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Abstract An annular continuum is a compact connected set K which separates a closed
annulus A into exactly two connected components, one containing each boundary component.
The topology of such continua can be very intricate (for instance, non-locally connected).We
adapt a result proved by Handel in the case where K = A, showing that if K is an invariant
annular continuum of a homeomorphism of A isotopic to the identity, then the rotation set
in K is closed. Moreover, every element of the rotation set is realized by an ergodic measure
supported in K (and by a periodic orbit if the rotation number is rational) and most elements
are realized by a compact invariant set. Our second result shows that if the continuum K
is minimal with the property of being annular (what we call a circloid), then every rational
number between the extrema of the rotation set in K is realized by a periodic orbit in K . As a
consequence, the rotation set is a closed interval, and every number in this interval (rational
or not) is realized by an orbit (moreover, by an ergodic measure) in K . This improves a
previous result of Barge and Gillette.

The classical rotation number is a dynamical invariant, introduced by Poincaré to study the
dynamics of a homeomorphism f : T1 → T

1 homotopic to the identity. As is well-known,
it is defined for a lift F : R → R to the universal covering and x ∈ R as ρ(F, x) =
limn→∞(Fn(x) − x)/n. The limit ρ(F) = ρ(F, x) always exists and is independent on
the choice of x . A great deal of the dynamical information of f can be deduced from this
invariant. In particular, when ρ(F) is irrational, f is monotonically semiconjugate to the
irrational rotation x �→ x + ρ(F) (modZ), and when ρ(F) = p/q is rational, one knows
that f has a periodic orbit; more precisely, there exists x ∈ R such that Fq(x) = x + p.

The success of this rotational invariant in the study of circle homeomorphisms led to a vast
literature of generalizations and applications of this notion in different settings, for instance
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for endomorphisms of the circle [7,22,38], homeomorphisms of the torus [14,32,36], and
surfaces of higher genus [15,39].

For the particular case of a homeomorphism f : A = T
1 × [0, 1] → A of the annulus

isotopic to the identity, a rotation set can be defined for a lift F : R × [0, 1] = A → A as
the set ρ(F) of all limits ρ(F, z) = limn→∞ pr1(F

n(z) − z)/n whenever they exist, where
pr1 : (x, y) �→ x . These limits do not always exist, but it can be shown that ρ(F) is a bounded
nonempty set. Very simple examples show that ρ(F) may fail to be an interval. However, in
certain settings this is not the case. Amodel example is the case of area-preserving twistmaps
[33], which states that for these maps the rotation set is a compact interval, and in addition
every element of α ∈ ρ(F) has an associated Aubry-Mather set Qα , which is a compact
invariant set whose every point has rotation number α (where we define the rotation number
ρ(F, z) for z ∈ A as the rotation number of any lift of z to the universal covering). Moreover,
if α is rational, Qα may be chosen to be a periodic orbit.

If one removes the twist condition (still assuming that f is area-preserving), a generaliza-
tion of the Poincaré–Birkhoff theorem due to Franks [13] implies that for every rational p/q
in the convex hull of the rotation set there exists z such that Fq(z) = z + (p, 0). Whenever
this happens, the projection of z to A is called a (p, q)-periodic point. Thus, again, having a
rotation set with more than one point leads to an abundance of periodic orbits. The question
of whether irrational elements of the convex hull of ρ(F) are also realized by points (or
more generally by compact invariant sets, as in the case of twist maps) was mostly settled
by Handel [19] (see also [31]). Indeed, Handel’s theorem shows that even without an area-
preserving condition, the rotation set is a closed set, the set of points of A with any given
rotation number has full measure for some invariant ergodic probability, and and all but a
discrete set of values of α ∈ ρ(F) have a corresponding compact invariant set Qα as in the
twist case (which may be chosen as a periodic orbit if α is rational). In the particular case
where f is area-preserving, this result combined with Franks’ also implies that ρ(F) is a
compact interval.

In this paper we are interested in similar results for spaces which may be topologically
intricate, but for which there is still a notion of “rotation”. To be precise, we say that a subset
K ⊂ intA is an essential continuum if it is a continuum which separates the two bound-
ary components of A. If A\K has exactly two components, then K is called an (essential)
annular continuum. Equivalently, an essential annular continuum is a decreasing intersection
of essential closed topological annuli in intA. Annular continua can have very pathologi-
cal topological properties. For instance, they can be “hairy”, non-locally connected, or even
hereditarily indecomposable as is the case with the pseudo-circle [4]. Moreover, these kinds
of pathological invariant continua appear frequently in dynamics, even for smooth or analytic
maps [17,21,29,30], so any result providing dynamical information on invariant continua of
this kind has potential applications in different settings. Examples of applications of these
type of results in the Cr -generic area-preserving setting can be found in [10,27,28].

If K is an invariant essential annular continuum, the rotation set ρ(F, K ) is the set of all
rotation numbers ρ(F, x) of points x ∈ K for which this number exists. Our first result is an
adaptation of Handel’s results to annular continua.

Theorem A Let f : A → A be a homeomorphism isotopic to the identity and F : R → R a
lift. Suppose that K ⊂ intA is an essential annular continuum. Then:

(1) The rotation set ρ(F, K ) is a closed set;
(2) For eachα ∈ ρ(F, K ) there is an ergodicmeasureμ supported on K such thatρ(F, x) =

α for μ-almost every x;
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Realizing rotation numbers on annular continua 551

(3) With the exception of at most a discrete set of values α ∈ ρ(F, K ), there is a compact
invariant set Qα ⊂ K such that ρ(F, x) = α for all x ∈ Qα . If α = p/q is rational
then Qα exists and is realized by a (p, q)-periodic orbit.

We remark that, as in [19], we do not know whether the discrete set of exceptional values
from case (3) may actually be nonempty (however, see [31] for a special case).

A special kind of annular continuum is a cofrontier, which is an essential annular contin-
uum which equal to the boundary of each of its two complementary components. Barge and
Gillette proved a Poincaré–Birkhoff type result (similar to Franks’ result for area-preserving
homeomorphisms) for invariant essential cofrontiers [1], which states that any rational num-
ber in the convex hull of the rotation set of the cofrontier is realized by a periodic orbit.
Moreover, the authors also showed that the convex hull of the rotation set contains the two
prime ends rotation numbers associated to the continuum (see Sect. 2.2), and if the rotation
set has more than one point then it is necessarily an indecomposable continuum (i.e. it is
not the union of two proper subcontinua). For other results in the same vein, see [2,5,6].
Theorem A improves the Barge–Gillette theorem by concluding that the convex hull of the
rotation set is equal to the rotation set itself, and all elements (rational or not) are realized by
ergodic measures. This includes the prime ends rotation numbers.

A continuum which is minimal with the property of being an essential annular continuum
(i.e. it contains no proper essential annular subcontinua) is called a circloid (the terminology
is taken from [23]). Any cofrontier is a circloid, but unlike cofrontiers, invariant circloids
frequently arise in dynamics, particularly in the boundary of invariant open sets [23,24,26].
Our second result generalizes the Barge–Gillette theorem to circloids.

Theorem B Let f : A → A be a homeomorphism isotopic to the identity, K ⊂ intA an
essential invariant circloid, and F : A → A a lift of f . Then every rational p/q in the
convex hull of ρ(F, K ) is realized by a (p, q)-periodic point in K .

As an immediate consequence of our two results (and a result of Mastumoto [35], see
Theorem 2.4 ahead) we have the following:

Corollary C Under the same hypotheses of Theorem B, the rotation set ρ(F, K ) is a closed
intervalwhich contains the prime ends rotation numbers, andall the conclusions of TheoremA
hold.

Under the hypotheses of the previous theorem, if the rotation set is not a single point
it is known that K must be an indecomposable continuum [1,25]. The previous theorem
thus implies that it must contain many periodic orbits of arbitrarily large periods, as well as
compact invariant sets realizing almost all numbers in the rotation set. In the annulus, there
are simple examples with these features having zero topological entropy; for example the
map (x, y) �→ (x, y + x). However, we do not know whether an example of this kind exists
in a circloid. In fact, the following question has been asked by a number of people.

Question Is it true that for an invariant circloid (or cofrontier) K , either the rotation set is
a single point or the topological entropy on K is positive?

Progress in this direction was recently announced by Passeggi et al. [40]. We remark
that, along the same lines, it is known that if a homeomorphism of the torus homotopic to
the identity has a rotation set (which is a subset of R2) with nonempty interior, then the
homeomorphism has positive topological entropy [32].
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1 General definitions and topological properties

Whenever we work on a compact surface N , we will denote by d(·, ·) some previously fixed
metric on the surface. The lift of the metric d to the universal cover of N is an equivariant
metric which we still denote by d , since there is no risk of ambiguity. We will denote the
δ-neighborhood of a set E under the metric d by Bδ(E).

Let A = T
1 × [0, 1] be a closed annulus and K ⊂ intA an essential continuum. We

denote by U+ = U+(K ) and U− = U−(K ) the components of A\K containing T
1 × {1}

and T
1 × {0}, respectively. We say that K is an essential annular continuum if one of these

equivalent properties holds:

• A\K = U− ∪U+;
• K is a decreasing intersection of closed essential topological annuli.

An essential annular continuum K is a circloid if one of the following equivalent properties
hold:

• K isminimal among essential annular continua, i.e. it contains no proper essential annular
subcontinuum;

• ∂ K is a continuum and it contains no proper essential subcontinuum;
• ∂ K = ∂AU− = ∂AU+;
• ∂ K = ∂AU− ∩ ∂AU+.

An essential cofrontier is an essential circloid which has empty interior, or equivalently an
essential continuum which minimally separates A into exactly two components.

More generally, a continuum K is said to be an [annular continuum, circloid, cofrontier]
if it has some neighborhood A homeomorphic to A such that K is an essential [annular
continuum, circloid, cofrontier] in A.

Let π : A = R × [0, 1] → A be the universal covering map, K = π−1(K ), and U± =
π−1(U±). Then:

• If K is an essential annular continuum, then A\K = U+ ∪ U−;
• If K is an essential circloid, thenA\K = U+ ∪U− and ∂ K = ∂ U+ ∩ ∂ U−; in particular,

any closed subset of K separating U+ from U− contains ∂ K.

The following lemma (which is a version for circloids of [1, Lemma 2.1]) will be useful
in the proof of Theorem B.

Lemma 1.1 Let K ⊂ intA be an essential circloid and K = π−1(K ). For every ε > 0
and N > 0 there exist δ > 0 and M > 0 such that if C ⊂ Bδ(K) is a continuum such that
[−M, M] ⊂ pr1(C), then ∂ K ∩ ([−N , N ] × [0, 1]) ⊂ Bε(C).

Proof Suppose for a contradiction that for eachn > 0 there exists a continuumCn ⊂ B1/n(K)

such that [−n, n] ⊂ pr1(Cn) and some point zn ∈ ∂ K ∩ ([−N , N ] × [0, 1])\Bε(Cn). If C ′
n

denotes the set Cn ∪ {∞} in the one-point compactification R× [0, 1] ∪ {∞}, then there is a
subsequence of (C ′

n)n∈N which converges to some continuumC ′ ⊂ K∪{∞} in the Hausdorff
topology.The closed setC = C ′\{∞} ⊂ Kmust separate the twoboundary components ofA,
since otherwise there would exist a compact arc γ connecting the two boundary components
of A disjoint from C , contradicting the fact that Cn ∩ γ 
= ∅ for all sufficiently large n.
Thus, U− and U+ are contained in different connected components of A\C . Since K is a
circloid, and C ⊂ K, it follows that ∂ K = ∂ U+ ∩ ∂ U− ⊂ C . This contradicts the fact that
the sequence (zn)n∈N has a limit point in the compact set ∂ K ∩ ([−N , N ] × [0, 1])\Bε(C).

�
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We will use the following

Proposition 1.2 [37, Theorem 14.3] If two points on the plane are separated by a closed
set, then they are also separated by some connected component of the closed set.

2 Dynamical definitions and previous results

Denote by π : A = R×[0, 1] → A the universal covering map (x, y) �→ (x +Z, y), and let
T : (x, y) �→ (x + 1, y) be the covering translation. For the remainder of this section, we fix
a homeomorphism f : A → A isotopic to the identity and a lift F : A → A (so FT = T F).

2.1 Rotation sets and intervals

Let X ⊂ A be a compact f -invariant set, and X = π−1(X). The inferior/superior rotation
number of a point z ∈ X , denoted by ρinf (F, z) and ρsup(F, z), are defined as the lim-
sup/liminf as n → ∞ of pr1(F

n(z) − z)/n. The rotation interval of a point z ∈ X is the
interval

ρ(F, z) = [ρinf (F, z), ρsup(F, z)].
When this interval is reduced to a point, its unique element is called the rotation number of
the point z, denoted by ρ(F, z) = limn→∞ pr1(F

n(z) − z)/n. In this case we say that z has
a well-defined rotation number.

Since the inferior/superior rotation numbers of z remain unchanged if one replaces z by
T n(z), it is meaningful to define the corresponding numbers for an element z ∈ X , by letting
ρinf (F, z) = ρinf (F, z̃) where z̃ ∈ π−1(z) is arbitrary, and similarly for ρsup(F, z), ρ(F, z)
and ρ(F, z) if the latter exists.

The rotation number of an f -invariant Borel probability μ supported in X is the number

ρ(F, μ) =
∫

φF dμ,

where φF : A → R is the displacement function defined by φF (z) = pr1(F(z̃) − z̃) for
z̃ ∈ π−1(z). Note that for z ∈ X one has

Fn(z) − z

n
= 1

n

n−1∑
i=0

φF

(
f i (π(z))

)
,

so Birkhoff’s Ergodic Theorem implies that μ-almost every z has a well-defined rotation
number ρ(F, z), and ρ(F, μ) = ∫

ρ(F, z) dμ(z). Moreover, if μ is ergodic, then ρ(F, z) =
ρ(F, μ) for μ-almost every z.

The rotation set of F in X is the set ρ(F, X) of all rotation numbers of points of X
with well-defined rotation number. The inferior/superior rotation numbers ρinf (F, X) and
ρsup(F, X) are the infimum and the supremum of ρ(F, X), respectively. The rotation interval
of f in X is ρ(F, X) = [ρinf (F, X), ρsup(F, X)].

Let M( f |X ) denote the set of f -invariant Borel probability measures supported on X ,
and Me( f |X ) its ergodic elements. By well known arguments (relying on the fact that the
space of invariant Borel probabilities is a convex set whose extremal points are ergodic),

ρ(F, X) = {ρ(F, μ) : μ ∈ M( f |X )}
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and

{ρinf (F, X), ρsup(F, X)} ⊂ {ρ(F, μ) : μ ∈ Me( f |X )} ⊂ ρ(F, X); (2.1)

see [9], or [36, Corollary 2.5] for a version of this result on the torus which is easily adapted
to our setting. Moreover, if (zn)n∈N is a sequence in X then

ρinf (F, X) ≤ lim inf
n→∞ pr1(F

n(zn) − zn)/n ≤ lim sup
n→∞

pr1(F
n(zn) − zn)/n ≤ ρsup(F, X).

From these facts one has that that the convex hull of ρ( f, X) is a closed interval, and if
ρ( f, X) is a singleton {α} then every point of K has a well-defined rotation number α (and
the limit in the definition converges uniformly).

It follows from the definitions that for any pair of integers n, k,

• ρ(T k Fn, z) = nρ(F, z) + k for all z ∈ X ;
• ρ(T k Fn, μ) = nρ(F, μ) + k for any μ ∈ M( f |X ).

The following simple observation is also useful (see for instance [9]). Denote by ω f (z)
the ω-limit set of z, i.e. the set of all accumulation points of the sequence ( f n(z))n∈N.

Proposition 2.1 For any z ∈ K, one has ρ(F, z) ⊂ ρ(F, ω f (z)).

2.2 Prime ends rotation numbers

Suppose that K ⊂ intA is an essential f -invariant continuum. If we consider the sphere
A

∗ � S
2 obtained by collapsing the lower and upper boundary components of A to points

−∞ and∞, respectively, and thedynamics inducedby f fixing these twopoints, thendefining
U+ andU− as in Sect. 1, the setsU∗+ = U+ ∪{∞} andU∗− = U− ∪{−∞} are invariant open
topological disks, and they have a prime ends compactification Ũ∗± � D which is a disjoint
union of U∗± with a topological circle (see [27,34]). Lifting the inclusion U± → Ũ∗±\{±∞}
to the universal cover, one obtains a homeomorphism p+ : U+ → H+ := {(x, y) : y > 0}
and a homeomorphism F+ : H+ → H+ such that p+F |U+ = F+ p+ and F+T = T F+.
Similarly, there are maps p− : U− → H− := {(x, y) : y < 0} and F− : H− → H− such
that p−F |U− = F− p− and F−T = T F−.

The upper/lower (prime ends) rotation numbers of the lift F in K is then defined as

ρ±(F, K ) = lim
n→∞

(
pr1 F

n±(x, 0) − x
)
/n,

which is independent of x . As usual, for n, k ∈ Z one has

ρ±(T k Fn, K ) = nρ±(F, K ) + k

2.3 Dynamics on annular continua

Fix an homeomorphism f : A → A and a lift F : A → A, and suppose that K ⊂ intA
is an essential f -invariant continuum. As mentioned in the introduction, Handel proved the
following:

Theorem 2.2 [19] If K is a closed topological annulus, then the conclusions of Theorem A
hold.

Recall that a (p, q)-periodic point is a point z such that for z̃ ∈ π−1(z) one has Fq(z̃) =
T p(z̃). Note that Theorem 2.2 includes the fact that every rational p/q in the rotation set is
realized by (p, q)-periodic point. A simpler proof of this fact (in the closed annulus) was
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Realizing rotation numbers on annular continua 555

given by Franks [13, Corollary 2.5]. The following result by Barge and Gillette provides a
similar result when K is a cofrontier:

Theorem 2.3 [1] If K is a cofrontier then

(1) If ρ(F, K ) is not a singleton, then K is an indecomposable continuum;
(2) Every rational p/q in the rotation interval ρ(F, K ) is realized by a (p, q)-peridoic point

in K ;
(3) The prime ends rotation numbers belong to the rotation interval:

{ρ+(F, K ), ρ−(F, K )} ⊂ ρ(F, K ).

The last part of Theorem 2.3 was generalized to annular continua by Matsumoto [35]
(with an alternative proof due to Hernández-Corbato [20]):

Theorem 2.4 [35] If K is an annular continuum, then its upper and lower prime ends rotation
numbers ρ±(F, K ) belong to the rotation interval ρ(F, K ).

In the case that one of the prime ends rotation numbers is rational, Barge and Gillette
also showed that it must be realized by a periodic point even when K is an arbitrary annular
continuum:

Theorem 2.5 [2] If K is an annular continuum and either the upper or the lower prime ends
rotation number is a rational p/q, then there is a (p, q)-periodic orbit in K .

In the area-preserving setting, we have the following additional result due to Franks and
Le Calvez, which can be seen as an improved version of the Poincaré–Birkhoff theorem:

Theorem 2.6 [10, Proposition 5.4] If f is area-preserving and K is an annular continuum,
every rational in ρ(F, K ) is realized by a periodic point in K .

This result can be improved considerably using Lemma 3.3 ahead. Indeed, using that
lemma in place of [13, Lemma 2.1] one obtains improved versions of Theorem 2.2 and
Corollary 2.4 from the latter article (with their proofs otherwise unchanged):

Theorem 2.7 If K is an annular continuum then:

• If a compact invariant set X ⊂ K is chain transitive for f |K , then every rational p/q ∈
ρ(F, X) is realized by a periodic point in K .

• If every point of K is f |K -chain recurrent, then every rational in ρ(F, K ) is realized by
a periodic point in K .

Note that the chain recurrence hypothesis cannot be removed; for instance, one may easily
produce an example where K is a closed annulus such that ρ(F, K ) = {−1/2, 1/2}. On the
other hand Theorem 2.5 says that when K is a cofrontier, the chain recurrence is unnecessary.
One may wonder whether the same is true for the more general case where K is an annular
continuum with empty interior. The answer is no; see for instance Walker [42, Example B].

The Birkhoff attractor [30] provides an example of an invariant essential cofrontier K such
that ρ−(F, K ) 
= ρ+(F, K ). An example with similar properties where K is a pseudo-circle
is given in [8]. The next result, which is a corollary of the main theorem from [27], shows
that there is no area-preserving analogue of the Birkhoff attractor.1

1 The author is grateful to T. Jäger for pointing this out.
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Theorem 2.8 If K is an annular continuum with empty interior and f is area-preserving,
then ρ(F, K ) is a singleton and its unique element is ρ+(F, K ) = ρ−(F, K ).

Proof We know that ρ±(F, K ) ∈ ρ(F, K ) from Theorem 2.4. If ρ(F, K ) is not a singleton,
then ρ(F, K ) is a nonsingular interval, so we may find integers k 
= 0 and n > 1 such that
ρ(T k Fn, K ) = nρ(F, K ) + k contains 0 in its interior. Since T k Fn is a lift of f n which
is area-preserving, Theorem 2.6 implies that f n has a fixed point z0 ∈ K . But k, n may be
chosen such that ρ±(T k Fn, K ) = nρ±(F, K )+ k 
= 0, and in that case the main result from
[27] (see also [16, Corollary 2.7]) implies f n has no fixed point in ∂ U±. Since K is annular
and has empty interior, it is easy to verify that K = ∂ U− ∪ ∂ U+, so f n has no fixed point
in K , contradicting the existence of z0. �

Finally let us mention that part (1) of Theorem 2.3 is also (essentially) true for circloids.
In fact we have a stronger Poincaré-type result:

Theorem 2.9 [25] If K is a circloid with decomposable boundary (and in particular if K
is a decomposable cofrontier) then the rotation number α = ρ(F, x) is well-defined and
independent of x ∈ K. Moreover, if α is irrational, then f |K is monotonically semiconjugate
to an irrational rotation on the circle.

3 Realizing periodic points on circloids

In this section we show that the Barge–Gillette Theorem [1] also holds for circloids.
We will use the following classical result from Brouwer theory (see for instance [12]).

Proposition 3.1 If F : R2 → R
2 is an orientation-preserving homeomorphism and there

exists an open topological disk U such that F(U ) ∩ U = ∅ and Fn(U ) ∩ U 
= ∅ for some
n > 1, then F has a fixed point.

The next proposition is a simple but useful extension result. Its proof is straightforward;
for example it follows from [10, Lemma 5.1] (applying it twice):

Proposition 3.2 Let f : A → A be a homeomorphism isotopic to the identity and K ⊂ intA
an invariant essential annular continuum. Suppose that for a lift F of f one has ρ−(F, K ) 
=
0 
= ρ+(F, K ). Then there exists a homeomorphism g : A → A with a lift G such that

• The maps F and G coincide in some neighborhood of π−1(K );
• There are no fixed points of G in A\π−1(K ).

We remark that the maps f and g above are necessarily homotopic rel K . We also need
the following improved version of an earlier theorem of Franks, which is similar to [1,
Lemma 2.2].

Lemma 3.3 Let K ⊂ A be an essential annular continuum, K = π−1(K ), and F : A → A
a lift of a homeomorphism f : A → A isotopic to the identity such that f (K ) = K. If F has
no fixed point in K, then there is ε > 0 such that F |K has no periodic ε-chain.

Proof Since F |K has no fixed point, from Theorem 2.5 we have that the prime ends rotation
numbers are both nonzero, so Proposition 3.2 implies that there exists G : A → A which
coincides with F on a neighborhood ofK and has no fixed point inA\K. Hence Fix(G) = ∅.
If F |K has a chain recurrent point then so does G|K, but by [13, Lemma 2.1] this implies
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Realizing rotation numbers on annular continua 557

that G has a fixed point in A, a contradiction. Thus F |K has no chain recurrent points, and
we deduce that there exists ε > 0 such that there is no periodic ε-chain. Indeed, if on the
contrary there is a periodic 1/n-chain in K for every n ∈ N, one may assume that the initial
point of this chain lies in K∩ ([0, 1] × [0, 1]), and the limit of a subsequence of these initial
points is a chain recurrent point of F |K. �
Corollary 3.4 Under the hypotheses of the previous lemma, for every z ∈ K, the limit
limn→∞ pr1 F

n(z) is either ∞ or −∞.

We now proceed to the proof of Theorem B, which we restate below:

Theorem 3.5 Suppose f : A → A is a homeomorphism homotopic to the identity and
K ⊂ intA is an essential invariant circloid. Let F : A → A be a lift of f . Then:

(1) The prime ends rotation numbers belong to the rotation set:

{ρ+(F, K ), ρ−(F, K )} ⊂ ρ(F, K ).

(2) For every rational p/q ∈ ρ(F, K ) there exists a (p, q)-periodic point in K .

Proof The first part is Theorem 2.4. To prove the second part, note that by the usual argument
replacing F by T−q F p , it suffices to consider the case where p/q = 0. Assume 0 ∈ ρ(F, K )

and suppose for a contradiction that F has no fixed points in K = π−1(K ). This implies,
by Theorem 2.5, that the two prime ends rotation numbers ρ±(F, K ) are nonzero, so using
Proposition 3.2 we may assume that F has no fixed points outside K (hence F has no fixed
points at all). This implies that ρinf (F, K ) < 0 < ρsup(F, K ); indeed, if 0 were an endpoint
of the rotation interval then there would exist an ergodic measure supported in K with mean
rotation vector 0, and since the support of an ergodic measure is chain transitive, Theorem 2.7
would imply that there is a fixed point in K , contradicting our assumption. �

By Lemma 3.3 and its corollary, we may write K = K+ ∪ K−, where K± = {z ∈ K :
limn→∞ Fn(z̃) = ±∞}. Note that K+ and K− are disjoint, T -invariant, F-invariant, and
nonempty (since ρinf (F, K ) < 0 < ρsup(F, K )).

Claim 1 The sets K+
0 = ∂ K ∩ K+ and K−

0 = ∂ K ∩ K− are both nonempty.

Proof We show it forK−
0 , since the other case is symmetric. Suppose for a contradiction that

K−
0 = ∅. Since ρinf (F, K ) < 0, there exists an ergodic measure supported in K with negative

rotation number. In particular, there exists a recurrent point z ∈ K such that ρ(F, z) < 0,
and by our assumption, z must be in the interior of K . LetU be the connected component of
the interior of K containing z, choose z′ ∈ π−1(z), and let U be the connected component of
π−1(U ) containing z′. Note that ρ(F, z′) < 0 and so z′ ∈ K−. SinceU is a topological disk,
π |U is injective. Moreover, since the interior of K is invariant, either F(U) is disjoint from
U or F(U) = U . If the latter case holds, then since z is recurrent for f and π |U F = f π |U ,
it follows that z′ is F-recurrent, contradicting the fact that z′ ∈ K−. Thus F(U) is disjoint
from U .

We may join z′ to a point x ∈ ∂ U by an arc γ that is contained in U except for its endpoint
x . We will show that x ∈ K−. Suppose on the contrary that x ∈ K+. Since F(U ) is disjoint
from U and F(x) 
= x , we have F(γ ) ∩ γ = ∅, and there exists a connected neighborhood
W of γ such that F(W ) ∩ W = ∅. Since F has no fixed points, by Proposition 3.1 this
implies that Fn(W ) ∩ W = ∅ for all n 
= 0. By Lemma 1.1 we may choose M such that any
continuum C ⊂ K satisfying [−M, M] ⊂ pr1(C) intersects W . Since x ∈ K+ and z′ ∈ K−,
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if n is chosen large enough then [−M, M] ⊂ pr1 F
n(γ ), so Fn(γ )∩W 
= ∅. This contradicts

the fact that Fn(W )∩W = ∅, and we conclude that x ∈ K−. Since x ∈ ∂ U ⊂ ∂ K, it follows
that K−

0 = ∂ K ∩ K− 
= ∅, contradicting our initial assumption. �
Claim 2 Every subcontinuum of ∂ K is entirely contained in K+

0 or K−
0 .

Proof Suppose C ⊂ ∂ K is a continuum intersecting both K+ and K−. Then given M > 0,
we have that [−M, M] ⊂ pr1(F

n(C)) for any large enough n. Fix ε > 0 as in Lemma 3.3, so
that there is no periodic ε-chain for F |K. There are finitely many points x1, . . . , xm ∈ C such
that C ⊂ ⋃m

i=1 Bε/4(xi ), and applying Lemma 1.1, we may fix n > 0 large enough so that
Fn(C) intersects Bε/4(xi ) for all i ∈ {1, . . . ,m}. This means that C ⊂ Bε/2(Fn(C)). Let
z0 ∈ C be arbitrary, and define a sequence z0, z1, . . . , zm inductively as follows: assuming
that zk is defined, choose zk+1 ∈ C such that zk ∈ Bε/2 (Fn(zk+1)). Since C is covered by
m balls of radius ε/4, there exist i, j such that 0 ≤ i < j ≤ m and d(zi , z j ) < ε/2. The
sequence

z j , F(z j ), . . . , F
n−1(z j ), z j−1, F(z j−1), . . . , zi+1, F(zi+1), . . . , F

n−1(zi+1), z j

is then a periodic ε-chain for F |K, a contradiction. �
Claim 3 The sets K+

0 and K−
0 are both dense in ∂ K.

Proof We prove the claim for K+
0 , since the proof for K−

0 is analogous.
Using Lemma 1.1, given ε > 0 we may choose M > 0 such that any subcontinuum C

of ∂ K such that [−M, M] ⊂ pr1(C) projects onto an ε-dense subset of ∂ K . Note that if
C ⊂ ∂ K is a continuum such that pr1(C) has diameter greater than 2M+1, then [−M, M] ⊂
pr1(T

n(C)) for some n ∈ Z, hence π(C) is also ε-dense in ∂ K .
Choose z ∈ ∂ K+

0 . If Q = (pr1 z−M −1, pr1 z+M +1)×[0, 1], then ∂ K∩Q separates
the two horizontal boundary lines of Q, so by Proposition 1.2 some connected component
B of ∂ K ∩ int Q separates the horizontal boundary lines of Q. Since B is a subcontinuum
of ∂ K intersecting K+, by the previous claim it is contained in K+

0 , and since pr1(B) has
diameter at least 2M + 2, the set π(B) ⊂ π

(K+
0

)
is ε-dense in ∂ K . SinceK+

0 is T -invariant
and ∂ K = π−1(∂ K ), it follows that K+

0 is ε-dense in ∂ K. �
To complete the proof of the theorem, note that wemaywriteK±

0 = ⋃
n∈Z T n(B±

0 ), where
B±
0 = {z ∈ ∂ K : ± pr1 F

n(z) ≥ 0 ∀n ≥ 0}, which is a closed set. Thus K+
0 ∪ K−

0 = ∂ K
is written as a countable union of closed sets, and by Baire’s theorem it follows that one of
the sets T n

(B+
0

)
or T n

(B−
0

)
has nonempty (relative) interior in ∂ K. In particular, one of

the sets K+
0 or K−

0 has nonempty interior in ∂ K, contradicting the fact that the two sets are
disjoint and dense in ∂ K. �

4 Handel’s theorem for annular continua

This section is devoted to the proof of Theorem A. Let us begin with a remark. Handel’s
statement is exactly as our statement of Theorem A setting K = A, except that part (2) only
mentions an invariant measure (instead of ergodic). However, it follows from the ergodic
decomposition theorem that if such an invariant measure exists, then an ergodic measure
with the same property exists as well.

From now on we assume that K , f and F are as in the statement of Theorem A. We
assume that A = R × [0, 1] is endowed with the euclidean metric d and A by the induced
metric (which we still denote by d).
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The first part of the proof involves minor modifications to Handel’s proof. We will outline
the main steps of Handel’s proof, adapting what is needed to our setting. We begin with a
small modification of [19, Lemma 2.1]:

Lemma 4.1 If x ∈ K and α ∈ ρ(F, x), then either ρ(F, ω f (x)) = {α} or there are periodic
orbits in K with prime period and with rotation numbers arbitrarily close to α.

Proof By Proposition 2.1, we know that α ∈ ρ(F, ω f (x)). If the latter set has more than
one element, then it contains an interval of the form (α − ε, α] or [α, α + ε). In either case
we may find a rational p/q ∈ ρ(F, ω f (x)) arbitrarily close to α with q prime. Since ω f (x)
is chain transitive for f |K , by Theorem 2.7 this rational is realized by a periodic orbit (of
period q) in K . �

The next lemma (which corresponds to [19, Lemma 2.2]) is proved similarly, noting that
the Hausdorff limit of chain transitive sets is chain transitive.

Lemma 4.2 Suppose that Yi is anω-limit set of a point of K , that αi ∈ ρ(F, Yi )with αi → α

as i → ∞, and that Yi → Y in the Hausdorff topology. Then either ρ(F, Y ) = {α} or there
exist periodic orbits in K with prime periods and rotation numbers arbitrarily close to α.

We say that α satisfies the pA-hypothesis on K if there exist periodic orbits Xi ⊂ K , a
closed invariant set X ⊂ K , an invariant measure μ with support in X , a (not necessarily
invariant) set B ⊂ X of positive μ-measure and ε > 0 such that:

(1) Xi → X in the Hausdorff topology;
(2) Either ρ(F, Xi ) < α < α + ε < ρ(F, b) for all b ∈ B and all sufficiently large i or

ρ(F, Xi ) > α > α − ε > ρ(F, b) for all b ∈ B and all sufficiently large i .

The next result corresponds to [19, Proposition 2.3], and its proof is identical (using the
preceding lemmas instead of their counterparts).

Proposition 4.3 For all α in the closure of ρ(F, K ), one of the following holds:

(1) There is a compact invariant set Qα ⊂ K such that ρ(F, Qα) = {α};
(2) There is an invariant Borel probability measure μ supported on K such that ρ(F, μ) =

α;
(3) α satisfies the pA-hypothesis on K .

Moreover, the set of values of α that satisfy (2) but not (1) or (3) is discrete.

Note that cases (1) and (2) (the latter holding only on a discrete set of values of α) satisfy
the statement of Theorem A. The final and most difficult step to prove the theorem is to show
that in case (3), i.e. if α satisfies the pA-hypothesis on K , then case (1) also holds.

Recall that a homeomorphism φ : A → A is pseudo-Anosov relative to a finite invariant
set R if, letting N be the compact surface obtained fromA\R by compactifying each puncture
with a boundary circle and p : N → A themap that collapses these boundary circles to points,
there is a pseudo-Anosov homeomorphism � : N → N such that φp = p� (see [11,41]).
An equivalent definition is to say that φ satisfies the usual definition of a pseudo-Anosov map
except that the stable/unstable foliations have one-prong singularities at points of R; see [3].

From [19, Proposition 3.1], we have:

Proposition 4.4 If α satisfies the pA-hypothesis on K , then there exists n > 0, an f n-
invariant finite set R ⊂ K and a homeomorphism φ : A → A such that:
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• φ is pseudo-Anosov relative to R,
• φ is homotopic to f n relative to R,
• nα ∈ int ρ(φ̂), where φ̂ : A → A is the lift of φ obtained by lifting a homotopy from f n

to φ (rel R) to a homotopy from Fn to φ̂.

The only change that we made in the statement is to require that the pA-hypothesis holds
on K (instead of on A) and to claim that R ⊂ K . This is clear from Handel’s proof; indeed,
it suffices to note that in the proof of [19, Proposition 3.1], the set R is obtained as a subset
of Y1 ∪ Y2, where Y1, Y2 are the sets in the statement of [19, Lemma 3.2], which in turn
are chosen among the periodic orbits Xi from the definition of the pA-hypothesis (see [19,
Lemma 3.3(i)]). Since we assume the pA-hypothesis on K , the orbits Xi are contained in K ,
so R ⊂ K .

We now give a slightly improved statement of [19, Proposition 1.1], which is explicitly
contained in its proof.

Proposition 4.5 Suppose that φ : A → A is pseudo-Anosov relative to a finite invariant set
R, and φ̂ is a lift to A. Then ρ(φ̂) is a closed interval, and if r ∈ int ρ(φ̂), there exists a
compact invariant set Qr ⊂ intA\R such that

Mr := sup
{∣∣∣pr1

(
φ̂n(z) − z

)
− nr

∣∣∣ : n ∈ Z, z ∈ π−1(Qr )
}

< ∞.

Addendum 4.6 Given r1, r2 ∈ ρ(φ̂), one may choose the sets Qr for r1 < r < r2 in a way
that Qr ⊂ Q for some compact invariant subset Q ⊂ A\R and Mr ≤ M for some constant
M > 0 independent of r .

Proof From the proof of [19, Proposition 1.1] one sees that the sets Qr are obtained by fixing
any r1, r2 ∈ ρ(φ̂) such that r1<r<r2, choosing two admissible sequences U and V for a
previously fixed Markov partition, and constructing a new admissible sequence S using the
sequences U and V . As explained in the proof, if y is a point with itinerary S and ŷ is a lift
of y, the deviation |pr1(φ̂n(ŷ) − ŷ) − nr | is bounded by a uniform constant, which depends
only on U and V (and not on r ), so our statement follows. Moreover, the fact that the sets
Qr ⊂ intA\R depends on choosing the sequences U and V long enough, which gives a
bound on the distance to the boundary independent of r , so the set Q = ⋃

r1<r<r2Qr is a
compact invariant subset of intA\R. �

If N0 is a surface (possibly with punctures) endowed with a metric d0, with universal
cover Ñ0 endowed with the lifted metric d̃0, and if�, g : N → N are homeomorphisms such
that � is isotopic to g, we say that the �-orbit of x ∈ N globally C-shadows the g-orbit of
y ∈ N (with respect to d0) if, given two equivariantly isotopic lifts �̃, g̃ : Ñ → Ñ of � and
g to the universal cover there exist lifts x̃ ỹ of x and y such that d̃0(�̃n(x̃), g̃n(ỹ)) ≤ C for

all n ∈ Z. In this case we write (�, x)
C∼ (g, y), or simply (�, x) ∼ (g, y) if the constant

C is unspecified. This definition does not depend on the choice of the lifts.
Suppose now that N is a compact surface (possibly with boundary) and N0 = int N , and

let � : N → N be a pseudo-Anosov homeomorphism. Then there exists a metric D on N0,
which we call a pA-metric for �, which lifts to an equivariant metric D̃ on Ñ0 of the form

D̃ =
√
D̃2
s + D̃2

u , where D̃s, D̃u : Ñ0 × Ñ0 → [0,∞) are equivariant functions for some

λ > 1 one has D̃u(�̃(x̃), �̃(ỹ)) = λD̃u(x̃, ỹ) and D̃s(�̃
−1(x̃), �̃−1(ỹ)) = λD̃s(x̃, ỹ) for

all x̃, ỹ ∈ Ñ0 and every lift �̃ of �|N0 (see [18, § 1 and Remark 2.4] and references therein).
We use this metric for the next statements.

The following result is contained in [18]:
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Proposition 4.7 If g : N → N is isotopic to �, then there exists a constant C > 0 such that

(�|N0 , x) ∼ (g|N0 , y) if and only if (�|N0 , x)
C∼ (g|N0 , y). If (�|N0 , xn) ∼ (g|N0 , yn)

where xn → x and yn → y as n → ∞, then (�|N0 , x) ∼ (g|N0 , y).

As a consequence, we have the following well known result, which is an improved state-
ment of [18, Theorem 2]:

Proposition 4.8 If g : N → N is isotopic to�, then there is a g-invariant set Y ⊂ N0 and a
continuous surjection h : Y → N0 such that hg|Y = �h. Moreover, Y is the set of all y ∈ N0

for which there exists x ∈ N0 such that (g|N0 , y) ∼ (�|N0 , x), and h(y) = x (which is
unique).

To use these results for relative pseudo-Anosov maps, we have the following:

Lemma 4.9 Let g : S → S be a homeomorphism of a compact surface S, and assume that
g is isotopic relative to a finite set R ⊂ S to a map φ : S → S which is pseudo-Anosov
relative to R. Let S0 = int S\R. Then, for each compact φ-invariant set X ⊂ S0 there exists
a compact g-invariant set X∗ ⊂ S0 and a continuous surjection h∗ : X∗ → X such that
h∗g|X∗ = φh∗.

Moreover, using an adequate metric D on S0 (which depends only on φ), the set X∗
consists of all y ∈ S0 for which there exists x ∈ X such that (φ|S0 , x) ∼ ( f |S0 , y). Such x
is necessarily unique, and the map h∗ is defined as h∗(y) = x.

In addition, there exists C > 0 such that (φ|S0 , h∗(y))
C∼ ( f |S0 , y) for all y ∈ X∗.

Proof Consider the surface N obtained from S by blowing up the elements of R to circles.
Let p : N → S be the projection that collapses boundary components to points of R, and let
� : N → N be a pseudo-Anosov map such that p� = φp. Let N0 = int N , so p : N0 → S0
is a homeomorphism, and let G0 = p−1g|S0 p. We denote by Bδ(E) the δ-neighborhood
of a set E ⊂ N under some fixed complete metric of N . We may also endow N0 with a
pA-metric D (as described before Proposition 4.7). Let X ′ = p−1(X) and let ε > 0 be such
that X ′ ∩ Bε(∂ N ) = ∅ and each boundary component of N belongs to a different component
of Bε(∂ N ).

We claim that there exist constants C and δ > 0 such that if (�|N0 , x) ∼ (G0, y) then

(�|N0 , x)
C∼ (G0, y) and moreover if x /∈ Bε(∂ N ), then y /∈ Bδ(∂ N ). The arguments from

the proof are essentially contained in [19, Lemma 1.3]. First we remark that the pA-metric
D on N0 extends to a pseudo-metric on N (still denoted by D) such that D(x, y) = 0 if and
only if x = y or x and y belong to the same boundary component of N . If τ : Ñ → N is
the universal covering map and Ñ0 = τ−1(N0), the lift D̃ of D to Ñ0, also extends to an
equivariant pseudo-metric Ñ with the property that D̃(x, y) = 0 if and only if x = y or x
and y belong to the same connected component of τ−1(∂ N ).

We may choose 0 < δ0 < ε such that each connected component of τ−1(Bδ0(∂ N )) has
D̃-diameter smaller than 1, and this is enough to guarantee that if G : N → N is a home-
omorphism which coincides with G0 outside Bδ0(∂ N ) and G̃ is the lift of G equivariantly
isotopic to �̃, then D̃(�(z), G̃(z)) and D̃(�−1(z), G̃−1(z)) are uniformly bounded by a
constant independent of z and the choice of G. This in turn suffices to guarantee that the
constant C from Proposition 4.7 (applied to � and G) is independent of the choice of G (this
follows from the proof of [18, Lemma 2.2]).

Let η := inf{D̃(x̃, ỹ) : x̃ ∈ Ñ\τ−1(Bε(∂ N )), ỹ ∈ τ−1(Bδ0(∂ N ))} > 0. The properties
of the pA-metric imply that there exists k0 > 0 such that if x̃, ỹ are points such that D̃(x̃, ỹ) ≥
η then sup|k|≤k0 D̃(�̃k(x̃), �̃k(ỹ)) > C + 1. Let 0 < δ < δ0 be small enough so that

123



562 A. Koropecki

{Gk(x),�k(x)} ⊂ Bδ0(∂ N ) whenever x ∈ Bδ(∂ N ) and |k| ≤ k0. Given y ∈ Bδ(∂ N )

and x ∈ N\Bε(∂ N ), if ỹ, x̃ are lifts of y, x then D̃(x̃, ỹ) ≥ η and D̃(�̃k(ỹ), G̃k(ỹ)) < 1
whenever |k| ≤ k0; therefore sup|k|≤k0 D̃(G̃k(ỹ), �̃k(x̃)) > C . Since the constants are

independent of our choice of G, this also holds replacing G̃ by G̃0 (the lift of G0 to Ñ0

which is equivariantly isotopic to �̃|Ñ0
). We conclude from these facts that if y ∈ N0 and

x ∈ N\Bε(∂ N ) are such that (G0, y) ∼ (�|N0 , x), then y ∈ N\Bδ(∂ N ), as we wanted.
Let Y ⊂ N0 and h : Y → N0 be as in Proposition 4.8 applied to G and �, and let

X ′∗ = h−1(X ′). The set X ′∗ is closed and consists of all y ∈ N0 for which there exists x ∈ X ′
such that (G|N0 , y) ∼ (�|N0 , x), and sinceG coincides withG0 on N\Bε(∂ N ) ⊃ X ′, from
our previous claim this is equivalent to saying that (G0, y) ∼ (�|N0 , x). Moreover, this is

also equivalent to (G0, y)
C∼ (�|N0 , x). Letting X∗ = p(X ′∗) and h∗ = php−1|X∗ we have

that h∗g|X∗ = φh∗ and h∗ satisfies the required properties (using the metric induced in S0
by the pA-metric D via p|N0 : N0 → S0). �

Let us now continue with the proof of Theorem A. Recall that we are assuming that that
α satisfies the pA-hypothesis on K for f , and we want to show that there exists a compact
invariant subset of K whose every point has rotation number α for F (i.e. that part (1) from
Proposition 4.3 holds).

Let n ∈ N, R ⊂ K and φ be as in Proposition 4.4. In particular there is an interval
I = (r1, r2) such that nα ∈ I ⊂ int ρ(φ̂), where φ̂ is the lift of φ toA equivariantly isotopic
rel R to Fn .

We may thus apply Proposition 4.5 and its Addendum to φ and r = nα to find a compact
φ-invariant set Q ⊂ A\R containing compact invariant subsets {Qt : t ∈ I } and M > 0
as in the addendum. Let Q∗ ⊂ intA\R and h∗ : Q∗ → Q be as in Lemma 4.9 applied
to g = f n , X = Q, and S = A. Let S0 = intA\R and let φ0, g0 be the restrictions
of φ and g to S0. Given y ∈ Q∗, the image h∗(y) is the unique point of S0 satisfying

(g|S0 , y) C∼ (φ|S0 , h∗(y)) with respect to some continuous metric D on S0 (which depends

only onφ). From the fact that Q∗ is compact it is easy to verify that (g|S0 , y) C ′
∼ (φ|S0 , h∗(y))

under the restriction of the originalmetric ofA, for some constantC ′ > 0. This in turn implies

that (g|intA, y)
C ′
∼ (φ|intA, h∗(y)); in other words, there exist lifts ŷ of y and x̂ of x = h∗(y)

to A such that d(φ̂k(x̂), ĝk(ŷ)) ≤ C ′ for all k ∈ Z, where d is the euclidean metric. On the
other hand, if we assume that x ∈ Qt , Proposition 4.5 implies that |pr1(φ̂k(x̂) − x̂) − kt | is
bounded by a uniform constant M for all k ∈ Z. From these two facts, we conclude that

|pr1(ĝk(ŷ) − ŷ) − kt | ≤ M + C ′ for all k ∈ Z. (4.1)

In particular, every y ∈ Q∗
t := (h∗)−1(Qt ) satisfies ρ(ĝ, y) = t .

The key to finish our proof is to show that there exists a sequence ti → nα of rational
numbers such that Q∗

ti ∩ K 
= ∅ for all i ∈ N. Indeed, if this holds then replacing ti by a
subsequence we may assume that Q∗

ti converges in the Hausdorff topology to some compact
g-invariant set Q′∗

nα ⊂ Q∗ such that Q′∗
nα ∩ K 
= ∅, and since (4.1) holds for t = ti and

every ŷ ∈ π−1(Qti ) it follows that (4.1) also holds for t = nα and every ŷ ∈ π−1
(
Q′∗

nα

)
. In

particular, if y ∈ Q′∗
nα , then

α = ρ(ĝ, y)/n = ρ(Fn, y)/n = ρ(F, y),

so letting Q′
α be the f -orbit of the f n-invariant set Q′∗

nα , we obtain a compact f -invariant
set such that ρ(F, y) = α for all y ∈ Q′

α , so part (1) of Proposition 4.3 holds (using Q′
α ∩ K

in place of Qα), completing the proof that if (3) holds for α then so does (1).
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To conclude the existence of the sequence ti , it suffices to show that any p/q ∈ I ∩ Q

such that p/q /∈ {ρ−(ĝ, K ), ρ+(ĝ, K )} satisfies Q∗
p/q ∩ K 
= ∅. To show this, we assume

p/q = 0 (replacing g by gq and ĝ by T−p ĝq , and similarly for φ and φ̂). Under this
assumption, Proposition 3.2 implies that there exists g′ and a lift ĝ′ which has no fixed points
in A and which coincides with ĝ in a neighborhood of π−1(K ) and has no fixed points in
A\K . Note that g′ is isotopic to g (hence to φ) relative to R ⊂ K . Applying all the previous
arguments to g′ instead of g, we obtain a compact g-invariant set Q′∗, a map h′∗ : Q′∗ → Q
and a set Q′∗

0 = h′−1∗ (Q0) with the same properties of the corresponding objects for g. In
particular if x ∈ Q∗

0 and x̂ is a lift of x , then by the property analogous to (4.1) we know
that |pr1(ĝ′k(x̂) − x̂)| is bounded for k ∈ Z. Suppose that Q′∗

0 is disjoint from K . Then if
U− and U+ are the two components of intA\K , one of the two sets intersects Q′∗

0 . Suppose
for instance U− ∩ Q′∗

0 
= ∅. Then Q′∗
0 ∩ U− is compact, g′-invariant, and every ĝ′-orbit of

a point of π−1
(
Q′∗

0 ∩U−
)
is bounded. Since π−1(U−) is an invariant set homeomorphic

to R
2, by Brouwer theory (for instance Proposition 3.1) ĝ must have a fixed point in U−,

which contradicts our choice of g′. Thus Q′∗
0 intersects K . Recall that (from Lemma 4.9)

h∗
(
Q∗

0

) = Q0, where Q∗
0 is the set of all y ∈ S0 such that there exists x ∈ Q0 with

(φ|S0 , x) ∼ (g|S0 , y) with respect to the metric D and h∗(y) = x (which is unique). The
analogous properties hold replacing h∗, Q∗

0 and g by h′∗, Q′∗
0 and g′. Choose y′ ∈ Q′∗

0 ∩ K
and y ∈ h−1∗ (h′∗(y′)) ⊂ Q∗

0. Then we have (φ|S0 , h′∗(y′)) ∼ (g′|S0 , y′) with respect to D.
Since y′ ∈ K and g′|K coincides with g|K (as do their corresponding lifts), it follows that

(
φS0 , h

′∗(y′)
) ∼ (

g′|S0 , y′) ∼ (
g|S0 , y′)

so the definition of Q∗
0 implies that y′ ∈ Q∗

0 and h∗(y′) = h′∗(y′). Thus we have showed that
Q′∗

0 ∩ K ⊂ Q∗
0, and in particular Q

∗
0 intersects K as we wanted. This concludes the proof of

the theorem. �
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