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Abstract We consider Abelian-by-cyclic groups for which the cyclic factor acts by hyper-
bolic automorphisms on the Abelian subgroup.We show that if such a group acts faithfully by
C1 diffeomorphisms of the closed interval with no global fixed point at the interior, then the
action is topologically conjugate to that of an affine group. Moreover, in case of non-Abelian
image,we show a rigidity result concerning themultipliers of the homotheties, despite the fact
that the conjugacy is not necessarily smooth. Some consequences for non-solvable groups
are proposed. In particular, we give new proofs/examples yielding the existence of finitely-
generated, locally-indicable groups with no faithful action by C1 diffeomorphisms of the
interval.
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920 C. Bonatti et al.

1 Introduction

1.1 General panorama

The dynamics of (non-)solvable groups of germs of diffeomorphisms around a fixed point
is an important subject that has been studied by many authors in connexion to foliations and
differential equations. There is, however, a natural group-theoretical aspect of this study of
large interest. In this direction, the classification of solvable groups of diffeomorphisms in
dimension 1 has been completed, at least in large regularity: see [7,17] for the real-analytic
case and [31] for the C2 case; see also [3,32] for the piecewise-affine case. (For the higher-
dimensional case, see [1,23].)

In theC1 context, this issue was indirectly addressed by Cantwell and Conlon [9]. Indeed,
although they were interested on problems concerning smoothing of some codimension-1
foliations, they dealt with a particular one for which the holonomy pseudo-group turns to
be the Baumslag–Solitar group. In concrete terms, they proved that a certain natural (non-
affine) action of BS(1, 2) on the closed interval is non-smoothable. Later, using the results
of topological classification of general actions of BS(1, 2) on the interval contained in [35],
the whole1 picture was completed in [19]: every C1 action of BS(1, n) on the closed interval
with no global fixed point inside is semiconjugate to the standard affine action.

Cantwell–Conlon’s proof uses exponential growth of the orbit of certain intervals to yield
a contradiction (such a behaviour is impossible close to a parabolic fixed point). This clever
argument was later used in [28] to give a counter-example to the converse of the Thurston
stability theorem: there exists a finitely-generated, locally indicable2 group with no faithful
action byC1 diffeomorphisms of the interval. (See also [8].) As we will see, the relation with
Thurston’s stability arises not only at the level of results. Indeed, althoughCantwell–Conlon’s
argument is very different, an arsenal of techniques close to Thurston’s that may be applied
in this context and related ones (see e.g. [23]) was independently developed in [4] (see also
[5]). The aim of this work is to put together all these ideas (and to introduce new ones) to get
a quite complete picture of all possible C1 actions of a very large class of solvable groups,
namely the Abelian-by-cyclic ones. We will show that these actions are rigid provided the
cyclic factor acts hyperbolically on the Abelian subgroup, and that this rigidity disappears in
the non-hyperbolic case.

The idea of relating a certain notion of hyperbolicity (or at least, of growth of orbits)
to C1 rigidity phenomena for group actions on 1-dimensional spaces has been proposed—
though not fully developed—by many authors. This is explicitly mentioned in [28], while it
is implicit in the examples of [36]. More evidence is provided by the examples in [10,13,
30] relying on the original constructions of Pixton [33] and Tsuboi [39]. All these works
suggest that actions with orbits of (uniformly bounded) subexponential growth should be
always C1-smoothable3 (compare [9, Conjecture 2.3]) and realizable in any neighborhood
of the identity/rotations [25]. Despite this evidence and the results presented here, a complete
understandingof all rigidity phenomena arising in this context remains far frombeing reached.

1 Some of the results of this work strongly complements this. For instance, as we state below, the semi-
conjugacy is necessarily a (topological) conjugacy, which means that the semiconjugating map is actually a
homeomorphism.
2 Recall that a group is said to be locally indicable if every nontrivial, finitely-generated subgroup has a
surjective homomorphism onto Z. Every such group admits a faithful action by homeomorphisms of the
interval provided it is countable; see [29].
3 Actually, they should be C1+τ -smoothable in case of polynomial growth, with τ depending on the degree
of the polynomial; see [10,12,21,26].
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Rigidity for C1 actions on the interval arising from… 921

More generally, the full picture of groups of homeomorphisms that can/cannot act faithfully
by C1 diffeomorphisms remains obscure. A particular case that is challenging from both the
dynamical and the group-theoretical viewpoints can be summarized in the next

Question 1.1 What are the subgroups of the group of piecewise affine homeomorphisms of
the circle/interval that are topologically conjugate to groups of C1 diffeomorphisms ?

For simplicity, in this work, all actions are assumed to be by orientation-preserving maps.

1.2 Statements of results

Given a matrix A = (αi, j ) ∈ Md(Z) ∩ GLd(R), d ≥ 1, let us consider the meta-Abelian
group GA with presentation

GA :=
〈
a, b1, . . . , bd | bi b j = b j bi , abia

−1 = b
α1,i
1 , . . . , b

αd,i
d

〉
. (1)

It is known that every finitely-presented, torsion-free, Abelian-by-cyclic group has this form
[2] (see also [14]).

It is quite clear that Md(Z) ∩ GLd(R)⊂GLd(Q). In particular, the group GA above is
isomorphic to a subgroup of Z �A Q

d . In a slightly more general way, from now on we
consider A ∈ GLd(Q) and H an A±1-invariant subgroup of Q

d with rankQ(H) = d (recall
that rankQ(H), the Q-rank of H , is the smallest d ′ such that H embeds into Q

d ′ ), and we let
G = Z �A H .

Proposition 1.2 Suppose that the matrix A ∈ GLd(Q) is Q-irreducible and that the Q-rank
of H ⊂ Q

d equals d. Then Z �A H has a faithful affine action on R if and only if A has a
positive real eigenvalue.

Next, we assume that A has all its eigenvalues of norm �= 1. Our main result is the
following

Theorem 1.3 Assume A ∈ GLd(Q) has no eigenvalue of norm 1, and let G be a subgroup
of Z�A Q

d of the form G = Z�A H, where rankQ(H) = d. Then every representation of G
into Diff1+([0, 1]) whose image group admits no global fixed point in (0, 1) is topologically
conjugate to a representation into the affine group.

For the proof of Theorem 1.3, let us begin by considering an action of a general group G
as above by homeomorphisms of [0, 1]. We have the next generalization of [35, §4.1]:

Lemma 1.4 Let G be a group as in Theorem 1.3. Assume that G acts by homeomorphisms
of the closed interval with no global fixed point in (0, 1). Then either there exists b ∈ H
fixing no point in (0, 1), in which case the action of G is semiconjugate to that of an affine
group, or H has a global fixed point in (0, 1), in which case the element a ∈ G acts without
fixed points inside (0, 1).

In virtue of this lemma, the proof of Theorem 1.3 reduces to the next two propositions.

Proposition 1.5 LetG beagroupas inTheorem1.3.Assume thatG acts by homeomorphisms
of [0, 1] with no global fixed point in (0, 1). If the subgroup H acts nontrivially but has a
global fixed point inside (0, 1), then the action of G cannot be by C1 diffeomorphisms.

Proposition 1.6 Let G be a group as in Theorem 1.3. Then every action of G by C1 diffeo-
morphisms of [0, 1] with no global fixed point in (0, 1) and having non-Abelian image is
minimal on (0, 1).
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922 C. Bonatti et al.

The structure theorem for actions is complemented by a result of rigidity for themultipliers
of the group elements mapping into homotheties. More precisely, we prove

Theorem 1.7 Let G = Z�A H be a group as in Theorem 1.3, with a ∈ G being the generator
of Z (whose action on H is given by A). Assume that G acts by C1 diffeomorphisms of [0, 1]
with no fixed point in (0, 1) and the image group is non-Abelian. Then the derivative of a at
the interior fixed point coincides with the ratio of the homothety to which a is mapped under
the homomorphism of G into the affine group given by Theorem 1.3. More generally, for each
k �= 0 and all b ∈ H, the derivative of akb at its interior fixed point equals the kth-power of
the ratio of that homothety.

Besides several consequences of the preceding theorem given in the next section, there is
an elementary one of particular interest. Namely, if we consider actions as in Theorem 1.3 but
allowing the possibility of global fixed points in (0, 1), then only finitely many components
of the complement of the set of these points are such that the action restricted to them has
non-Abelian image. Otherwise, the element a would admit a sequence of hyperbolic fixed
points, all of them with the same multiplier, converging to a parabolic fixed point, which is
absurd.

Another consequence of the previous results concerns centralizers. For simplicity, we
just give an statement involving the Baumslag–Solitar’s group, yet a more general version
certainly holds for groups as in Theorem 1.3.

Proposition 1.8 The centralizer inside Diff1+([0, 1]) of a subgroup G isomorphic to
BS(1, 2) := 〈g, h : ghg−1 = h2〉 is contained in the group of diffeomorphisms having
support in the complement of the support of h. In particular, if G has no global fixed point
in the interior, then its centralizer is trivial.

Indeed, let I be a closed interval in [0, 1] restricted to which the action of h has no global
fixed point in the interior. We need to show that every element f of the centralizer of G
fixes I and acts trivially on it. To do this, first notice that, by Theorem 1.3, the group G
fixes I , and its action on it is topologically conjugate to that of an affine group. Therefore,
if f fixes I , then by commutativity it must fix the unique fixed point of g inside I . Again
by commutativity, the set of fixed points of f is G-invariant, and since the G-orbits inside
I are dense, we conclude that f acts trivially on I . If f does not fix I , then it moves it into
a disjoint interval, so that I, f (I ), f 2(I ), . . . are infinitely many pairwise disjoint intervals
restricted to which the G-action has non-Abelian image, which was shown to be impossible
just after the statement of Theorem 1.7.

Theorem 1.7 could lead one to think that the topological conjugacy to the affine action is
actually smooth at the interior.4 (Compare [37].) Nevertheless, a standard application of the
Anosov–Katok technique leads to C1 (faithful) actions for which this is not the case. As we
will see, in higher regularity, the rigidity holds: if r ≥ 2, then for every faithful action by Cr

diffeomorphisms with no interior global fixed point, the conjugacy is a Cr diffeomorphism
at the interior. It seems to be an interesting problem to try to extend this rigidity to the class
C1+τ . Another interesting problem is to construct actions by C1 diffeomorphisms that are
conjugate to actions of non-Abelian affine groups though they are non-ergodic with respect
to the Lebesgue measure. (Compare [22].)

The hyperbolicity assumption for the matrix A is crucial for the validity of Theorem 1.3.
Indeed, Abelian groups of diffeomorphisms acting nonfreely (as those constructed in [39])

4 In general, the conjugacy above is not smooth at the endpoints even in the real-analytic case: see [7] for a
very complete discussion on this.
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Rigidity for C1 actions on the interval arising from… 923

provide easy counter-examples with all eigenvalues equal to 1. A more delicate construction
leads to the next.

Theorem 1.9 Let A ∈ GLd(Q) be non-hyperbolic and Q-irreducible. Then G := Z �A Q
d

admits a faithful action byC1 diffeomorphisms of the closed interval that is not semiconjugate
to an affine one though has no global fixed point in (0, 1).

This work is closed by some extensions of our main theorem to actions by C1 diffeomor-
phisms of the circle. Roughly, we rule out Denjoy-like actions in class C1 for the groups G
above, though such actions may arise in the continuous cathegory (and also in the Lipschitz
one; see [27, Proposition 2.3.15]). In particular, we have:

Theorem 1.10 Let G be a group as in Theorem 1.3. Assume that G acts by C1 diffeomor-
phisms of the circle with non-Abelian image. Then the action admits a finite orbit.

This theorem clarifies the whole picture. Up to a finite-index subgroup G0, the action has
global fixed points. The group G0 can still be presented in the form Z �Ak H0 for a certain
k ≥ 1; as Ak is hyperbolic, and application of Theorem 1.3 to the restriction of the action of
G0 to intervals between global fixed points shows that these are conjugate to affine actions.
Thus, roughly, G is a finite (cyclic) extension of a subgroup of a product of affine groups
acting on intervals with pairwise disjoint interior.Moreover, only finitelymany of these affine
groups can be non-Abelian. (Otherwise, by Theorem 1.7, there would be accumulation of
hyperbolic fixed points of ak with the same multiplier towards a parabolic fixed point.)

To conclude, let us mention that the examples provided by Theorem 1.9 can be adapted to
the case of the circle. More precisely, if A ∈ GLd(Q) is non-hyperbolic and Q-irreducible,
then G := Z �A Q

d admits a faithful action by C1 circle diffeomorphisms having no finite
orbit.

1.3 Some comments and complementary results/examples

Although the results presented so far only concern certain solvable groups, they lead to
relevant results for other classes of groups. Let us start with an almost direct consequence of
Theorem 1.7. For any pair of positive integers m, n, let BS(1,m; 1, n) be the group defined
by

BS(1,m; 1, n) := 〈a, b, c | aba−1 = bm, aca−1 = cn
〉 = BS(1,m) ∗〈a〉 BS(1, n).

In other words, the subgroups generated by a, b and a, c are isomorphic to BS(1,m) and
BS(1, n), respectively, and no other relation is assumed.

Notice that every element ω ∈ BS(1,m; 1; n) can be written in a unique way as ω =
akω0, where k ∈ Z and ω0 belongs to the subgroup generated by b, c and their roots. One
easily deduces that BS(1,m; 1, n) is locally indicable, hence it admits a faithful action by
homeomorphisms of the interval (see the second footnote in page 1). However, it is easy
to give a more explicit embedding of BS(1,m; 1, n) into Homeo+([0, 1]). Indeed, start
by associating to a a homeomorphism f without fixed points in (0, 1). Then choose a
fundamental domain I of f and homeomorphisms g0, h0 supported on I and generating a
rank-2 free group. Finally, extend g0 and h0 into homeomorphisms g, h of [0, 1] so that
f g f −1 = gm and f h f −1 = hn hold. Then the action of B(1,m; 1, n) defined by associating
g to b and h to c is faithful.

In what concerns smooth actions of BS(1,m; 1, n) on the interval, we have:
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924 C. Bonatti et al.

Theorem 1.11 Let m, n be distinct positive integers. Given a representation of B(1,m; 1, n)

into Diff1+([0, 1]), let us denote by f, g, h the images of a, b, c, respectively. Then, the
interiors of the supports of g and h are disjoint. In particular, g and h commute, hence the
action is not faithful.

Proof The supports of g and h consist of unions of segments bounded by successive non-
repelling fixed points of f ; in particular, any two of these segments either coincide or have
disjoint interior. If one of these segments is contained in the support of g (resp., h), then
Theorem 1.7 asserts that its interior contains a unique hyperbolically-repelling fixed point of
f with derivative equal to m (resp., n). Since m �= n, the open segments in the supports of g
and h must be disjoint. ��
Remark 1.12 Theorem 1.11 admits straightforward generalizations replacing the Baumslag–
Solitar groups BS(1,m) and BS(1, n) by groups associated (as in Theorem 1.3) to matrices
A and B that are hyperbolically expanding (i.e. with every eigenvalue of modulus > 1) and
have distinct eigenvalues.

Below we give two other results in the same spirit. The first of these is new, whereas the
second is already known though our methods provide a new and somewhat more conceptual
proof. More sophisticated examples will be treated elsewhere.

Let us consider the group Gλ,λ′ generated by the transformations of the real-line

c : x → x + 1, b : x → λx, a : x → sgn(x)|x |λ′ ,
where λ, λ′ are positive numbers. These groups are known to be non-solvable for certain
parameters λ′. Indeed, if λ′ is a prime number, then the elements a and c generate a free
group (see [11]).

Theorem 1.13 For all integers m, n larger than 1, the group Gm,n does not embed into the
group C1 diffeomorphisms of the closed interval.

Proof Assume that Gm,n can be realized as a group of C1 diffeomorphisms of [0, 1]. Then
Theorem 1.3 applies to both subgroups 〈b, c〉 and 〈a, b〉 (which are isomorphic to BS(1,m)

and BS(1, n), respectively). Let us consider a maximal open subinterval I = (x0, x1) that is
invariant under c and where the dynamics of c has no fixed point. The relation bcb−1 = cm

shows that the action of b on I is nontrivial. Proposition 1.5 then easily implies that b preserves
I , and by Theorem 1.3, the restriction of the action of 〈b, c〉 to I is conjugate to an affine
action. Let y be the fixed point of b inside I . As before, the relation aba−1 = bn forces a to
fix all points x0, y, x1; moreover, the actions of 〈a, b〉 on both intervals (x0, y) and (y, x1) are
conjugate to affine actions. Finally, notice that the relation aba−1 = bn forces the derivative
of b to be equal to 1 at y. However, this contradicts Theorem 1.7 when applied to 〈b, c〉. ��

As another application of our results, we give an alternative proof of a theorem from [28]:

Theorem 1.14 If � is a non-solvable subgroup of SL2(R), then � � Z
2 does not embed into

Diff1+([0, 1]).
Proof Since � is non-solvable, it must contain two hyperbolic elements A, B generating a
free group. Theorem 1.3 applied to Z �A Z

2 ⊂ � � Z
2 implies that the action restricted

to 〈A, Z
2〉 is topologically conjugate to an affine action with dense translation part on each

connected component I fixed by 〈A, Z
2〉 and containing no point that is globally fixed by

this subgroup. As B normalizes Z
2, it has to be affine in the coordinates induced by this
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Rigidity for C1 actions on the interval arising from… 925

translation part. As a consequence, the action of � � Z
2 is that of an affine group on each

interval I as above. We thus conclude that the action factors throughout that of a solvable
group, hence it is unfaithful. ��
Remark 1.15 It is not hard to extend the previous proof to show that � � Z

2 does not embed
into the group of C1 diffeomorphisms of neither the open interval nor the circle. (Compare
[28, §4.2] and [28, §4.3], respectively.)

Remark 1.16 All groups discussed in this section are locally indicable. We thus get different
infinite families of finitely-generated, locally-indicable groups with no faithful actions byC1

diffeomorphisms of the closed interval. The existence of such groups was first established in
[28]; the examples considered therein correspond to those of Theorem 1.14.

2 On affine actions

Before passing to proofs, let usmake an important remark. So far, in all statements concerning
groups of the formZ�AH , theQ-rank of H is assumed to bemaximal. Therefore,wemayfix a
Q-basis b1, . . . , bd ofQ

d made of elements in H . More importantly, since all conditions to be
imposed on A (if any) are invariant under conjugacy, up to changing A by a conjugate matrix
in GLd(Q), we may assume that b1, . . . , bd is the canonical basis of Q

d . This assumption
will be made in order to simplify specific computations.

In this section, we prove Proposition 1.2. To simplify, vectors (t1, . . . , td) ∈ R
d will be

denoted horizontally, though must be viewed as vertical ones. We begin with

Proposition 2.1 Given A ∈ GLd(Q), let G be a subgroup of Z �A Q
d of the form Z �A H,

where H contains the canonical basis {b1, . . . , bd} ofQd (so that, in particular, rankQ(H) =
d).

(i) If (t1, . . . , td) ∈ R
d is an eigenvector of the transpose AT with eigenvalue λ ∈ R+\{1},

then there exists a homomorphism ψ : G → Aff+(R) with non-Abelian image defined
by ψ(bi ) := Tti and ψ(a) := Mλ, where Tt and Mλ stand for the translation by an
amplitude t and the multiplication by a factor λ, respectively. This homomorphism is
injective if and only if {t1, . . . , td} is a Q-linearly-independent subset of R.

(ii) Every homomorphism ψ : G → Aff+(R) with non-Abelian image is conjugate to one
as those described in (i).

Proof The first claim of item (i) is obvious. For the other claim, notice that injectivity of ψ

is equivalent to injectivity of its restriction to H . We let a be the generator of the Z-factor
of G. Assume there is an element b ∈ H mapping into the trivial translation. This element
writes as b = bβ1

1 , . . . , bβd
d ∈ H for certain β, . . . , βd in Q. Then we have

∑
i βi ti = 0,

which implies that the ti ’s are linearly dependent over Q. Conversely, assume
∑

i βi ti = 0
holds for certan rational numbers βi that are not all equal to zero. Up to multiplying them by
a common integer factor, we may assume that such a relation holds with all βi ’s integer. Then
b := bβ1

1 , . . . , bβd
d is a nontrivial element of H mapping into the trivial translation under ψ .

For (ii), suppose ψ : G → Aff+(R) is a homomorphism with non-Abelian image. Then
we have

{id} � ψ([G,G]) ⊆ [Aff+(R),Aff+(R)] = {Tt , t ∈ R}.
Fix b ∈ [G,G] such that ψ(b) is a nontrivial translation. As b ∈ H , we have that ψ(b)
commutes with every element in ψ(H). Therefore, ψ(H) is a subgroup of the group of
translations.
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926 C. Bonatti et al.

Let t1, . . . , td in R be such that ψ(bi ) = Tti . As ψ(G) is non-Abelian, we have ψ(a) =
Tt Mλ for certain λ �= 1 and t ∈ R. We may actually suppose that t = 0 just by conjugating
ψ by T t

λ−1 . Then, if we choose k ∈ N so that all kαi, j belong to Z, for each i ∈ {1, . . . , d}
we have

Tλkti = ψ(a)ψ(bki )ψ(a)−1 = ψ
(
(abia

−1)k
) = ψ

(
b
kα1,i
1 , . . . , b

kαd,i
d

)
= Tkα1,i t1+...+kαd,i td .

Thus, λti = α1,i t1 + · · · + αd,i td , which implies that (t1, . . . , td) is an eigenvector of AT

with eigenvalue λ. ��
Remark 2.2 The preceding proposition implies in particular that if AT has no real eigenvalue,
then there is no representation of G in Aff+(R) with non-Abelian image. As a consequence,
due to Theorem 1.3, if moreover the eigenvalues of AT all have modulus different from 1,
then every representation of G in Diff1+([0, 1]) has Abelian image.

As a matter of example, given positive integers m, n, let A be the matrix

A = Am,n :=
(
m −n
n m

)
.

Then the group G(m, n) := Z �A Q
2 has no injective representation into Diff1+([0, 1]).

Notice that each of these groups G(m, n) is locally indicable. Hence, this produces still
another infinite family of finitely-generated, locally-indicable groups with no faithful action
by C1 diffeomorphisms of the closed interval. (Compare Remark 1.16.)

In view of the discussion above, the proof of Proposition 1.2 is closed by the next

Lemma 2.3 Suppose that thematrix A ∈ GLd(Q) isQ-irreducible. Ifλ ∈ R is an eigenvalue
of AT and v := (t1, . . . , td) ∈ R

d is such that AT v = λv, then {t1, . . . , td} is a Q-linearly-
independent subset of R.

Proof If v is an eigenvector of AT , then the subspace v⊥ ⊆ R
d is invariant under A. Since

A is Q-irreducible, we have v⊥ ∩ Q
d = {0}. Therefore, if v := (t1, . . . , td) and β1, . . . , βd

in Q verify β1t1 + · · · + βd td = 0, then we have β1 = · · · = βd = 0. ��

3 On continuous actions on the interval

In this section, we deal with actions by homeomorphisms. The proof below was given in [35]
for the Baumslag–Solitar group B(1, 2). As we next see, the argument can be adapted to the
group G.

Proof of Lemma 1.4 Assume that H has a global fixed point x . Then the a-orbit of x is made
up of global fixed points of H . Therefore, this a-orbit has to accumulate at both 0 and 1, which
means that a has no fixed point in (0, 1). Indeed, otherwise this a-orbit would accumulate into
a common fixed point x∗ ∈ (0, 1) of both H and a, which would mean that x∗ is G-invariant,
which is against our assumption.

We next show that if G acts by homeomorphisms of [0, 1] in such a way that H admits no
global fixed point on (0, 1), then the action is semiconjugate to that of an affine group. To do
this, we let N ⊆ H be the set of elements having a fixed point inside (0, 1). As H is Abelian,
N is easily seen to be a subgroup. We claim that N is strictly contained in H . Indeed, let
{b1, . . . , bd} ⊂ H be a Q-basis of Q⊗ H . We affirm that one of these generators bi has no
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Rigidity for C1 actions on the interval arising from… 927

fixed point. Indeed, if b1 has no fixed point, then we are done. Otherwise, let x1 be a fixed
point of b1. If b2 has no fixed point, then we are done. Otherwise, let x2 be a fixed point of
b2. If x2 is fixed by b1, then we have found a common fixed point x∗ := x2. If not, then either
b1(x2) or b

−1
1 (x2) is closer to x1 than x2. In the former case, let x∗ := limn→∞ bn1(x2), and

in the latter case, let x∗ := limn→−∞ bn1(x2). By commutativity, we have that x∗ is fixed
by both b1 and b2 in each case. Now repeating this argument finitely many times, we will
detect a common fixed point for all the elements bi provided each of them has a fixed point.
Nevertheless, this common fixed point will be fixed by all rational powers of the generators,
hence by all elements in H , which is contrary to our assumption.

We now claim that there is an H -invariant infinite measure ν on (0, 1) that is finite on
compact subsets. (Actually, this follows from [27, Proposition 2.2.48], but we repeat the
argument here because is so simple.) Indeed, let h ∈ H be an element having no fixed point
in (0, 1). Then H/〈h〉 naturally acts on the space (0, 1)/∼, where the equivalence relation
∼ corresponds to being in the same orbit under h. As h is fixed-point free, (0, 1)/∼ is
topologically a circle. Since H/〈h〉 is Abelian, its action on this topological circle preserves
a probability measure. This measure lifts to a measure ν on (0, 1) that is finite on compact
sets and is invariant under H .

We next claim that ν has no atoms, and that it is unique up to scalar multiple. Indeed, by
[34] (see also [31, §2.4.5]), this holds whenever H/N is not isomorphic to Z, and this is the
case here because N is AT -invariant and AT has no eigenvalue of modulus 1.

Now, as H is normal in G, we have that a∗(ν) is also invariant by H . (Remind that, by
definition, a∗(μ)(S) := μ(a−1(S)).) By uniqueness, this implies that a∗(ν) = λν for some
λ ∈ R>0. More generally, for every g ∈ G, there exists λg ∈ R>0 such that g∗(ν) = λgν.
The map g → λg is a homomorphism from G into R

∗
>0. It is then easy to check that the map

ψ : G → Aff+(R), g → ψg , defined by

ψg(x) := 1

λb
x + ν

([1/2, b(1/2)])

is a representation, where ν([q, p]) := −ν([p, q]) for q > p. Indeed, for f, g ∈ G, we have

ψ f g(x) = 1

λ f

(
1

λg
x + μ

([ f −1(1/2), g(1/2)])
)

= 1

λ f

(
1

λg
x + μ

([1/2, g(1/2)])+ μ
([ f −1(1/2), 1/2])

)

= 1

λ f

(
1

λg
x + μ

([1/2, g(1/2)])
)
+ μ
([1/2, f (1/2)])

= ψ f ◦ ψg(x).

Moreover, the map F : R → R defined by F(x) := ν([1/2, x]) semiconjugates the action of
G with ψ . Indeed,

F(g(x)) = μ
([1/2, g(x)])

= μ
([g(1/2), g(x)])+ μ

([1/2, g(1/2)])
= g−1∗ μ

([1/2, x])+ μ
([1/2, g(1/2)])

= 1

λg
F(x)+ μ

([1/2, g(1/2)])

= ψg
(
F(x)

)
,

as desired. ��
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In the statement of Lemma 1.4, the semiconjugacy is not necessarily a conjugacy. This
easily follows by applying a Denjoy-like technique replacing the orbit of a single point by
that of a wandering interval. See also Theorem 4.8 below, where this procedure is carried out
smoothly on the open interval.

4 On C1 actions on the interval

4.1 All actions are semiconjugate to affine ones

In this section, we show Proposition 1.5. Suppose for a contradiction that for an action of
G by C1 diffeomorphisms of [0, 1] without global fixed points in (0, 1), the subgroup H
acts nontrivially on (0, 1) but having a fixed point inside. For each x ∈ (0, 1) which is not
fixed by H , let us denote by Ix the maximal interval containing x such that H has no fixed
point inside. Since G has no global fixed point in (0, 1) and H is normal in G, we must have
an(Ix )∩ Ix = ∅ for all n �= 0. In particular, Ix is contained in (0, 1). Moreover, a has no
fixed point in (0, 1), and up to changing it by its inverse, we may suppose that a(z) > z for all
z ∈ (0, 1). Notice that the set of fixed points of H is invariant under a, hence it accumulates
at both endpoints of [0, 1].

The rough idea now is, for a point x not fixed by H as above, to apply a−1 iteratively at x
and examine the behavior of an appropriately defined displacement vector (see (2) below).
Our first lemmata (4.2 to 4.4) build the groundwork needed to show that the direction of
this vector nearly converges along a subsequence (Lemma 4.5). That A is hyperbolic then
implies that, along this subsequence, the magnitude of the vector is uniformly expanded
(Lemma 4.7), giving a contradiction.

To implement the strategy above, we first recall a useful tool that arises in this context,
namely, there is an H -invariant infinite measure μx supported on Ix which is finite on
compact subsets. This measure is not unique, but independently of the choice, we can define
the translation number homomorphism τμx : H → R by τμx (h) := μx ([z, h(z))) (This value
is independent of z ∈ Ix .) The kernel Kx of this homomorphism coincides with the set of
elements of H having fixed points inside Ix ; see [27, Section 2.2.5] for all of this.

From now on, as explained at the beginning of Sect. 2, we let {b1, . . . , bd} be the canonical
basis of Q

d , which (with no loss of generality) we assume to be contained in H . Although
unnatural, this choice equips R ⊗ H with an inner product, which yields to the following
crucial notion.

Definition 4.1 For every Ix as above, we define the translation vector �τμx ∈ R
d as the

unit vector (with respect to the max norm) pointing in the direction (t1, . . . , td), where
ti := μx ([z, bi (z))).

In the sequel, we will denote �τμx simply by �τx . We have

Lemma 4.2 The directions of �τa−1(x) and AT �τx coincide.
Proof Since a∗(μx ) (remind that a∗(ν)(S) := ν(a(S))) is an H -invariant measure on
Ia−1(x), by definition, we have that the i th entry of �τa−1(x) coincides with a∗(μx )

([a−1(x),
bi (a−1(x))

)
. Thus, this entry equals

μx
([x, abia−1(x)]

) = τμx (abia
−1)

= 1

k
τμx (ab

k
i a
−1)
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Rigidity for C1 actions on the interval arising from… 929

= 1

k
τμx

(
b
kα1,i
1 b

kα2,i
2 , . . . , b

kαi,d
d

)
.

Choosing k so that all kαi, j belong to Z, this yields

μx
([x, abia−1(x)]

) = 1

k

d∑

j=1
kα j,iτμx (b j ) =

d∑

j=1
α j,i �τx (b j ),

as desired. ��
We now state our main tool to deal with C1 diffeomorphisms. Roughly, it says that diffeo-

morphisms that are close-enough to the identity in the C1 topology behave like translations
under composition. For each δ > 0, we denote Uδ(id) the neighborhood of the identity in
Diff1+([0, 1]) given by

Uδ(id) :=
{
f ∈ Diff1+([0, 1]) : sup

z∈[0,1]
∣∣Df (z)− 1

∣∣ < δ
}
.

Proposition 4.3 [4] For each η > 0 and all k ∈ N, there exists a neighborhood U of the
identity in Diff1+([0, 1]) such that for all f1, . . . , fk in U, all ε1, . . . , εk in {−1, 1} and all
x ∈ [0, 1], we have

∣∣∣[ f εk
k ◦, . . . , ◦ f ε1

1 (x)− x] −
∑

i

εi ( fi (x)− x)
∣∣∣ ≤ ηmax

j

{| f j (x)− x |}.

Proof First of all, observe that if g ∈ Diff1+([0, 1]) satisfies |Dg(z)−1| < λ for all z ∈ [0, 1],
then for all x, y,

∣∣(g(x)− x)− (g(y)− y)
∣∣ < λ|x − y|.

Next, notice that for every f ∈ Uδ(id) and all x ∈ [0, 1], there exists y ∈ [0, 1] such that
∣∣( f −1i (x)− x)− (x − fi (x))

∣∣ = ∣∣( fi (x)− x)− ( fi ( f
−1
i (x))− f −1i (x))

∣∣

= ∣∣Dfi (y)− 1
∣∣ · ∣∣x − f −1i (x)

∣∣

≤ δ|x − f −1i (x)|.

Using this, it is not hard to see that we may assume that εi = 1 for all i .
We proceed by induction on k. The case k = 1 is trivial. Suppose the lemma holds up

to k − 1, and choose δ > 0 so that the lemma applies to any k − 1 diffeomorphisms in the
neighborhoodU = Uδ(id) for the constant η/2. We may suppose δ is small enough to verify
δ(k − 1+ η/2) < η/2. Now take f1, . . . , fk in Uδ(id) and x ∈ [0, 1]. Then the value of the
expression

∣∣∣ fk ◦ · · · ◦ f1(x)− x −
k∑

i=1
( fi (x)− x)

∣∣∣

is smaller than or equal to

∣∣∣ fk ◦ · · · ◦ f1(x)− fk−1 ◦ · · · ◦ f1(x)−( fk(x)− x)
∣∣∣+
∣∣∣ fk−1 ◦ · · · ◦ f1(x)− x−

k−1∑

i=1
( fi (x)− x)

∣∣∣.

Now notice that, by the inductive hypothesis, the second term in the sum above is bounded
from above by η/2max j | f j (x) − x |. Moreover, the observation at the beginning of the
proof and the inductive hypothesis yield
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∣∣ fk( fk−1 ◦ · · · ◦ f1(x))− fk−1 ◦ · · · ◦ f1(x)− ( fk(x)− x)
∣∣ ≤ δ

∣∣ fk−1 ◦ · · · ◦ f1(x)− x
∣∣

≤ δ

(
k−1∑

i=1
| fi (x)− x | + ε

)

,

with ε < η/2max j | f j (x) − x |. By the choice of δ, the last expression is bounded from
above by η/2max j | f j (x)− x |, thus finishing the proof. ��

We next deduce some consequences from this proposition. To do this, first recall that
the set of global fixed points of H accumulate at both endpoints of [0, 1]. Hence, given an
element b ∈ H , for each δ > 0, there is σ1 > 0 which is fixed by H and such that b restricted
to [0, σ1] belongs to the Uδ(id)-neighborhood of the identity in Diff1+([0, σ1]) (the latter
group is being identified with Diff1+([0, 1]) just by rescaling the interval). Similarly, there
is σ2 > 0 such that 1 − σ2 is fixed by H and b restricted to [1 − σ2, 1] belongs to the
Uδ(id)-neighborhood of the identity in Diff1+([1− σ2, 1]).

For x ∈ [0, 1], let us consider the displacement vector �(x) defined by

�(x) := (b1(x)− x, . . . , bd(x)− x
) ∈ R

d , (2)

and let us denote by ‖�(x)‖ its max norm. Notice that ‖�(x)‖ ≤ 1 for all x ∈ [0, 1].
Lemma 4.4 For all r > 0, there exists σ > 0 such that

�(a−1(x)) = Da−1(0) AT�(x)+ ε(x) for all x ∈ (0, σ )

and

�(a(x)) = Da(1) (AT )−1�(x)+ ε̂(x) for all x ∈ (1− σ, 1),

where ‖ε(x)‖ ≤ r
(‖�(x)‖ + ‖�(a−1(x))‖) and ‖ε̂(x)‖ ≤ r

(‖�(x)‖ + ‖�(a−1(x))‖).
Proof Both assertions being analogous, we will prove only the first one. Let q ∈ N be such
that βi, j := qαi, j is an integer for each i, j . Let U be a neighborhood of the identity in
Diff1+([0, 1]) for which Proposition 4.3 holds for η > 0 and k ∈ N defined as

η := r

2D2 +maxi
∑

j |α j,i | and k := max
{
max
i

{∑

j

|β j,i |
}
, q
}
,

where D := supz max{Da(z), Da−1(z)}. Let σ > 0 be fixed by H such that the (renormal-
ized) restrictions to [0, σ ] of all the maps b j and ab ja−1, as well as their inverses, belong to
U , and such that |Da−1(z)− Da−1(0)| ≤ η holds for all z ∈ [0, σ ]. Then, by Proposition
4.3,

abqi a
−1(x)− x = (abia

−1)q(x)− x = q(abia
−1(x)− x)+ ri,1(x)

and

b
β1,i
1 , . . . , b

βd,i
d (x)− x =

∑

j

β j,i (b j (x)− x)+ ri,2(x),

where

|ri,1(x)| ≤ η
∣∣abia−1(x)− x

∣∣ and |ri,2(x)| ≤ ηmax
j

{|b j (x)− x |} = η‖�(x)‖.

Since

abqi a
−1 = b

β1,i
1 , . . . , b

βd,i
d ,
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we conclude that

q(abia
−1(x)− x)+ ri,1(x) =

∑

j

β j,i (b j (x)− x)+ ri,2(x),

hence

abia
−1(x)− x =

∑

j

α j,i (b j (x)− x)+ ri,2(x)− ri,1(x)

q
. (3)

The i-th entry of the vector �(a−1(x)) is

bia
−1(x)− a−1(x) = a−1abia−1(x)− a−1(x) = Da−1(zi )

(
abia

−1(x)− x
)
,

where the last equality holds for a certain point zi ∈ Ix . By (3) above, for x ∈ (0, σ ), this
expression equals

Da−1(zi )
∑

j

α j,i
(
b j (x)− x

)

up to an error ε̃i (x) satisfying

|ε̃i (x)| ≤ Da−1(zi ) · |ri,1(x)| + |ri,2(x)|
q

≤ 2Dηmax
{‖�(x)‖, |abia−1(x)− x |}.

Since

abia
−1(x)− x = a(bia

−1(x))− a(a−1(x)) = Da(z′i )
(
bia

−1(x))− a−1(x)
)

for a certain z′i ∈ Ia−1(x), we have

|ε̃i (x)| ≤ 2Dηmax
{‖�(x)‖, D‖�(a−1(x))‖} ≤ 2D2ηmax

{‖�(x)‖, ‖�(a−1(x))‖}.
Moreover, by the choice of σ , the value of Da−1(zi )

∑
j α j,i (b j (x)− x) equals

Da−1(0)
∑

j

α j,i (b j (x)− x)

up to an error bounded from above by

η

∣∣∣
∑

j

α j,i (b j (x)− x)
∣∣∣ ≤ η‖�(x)‖

∑

j

|α j,i |.

Summarizing, bia−1(x)−a−1(x) coincides with Da−1(0)
∑

j α j,i
(
b j (x)−x

)
up to an error

εi (x) satisfying

|εi (x)| ≤ 2D2ηmax
{‖�(x)‖, ‖�(a−1(x))‖}+ η‖�(x)‖

∑

j

|α j,i |.

By the choice of η, the last expression is smaller than or equal to r
(‖�(x)‖+‖�(a−1(x))‖),

which finishes the proof. ��
Before stating our next lemma, we observe that Lemma 4.2 and the compactness of the
unit sphere Sd−1 ⊂ R

d imply that for each point x0 not fixed by H , the vectors �τa−n(x0)
(resp., �τan(x0)) accumulate at some �τ ∈ Sd−1 (resp., �τ∗) as n →∞. For each n ∈ Z, we let
xn := a−n(x0), and we choose a sequence of positive integers nk such that �τxnk → �τ and
�τx−nk → �τ∗ as k →∞.
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Lemma 4.5 For every η > 0, there exists K such that k ≥ K implies

�(xnk )

‖�(xnk )‖
= �τ + ε(k) and

�(x−nk )
‖�(x−nk )‖

= �τ∗ + ε∗(k),

where ‖ε(k)‖ ≤ η and ‖ε∗(k)‖ ≤ η.

Proof Let H1 the subgroup of H generated by b1, . . . , bd . Up to passing to a subsequence
if necessary, there is b∗ ∈ {b1, . . . , bd} such that for all k,

|b∗(xnk )− xnk | = max
i

{|bi (xnk )− xnk |
}
.

Then the functions ψk : H1 → R defined by

ψk(b) = b(xnk )− xnk
b∗(xnk )− xnk

converge as k →∞ to a homomorphism ψ : H1 → R which is normalized, in the sense that
maxi |ψ(bi )| = 1. Indeed, this is the content of the Thurston’s stability theorem [38] (which
in its turn can be easily deduced from Proposition 4.3).

The vectors �τk and �τ naturally induce normalized homomorphisms from H intoR, namely
the normalized translation number homomorphisms, and their limit homomorphism. We
denote them by �τk and �τ , respectively. For these homomorphisms and any b, c in H , the
inequality �τ(b) < �τ(c) implies �τk(b) < �τk(c) for k larger than a certain K0, which implies
b(z) < c(z) for all z ∈ Ixnk and all k > K0. By evaluating at z = xnk , this yields
ψk(b) < ψk(c) for k > K0. Passing to the limit, we finally obtain ψ(b) ≤ ψ(c). As a
consequence, there must exist a constant λ for which �τ = λψ . Nevertheless, since both
homomorphisms are normalized (and point in the same direction), we must have λ = 1,
which yields the convergence of �(xnk )/‖�(xnk )‖ towards �τ . The second convergence is
proved in an analogous way. ��

Henceforth, and in many other parts of this work, we will use a trick due to Muller and
Tsuboi that allows reducing to the case where all group elements are tangent to the identity
at the endpoints. This is achieved after conjugacy by an appropriate homeomorphism that is
smooth at the interior and makes flat the germs at the enpoints. In concrete terms, we have:

Lemma 4.6 [24,40] Let us consider the germ at the origin of the local (non-differentiable)
homeomorphism ϕ(x) := sgn(x) exp(−1/|x |). Then for every germ of C1 diffeomorphism f
(resp. vector fieldX ) at the origin, the germ of the conjugate ϕ−1 ◦ f ◦ϕ (resp., push-forward
ϕ∗(X )) is differentiable and flat in a neighborhood of the origin.

We should stress, however, that although this lemma simplifies many computations, in
what follows it may avoided just noticing that, as Da is continuous, the element a behaves
like an affine map close to each endpoint.

Recall thatRd decomposes as Es⊕Eu , where Es (resp. Eu) stands for the stable (unstable)
subspace of AT . We denote by πs and πu the projections onto Es and Eu , respectively. We
let ‖ · ‖∗ be the natural norm on R

d associated to this direct-sum structure, namely,

‖v‖∗ := max{‖πs(v)‖, ‖πu(v)‖}.
Lemma 4.7 For any neighborhood V ⊂ Sd−1 of Eu ∩ Sd−1∗ in the unit sphere Sd−1∗ ⊂ R

d

(with the norm ‖ · ‖∗), there is σ > 0 such that for all x ∈ (0, σ ) not fixed by H,

�(x)

‖�(x)‖∗ ∈ V �⇒ �(a−1(x))
‖�(a−1(x))‖∗ ∈ V .
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Moreover, if V is small enough, then there exists κ > 1 such that

�(x)

‖�(x)‖∗ ∈ V �⇒ ‖�(a−1x)‖∗ ≥ κ‖�(x)‖∗.

Proof For the first statement, we need to show that for every prescribed positive ε < 1, for
points x close to the origin and not fixed by H , we have

‖πs�(a−1(x))‖
‖πu�(a−1(x))‖ < ε provided

‖πs�(x)‖
‖πu�(x)‖ < ε.

Let λ > 1 (resp., λ′ < 1) be such that the norm of nonzero vectors in Eu (resp., Es) are
expanded by at least λ (resp., contracted by at least λ′) under the action of AT . Choose a
positive r < ε small enough so that

1+ r

1− r

[
ελ′

λ− 2r
+ 2r

λ− 2r

]
≤ ε − r

1−r
1+ εr

1+r
. (4)

Consider a point x not fixed by H lying in the interval (0, σ ) given by Lemma 4.4. Then
from

‖πs�(a−1(x))‖ ≤ ‖πs A
T�(x)‖ + r

(‖�(x)‖ + ‖�(a−1(x))‖)

≤ λ′‖πs�(x)‖ + r‖πs�(x)‖ + r‖πu�(x)‖ + r‖πs�(a−1(x))‖
+ r‖πu�(a−1(x))‖

we obtain

‖πs�(a−1(x))‖ ≤ 1

1− r

[
λ′‖πs�(x)‖ + 2r‖πu�(x)‖ + r‖πu�(a−1(x))‖] . (5)

Similarly, from

‖πu�(a−1(x))‖ ≥ ‖πu A
T�(x)‖ − r

(‖�(x)‖ + ‖�(a−1(x))‖)

≥ λ‖πu�(x)‖ − 2r‖πu�(x)‖ − r‖πu�(a−1(x))‖ − r‖πs�(a−1(x))‖,

we obtain

‖πu�(a−1(x))‖ ≥ 1

1+ r

[
(λ− 2r)‖πu�(x)‖ − r‖πs�(a−1(x))‖] . (6)

Thus, letting α := ‖πs�(a−1(x))‖, β := ‖πu�(a−1(x))‖,

A := 1

1− r

[
λ′‖πs�(x)‖ + 2r‖πu�(x)‖] and B := (λ− 2r)‖πu�(x)‖

1+ r
,

we have that (5) and (6) translate into

α − βr

1− r
≤ A and β + αr

1+ r
≥ B,

and hence,

α
β
− r

1−r
1+ α

β
· r
1+r

≤ A

B
.

123



934 C. Bonatti et al.

But

A

B
= 1+ r

1− r

[
λ′

λ− 2r

‖πs�(x)‖
‖πu�(x)‖ +

2r

λ− 2r

]
<

1+ r

1− r

[
ελ′

λ− 2r
+ 2r

λ− 2r

]
.

Therefore, by the choice of r (see (4)), and the fact that x → x−c
1+cd is an increasing on x for

positive c, d , we obtain that α/β < ε, which shows the first assertion of the lemma.
To conclude the proof, notice that by the estimate (6) above,

(
1+ r

1+ r

)
‖�(a−1(x))‖∗ =

(
1+ r

1+ r

)
‖πu�(a−1(x))‖

≥ λ− 2r

1+ r
‖πu�(x)‖ = λ− 2r

1+ r
‖�(x)‖∗,

which shows the second assertion of the lemma for κ := (λ − 2r)/(1 + 2r) and r small
enough. ��

Nowwe can easily finish the proof of Proposition 1.5. To do this, choose a point x0 ∈ (0, 1)
that is not fixed by H . We need to consider two cases:

Case 1 �τx0 /∈ Es

In this case, we first observe that Lemma 4.2 implies that any accumulation point of �τan(x0)
(in particular, �τ )must belong to Eu . Let V be a small neighborhood around Eu∩Sd−1∗ in Sd−1∗
so that both statements of Lemma 4.7 hold. Then, by Lemma 4.5, the vector�(xk)/‖�(xk)‖∗
belongs to V starting from a certain k = K . This allows applying Lemma 4.7 inductively,
thus showing that for all n ≥ 0,

1 ≥ ‖�(xn+k)‖∗ ≥ κn‖�(xk)‖∗.
Letting n go to infinity, this yields a contradiction.

Case 2 �τx0 ∈ Es .
In this case, Lemma 4.2 yields �τ∗ ∈ Es . We then proceed as above but on a neighborhood

of 1 working with a instead of a−1 and with (AT )−1 instead of AT . Details are left to the
reader. (This requires for instance an analog of Lemma 4.7 for the dynamics close to 1.)

4.2 Minimality of affine-like actions

In this section, we begin by showing Proposition 1.6. Let φ : G → Diff1+([0, 1]) be a rep-
resentation with non-Abelian image. We know from Proposition 1.5 that φ is semiconjugate
to a representation ψ : G → Aff+([0, 1]) in the affine group. The elements in the com-
mutator subgroup [ψ(G), ψ(G)] are translations. In what follows, we will assume that the
right endpoint is topologically attracting for ψ(a), hence ψ(a) is conjugate to an homothety
x → λx with λ > 1 (the other case is analogous). Up to changing a by a positive power,
we may assume that λ ≥ 2. We fix b ∈ H such that ψ(b) is a non-trivial translation. Up to
changing b by its inverse and conjugating ψ by an appropriate homothety, we may assume
that ψ(b) = T1. We consider a finite system of generators of G that contains both a and b.

Suppose for a contradiction that φ(G) does not act minimally. Then there is an interval I
that is wandering for the action of [φ(G), φ(G)]. As before, wemay assume that Dφ(c)(1) =
1 for all c ∈ G. Fix ε > 0 such that (1− ε)3 > 1/2, and let δ > 0 be such that

1− ε ≤ Dφ(c)(x) ≤ 1+ ε for each c ∈ {a±1, b} and all x ∈ [1− δ, 1]. (7)

Clearly, we may assume that I ⊂ [1− δ, 1].
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Notice that ψ(a−kbak) = Tλ−k for all k ∈ Z. We consider the following family of
translations

h(εi ) := (a−nbεn an) · · · (a−2bε2a2)(a−1bε1a),

where (εi ) = (ε1, . . . , εn) ∈ {0, 1}n . These satisfy the following properties:

(i) We have that (εi ) �= (ε̃i ) implies h(εi ) �= h(ε̃i ): this easily follows from that λ ≥ 2.
(ii) We have φ(h(εi ))(1 − δ) ≥ 1 − δ: this follows from that φ(b) attracts towards 1 and

that εi ≥ 0 for all i .
(iii) The element h(εi ) = a−n(bεn a) · · · (bε2a)(bε1a) belongs to the ball of radius 3n in G.

In particular, due to (7) and the preceding claim, we have Dφ(b(εi ))(x) ≥ (1 − ε)3n

for all x ∈ [1− δ, 1].
Since for each c ∈ G there exists xI ∈ I for which |c(I )| = Dc(xI )|I | (where | · |

stands for the length of the corresponding interval), putting together the assertions above we
conclude

1 ≥
∑

(εi )

∣∣h(εi )(I )
∣∣ ≥ 2n(1− ε)3n |I | > 1,

where the last inequality holds for n large enough. This contradiction finishes the proof of
Proposition 1.6.

It should be emphasized that Proposition 1.6 is no longer true for C1 (even real-analytic)
actions on the real line (equivalently, on the open interval). Indeed, this issue was indirectly
adressed by Ghys and Sergiescu in [18, section III], as we next state and explain.

Theorem 4.8 [18] The Baumslag–Solitar group BS(1, 2) := 〈a, b | aba−1 = b2
〉
embeds

into Diff1+(R) via an action that is semiconjugate, but not conjugate, to the canonical affine
action and such that the element a∈ B(1, 2) acts with two fixed points.

Recall that BS(1, 2) is isomorphic to the group of order-preserving affine bijections of
Q2, where Q2 is the group of diadic rationals. Hence, every element in BS(1, 2) may be
though as a pair

(
2n, p

2q
)
, which identifies to the affine map

(
2n,

p

2q

)
: x → 2nx + p

2q
.

Notice that Q2 corresponds to the subgroup of translations inside BS(1, 2).
Next, following [18], we consider a homeomorphism f : R → R satisfying the following

properties:

(I) For every x ∈ R, we have f (x + 1) = f (x)+ 2.
(II) f (0) = 0.

Lemma 4.9 [18] The map θ f : p
2q ∈ Q2 → f −qTp f q ∈ Homeo+(R) is a well-defined

homomorphism.

Lemma 4.10 [18] The map
(
2n, p

2q
) ∈ BS(1, 2) → θ f (

p
2q ) ◦ f n ∈ Homeo+(R) is a group

homomorphism.

The homomorphism provided by the last lemma above will still be denoted by θ f . Notice
that θ f (a) = f .

Next, for 1 ≤ r ≤ ∞, ω, we impose a third condition on f :
(IIIr ) The map f is of class Cr .

We have
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936 C. Bonatti et al.

Lemma 4.11 [18] The image θ f (BS(1, 2)) is a subgroup of Diffr+(R).

We end with

Lemma 4.12 [18] Suppose that the function f has at least two fixed points. Then
θ f (BS(1, 2)) has an exceptional minimal set (i.e. a minimal invariant closed set locally
homeomorphic to the Cantor set).

To close this section, we point out that a similar construction can be carried out for all
Baumslag–Solitar’s groups BS(1, n) := 〈a, b | bab−1 = an

〉
. Roughly, we just need to

replace condition (I) by:
(I)n For every x ∈ R, we have f (x + 1) = f (x + n).

4.3 Rigidity of multipliers

We start by dealing with the Baumslag–Solitar group BS(1, 2). Let us consider a faithful
action of this group by C1 diffeomorphisms of the closed interval. We known that such an
action must be topologically conjugate to an affine action, hence to the standard affine action
given by a : x → 2x and b : x → x + 1. (It is not hard to check that all faithful affine
actions of B(1, 2) are conjugate inside Aff(R).) Let ϕ : (0, 1) → R denote the topological
conjugacy. Our goal is to show

Proposition 4.13 The derivative of a at the interior fixed point equals 2.

Proof For the proof, we let I := ϕ−1([0, 1]). Notice that for all positive integers n, N , the
intervals

(a−nbεn an) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I ), εi ∈ {0, 1},
have pairwise disjoint interiors. Indeed, these intervals are mapped by ϕ into the dyadic
intervals of length 1/2n contained in [N , N + 1]. For simplicity, we assume below that
both a and b have derivative 1 at the endpoints. (As before, this may be performed via the
Muller–Tsuboi trick; c.f. Lemma 4.6).

Assume first that Da(x0) < 2, where x0 is the interior fixed point of a. Then there are
C > 0 and ε > 0 such that for all n ≥ 1,

∣∣a−n(I )
∣∣ ≥ C

(
1

2
+ ε

)n
|I |.

Fix δ > 0 such that
(
1− δ

)3
(
1

2
+ ε

)
> 1/2. (8)

Let σ > 0 be small enough so that

Da(x) ≥ 1− δ, Da−1(x) ≥ 1− δ and Db(x) ≥ 1− δ for all x ∈ [1− σ, 1].
Finally, let N ≥ 1 be such that bN (x0) ≥ 1 − σ . Similarly to the proof of Proposition 1.6,
for such N and all n ≥ 1, we have for all choices εi ∈ {0, 1},
∣∣(a−nbεn an) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I )

∣∣ ≥ (1− δ)3nDC

(
1

2
+ ε

)n ∣∣I
∣∣,

where D := minx DbN (x). As there are 2n of these intervals, we have

1 ≥ 2n(1− δ)3nDC

(
1

2
+ ε

)n
|I |,
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Rigidity for C1 actions on the interval arising from… 937

which is impossible for a large-enough n due to (8).
Assume next that Da(x0) > 2. Then there are C ′ > 0 and ε′ > 0 such that for all n ≥ 1,

∣∣a−n(I )
∣∣ ≤ C ′

(
1

2
− ε′
)n

.

Fix δ′ > 0 such that
(
1+ δ′

)3
(
1

2
− ε′
)

< 1/2. (9)

Let σ ′ > 0 be small enough so that

Da(x) ≤ 1+ δ, Da−1(x) ≤ 1+ δ and Db(x) ≤ 1+ δ for all x ∈ [1− σ ′, 1].
Finally, let N ′ ≥ 1 be such that bN

′
(x0) ≥ 1−σ ′. Proceeding as before, we see that for such

N ′ and all n ≥ 1, we have for all choices εi ∈ {0, 1},
∣∣(a−nbεn an) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I )

∣∣ ≤ (1+ δ′)3nD′C ′
(1
2
− ε′
)n∣∣I
∣∣,

where D′ := maxx DbN (x). However, the involved intervals cover IN ′ := bN
′
(I ) =

ϕ−1
([N ′, N ′ + 1]). Thus,

|IN ′ | ≤ 2n(1+ δ′)3nD′C ′
(1
2
− ε′
)n∣∣I
∣∣,

which is again impossible for a large-enough n due to (9). ��

Remark 4.14 The action of the Baumslag–Solitar group by C1 diffeomorphisms of the real
line constructed in the preceding section can be easily modified into a minimal one for which
the derivative of a at the fixed point equals 1. Roughly, we just need to ask for the map f
along the construction to have a single fixed point, with derivative 1 at this point. This shows
that Theorem 1.7 is no longer true for actions by C1 diffeomorphisms of the open interval.

The preceding proposition corresponds to a particular case of Theorem 1.7 but illustrates
the technique pretty well. Below we give the proof of the general case along the same ideas.
First, as A is supposed to be hyperbolic, we know that the action of G is topologically
conjugate to an affine one. Moreover, Proposition 2.1 completely describes such an action:
up to a topological conjugacy ϕ, it is given by correspondences a → Mλ and hi → Tti ,
where (t1, . . . , td) is an eigenvector of A with eigenvalue λ. Up to conjugacy in Aff(R), we
may assume that one of the t ′i s equals 1, hence b := bi is sent into Tt := T1.

Next, we proceed as above, but with a little care. Notice that changing a by an integer
power if necessary, we may assume that λ ≥ 2.

Assume first that Da(x0) < λ, where x0 is the interior fixed point of a. Then there are
C > 0 and ε > 0 such that for all n ≥ 1,

∣∣a−n(I )
∣∣ ≥ C

(
1

λ
+ ε

)n
.

Fix δ > 0 such that (1 − δ)3( 1
λ
+ ε) > 1

λ
. Let σ > 0 be small so that Da(x) ≥ 1 − δ,

Da−1(x) ≥ 1 − δ and Db(x) ≥ 1 − δ hold for all x ∈ [1 − σ, 1]. Finally, let N ≥ 1 be
such that bN (x0) ≥ 1− σ . Given n ≥ 1, we consider for all choices εi ∈ {0, 1, . . . , [λ]}, the
intervals (a−nbεn an) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I ), where I is the preimage of [0, 1]
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under the topological conjugacy into the affine action. As before, we have for each such
choice

∣∣(a−nbεn an) · · · (a−2bε2a2)(a−1bε1a)bNa−n(I )
∣∣ ≥ (1− δ)3nDC

(
1

λ
+ ε

)n ∣∣I
∣∣,

where D := minx DbN (x). These intervals do not necessarily have pairwise disjoint interiors,
but their union covers I with multiplicity at most 2. As there are

([λ]+1
)n of these intervals,

we have

2 ≥ ([λ] + 1
)n

(1− δ)3nDC

(
1

λ
+ ε

)n
|I |,

which is impossible for large-enough n.
Assume next that Da(x0) > λ. Then there are C ′ > 0 and ε′ > 0 such that for all n ≥ 1,

∣∣a−n(I )
∣∣ ≤ C ′

(
1

λ
− ε′
)n

.

Fix δ′ > 0 such that (1+δ′)3( 1
λ
−ε′)< 1

λ
. Let σ ′ > 0 be small enough so that Da(x) ≤ 1+δ′,

Da−1(x) ≤ 1 + δ′ and Db(x)≤ 1 + δ′ hold for all x ∈ [1 − σ ′, 1]. Finally, let N ′ ≥ 1 be
such that bN

′
(x0) ≥ 1− σ ′. As before, given n ≥ 1, for all choices εi ∈ {0, 1, . . . , [λ]}, we

have

∣∣(a−nbεn an) · · · (a−2bε2a2)(a−1bε1a)bN
′
a−n(I )

∣∣ ≤ (1+ δ′)3nD′C ′
(
1

λ
− ε′
)n ∣∣I

∣∣,

where D′ := maxx DbN (x). These intervals cover IN ′ := bN
′
(I ) for each n ≥ 1. As there

are ([λ] + 1)n of these intervals, we have

|IN ′ | ≤
([λ] + 1

)n
(1+ δ′)3nDC

(
1

λ
− ε′
)n
|I |.

Although this is not enough to conclude, we notice that we may replace a by ak along the
preceding computations, now yielding

|IN ′ | ≤
([λk] + 1

)n
(1+ δ′)3nDC

(
1

λ
− ε′
)kn

|I |.

Choosing k large enough so that

([λk] + 1
) (1

λ
− ε′
)k

(1+ δ′)3 < 1

and then letting n go to infinity, this gives the desired contradiction.
We have hence showed that Da(x0) = λ. To show that the derivative of akb at the interior

fixed point equals λk for each k �= 0 and all b ∈ H , just notice that the associated affine
action can be conjugate in Aff(R) so that akb is mapped into Tλk . Knowing this, we may
proceed in the very same way as above.

4.4 On the smoothness of conjugacies

As we announced in the Introduction, actions by C1 diffeomorphisms are rarely rigid in
what concerns the regularity of conjugacies. In the context of non-Abelian affine actions of
finitely-generated groups, this is actually never the case, as it is shown by the next
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Rigidity for C1 actions on the interval arising from… 939

Proposition 4.15 Let G be a finitely-generated group of the form Z �A H, where A ∈
GLd(Q) and rankQ(H) = d. Then, every faithful action of G by C1 diffeomorphisms of
[0, 1] can be approximated in the C1 topology by actions by C1 diffeomorphism that are
topologically conjugate to it, but for which no Lipschitz conjugacy exists.

The proof of this proposition follows by a straightforward application of the Anosov–
Katok method. The reader is referred to [15,16] for a general panorama on this, yet the
construction we give below is self-contained. It is to be noticed that the only dynamical
properties that we need for the proposition above to hold are that G has a free orbit and its
centralizer inside the group of homeomorphisms of the line is trivial. Thus, the proposition
applies in many more situations. We start with an elementary lemma.

Lemma 4.16 There exists a family of C∞ diffeomorphisms ϕD
I : I → I between closed

intervals I , where D ≥ 1, that are infinitely tangent to the identity at the endpoints, satisfy
ϕD
I (m) = m and supx∈I DϕD

I (x) = DϕD
I (m) = D for the midpoint m of I , and such that

given ε > 0 and D̄ > 1, there exists δ > 0 such that for all y ∈ I and all D, D′ in [1, D̄]
satisfying 1− δ ≤ D/D′ ≤ 1+ δ, we have

1− ε <
DϕD

I (y)

DϕD′
I (y)

< 1+ ε.

Proof Let χ be a vector field on [−1, 1] which is infinitely flat at the endpoints, strictly
negative (resp. positive) on [−1, 0] (resp. [0, 1]), and satisfies χ(x) = x ∂

∂x in a neighborhood
of the origin. Then let ϕD[−1,1] be the flow associated to χ up to time T := log(D), so that

DϕD[−1,1](0) = D. Finally, for an interval I as in the statement, define ϕD
I to be the affine

conjugate of ϕD[−1,1]. Then the family {ϕD
I } satisfies all the desired properties, as the reader

may easily check. ��
Proof of Proposition 4.15 Start with any finitely-generated group G of C1 diffeomorphisms
of [0, 1] whose action at the interior is topologically conjugate to a non-Abelian affine group.
We will show that there exist homeomorphisms ϕ : [0, 1] → [0, 1] which are not Lipschitz
that conjugate G into groups of C1 diffeomorphisms that are arbitrarily close to G. This is
enough to prove the proposition since ϕ is the unique conjugacy between G and ϕGϕ−1. To
see this, let ψ : [0, 1] → [0, 1] be an arbitrary conjugacy between G and ϕGϕ−1, that is,
ψgψ−1 = ϕgϕ−1 holds for all g ∈ G. Then, ϕ−1ψg = gϕ−1ψ for all g ∈ G. But since
G is conjugated to a non-Abelian affine group, it must have trivial centralizer. Therefore,
ϕ−1ψ = id , thus ψ = ϕ.

Let η > 0, and fix a point x0 in (0, 1) having a free orbit by G, and fix also a finite
generating set of G. We will inductively construct a sequence of diffeomorphisms ϕk of
[0, 1], all fixing x0, in such a way that ϕ̃k := ϕ1 ◦ · · · ◦ ϕk satisfies:

(i)
∥∥ϕ̃k+1 − ϕ̃k

∥∥
C0 ≤ 1

2k
,

(ii)
∥∥ϕ̃k+1 ◦ c ◦ ϕ̃−1k+1 − ϕ̃k ◦ c ◦ ϕ̃−1k

∥∥
C1 ≤ η

2k
for each generator c,

(iii) x0 is fixed by ϕk ,
(iv) Dϕk(x0) > k/miny Dϕ̃k−1(y), and if we denote by Jk the connected component of

the set
{
x | Dϕk(x) > k/miny Dϕ̃k−1(y)

}
containing x0, then the support of ϕk+1 has

measure < |Jk |/2.
Assume for a while that we have performed this construction, and let us complete the

proof. By (i), we have that the sequence (ϕ̃k) converges to a homeomorphism ϕ̃∞. By (ii),
the sequence of the actions conjugated by ϕ̃k converge in the C1 topology to the action
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conjugated by ϕ̃∞, and this action is C1 close to the initial one. Due to (iii), each ϕ̃k fixes x0,
hence the same holds for ϕ̃∞. Finally, by (iv),

Dϕ̃k(x0) = Dϕ̃k−1(ϕk(x0)) · Dϕk(x0) ≥ min
y

Dϕ̃k(y) · Dϕk(x0) > k.

Besides, the derivative of ϕ̃k is larger than k on certain intervals that remain disjoint from
the supports of ϕk+1, ϕk+2, . . .. As a consequence, the limit homeomorphism ϕ̃∞ is not
Lipschitz. Because of the uniqueness of the conjugacy previously discussed, this implies that
G and ϕ̃∞Gϕ̃−1∞ cannot be conjugated by any Lipschitz homeomorphism.

To conclude the proof, we proceed to the construction of the sequence ϕk . The idea is to
inductively make ϕk+1 almost commute with the action of G conjugated by ϕ̃k along a very
small neighborhood of a large but finite part of the orbit of x0. More precisely, let us number
the points in the G-orbit of x0 as x0, x1, . . . so that xi is no further to the origin than x j in the
corresponding Schreier graph whenever i ≤ j . (Since x0 has free orbit, this Schreier graph is
actually isomorphic to the Cayley graph ofG.)We let di be the graph distance between xi and
the origin. (Hence, di ≤ d j for i ≤ j .) Denote xki := ϕ̃k−1(xi ), where by definition x1i = xi .
Assume that, for some positive integer �k , the support of ϕk consists of a collection of disjoint
intervals I k0 = ϕ̃−1k−1(J

k
0 ), . . . , I k�k = ϕ̃−1k−1(J

k
�k

), so that each xki lies in the interior of J ki and

x0 is the midpoint of I k0 and is fixed by ϕ̃k (hence xk0 = x0). Then ϕk+1 will be defined so that
its support consist of a collection of intervals I k+10 = ϕ̃−1k (J k+10 ), . . . , I k+1�k+1 = ϕ̃−1k (J k+1�k+1 ),

where each J k+1j contains xk+1j := ϕ̃k(x j ) in its interior and, for j ≤ �k , is a subset of (but

much smaller than) J kj , with x0 being themidpoint of I k+10 . (Notice that �k+1 is to be chosen.)
Moreover, we will ask that ϕk+1 fixes x0; see the figure below. Besides, if c is a generator
sending xi into x j for some 0 ≤ i ≤ j ≤ �k+1, then we will ask that c(I k+1i ) = I k+1j . If the

intervals I k+1i are chosen small enough, condition (i) above will certainly hold. The second
half of condition (iv) will be also ensured by this property. The most involved issue concerns
condition (ii).

To properly define the diffeomorphism ϕk+1, let

D̄ := k + 2

min Dϕ̃k(y)
and ε := η

Mk2k+1
, (10)

where

Mk := sup Dϕ̃k(y)

inf Dϕ̃k(y)
· sup Dc(y). (11)
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Rigidity for C1 actions on the interval arising from… 941

Fix δ > 0 provided by Lemma 4.16 applied to D̄ and ε above. Let d be a large-enough integer
so that

1 < D̄1/d ≤ 1+ δ.

Let �k+1 be such that all points at distance ≤ d to the origin in the orbit graph appear in
x0, . . . , x�k+1 . For instance, we can (and we will) take �k+1 as being the cardinal of the ball
B(d) of radius d centered at the origin in G. Then let ϕk+1 be the diffeomorphism whose

restriction to I k+1i coincides with ϕD
Ik+1i

, where D = D(i) = D̄1− di
d , and which is the identity

outside these intervals.We claim that this choice accomplishes our needs provided the lengths
of the intervals I k+1i are very small.

To show this, notice that the first half of condition (iv) directly follows from the construc-
tion. Indeed, since x0 is forced to be the midpoint of I k0 , the definition of D̄ yields

Dϕ̃k+1(x0) = D(ϕ̃k ◦ ϕk+1)(x0) = Dϕ̃k(ϕk+1(x0)) · D̄ ≥ k + 2 > k + 1.

To deal with property (ii), notice that

D(ϕ̃kcϕ̃
−1
k )(x) = Dϕ̃k(cϕ̃

−1
k (x))

Dϕ̃k(ϕ̃
−1
k (x))

Dc(ϕ̃−1k (x))

and

D(ϕ̃k+1cϕ̃−1k+1)(x) =
Dϕ̃k(ϕk+1cϕ−1k+1ϕ̃

−1
k (x))

Dϕ̃k(ϕ̃
−1
k (x))

Dϕk+1(cϕ−1k+1ϕ̃
−1
k (x))

Dϕk+1(ϕ−1k+1ϕ̃
−1
k (x))

Dc(ϕ−1k+1ϕ̃
−1
k (x)).

Using the continuity of Dϕ̃k and Dc, and choosing I k+1i sufficiently small, we may ensure
that
∣∣∣∣∣
Dϕ̃k(cϕ̃

−1
k (x))

Dϕ̃k(ϕ̃
−1
k (x))

Dc(ϕ̃−1k (x))− Dϕ̃k(ϕk+1cϕ−1k+1ϕ̃
−1
k (x))

Dϕ̃k(ϕ̃
−1
k (x))

Dc
(
ϕ−1k+1ϕ̃

−1
k (x)

)
∣∣∣∣∣
≤ η

2k+1
.

We are hence left to check that the factor

Dϕk+1(cϕ−1k+1ϕ̃
−1
k (x))

Dϕk+1(ϕ−1k+1ϕ̃
−1
k (x))

(12)

can be made close to 1 so that it lies between 1−ε and 1+ε. Indeed, via a triangle inequality
and using (10) and (11), such an estimate would imply the desired upper bound

∥∥D(ϕ̃k+1 ◦ c ◦ ϕ̃−1k+1)− D(ϕ̃k ◦ c ◦ ϕ̃−1k )
∥∥
C0 ≤ η

2k
.

To show the claimed estimate, let y := ϕ−1k+1ϕ̃
−1
k (x). If neither y nor c(y) belong to some

of the intervals I k+1i , then ϕk+1 is the identity in neighborhoods of y and c(y), thus the
expression (12) obviously equals 1. If y belongs to some I k+1i but c(y) does not belong to
any of such intervals, then xi belongs to B(d) but c(xi ) does not, hence the distance of xi to

x0 in the orbit graph must be equal to d . Therefore, due to the definition of D(i) as D̄1− di
d ,

we have that ϕk+1 is still the identity in a neighborhood of y, hence the expression (12) still
equals 1. The same occurs whenever c(xi ) lies in B(d) but xi does not.

Finally, assume that y lies in I k+1i and c(xi ) = x j is such that di ≤ d j ≤ �k+1, hence
c(I k+1i ) = I k+1j . (The case d j ≤ di ≤ �k+1 is analogous.) Let c̄ be the affine map sending

I k+1i into I k+1j . Then the expression (12) equals
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Dϕk+1(c(y))
Dϕk+1(y)

=
Dϕ

D( j)

I k+1j
(c̄(y))

Dϕ
D(i)

I k+1i
(y)

·
Dϕ

D( j)

I k+1j
(c(y))

Dϕ
D( j)

I k+1j
(c̄(y))

.

Now, as c̄ is affine on I k+1i and sends this interval into I k+1j , it also transforms by conjugacy

the map ϕD
Ik+1i

into ϕD
Ik+1j

. Since our choice of constants allows applying Lemma 4.16, this

yields that the first factor in the expression above strictly lies between 1 − ε and 1 + ε.
We claim that the second factor can be made arbitrarily close to 1 by choosing I k+1i small
enough, thus yielding condition (ii) of the Proposition. To see this, notice that, if we denote
the affine map sending [0, 1] into I k+1j by ψ , then using the equality

ϕ
D( j)

I k+1j
= ψ ◦ ϕ

D( j)
[0,1] ◦ ψ−1

we obtain

Dϕ
D( j)

I k+1j

(
c(y)
)

Dϕ
D( j)

I k+1j

(
c̄(y)
) =

Dϕ
D( j)
[0,1]
(
ψ−1(c(y))

)

Dϕ
D( j)
[0,1]
(
ψ−1(c̄(y))

) .

Now, because of the uniform upper bound D( j) ≤ D̄, we are reduced to showing that, by
choosing I k+1i small enough, the points ψ−1(c(y)) and ψ−1(c̄(y)) become very close. To
check this, letting ȳ be the left endpoint of I k+1i , we have (remind that both Dψ and Dc̄ are
constant)

∣∣ψ−1(c(y))− ψ−1(c̄(y))
∣∣ = Dψ−1

∣∣∣∣

∫ y

ȳ
[Dc(t)− Dc̄] dt

∣∣∣∣

≤ 1

|I k+1j |
∫ y

ȳ
max
t∈I k+1i

∣∣Dc(t)− Dc̄
∣∣

= |I k+1i |
|I k+1j | max

t∈I k+1i

∣∣Dc(t)− Dc̄
∣∣

≤ 1

mins Dc(s)
max
t∈I k+1i

∣∣Dc(t)− Dc̄
∣∣,

and the last expression can be made arbitrarily small by choosing |I k+1i | very small due to
the continuity of Dc and the Mean Value Theorem. ��

Next, we deal with the Cr case, where r ≥ 2.

Proposition 4.17 Let G be a group of the form Z �A H, where A ∈ GLd(Q) has no
eigenvalue of norm 1 and rankQ(H) = d. Then for all r ≥ 2, every faithful action of G
by Cr diffeomorphisms of [0, 1] with no global fixed point in (0, 1) is conjugate to an affine
action by a homeomorphism that restricted to (0, 1) is a Cr diffeomorphism.

Proof We know from Theorem 1.3 that the action is conjugate to an affine action via a
homeomorphism ϕ. The image of H is a subgroup of the group of translations which is
necessarily dense; otherwise, H would have rank 1 and A2 would stabilize it pointwise, thus
contradicting hyperbolicity. As g is assumed to beCr , r ≥ 2, and has no fixed point in (0, 1),
Szekeres’ theorem implies that the restrictions of g to [0, 1) and (0, 1] are the time-one maps
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of the flows of vector fields X− and X+, respectively, that are C1 on their domains and Cr−1
at the interior. Futhermore, Kopell’s lemma implies that the C1 centralizer of g is contained
in the intersection of the flows ofX− andX+. Therefore, the flows coincide for a dense subset
of times, hence X− = X+ on (0, 1). We denote this vector field by X . (See [27, §4.1.3] for
the details.)

The homeomorphism ϕ must send this flow into that of the translations. Since X is of
class Cr−1 on (0, 1), we have that ϕ is a Cr−1 diffeomorphism of (0, 1). To see that ϕ is
actually a Cr diffeomorphism, we use Theorem 1.7, which says that the interior fixed point
x0 of the element a is hyperbolic. Indeed, this implies that ϕ is a C1 diffeomorphism that
conjugates two germs of hyperbolic diffeomorphisms. By a well-known application of (the
sharp version of) Sternberg’s linearization theorem, such a diffeomorphism has to be of class
Cr in a neighborhood of x0 (see [27, Corollary 3.6.3]). Since the action is minimal on (0, 1)
due to Proposition 1.6, this easily implies that ϕ is of class Cr on the whole open interval. ��
Remark 4.18 Let G be a group of the form Z �A H , where A ∈ GLd(Q) has no eigenvalue
of norm 1 and rankQ(H) = d . Assume that G acts by Cr diffeomorphisms of [0, 1] with no
global fixed point in (0, 1) and that r ≥ 1. Then every bi-Lipschitz conjugacy of G into an
affine group is Cr on (0, 1). Indeed, this essentially follows (with minor modifications) from
[27, §3.6].

5 Examples involving non-hyperbolic matrices

We next consider the situation where A ∈ GLd(Q) has some eigenvalues of modulus = 1
and some others of modulus �= 1. Our goal is to prove Theorem 1.9, according to which
the group Z �A Q

d has an action by C1 diffeomorphisms of the closed interval that is not
semiconjugate to an affine action provided A is irreducible. In particular, this is the case for
the matrix

A :=

⎛

⎜⎜
⎝

0 0 0 −1
1 0 0 −4
0 1 0 −4
0 0 1 −4

⎞

⎟⎟
⎠ ∈ SL4(Z).

Indeed, A has characteristic polynomial p(x) = x4 + 4x3 + 4x2 + 4x + 1 = p1(x)p2(x),
where p1(x) := x2 + (2 +√2)x + 1 and p2(x) := x2 + (2 −√2)x + 1. Notice that p(x)
has no rational root, neither a decomposition into two polynomial of rational coefficients of
degree two; hence, it is irreducible over Q. Moreover, the roots λ and 1/λ of p1 are real
numbers of modulus different from 1, while the roots w, w of p2 are complex numbers of
modulus 1, where

w =
√
2− 2+ i

√
4
√
2− 2

2
, λ = −√2− 2+

√
4
√
2+ 2

2
.

Given any A ∈ GLd(Q), we begin by constructing an action of G := Z �A Q
d by

homeomorphisms of the interval that is not semiconjugate to an affine action. To do this, we
consider a decomposition [0, 1] =⋃k∈Z Ik , where the Ik’s are open intervals disposed on [0,
1] in an ordered way and such that the right endpoint of Ik coincides with the left endpoint
of Ik+1, for all k ∈ Z. Let f be a homeomorphism of [0, 1] sending each Ik into Ik+1. For
each (t1, . . . , td)∈Q

d and k ∈ Z, denote

(t1,k, . . . , td,k) := Ak(t1, . . . , td).
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Let ξ t be a nontrivial topological flow on I0. Next, fix (s1, . . . , sd) ∈ R
d , and for each

(t1, . . . , td) ∈ Q
d , define g := g(t1,...,td ) on I0 by g|I0 := ξ

∑
i si ti . Extend g to the whole

interval by letting
g
∣∣
I−k = f −k ◦ ξ

∑
i si ti,k

∣∣
I0
◦ f k . (13)

It is not hard to see that the correspondences a → f, (t1, . . . , td) → g(t1,...,td ), define a
representation of G, where a stands for the generator of the Z-factor of G.

Lemma 5.1 If A is Q-irreducible and (s1, . . . , sd) is nonzero, then the action constructed
above is faithful.

Proof Denote by b1, . . . , bd the canonical basis of H := Q
d . We need to show that for a

given nontrivial b := bt11 , . . . , btdd ∈ H , the associated map g := g(t1,...,td ) acts nontrivially
on [0, 1]. Assume otherwise. Then according to (13), for all k ∈ Z,

0 =
∑

i

si ti,k =
〈
(s1, . . . , sd), A

k(t1, . . . , td)
〉
.

As a consequence, the Q-span of Ak(t1, . . . , td), k ∈ Z, is a Q-invariant subspace orthogonal
to (s1, . . . , sd). However, as A isQ-irreducible, the only possibility is (t1, . . . , td) = 0, which
implies that b is the trivial element in H . ��

Assume next that A is not hyperbolic. Associated to the transpose matrix AT , there is a
decompositionR

d = Es⊕Eu⊕Ec into stable, unstable, and central subspaces, respectively.
The space Ec necessarily contains a subspace Ec∗ of dimension 1 or 2 that is completely
invariant under AT and such that for each nontrivial vector therein, all vectors in its orbit
under AT have the same norm. Our goal is to prove

Proposition 5.2 If (s1, . . . , sd) belongs to Ec∗, then the action above is C1 smoothable.

This will follow almost directly from the next

Proposition 5.3 The map f and the subintervals Ik of the preceding construction can be
taken so that f is a C1 diffeomorphism that commutes with a C1 vector field whose support
in (0, 1) is nontrivial and contained in the union of the interior of the Ik’s.

Using f and the vector field above, we may perform the construction taking ξ t as being
the flow associated to it. Indeed, since the vector field is C1 on the whole interval, equation
(13) implies that for a given (t1, . . . , td), the corresponding g(t1,...,td ) is a C1 diffeomorphism
provided the expressions

∑
i si ti,k remain uniformly bounded on k. However, as (s1, . . . , sd)

belongs to Ec∗, this is always the case, because
∑

i

si ti,k =
〈
(s1, . . . , sd), A

k(t1, . . . , td)
〉 = 〈(AT )k(s1, . . . , sd), (t1, . . . , td)

〉

and {(AT )k(s1, . . . , sd), k ∈ Z} is a bounded subset of R
d .

To conclude the proof of Theorem 1.9, we need to show Proposition 5.3. Although at this
point we could refer to the classical construction of Pixton [33], we prefer to give a simpler
argument that decomposes into two elementary parts given by the next lemmas.

Lemma 5.4 There exists a vector field X0 on [0, 1] with compact support in (0, 1) and
a sequence (ϕk) of C∞ diffeomorphisms of [0, 1] with compact support inside (0, 1) that
converges to the identity in the C1 topology and such that the diffeomorphisms ϕ̃k := ϕk ◦
· · ·◦ϕ1 satisfy (ϕ̃k)∗(X0) = tkX0 for a certain sequence (tk) of positive numbers converging
to zero.
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Proof Start with the flow of translations on the real line and the corresponding (constant)
vector field. Any two positive times of this flow are smoothly conjugate by appropriate affine
transformations. Now, map the real-line into the interval by a projective map. This yields
the desired vector field and diffeomorphisms, except for that the supports are not contained
in (0, 1). To achieve this, just start by performing the Muller–Tsuboi trick (c.f. Lemma 4.6)
in order to make everything flat at the endpoints, then extend everything trivially in both
directions by slightly enlarging the interval, and finally renormalize the resulting interval
into [0, 1]. ��

Given a diffeomorphism ϕ of (resp., vector field X on) an interval I , we denote by ϕ∨
(resp., X∨) the diffeomorphism of (resp., vector field on) [0, 1] obtained after conjugacy
(resp., push forward) by the unique affine map sending I into [0, 1]. Proposition 5.3 is a
direct consequence of the next.

Lemma 5.5 There exists a C1 diffeomorphism f of [0, 1] fixing only the endpoints (with the
origin as a repelling fixed point) as well as a C1 vector fieldY on [0, 1] such that f∗(Y) = Y
and so that for a certain x0 ∈ (0, 1), we have (Y|[x0, f (x0)])∨ = X0.

Proof Start with a C∞ diffeomorphism g of [0, 1] that has no fixed point at the interior, and
has the origin as a repelling fixed point. Fix any x0 ∈ (0, 1), and let Z be a vector field on
[x0, g(x0)] such that Z∨ = X0. A moment’s reflexion shows that this construction can be
performed so that g is affine close to each endpoint.

For each k ∈ Z, let Ik := gk([x0, f (x0)]). Letϕ∧k be a diffeomorphismof Ik into itself such
that (ϕ∧k )∨ = ϕk . Now let f be defined by letting f

∣∣
I|k| := ϕ∧|k| ◦g

∣∣
I|k| . ExtendZ to the whole

interval [0, 1] by making it commute with g. Finally, define Y by letting Y
∣∣
I|k| := t|k|Z

∣∣
I|k|

for every k ∈ Z. One easily checks that f and Y satisfy the desired properties. ��
To close this section, we remark that similar ideas yield to faithful actions by C1 circle

diffeomorphisms without finite orbits for the groups considered here. Indeed, it suffices to
consider f as being a Denjoy counter-example and then proceed as before along the intervals
Ik := f k(I ), where I is a connected component of the complement of the exceptional
minimal set of f . We leave the details of this construction to the reader.

6 Actions on the circle

Recall the next folklore (and elementary) result: For every group of circle homeomorphisms,
one of the next three possibilities holds:

(i) there is a finite orbit,
(ii) all orbits are dense,
(iii) there is a unique minimal invariant closed set that is homeomorphic to the Cantor set.

(This is usually called an exceptional minimal set.)

Moreover, a result of Margulis states that in case of a minimal action, either the group is
Abelian and conjugate to a group of rotations, or it contains free subgroups in two generators.
(See [27, Chapter 2] for all of this.)

Assumenext that a non-Abelian, solvable group acts faithfully by circle homeomorphisms.
By the preceding discussion, such an action cannot beminimal. As we next show, it can admit
an exceptional minimal set. For concreteness, we consider the group G := Z �A Q

d , with
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A ∈ GLd(Q). Start with a Denjoy counter-example g ∈ Homeo+(S1), that is, a circle
homeomorphism of irrational rotation number that is not minimal. Let � be the exceptional
minimal set of g. Let I be one of the connected components of S1\�, and for each n ∈ Z,
denote In := gn(I ). Consider any representation φI : Q

d → Homeo(I ). (Such an action
can be taken faithful just by integrating a topological flow up to rationally independent
times and associating the resulting maps to the generators of Q

d .) Then extend φI into
φ : G → Homeo+(S1) on the one hand by letting φ(a) := g, and on the other hand, for
each b ∈ H , letting the restriction of φ(b) to S1\⋃n In being trivial, and setting φ(h)|In =
g−n ◦ φI (A−n(h)) ◦ gn for each n ∈ Z. It is easy to check that φ is faithful. Part of the
content of Theorem 1.10 is that in case A is hyperbolic, such an action cannot be by C1

diffeomorphisms. (Compare [19], where Cantwell–Conlon’s argument is used to prove this
for the case of the Baumslag–Solitar group.)

We next proceed to the proof of Theorem 1.10. Let again denote by G a subgroup of
Z �A Q

d of the form H ×A Z, with rankQ(H) = d and A ∈ GLd(Z). Assume with no loss
of generality that the canonical basis {b1, . . . , bd} of Q

d is contained in H (see Sect. 2), and
denote by a the generator of the cyclic factor (induced by A). We start with the next

Lemma 6.1 Suppose A has no eigenvalue equal to 1. Then for every representation of G
intoHomeo+(S1), the set

⋂
Per(bi ) of common periodic points of the bi ’s is nonempty and

G-invariant.

Proof Let ρi ∈ R/Z be the rotation number of bi . Since H is Abelian and abia−1 =
b

α1,i
1 , . . . , b

αd,i
d , we have

ρi = α1,iρ1 + · · · + αd,iρd (mod Z).

If we denote v := (ρ1, . . . , ρd), this yields AT v = v (mod Z
d). Hence, v ∈ (AT −

I )−1(Zd) ⊆ Q
d . Therefore, all the rotation numbers ρi are rational, thus all the bi ’s have

periodic points. Next, notice that for every family of commuting circle homeomorphisms each
of which has a fixed point, there must be common fixed points. Indeed, they all necessarily fix
the points in the support of a common invariant probability measure. To show the invariance
of
⋂

Per(bi ), notice that H -invariance is obvious by commutativity. Next, let x be fixed by
bk11 , . . . , bkdd . Take q ∈ N such that qαi, j is an integer for all i, j . Then

abqkii a−1(x) = b
ki qα1,i
1 , . . . , b

ki qαd,i
d (x) = x,

hence bqkii a−1(p) = a−1(p). We thus conclude that a−1(x) is a common periodic point of
the bi ’s, as desired. ��
Lemma 6.2 If a has periodic points, then there exists a finite orbit for G.

Proof If a has periodic points, then every probability measure μ that is invariant by a must
be supported at these points. Since G is solvable (hence amenable), such a μ can be taken
invariant by the whole group. The points in the support of this measure must have a finite
orbit. ��

Summarizing, for every faithful action of G by circle homeomorphisms, the nonexistence
of a finite orbit implies that a admits an exceptional minimal set, say �. In what follows,
we will show that this last possibility cannot arise for representations into Diff1+(S1) with
non-Abelian image.

As the set
⋂

Per(bi ) is invariant under a, closed, and nonempty, we must have � ⊆⋂
Per(bi ). Changing each bi by bki for some k ∈ N, we may assume that the periodic points
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of the bi ’s are actually fixed. (Observe that the map sending bi into bki and fixing a is an
automorphismofG.) Given a point x in the complement of

⋂
Fix(bi ) (which is nonempty due

to the hypothesis), denote by Ix the connected component of the complement of
⋂

Fix(bi )
containing x . Then there is an H -invariant measure μx supported on Ix associated to which
there is a translation vector τx ; moreover, Lemma 4.2 still holds in this context.

If I is any connected component of the complement of
⋂

Fix(bi ), then there are points
z1, . . . zd in I such that Dbi (zi ) = 1. Therefore, for every ε > 0, there exists δ > 0 such
that if |I | < δ, then 1− ε ≤ Dbi (z) ≤ 1 + ε holds for all z ∈ I and all i ∈ {1, . . . , d}. By
decreasing δ if necessary, we may also assume that

1− ε ≤ Da(y)

Da(z)
≤ 1+ ε for all y, z at distance dist (z, y) ≤ δ. (14)

As Ix is a wandering interval for a, we have that there exists k0 ∈ N such that |ak(Ix )| < δ

and |a−k(Ix )| < δ for all k ≥ k0. Together with (14), this allows to show the next analogue
of Lemma 4.4 for the translation vectors �(x) := (b1(x)− x, . . . , bd(x)− x

)
.

Lemma 6.3 For every η > 0, there exists k0 ∈ N such that if we denote by yk the left
endpoint of ak(I ) and we let ε, ε̂ be defined by

�(a−1(x)) = Da−1(y−k) AT�(x)+ ε(x), x ∈ Ia−k (x0)

and

�(a(x)) = Da(yk) (AT )−1�(x)+ ε̂(x), x ∈ Iak (x0),

then ‖ε(x)‖ ≤ η
(‖�(x)‖+ ‖�(a−1(x))‖) and ‖ε̂(x)‖ ≤ η

(‖�(x)‖+ ‖�(a−1(x))‖) do
hold for all k ≥ k0.

Again, the normalized translation vectors �τa−n(x0) (resp., �τan(x0)) accumulate at some
�τ ∈ Sd (resp., �τ∗) as n → ∞. For each n ∈ Z, we let xn := a−n(x0), and we choose a
sequence of positive integers nk such that �τxnk → �τ and �τx−nk → �τ∗ as k → ∞. With this
notation, Lemma 4.5 remains true.

Finally, Lemma 4.7 is easily adapted to this case:

Lemma 6.4 For any neighborhood V ⊂ Sd−1 of Eu ∩ Sd−1∗ in the unit sphere Sd−1∗ ⊂ R
d

(with the norm ‖ · ‖∗), there is K0 ∈ N such that for all k ≥ K0 and all x ∈ a−k(Ix0) not
fixed by H,

�(x)

‖�(x)‖∗ ∈ V �⇒ �(a−1(x))
‖�(a−1(x))‖∗ ∈ V .

Moreover, if V is small enough, then there exists κ > 1 such that

�(x)

‖�(x)‖∗ ∈ V �⇒ ‖�(a−1x)‖∗ ≥ κ Da−1(y−k)‖�(x)‖∗.

Now, we may conclude as in the proof of Proposition 1.5 up to a small detail. Namely,
suppose �τx0 /∈ Es . Then �τ ∈ Eu . Using Lemmas 4.5 and 6.4, we get for k ≥ K0 and all
n ∈ N,

‖�(xn+k)‖∗ ≥ κnDa−n(y−k)‖�(xk)‖∗.
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Now, using the fact that the growth of Dan is uniformly sub-exponential,5 we get a contra-
diction as n goes to infinity. In the case where �τx0 ∈ Es , we have �τx0 /∈ Es , and we may
proceed as before using a−1 instead of a.

This closes the proof of the absence of an exceptional minimal set, hence of the existence
of a finite orbit for G.
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