

Nonintegrability of Hamiltonian system perturbed from integrable system with two singular points

Yoshikatsu Sasaki1 · Masafumi Yoshino²

Received: 28 September 2015 / Accepted: 30 March 2016 / Published online: 6 May 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract We give a Hamiltonian system which is nonintegrable in a domain containing two singular points and that is integrable in some neighborhood of a singular point. The system is an arbitrarily small nontrivial perturbation of an integrable Hamiltonian system given by confluence of regular singular points of a generalized hypergeometric system.

Keywords Nonintegrability · Hamiltonian system with two singular points · Hypergeometric system · Confluence · Okubo equation

1 Introduction

Let $n > 2$ be an integer, and consider the Hamiltonian system

$$
\begin{cases}\nz^2 \frac{dq}{dz} = \nabla_p \mathcal{H}(z, q, p), \\
z^2 \frac{dp}{dz} = -\nabla_q \mathcal{H}(z, q, p),\n\end{cases} \tag{1}
$$

where $q = (q_2, ..., q_n), p = (p_2, ..., p_n)$. Here

$$
\nabla_q := \left(\frac{\partial}{\partial q_2}, \ldots, \frac{\partial}{\partial q_n} \right), \quad \nabla_p := \left(\frac{\partial}{\partial p_2}, \ldots, \frac{\partial}{\partial p_n} \right).
$$

B Yoshikatsu Sasaki sasakiyo@kurume-it.ac.jp

The second author: Partially supported by Grant-in-Aid for Scientific Research (No. 26400118), Ministry of Education, Science and Culture, Japan.

¹ Department of Education and Creation Engineering, Kurume Institute of Technology, 2228-66 Kamitsu-machi, Kurume, Fukuoka 830-0052, Japan

² Department of Mathematics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

The system (1) is equivalent to an autonomous one

$$
\begin{cases}\n\dot{q}_1 = H_{p_1}, & \dot{q} = \nabla_p H, \\
\dot{p}_1 = -H_{q_1}, & \dot{p} = -\nabla_q H,\n\end{cases}
$$
\n(2)

where $q_1 = z$ and $H(q_1, q, p_1, p) := q_1^2 p_1 + H(q_1, q, p)$ or $H(q_1, q, p_1, p) :=$ $p_1 + q_1^{-2} \mathcal{H}(q_1, q, p)$. We say that the Hamiltonian system [\(2\)](#page-1-0) is C^{ω} -Liouville integrable if there exist first integrals $\phi_j \in C^\omega$ ($j = 1, \ldots, n$) which are functionally independent on an open dense set and Poisson commuting, i.e., $\{\phi_i, \phi_k\} = 0$, $\{H, \phi_k\} = 0$, where $\{\cdot, \cdot\}$ denotes the Poisson bracket. The Hamiltonian *H* is a first integral of this autonomous system. We abbreviate C^{ω} -Liouville integrable to C^{ω} -integrable or integrable if there is no fear of confusion.

In [\[2\]](#page-14-0) Bolsinov and Taimanov showed a non C^{ω} -integrability of some Hamiltonian system related with geodesic flow on a Riemannian manifold. Then Gorni and Zampieri showed similar results in the local setting, namely for a Hamiltonian system being singular at the origin they showed the non C^{ω} -integrability (cf. [\[3,](#page-14-1)[5](#page-15-0),[6](#page-15-1)]). In this paper we study the nonintegrability from a semi-global point of view. Namely we consider Hamiltonian system which is singular at the origin $q_1 = 0$ as well as $q_1 = 1$. We shall show that the system is integrable near the origin, while it is not integrable in the domain containing both $q_1 = 0$ and $q_1 = 1$. The Hamiltonian function is given by the arbitrary small non zero perturbation of an integrable Hamiltonian of the confluent generalized hypergeometric system (cf. Sect. [2\)](#page-2-0).

More precisely, we consider

$$
H = \sum_{j \in J'} \mu_j q_j p_j + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j q_j p_j + q_1^2 p_1,
$$
 (3)

where μ_j are complex constants and *J* and *J'* are the sets of multi-indices such that

$$
J \neq \emptyset, J' \neq \emptyset, J \cap J' = \emptyset, J \cup J' = \{2, \dots, n\}.
$$
 (4)

The Hamiltonian is derived from the generalized hypergeometric system by confluence of singularities (cf. Sect. [2\)](#page-2-0). The Hamiltonian system (2) – (3) determines the Hamiltonian vector field

$$
\chi_H = q_1^2 \frac{\partial}{\partial q_1} - 2q_1 p_1 \frac{\partial}{\partial p_1} + \frac{2q_1}{(q_1 - 1)^3} \left(\sum_{j \in J} \mu_j q_j p_j \right) \frac{\partial}{\partial p_1} + \sum_{j \in J'} \mu_j \left(q_j \frac{\partial}{\partial q_j} - p_j \frac{\partial}{\partial p_j} \right) + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J'} \mu_j \left(q_j \frac{\partial}{\partial q_j} - p_j \frac{\partial}{\partial p_j} \right). \tag{5}
$$

Let

$$
H_1 := \sum_{j=2}^n p_j^2 B_j(q_1, p). \tag{6}
$$

Note that *H*¹ does not depend on *q*. Suppose that the nonresonance condition (NRC) holds:

$$
\forall \gamma = (\gamma_2, \dots, \gamma_n) \in \mathbb{Z}^{n-1} \setminus \{0\}, \ \sum_{j=2}^n \mu_j \gamma_j \neq 0, \tag{7}
$$

 \circledcirc Springer

i.e. μ_i 's are linearly independent over \mathbb{Z}^{n-1} . Moreover, assume (TC): For $k \in J'$, the equation

$$
q_1^2 \frac{d}{dq_1} v - 2\mu_k v = B_k(q_1, 0)
$$
\n(8)

has no solution v holomorphic at $q_1 = 0$, and for $k \in J$, the equation

$$
q_1^2 \frac{d}{dq_1} w - 2\mu_k \frac{q_1^2 w}{(q_1 - 1)^2} = B_k(q_1, 0) + \mu_k \frac{q_1 B_k(0, 0)}{(q_1 - 1)^2} + B_k(0, 0) \tag{9}
$$

has no solution w holomorphic at $q_1 = 1$.

Let $\Omega_1 \subset \mathbb{C}$ be a domain containing $\{q_1 = 0, 1\}$, and $\Omega_2 \subset \mathbb{C}^{2n-1}$ be a neighborhood of $(p_1, q, p) = (0, 0, 0)$ and define $\Omega := \Omega_1 \times \Omega_2$. Then we have

Theorem 1 *Assume that (NRC) and (TC) are satisfied. Then, there exists* Ω *such that the Hamiltonian system* [\(2\)](#page-1-0) *is not C*ω*-integrable in* Ω*. More precisely, for every first integral* φ *satisfying* χ*H*+*H*1φ = 0 *and holomorphic in* Ω*, there exists a holomorphic function* ψ *defined in some neighborhood of the origin t* = 0 *such that* $\phi(q_1, q, p_1, p) = \psi(H + H_1)$ *in some neighborhood of the origin.*

In spite of the non integrability shown in Theorem [1](#page-2-1) we have the integrability about a singular point of χ_{H+H_1} . We recall that the Hamiltonian system corresponding to $H+H_1$ has irregular singularities at $q_1 = 0$ and $q_1 = 1$. We have

Proposition 1 *Suppose that* $H_1(q_1, p)$ *be independent of* p_ν *for every* $\nu \in J'$ *. Then,* χ_{H+H_1} *is analytically Liouville-integrable in some neighborhood of the origin.*

Remark (i) In Sect. [5](#page-11-0) we show that (TC) holds on an open dense set in the set of analytic functions. (TC) also implies that H_1 could be replaced by εH_1 with an arbitrary small $\varepsilon \neq 0$. On the other hand, it is necessary in Theorem [1](#page-2-1) that *H*¹ does not vanish identically because *H* is integrable in view of Lemma [1](#page-3-0) (cf. Sect. [3\)](#page-3-1). Hence the non-integrability occurs by an arbitrary small non-zero generic perturbation.

By Proposition [1](#page-2-2) we see that our class of Hamiltonians contains subclass for each of which the integrability at the origin holds. Hence the (non-) integrability in Theorem [1](#page-2-1) is caused by the interference of singular points.

(ii) Of course, a globally integrable system is locally integrable. So, it is sufficient for the proof of Theorem [1](#page-2-1) to prove the local non-integrability.

(iii) In these days, monodromy is usually treated from the point of view of the differential Galois theory (for example, see [\[7\]](#page-15-2)) because of enrichment of the theory however, we treat it from another point of view.

2 Confluence of singularities

In this section we deduce [\(3\)](#page-1-1) from the genelarized hypergeometric system

$$
(z - C)\frac{dv}{dz} = Av,
$$
\n(10)

where $C = diag(\Lambda_1, {}^t \Lambda_1)$, Λ_1 being $(n-1) \times (n-1)$ matrix with eigenvalues $\lambda_2, \ldots, \lambda_n$ such that $\lambda_j \neq 0$ for all *j* (cf. [\[1](#page-14-2)[,4](#page-15-3)]). For the sake of simplicity, we assume $\Lambda_1 = \text{diag}(\lambda_2, \dots, \lambda_n)$. We assume $A = \text{diag}(A_1, A_1)$, where A_1 is an $(n - 1) \times (n - 1)$ constant matrix satisfying $\Lambda_1 A_1 = A_1 \Lambda_1$. For simplicity, we further assume $A_1 = \text{diag}(\tau_2, \ldots, \tau_n)$.

 \mathcal{L} Springer

Let $v = {}^{t}(q, p) \in \mathbb{C}^{2(n-1)}$. Define

$$
H = \langle (z - \Lambda_1)^{-1} p, A_1 q \rangle, \tag{11}
$$

where $\langle (x_2, \ldots, x_n), f(y_2, \ldots, y_n) \rangle := \sum_{2 \le k \le n} x_k y_k$. Then, [\(10\)](#page-2-3) is written in the Hamiltonian system

$$
\frac{dq}{dz} = H_p(z, q, p), \frac{dp}{dz} = -H_q(z, q, p).
$$
 (12)

Now we operate the confluence of regular singularities. Let v_y and $(Av)_y$ denote the *v*th entry of v and Av , respectively. Then we can write (12) in the form

$$
(z - \lambda_{\nu}) \frac{dv_{\nu}}{dz} = (Av)_{\nu}.
$$

Substituting $z = 1/\zeta$, we have

$$
-\zeta^2 \frac{dv_\nu}{d\zeta} = (\zeta^{-1} - \lambda_\nu)^{-1} (Av)_\nu.
$$
 (13)

In the following, $a \mapsto b$ denotes the replacement of *a* by *b*.

Let $\zeta \mapsto \epsilon^{-1} \eta$; and $\lambda_{\nu} \mapsto \epsilon \lambda_{\nu}$ for $\nu \in J$, $\lambda_{\nu} \mapsto \lambda_{\nu}$ for $\nu \in J'$. Multiply the vth row of A in [\(13\)](#page-3-3) by ϵ^{-1} if $\nu \in J'$ and take the limit $\epsilon \to 0$. Then [\(12\)](#page-3-2) is reduced to the Hamiltonian system

$$
-\eta^2 \frac{dq}{d\eta} = \mathfrak{A}A_1 q, \ -\eta^2 \frac{dp}{d\eta} = -{}^t A_1 \mathfrak{A} p,\tag{14}
$$

where $\mathfrak{A} = \text{diag}(\mathfrak{A}_2, \dots, \mathfrak{A}_n)$ and

$$
\mathfrak{A}_{\nu} := \begin{cases}\n-\lambda_{\nu}^{-1} & (\nu \in J'), \\
(\eta^{-1} - \lambda_{\nu})^{-1} & (\nu \in J).\n\end{cases}
$$
\n(15)

Note that [\(14\)](#page-3-4) is irregular singular at $\eta = 0$.

In order to introduce another singular point, choose any $a \neq 0$ such that $a \neq \lambda_j^{-1}$ for all *j* and put $\zeta = \eta - a$. Let $\zeta \mapsto \epsilon^{-1} \zeta$ and $(A)_{\nu} \mapsto \epsilon^{-1}(A)_{\nu}$. Make substitution $a \mapsto \epsilon^{-1}a$ for $j \in J'$ and $a \mapsto a$ for $j \in J$ and take the limit $\epsilon \to 0$. Then [\(12\)](#page-3-2) is reduced to a Hamiltonian system with irregular points at 0 and $-a$. Set $a = -1$. Finally, by transforming to the autonomous system and putting $\mu_i := \mu_i$, we obtain [\(3\)](#page-1-1).

3 Proof of Proposition [1](#page-2-2)

Let *H* and H_1 be given by [\(3\)](#page-1-1) and [\(6\)](#page-1-2), respectively. First we show

Lemma 1 *If* $k \in J$ *, then* χ *H has first integrals*

$$
q_k \exp\left(\frac{\mu_k}{q_1 - 1}\right), \quad p_k \exp\left(-\frac{\mu_k}{q_1 - 1}\right), \tag{16}
$$

while, for $k \in J'$ *it has*

$$
q_k \exp\left(\frac{\mu_k}{q_1}\right), \quad p_k \exp\left(-\frac{\mu_k}{q_1}\right). \tag{17}
$$

Note that χ_H is analytically integrable at $q_1 = 0$ or $q_1 = 1$, because $q_k p_k$ is an analytic first integral about the singular point $q_1 = 0$ or $q_1 = 1$.

Proof of Lemma [1](#page-3-0) The assertion is easily verified in view of the definition of first integrals.

Remark Lemma [1](#page-3-0) says that in the C^{∞} class the Hamiltonian is superintegrable. The perturbation in Proposition [1](#page-2-2) breaks some first integrals, but not all of them. The remaining ones are not either sufficiently regular for integrability near both points.

Proof of Proposition [1](#page-2-2) We have H_1 not depending on p_k , $k \in J'$, q_1, q_k , $k = 2, ..., n$ by hypothesis and [\(6\)](#page-1-2). So the dynamical equations give that q_k , $k \in J'$, q_1 , p_k , $k = 2, ..., n$ are first integrals of *H*1. Thus in particular

$$
p_k q_k, (k \in J'), \quad p_k \exp\left(-\frac{\mu_k}{q_1 - 1}\right), \quad (k \in J)
$$
 (18)

are first integrals of H_1 , and are analytic at 0. As these are also first integrals of H , they are in involution and first integrals of $H + H_1$. This ends the proof.

4 Proof of Theorem [1](#page-2-1)

Let $\phi =: u$ be a holomorphic first integral in Ω and expand *u* at $p = 0$

$$
u = \sum_{\alpha} u_{\alpha}(q_1, q, p_1) p^{\alpha}.
$$
 (19)

Substitute [\(19\)](#page-4-0) into $\chi_{H+H_1} u = 0$ and compare the powers like $p^0 = 1$ of both sides. Then we have the equation of $u_0 = u_0(q_1, q, p_1)$

$$
\{q_1^2 p_1, u_0\} + \sum_{j \in J'} \mu_j q_j \frac{\partial}{\partial q_j} u_0 + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j q_j \frac{\partial}{\partial q_j} u_0 = 0. \tag{20}
$$

Indeed, no constant term in *p* appears from $\chi_{H_1} u$ in view of the definition of χ_{H_1} .

Substituting the expansion $u_0 = \sum_{\beta} u_{0,\beta}(q_1, p_1) q^{\beta}$ into [\(20\)](#page-4-1), we see that $U_0 := u_{0,0}$ satisfies $\{q_1^2 p_1, U_0\} = 0$, namely

$$
\left(q_1\frac{\partial}{\partial q_1} - 2p_1\frac{\partial}{\partial p_1}\right)U_0 = 0.\tag{21}
$$

Substitute the expansion $U_0 = \sum_{\nu,\mu} c_{\nu\mu} q_1^{\mu} p_1^{\nu}$ into [\(21\)](#page-4-2). Then we have $\sum_{\nu,\mu} c_{\nu,\mu} (\mu - 2\nu) q_1^{\mu} p_1^{\nu} = 0$. It follows that $c_{\nu,\mu} = 0$ for $\mu \neq 2\nu$. Hence we obtain

$$
U_0 = \sum_{\nu} c_{\nu,2\nu} q_1^{2\nu} p_1^{\nu} = \sum_{\nu} c_{\nu,2\nu} (q_1^2 p_1)^{\nu}.
$$
 (22)

It follows that there exists a function of one variable t , $\phi_0(t)$ holomorphic in some neighborhood of $t = 0$ such that $U_0 = \phi_0(q_1^2 p_1)$.

Next, we focus on the equation of $u_{0,\beta}$ with $\beta \neq 0$

$$
\{q_1^2 p_1, u_{0,\beta}\} + \sum_{j \in J'} \mu_j \beta_j u_{0,\beta} + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j \beta_j u_{0,\beta} = 0.
$$

Expand

$$
u_{0,\beta} = \sum_{\nu} \omega_{\beta,\nu}(q_1) p_1^{\nu},\tag{23}
$$

and consider the equation of $\omega_{\beta,\nu}$. If $\nu = 0$, then, by comparing the coefficients of $p_1^0 = 1$, we have

$$
q_1^2 \frac{d}{dq_1} \omega_{\beta,0} + \left(\sum_{j \in J'} \mu_j \beta_j + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j \beta_j \right) \omega_{\beta,0} = 0. \tag{24}
$$

Since $\beta \neq 0$, it follows from (NRC), [\(7\)](#page-1-3), that either $A' := \sum_{j \in J}$ Since $\beta \neq 0$, it follows from (NRC), (7), that either $A' := \sum_{j \in J'} \mu_j \beta_j \neq 0$ or $A := \sum_{j \in J} \mu_j \beta_j \neq 0$ is valid. If $A' \neq 0$, then we have $\omega_{\beta,0} = 0$ in some neighborhood of $q_1 = 0$. Indeed, by subsituting the expansion $\omega_{\beta,0} = \sum_{l=0}^{\infty} C_l q_1^l$ into [\(24\)](#page-5-0) and by using the relations

$$
q_1^2 \frac{d}{dq_1} \omega_{\beta,0} = \sum_{l=0}^{\infty} C_l l q_1^{l+1}
$$

and

$$
\frac{q_1^2}{(q_1-1)^2} \sum_{j \in J} \mu_j \beta_j \omega_{\beta,0} = \sum_{l=0}^{\infty} C'_l q_1^{l+2}
$$

for some C_l' , we obtain

$$
C_0 A' = 0
$$
 i.e. $C_0 = 0$,
\n $C_1 A' + C_0 \cdot 0 = 0$ i.e. $C_1 = 0$,
\n $C_2 A' + C_0' + C_1 = 0$ i.e. $C_2 = 0$,
\n...

Note that $C'_0 = 0$ since $C_0 = 0$. Hence we have $\omega_{\beta,0} = 0$.

In the case where $A' = 0$ and $A \neq 0$, [\(24\)](#page-5-0) is written in

$$
(q_1 - 1)^2 \frac{d}{dq_1} \omega_{\beta,0} + A \omega_{\beta,0} = 0.
$$
 (25)

Similarly to the case $A' \neq 0$, we obtain $\omega_{\beta,0} = 0$ in some neighborhood of $q_1 = 1$. Therefore, we have $\omega_{\beta,0} = 0$ in Ω_1 .

Next, by comparing the coefficients of $p_1^1 = p_1$, we have the equation of $\omega_{\beta,1}(q_1)$

$$
\left(q_1^2 \frac{d}{dq_1} - 2q_1\right)\omega_{\beta,1} + \left(A' + \frac{q_1^2}{(q_1 - 1)^2}A\right)\omega_{\beta,1} = 0. \tag{26}
$$

Similarly to the above, $A' \neq 0$ implies $\omega_{\beta,1} = 0$ near $q_1 = 0$, while $A' = 0$ and $A \neq 0$ imply $\omega_{\beta,1} = 0$ near $q_1 = 1$. Hence we have $\omega_{\beta,1} = 0$ in Ω_1 . By the same argument we obtain $\omega_{\beta,\nu} = 0$ in Ω_1 for all $\nu \in \mathbb{N} \cup \{0\}$. It follows that $u_{0,\beta} = 0$ for all $\beta \neq 0$.

Therefore, we have

$$
u_0 = u_{0,0}(q_1^2 p_1) + \sum_{\beta \neq 0} u_{0,\beta}(q_1^2 p_1) q^{\beta} = \phi_0(q_1^2 p_1)
$$
 (27)

for some $\phi_0(t)$ of one variable being analytic at $t = 0$. Note that

$$
u|_{p=0} - \phi_0 (H + H_1)|_{p=0} = u_0(q_1, p_1) - \phi_0 (H|_{p=0})
$$

= $\phi_0(q_1^2 p_1) - \phi_0(q_1^2 p_1) \equiv 0.$

Hence, without loss of generality, we may assume $u|_{p=0} = 0$.

 \mathcal{L} Springer

Next we consider $u_{\alpha} = u_{\alpha}(q_1, p_1, q)$ for $|\alpha| = 1$. Write $\alpha = e_k$ (2 lee k lee n) where $e_k := (0, \ldots, 0, 1, 0, \ldots, 0)$ is the *k*th unit vector. Then, u_α satisfies

$$
\{q_1^2 p_1, u_\alpha\} + \sum_{j \in J'} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \delta_{k,j}\right) u_\alpha + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \delta_{k,j}\right) u_\alpha = 0,
$$
(28)

where $\delta_{k,j}$ is the Kronecker's delta, $\delta_{k,j} = 1$ if $k = j$, and =0 if otherwise. Note that, because $u_0 = 0$, χ_{H_1} gives no term.

Substitute the expansion $u_{\alpha} = \sum_{\beta} u_{\alpha,\beta}(q_1, p_1) q^{\beta}$ into [\(28\)](#page-6-0), and compare the powers like $q^{0} = 1$. Then we have the equation of $u_{\alpha,0}$

$$
\left\{q_1^2 p_1, u_{\alpha,0}\right\} - \mu_k \left(\sum_{j \in J'} \delta_{k,j}\right) u_{\alpha,0} - \frac{q_1^2}{(q_1 - 1)^2} \left(\sum_{j \in J} \mu_j \delta_{k,j}\right) u_{\alpha,0} = 0. \tag{29}
$$

If $k \in J'$, then

$$
\left\{q_1^2 p_1, u_{\alpha,0}\right\} - \mu_k u_{\alpha,0} = 0.
$$

Because $\mu_k \neq 0$ by (NRC) condition, we have $u_{\alpha,0} = 0$.

On the other hand, if $k \in J$, then

$$
\left\{q_1^2p_1, u_{\alpha,0}\right\} - \frac{q_1^2}{(q_1-1)^2} \mu_k u_{\alpha,0} = 0.
$$

By considering the equation around $q_1 = 1$ together with (NRC) condition we obtain $u_{\alpha,0} = 0.$

Next we consider $u_{\alpha,\beta}(\beta \neq 0)$ ($\alpha = (\alpha_2, \ldots, \alpha_n), \alpha_j = \delta_{j,k}$).

$$
\{q_1^2 p_1, u_{\alpha,\beta}\} + \sum_{j \in J'} \mu_j (\beta_j - \alpha_j) u_{\alpha,\beta} + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j (\beta_j - \alpha_j) u_{\alpha,\beta} = 0.
$$
 (30)

If $\beta \neq \alpha$, then (NRC) condition yields $u_{\alpha,\beta} = 0$, by the similar argument as in the above. If $\beta = \alpha$, then we have $\{q_1^2 p_1, u_{\alpha, \alpha}\} = 0$. Hence, there exists $\phi_\alpha(t)$ of one variable *t* such that $u_{\alpha,\alpha} = \phi_\alpha(q_1^2 p_1)$. Therefore we obtain

$$
u = \sum_{|\alpha|=1} \phi_{\alpha}(q_1^2 p_1) q^{\alpha} p^{\alpha} + O(|p|^2).
$$
 (31)

Now we consider the equation for u_{α} when $|\alpha| = 2$. We substitute [\(19\)](#page-4-0) and [\(31\)](#page-6-1) into the equation $\chi_{H+H_1} u = 0$ and compare the powers like p^{α} ($|\alpha| = 2$). In order to get the expressions of the powers like p^{α} , we note that the following terms appear from $\chi_H u$:

$$
\{q_1^2 p_1, u_\alpha\} + \sum_{j \in J'} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \alpha_j\right) u_\alpha + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \alpha_j\right) u_\alpha + \frac{2q_1}{(q_1 - 1)^3} \sum_{j \in J} \mu_j q^\alpha \frac{\partial}{\partial p_1} \phi_{\alpha - e_j}.
$$
 (32)

On the other hand, the following terms appear from $\chi_{H_1} u$.

$$
\sum_{\nu} \frac{\partial}{\partial p_{\nu}} \left(\sum_{j} p_{j}^{2} B_{j}(q_{1}, p) \right) \frac{\partial}{\partial q_{\nu}} (\phi_{e_{\nu}} q_{\nu} p_{\nu})
$$

$$
- \frac{\partial}{\partial q_{1}} \left(\sum_{j} p_{j}^{2} B_{j}(q_{1}, p) \right) \frac{\partial}{\partial p_{1}} \left(\sum_{|\alpha|=1} \phi_{\alpha} q^{\alpha} p^{\alpha} \right). \tag{33}
$$

Note that the second term in [\(33\)](#page-7-0) is $O(|p|^3)$. Hence it does not appear in the recurrence formula because $|\alpha| = 2$. Moreover, since we consider terms of $O(|p|^2)$, the first term yields

$$
2\sum_{\nu}\phi_{e_{\nu}}B_{\nu}(q_1,0)\delta_{\alpha,2e_{\nu}}.\tag{34}
$$

Therefore, by comparing the powers like p^{α} in $\chi_{H+H_1} u = 0$ we have

$$
\{q_1^2 p_1, u_\alpha\} + \sum_{j \in J'} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \alpha_j\right) u_\alpha
$$

+
$$
\frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \alpha_j\right) u_\alpha
$$

+
$$
\frac{2q_1}{(q_1 - 1)^3} q^\alpha \sum_{j \in J} \mu_j \frac{\partial}{\partial p_1} \phi_{\alpha - e_j} + 2 \sum_{\nu} \phi_{e_\nu} B_\nu(q_1, 0) \delta_{\alpha, 2e_\nu} = 0.
$$
 (35)

Expand u_α with respect to q , $u_\alpha = \sum_\beta u_{\alpha,\beta}(q_1, p_1)q^\beta$ and insert the expansion into [\(35\)](#page-7-1). By comparing the power of q^{β} we obtain the recurrence relation for $u_{\alpha,\beta}(q_1, p_1)$. We consider 4 cases:

- (i) $\alpha \neq 2e_v$ for every v and $\beta \neq \alpha$. (ii) $\alpha = 2e_k$ for some k and $\beta \neq \alpha, 0$.
- (iii) $\alpha = 2e_k$ for some *k* and $\beta = 0$.

$$
(iv) \ \beta = \alpha.
$$

Case (i): We note that the fourth and the fifth terms of the left-hand side of [\(35\)](#page-7-1) yield no term in the recurrence relation for $u_{\alpha,\beta}$. Indeed, the fourth term is a monomial of q^{α} . Hence, $u_{\alpha,\beta}$ satisfies

$$
\{q_1^2 p_1, u_{\alpha,\beta}\} + \sum_{j \in J'} \mu_j (\beta_j - \alpha_j) u_{\alpha,\beta} + \frac{q_1^2}{(q_1 - 1)^2} \sum_{j \in J} \mu_j (\beta_j - \alpha_j) u_{\alpha,\beta} = 0. \tag{36}
$$

By virtue of (NRC) and $\beta \neq \alpha$, either $\sum_{j \in J}$ By virtue of (NRC) and $\beta \neq \alpha$, either $\sum_{j \in J'} \mu_j(\beta_j - \alpha_j) \neq 0$ or $\sum_{j \in J} \mu_j(\beta_j - \alpha_j) \neq 0$ holds. One can easily show that $u_{\alpha,\beta} = 0$ by the holomorphy of $u_{\alpha,\beta}$.

Case (ii): Because the fourth and fifth terms of the left-hand side of [\(35\)](#page-7-1) do not yield terms by the assumption $\beta \neq \alpha$, 0, we see that $u_{\alpha,\beta}$ satisfies [\(36\)](#page-7-2). Therefore, we have $u_{\alpha,\beta} = 0$.

Case (iii): Let $k \in J'$. Because the fourth term of the left-hand side of [\(35\)](#page-7-1) is a monomial q^{α} , $u_{\alpha,0}$ satisfies

$$
\left\{q_1^2 p_1, u_{\alpha,0}\right\} - 2\mu_k u_{\alpha,0} + 2\phi_{e_k}(q_1^2 p_1) B_k(q_1,0) = 0. \tag{37}
$$

 \circledcirc Springer

Expand $u_{\alpha,0}(q_1, p_1) = \sum_{\nu} u_{\alpha,0,\nu}(q_1) p_1^{\nu}$ and compare the constant terms in p_1 of both sides of [\(37\)](#page-7-3). Then we have

$$
q_1^2 \frac{d}{dq_1} u_{\alpha,0,0} - 2\mu_k u_{\alpha,0,0} + 2\phi_{e_k}(0) B_k(q_1,0) = 0.
$$
 (38)

If $\phi_{e_k}(0) \neq 0$, then $v := u_{\alpha,0,0}/(-2\phi_{e_k}(0))$ satisfies

$$
q_1^2 \frac{d}{dq_1} v - 2\mu_k v = B_k(q_1, 0),
$$

which contradicts (TC). Hence, $\phi_{e_k}(0) = 0$ and [\(38\)](#page-8-0) reduces to

$$
q_1^2 \frac{d}{dq_1} u_{\alpha,0,0} - 2\mu_k u_{\alpha,0,0} = 0.
$$

(NRC) condition implies $2\mu_k \neq 0$, and the holomorphcity of $u_{\alpha,0,0}$ at $q_1 = 0$ tells us $u_{\alpha,0,0} = 0.$

Next, $u_{\alpha,0,1}$ satisfies

$$
\left(q_1^2 \frac{d}{dq_1} - 2q_1\right) u_{\alpha,0,1} - 2\mu_k u_{\alpha,0,1} + 2B_k(q_1,0)\phi'_{e_k}(0)q_1^2 = 0. \tag{39}
$$

Since $u_{\alpha,0,1}(q_1) = O(q_1^2)$, we put $u_{\alpha,0,1}(q_1) = q_1^2 \tilde{u}_{\alpha,0,1}(q_1)$ with $\tilde{u} := \tilde{u}_{\alpha,0,1}(q_1)$ satisfying

$$
q_1^2 \frac{d}{dq_1} \tilde{u} - 2\mu_k \tilde{u} = -2B_k(q_1, 0)\phi'_{e_k}(0).
$$

If $\phi'_{e_k}(0) \neq 0$, then, by putting $v = \tilde{u}/(-2\phi'_{e_k}(0))$, we have a contradiction to (TC). Therefore, $\phi'_{e_k}(0) = 0$ and $\tilde{u} = 0$.

Similarly we can show $u_{\alpha,0,\nu} = 0$ and $\phi_{e_k}^{(\nu)}(0) = 0$ for $\nu \in \mathbb{N} \cup \{0\}$, which implies $u_{\alpha,0} = 0$ and $\phi_{e_k} = 0$ for every $k \in J'$.

Let $k \in J$. Then $u_{\alpha,0}$ satisfies

$$
\{q_1^2 p_1, u_{\alpha,0}\} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} u_{\alpha,0} + 2\phi_{e_k}(q_1^2 p_1) B_k(q_1,0) = 0.
$$

Expand $u_{\alpha,0}(q_1, p_1) = \sum_{\nu} u_{\alpha,0,\nu}(q_1) p_1^{\nu}$. Then $u_{\alpha,0,0}$ satisfies

$$
q_1^2 \frac{d}{dq_1} u_{\alpha,0,0} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} u_{\alpha,0,0} + 2\phi_{e_k}(0) B_k(q_1,0) = 0.
$$
 (40)

If $\phi_{e_k}(0) \neq 0$, then, by [\(40\)](#page-8-1) we have $B_k(0, 0) = 0$. On the other hand, $v := u_{\alpha,0,0}/(-2\phi_{e_k}(0))$ satisfies

$$
q_1^2 \frac{d}{dq_1} v - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} v = B_k(q_1, 0),
$$

which contradicts (TC). So, $\phi_{e_k}(0) = 0$ and [\(40\)](#page-8-1) reduces to

$$
(q_1 - 1)^2 \frac{d}{dq_1} u_{\alpha,0,0} - 2\mu_k u_{\alpha,0,0} = 0.
$$

Again we have $u_{\alpha,0,0} = 0$.

Next, consider the equation of $u_{\alpha,0,1}$

$$
\left(q_1^2 \frac{d}{dq_1} - 2q_1\right) u_{\alpha,0,1} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} u_{\alpha,0,1} = -2\phi'_{e_k}(0) q_1^2 B_k(q_1,0). \tag{41}
$$

Observing $u_{\alpha,0,1}(0) = 0$, we put $u_{\alpha,0,1}(q_1) = cq_1 + q_1^2 v$. Substituting it into [\(41\)](#page-8-2), we have $c = -2\phi'_{e_k}(0)B_k(0,0)$ and v satisfies

$$
-2\phi'_{e_k}(0)\left\{B_k(q_1,0) + B_k(0,0) + 2B_k(0,0)\mu_k\frac{q_1}{(q_1-1)^2}\right\}
$$

=
$$
\left(q_1^2\frac{d}{dq_1} - 2\mu_k\frac{q_1}{(q_1-1)^2}\right)v.
$$

By use of (TC), we obtain $\phi'_{e_k}(0) = 0$ and $u_{\alpha,0,1} = 0$.

In general, $u_{\alpha,0,\nu}$ ($\nu > 2$) satisfies

$$
\left(q_1^2 \frac{d}{dq_1} - 2\nu q_1\right) u_{\alpha,0,\nu} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} u_{\alpha,0,\nu} = -2 \frac{\phi_{e_k}^{(\nu)}(0)}{\nu!} q_1^{2\nu} B_k(q_1,0). \tag{42}
$$

Since we easily see $u_{\alpha,0,v} = O(q^{2v-1})$, we put $u_{\alpha,0,v} = cq_1^{2v-1} + q_1^{2v}w$. Then we have $c = -2\phi_{e_k}^{(\nu)}(0)B_k(0,0)/\nu!$ and w satisfies

$$
-\frac{2\phi'_{e_k}(0)}{\nu!} \left\{ B_k(q_1, 0) + B_k(0, 0) + 2B_k(0, 0)\mu_k \frac{q_1}{(q_1 - 1)^2} \right\}
$$

= $\left(q_1^2 \frac{d}{dq_1} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} \right) w.$

By virtue of (TC), we obtain $\phi_{e_k}^{(\nu)}(0) = 0$ and $w = 0$. Therefore, $u_{\alpha,0,\nu} = 0$ for all $\nu \in \mathbb{N} \cup \{0\}$. Because of analyticity, we have $u_{\alpha,0} = 0$ and $\phi_{e_k} = 0$ for every $k \in J$. Consequently, $\phi_{e_k} = 0$ holds for all $k \in J' \cup J$.

Case (iv): Because $\phi_{e_k} = 0$ for every *k* by what we have proved in the above, the fourth and fifth terms of the left-hand side of [\(35\)](#page-7-1) do not yield terms in the recurrence relation. Hence, $u_{\alpha,\alpha}$ satisfies $\{q_1^2 p_1, u_{\alpha,\alpha}\}=0$. It follows that there exists a function of one variable $\phi_{\alpha}(t)$ such that $u_{\alpha,\alpha} = \phi_{\alpha}(q_1^2 p_1)$.

Therefore we have proved

$$
u = \sum_{|\alpha|=2} \phi_{\alpha}(q_1^2 p_1) q^{\alpha} p^{\alpha} + O(|p|^3).
$$

Finally we shall prove

Lemma 2 *Suppose*

$$
u = \sum_{|\alpha|=v} \phi_{\alpha}(q_1^2 p_1) q^{\alpha} p^{\alpha} + O(|p|^{v+1})
$$
\n(43)

for some $v \geq 1$ *. Then we have*

- (i) $\phi_{\alpha} = 0$ *for all* α *satisfying* $|\alpha| = \nu$.
- (ii) *For every* α *satisfying* $|\alpha| = \nu + 1$ *, there exists a holomorphic function* ϕ_{α} *of one variable such that*

$$
u = \sum_{|\alpha|=v+1} \phi_{\alpha}(q_1^2 p_1) q^{\alpha} p^{\alpha} + O(|p|^{v+2}). \tag{44}
$$

We have already proved [\(43\)](#page-9-0) for $v = 1, 2$. Note that the lemma ends the proof of Theorem 1 because we have $u = 0$ as an analytic function of q and p.

Proof of Lemma [2](#page-9-1) By comparing the coefficients of p^{α} in $\chi_{H+H} u = 0$ we have

$$
\{q_1^2 p_1, u_\alpha\} + \sum_{j'} \mu_j \left(q_j \frac{\partial}{\partial q_j} - \alpha_j\right) u_\alpha + \frac{q_1^2}{(q_1 - 1)^2} \sum_j \mu_j \left(q_j \frac{\partial}{\partial q_j} - \alpha_j\right) u_\alpha + \frac{2q_1}{(q_1 - 1)^3} \left(\sum_j \mu_j q_j p_j\right) \frac{\partial}{\partial p_1} u_\gamma + \sum_{j, \gamma} \frac{\partial H_1}{\partial p_j} \frac{\partial}{\partial q_j} u_\gamma = 0,
$$
(45)

where $|\gamma| < |\alpha|$ and $\alpha = \gamma + e_j$.

Let $|\alpha| = \nu + 1$. Substituting the expansion $u_{\alpha} = \sum_{\beta} u_{\alpha,\beta}(q_1, p_1) q^{\beta}$ into [\(45\)](#page-10-0) and by using [\(43\)](#page-9-0), we obtain the relation for $u_{\alpha,\beta}$

$$
\{q_1^2 p_1, u_{\alpha,\beta}\} + \sum_{J'} \mu_j (\beta_j - \alpha_j) u_{\alpha,\beta} + \frac{q_1^2}{(q_1 - 1)^2} \sum_J \mu_j (\beta_j - \alpha_j) u_{\alpha,\beta} + 2 \frac{q_1}{(q_1 - 1)^3} \sum_J \mu_j \frac{\partial}{\partial p_1} \phi_{\alpha - e_j} (q_1^2 p_1) \delta_{\alpha,\beta} + 2 \sum_{j \in J' \cup J} \delta_{\alpha - 2e_j, \beta} B_j(q_1, 0) \phi_{\alpha - e_j} (\alpha_j - 1) = 0.
$$
 (46)

Indeed, because it is easy to show the expressions up to the fourth term in the left-hand side of [\(46\)](#page-10-1), we consider the fifth term, which corresponds to the fifth term in the left-hand side of [\(45\)](#page-10-0). In view of [\(43\)](#page-9-0) we may consider $2\sum_j p_j B_j(q_1, 0)$ in $\frac{\partial H_1}{\partial p_j}$ because other terms have no effect to [\(45\)](#page-10-0). Hence we may consider terms containing $p^{\alpha-e_j}$ in $\frac{\partial}{\partial q_j}u_\gamma$. By [\(43\)](#page-9-0) the coefficient of the term containing $p^{\alpha-e_j}$ is $(\alpha_j - 1)q^{\alpha-2e_j}B_i(q_1, 0)\phi_{\alpha-e_j}$. Hence we have the desired expression.

Set $B' := \sum_{j \in J'} \mu_j(\beta_j - \alpha_j)$ and $B := \sum_{j \in J} \mu_j(\beta_j - \alpha_j)$. We consider 4 cases.

Case (1) The case where $\alpha - 2e_j \neq \beta$ for $j = 2, ..., n$ and $B' \neq 0$. Clearly we have $\beta \neq \alpha$. It follows that the fourth and the fifth terms in the left-hand side of [\(46\)](#page-10-1) vanish. Hence we have $u_{\alpha,\beta} = 0$ by considering [\(46\)](#page-10-1) at $q_1 = 0$.

Case (2) The case where $\alpha - 2e_j \neq \beta$ for $j = 2, ..., n, \beta \neq \alpha$ and $B' = 0$. By (NRC) we have $B \neq 0$. Hence the fourth and the fifth terms in the left-hand side of [\(46\)](#page-10-1) vanish. We have $u_{\alpha,\beta} = 0$ by considering [\(46\)](#page-10-1) at $q_1 = 1$.

Case (3) The case where $\alpha - 2e_k = \beta$ for some *k*. Clearly, we have $\beta \neq \alpha$. Assume $k \in J$. Then, for every $j \in J'$ we have $j \neq k$, and hence $\alpha_j = \beta_j$, which implies $B' = 0$. Equation [\(46\)](#page-10-1) is reduced to

$$
\left\{q_1^2p_1, u_{\alpha,\beta}\right\} - 2\mu_k \frac{q_1^2}{(q_1-1)^2}u_{\alpha,\beta} + 2(\alpha_k-1)\phi_{\alpha-e_k}B_k(q_1,0) = 0.
$$

Expand $u_{\alpha,\beta} = \sum_{\nu=0}^{\infty} u_{\alpha,\beta,\nu}(q_1) p_1^{\nu}$. We will show that $\phi_{\alpha-e_k}$ vanishes.

Indeed, $v := u_{\alpha,\beta,0}$ satisfies

$$
q_1^2 \frac{dv}{dq_1} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} v = -2(\alpha_k - 1)\phi_{\alpha - e_k}(0)B_k(q_1, 0).
$$

Note that $\alpha_k = 2 + \beta_k \geq 2$. If $\phi_{\alpha-e_k}(0) \neq 0$, then $w := v/(-2(\alpha_k - 1)\phi_{\alpha-e_k}(0))$ is a holomorphic solution at $q_1 = 0$ of the equation

$$
q_1^2 \frac{dw}{dq_1} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} w = B_k(q_1, 0).
$$

Because one can verify $B_k(0, 0) = 0$, we have a contradiction to (TC). Hence we have $\phi_{\alpha-e_k}(0) = 0$ and $u_{\alpha,\beta,0} = 0$.

Next, $v = u_{\alpha, \beta, 1}$ satisfies

$$
q_1^2 \frac{dv}{dq_1} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} v - 2q_1 v = -2(\alpha_k - 1)\phi'_{\alpha - e_k}(0)q_1^2 B_k(q_1, 0).
$$

By comparing the coefficients of q_1^2 of both sides we see that $v = O(q_1^2)$. Similarly to the above, $w := vq_1^{-2}$ leads to a contradiction to (TC). Hence, we have $\phi'_{\alpha-e_k}(0) = 0$ and $u_{\alpha,\beta,1}=0.$

In general, $v = u_{\alpha,\beta,\nu}$ ($\nu \ge 2$) satisfies

$$
q_1^2 \frac{dv}{dq_1} - 2\mu_k \frac{q_1^2}{(q_1 - 1)^2} v - 2q_1 v v = -\frac{2(\alpha_k - 1)}{v!} \phi_{\alpha - e_k}^{(v)}(0) q_1^{2v} B_k(q_1, 0).
$$

Similarly to the above, we have $\phi_{\alpha-e_k}^{(\nu)}(0) = 0$ and $u_{\alpha,\beta,\nu} = 0$. Therefore, $\phi_{\alpha-e_k} = 0$ and $u_{\alpha,\beta} = 0$ for $k \in J$.

Let $k \in J'$. Equation [\(46\)](#page-10-1) is reduced to

$$
\{q_1^2p_1, u_{\alpha,\beta}\} - 2\mu_k u_{\alpha,\beta} + 2(\alpha_k - 1)\phi_{\alpha - e_k} B_k(q_1, 0) = 0.
$$

The holomorphicity of $u_{\alpha,\beta}$ at $q_1 = 0$ and (TC) implies $\phi_{\alpha-e_k}(0) = 0$ and $u_{\alpha,\beta} = 0$ for $k \in J'$. Therefore, $\phi_{\alpha} = 0$ for $k \in J'$. Because $\phi_{\alpha} = 0$ for $k \in J$, we have $\phi_{\alpha} = 0$ for all α with $|\alpha| = \nu$.

Case (4) The case $\beta = \alpha$. We have $\{q_1^2 p_1, u_{\alpha,\alpha}\} = 0$, since we have proved $\phi_\gamma = 0$ for $|\gamma| = \nu$. Hence, there exists ϕ_{α} such that $u_{\alpha,\alpha} = \phi_{\alpha}(q_1^2 p_1)$.

Consequently, we have proved the lemma.

5 Properties of (TC)

We will show that (TC) holds for almost all $B_k(q_1, 0)$. Set $q_1 = t$, $B_k(t, 0) = a(t)$ and $c := \mu_k$, and write [\(8\)](#page-2-4) in the form

$$
t^2 \frac{d}{dt} v - 2cv = a(t). \tag{47}
$$

Clearly, if $a(t)$ is a constant function, then (TC) does not hold since [\(47\)](#page-11-1) has a constant solution $v = -a(0)/(2c)$. We first prove

Proposition 2 *Suppose that a(t) is a polynomial of degree* $\ell \geq 1$ *. Then* [\(47\)](#page-11-1) *has an analytic solution at t* = 0 *if and only if* [\(47\)](#page-11-1) *has a polynomial solution* v *of degree* $\ell - 1$ *. The set of a*(*t*) *for which* [\(47\)](#page-11-1) *has a polynomial solution is contained in the set of codimension one of the set of polynomials of degree .*

Remark For a given polynomial v of degree $\ell - 1$, define $a(t)$ by [\(47\)](#page-11-1). Clearly the set of *a*'s such that (47) has a polynomial solution is an infinite set.

$$
\qquad \qquad \Box
$$

Proof of Proposition [2](#page-11-2) Let $a(t) = \sum_{j=0}^{\ell} a_j t^j$ ($a_{\ell} \neq 0$) and let $v(t) = \sum_{j=0}^{\infty} v_j t^j$ be the analytic solution of (47) . By inserting the expansions into (47) and by comparing the powers of *t* we obtain

$$
v_0 = -a_0/(2c), \quad v_n = (n-1)v_{n-1}/(2c) - a_n/(2c), \quad n = 1, 2, \dots \tag{48}
$$

If $n > \ell$, then we have $v_n = (n - 1)v_{n-1}/(2c)$. Therefore, if $v_\ell = 0$, then $v_n = 0$ for $n > \ell$. Hence v is a polynomial. On the other hand, if $v_\ell \neq 0$, then $v_n = (2c)^{\ell-n}(n-1)(n-2)\cdots \ell v_\ell$. It follows that $v(t)$ is not analytic in any neighborhood of the origin, which contradicts to the assumption. Hence v is a polynomial of degree $\ell - 1$. The converse statement is trivial.

We will show the latter half. By the recurrence formula [\(48\)](#page-12-0), one easily sees that v_ℓ is a nontrivial linear function of a_0, \ldots, a_ℓ . Hence the condition $v_\ell = 0$ is satisfied for a polynomial $a(t)$ on the set of codimension 1. This completes the proof. polynomial $a(t)$ on the set of codimension 1. This completes the proof.

Example We give an example of $B_k(q_1, 0)$'s satisfying the condition (TC) in Theorem [1.](#page-2-1) We use the notation in Proposition [2.](#page-11-2) If $k \in J'$, then we look for $a(t) \equiv B_k(t, 0)$ such that $a(t) = \alpha t + \beta t^2$ for some complex constants α and β . In order to verify that [\(47\)](#page-11-1) has no solution *v* being analytic at $t = 0$, we expand $v(t) = \sum_{j=0}^{\infty} v_j t^j$ and consider the recurrence relation [\(48\)](#page-12-0). We assume that $c = \mu_k \neq 0$. Clearly, we have $v_1 = -\alpha/(2c)$ and $v_1 - 2cv_2 = \beta$. It follows that $v_2 = -\frac{\alpha}{2c} + \frac{\beta}{2c}$. For $n \ge 3$, we have $v_n = (n-1)v_{n-1}/(2c)$, which implies $v_n = (n-1)!(2c)^{2-n}v_2$. Therefore, if $v_2 \neq 0$, then v does not converge. Hence [\(47\)](#page-11-1) has no analytic solution. We observe that $v_2 \neq 0$ holds if $\alpha/(2c) + \beta \neq 0$.

Next we assume $k \in J$, and we consider [\(9\)](#page-2-5) in (TC). (9) is rewritten in [\(53\)](#page-13-0) which follows. We look for $b(t)$ such that $b(t) = \gamma t^2 + \delta t^3$ for some complex constants γ and δ . We set $q_1 = t + 1$. Since $b(0) = 0$, we have $a(0) = 0$. Hence, by [\(53\)](#page-13-0) we have the relation

$$
a(t + 1) = a(q_1) = (\gamma + \delta t)(t + 1)^2 = q_1^2(\gamma - \delta + \delta q_1).
$$

In order to verify (TC) we argue as in the above. We expand $w(t)$ in the series $w(t) = w_2 t^2 +$ $w_3t^3+\cdots$ and we subsitutute it into [\(53\)](#page-13-0). By comparing the powers of t^2 of both sides we have $w_2 = -\gamma/(2c)$. Similarly, we have $w_3 = -(\gamma/c + \delta)/(2c)$. If $\gamma + c\delta \neq 0$, then we have $w_3 \neq 0$ 0 and we see that the formal power series expansion of $w(t) = w_2 t^2 + w_3 t^3 + \cdots$ diverges. Hence we have the desired property. Consequently, we choose $B_k(q_1, 0) = \alpha q_1 + \beta q_1^2$ with $\alpha/(2c) + \beta \neq 0$ for $k \in J'$, and $B_k(q_1, 0) = q_1^2(\gamma - \delta + \delta q_1)$ with $\gamma + c\delta \neq 0$ for $k \in J$. Then we see that (TC) is satisfied.

Next we study (TC) when $a(t)$ is an analytic function. By replacing $v(t)$ and $a(t)$ with $v(t) - v(0)$ and $a(t) - a(0)$, $(2cv(0) = -a(0))$, respectively, we may assume that $v(0) = 0$ and $a(0) = 0$ in [\(47\)](#page-11-1). Then we have

Proposition 3 *The set of analytic functions a*(*t*)*'s at the origin such that* [\(47\)](#page-11-1) *has an analytic solution* v *is contained in the set of codimension 1 of the set of germs of analytic functions* $at t = 0.$

Proof Let v be the analytic solution of [\(47\)](#page-11-1) at $t = 0$. Set $v(t) = t\tilde{v}(t)$ and $a(t) = t\tilde{a}(t)$. Then

$$
t^2 \frac{d}{dt} \tilde{v} + t\tilde{v} - 2c\tilde{v} = \tilde{a}(t).
$$
 (49)

We make the (formal) Borel transform $\mathcal{B}(\tilde{v})$ to [\(49\)](#page-12-1)

$$
\mathcal{B}(\tilde{v})(z) \equiv \hat{\tilde{v}}(z) := \sum_{n=1}^{\infty} v_n \frac{z^{n-1}}{(n-1)!}.
$$
 (50)

Because $\tilde{v}(t)$ and $\tilde{a}(t)$ are analytic at $t = 0$, it follows that $\mathcal{B}(\tilde{v})(z)$ and $\mathcal{B}(\tilde{a})(z)$ are entire functions of exponential type of order 1. Recalling that $B\left((t^2 \frac{d}{dt} + t)\tilde{v}\right)(z) = z\mathcal{B}(\tilde{v})(z)$ we have

$$
(z - 2c)\mathcal{B}(\tilde{v}) = \mathcal{B}(\tilde{a})(z). \tag{51}
$$

It follows that

$$
\mathcal{B}(\tilde{a})(2c) = 0. \tag{52}
$$

This shows that the germ $\{a_n\}_{n=1}^{\infty}$ of $a(t)$ at $t=0$ is contained in the hyperplane. This ends the proof. \Box

Next we consider [\(9\)](#page-2-5) in (TC). We set $t = q_1 - 1$, $a(t + 1) := B_k(t + 1, 0)$, $c = \mu_k$ and $a(0) = B_k(0, 0)$. Then [\(9\)](#page-2-5) can be written in

$$
\left(t^2\frac{d}{dt} - 2c\right)w = \frac{t^2}{(t+1)^2}a(t+1) + \frac{a(0)}{(t+1)^2}(t^2 + c(t+1)) =: b(t). \tag{53}
$$

This equation has the same form as [\(47\)](#page-11-1). We determine $w(0)$ by $-2cw(0) = b(0)$. If we make the appropriate change of unknown functions w and *b* as before, one may assume that $w(0) = 0$ and $b(0) = 0$. In view of the definition of $b(t)$ we have $ca(0) = 0$. Hence we have $a(0) = 0$. It follows that $b(t) = t^2 a(t+1)/(t+1)^2$. In the following we assume $w(0) = 0$ and $a(0) = 0$. Then we have

Proposition 4 *Suppose that* $a(t)$ *is holomorphic in a connected domain containing* $t = 0$ *and t* = 1. Then the set of $a(t)$ for which [\(53\)](#page-13-0) has an analytic solution is contained in the set *of codimension one of the set of germs of analytic functions at t* = 0.

Proof Let $w(t)$ be an analytic solution of [\(53\)](#page-13-0) at $t = 0$. We set $\alpha := a'(0)$ and $a(z) = a'(0)$ $\alpha z + A(z)z^2$ for some analytic function $A(z)$. Then, by the general formula w is given by

$$
w = \exp\left(-\frac{2c}{t}\right)\left(K + \int_{\tau}^{t} \exp\left(\frac{2c}{s}\right)\left(\frac{\alpha}{s+1} + A(s+1)\right)ds\right),\tag{54}
$$

where *K* and $\tau \neq 0$ are some constants. We take a smooth curve γ which connects τ and the origin such that it stays in the half space, $\Re (c/t) < 0$ near the origin. Then the limit

$$
\int_{\tau}^{0} \exp\left(\frac{2c}{s}\right) \left(\frac{\alpha}{s+1} + A(s+1)\right) ds
$$

:=
$$
\lim_{t \in \gamma, t \to 0} \int_{\tau}^{t} \exp\left(\frac{2c}{s}\right) \left(\frac{\alpha}{s+1} + A(s+1)\right) ds
$$
(55)

exists and it is a non-constant analytic function of τ . If the condition

$$
K + \int_{\tau}^{0} \exp\left(\frac{2c}{s}\right) \left(\frac{\alpha}{s+1} + A(s+1)\right) ds \neq 0
$$
 (56)

holds, then, by taking the limit $t \to 0$, $\Re(c/t) < 0$ in [\(54\)](#page-13-1) we see that $w(t)$ tends to infinity, which contradicts to the analyticity of w at the origin. Hence we have

$$
K = \int_0^{\tau} \exp\left(\frac{2c}{s}\right) \left(\frac{\alpha}{s+1} + A(s+1)\right) ds.
$$
 (57)

By substituting (57) to (54) we have

$$
w(t) = \exp\left(-\frac{2c}{t}\right) \int_0^t \left(\frac{2c}{s}\right) \left(\frac{\alpha}{s+1} + A(s+1)\right) ds.
$$
 (58)

 \circledcirc Springer

We take *t* sufficiently close to the origin such that the Taylor expansion $A(s+1) = \sum_{n=0}^{\infty} a_n s^n$ converges for $|s| \le |t|$. Because $w(te^{2\pi i}) = w(t)$ holds by the analyticity of w, it follows that

$$
\int_{t}^{te^{2\pi i}} \exp\left(\frac{2c}{s}\right) \left(\frac{\alpha}{s+1} + A(s+1)\right) ds = 0.
$$
 (59)

By calculating the residue we have $\int_{t}^{te^{2\pi i}} \exp\left(\frac{2c}{s}\right) \frac{\alpha}{s+1} ds = 2\pi i \alpha (1 - e^{-2c})$. The nonresonance condition implies $c = \mu_k \neq 0$, and hence $1 - e^{-2c} \neq 0$. Hence, by [\(59\)](#page-14-3) the germ of $A(z)/\alpha$ at $z = 1$ (in case $\alpha \neq 0$) or that of $A(z)$ at $z = 1$ (in case $\alpha = 0$) is contained in some hyperplane of the set of germs of analytic functions.

We recall that $A(z)$ is analytic in some domain containing $z = 0$ and $z = 1$. We will show that by the analytic continuation from $z = 1$ to $z = 0$ the germ of $A(z)$ at $z = 1$ is transformed to that of $A(z)$ at $z = 0$ by an infinite matrix. If we can prove this, then the germ of $A(z)$ or $A(z)/\alpha$ at $z = 0$ is contained in some hyperplane. In view of $a(z) = \alpha z + A(z)z^2$, the germ of $a(z)$ at $z = 0$ is contained in some hyperplane.

We take a rectifiable curve which connects $z = 1$ and $z = 0$. First we consider the analytic continuation from $z = 1$ to $z = z_0$, where z_0 is contained in the disk centered at $z = 1$ in which *A*(*z*) is analytic. Let $A(z) = \sum_{n=0}^{\infty} a_n (z-1)^n$ be the expansion at $z = 1$. Then the Taylor expansion of $A(z)$ at $z = z_0$ is given by

$$
\sum_{k=0}^{\infty} \frac{(z-z_0)^k}{k!} \sum_{n=k}^{\infty} a_n (z_0-1)^{n-k} \frac{n!}{(n-k)!}.
$$
 (60)

It follows that the germ at $z = z_0$ is given by

$$
\left(\sum_{n=k}^{\infty} a_n \binom{n}{k} (z_0 - 1)^{n-k}\right)_{k=0}^{\infty}.
$$
\n(61)

Hence the germ at $z = 1$ is transformed to the one in [\(60\)](#page-14-4) by the infinite matrix

$$
\mathcal{A} := \left((z_0 - 1)^{n-k} \binom{n}{k} \right)_{k \downarrow 0, 1, \dots; n \to 0, 1, \dots}, \tag{62}
$$

where we set the (k, n) -component $(k > n)$ to be zero. Note that if $|z_0 - 1|$ is sufficiently small, then *A* defines a continuous linear operator on the space of sequences with an appropriate norm. Therefore, if the germ of $A(z)$ at $z = 1$ is contained in the hyperplane, then the germ of $A(z)$ at $z = z_0$ is contained in some hyperplane. By finite times of analytic continuation we see that the germ of $A(z)$ at $z = 0$ is contained in some hyperplane. This completes the proof. \Box

Acknowledgments The authors thank the referee for valuable comments.

References

- 1. Balser, W.: Formal power series and linear systems of meromorphic ordinary differential equations. Springer, New York (2000)
- 2. Bolsinov, A.V., Taimanov, I.A.: Integrable geodesic flows with positive topological entropy. Invent. Math. **140**(3), 639–650 (2000)
- 3. Gorni, G., Zampieri, G.: Analytic-non-integrability of an integrable analytic Hamiltonian system. Differ. Geom. Appl. **22**, 287–296 (2005)
- 4. Okubo, K.: On the group of Fuchsian equations. Seminar Reports of Tokyo Metropolitan University, Tokyo (1987)
- 5. Yoshino, M.: Smooth-integrable and analytic-nonintegrable resonant Hamiltonians. RIMS Kôkyûroku Bessatsu **B40**, 177–189 (2013)
- 6. Yoshino, M.: Analytic- nonintegrable resonant Hamiltonians which are integrable in a sector. In: Matsuzaki, K., Sugawa, T. (eds.) Proceedings of the 19th ICFIDCAA Hiroshima 2011, pp. 85–96. Tohoku University Press, Sendai (2012)
- 7. Żołądek, H.: The monodromy group, Monografie Matematyczne, vol. 67. Birkhäuser, Basel (2006)