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Abstract Following Frauenfelder (Rabinowitz action functional on very negative line bun-
dles, Habilitationsschrift, Munich/München, 2008), Albers and Frauenfelder (Bubbles and
onis, 2014. arXiv:1412.4360) we construct Rabinowitz Floer homology for negative line
bundles over symplectic manifolds and prove a vanishing result. Ritter (AdvMath 262:1035–
1106, 2014) showed that symplectic homology of these spaces does not vanish, in general.
Thus, the theorem SH = 0 ⇔ RFH = 0 (Ritter in J Topol 6(2):391–489, 2013), does not
extend beyond the symplectically aspherical situation. We give a conjectural explanation in
terms of the Cieliebak–Frauenfelder–Oancea long exact sequence Cieliebak et al. (Ann Sci
Éc Norm Supér (4) 43(6):957–1015, 2010).

1 Introduction

Negative line bundles give rise to a rather special class of contact manifolds which never-
theless contains many interesting examples. They arise at many places in modern contact
and symplectic geometry such as Givental’s nonlinear Maslov index [17] and more generally
contact rigidity [7,8,12,25] etc.

Let us be more specific. We choose a closed connected symplectic manifold (M, ω) with
integral symplectic form [ω] ∈ H2(M,Z).We denote by℘ : � → M the principal S1-bundle
and by ℘ : E → M the associated complex line bundle with first Chern class cE1 = −[ω].
We refer to these bundles as negative line bundles. There exists an S1-invariant 1-form α on
�, and hence E\M , with the property

dα = ℘∗ω (1.1)
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which is a contact form on �. For more details we refer to [16, Section 7.2]. If we denote by
r the radial coordinate on E then the 2-form

� := d
(
πr2α
)+ ℘∗ω = 2πrdr ∧ α + (πr2 + 1

)
℘∗ω (1.2)

is a symplectic form on E . Throughout this article we make the assumption that (E,�) is
semi-positive, see [20, Definition 6.4.1] and page 5 for an equivalent formulation.

Theorem 1.1 The Rabinowitz Floer homology RFH(�, E) is well-defined.

In many situations we are able to prove the following vanishing result.

Theorem 1.2 We assume that one of the following is satisfied.

(1) (M, ω) is symplectically aspherical: ω
(
π2(M)
) = 0.

(2) There exists a constant c ∈ Z such that

cT M
1 = cω : π2(M) → Z (1.3)

and either c ≥ 1 or 2cν ≤ −dim M where ν ∈ Z>0 is defined by ω
(
π2(M)
) = νZ.

Then (E,�) is semi-positive and Rabinowitz Floer homology vanishes

RFH(�, E) = 0 . (1.4)

Contact manifolds such as spheres, projective spaces etc. come from negative line bundles.
In fact, the Boothby–Wang theorem [16, Theorem 7.2.5] characterizes these contact man-
ifolds as those whose Reeb flow is periodic with all Reeb orbits having the same minimal
period. On the sphere this corresponds to the Hopf fibration.

Remark 1.3 (1) If c = 0, i.e. cT M
1

(
π2(M)
) = 0, then cT E

1 = −℘∗ω : π2(E) → Z.
Therefore, (E,�) is semi-positive if and only if ν ≥ 1

2 dim M − 1 or ω
(
π2(M)
) = 0,

see Lemma 2.6. If (E,�) is semi-positive then RFH(�, E) = 0 still holds.
(2) It is worth pointing out that� is not displaceable inside E since the zero-section M ⊂ E

is not even topologically displaceable. To our knowledge this is the first vanishing result
for RFH result which is not due to a displaceability phenomenon, see also Ritter [23,
Remark on p. 1044].

(3) There are very few direct computations ofRFH.To our knowledge, the vanishing result in
the displaceable case [9], the computation for cotangent bundles [5], and the computation
for Brieskorn spheres [13] are the only ones. The long exact sequence, [11] leads often
to computational results if the symplectic homology and the connectingmaps are known.
The latter rarely happens, though.

(4) Rabinowitz Floer homology, first constructed by Cieliebak and Frauenfelder in [9], is
an invariant of contact type hypersurfaces in symplectic manifolds. It turned out to be
an efficient tool for studying questions in symplectic topology and dynamics, see [2].
In [15] Frauenfelder studied the Rabinowitz Floer homology of negative line bundles
under the additional assumption of the line bundle being very negative. The implication
of the latter is the generic absence of holomorphic spheres. Amongst many other things
he established C∞

loc-compactness results, cf. [15, Theorem B]. Even though Rabinowitz
Floer homology is not fully constructed in [15] all ingredients are basically contained
therein, see also [3].
The purpose of this article is to complete and extend the construction of Rabinowitz
Floer homology to negative line bundles in the presence of holomorphic spheres under a
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semi-positivity assumption. In particular, we prove a transversality resultmade necessary
due to the use of a rather restricted class of almost complex structures.
It is worth pointing out that this is the first instance where Rabinowitz Floer homology is
constructed in the presence of holomorphic spheres. Holomorphic spheres are a source
for interesting symplectic topology and big technical problems at the same time. The
latter is the reason we require semi-positivity.

(5) The main new contribution is Theorem 1.2: Rabinowitz Floer homology vanishes in
many cases. This should be contrasted with Ritter’s result that symplectic homology
does not necessarily vanishes, see [23]. Thus, the theorem SH = 0 ⇔ RFH = 0, [22],
does not extend beyond the symplectically aspherical situation. We give a conjectural
explanation of this in Sect. 4 below.
For very negative line bundles Ritter in [23, Theorem 8] proved vanishing of symplectic
homology. If we assume in addition that cT M

1 = cω : π2(M) → Z the Rabinowitz
Floer homology vanishes according to Theorem 1.2 as well. The conjectural picture
from Sect. 4 nicely relates these results.

2 Rabinowitz Floer homology and Hamiltonian Floer homology

2.1 Preliminaries

Let ℘ : E → M be as described above. We denote by L (E) the component of contractible
loops of the free loop space of E . Moreover, we denote by L̃ (E) the covering space ofL (E)

with deck transformations given by

	E := π2(E)

ker� ∩ ker cT E
1

. (2.1)

We write elements in L̃ (E) as [u, ū], where u : S1 → E and ū : D2 → E is a capping disk
for u, i.e. ū|S1 = u. Moreover, pairs (u, ū) and (v, v̄) are equivalent if u = v and�(−ū#v̄) =
cT E
1 (−ū#v̄) = 0, where −ū#v̄ is the sphere formed by ū with orientation reversed and v̄.
The expression [u, ū] denotes the corresponding equivalence class. Analogously we define

	M := π2(M)

ker ω ∩ ker cT M
1

, (2.2)

L (M) and L̃ (M). By definition of E we have

cT E
1 = ℘∗(cT M

1 + cE1
)

. (2.3)

Remark 2.1 Wepoint out that under assumption (1.3), i.e. cT M
1 = cω : π2(M) → Z, we have

ker ω∩ker cT M
1 = ker ω and ker�∩ker cT E

1 = ker�. If we instead assume ω
(
π2(M)
) = 0

then cT E
1 = ℘∗cT M

1 : π2(E) → Z. In particular, since π2(E) ∼= π2(M) via ℘∗, we can
identify in both cases 	E ∼= 	M .

For τ > 0 we denote by μτ : E → R the function μτ = πr2 − τ where as above r
denotes the radial coordinate on E . We point out that along�τ := {μτ = 0} the Hamiltonian
vector field Xμτ of μτ agrees with the Reeb vector field R associated to the contact form α.
In particular, we use the convention �(Xμτ , ·) = −dμτ . The Rabinowitz action functional
A τ is defined as
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A τ : L̃ (E) × R → R

([u, ū], η) →
∫

D2
ū∗� − η

∫ 1

0
μτ

(
u(t)
)
dt.

(2.4)

In the article [9] Cieliebak and Frauenfelder developed a Floer theory for this functional in
a slightly simpler set-up and for non-degenerate contact forms. The current set-up has been
developed and studied Frauenfelder in [15] for very negative line bundles, see also [3].

In our setting the contact form is Morse–Bott non-degenerate. A general Morse–Bott
approach to Rabinowitz Floer homology is currently not available in the literature. Instead
of perturbing the contact form we choose the following perturbation. We fix f : M → R

and set

F := (πr2 + 1
)
f ◦ ℘ : E → R. (2.5)

The perturbed Rabinowitz action functional is

A τ
f : L̃ (E) × R → R

([u, ū], η) →
∫

D2
ū∗� − η

∫ 1

0
μτ

(
u(t)
)
dt −
∫ 1

0
F
(
u(t)
)
dt .

(2.6)

Critical points ofA τ
f =0 correspond to capped Reeb orbits traversed in forward and backward

direction and, in addition, to constant loops contained in�τ togetherwith cappings. InLemma
2.3 we show that for C2-small Morse functions f the critical points of A τ

f correspond to
capped Reeb orbits which lie via ℘ : E → M over Crit( f ). The functional A τ

f is still

Morse–Bott due to the remaining S1-symmetry. This can be dealt with as in the article by
Bourgeois-Oancea [6].

Remark 2.2 We split the tangent bundle T E ∼= V ⊕ H in vertical resp. horizontal subspaces

V resp. H according to α. In particular, ℘∗ : (H, dα)
∼=−→ (T M, ω) is an isomorphism of

symplectic vector bundles and V is spanned by the Reeb vector field R and the radial vector
field r∂r .

Lemma 2.3 If f : M → R is C2-small then
([u, ū], η) is a critical point of A τ

f if and only
if the following equations are satisfied.

⎧
⎪⎨

⎪⎩

πr(u)2 = τ

q := ℘(u) ∈ Crit( f )

u̇ = (η + f (q)
)
R(u)

(2.7)

In particular, necessarily η + f (q) ∈ Z and u ⊂ �τ is a (η + f (q))-fold cover of the
underlying simple periodic orbit.

Proof The critical point equation for A τ
f is

⎧
⎪⎨

⎪⎩

u̇ = ηXμτ (u) + XF (u)
∫ 1

0
μτ (u)dt = 0 .

(2.8)
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The Hamiltonian vector field of F is XF = ( f ◦ ℘)Xμτ + Xh
f where Xh

f is the horizontal

lift of X f , i.e. Xh
f ∈ H and ℘∗(Xh

f ) = X f . Indeed,

�(XF , ·) =
(
2πrdr ∧ α + (πr2 + 1

)
℘∗ω
)(

( f ◦ ℘)Xμτ + Xh
f , ·
)

= −2πr( f ◦ ℘) + (πr2 + 1
)
℘∗(ω(X f , ·)

)

= −2πr( f ◦ ℘) − (πr2 + 1
)
℘∗d f

= −d
[(

πr2 + 1
)
f ◦ ℘
]

= −dF .

(2.9)

We point out that �(Xμτ , XF ) = dF(Xμτ ) = 0 since ℘∗(Xμτ ) = 0 = dr(Xμτ ). Therefore
the critical point Eq. (2.8) simplifies to

{
u̇ = (η + f (℘ (u))

)
Xμτ (u) + Xh

f (u)

μτ

(
u(t)
) = 0 ∀t ∈ S1 .

(2.10)

The last equation translates into r(u(t)) being constant and πr(u)2 = τ . The critical point
equation together with ℘∗(Xμτ ) = 0 implies that ℘(u) is a 1-periodic solution of X f in M .
Now, if the C2-norm of f is sufficiently small the only 1-periodic solutions of X f are the
critical points of f , see [19, p. 185]. Thus, q := ℘(u) ∈ Crit( f ) and u corresponds to a
(η + f (q))-periodic orbit of R on �τ . This implies that η + f (q) ∈ Z due to our convention
S1 = R/Z. ��
Remark 2.4 To summarize critical points of A τ

f correspond to all Reeb orbits over Crit( f )
together with cappings. More precisely, all forward (i.e. η + f (q) > 0) and backward
(i.e. η + f (q) < 0) iterations and also the “constants” (i.e. η + f (q) = 0) together with
cappings.

Convention 2.5 • From now on we assume that theMorse function f : M → R is chosen
C2-small so that Lemma 2.3 applies.

• Every simple periodic Reeb orbit v ⊂ �τ has a capping by its fiber disk dv ⊂ E and
correspondingly the n-fold cover vn has dnv as capping disk for n ∈ Z\{0}. Every non-
constant critical point

([u, ū], η) can be expressed in the form u = vn and ū = dnv #A for
some A ∈ 	E . If u is a constant critical point, the capping disk ū can be thought of as a
sphere A ∈ 	E . We are going to adopt the notation [u, ū] = [u, A].
Using Lemma 2.3 we compute the action value for a critical point

([u, ū], η) =([vn, A], η) with q = ℘(u).

A τ
f

([vn, A], η) =
∫

D2

(
dnv
)∗

� + ω(A) − η

∫ 1

0
μτ (v

n)
︸ ︷︷ ︸

=0

dt −
∫ 1

0
F(vn)dt

=
∫

D2

(
dnv
)∗[

d
(
πr2α
)]−
∫ 1

0

(
πr2 + 1

)
f ◦ ℘(vn)dt + ω(A)

=
∫

S1
(vn)∗
(
πr2α
)− (τ + 1) f (q) + ω(A) (2.11)

=
∫

S1
τα
(
(η + f (q))R(vn)

)− (τ + 1) f (q) + ω(A)

= τ
(
η + f (q)

)− (τ + 1) f (q) + ω(A)
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= τη + ω(A) − f (q)

= τn + ω(A) − (τ + 1) f (q),

where we use n = η + f (q) and � = ω : 	E ∼= 	M → Z.
Next we explain how to define Floer homology for A τ

f . This mainly follows the lines
of Frauenfelder [15] and Albers and Frauenfelder [3]. We assume throughout that (E,�)

is semi-positive. According to McDuff and Salamon [20, Exercise 6.4.3] the symplectic
manifold (E,�) is semi-positive if and only if

• (E,�) is symplectically aspherical,
• (E,�) is monotone,
• cT E

1 : π2(E) → Z vanishes,
• the minimal Chern number NE of E satisfies NE ≥ 1

2 dim E − 2.

Since π2(E) ∼= π2(M) via℘∗ the first condition is equivalent to (M, ω) being symplectically
aspherical which is condition (1) in Theorem 1.2.

If we assume that there exists a constant c ∈ Z such that cT M
1 = cω : π2(M) → Z then

cT E
1 = ℘∗(cT M

1 + cE1
) = (c − 1)℘∗ω. (2.12)

Thus, if c > 1 the symplectic manifold (E,�) is monotone and for c = 1 we have cT E
1 = 0

on π2(E). Furthermore, if we denote by ν ∈ Z≥0 the generator of ω
(
π2(M)
) = νZ then the

minimal Chern number NE of E is

NE = |c − 1|ν. (2.13)

Thus, we proved the following Lemma.

Lemma 2.6 The symplectic manifold (E,�) is semi-positive if

• (M, ω) is symplectically aspherical or

• cT M
1 = cω : π2(M) → Z with c ≥ 1 or NE = |c − 1|ν ≥ 1

2 dim E − 2.

In the following Lemma we use the notation of Convention 2.5. For
([u, ū], η) =([u, A], η) ∈ Crit(A τ

f ), we denote by μE
CZ(u, ū) ≡ μE

CZ(u, A) the Conley–Zehnder index
of u with respect to the capping disk ū. We refer to [24] for a thorough discussion of the
Conley–Zehnder index.

Lemma 2.7 The Conley–Zehnder index of a n-fold cover vn with its fiber disk dnv is

μE
CZ(vn, dnv ) = 2n. (2.14)

More generally, for any capping ū = dnv #A of u = vn,

μE
CZ(vn, dnv #A) = 2n + 2cT E

1 (A). (2.15)

If (M, ω) is symplectically aspherical then all iterates vn are non-contractible inside �.
Otherwise, the first iterate of v, which is contractible in �, is the orbit vν .

If we assume cT M
1 = cω then the Conley–Zehnder index of vn for n ∈ νZ\{0}with respect

to a capping disk ν̄ contained entirely in � is

μE
CZ(u, ν̄) = 2cn. (2.16)
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Proof Since the linearized map of the Reeb flow is the identity in horizontal directions, the
first assertion follows from the corresponding computation for S1 ⊂ C. The relevant bit of
the homotopy long exact sequence of the S1-bundle � → M is

· · · −→ π2(M)
δ−→ π1(S

1)
i∗−→ π1(�) −→ · · · . (2.17)

If we identify π1(S1) ∼= Z then i∗(k) = [vk] and δ(s) = −ω(s) with respect to the homo-
morphism ω : π2(M) → Z. Thus, if (M, ω) is symplectically aspherical then all iterates vk

are non-contractible in �. Otherwise ω
(
π2(M)
) = νZ with ν > 0 and therefore the first

iterate of v which is contractible in � is the orbit vν .
Now we assume that cT M

1 = cω and recall that ν̄ is a capping which is entirely contained
inside �.

μE
CZ(vn, ν̄) = μE

CZ

(
vn, dnv #

(
ν̄# − dnv︸ ︷︷ ︸

∈	E

))

= μE
CZ

(
vn, dnv
)+ 2cT E

1

(
ν̄# − dnv

)

= 2n + 2(c − 1)℘∗ω
(
ν̄# − dnv

)

= 2n + 2(c − 1)

[ ∫

ν̄

℘∗ω −
∫

dnv

℘∗ω
︸ ︷︷ ︸

=0

]

(∗)= 2n + 2(c − 1)
∫

ν̄

dα

= 2n + 2(c − 1)
∫

vn
α

= 2n + 2(c − 1)n

= 2cn

(2.18)

where we used in (∗) that the disk ν̄ is contained inside �. ��

Definition 2.8 We point out that critical points of A τ
f are S1-families, cf. Lemma 2.3. We

choose a perfect Morse function h : Crit(A τ
f ) → R such that every critical manifold S1 ·

([u, A], η) ⊂ Crit(A τ
f ) gives rise to two critical points of h which we denote by

([u, A]±, η
)

according to the maximum resp. minimum of h on S1 · ([u, A], η). We define the index of a
critical point by

μ
([u, A]±, η

) := μE
CZ(u, A) − μMorse(℘ (u), f ) + 1

2 dim M ± 1
2 ∈ 1

2 + Z , (2.19)

where μMorse(℘ (u), f ) is the Morse index of ℘(u) ∈ Crit( f ). In case that u is a constant
critical point we define μE

CZ(u, A = 0) := 0. We set

C := Crit(h) = {([u, A]±, η
)} ⊂ Crit(A τ

f ) (2.20)

and

Ck := {([u, A]•, η) ∈ C
∣∣μ
([u, A]•, η)

) = k
}

. (2.21)

Here, • indicates some choice of ±.
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In order to define Rabinowitz Floer homology and to prove the vanishing result we rely
on a fairly special class of almost complex structures which we describe next. In the next
subsection we prove that this class is big enough to prove the necessary transversality results.
We recall that we split the tangent bundle T E ∼= V ⊕H in vertical resp. horizontal subspaces
V resp. H , see Remark 2.2. Let us abbreviate by

j :={ j ∈	(S1×M,Aut(T M)) | jt := j (t, ·) is an ω-compatible almost complex structure
}

the space of S1-families of compatible almost complex structures on (M, ω). Next we fix
disjoint open balls around each point in Crit( f ). The union of these balls is denoted by U .
For a fixed j ∈ jwe denote by B( j) the set of B ∈ 	0(S1×E,L(H, V ))where Bt := B(t, ·)
satisfies

i Bt + Bt jt = 0 ∀t ∈ S1 and Bt (e) = 0 ∀e ∈ ℘−1(U) . (2.22)

Here the subscript 0 indicates compact support and L(H, V ) is the space of linear maps. To
describe the Floer equation we will choose a S1-family Jt of almost complex structures on
E of the form

Jt =
(
i Bt

0 jt

)
. (2.23)

Thematrix representation refers to the splitting T E ∼= V ⊕H . Moreover, j ∈ j and B ∈ B( j)
and i is the standard complex structure on Ve ∼= C, e ∈ E . We point out that Jt is not �-

compatible. But, since

(
i 0
0 jt

)
is tame (even compatible) and B has compact support, the

almost complex structure Jt is�-tame for sufficiently small Bt . We denote byBT ( j) ⊂ B( j)
the non-empty open convex subset consisting of those B ∈ B( j) for which the corresponding
Jt is tame.

We use Jt to introduce a bilinear formm on T
(
L̃E×R

)
as follows. For (û1, η̂1), (û2, η̂2) ∈

T([u,A],η)

(
L̃E × R

) = 	(S1, u∗T E) × R we set

m
(
(û1, η̂1), (û2, η̂2)

) := −
∫ 1

0
�
(
Jt
(
u(t)
)
û1(t), û2(t)

)
dt + η̂1η̂2 . (2.24)

The bilinear form m is not symmetric but positive definite since J is tame. Therefore we can
define the vector field ∇A τ

f (w) at w = ([u, A], η) implicitly by

dA τ
f (w)ŵ = m

(∇A τ
f (w), ŵ

) ∀ŵ ∈ Tw

(
L̃E × R

)
. (2.25)

An explicit expression is

∇A τ
f (w) =

⎛

⎝
−Jt (u)

(
∂t u − ηXμτ (u) − XF (u)

)

−
∫ 1

0
μτ (u)dt

⎞

⎠ . (2.26)

∇A τ
f is a gradient-like vector field for A τ

f since J is tame and B vanishes near crit-

ical points of A τ
f : Bt (e) = 0 for all e ∈ ℘−1(U). Indeed, dA τ

f (w)∇A τ
f (w) =

m
(∇A τ

f (w),∇A τ
f (w)
) ≥ 0 with equality if and only if w ∈ Crit(A τ

f ). Moreover, m is
an inner product near critical points.
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To construct Floer homology forA τ
f we study solutions w = (u, η) ∈ C∞(R× S1, E)×

C∞(R,R) to the Floer equations corresponding to positive gradient flow of A τ
f

⎧
⎪⎨

⎪⎩

∂su + Jt (u)
(
∂t u − ηXμτ (u) − XF (u)

) = 0

∂sη +
∫ 1

0
μτ (u)dt = 0 .

(2.27)

Due to the assumption that B vanishes near critical points the Floer equation thought of
as a differential operator is Fredholm. The main ingredients for defining Floer homology are
transversality and compactness for solution spaces of the Floer equation. This needs some
attention in our framework due the restriction of the class of almost complex structures we
consider and due to potential bubbling-off of holomorphic spheres.

The projection ℘ maps critical points of the Rabinowitz Floer action functional A τ
f to

those of the action functional of classical mechanics a f on (M, ω)

a f : L̃ (M) −→ R

a f
([q, q̄]) :=

∫

D2
q̄∗ω −

∫ 1

0
f
(
q(t)
)
dt ,

(2.28)

see Lemma 2.9. We recall that we chose the Morse function f in a C2-small fashion, see
Convention 2.5. This implies that all critical points of a f are critical points of f with some
capping, i.e.

Crit(a f ) ∼= Crit( f ) × 	M . (2.29)

We use the following convention for the Conley–Zehnder index for (x, A) ∈ Crit(a f ) ∼=
Crit( f ) × 	M

μM
CZ(x, A) = −μMorse(x, f ) + 1

2 dim M + 2cT M
1 (A) . (2.30)

Lemma 2.9 The projection ℘ induces the map

� : Crit(A τ
f ) −→ Crit(a f ) ∼= Crit( f ) × 	M

([u, A], η) −→ [℘(u), A] .
(2.31)

Proof This follows directly from the definition (2.6) of the action functional A τ
f , see also

Remark 2.1. ��
After a choice of j ∈ j the action functional a f gives rise to the following Floer equation

for q : R × S1 → M

∂sq + jt (q)
(
∂t q − X f (q)

) = 0 . (2.32)

We recall that solutions of either Floer equation is of finite energy if and only if it converges
at ±∞ to critical points of A τ

f resp. a f . That is, a solution w = (u, η) of the Floer equation
(2.27) has finite energy

∫

R

∫

S1

(
|∂su|2 + |∂sη|2

)
dtds < ∞ (2.33)

if and only if there exists (u±, η±) ∈ L (E) × R satisfying (2.7) such that

lim
s→±∞
(
u(s, ·), η(s)

) = (u±, η±) (2.34)
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and similarly for a f . Following the usual Morse–Bott ideas we denote for w± ∈ C ⊂
Crit(A τ

f )

M̂(w−, w+) := {w solves (2.27) with lim
s→±∞ w(s) ∈ W±(w±, h)

}
(2.35)

themoduli space of finite energy solutions of the Floer equation ofA τ
f . Here h : Crit(A τ

f ) →
R is the perfectMorse function fromDefinition 2.8 andW+(w+, h) resp.W−(w−, h) denotes
the stable resp. unstable manifold of h on Crit(A τ

f ). Similarly, for q± ∈ Crit(a f ) let

N̂ (q−, q+) := {w solves (2.32) with lim
s→±∞ q(s) = q±

}
. (2.36)

Here, we abuse notation in the following sense. Ifw± = ([u±, ū±], η±
) ∈ Crit(A τ

f ) is given
and w = (u, η) is a finite energy solution of (2.27) then by lims→±∞ w(s) = w± we mean
that

lim
s→±∞
(
u(s, ·), η(s)

) = (u±, η±) (2.37)

and
[
(−ū−)#u#ū+

] = 0 ∈ 	E . (2.38)

The same remark applies to a f . Unless w− = w+ the moduli space M̂(w−, w+) carries a
free R-action by shifts. We denote the quotient by

M(w−, w+) := M̂(w−, w+)/R (2.39)

and similarly

N (q−, q+) := N̂ (q−, q+)/R . (2.40)

All moduli spaces depend on additional data, e.g. an almost complex structure, which we
suppress in the notation.

Lemma 2.10 The projection ℘ induces the maps

� : M̂(w−, w+) −→ N̂ (�(w−),�(w+)
)

w = (u, η) −→ �(w) := ℘(u) ,

� : M(w−, w+) −→ N (�(w−),�(w+)
)

[w] −→ [�(w)] .

(2.41)

Proof This follows immediately from the fact that ℘∗(XF ) = X f , ℘∗(Xμτ ) = 0 and the

specific form of Jt =
(
i Bt

0 jt

)
, i.e. ℘∗ ◦ J = j ◦ ℘∗ ��

2.2 Transversality

We recall that j is the space of S1-families of compatible almost complex structures on (M, ω).
We denote by

jreg( f ) ⊂ j (2.42)

the subset of j ∈ j with the following two properties.
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• All finite energy solutions of the Floer equation for a f with respect to j are regular, i.e. the
operator obtained by linearizing the Floer equation is a surjective Fredholm operator for
all finite energy solutions.

• For every t ∈ S1 all simple jt -holomorphic spheres are regular, i.e. the operator obtained
by linearizing the holomorphic sphere equation is a surjective Fredholm operator.

According to Flore et al. [14] and McDuff and Salamon [20, Chapter 2] the subset jreg is of
second category. For every j ∈ jreg( f ) the moduli space N̂ (q−, q+) is a smooth manifold of
dimension

dim N̂ (q−, q+) = μM
CZ(q+) − μM

CZ(q−) . (2.43)

For j ∈ jreg( f ) we denote by

Breg( j) ⊂ B( j) (2.44)

the subset of B ∈ B( j) with the following two properties

• All finite energy solutions of the Floer equation forA τ
f with respect to the corresponding

J are regular.
• For every t ∈ S1 all simple Jt -holomorphic spheres are regular.

We refer to [4] for details on the linearization of the Rabinowitz Floer equations. For B ∈
Breg( j) the moduli space M̂(w−, w+) is a smooth manifold of dimension

dim M̂(w−, w+) = μ(w+) − μ(w−) . (2.45)

The next proposition shows that this class of almost complex structures is sufficiently large.

Proposition 2.11 For all j ∈ jreg( f ) the set Breg( j) ⊂ B( j) is of second category.

Proof We recall the splitting T E ∼= V ⊕ H , cf. Remark 2.2. Thus, we may consider the
linearization of the Floer equation (2.27) in vertical resp. horizontal directions V resp. H .
Since the projection ℘ induces an isomorphism ℘∗ : (H, dα) → (T M, ω) and j ∈ jreg, it
follows from Lemma 2.10 that the linearization is already surjective in horizontal directions.
To show that it is for generic choice of B also surjective in vertical directions we distinguish
two cases for w ∈ M̂(w−, w+).

Case 1 �(w) is non-constant. We claim that �(w) necessarily leaves the neighborhood U .
We recall that U is the union of disjoint neighborhoods of all critical points of f where each
such neighborhood contracts onto a critical point, see the discussion before Eq. (2.22). If
�(w) is contained in U then it has to be a gradient trajectory connecting the same critical
point of f with cappings A and A#�(w). Since �(w) is contained in U the two cappings
are homotopic to each other: A = A#�(w) ∈ 	M . Thus, �(w) is a gradient trajectory from
a critical point of a f to itself (including cappings) and therefore �(w) is constant which is a
contradiction. Therefore�(w) necessarily leaves the neighborhood U . By [14, Theorem 4.3]
the set of regular points for �(w) is open and dense. Since �(w) leaves U we may apply
Lemma 2.15 below. Thus a standard argument, see for instance [14, Section 5] or [20, Chap-
ter 3] establishes that for generic B ∈ B( j) the linearization of the gradient flow equation is
also vertically surjective.

Case 2�(w) is constant.But thenw is a vortex and vortices are byAlbers andFrauenfelder [3,
Proposition A.1] always transverse. In fact vortices are independent of the perturbation B ∈
B( j).
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It remains to prove that generically all simple Jt -holomorphic spheres, t ∈ S1, are regular.
If we were not to restrict to upper triangular J this is a standard result which relies on the
fact that simple curves are somewhere injective, see [20, Chapter 2] for details.

We argue again as above. Due to the definition of jreg the linearization of a simple Jt -
holomorphic sphere is already surjective in horizontal directions. For vertical directions we
use the notion of somewhere horizontally injective points, see Definition 2.13 below. The
important observation is that horizontally injective points still formadense subset, seeLemma
2.14. Therefore, we can apply again Lemma 2.15 to conclude that for generic B ∈ B( j) all
simple Jt -holomorphic curves are regular. ��
Remark 2.12 We recall that BT ( j) ⊂ B( j) denotes the non-empty open convex subset
consisting of those B ∈ B( j) for which the corresponding J is tame. From now on we
always choose j ∈ jreg and B ∈ BT

reg( j) := Breg( j) ∩ BT ( j).

We recall the following notions and Lemmas considered in [3,15].

Definition 2.13 A Jt -holomorphic curve u : S2 → E is called somewhere horizontally
injective if there exists z ∈ S2 such that

dhu(z) := ℘∗ ◦ du(z) �= 0, u−1(u(z)) = {z} . (2.46)

It remains to prove the following two Lemmas.

Lemma 2.14 Assume that u : S2 → E is a simple Jt -holomorphic curve. Then u is hori-
zontally injective on a dense set.

Proof We denote by I (u) ⊂ S2 the subset of injective points of u, by R(℘ (u)) ⊂ S2 the
subset of nonsingular points of ℘(u) and by S(u) ⊂ S2 the subset of horizontally injective
points of u. Then

S(u) = I (u) ∩ R(℘ (u)). (2.47)

We first observe that℘(u) is jt -holomorphic. We claim that℘(u) : S2 → M is not constant,
since otherwise u would lie in one fiber and hence itself must be constant, contradicting the
assumption that it is simple. Therefore, it follows from [20,Lemma2.4.1] that the complement
of R(℘ (u)) is finite. Moreover, it follows from [20, Proposition 2.5.1] that the complement
of I (u) is countable. Hence by (2.47) the complement of S(u) is countable. In particular,
S(u) is dense in S2. ��
Lemma 2.15 We fix e ∈ E\℘−1(U), (v, h) ∈ TeE = Ve ⊕ He with h �= 0 and t0 ∈ S1.
Moreover, we fix j ∈ j and B ∈ B( j). Then there exist B̂ ∈ 	0(S1 × E,L(H, V )) and
ĵ ∈ Tj j with

{
B̂(t0, e)h = v

i B̂ + B ĵ + B̂ j = 0 .
(2.48)

Remark 2.16 The second equation asserts that the pair ( ĵ, B̂) corresponds to a tangent vector
of the space of almost complex structures we are considering.

Proof of Lemma 2.15 Firstwe extend h resp. v to sections also denoted by h resp. v supported
in a small neighborhood of e. Then we define ĵ by

ĵ h := v, ĵ jh := − jv, ĵ |span{h, jh}⊥ := 0, (2.49)
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where ⊥ refers to the metric ω(·, j ·) on H . We point out that span{h, jh}⊥ is j-invariant.
Then ĵ satisfies the equation

ĵ j + j ĵ = 0 (2.50)

that is, ĵ ∈ Tj j. Next we define B̂ by

B̂h := v

B̂ jh := − (i B̂ + B ĵ
)
h

B̂|span{h, jh}⊥ := 0.

(2.51)

The first equation in (2.48) holds by construction. We show the second equation. We have

(i B̂ + B ĵ + B̂ j)h = 0 (2.52)

by the very definition of B̂ jh. Moreover,

(i B̂ + B ĵ + B̂ j) jh = i B̂ jh + B ĵ jh − B̂h

= −i
(
i B̂ + B ĵ

)
h − Bj ĵh − B̂h

= B̂h − i B ĵh − Bj ĵh − B̂h

= −i B ĵh − Bj ĵh

= −(i B + Bj) ĵ h

= 0

(2.53)

where we used j j = −1, B̂ jh = −(i B̂ + B ĵ)h, ĵ j + j ĵ = 0, i i = −1 and finally
i B + Bj = 0, see (2.22). Finally,

(
i B̂ + B ĵ + B̂ j

) |span{h, jh}⊥ = 0 (2.54)

since span{h, jh}⊥ is j-invariant and B̂ and ĵ vanish on it. ��
This completes the discussion on transversality.

2.3 Compactness

In this subsection we discuss the appropriate compactness results for the moduli spaces
M(w−, w+) of unparametrized gradient flow trajectories. This follows the usual scheme
of Rabinowitz Floer homology, that is, we need to establish the following for a sequence
(uν, ην) ∈ M(w−, w+), ν ∈ N.

(i) A uniform C0-bound for the loops uν .
(ii) A uniform C0-bound on the Lagrange multipliers ην .
(iii) A uniform bound on the derivatives of the loops uν .

The first two are proved in [15, Proposition 6.2 & 6.4]. We point out that the set-up in [15] is
the same as ours except for the following. Frauenfelder’s assumption of (E,�) being very
negative is replaced by our assumption of semi-positivity. Moreover, the almost complex

structures used are of the form J =
(
i 0
0 j

)
, i.e. B = 0. The uniform C0-bound for the loops

is based on a maximum principle which continues to hold since in our setting B has compact
support. The uniformC0-bound on the Lagrangemultipliers relies on a “fundamental lemma”
which continues to hold verbatim.
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To prove a uniform bound on the derivatives of the loops we argue by contradiction, i.e. by
bubbling-off analysis. Indeed, since we already established uniform C0-bounds for the loops
and the Lagrange multipliers a blow-up of derivatives of uν leads to Jt -holomorphic spheres
inside E . We claim that since we assume that E is semi-positive we can apply the results
of Hofer-Salamon [18] and ensure that for generic S1-family almost complex structure J

of the form Jt =
(
i Bt

0 jt

)
with Bt ∈ BT

reg( j), t ∈ S1 the moduli spaces M̂(w−, w+) are

compact up to breaking as long as μCZ(w+) − μCZ(w−) ≤ 2. In [18] Hofer-Salamon argue
that bubbling-off of Jt -holomorphic spheres of Chern number at least 2 never occurs for
index reasons. Moreover, they rule out bubbling-off of Jt -holomorphic sphere with Chern
number less than 2 by carefully studying moduli spaces of Jt -holomorphic spheres. The
crucial input is that for simple holomorphic spheres the linearized operator is a surjective
Fredholm operator, see [18, Theorem 2.2]. We establishes the corresponding result for our
restricted class of almost complex structures in Proposition 2.11. Therefore, the results in
[18] apply to the Floer equation forA τ

f and we conclude that the moduli spaces M̂(w−, w+)

are compact up to breaking as long as μ(w+) − μ(w−) ≤ 2.

2.4 Rabinowitz Floer homology

WedefineRabinowitz Floer homologywith the help ofNovikov rings.Alternative approaches
are via mixed direct/inverse limits. How these relate has been studied in [10]. The current
approach is as in the original article [9].

The spaces Ck and C of critical point of A τ
f were defined in Definition 2.8. The vector

space RFC∗(A τ
f ), graded by μ (see (2.19)), is the set of all formal linear combinations

ξ =
∑

w∈C
aww, aw ∈ Z/2, (2.55)

subject to the Novikov condition

∀κ ∈ R : #
{
w ∈ C | aw �= 0, A τ

f (w) ≥ κ
}

< ∞ . (2.56)

It is a module over the Novikov ring

�E :=
{ ∑

A∈	E

nAe
A | nA ∈ Z/2, ∀κ ∈ R : #{A ∈ 	E | nA �= 0, �(A) ≥ κ

}
< ∞
}

.

(2.57)

The multiplicative structure on �E is given by

⎛

⎝
∑

A∈	E

nAe
A

⎞

⎠ ·
⎛

⎝
∑

B∈	E

mBe
B

⎞

⎠ :=
∑

A

∑

B

(nA · mB) eA+B =
∑

C

(
∑

A

nA · mC−A

)

eC

and the action of �E on RFCk(A
τ
f ) by

⎛

⎝
∑

A∈	E

nAe
A

⎞

⎠ ·
(
∑

w∈C
aww

)

:=
∑

w

(
∑

A

nA · aw#−A

)

w , (2.58)
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where we use the following notation. If w = ([u, B], η) then w# − A = ([u, B − A], η).
The differential ∂ on RFC∗(A τ

f ) is defined by

∂ : RFCk(A
τ
f ) −→ RFCk−1(A

τ
f )

∂ w :=
∑

z∈Ck−1

#2M(z, w) z . (2.59)

The compactness results described in Sect. 2.3 imply that M(z, w) is a finite set and
#2M(z, w) ∈ Z/2 denotes its parity.Moreover, compactness up to breaking implies ∂◦∂ = 0.
The Rabinowitz Floer homology is then defined by

RFHk(A
τ
f ) := Hk

(
RFC∗(A τ

f ), ∂
)
, k ∈ 1

2 + Z . (2.60)

Remark 2.17 TodefineRFH∗(A τ
f )wemade auxiliary choices, notably τ and f . The assump-

tion that f is C2-small is not necessary for defining RFH∗(A τ
f ), see [3] for more details.

Nevertheless, we decided to make this assumption throughout this article. The choices of τ

and f become relevant in the proof of Theorem 1.2. The methods of Cieliebak and Frauen-
felder [9] show that RFH∗(A τ

f ) is independent of all these choices.

Remark 2.18 We recall that we restrict ourselves to the class of almost complex structures J

of the form J =
(
i B
0 j

)
with B ∈ BT

reg( j). It is unclear to us whether it is possible to extend

the definition of RFH∗(A τ
f ) beyond this class of almost complex structures. We crucially

rely on Frauenfelder’s result, namely that the fact that the projection of the Floer equation of
A τ

f gives the Floer equation of a f on M can be used to obtain uniform C0-bounds for the
Lagrange multiplier. For this ℘ needs to be J - j-holomorphic.

3 A filtration and the proof of vanishing

We use the fact that RFC∗(A τ
f ) admits a filtration. For l ∈ Z we set

RFCl
k(A

τ
f ) :=
{
∑

w

aww ∈ RFCk(A
τ
f ) | μM

CZ

(
�(w)
) = l

}

(3.1)

and

RFC≤l
k (A τ

f ) :=
{
∑

w

aww ∈ RFCk(A
τ
f ) | μM

CZ

(
�(w)
) ≤ l

}

, (3.2)

where we recall that A ∈ 	E ∼= 	M , see Remark 2.1.

Lemma 3.1

∂
(
RFC≤l

k (A τ
f )
)

⊂ RFC≤l
k−1(A

τ
f ) (3.3)

hence we can decompose

∂ =
∑

i≥0

∂i = ∂0 + ∂1 + · · · (3.4)
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with

∂i : RFCl
k(A

τ
f ) −→ RFCl−i

k−1(A
τ
f )

∂iw :=
∑

z∈Ck−1
μM
CZ(�(z))=μM

CZ(�(w))−i

#2M(z, w)z . (3.5)

Proof This is a direct consequence of Lemma 2.10 together with (2.43). ��

Remark 3.2 From ∂2 = 0 and the filtration we derive for every i ≥ 0 the equation

i∑

j=0

∂ j∂i− j = 0. (3.6)

E.g. ∂0∂0 = 0, ∂0∂1 + ∂1∂0 = 0 etc. In particular, ∂0 is a differential.

The main idea for proving Theorem 1.2 is that ∂0 counts solutions of the Floer equation
(2.27) which are entirely contained inside fibers of ℘ over critical points of f . Thus the
homology of ∂0 is the sum of Crit( f )×	M -many copies of the Rabinowitz Floer homology
of
(
�τ ∩ ℘−1(q), ℘−1(q)

) ∼= (S1,C), q ∈ Crit( f ), each of which vanishes.

Proposition 3.3 The differential ∂0 counts precisely the solutions w = (u, η) of the Floer
equation (2.27)with image contained entirely in a fiber over some critical point of f . That is,
there exists q ∈ Crit( f ) such that u(R×S1) ⊂ ℘−1(q).Moreover, ifw± = ([u±, A±], η±) ∈
Crit(A τ

f ) are the asymptotic limits of w then

A− = A+ ∈ 	E . (3.7)

Proof Let w = (u, η) be a gradient flow line from w− = ([u−, A−], η−) to w+ =
([u+, A+], η+) with

μM
CZ

(
�(w+)

) = μM
CZ

(
�(w−)

)
. (3.8)

Using Lemma 2.10 we see that

℘(u) ∈ N̂ (�(w+),�(w−)
)

. (3.9)

According to (2.43), equation (3.8) implies that that

dim N̂ (�(w+),�(w−)
) = 0 , (3.10)

which in turn implies that ℘(u) is s-independent, i.e. constant ℘(u) = q ∈ Crit( f ), see
Lemma 2.9. In other words, u(R × S1) ⊂ ℘−1(q). Moreover, in view of (2.38), we have

A− = A+ ∈ 	M ∼= 	E . (3.11)

This finishes the proof. ��

Corollary 3.4

Hk
(
RFC∗(A τ

f ), ∂0
) = 0 ∀k ∈ 1

2 + Z . (3.12)
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Proof For q ∈ Crit( f ) we fix an identification
(
�τ ∩ ℘−1(q), ℘−1(q)

) ∼= (S1τ ,C) (3.13)

together with the symplectic form, its primitive and the complex structure i . Here S1τ is the
circle bounding a disk of area πτ 2. For A ∈ 	M we denote by

RFC∗(q, A) (3.14)

the vector space generated over Z/2 by critical points of the form
([u, A]±, η

) ∈ C ⊂
Crit(A τ

f ) with ℘(u) = q . Proposition 3.3 implies that RFC∗(q, A) is a ∂0-subcomplex of
RFC∗(A τ

f ). With the above identification we see that
(
RFCk+2cT E

1 (A)+ 1
2 dim M (q, A), ∂0

) = (RFCk(S
1,C), ∂

)
. (3.15)

Let v be the primitive Reeb orbit over q then all generators are of the form
([vn, A]±, η =

n − f (q)
)
. Since RFH∗(S1,C) = 0 due to [1,9] and μ

([vn−1, A]±, n − 1 − f (q)
) + 2 =

μ
([vn, A]±, n − f (q)

)
from Lemma 2.7, we know that

∂0
([vn, A]−, n − f (q)

) = ([vn−1, A]+, n − 1 − f (q)
)

∂0
([vn, A]+, n − f (q)

) = 0 .
(3.16)

Let ξ =∑w aww ∈ RFCk(A
τ
f ) with ∂0ξ = 0, i.e.

∑
w aw∂0w = 0. If aw �= 0 then w is of

the form
([vn, A]+, n− f (q)

)
and we let w′ be the corresponding element

([vn+1, A]−, n+
1 − f (q)

)
. Then

ξ ′ :=
∑

w

aww′ (3.17)

satisfies the Novikov condition, i.e. ξ ′ ∈ RFCk+1(A
τ
f ), since A τ

f (w′) = A τ
f (w) + τ due to

(2.11). From (3.16), ∂0ξ ′ = ξ and this completes the proof. ��
Lemma 3.5 We assume now that cT M

1 = cω : π2(M) → Z.

• In case c = 0 we have for all τ > 0

RFCk(A
τ
f ) =

1
2 dim M⊕

l=− 1
2 dim M

RFCl
k(A

τ
f ) (3.18)

and

∂n = 0 ∀n ≥ dim M + 1 . (3.19)

• In case c ≥ 1 we assume (c − 1)τ < 1. Then a formal sum ξ = ∑w aww, aw ∈ Z/2,
w ∈ Ck satisfies the Novikov condition

∀κ ∈ R : #
{
w ∈ Ck | aw �= 0, A τ

f (w) ≥ κ
}

< ∞ (3.20)

if and only if

∀κ ∈ R : #
{
w ∈ Ck | aw �= 0, μM

CZ

(
℘(w)
) ≥ κ
}

< ∞. (3.21)

In particular, for all ξ ∈ RFCk(A
τ
f ) there exists l(ξ) ∈ Z with

ξ ∈ RFC≤l(ξ)
k (A τ

f ) . (3.22)
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Proof If we write w = ([vn, A]±, η
) ∈ Ck then according to (2.11) and Definition 2.8

A τ
f (w) = nτ + ω(A) − (τ + 1) f (℘ (v))

k = μ(w) = 2n + 2cT E
1 (A) − μMorse(℘ (v); f ) + 1

2 dim M
(± 1

2 )

= 2n + 2(c − 1)ω(A) − μMorse(℘ (v); f ) + 1
2 dim M

(± 1
2 ) .

(3.23)

We solve the second equation for n

n = 1
2k − (c − 1)ω(A) + 1

2

[
μMorse(℘ (v); f ) − 1

2 dim M
(± 1

2 )
]

(3.24)

and abbreviate e := μMorse(℘ (v); f ) − 1
2 dim M

(± 1
2 ). In particular, |e| ≤ 1

2 dim M + 1
2 .

Thus, we can rewrite the action value as

A τ
f (w) = nτ + ω(A) − (τ + 1) f (℘ (v))

= ( 12k − (c − 1)ω(A) + 1
2e
)
τ + ω(A) − (τ + 1) f (℘ (v))

= (1 − (c − 1)τ
)
ω(A) + 1

2

(
k + e
)
τ − (τ + 1) f (℘ (v)) .

(3.25)

Next we observe that

μM
CZ(�(w)) = −μMorse(℘ (v); f ) + 1

2 dim M + 2cT M
1 (A)

= −μMorse(℘ (v); f ) + 1
2 dim M + 2cω(A).

(3.26)

In case c ≥ 1 and (c−1)τ < 1 equations (3.25) and (3.26) imply the if-and-only-if statement
of the Lemma. The statement (3.22) follows from the if-part of the if-and-only-if statement
since ξ ∈ RFCk(A

τ
f ) satisfies the Novikov condition by the very definition of RFC.

The case c = 0 follows immediately from equation (3.26). ��
We are now in the position to prove Theorem 1.2. We treat the symplectically aspherical

case last and assume now that cT M
1 = cω. We first consider the case c ≥ 0. If c = 0 we

assume that (E,�) is semi-positive.
Proof of Theorem 1.2 for c ≥ 0 We fix ξ ∈ RFCk(A

τ
f ) with

∂ξ = 0 . (3.27)

Our aim is to construct θ ∈ RFCk+1(A
τ
f ) with ∂θ = ξ . We split ξ as follows.

ξ =
l(ξ)∑

l=−∞
ξl with ξl ∈ RFCl

k(A
τ
f ) , (3.28)

where l(ξ) ∈ Z is taken from Lemma 3.5. If c = 0 we set l(ξ) := 1
2 dim M . We expand

∂ξ = 0 according to ∂ = ∑i≥0 ∂i and collect terms in RFCl(ξ)−I
k−1 (A τ

f ) for all I ≥ 0. We
recall from Lemma 3.1 that ∂i drops the upper degree by i . This leads to

I∑

i=0

∂iξl(ξ)+i−I = 0 , (3.29)

since ∂iξm ∈ RFCl(ξ)−I
k−1 (A τ

f ) if and only if m − i = l(ξ) − I .

Claim 1 For all l ≤ l(ξ) there exists θl ∈ RFCl
k+1(A

τ
f ) such that

I∑

i=0

∂iθl(ξ)+i−I = ξl(ξ)−I (3.30)
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holds for I ≥ 0.

Proof of Claim 1 We inductively construct θl . For I = 0 equation (3.29) reduces to

∂0ξl(ξ) = 0. (3.31)

Corollary 3.4 implies that there exists θl(ξ) ∈ RFCl(ξ)
k+1(A

τ
f ) with

∂0θl(ξ) = ξl(ξ). (3.32)

Now assume that we already constructed θl(ξ), . . . , θl(ξ)−(I−1) satisfying equation (3.30).
Then we compute

∂0

(
ξl(ξ)−I −

I∑

i=1

∂iθl(ξ)+i−I

)
= ∂0ξl(ξ)−I −

I∑

i=1

∂0∂iθl(ξ)+i−I

(∗)= ∂0ξl(ξ)−I +
I∑

i=1

i∑

j=1

∂ j∂i− jθl(ξ)+i−I

(∗∗)= ∂0ξl(ξ)−I +
I∑

j=1

∂ j

⎛

⎝
I∑

i= j

∂i− jθl(ξ)+i−I

⎞

⎠

= ∂0ξl(ξ)−I +
I∑

j=1

∂ j

⎛

⎝
I− j∑

i=0

∂iθl(ξ)+i−(I− j)

⎞

⎠

(∗∗∗)= ∂0ξl(ξ)−I +
I∑

j=1

∂ jξl(ξ)+ j−I

=
I∑

j=0

∂ jξl(ξ)+ j−I

= 0 .

(3.33)

Here we used equation (3.6) in (∗), the usual relabeling
∑I

i=1
∑i

j=1 =∑I
j=1
∑I

i= j in (∗∗),
the induction hypothesis (3.30) in (∗∗∗) and (3.29) at the end. Using again Corollary 3.4 we
find θl(ξ)−I ∈ RFCl(ξ)−I

k+1 (A τ
f ) with

∂0θl(ξ)−I = ξl(ξ)−I −
I∑

i=1

∂iθl(ξ)+i−I , (3.34)

in other words
I∑

i=0

∂iθl(ξ)+i−I = ξl(ξ)−I . (3.35)

This proves Claim 1. ��
Now we consider

θ :=
l(ξ)∑

l=−∞
θl . (3.36)
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We will show that θ satisfies the Novikov condition and ∂θ = ξ . We need slightly different
arguments for the cases c = 0 and c ≥ 1.

If c = 0 then ξ =∑
1
2 dim M

l=− 1
2 dim M

ξl , see Lemma 3.5, is the sum of finitely many non-zero

ξl each of which satisfies the Novikov condition. Since ∂ = ∂0 + · · · ∂dim M we obtain only
finitely many non-zero θl each of which satisfies the Novikov condition by (the proof of)
Corollary 3.4. Thus, θ =∑ θl satisfies the Novikov condition, too.

If c ≥ 1 then Lemma 3.5 implies that each θi ∈ RFCi
k+1(A

τ
f ) is a finite sum of elements

in C (as opposed to a general Novikov sum.) Thus, using again Lemma 3.5 we see that
θ =∑l(ξ)

l=−∞ θl satisfies the Novikov condition.
In both cases the equation ∂θ = ξ holds by construction. Indeed, the part of

∂θ =
l(ξ)∑

l=−∞
∂θl =

l(ξ)∑

l=−∞

∞∑

i=0

∂iθl︸︷︷︸
∈RFCl−i

k

∈ RFCk(A
τ
f ) (3.37)

in RFCr
k(A

τ
f ) is

l(ξ)−r∑

i=0

∂iθi+r . By relabeling I = l(ξ) − r we compute

∂θ =
l(ξ)∑

r=−∞

l(ξ)−r∑

i=0

∂iθi+r

=
∞∑

I=0

I∑

i=0

∂iθl(ξ)+i−I

=
∞∑

I=0

ξl(ξ)−I

=
l(ξ)∑

l=−∞
ξl

= ξ,

(3.38)

where we used Eq. (3.35) in the third equality. Thus, for every ξ ∈ RFCk(A
τ
f ) with ∂ξ = 0

we constructed θ ∈ RFCk+1(A
τ
f ) with ∂θ = ξ . This finishes the proof. ��

Proof of Theorem 1.2 for 2cν ≤ − dim M
In this proof we make the assumption that the Morse function f : M → R additionally

satisfies f (M) ⊂ (0, 1). We fix ξ ∈ RFCk(A
τ
f ) with

∂ξ = 0 . (3.39)

We will again construct θ ∈ RFCk+1(A
τ
f ) with ∂θ = ξ . This time we split ξ as follows.

ξ =
∑

A∈	M

ξA with ξA =
∑

w∈Ck[�(w)]∈Crit( f )×{A}

aww . (3.40)

Claim 2 If M
(([v, B], η̂), ([u, A], η)

)
�= ∅ then A = B ∈ 	M ∼= 	E .
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Proof of Claim 2 We compare action and Conley–Zehnder index of �
([u, A], η) and

�
([v, B], η̂). Using that the moduli space is non-empty we conclude

a f
(
�
([u, A], η)) = ω(A) − f (℘ (u)) ≥ ω(B) − f (℘ (v)) = a f

(
�
([v, B], η̂))

(3.41)

and

μM
CZ

(
�
([u, A], η)) = −μMorse

(
℘(u), f

)+ 1
2 dim M + 2cT M

1 (A)

≥ −μMorse
(
℘(v), f

)+ 1
2 dim M + 2cT M

1 (B)

= μM
CZ

(
�
([v, B], η̂)) .

(3.42)

We assume now that A �= B. We recall that f (M) ⊂ (0, 1). Thus, the first inequality
simplifies to

ω(A) > ω(B) (3.43)

since ω
(
π2(M)
) = νZ. From cT M

1 = cω with c < 0 we conclude then cT M
1 (A) < cT M

1 (B).
The minimal Chern number of M equals −cν. Thus, we have

cT M
1 (A) ≤ cT M

1 (B) + cν (3.44)

and from (3.42)

2cT M
1 (A) ≥ −μMorse

(
℘(v), f

)+ μMorse
(
℘(u), f

)+ 2cT M
1 (B)

≥ − dim M + 2cT M
1 (B).

(3.45)

We conclude that

2cν ≥ − dim M. (3.46)

In case 2cν < − dim M we arrive at a contradiction. It remains to treat the case 2cν =
− dim M . In this case we claim that the inequality (3.44) necessarily becomes the equality

cT M
1 (A) = cT M

1 (B) + cν. (3.47)

Otherwise (3.44) is actually of the form cT M
1 (A) ≤ cT M

1 (B)+ 2cν since −cν is the minimal
Chern number of M . As above this implies then that 4cv ≥ − dim M , i.e. 2 dim M ≤ dim M ,
and thus dim M = 0. I.e. we are left with the case � = S1 ⊂ C = E in which Theorem 1.2
is true: RFH∗(S1,C) = 0, [1,9]

We combine cT M
1 (A) = cT M

1 (B) + cν with (3.42) and arrive at

μMorse
(
℘(v), f

)− μMorse
(
℘(u), f

) ≥ −2cν = dim M (3.48)

which turns the inequality (3.42) into an equality:

μM
CZ

(
�
([u, A], η)) = μM

CZ

(
�
([v, B], η̂)). (3.49)

Now we proceed as in the proof of Proposition 3.3 in order to conclude that all element in

M
(([v, B], η̂), ([u, A], η)

)
are actually differentials which are entirely contained in fibers

of E and thus A = B, again by Proposition 3.3. ��
We recall that we split the cycle ξ as

ξ =
∑

A∈	M

ξA . (3.50)
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It follows from the Claim 2 and ∂ξ = 0 that

∂ξA = 0 ∀A ∈ 	M . (3.51)

Observe that for every A the sum

ξA =
∑

w∈Ck[�(w)]∈Crit( f )×{A}

aww (3.52)

is finite. Indeed, we know that w is of the form w = ([u, A], η) with fixed A and u being
an l-fold cover of a simple Reeb orbit over a critical point of f . Moreover, the index of w

is fixed: μ(w) = k. Therefore, Definition 2.8 of the index μ and the index formula Lemma
2.7 allow only for finitely many combinations. The number of possibilities is bounded by
1
2 dim M . In particular, the number of possibilities does not depend on A.

Now, we apply again the inductive procedure (3.30) from the proof in case c ≥ 0 to obtain
θA ∈ RFCk+1(A

τ
f ) with

∂θA = ξA. (3.53)

If we set

θ :=
∑

A∈	M

θA (3.54)

then Claim 2 implies ∂θ = ξ . As above it remains to check that θ satisfies the Novikov
condition (2.56). For this we express for some A

θA =
∑

z∈Ck+1[�(z)]∈Crit( f )×{A}

bzz . (3.55)

The same argument we used to conclude that each ξA is a finite sum gives the same for θA.
Moreover, since μ(θA) = k + 1, ∂θA = ξA again the claim, the index formula Lemma 2.7
and the computation of the action (2.11) implies that exists C > 0 such that

|A τ
f (z) − A τ

f (w)| ≤ C (3.56)

whenever M(w, z) �= ∅ for some w appearing in ξA and z in θA. The constant C does not
depend on A, indeed we may choose C = τ

2 dim M + max f − min f .
Thus, ξ satisfying the Novikov condition implies that θ satisfies the Novikov condition

since their actions are of bounded distance. This completes the proof.

Proof of Theorem 1.2 for ω
(
π2(M)
) = 0

We follow the proof of the case 2cν ≤ − dim M . We first establish Claim 2, i.e. that
M(([v, B], η̂), ([u, A], η)) �= ∅ implies A = B ∈ 	M holds without assuming cT M

1 = cω
under the assumption that the Morse function f : M → R is sufficiently small.

We assume otherwise. Then we find a sequence εn → 0 and a sequence of elements
wn ∈ M(([vn, Bn], η̂n

)
,
([un, An], ηn

))
where wn satisfies the Floer equation for A τ

fn
with

fn := εn f . By definition of M we have cT E
1 (−An#wn#Bn) = 0. Since ω

(
π2(M)
) = 0 we

can identify cT E
1 = cT M

1 : π2(E) ∼= π2(M) → Z. We recall that �(wn) are solutions of the
Floer equation of a fn with

cT M
1 (−An#�(wn)#Bn) = cT E

1 (−An#wn#Bn) = 0 . (3.57)
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We point out that the Floer cylinders�(wn) topologically form spheres since their asymptotic
limits lie in Crit( fn). Therefore, we can rewrite

cT M
1 (−An#�(wn)#Bn) = −cT M

1 (An) + cT M
1 (�(wn)) + cT M

1 (Bn) = 0 . (3.58)

Moreover, they have uniformly bounded energy since their energy is given by the action
difference of a fn which, in turn, is bounded by max fn − min fn thanks to our assumption
ω
(
π2(M)
) = 0. Therefore, we can take the Floer-Gromov limit of �(wn). Floer-Gromov

compactness implies that we find a bubble tree of holomorphic spheres in (M, ω). Since we
assume that ω

(
π2(M)
) = 0 all holomorphic spheres are constant and therefore

cT M
1 (�(wn)) = 0 (3.59)

for sufficiently large n from which we conclude

cT M
1 (An) = cT M

1 (Bn) (3.60)

for sufficiently large n. That is, the above claim indeed holds for sufficiently small f : M →
R. We now can proceed as in the proof of the case 2cν ≤ − dim M .

Remark 3.6 In the latter two cases of the proof of Theorem 1.2 we assume that the auxiliary
Morse function f is very small. This is an echo of the ‘true’ proof of Theorem 1.2 in
the full Morse–Bott setting, i.e. the case of A τ

f =0. Indeed, in both cases 2cν ≤ − dim M

and ω
(
π2(M)
) = 0 the Morse–Bott differential is of the form ∂ = ∂0+ auxiliary Morse

trajectories which immediately implies the Theorem.

4 A conjectural explanation

Let V be a Liouville domain, i.e. a compact exact symplectic manifold with contact type
boundary. We recall one of the main theorems by Cieliebak–Frauenfelder–Oancea in [11].
There is a long exact sequence between symplectic (co-)homology SH and Rabinowitz Floer
homology RFH as follows.

· · · −→ SH−∗(V ) −→ SH∗(V ) −→ RFH∗(∂V, V ) −→ SH−∗−1(V ) −→ · · · . (4.1)

Moreover, the map SH−∗(V ) → SH∗(V ) splits as

SH−∗(V ) SH∗(V )

H−∗+d(V, ∂V )
PD H∗+d(V )

incl∗ H∗+d(V, ∂V )

(4.2)

where PD denotes Poincare duality and d = 1
2 dim V . As observed by Ritter in [22] this long

exact sequence together with the fact that SH is a ring with unity leads to the statement

SH∗(V ) = 0 ⇐⇒ SH∗(V ) = 0 ⇐⇒ RFH∗(∂V, V ) = 0. (4.3)

Note that our (co-)homology and grading conventions match with the ones in [11].
In [21] Oancea proves SH∗(E) = 0 for negative line bundles ℘ : E → M under the

condition that (E,�) is symplectically aspherical.Wepoint out that even in the symplectically
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aspherical case E is not a Liouville manifold since [�] �= 0 ∈ H2(E). Ritter computes in
[23, Theorem 1] for more general negative line bundles

SH∗(E) ∼= QH∗+d(E, �)/ ker rk (4.4)

whered = 1
2 dim E , QH∗(E, �) is the relative quantumhomologyof the disk bundle inside E

with boundary � and r : QH∗(E) → QH∗−2(E) is the map given by quantum intersection
product with PD(℘∗cE1 ) ∈ QH2d−2(E). Finally (4.4) holds for any k ≥ dimH∗(M). In
particular,

SH∗(E) = 0 ⇐⇒ ℘∗cE1 is nilpotent in QH∗(E) (4.5)

which generalizes Oancea’s computation. Considering for instance the bundle℘ : O(−n) →
CPm it follows that

SH∗(O(−n)) �= 0, (4.6)

for n ≤ m, see [23, Section 1.5]. On the other hand, Theorem 1.2 applies since (CPm, nωFS)

is monotone with c = m+1
n with corresponding negative line bundleO(−n), i.e. we conclude

RFH∗(�,O(−n)) = 0. (4.7)

In this case � is a Lens space. This is, of course, no contradiction to (4.3) since the space
O(−n) is not a Liouville manifold. Also, (CPm, nωFS) is not symplectically aspherical.

We offer the following conjectural explanation of Ritter’s result (4.4) in terms of the long
exact sequence (4.1) from [11] and Theorem 1.2. We claim that the long exact sequence
(4.1) remains valid for negative line bundles E (and probably even more generally) but the
splitting of the map SH−∗(V ) → SH∗(V ) needs to be corrected as follows.

SH−∗(E) SH∗(E) RFH∗(�, E)

QH−∗+d(E, �)
PD QH∗+d(E)

incl∗ QH∗+d(E, �)

c∗

(4.8)

Here, as in [23], we identify QH∗(E, �) as Floer homology of a Hamiltonian with very small
slope at infinity or equivalently as symplectic homology in the action window (−ε, ε). Then
c∗ is just a continuation homomorphism induced by a canonical inclusion map. We refer to
[23] for details. In particular, if RFH∗(�, E) = 0 then the map c∗ is surjective and

SH∗(E) ∼= QH∗+d(E, �)/ ker c∗. (4.9)

Ritter’s important observation in [23] is that c∗ is indeed surjective and can be identified with
rk for large k under his assumptions.

Asmentioned aboveRitter’s and the present result holds for the bundleO(−n) → CPm . In
fact, from inspection of Ritter’s article [23] it seems that Theorem 1.2 applies to all examples
Ritter considers.
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