the vector field $\vec{\vartheta}_{\gamma}$ on $X_{\gamma} \backslash P_{\gamma}$ defines a continuous, simplicial and surjective map:

$$
\tilde{\xi}_{\gamma} : \partial X_{\gamma} \longrightarrow P_{\gamma} \n z \longmapsto \lim_{\tau \to \infty} \tilde{q}_{\gamma}(\tau, z)
$$

such that X_{γ} is homeomorphic to the mapping cylinder of ξ_{γ} (see Proposition [27\)](#page-15-0).

Remark 32 In order to prove Theorem [1,](#page-1-0) we just need Corollary [31.](#page-22-2) Nevertheless, we will need Proposition [29](#page-21-1) to prove Proposition [30](#page-22-0) and we will need Proposition 30 when dim_C $X =$ *n* − 1 to prove Proposition [29](#page-21-1) when dim_C $X = n$.

So let us assume now that Proposition [30](#page-22-0) is true. Itens (i) and (ii) of Theorem [2](#page-1-2) follow easily from Proposition [30](#page-22-0) (the proof that X^+ is homeomorphic to the mapping cylinder of the map ξ_{+} given by the vector field ϑ_{+} is analogous to the proof of item (7) of Proposition [27\)](#page-15-0). Then we can easily prove (iii) of Theorem [2](#page-1-2) as follows:

Fix $t \in \mathbb{D}_{\eta_2}^*$ and let γ be a simple path in \mathbb{D}_{η_2} connecting t and 0. Consider the polyhedron P_γ and the vector field $\vec{\vartheta}_\gamma$ in X_γ given by Corollary [31,](#page-22-2) as well as the flow \tilde{q}_γ given by the integration of ϑ_{γ} .

For any positive real $A > 0$ set:

$$
\tilde{V}_A(P_\gamma) := X_\gamma \backslash \tilde{q}_\gamma ([0, A) \times \partial X_\gamma),
$$

which is a closed neighborhood of P_{γ} in X_{γ} . Notice that using the first isotopy lemma of Thom–Mather (Lemma [19\)](#page-6-0), the boundary $\partial \tilde{V}_A(P_\gamma)$ of $\tilde{V}_A(P_\gamma)$ is a locally trivial topological fibration over γ .

Following the steps (a) and (b) of the end of Sect. [4.3](#page-18-0) and using Proposition [16,](#page-6-4) we can construct a collapsing vector field ζ_{γ} on $X_{\gamma} \backslash P_{\gamma}$ such that:

- it is a rugose stratified vector field (relatively to the stratification $S'(\gamma)$ of X_{γ}):
- it projects on a smooth vector field θ on γ that goes from t_0 to 0 in a time $a > 0$;
- it is tangent to $\partial \tilde{V}_A(P_\gamma)$, for any $A > 0$.

So the flow *g* : [0, *a*] \times $X_{\gamma} \backslash P_{\gamma} \rightarrow X_{\gamma} \backslash P_{\gamma}$ associated to the collapsing vector field ζ_{γ} defines a homeomorphism ψ_t from $X_t \backslash P_t$ to $X_0 \backslash \{0\}$ that extends to a continuous map from *X_t* to *X*₀ and that sends P_t to {0}, for any $t \in \gamma \setminus \{0\}$. This proves (iii) of Theorem [2.](#page-1-2)

Remark 33 Notice that the collapsing vector field ζ_{γ} on $X_{\gamma} \backslash P_{\gamma}$ that gives the collapsing of *f* along the path γ can be extended to a collapsing vector field ζ_+ on $X^+ \backslash P^+$ that gives the collapsing of f along the semi-disk \mathbb{D}^+ .

6 Proof of Propositions [29](#page-21-1) and [30](#page-22-0)

We will prove Propositions [29](#page-21-1) and [30](#page-22-0) by induction on the dimension of *X*, in the following way: we will prove that if Proposition [30](#page-22-0) is true whenever dim_C $X = n-1$, then Proposition [29](#page-21-1) is true whenever dim_C $X = n$, and this implies that Proposition [30](#page-22-0) is true whenever dim_C $X =$ *n*.

Notice that in Sects. [4.1](#page-11-1) and [4.2](#page-17-0) we have proved Propositions [29](#page-21-1) and [30,](#page-22-0) respectively, when dim_C $X = 2$.

6.1 Proof of Proposition [29:](#page-21-1) constructing the vanishing polyhedron

As we said above, the polyhedron P_t will consist of a "central" polyhedron P'_t on which we will attach the polyhedra C_j . The first step will be to construct the central polyhedron P'_i , and then we will construct the polyhedra *Cj* .

Recall that we have fixed a linear form $\ell : \mathbb{C}^N \to \mathbb{C}$ that satisfies the conditions of Lemma [21.](#page-7-2) Then Γ is the polar curve of f relatively to ℓ at 0 and Δ is the polar discriminant of f relatively to ℓ at 0.

Also recall from Proposition [22](#page-9-0) that the map $\phi = (\ell, f)$ induces a stratified submersion (relatively to the stratification induced by *S*):

$$
\phi_{\vert} : \mathbb{B}_{\epsilon} \cap X \cap \phi^{-1}(\mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \backslash \Delta) \to \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \backslash \Delta
$$

and that for each $t \in \mathbb{D}_{\eta_2}^*$ fixed, the restriction ℓ_t of ℓ to the Milnor fiber X_t induces a topological locally trivial fibration:

$$
\varphi_t: X_t \backslash \ell_t^{-1} \big(\{ y_1(t), \ldots, y_k(t) \} \big) \to D_t \backslash \{ y_1(t), \ldots, y_k(t) \},
$$

where $D_t = D_{n_1} \times \{t\}$ and $\{y_1(t), \ldots, y_k(t)\} = \Delta \cap D_t$.

For any $t \in \mathbb{D}_{\eta_2}$ set $\lambda_t := (0, t)$. Since the complex line $\{0\} \times \mathbb{C}$ is not a component of Δ , we can suppose that $\lambda_t \notin \{y_1(t), \ldots, y_k(t)\}.$

For each $j = 1, \ldots, k$, let $\delta(y_j(t))$ be a smooth simple path in D_t starting at λ_t and ending at $y_i(t)$, such that two of them intersect only at λ_t .

First step: constructing the central polyhedron *Pt*':

Consider the restriction f' of f to the intersection $X \cap {\ell} = 0$, which has complex dimension $n - 1$. Then we can apply the induction hypothesis to f' to obtain a vanishing polyhedron P'_t in the fiber $X_t \cap \{ \ell = 0 \}$ and an integrable vector field ϑ'_t in $X_t \cap \{ \ell = 0 \}$ that deformation retracts $X_t \cap \{\ell = 0\}$ onto P'_t .

Second step: constructing the polyhedra *Cj* :

First of all, in order to make it easier for the reader to understand the constructions, we will suppose that Γ intersects $\ell_t^{-1}(y_j(t))$ in only one point, which we call $x_j(t)$. The proof of the general case follows the same steps. In fact, we make the following conjecture:

Conjecture 34 *For* ℓ general enough, the map-germ $\phi_{\ell} = (\ell, f) : (X, x) \to (\mathbb{C}^2, 0)$ *induces a bijective morphism from* Γ *onto* Δ *.*

Now recall that ℓ_t induces a locally trivial fibration over $\delta(y_j(t))\{y_j(t)\}$. If we look at the local situation at $x_j(t)$, we can apply the induction hypothesis to the germ ℓ_{t} : $(X_t, x_i(t)) \rightarrow (D_t, y_i(t))$, which has an isolated singularity at $x_i(t)$ in the stratified sense, in lower dimension. That is, considering a small ball B_j in \mathbb{C}^N centered at $x_j(t)$; a small disk *D_s* in *D_t* centered at $y_j(t)$ and a semi-disk D_s^+ of D_s which contains $\delta(y_j(t)) \cap D_s$ in its interior, we obtain:

- a collapsing cone P_j^+ for ℓ_t along the semi-disk D_s^+ ;
- a collapsing cone \overrightarrow{P}_i for ℓ_t along the path $D_s \cap \delta(y_i(t))$, of real dimension $n-1$;

which give the collapsing of the map ℓ_{t} : $B_j \cap \ell_t^{-1}(D_s) \to D_s$ along the path $D_s \cap \delta(y_j(t))$. See Fig. [9.](#page-25-0)

Now we are going to extend the cone P_j until it hits P'_i , as follows.

First we need to construct the following vector fields on $A_j := \ell_t^{-1}(\delta(y_j(t)) \setminus \{y_j(t)\})$ that will be used to extend the cone P_j and glue it on the central polyhedron P'_i :

 $\circled{2}$ Springer

- *Vector field* Ξ : let ξ be a smooth non-singular vector field on $\delta(y_j(t))\setminus\{y_j(t)\}\)$ that goes from $y_i(t)$ to $\lambda_t = (0, t)$. Since the restriction of ℓ_t to each Whitney stratum of *S* has maximum rank over $\delta(y_j(t)) \setminus \{y_j(t)\}$, we can lift ξ to an rugose (and hence integrable) stratified vector field $\vec{\mathbf{E}}$ on A_i (see Proposition [16\)](#page-6-4). In particular, for any $u \in \delta(y_j(t)) \setminus \{y_j(t)\}$ we can use the vector field $\vec{\Xi}$ to obtain a stratified homeomorphism $\alpha_u : \ell_t^{-1}(\lambda_t) \to \ell_t^{-1}(u)$, which takes P'_t to a polyhedron $\alpha_u(P'_t)$ in $\ell_t^{-1}(u)$. See Fig. [10.](#page-25-1)
- *Vector field* $\vec{\kappa}$: we can transport the vector field $\vec{\vartheta}'_t$ of $\ell_t^{-1}(\lambda_t) = X_t \cap {\ell = 0}$ given by the induction hypothesis to all the fibers $\ell_t^{-1}(u)$, for any $u \in \delta(y_j(t))\setminus\{y_j(t)\}$. The transportation of $\vec{\vartheta}'_t$ to $\ell_t^{-1}(u)$ is the vector field on $\ell_t^{-1}(u)$ given by the flow obtained as image by α_u of the flow given by ϑ'_t . So we obtain a vector field $\vec{\kappa}$ on A_j whose restriction to $\ell_t^{-1}(\lambda_t)$ is $\vec{\theta}'_t$. The flow associated to $\vec{\kappa}$ takes a point $z \in \ell_t^{-1}(u)$ to the polyhedron $\alpha_u(P'_t)$. See Fig. [11.](#page-26-0)

Fig. 11 The vector field \vec{k}

Fig. 12 The vector field \vec{k}_1

• *Vector field* \vec{k}_1 : let θ be a smooth function on $\delta(y_i(t))$ such that $\theta(\lambda_t) = 0$ and such that θ is non-singular and positive on $\delta(y_i(t))\setminus\{\lambda_t\}$. It induces a function $\tilde{\theta} := \theta \circ \ell_t$ defined on A_j . Set:

$$
\vec{k}_1 := \vec{k} + \tilde{\theta} \cdot \vec{\Xi},
$$

which is an integrable vector field, tangent to the strata of the interior of *Aj* induced by *S*. Furthermore, this vector field \vec{k}_1 is pointing inwards on the boundary ∂A_i , i.e. transversal in A_j to the strata of ∂A_j induced by *S*. See Fig. [12.](#page-26-1)

Since the vectors $\vec{k}(z)$ and $\Xi(z)$ are not parallel for any $z \in A_j \backslash P'_i$, the vector field \vec{k}_1 is zero only on the vanishing polyhedron P'_t of $\ell_t^{-1}(\lambda_t)$. Then if *z* is a point in $A_j \setminus \ell_t^{-1}(\lambda_t)$, the orbit of \vec{k}_1 that passes through *z* has its limit point z'_1 in P'_t .

Moreover, since the integral curve associated to \vec{k} that contains $z \in A_j$ has its limit point *z'* in the polyhedron $\alpha_{\ell_t(z)}(P'_t)$ (which is the transportation of P'_t to $\ell_t^{-1}(\ell_t(z))$ by the flow

Fig. 13 Decomposition of the vanishing polyhedron *Pt*

associated to Ξ), it follows that z'_1 is the point corresponding to z' by Ξ , that is, $z'_1 = \alpha_{\ell_t(z)}(z')$. In fact, if $u := \ell_t(z)$ and if $w := (\alpha_u)^{-1}(z)$ is the corresponding point in $\ell_t^{-1}(\lambda_t)$, then by construction the integral curve $\mathcal{C}_{\kappa}(z)$ associated to $\vec{\kappa}$ that contains *z* is given by $\alpha_{\mu}(\mathcal{C}(w))$, where $C(w)$ is the integral curve associated to ϑ'_t that contains w.

Set $a_j := \partial D_s \cap \delta(y_j(t))$ and $P_j(a_j) := P_j \cap \ell_t^{-1}(a_j)$, where P_j is the collapsing cone for ℓ_t at $x_j(t)$ along the path $D_s \cap \delta(y_j(t))$, as defined above. By the previous paragraph, $\vec{k_1}$ takes $P_j(a_j)$ to P'_i .

Since the action of the flow given by \vec{k} is simplicial, we can assume that the action of the flow given by \vec{k}_1 is simplicial. Then the image of $P_j(a_j)$ by the flow of \vec{k}_1 is a subpolyhedron P'_{j} of P'_{t} . Moreover, the orbits of the points in $P_{j}(a_{j})$ give a polyhedron R_{j} . See Fig. [13.](#page-27-1) Set:

$$
C_j := P_j \cup R_j \cup P'_j.
$$

It is a polyhedron in P_t of real dimension $n-1$. We call C_j a *wing* of the polyhedron P_t . In the case when *X* is smooth, it corresponds to a Lefschetz thimble.

Then the polyhedron we are going to consider is:

$$
P_t := P'_t \bigcup_{j=1}^k C_j.
$$

It is adapted to the stratification *S*, since P_i is adapted to *S* and the vector field \vec{k}_1 is tangent to the strata of *S*.

Now we have:

Lemma 35 *There exists a refinement* $S'(t)$ *of the Whitney stratification* $S(t)$ *of* X_t *(with the property* (w)) induced by *S*, such that there is a continuous vector field ϑ_t on X_t such that:

- (i) It is non-zero on $X_t \backslash P_t$ and it is zero on P_t ;
- (ii) *It is transversal to the strata of* ∂X_t , *pointing inwards*;
- (iii) It restricts to a rugose stratified vector field on the interior of X_t (relatively to the *stratification S* (*t*)*);*
- (iv) *The orbits associated to* ϑ_t *have a limit point at* P_t *when the parameter goes to infinity.*

The vector field $\vec{\vartheta}_t$ is obtained by gluing several vector fields on X_t given by the lifting by φ_t of suitable vector fields on D_t . The detailed proof of Lemma [35](#page-27-0) is quite involved since it contains too many technical steps and constructions, so we present it separately in Sect. [7.](#page-30-0)

The flow defined by the vector field \vec{v}_t of Lemma [35](#page-27-0) gives a continuous, surjective and simplicial map ξ_t from ∂X_t to P_t such that X_t is homeomorphic to the mapping cylinder of ξ_t (see the proof of Proposition [27\)](#page-15-0). This proves Proposition [29.](#page-21-1)

We remark that although we have used just Corollary [31](#page-22-2) (in lower dimension) in the construction of the polyhedron P_t , we will need the stronger Proposition [30](#page-22-0) (in lower dimension) for the construction of the vector field $\hat{\vartheta}_t$ of Lemma [35,](#page-27-0) in Sect. [7.](#page-30-0)

6.2 Proof of Proposition [30:](#page-22-0) constructing the polyhedron *P***+**

Given a closed semi-disk \mathbb{D}^+ in \mathbb{D}_{η_2} as in Fig. [1](#page-1-1) above (with 0 in its boundary), we want to construct a polyhedron P^+ in $X^+ := X \cap f^{-1}(\mathbb{D}^+) \cap \mathbb{B}_{\epsilon}$, adapted to the stratification induced by *S*, and a continuous vector field $\bar{\vartheta}_+$ in X^+ , tangent to each stratum of X^+ , satisfying the conditions (i), (ii) and (iii) of Proposition [30.](#page-22-0)

Recall that in Sect. [4.2](#page-17-0) we already did that when *X* has complex dimension 2. Also recall the 3-dimensional triangles T_1, \ldots, T_k in $\mathbb{D}_{n_1} \times \mathbb{D}^+$, bounded by the semi-disks Y_j and Λ , where Y_1, \ldots, Y_k are the semi-disks given by the intersection of the polar discriminant Δ with $\mathbb{D}_{n_1} \times \mathbb{D}^+$ and $\Lambda := \{0\} \times \mathbb{D}^+$. For each $j = 1, \ldots, k$ and for each $t \in \mathbb{D}^+$, the intersection $T_j \cap D_t$ gives a simple path $\delta(y_j(t))$ used to construct a vanishing polyhedron *P_t* as in Sect. [6.1.](#page-24-1)

Finally, also recall from Proposition [22](#page-9-0) that the map $\phi = (\ell, f)$ induces a stratified submersion:

$$
\phi_{\vert} : \mathbb{B}_{\epsilon} \cap X \cap \phi^{-1}(\mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \backslash \Delta) \to \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \backslash \Delta,
$$

where $\Delta \subset \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2}$ is the polar discriminant of f relatively to the linear form ℓ .

We are going to construct P^+ . The construction of the vector field $\vec{\theta}_+$ is analogous to the construction of the vector field \vec{v}_t of Lemma [35,](#page-27-0) which is described with details in the next section, so we leave it to the reader.

The construction of the polyhedron P^+ will be made in three steps:

First step: fixing an initial polyhedron P_{t_0} :

Fix some t_0 ∈ $\mathbb{D}^+ \cap \partial \mathbb{D}_n$. By Proposition [29,](#page-21-1) we can choose a vanishing polyhedron P_{t_0} in the Milnor fiber:

$$
X_{t_0}=X\cap f^{-1}(t_0)\cap\mathbb{B}_{\epsilon},
$$

which has the form:

$$
P_{t_0}=P'_{t_0}\bigcup_{j=1}^k C_j,
$$

where each C_j is a wing glued to the central polyhedron P'_{t_0} along a subpolyhedron $(P_j)'_{t_0}$ of P'_{t_0} (recall that P'_{t_0} is a vanishing polyhedron for the restriction f' of f to $X \cap \{\ell = 0\}$).

Second step: extending P_{t_0} over $\mathbb{D}^+ \cap \partial \mathbb{D}_{\eta_2}$.

By the induction hypothesis, the vanishing polyhedron $P'_{t_0} \subset X_{t_0} \cap \{l = 0\}$ can be extended to a collapsing cone $(P^{\dagger})' \subset X^{\dagger} \cap {\ell = 0}$ for the restriction of f to ${\ell = 0}$ along the semi-disk \mathbb{D}^+ .

Now set $\tilde{X} := \phi^{-1}(\mathbb{D}_{\eta_1} \times (\mathbb{D}^+ \cap \partial \mathbb{D}_{\eta_2}))$ and recall that ϕ induces a topological trivial fibration from \tilde{X} onto $\mathbb{D}^+ \cap \partial \mathbb{D}_n$, (see Fig. [7\)](#page-19-0).

So we can extend the polyhedron P_{t_0} constructed above for *t* varying in $\mathbb{D}^+\cap\partial\mathbb{D}_{\eta_2}$. That is, we consider a polyhedron \tilde{P} in \tilde{X} such that $\tilde{P} \cap X_{t_0} = P_{t_0}$ and such that for any $t \in \mathbb{D}^+ \cap \partial \mathbb{D}_{\eta_2}$ one has that $P \cap X_t$ is a vanishing polyhedron P_t in X_t with central $P'_t := (P^+)' \cap X_t$ and *k*-many wings, each one of them conic from the corresponding point $x_j(t) \in \Gamma \cap X_t$.

Third step: constructing some suitable neighborhoods: For each $x_i(t)$ over $y_i(t)$, with $t \in \mathbb{D}^+$, choose a small radius $r(t)$ such that the set:

$$
\mathcal{B}_j := \bigcup_{t \in \mathbb{D}^+} \mathbb{B}_{r(t)}(x_j(t))
$$

is a neighborhood of:

$$
\bigcup_{t\in\mathbb{D}^+\setminus\{0\}}\{x_j(t)\}\
$$

conic from 0, where $r(t)$ can be taken as a real analytic function of t with $r(0) = 0$, by Puiseux's theorem.

To each B_j one can associate a neighborhood:

$$
\mathcal{A}_j := \bigcup_{t \in \mathbb{D}^+} \mathbb{D}_{s(t)}(y_j(t))
$$

in $\mathbb{D}_{\eta_1} \times \mathbb{D}^+$, where $s(t)$ is an analytic function of $t \in \mathbb{D}^+$ with $0 < s(t) \ll r(t)$, if $t \neq 0$, and $s(0) = 0$.

Finally, let *U* be a neighborhood of $\Lambda \setminus \{0\}$, conic from 0, that meets all the \mathcal{A}_i 's, but not containing any $y_i(t)$. See Fig. [14.](#page-29-0)

Fourth step: constructing a suitable vector field:

By the induction hypothesis, we have a collapsing cone $(P^+)'$ in $X^+ \cap {\ell = 0}$ and a collapsing vector field $\bar{\zeta}'_+$ in $X^+ \cap {\ell = 0}$ that give the degeneration of f' along \mathbb{D}^+ . That is, ζ'_{\perp} is a rugose (and hence integrable) vector field, tangent to each stratum of the interior of $X^+ \cap {\ell = 0}$, whose associated flow defines a homeomorphism from $(X_{t_0} \cap {\ell = 0}) \setminus P'_{t_0}$ to $(X_{t_0} \cap {\ell = 0}) \setminus \{0\}$ that extends to a continuous map from $X_{t_0} \cap {\ell = 0}$ to $X_0 \cap {\ell = 0}$

and that sends P'_{t_0} to {0} (see Remark [33\)](#page-23-1). Notice that the vector field ζ'_{+} lifts a radial vector field in $\{0\} \times \mathbb{D}^+$ that goes to 0.

Set:

$$
\tilde{\mathcal{U}} := \phi^{-1}(\mathcal{U}) \cap X^+.
$$

Since *U* is a cone over a contractible space, we can extend the collapsing vector field ζ'_{+} to a integrable vector field ζ_U on U , tangent to each stratum of its interior, and that lifts a radial vector field in $\{0\} \times \mathbb{D}^+$ that goes to 0. Notice that the flow given by the vector field $\zeta_{\mathcal{U}}$ sends the intersection $P'_{t_0} \cap U$ to {0}, where $P'_{t_0} = P_{t_0} \cap {\ell = 0}$.

Since each $B_j \setminus \{0\}$ is a stratified topological locally trivial fibration over $\mathbb{D}^+ \setminus \{0\}$, one can also construct a rugose vector field $\vec{\sigma}_i$ on $\vec{B}_i \setminus \{0\}$ that trivializes it over $\mathbb{D}^+ \setminus \{0\}$ and that is tangent to the intersection of the polar curve Γ with $\mathcal{B}_i \setminus \{0\}$ (which is the set of the points $x_i(t) \in \mathcal{B}_i$ for $t \in \mathbb{D}^+\setminus\{0\}$.

Then, using a partition of unity $(\rho_{\mathcal{U}}, \rho_1, \ldots, \rho_k)$ adapted to $\mathcal{U}, \mathcal{B}_1, \ldots, \mathcal{B}_k$, we glue all the vector fields $\vec{\sigma}_j$'s and $\zeta_{\mathcal{U}}$ together. We obtain a continuous trivializing vector field:

$$
\vec{\sigma} := \rho \vec{v} \vec{\zeta} u + \sum_{j=1}^{k} \rho_j \vec{\sigma}_j
$$

in $X^+ \cap (\tilde{U} \cup_{j=1}^k \mathcal{B}_j)$ such that:

- it is tangent on each stratum of the interior of $X^+ \cap (\tilde{U} \cup_{j=1}^k \mathcal{B}_j)$;
- it is rugose and hence integrable;
- it projects to a radial vector field in \mathbb{D}^+ that converges to 0.

So the flow associated to the vector field $\vec{\sigma}$ goes from $\tilde{X} \cap (\tilde{U} \cup_{j=1}^k B_j)$ to 0, and the action of this flow over \tilde{P} give the polyhedron P^+ .

7 Proof of Lemma [35:](#page-27-0) constructing the vector field *ϑ***-***t*

In this section we give the detailed construction of the vector field $\vec{\vartheta}_t$ on $X_t := \phi^{-1}(\mathbb{D}_{n_1} \times$ ${t}$) ∩ \mathbb{B}_{ϵ} of Lemma [35,](#page-27-0) whose flow gives a continuous, surjective and simplicial map $\tilde{\xi}_i$ from the boundary of the Milnor fiber $\partial X_t := \phi^{-1}(\mathbb{D}_{\eta_1} \times \{t\}) \cap \mathbb{S}_{\epsilon}$ to the polyhedron P_t constructed in the previous section, such that X_t is homeomorphic to the simplicial map cylinder of ξ_t .

Recall that we have fixed a linear form $\ell : \mathbb{C}^N \to \mathbb{C}$ that satisfies the conditions of Lemma [21.](#page-7-2) Then Γ is the polar curve of f relatively to ℓ at 0 and Δ is the polar discriminant of f relatively to ℓ at 0.

Also recall from Proposition [22](#page-9-0) that the map $\phi = (\ell, f)$ induces a stratified submersion (relatively to the stratification induced by the Whitney stratification S of X):

$$
\phi_{\vert} : \mathbb{B}_{\epsilon} \cap X \cap \phi^{-1}(\mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \backslash \Delta) \to \mathbb{D}_{\eta_1} \times \mathbb{D}_{\eta_2} \backslash \Delta.
$$

As before, fix $t \in \mathbb{D}_{\eta_2} \setminus \{0\}$ and take a point λ_t in $D_t := \mathbb{D}_{\eta_1} \times \{t\}$ such that $\lambda_t \notin$ $\{y_1(t), \ldots, y_k(t)\}\)$, where $\{y_1(t), \ldots, y_k(t)\} := \Delta \cap D_t$. Also, for each $j = 1, \ldots, k$, let $\delta(y_i(t))$ be a simple path in D_t starting at λ_t and ending at $y_i(t)$, such that two of them intersect only at λ_t . We defined the set $Q_t := \bigcup_{j=1}^k \delta(y_j(t))$.

Recall that in Lemma [25](#page-11-0) we constructed a Whitney stratification $\mathcal{Z} = (Z_{\beta})_{\beta \in B}$ of D_t (with the property (w)) and a continuous vector field \vec{v}_t on D_t such that:

- 1. It is non-zero on $D_t \backslash Q_t$;
- 2. It vanishes on Q_t ;
- 3. It is transversal to ∂D_t and points inwards;
- 4. It restricts to a rugose stratified vector field on the interior \mathring{D}_t of D_t (relatively to the stratification *Z*);
- 5. The associated flow q_t : $[0, \infty) \times (D_t \backslash Q_t) \rightarrow D_t \backslash Q_t$ defines a map:

$$
\xi_t : \partial D_t \longrightarrow Q_t \n u \longmapsto \lim_{\tau \to \infty} q_t(\tau, u),
$$

such that ξ_t is continuous, simplicial (as defined in Sect. [2.4\)](#page-6-1) and surjective.

After that, we considered a refinement $S'(t)$ of the Whitney stratification $S(t)$ (with the property (w)) induced by *S*, and we considered a refinement $\mathcal{Z}' = (Z'_\beta)_{\beta \in B'}$ of $\mathcal Z$ such that the restriction $\ell_t : X_t \to D_t$ of ℓ to the Milnor fiber X_t is a stratified map. So ℓ_t induces a stratified submersion:

$$
\varphi_t: X_t \backslash \ell_t^{-1} \big(\{ y_1(t), \ldots, y_k(t) \} \big) \to D_t \backslash \{ y_1(t), \ldots, y_k(t) \}.
$$

Finally, recall that we can apply the induction hypothesis to the restriction f' of f to the intersection $X \cap \{\ell = 0\}$, which has complex dimension $n - 1$. We obtain a vanishing polyhedron P_t' in the intersection $X_t \cap \{ \ell = 0 \}$ and a vector field ϑ'_t that deformation retracts it onto P'_t .

The vector field $\hat{\vartheta}_t$ is obtained by gluing several vector fields on X_t given by the lift of suitable vector fields on the disk D_t by φ_t . By Proposition [16,](#page-6-4) the resulting vector fields are rugose, and hence integrable.

Recall that the polyhedron P_t is the union of the wings C_j and that the polyhedron P'_t is given by the induction hypothesis (as in Sect. [6.1\)](#page-24-1). Moreover, each wing C_i consists of a collapsing cone P_j , a product R_j and the gluing polyhedron P'_j on P'_t , that is:

$$
C_j = P_j \cup R_j \cup P'_j.
$$

See Fig. [13.](#page-27-1)

Then it is natural that the construction of the vector field \vec{v}_t concerns at least three subsets of the Milnor fiber X_t : the points that are taken to $P'_t \backslash P'_j$ by the flow associated to ϑ_t ; the points that are taken to P'_j and the points that are taken to $C_j \backslash P'_j$. This justifies the complexity of the construction given below.

7.1 First step: decomposing *Dt*

Let q_t : $[0, \infty) \times \partial D_t \to D_t$ be the flow associated to the vector field \vec{v}_t defined in Lemma [25.](#page-11-0) Set:

$$
V := D_t - q_t([0, A) \times \partial D_t),
$$

for some $A \gg 0$, which is a closed neighborhood of Q_t whose boundary:

$$
\partial V = q_t(\{A\} \times \partial D_t)
$$

is transversal to each $\partial D_s(y_i(t))$, that is, the vector field \vec{v}_t is transversal to the boundary $\partial D_s(y_j(t))$ of each disk $D_s(y_j(t))$. See Fig. [15.](#page-32-0)

Then we will construct the vector field \vec{v}_t on X_t by gluing a vector field $\vec{\tau}$ in $\ell_t^{-1}(D_t \setminus V')$, where $V' := D_t - q_t([0, A'[\times \partial D_t), \text{ with } A' > A, A' - A \ll 1; \text{ and a vector field } \vec{v} \text{ in }$ $\ell_t^{-1}(V)$, using a partition of unity.

Fig. 15 The neighborhood *V*

Fig. 16 The branch *Vj*

The vector field $\vec{\tau}$ in $\ell_t^{-1}(D_t \backslash V')$ is a lifting of the vector field \vec{v}_t . It is transversal to the boundary of X_t , pointing inwards, and it restricts to a rugose stratified vector field on $\phi^{-1}(D_t \backslash V') \cap \mathring{\mathbb{B}}_{\epsilon}.$

The construction of the vector field \vec{v} in $\ell_t^{-1}(V)$ is much more complicated. We are going to do it in the rest of this subsection.

7.2 Second step: decomposing *V*

We first decompose *V* into "branches" V_i as follows: each "branch" V_i is a closed neighborhood of $\delta(y_i(t))\setminus\{0\}$ whose boundary is composed by $\partial V \cap V_i$ and two simple paths that one can suppose to be orbits of the vector field \vec{v}_t constructed above. See Fig. [16.](#page-32-1)

We will construct the vector field \vec{v} by gluing the vector fields \vec{v}_i that we are going to construct on each $\ell_t^{-1}(V_j)$. In other words, we will construct a vector field \vec{v}_j on $\ell_t^{-1}(V_j)$, for each *j* fixed, which is continuous, integrable, tangent to the strata of *S*, non-zero and smooth on $\ell_t^{-1}(V_j) \backslash C_j$, and zero on C_j , where C_j is the polyhedron defined in Sect. [6.1.](#page-24-1)

7.3 Third step: covering $\ell_t^{-1}(V_j)$ **by open sets** $W_{j,i}$

Fix $j \in \{1, ..., k\}$. The approach of the construction of each vector field \vec{v}_j will be the following: we will cover $\ell_t^{-1}(V_j)$ by open sets $W_{j,1}$, $W_{j,2}$, $W_{j,3}$ and $W_{j,4}$. Then we will

Fig. 17 The vector field $\vec{\omega}_i$

construct the vector fields $\vec{v}_{j,i}$ on $W_{j,i}$, for $i = 1, \ldots, 4$, in such a way that each orbit of the vector field \vec{v}_i obtained by gluing them with a partition of unity has a limit point in P_t .

As before, given positive real numbers *r* and *s*, let B_r denote the ball around $x_i(t)$ in \mathbb{C}^N of radius *r* and let D_s denote the disk around $y_i(t)$ in D_t of radius *s*.

Let *r* and *r'* be small enough positive real numbers such that $r' < r$ and $r - r' \ll 1$. Let *us cover* $\ell_t^{-1}(V_j)$ by the open sets $W_{j,1}$, $W_{j,2}$, $W_{j,3}$ and $W_{j,4}$ defined as follows:

$$
\bullet \ \ W_{j,1} := \ell_t^{-1}(\mathring{D}_s \cap \mathring{V}_j) \cap \mathring{B}_r
$$

and

•
$$
W_{j,2} := \ell_t^{-1}(\mathring{D}_s \cap \mathring{V}_j) \setminus B_{r'}.
$$

To define $W_{i,3}$ and $W_{i,4}$ we have to do a construction first. Set:

$$
W'_{j,3} := \ell_t^{-1}(\mathring{V}_j \backslash D_{s'}),
$$

where $s' < s$ and $s - s' \ll 1$.

We can construct a vector field $\vec{\omega}_i$ in $V_i \backslash \mathring{D}_{s'}$ which is smooth, non zero outside {0}, zero on {0}, with trajectories transversal to $\partial V \cap (V_i \backslash D_{s'})$ and to $\partial D_{s'} \cap V_j$, as in Fig. [17.](#page-33-0)

Since the Whitney stratification $S'(t)$ of X_t with the property (w) induces a Whitney stratification on $\ell_t^{-1}(V_j \setminus \mathring{D}_{s'})$ with the property (w) , and since the restriction of ℓ_t to $\ell_t^{-1}(V_j \setminus \mathring{D}_{s'}) \cap S_\alpha$ is a submersion for each $\alpha \in A$, we can lift $\vec{\omega}_j$ to a continuous vector field $\vec{\Omega}_j$ in $\ell_t^{-1}(V_j \setminus \mathring{D}_{s'})$ that is rugose, smooth and tangent to each stratum, and that trivializes $\ell_t^{-1}(V_j \backslash \mathring{D}_{s'})$ over $V_j \backslash \mathring{D}_{s'}$.

Recall that the induction hypothesis applied to the restriction of *f* to $X \cap {\ell = 0}$ gives a vanishing polyhedron P'_t in $X_t \cap \{ \ell = 0 \}$ and a vector field ϑ'_t that deformation retracts $X_t \cap \{ \ell = 0 \}$ onto P'_t .

Then one can transport the vector field \vec{v}'_t on $\ell_t^{-1}(0)$ to all the fibers $\ell_t^{-1}(u)$ for $u \in V_j \setminus \mathring{D}_{s'}$. This way we obtain a vector field \vec{V}_j in $\ell_t^{-1}(V_j \setminus \mathring{D}_{s'})$ which is integrable, tangent to each stratum of $\ell_t^{-1}(u) \cap \mathbb{B}_{\epsilon}$ and transversal to each stratum of $\ell_t^{-1}(u) \cap \mathbb{S}_{\epsilon}$, for any $u \in V_j \setminus \mathring{D}_{s'}$.

Now consider the vector field $\vec{\Upsilon}_j$ in $\ell_t^{-1}(V_j \backslash \mathring{D}_{s'})$ given by:

$$
\vec{\Upsilon}_j := \vec{\mathcal{V}}_j + \vec{\Omega}_j,
$$

 \mathcal{L} Springer

Fig. 18 The vector field \vec{v}_i

which is integrable, tangent to the strata of the stratification $S'(t)$, transversal to the strata of $\mathbb{S}_{\epsilon} \cap \ell_t^{-1}(V_j \setminus \mathring{D}_{s'})$, non-zero outside P'_t and zero on P'_t .

One can see (as in the case of the vector field \vec{k}_1 of Sect. [6.1\)](#page-24-1) that each orbit of the vector field Υ_j has a limit point in P'_i .

The orbits by the action of $\vec{\Upsilon}_j$ which intersect $\ell_t^{-1}(\mathring{V}_j \cap \partial D_s) \cap \mathring{B}_r$ define a set that we call $A(V_j, r)$. We set $W'_{j,4} := A(V_j, r)$ and:

•
$$
W_{j,4} := W'_{j,4} \cup W_{j,1}.
$$

Finally, the set $W_{i,3}$ is given by:

•
$$
W_{j,3} := W'_{j,3} \backslash A(V'_j, r'),
$$

where $r' < r$, with $r - r' \ll 1$, and $V'_j := D_t \setminus q_t([0, A'[\times \partial D_t), \text{with } A' < A \text{ and } A - A' \ll 1$. One can check that both $W_{j,3}$ and $\dot{W}_{j,4}$ are open sets.

7.4 Fourth step: constructing the vector fields $\vec{v}_{j,i}$

1. Construction of $\vec{v}_{i,1}$: We can consider a continuous vector field \vec{v}_i on V_i which is smooth and non-zero outside $\delta(y_i(t))$, zero on $\delta(y_i(t))$, transversal to ∂V_i and tangent to $\partial D_s \cap V_i$, like in Fig. [18](#page-34-0) (see the construction of the vector field \vec{v}_t of Lemma [25\)](#page-11-0).

Let D_s^+ be a semi-disk of D_s which contains $\delta(y_j(t)) \cap D_s$ in its interior. We will lift \vec{v}_j to a rugose vector field $\vec{\chi}_j$ in $\ell_t^{-1}(\mathring{D}_s \cap \mathring{V}_j) \cap B_r$, which is zero on $\ell_t^{-1}(\mathring{D}_s \cap \delta(y_j(t)))$, tangent to the strata of $S'(t)$ and of $\ell_t^{-1}(\mathring{D}_s \cap \mathring{V}_j) \cap S_r$, where $S_r := \partial B_r$, in the following way:

• Recall that we can apply the induction hypothesis to the restriction:

$$
(\ell_t)_|:\ell_t^{-1}(D_s^+\cap \mathring{D}_s\cap \mathring{V}_j)\cap \mathring{B}_r\to D_s^+\cap \mathring{D}_s\cap \mathring{V}_j,
$$

which has an isolated singularity at $x_j(t)$ in the stratified sense, since $\ell_t^{-1}(D_s^+\cap \mathring{D}_s\cap \mathring{V}_j)$ has complex dimension $n - 1$, where *n* is the dimension of *X*.

• Then we obtain a collapsing vector field $\vartheta_+(j)$ and a collapsing cone P_j^+ . Let:

$$
q_j:[0,+\infty[\times(\ell_t^{-1}(\stackrel{\circ}{D_{s}}+\cap\stackrel{\circ}{V_j})\cap S_r)\to \ell_t^{-1}(\stackrel{\circ}{D_{s}}+\cap\stackrel{\circ}{V_j})\cap B_r
$$

 $\circled{2}$ Springer

be the flow associated to $\vec{\theta}_+(j)$ and set:

$$
P_j(u) := q_j(\{u\} \times \ell_t^{-1}(\stackrel{\circ}{D_{s}}^{\dagger} \cap \mathring{V}_j) \cap S_r),
$$

where $u > 0$.

- The Whitney stratification $S'(t)$ induces a Whitney stratification of $P_j(u)$ (see Lemma [6](#page-3-2) and notice that $P_j(0) = \ell_t^{-1} (D_s^+ \cap V_j) \cap S_r$ is the intersection of $\ell^{-1} (D_s^+ \cap V_j)$ with the stratified space $X_t \cap S_r$). Moreover, the restriction of ℓ_t to each stratum has maximum rank. So by Proposition [16](#page-6-4) we can lift the vector field \vec{v}_j over $\vec{D_s^+} \cap \vec{V}_j$ to a rugose stratified vector field that is tangent to the strata of $P_j(u)$.
- On the other hand, for any point in $\ell_t^{-1}((\mathring{D}_s \setminus \mathring{D}_s^+) \cap \mathring{V}_j)$ we just ask the vector field $\vec{\chi}_j$ to be tangent to the strata of $S'(t)$ and to lift \vec{v}_j . This can be done locally and then $\vec{\chi}_j$ is obtained by a partition of unity.

Notice that at any point of $\mathring{B}_r \cap \ell_t^{-1}(\mathring{D}_s^+ \cap \mathring{V}_j) - \{x_j(t)\}\$ and at any point of $(\mathring{B}_r \backslash B_{r'}) \cap$ $\ell_t^{-1}((\mathring{D}_s \setminus D_s^+) \cap \mathring{V}_j)$, for $r' < r$ with $r - r' \ll 1$, one can extend the vector field $\mathring{\theta}_+(j)$ on a small open neighborhood. Now we construct $\vec{v}_{j,1}$ as follows:

- Over a small open neighborhood $U_{x_i(t)}$ of $x_j(t)$, consider the zero vector field.
- For any $z \in \mathring{B}_r \cap \ell_t^{-1}(D_s^+ \cap \mathring{D}_s \cap \mathring{V}_j) \setminus \{x_j(t)\}\)$, take an open neighborhood U_z of *z* small enough such that it does not contain $x_j(t)$, it is contained in $\mathring{B}_r \cap \ell_t^{-1}(\mathring{D}_s \cap \mathring{V}_j)$ and $\vec{\theta}_+(j)$ is well defined on it. Then in U_z we define the vector field:

$$
\vec{l}_z := \vartheta_+(j)|_{U_z} + \vec{\chi}_j|_{U_z},
$$

where $\vec{\vartheta}_+(j)|_{U_z}$ and $\vec{\chi}_j|_{U_z}$ denote the restrictions of the vector fields $\vec{\vartheta}_+(j)$ and $\vec{\chi}_j$, respectively, to the neighborhood U_z . This vector field is rugose, tangent to the strata of $S'(t)$, non-zero outside the intersection of U_z and P_j and zero on $P_j \cap U_z$, where:

$$
P_j := P_j^+ \cap \ell_t^{-1}(\delta(y_j(t))).
$$

• For any $z \in \mathring{B}_{r'} \cap \ell_t^{-1}((\mathring{D}_s \setminus D_s^+) \cap V_j)$, take a small open neighborhood U_z of *z* and set

 $\vec{\iota}_z := \vec{\chi}_i|_{U_z}.$

• For any $z \in (\mathring{B}_r \setminus B_{r'}) \cap \ell_t^{-1}((\mathring{D}_s \setminus D_s^+) \cap V_j)$, take a small open neighborhood U_z of z contained in $(\mathring{B}_r \backslash B_{r'}) \cap \ell_t^{-1}((\mathring{D}_s \backslash D_s^+) \cap V_j)$ and set:

$$
\vec{\iota}_z := \vec{\vartheta}_+(j)_{|U_z} + \vec{\chi}_j|_{U_z}.
$$

• Then considering a partition of unity (ρ_z) associated to the covering (U_z) , we set the vector field:

$$
\vec{v}_{j,1} := \sum \rho_z \vec{\iota}_z
$$

in ℓ_t^{-1} ($\mathring{D}_s \cap \mathring{V}_j$)∩ \mathring{B}_r , which is continuous, rugose outside the point *x*_j(*t*) (and therefore in $W_{j,1} \setminus P_j$), tangent to the strata of $S'(t)$, non-zero outside P_j and zero on $P_j \cap (l_t^{-1} (\mathring{D}_s \cap I))$ (\mathring{V}_j)) $\cap \mathring{B}_r$.

• Notice that if $z \in \ell_t^{-1}(\mathring{D}_s \setminus D_s^+) \cap \mathring{B}_r$, its orbit by $\mathring{v}_{j,1}$ has $\{x_j(t)\}\$ as limit point, and the orbit by $\vec{v}_{j,1}$ of a point $z \in \ell_t^{-1}(D_s^+) \cap \mathring{B}_r$ has its limit point in P_j .

Fig. 19 The vector field $\vec{\eta}_i$

2. Construction of $\vec{v}_{i,2}$: Consider a smooth non-zero vector field $\vec{\eta}_i$ in $\vec{V}_i \cap \vec{D}_s$ as Fig. [19](#page-36-0) and such that, for any $u \in \mathring{V}_i \cap \mathring{D}_s$ one has the following implication:

$$
\lambda \vec{v}_j(u) + \mu \vec{\eta}_j(u) = 0, \ \lambda \ge 0, \ \mu \ge 0 \implies \lambda = \mu = 0,
$$

where \vec{v}_i is the vector field defined above.

Then $\vec{v}_{j,2}$ is a lifting of $\vec{\eta}_j$ in $W_{j,2}$, which is rugose vector field, tangent to the strata of $S'(t)$ and of $\ell_t^{-1}(\mathring{D}_s) \cap S_r$.

- 3. Construction of $\vec{v}_{i,3}$: We set $\vec{v}_{i,3}$ to be the restriction of the vector field $\vec{\Upsilon}_j$ constructed above to $W_{i,3}$.
- 4. Construction of $\vec{v}_{j,4}$: Recall the vector field $\vec{\vartheta}_+(j)$ in $\ell_t^{-1}(D_s^+) \cap \mathring{B}_r$, obtained by the induction hypothesis, and restrict it to $\ell_t^{-1}(\partial D_s \cap \mathring{V}_j)$. Then transport it by the action of the vector field Υ_j . We obtain a vector field $\vec{\sigma}$ on $W'_{j,4}$ that is rugose and tangent to the strata of $S'(t)$.

Over $W_{j,4} = W'_{j,4} \cup W_{j,1}$, the vector fields $\vec{\sigma}$ and $\vec{v}_{j,1}$ glue in a vector field $\vec{v}_{j,4}$ that is continuous, rugose and non-zero on $W_{i,4} \backslash P_t$. The orbits of the points of $W_{i,4}$ by $\vec{v}_{i,4}$ has limit points in P_t .

7.5 Fifth step: gluing all the vector fields to obtain ϑ_t

Now, considering ρ_2 , ρ_3 and ρ_4 a partition of unity associated to $W_{j,2}$, $W_{j,3}$ and $W_{j,4}$, we obtain the vector field:

$$
\vec{v}_j := \rho_2 \vec{v}_{j,2} + \rho_3 \vec{v}_{j,3} + \rho_4 \vec{v}_{j,4}
$$

in $\ell_t^{-1}(\hat{V}_j)$, which is continuous, rugose, non-zero on $\ell_t^{-1}(V_j)\backslash P_t$ and zero on P_t .

Gluing these vector fields \vec{v}_j , for $j = 1, \ldots, k$, we get the vector field \vec{v} .

Finally, gluing the vector field \vec{v} in $\ell_t^{-1}(V)$ and the vector field $\vec{\tau}$ in $\ell_t^{-1}(D_t \setminus V')$ con-structed in Section [6.1,](#page-24-1) we obtain a continuous vector field $\hat{\vartheta}_t$ in X_t with the properties (i) to (v) of Proposition [35.](#page-27-0) We just have to check that the orbits of this vector field have a limit point when the parameter goes to infinity:

(a) If $z \in \ell_t^{-1}(D_t \setminus V')$, the orbit of *z* arrives to $W_{j,2} \cup W_{j,3} \cup W_{j,4}$ after a finite time. (b) If $z \in W_{i,2}$, the orbit of *z* arrives to $W_{i,3} \cup W_{i,4}$ after a finite time.

- (c) If $z \in W_{j,3} \setminus W_{j,4}$, it has a limit point on $\bigcup_{j=1}^{k} C_j$.
- (d) If $z \in W_{j,4} \setminus W_{j,3}$, it has a limit point on P'_t .
- (e) If $z \in W_{i,3} \cap W_{i,4}$, we have that the orbit passing through *z* has a limit point that is the limit point by $\vec{\Upsilon}_i$ of the limit point of the orbit of *z* by $\vec{\sigma}$. Hence this limit point is on $P'_{j} = P'_{t} \cap C_{j}$.

References

- 1. Bertini, E.: Introduction to the Projective Geometry of Hyperspaces. Messina (1923)
- 2. Bertini, E.: Algebraic surfaces. Proc. Steklov Inst. Math. **75** (1967) (Trudy Mat. Inst. Steklov **75** (1965))
- 3. Brodersen, H., Trotman, D.: Whitney (b)-regularity is weaker than Kuo's ratio test for real algebraic stratifications. Math. Scand. **45**(1), 27–34 (1979)
- 4. Cheniot, D.: Sur les sections transversales d'un ensemble stratifié. C. R. Acad. Sci. Paris Sér. A-B **275**, A915–A916 (1972)
- 5. Cisneros-Molina, J.L., Seade, J., Snoussi, J.: Refinements of Milnor's fibration theorem for complex singularities. Adv. Math. **222**(3), 937–970 (2009)
- 6. Greuel, G.-M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer Monographs in Mathematics. Springer, Berlin (2007)
- 7. Hironaka, H.: Subanalytic sets, number theory, algebraic geometry and commutative algebra. In: Honor of Yasuo Akizuki, pp. 453–493. Kinokuniya (1973)
- 8. Houzel, C.: Geométrie analytique locale. Sémin. Henri Cartan **13**(2), 1–12 (1960–1961)
- 9. Lê, D.T.: Calcul du nombre de cycles évanouissants d'une hypersurface complexe. Ann. Inst. Fourier (Grenoble) **23**(4), 261–270 (1973)
- 10. Lê, D.T.: Vanishing cycles on complex analytic sets, various problems in algebraic analysis. In: Proc. Sympos., Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1975. Sûrikaisekikenkyûsho Kókyûroku No. 266, pp. 299–318 (1976)
- 11. Lê, D.T.: Some remarks on relative monodromy, real and complex singularities. In: Proc. 9th Nordic Summer School/NAVF Sympos. Math., Oslo, 1976, pp. 397–403. Sijthoff and Noordhoff, Alphen aan den Rijn (1977)
- 12. Lê, D.T.: Le concept de singularité isolée de fonction analytique. In: Complex Analytic Singularities. Adv. Stud. Pure Math. **8**, pp. 215–227. North-Holland, Amsterdam (1987)
- 13. Lê, D.T.: Polyèdres Évanescents et Effondrements, A fête of Topology. Academic, Boston (1988). pp. 293–329
- 14. Lê, D.T., Teissier, B.: Cycles evanescents, sections planes et conditions de Whitney. II. In: Singularities, Part 2. Proc. Sympos. Pure Math. **40**, pp. 65–103. Amer. Math. Soc., Arcata (1981)
- 15. Mather, J.: Notes on topological stability. Bull. Am. Math. Soc. **49**(4), 475–506 (2012)
- 16. Milnor, J.W.: Singular Points of Complex Hypersurfaces. Ann. of Math. Studies **61**, Princeton (1968)
- 17. Munkres, J.R.: Elements of Algebraic Topology. Perseus Books Pub., New York (1993)
- 18. Munkres, J.R.: Topology, 2nd edn. Pearson, Upper Saddle River (2000)
- 19. Pham, F.: Formules de Picard–Lefschetz généralisées et ramification des intégrales. Bull. Soc. Math. Fr. **93**, 333–367 (1965)
- 20. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. In: Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), pp. 285–362. Asterisque, Nos. 7 et 8, Soc. Math. (1973)
- 21. Teissier, B.: Variétés polaires II. Multiplicités polaires, sections planes et conditions de Whitney. Lecture Notes in Math. **961**. Springer, Berlin (1982)
- 22. Verdier, J.L.: Stratifications de Whitney et théorème de Bertini–Sard. Inv. Math. **36**, 295–312 (1976)
- 23. Whitney, H.: Tangents to an analytic variety. Ann. Math. (2) **81**, 496–549 (1965)