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Abstract We give a Hamiltonian system which is nonintegrable in a domain containing two
singular points and that is integrable in some neighborhood of a singular point. The system
is an arbitrarily small nontrivial perturbation of an integrable Hamiltonian system given by
confluence of regular singular points of a generalized hypergeometric system.

Keywords Nonintegrability · Hamiltonian system with two singular points ·
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1 Introduction

Let n ≥ 2 be an integer, and consider the Hamiltonian system
⎧
⎪⎪⎨

⎪⎪⎩

z2
dq

dz
= ∇pH(z, q, p),

z2
dp

dz
= −∇qH(z, q, p),

(1)

where q = (q2, . . . , qn), p = (p2, . . . , pn). Here

∇q :=
(

∂

∂q2
, . . . ,

∂

∂qn

)

, ∇p :=
(

∂

∂p2
, . . . ,

∂

∂pn

)

.
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The system (1) is equivalent to an autonomous one
⎧
⎨

⎩

q̇1 = Hp1 , q̇ = ∇pH,

ṗ1 = −Hq1 , ṗ = −∇q H,
(2)

where q1 = z and H(q1, q, p1, p) := q21 p1 + H(q1, q, p) or H(q1, q, p1, p) :=
p1 + q−2

1 H(q1, q, p). We say that the Hamiltonian system (2) is Cω-Liouville integrable
if there exist first integrals φ j ∈ Cω ( j = 1, . . . , n) which are functionally independent
on an open dense set and Poisson commuting, i.e., {φ j , φk} = 0, {H, φk} = 0, where {·, ·}
denotes the Poisson bracket. The Hamiltonian H is a first integral of this autonomous system.
We abbreviate Cω-Liouville integrable to Cω-integrable or integrable if there is no fear of
confusion.

In [2] Bolsinov and Taimanov showed a nonCω-integrability of someHamiltonian system
related with geodesic flow on a Riemannian manifold. Then Gorni and Zampieri showed
similar results in the local setting, namely for aHamiltonian systembeing singular at the origin
they showed the nonCω-integrability (cf. [3,5,6]). In this paper we study the nonintegrability
from a semi-global point of view. Namely we consider Hamiltonian system which is singular
at the origin q1 = 0 as well as q1 = 1. We shall show that the system is integrable near
the origin, while it is not integrable in the domain containing both q1 = 0 and q1 = 1. The
Hamiltonian function is given by the arbitrary small non zero perturbation of an integrable
Hamiltonian of the confluent generalized hypergeometric system (cf. Sect. 2).

More precisely, we consider

H =
∑

j∈J ′
μ j q j p j + q21

(q1 − 1)2
∑

j∈J

μ j q j p j + q21 p1, (3)

where μ j are complex constants and J and J ′ are the sets of multi-indices such that

J �= ∅, J ′ �= ∅, J ∩ J ′ = ∅, J ∪ J ′ = {2, . . . , n}. (4)

The Hamiltonian is derived from the generalized hypergeometric system by confluence of
singularities (cf. Sect. 2). The Hamiltonian system (2)–(3) determines the Hamiltonian vector
field

χH = q21
∂

∂q1
− 2q1 p1

∂

∂p1
+ 2q1

(q1 − 1)3

⎛

⎝
∑

j∈J

μ j q j p j

⎞

⎠
∂

∂p1

+
∑

j∈J ′
μ j

(

q j
∂

∂q j
− p j

∂

∂p j

)

+ q21
(q1 − 1)2

∑

j∈J

μ j

(

q j
∂

∂q j
− p j

∂

∂p j

)

. (5)

Let

H1 :=
n∑

j=2

p2j B j (q1, p). (6)

Note that H1 does not depend on q . Suppose that the nonresonance condition (NRC) holds:

∀γ = (γ2, . . . , γn) ∈ Z
n−1\{0},

n∑

j=2

μ jγ j �= 0, (7)
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Nonintegrability of Hamiltonian system 1007

i.e. μ j ’s are linearly independent over Zn−1. Moreover, assume
(TC): For k ∈ J ′, the equation

q21
d

dq1
v − 2μkv = Bk(q1, 0) (8)

has no solution v holomorphic at q1 = 0, and for k ∈ J , the equation

q21
d

dq1
w − 2μk

q21w

(q1 − 1)2
= Bk(q1, 0) + μk

q1Bk(0, 0)

(q1 − 1)2
+ Bk(0, 0) (9)

has no solution w holomorphic at q1 = 1.
Let Ω1 ⊂ C be a domain containing {q1 = 0, 1}, and Ω2 ⊂ C

2n−1 be a neighborhood of
(p1, q, p) = (0, 0, 0) and define Ω := Ω1 × Ω2. Then we have

Theorem 1 Assume that (NRC) and (TC) are satisfied. Then, there exists Ω such that the
Hamiltonian system (2) is not Cω-integrable in Ω . More precisely, for every first integral
φ satisfying χH+H1φ = 0 and holomorphic in Ω , there exists a holomorphic function ψ

defined in some neighborhood of the origin t = 0 such that φ(q1, q, p1, p) = ψ(H + H1)

in some neighborhood of the origin.

In spite of the non integrability shown in Theorem 1we have the integrability about a singular
point ofχH+H1 .We recall that theHamiltonian system corresponding to H+H1 has irregular
singularities at q1 = 0 and q1 = 1. We have

Proposition 1 Suppose that H1(q1, p) be independent of pν for every ν ∈ J ′. Then, χH+H1

is analytically Liouville-integrable in some neighborhood of the origin.

Remark (i) In Sect. 5 we show that (TC) holds on an open dense set in the set of analytic
functions. (TC) also implies that H1 could be replaced by εH1 with an arbitrary small ε �= 0.
On the other hand, it is necessary in Theorem 1 that H1 does not vanish identically because
H is integrable in view of Lemma 1 (cf. Sect. 3). Hence the non-integrability occurs by an
arbitrary small non-zero generic perturbation.

By Proposition 1we see that our class of Hamiltonians contains subclass for each of which
the integrability at the origin holds. Hence the (non-) integrability in Theorem 1 is caused by
the interference of singular points.
(ii) Of course, a globally integrable system is locally integrable. So, it is sufficient for the
proof of Theorem 1 to prove the local non-integrability.
(iii) In these days, monodromy is usually treated from the point of view of the differential
Galois theory (for example, see [7]) because of enrichment of the theory however, we treat
it from another point of view.

2 Confluence of singularities

In this section we deduce (3) from the genelarized hypergeometric system

(z − C)
dv

dz
= Av, (10)

whereC = diag(Λ1,
tΛ1),Λ1 being (n−1)×(n−1)matrixwith eigenvaluesλ2, . . . , λn such

thatλ j �= 0 for all j (cf. [1,4] ). For the sake of simplicity, we assumeΛ1 = diag(λ2, . . . , λn).
We assume A = diag(A1, A1), where A1 is an (n − 1) × (n − 1) constant matrix satisfying
Λ1A1 = A1Λ1. For simplicity, we further assume A1 = diag(τ2, . . . , τn).
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1008 Y. Sasaki, M. Yoshino

Let v = t (q, p) ∈ C
2(n−1). Define

H = 〈(z − Λ1)
−1 p, A1q〉, (11)

where 〈(x2, . . . , xn), t (y2, . . . , yn)〉 := ∑
2≤k≤n xk yk . Then, (10) is written in the Hamil-

tonian system
dq

dz
= Hp(z, q, p),

dp

dz
= −Hq(z, q, p). (12)

Now we operate the confluence of regular singularities. Let vν and (Av)ν denote the νth
entry of v and Av, respectively. Then we can write (12) in the form

(z − λν)
dvν

dz
= (Av)ν.

Substituting z = 1/ζ , we have

− ζ 2 dvν

dζ
= (ζ−1 − λν)

−1(Av)ν. (13)

In the following, a �→ b denotes the replacement of a by b.
Let ζ �→ ε−1η; and λν �→ ελν for ν ∈ J , λν �→ λν for ν ∈ J ′. Multiply the νth row of A

in (13) by ε−1 if ν ∈ J ′ and take the limit ε → 0. Then (12) is reduced to the Hamiltonian
system

− η2
dq

dη
= AA1q, −η2

dp

dη
= −t A1Ap, (14)

where A = diag(A2, . . . ,An) and

Aν :=
⎧
⎨

⎩

−λ−1
ν (ν ∈ J ′),

(η−1 − λν)
−1 (ν ∈ J ).

(15)

Note that (14) is irregular singular at η = 0.
In order to introduce another singular point, choose any a �= 0 such that a �= λ−1

j for all

j and put ζ = η − a. Let ζ �→ ε−1ζ and (A)ν �→ ε−1(A)ν . Make substitution a �→ ε−1a
for j ∈ J ′ and a �→ a for j ∈ J and take the limit ε → 0. Then (12) is reduced to a
Hamiltonian system with irregular points at 0 and −a. Set a = −1. Finally, by transforming
to the autonomous system and putting μ j := μ j , we obtain (3).

3 Proof of Proposition 1

Let H and H1 be given by (3) and (6), respectively. First we show

Lemma 1 If k ∈ J , then χH has first integrals

qk exp

(
μk

q1 − 1

)

, pk exp

(

− μk

q1 − 1

)

, (16)

while, for k ∈ J ′ it has
qk exp

(
μk

q1

)

, pk exp

(

−μk

q1

)

. (17)

Note that χH is analytically integrable at q1 = 0 or q1 = 1, because qk pk is an analytic first
integral about the singular point q1 = 0 or q1 = 1.
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Nonintegrability of Hamiltonian system 1009

Proof of Lemma 1 The assertion is easily verified in view of the definition of first integrals.

Remark Lemma 1 says that in the C∞ class the Hamiltonian is superintegrable. The pertur-
bation in Proposition 1 breaks some first integrals, but not all of them. The remaining ones
are not either sufficiently regular for integrability near both points.

Proof of Proposition 1 We have H1 not depending on pk , k ∈ J ′, q1, qk , k = 2, . . . , n by
hypothesis and (6). So the dynamical equations give that qk , k ∈ J ′, q1, pk , k = 2, . . . , n
are first integrals of H1. Thus in particular

pkqk, (k ∈ J ′), pk exp

(

− μk

q1 − 1

)

, (k ∈ J ) (18)

are first integrals of H1, and are analytic at 0. As these are also first integrals of H , they are
in involution and first integrals of H + H1. This ends the proof.

4 Proof of Theorem 1

Let φ =: u be a holomorphic first integral in Ω and expand u at p = 0

u =
∑

α

uα(q1, q, p1)p
α. (19)

Substitute (19) into χH+H1u = 0 and compare the powers like p0 = 1 of both sides. Then
we have the equation of u0 = u0(q1, q, p1)

{
q21 p1, u0

} +
∑

j∈J ′
μ j q j

∂

∂q j
u0 + q21

(q1 − 1)2
∑

j∈J

μ j q j
∂

∂q j
u0 = 0. (20)

Indeed, no constant term in p appears from χH1u in view of the definition of χH1 .
Substituting the expansion u0 = ∑

β u0,β(q1, p1)qβ into (20), we see that U0 := u0,0
satisfies {q21 p1,U0} = 0, namely

(

q1
∂

∂q1
− 2p1

∂

∂p1

)

U0 = 0. (21)

Substitute the expansion U0 = ∑
ν,μ cνμq

μ
1 pν

1 into (21). Then we have
∑

ν,μ cν,μ(μ − 2ν)qμ
1 pν

1 = 0. It follows that cν,μ = 0 for μ �= 2ν. Hence we obtain

U0 =
∑

ν

cν,2νq
2ν
1 pν

1 =
∑

ν

cν,2ν(q
2
1 p1)

ν . (22)

It follows that there exists a function of one variable t , φ0(t) holomorphic in some neighbor-
hood of t = 0 such that U0 = φ0(q21 p1).

Next, we focus on the equation of u0,β with β �= 0

{q21 p1, u0,β} +
∑

j∈J ′
μ jβ j u0,β + q21

(q1 − 1)2
∑

j∈J

μ jβ j u0,β = 0.

Expand
u0,β =

∑

ν

ωβ,ν(q1)p
ν
1 , (23)
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1010 Y. Sasaki, M. Yoshino

and consider the equation of ωβ,ν . If ν = 0, then, by comparing the coefficients of p01 = 1,
we have

q21
d

dq1
ωβ,0 +

⎛

⎝
∑

j∈J ′
μ jβ j + q21

(q1 − 1)2
∑

j∈J

μ jβ j

⎞

⎠ ωβ,0 = 0. (24)

Since β �= 0, it follows from (NRC), (7), that either A′ := ∑
j∈J ′ μ jβ j �= 0 or A :=

∑
j∈J μ jβ j �= 0 is valid. If A′ �= 0, then we have ωβ,0 = 0 in some neighborhood of

q1 = 0. Indeed, by subsituting the expansion ωβ,0 = ∑∞
l=0 Clql1 into (24) and by using the

relations

q21
d

dq1
ωβ,0 =

∞∑

l=0

Cllq
l+1
1

and
q21

(q1 − 1)2
∑

j∈J

μ jβ jωβ,0 =
∞∑

l=0

C ′
l q1

l+2

for some C ′
l , we obtain

C0A
′ = 0 i.e. C0 = 0,

C1A
′ + C0 · 0 = 0 i.e. C1 = 0,

C2A
′ + C ′

0 + C1 = 0 i.e. C2 = 0,

· · ·
Note that C ′

0 = 0 since C0 = 0. Hence we have ωβ,0 = 0.
In the case where A′ = 0 and A �= 0, (24) is written in

(q1 − 1)2
d

dq1
ωβ,0 + Aωβ,0 = 0. (25)

Similarly to the case A′ �= 0, we obtainωβ,0 = 0 in some neighborhood of q1 = 1. Therefore,
we have ωβ,0 = 0 in Ω1.

Next, by comparing the coefficients of p11 = p1, we have the equation of ωβ,1(q1)

(

q21
d

dq1
− 2q1

)

ωβ,1 +
(

A′ + q21
(q1 − 1)2

A

)

ωβ,1 = 0. (26)

Similarly to the above, A′ �= 0 implies ωβ,1 = 0 near q1 = 0, while A′ = 0 and A �= 0
imply ωβ,1 = 0 near q1 = 1. Hence we have ωβ,1 = 0 in Ω1. By the same argument we
obtain ωβ,ν = 0 in Ω1 for all ν ∈ N ∪ {0}. It follows that u0,β = 0 for all β �= 0.

Therefore, we have

u0 = u0,0(q
2
1 p1) +

∑

β �=0

u0,β(q21 p1)q
β = φ0(q

2
1 p1) (27)

for some φ0(t) of one variable being analytic at t = 0. Note that

u|p=0 − φ0(H + H1)|p=0 = u0(q1, p1) − φ0(H |p=0)

= φ0(q
2
1 p1) − φ0(q

2
1 p1) ≡ 0.

Hence, without loss of generality, we may assume u|p=0 = 0.
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Nonintegrability of Hamiltonian system 1011

Next we consider uα = uα(q1, p1, q) for |α| = 1. Write α = ek (2 ≤ k ≤ n) where
ek := (0, . . . , 0, 1, 0, . . . , 0) is the kth unit vector. Then, uα satisfies

{
q21 p1, uα

} +
∑

j∈J ′
μ j

(

q j
∂

∂q j
− δk, j

)

uα

+ q21
(q1 − 1)2

∑

j∈J

μ j

(

q j
∂

∂q j
− δk, j

)

uα = 0, (28)

where δk, j is the Kronecker’s delta, δk, j = 1 if k = j , and =0 if otherwise. Note that, because
u0 = 0, χH1 gives no term.

Substitute the expansion uα = ∑
β uα,β(q1, p1)qβ into (28), and compare the powers like

q0 = 1. Then we have the equation of uα,0

{
q21 p1, uα,0

} − μk

⎛

⎝
∑

j∈J ′
δk, j

⎞

⎠ uα,0 − q21
(q1 − 1)2

⎛

⎝
∑

j∈J

μ jδk, j

⎞

⎠ uα,0 = 0. (29)

If k ∈ J ′, then {
q21 p1, uα,0

} − μkuα,0 = 0.

Because μk �= 0 by (NRC) condition, we have uα,0 = 0.
On the other hand, if k ∈ J , then

{
q21 p1, uα,0

} − q21
(q1 − 1)2

μkuα,0 = 0.

By considering the equation around q1 = 1 together with (NRC) condition we obtain
uα,0 = 0.

Next we consider uα,β (β �= 0) (α = (α2, . . . , αn), α j = δ j,k).

{
q21 p1, uα,β

} +
∑

j∈J ′
μ j (β j − α j )uα,β

+ q21
(q1 − 1)2

∑

j∈J

μ j (β j − α j )uα,β = 0. (30)

If β �= α, then (NRC) condition yields uα,β = 0, by the similar argument as in the above. If
β = α, then we have {q21 p1, uα,α} = 0. Hence, there exists φα(t) of one variable t such that
uα,α = φα(q21 p1). Therefore we obtain

u =
∑

|α|=1

φα(q21 p1)q
α pα + O(|p|2). (31)

Now we consider the equation for uα when |α| = 2. We substitute (19) and (31) into
the equation χH+H1u = 0 and compare the powers like pα (|α| = 2). In order to get the
expressions of the powers like pα , we note that the following terms appear from χHu:

{
q21 p1, uα

} +
∑

j∈J ′
μ j

(

q j
∂

∂q j
− α j

)

uα + q21
(q1 − 1)2

∑

j∈J

μ j

(

q j
∂

∂q j
− α j

)

uα

+ 2q1
(q1 − 1)3

∑

j∈J

μ j q
α ∂

∂p1
φα−e j . (32)
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1012 Y. Sasaki, M. Yoshino

On the other hand, the following terms appear from χH1u.

∑

ν

∂

∂pν

⎛

⎝
∑

j

p2j B j (q1, p)

⎞

⎠
∂

∂qν

(φeνqν pν)

− ∂

∂q1

⎛

⎝
∑

j

p2j B j (q1, p)

⎞

⎠
∂

∂p1
(
∑

|α|=1

φαq
α pα). (33)

Note that the second term in (33) is O(|p|3). Hence it does not appear in the recurrence
formula because |α| = 2. Moreover, since we consider terms of O(|p|2), the first term yields

2
∑

ν

φeν Bν(q1, 0)δα,2eν . (34)

Therefore, by comparing the powers like pα in χH+H1u = 0 we have

{
q21 p1, uα

} +
∑

j∈J ′
μ j

(

q j
∂

∂q j
− α j

)

uα

+ q21
(q1 − 1)2

∑

j∈J

μ j

(

q j
∂

∂q j
− α j

)

uα

+ 2q1
(q1 − 1)3

qα
∑

j∈J

μ j
∂

∂p1
φα−e j + 2

∑

ν

φeν Bν(q1, 0)δα,2eν = 0. (35)

Expand uα with respect to q , uα = ∑
β uα,β(q1, p1)qβ and insert the expansion into (35). By

comparing the power of qβ we obtain the recurrence relation for uα,β(q1, p1). We consider
4 cases:

(i) α �= 2eν for every ν and β �= α.
(ii) α = 2ek for some k and β �= α, 0.
(iii) α = 2ek for some k and β = 0.
(iv) β = α.

Case (i): We note that the fourth and the fifth terms of the left-hand side of (35) yield no
term in the recurrence relation for uα,β . Indeed, the fourth term is a monomial of qα . Hence,
uα,β satisfies

{
q21 p1, uα,β

} +
∑

j∈J ′
μ j (β j − α j )uα,β + q21

(q1 − 1)2
∑

j∈J

μ j (β j − α j )uα,β = 0. (36)

By virtue of (NRC) and β �= α, either
∑

j∈J ′ μ j (β j − α j ) �= 0 or
∑

j∈J μ j (β j − α j ) �= 0 holds. One can easily show that uα,β = 0 by the holomorphy of
uα,β .

Case (ii): Because the fourth and fifth terms of the left-hand side of (35) do not yield terms
by the assumption β �= α, 0, we see that uα,β satisfies (36). Therefore, we have uα,β = 0.

Case (iii): Let k ∈ J ′. Because the fourth term of the left-hand side of (35) is a monomial
qα , uα,0 satisfies

{
q21 p1, uα,0

} − 2μkuα,0 + 2φek (q
2
1 p1)Bk(q1, 0) = 0. (37)
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Nonintegrability of Hamiltonian system 1013

Expand uα,0(q1, p1) = ∑
ν uα,0,ν(q1)pν

1 and compare the constant terms in p1 of both sides
of (37). Then we have

q21
d

dq1
uα,0,0 − 2μkuα,0,0 + 2φek (0)Bk(q1, 0) = 0. (38)

If φek (0) �= 0, then v := uα,0,0/(−2φek (0)) satisfies

q21
d

dq1
v − 2μkv = Bk(q1, 0),

which contradicts (TC). Hence, φek (0) = 0 and (38) reduces to

q21
d

dq1
uα,0,0 − 2μkuα,0,0 = 0.

(NRC) condition implies 2μk �= 0, and the holomorphcity of uα,0,0 at q1 = 0 tells us
uα,0,0 = 0.

Next, uα,0,1 satisfies
(

q21
d

dq1
− 2q1

)

uα,0,1 − 2μkuα,0,1 + 2Bk(q1, 0)φ
′
ek (0)q

2
1 = 0. (39)

Since uα,0,1(q1) = O(q21 ), we put uα,0,1(q1) = q21 ũα,0,1(q1) with ũ := ũα,0,1(q1) satisfying

q21
d

dq1
ũ − 2μk ũ = −2Bk(q1, 0)φ

′
ek (0).

Ifφ′
ek (0) �= 0, then, byputtingv = ũ/(−2φ′

ek (0)),wehave a contradiction to (TC).Therefore,
φ′
ek (0) = 0 and ũ = 0.

Similarly we can show uα,0,ν = 0 and φ
(ν)
ek (0) = 0 for ν ∈ N ∪ {0}, which implies

uα,0 = 0 and φek = 0 for every k ∈ J ′.
Let k ∈ J . Then uα,0 satisfies

{q21 p1, uα,0} − 2μk
q21

(q1 − 1)2
uα,0 + 2φek (q

2
1 p1)Bk(q1, 0) = 0.

Expand uα,0(q1, p1) = ∑
ν uα,0,ν(q1)pν

1 . Then uα,0,0 satisfies

q21
d

dq1
uα,0,0 − 2μk

q21
(q1 − 1)2

uα,0,0 + 2φek (0)Bk(q1, 0) = 0. (40)

Ifφek (0) �= 0, then, by (40)we have Bk(0, 0) = 0.On the other hand, v := uα,0,0/(−2φek (0))
satisfies

q21
d

dq1
v − 2μk

q21
(q1 − 1)2

v = Bk(q1, 0),

which contradicts (TC). So, φek (0) = 0 and (40) reduces to

(q1 − 1)2
d

dq1
uα,0,0 − 2μkuα,0,0 = 0.

Again we have uα,0,0 = 0.
Next, consider the equation of uα,0,1

(

q21
d

dq1
− 2q1

)

uα,0,1 − 2μk
q21

(q1 − 1)2
uα,0,1 = −2φ′

ek (0)q
2
1 Bk(q1, 0). (41)
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1014 Y. Sasaki, M. Yoshino

Observing uα,0,1(0) = 0, we put uα,0,1(q1) = cq1 + q21v. Substituting it into (41), we have
c = −2φ′

ek (0)Bk(0, 0) and v satisfies

−2φ′
ek (0)

{

Bk(q1, 0) + Bk(0, 0) + 2Bk(0, 0)μk
q1

(q1 − 1)2

}

=
(

q21
d

dq1
− 2μk

q1
(q1 − 1)2

)

v.

By use of (TC), we obtain φ′
ek (0) = 0 and uα,0,1 = 0.

In general, uα,0,ν (ν ≥ 2) satisfies

(

q21
d

dq1
− 2νq1

)

uα,0,ν − 2μk
q21

(q1 − 1)2
uα,0,ν = −2

φ
(ν)
ek (0)

ν! q2ν1 Bk(q1, 0). (42)

Since we easily see uα,0,ν = O(q2ν−1), we put uα,0,ν = cq2ν−1
1 + q2ν1 w. Then we have

c = −2φ(ν)
ek (0)Bk(0, 0)/ν! and w satisfies

−2φ′
ek (0)

ν!
{

Bk(q1, 0) + Bk(0, 0) + 2Bk(0, 0)μk
q1

(q1 − 1)2

}

=
(

q21
d

dq1
− 2μk

q21
(q1 − 1)2

)

w.

By virtue of (TC), we obtainφ
(ν)
ek (0) = 0 andw = 0. Therefore, uα,0,ν = 0 for all ν ∈ N∪{0}.

Because of analyticity, we have uα,0 = 0 andφek = 0 for every k ∈ J . Consequently,φek = 0
holds for all k ∈ J ′ ∪ J .

Case (iv): Because φek = 0 for every k by what we have proved in the above, the fourth
and fifth terms of the left-hand side of (35) do not yield terms in the recurrence relation.
Hence, uα,α satisfies {q21 p1, uα,α} = 0. It follows that there exists a function of one variable
φα(t) such that uα,α = φα(q21 p1).

Therefore we have proved

u =
∑

|α|=2

φα(q21 p1) q
α pα + O(|p|3).

Finally we shall prove

Lemma 2 Suppose
u =

∑

|α|=ν

φα(q21 p1)q
α pα + O(|p|ν+1) (43)

for some ν ≥ 1. Then we have

(i) φα = 0 for all α satisfying |α| = ν.
(ii) For every α satisfying |α| = ν+1, there exists a holomorphic function φα of one variable

such that
u =

∑

|α|=ν+1

φα(q21 p1)q
α pα + O(|p|ν+2). (44)

We have already proved (43) for ν = 1, 2. Note that the lemma ends the proof of Theorem
1 because we have u = 0 as an analytic function of q and p.
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Proof of Lemma 2 By comparing the coefficients of pα in χH+H1u = 0 we have

{
q21 p1, uα

} +
∑

J ′
μ j

(

q j
∂

∂q j
− α j

)

uα

+ q21
(q1 − 1)2

∑

J

μ j

(

q j
∂

∂q j
− α j

)

uα

+ 2q1
(q1 − 1)3

(
∑

J

μ j q j p j

)
∂

∂p1
uγ +

∑

j,γ

∂H1

∂p j

∂

∂q j
uγ = 0, (45)

where |γ | < |α| and α = γ + e j .
Let |α| = ν + 1. Substituting the expansion uα = ∑

β uα,β(q1, p1)qβ into (45) and by
using (43), we obtain the relation for uα,β

{
q21 p1, uα,β

} +
∑

J ′
μ j (β j − α j )uα,β + q21

(q1 − 1)2
∑

J

μ j (β j − α j )uα,β

+ 2
q1

(q1 − 1)3
∑

J

μ j
∂

∂p1
φα−e j (q

2
1 p1)δα,β

+ 2
∑

j∈J ′∪J

δα−2e j ,βBj (q1, 0)φα−e j (α j − 1) = 0. (46)

Indeed, because it is easy to show the expressions up to the fourth term in the left-hand side
of (46), we consider the fifth term, which corresponds to the fifth term in the left-hand side
of (45). In view of (43) we may consider 2

∑
j p j B j (q1, 0) in

∂H1
∂p j

because other terms have

no effect to (45). Hence we may consider terms containing pα−e j in ∂
∂q j

uγ . By (43) the

coefficient of the term containing pα−e j is (α j − 1)qα−2e j B j (q1, 0)φα−e j . Hence we have
the desired expression.

Set B ′ := ∑
∈J ′ μ j (β j − α j ) and B := ∑

j∈J μ j (β j − α j ). We consider 4 cases.

Case (1) The case where α−2e j �= β for j = 2, . . . , n and B ′ �= 0. Clearly we have β �= α.
It follows that the fourth and the fifth terms in the left-hand side of (46) vanish. Hence we
have uα,β = 0 by considering (46) at q1 = 0.

Case (2) The case where α − 2e j �= β for j = 2, . . . , n, β �= α and B ′ = 0. By (NRC)
we have B �= 0. Hence the fourth and the fifth terms in the left-hand side of (46) vanish. We
have uα,β = 0 by considering (46) at q1 = 1.

Case (3) The case where α − 2ek = β for some k. Clearly, we have β �= α. Assume k ∈ J .
Then, for every j ∈ J ′ we have j �= k, and hence α j = β j , which implies B ′ = 0. Equation
(46) is reduced to

{
q21 p1, uα,β

} − 2μk
q21

(q1 − 1)2
uα,β + 2(αk − 1)φα−ek Bk(q1, 0) = 0.

Expand uα,β = ∑∞
ν=0 uα,β,ν(q1)pν

1 . We will show that φα−ek vanishes.
Indeed, v := uα,β,0 satisfies

q21
dv

dq1
− 2μk

q21
(q1 − 1)2

v = −2(αk − 1)φα−ek (0)Bk(q1, 0).
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Note that αk = 2 + βk ≥ 2. If φα−ek (0) �= 0, then w := v/(−2(αk − 1)φα−ek (0)) is a
holomorphic solution at q1 = 0 of the equation

q21
dw

dq1
− 2μk

q21
(q1 − 1)2

w = Bk(q1, 0).

Because one can verify Bk(0, 0) = 0, we have a contradiction to (TC). Hence we have
φα−ek (0) = 0 and uα,β,0 = 0.

Next, v = uα,β,1 satisfies

q21
dv

dq1
− 2μk

q21
(q1 − 1)2

v − 2q1v = −2(αk − 1)φ′
α−ek (0)q

2
1 Bk(q1, 0).

By comparing the coefficients of q21 of both sides we see that v = O(q21 ). Similarly to the
above, w := vq−2

1 leads to a contradiction to (TC). Hence, we have φ′
α−ek (0) = 0 and

uα,β,1 = 0.
In general, v = uα,β,ν(ν ≥ 2) satisfies

q21
dv

dq1
− 2μk

q21
(q1 − 1)2

v − 2q1νv = −2(αk − 1)

ν! φ
(ν)
α−ek (0)q

2ν
1 Bk(q1, 0).

Similarly to the above, we have φ
(ν)
α−ek (0) = 0 and uα,β,ν = 0. Therefore, φα−ek = 0 and

uα,β = 0 for k ∈ J .
Let k ∈ J ′. Equation (46) is reduced to

{
q21 p1, uα,β

} − 2μkuα,β + 2(αk − 1)φα−ek Bk(q1, 0) = 0.

The holomorphicity of uα,β at q1 = 0 and (TC) implies φα−ek (0) = 0 and uα,β = 0 for
k ∈ J ′. Therefore, φα = 0 for k ∈ J ′. Because φα = 0 for k ∈ J , we have φα = 0 for all α
with |α| = ν.

Case (4) The case β = α. We have {q21 p1, uα,α} = 0, since we have proved φγ = 0 for
|γ | = ν. Hence, there exists φα such that uα,α = φα(q21 p1).

Consequently, we have proved the lemma. ��

5 Properties of (TC)

We will show that (TC) holds for almost all Bk(q1, 0). Set q1 = t , Bk(t, 0) =: a(t) and
c := μk , and write (8) in the form

t2
d

dt
v − 2cv = a(t). (47)

Clearly, if a(t) is a constant function, then (TC) does not hold since (47) has a constant
solution v = −a(0)/(2c). We first prove

Proposition 2 Suppose that a(t) is a polynomial of degree � ≥ 1. Then (47) has an analytic
solution at t = 0 if and only if (47) has a polynomial solution v of degree � − 1. The set of
a(t) for which (47) has a polynomial solution is contained in the set of codimension one of
the set of polynomials of degree �.

Remark For a given polynomial v of degree � − 1, define a(t) by (47). Clearly the set of a’s
such that (47) has a polynomial solution is an infinite set.
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Proof of Proposition 2 Let a(t) = ∑�
j=0 a j t j (a� �= 0) and let v(t) = ∑∞

j=0 v j t j be the
analytic solution of (47). By inserting the expansions into (47) and by comparing the powers
of t we obtain

v0 = −a0/(2c), vn = (n − 1)vn−1/(2c) − an/(2c), n = 1, 2, . . . (48)

If n > �, then we have vn = (n − 1)vn−1/(2c). Therefore, if v� = 0, then vn = 0 for n > �.
Hence v is a polynomial.On the other hand, ifv� �= 0, then vn = (2c)�−n(n−1)(n−2) · · · �v�.
It follows that v(t) is not analytic in any neighborhood of the origin, which contradicts to the
assumption. Hence v is a polynomial of degree � − 1. The converse statement is trivial.

We will show the latter half. By the recurrence formula (48), one easily sees that v�

is a nontrivial linear function of a0, . . . , a�. Hence the condition v� = 0 is satisfied for a
polynomial a(t) on the set of codimension 1. This completes the proof. ��
Example We give an example of Bk(q1, 0)’s satisfying the condition (TC) in Theorem 1.
We use the notation in Proposition 2. If k ∈ J ′, then we look for a(t) ≡ Bk(t, 0) such that
a(t) = αt + βt2 for some complex constants α and β. In order to verify that (47) has no
solution v being analytic at t = 0, we expand v(t) = ∑∞

j=0 v j t j and consider the recurrence
relation (48).Weassume that c = μk �= 0.Clearly,wehavev1 = −α/(2c) andv1−2cv2 = β.
It follows that v2 = −(α/(2c)+β)/(2c). For n ≥ 3, we have vn = (n−1)vn−1/(2c), which
implies vn = (n − 1)!(2c)2−nv2. Therefore, if v2 �= 0, then v does not converge. Hence (47)
has no analytic solution. We observe that v2 �= 0 holds if α/(2c) + β �= 0.

Next we assume k ∈ J , and we consider (9) in (TC). (9) is rewritten in (53) which follows.
We look for b(t) such that b(t) = γ t2 + δt3 for some complex constants γ and δ. We set
q1 = t + 1. Since b(0) = 0, we have a(0) = 0. Hence, by (53) we have the relation

a(t + 1) = a(q1) = (γ + δt)(t + 1)2 = q21 (γ − δ + δq1).

In order to verify (TC) we argue as in the above.We expandw(t) in the seriesw(t) = w2t2+
w3t3+· · · andwe subsitutute it into (53). By comparing the powers of t2 of both sideswe have
w2 = −γ /(2c). Similarly, we havew3 = −(γ /c+δ)/(2c). If γ +cδ �= 0, thenwe havew3 �=
0 and we see that the formal power series expansion of w(t) = w2t2 + w3t3 + · · · diverges.
Hence we have the desired property. Consequently, we choose Bk(q1, 0) = αq1 + βq21 with
α/(2c) + β �= 0 for k ∈ J ′, and Bk(q1, 0) = q21 (γ − δ + δq1) with γ + cδ �= 0 for k ∈ J .
Then we see that (TC) is satisfied.

Next we study (TC) when a(t) is an analytic function. By replacing v(t) and a(t) with
v(t) − v(0) and a(t) − a(0), (2cv(0) = −a(0)), respectively, we may assume that v(0) = 0
and a(0) = 0 in (47). Then we have

Proposition 3 The set of analytic functions a(t)’s at the origin such that (47) has an analytic
solution v is contained in the set of codimension 1 of the set of germs of analytic functions
at t = 0.

Proof Let v be the analytic solution of (47) at t = 0. Set v(t) = t ṽ(t) and a(t) = t ã(t).
Then

t2
d

dt
ṽ + t ṽ − 2cṽ = ã(t). (49)

We make the (formal) Borel transform B(ṽ) to (49)

B(ṽ)(z) ≡ ̂̃v(z) :=
∞∑

n=1

vn
zn−1

(n − 1)! . (50)
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Because ṽ(t) and ã(t) are analytic at t = 0, it follows that B(ṽ)(z) and B(ã)(z) are entire
functions of exponential type of order 1. Recalling that B (

(t2 d
dt + t)ṽ

)
(z) = zB(ṽ)(z) we

have
(z − 2c)B(ṽ) = B(ã)(z). (51)

It follows that
B(ã)(2c) = 0. (52)

This shows that the germ {an}∞n=1 of a(t) at t = 0 is contained in the hyperplane. This ends
the proof. ��

Next we consider (9) in (TC). We set t = q1 − 1, a(t + 1) := Bk(t + 1, 0), c = μk and
a(0) = Bk(0, 0). Then (9) can be written in

(

t2
d

dt
− 2c

)

w = t2

(t + 1)2
a(t + 1) + a(0)

(t + 1)2
(t2 + c(t + 1)) =: b(t). (53)

This equation has the same form as (47). We determine w(0) by −2cw(0) = b(0). If we
make the appropriate change of unknown functions w and b as before, one may assume that
w(0) = 0 and b(0) = 0. In view of the definition of b(t) we have ca(0) = 0. Hence we have
a(0) = 0. It follows that b(t) = t2a(t + 1)/(t + 1)2. In the following we assume w(0) = 0
and a(0) = 0. Then we have

Proposition 4 Suppose that a(t) is holomorphic in a connected domain containing t = 0
and t = 1. Then the set of a(t) for which (53) has an analytic solution is contained in the set
of codimension one of the set of germs of analytic functions at t = 0.

Proof Let w(t) be an analytic solution of (53) at t = 0. We set α := a′(0) and a(z) =
αz + A(z)z2 for some analytic function A(z). Then, by the general formula w is given by

w = exp

(

−2c

t

)(

K +
∫ t

τ

exp

(
2c

s

) (
α

s + 1
+ A(s + 1)

)

ds

)

, (54)

where K and τ �= 0 are some constants. We take a smooth curve γ which connects τ and
the origin such that it stays in the half space, � (c/t) < 0 near the origin. Then the limit

∫ 0

τ

exp

(
2c

s

) (
α

s + 1
+ A(s + 1)

)

ds

:= lim
t∈γ,t→0

∫ t

τ

exp

(
2c

s

) (
α

s + 1
+ A(s + 1)

)

ds (55)

exists and it is a non-constant analytic function of τ . If the condition

K +
∫ 0

τ

exp

(
2c

s

)(
α

s + 1
+ A(s + 1)

)

ds �= 0 (56)

holds, then, by taking the limit t → 0, � (c/t) < 0 in (54) we see that w(t) tends to infinity,
which contradicts to the analyticity of w at the origin. Hence we have

K =
∫ τ

0
exp

(
2c

s

)(
α

s + 1
+ A(s + 1)

)

ds. (57)

By substituting (57) to (54) we have

w(t) = exp

(

−2c

t

) ∫ t

0

(
2c

s

) (
α

s + 1
+ A(s + 1)

)

ds. (58)
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We take t sufficiently close to the origin such that theTaylor expansion A(s+1) = ∑∞
n=0 ans

n

converges for |s| ≤ |t |. Because w(te2π i ) = w(t) holds by the analyticity of w, it follows
that

∫ te2π i

t
exp

(
2c

s

) (
α

s + 1
+ A(s + 1)

)

ds = 0. (59)

By calculating the residue we have
∫ te2π i

t exp
( 2c
s

)
α

s+1ds = 2π iα(1 − e−2c). The non-
resonance condition implies c = μk �= 0, and hence 1− e−2c �= 0. Hence, by (59) the germ
of A(z)/α at z = 1 (in case α �= 0) or that of A(z) at z = 1( in case α = 0) is contained in
some hyperplane of the set of germs of analytic functions.

We recall that A(z) is analytic in some domain containing z = 0 and z = 1. We will
show that by the analytic continuation from z = 1 to z = 0 the germ of A(z) at z = 1 is
transformed to that of A(z) at z = 0 by an infinite matrix. If we can prove this, then the germ
of A(z) or A(z)/α at z = 0 is contained in some hyperplane. In view of a(z) = αz+ A(z)z2,
the germ of a(z) at z = 0 is contained in some hyperplane.

We take a rectifiable curve which connects z = 1 and z = 0. First we consider the analytic
continuation from z = 1 to z = z0, where z0 is contained in the disk centered at z = 1 in
which A(z) is analytic. Let A(z) = ∑∞

n=0 an(z − 1)n be the expansion at z = 1. Then the
Taylor expansion of A(z) at z = z0 is given by

∞∑

k=0

(z − z0)k

k!
∞∑

n=k

an(z0 − 1)n−k n!
(n − k)! . (60)

It follows that the germ at z = z0 is given by
( ∞∑

n=k

an

(
n

k

)

(z0 − 1)n−k

)∞

k=0

. (61)

Hence the germ at z = 1 is transformed to the one in (60) by the infinite matrix

A :=
(

(z0 − 1)n−k
(
n

k

))

k↓0,1,...;n→0,1,...
, (62)

wherewe set the (k, n)-component (k > n) to be zero.Note that if |z0−1| is sufficiently small,
then A defines a continuous linear operator on the space of sequences with an appropriate
norm. Therefore, if the germ of A(z) at z = 1 is contained in the hyperplane, then the germ
of A(z) at z = z0 is contained in some hyperplane. By finite times of analytic continuation
we see that the germ of A(z) at z = 0 is contained in some hyperplane. This completes the
proof. ��
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