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Abstract We give a Hamiltonian system which is nonintegrable in a domain containing two
singular points and that is integrable in some neighborhood of a singular point. The system
is an arbitrarily small nontrivial perturbation of an integrable Hamiltonian system given by
confluence of regular singular points of a generalized hypergeometric system.

Keywords Nonintegrability - Hamiltonian system with two singular points -
Hypergeometric system - Confluence - Okubo equation

1 Introduction

Let n > 2 be an integer, and consider the Hamiltonian system

d
Z2£ = V]’)H(Zs q, ]7),

J ey
24p

— =—-V4H(z.q, p).
Z dz q (z.4, p)

where ¢ = (q2,....qn), p = (p2, ..., pn). Here

a a a a
Vq:: 87,,,,,87 s Vp:: 87,...787 .
q2 qn P2 Pn
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The system (1) is equivalent to an autonomous one

q1= Hp, 4= VH,
) ) (2)
P1 :_qu p:_qus

where g1 = z and H(q1,q,p1,p) = qip1 + Hg1,q,p) or H(g1.q.p1,p) =
p1+ ql_zH(ql ,q, p). We say that the Hamiltonian system (2) is C“-Liouville integrable
if there exist first integrals ¢; € C“ (j = 1,...,n) which are functionally independent
on an open dense set and Poisson commuting, i.e., {¢;, ¢x} = 0, {H, ¢} = 0, where {-, -}
denotes the Poisson bracket. The Hamiltonian H is a first integral of this autonomous system.
We abbreviate C*-Liouville integrable to C*-integrable or integrable if there is no fear of
confusion.

In [2] Bolsinov and Taimanov showed a non C-integrability of some Hamiltonian system
related with geodesic flow on a Riemannian manifold. Then Gorni and Zampieri showed
similar results in the local setting, namely for a Hamiltonian system being singular at the origin
they showed the non C“-integrability (cf. [3,5,6]). In this paper we study the nonintegrability
from a semi-global point of view. Namely we consider Hamiltonian system which is singular
at the origin g1 = 0 as well as g; = 1. We shall show that the system is integrable near
the origin, while it is not integrable in the domain containing both g; = 0 and ¢; = 1. The
Hamiltonian function is given by the arbitrary small non zero perturbation of an integrable
Hamiltonian of the confluent generalized hypergeometric system (cf. Sect.2).

More precisely, we consider

H= Z njqjp;+

2
q
—= > njajpj +aipr, 3)
: —1)2 4
jeJ’ JjeJ

(q1

where 1 ; are complex constants and J and J' are the sets of multi-indices such that
J#G, I #0,INT =0, JUJ ={2,...,n}. “4)

The Hamiltonian is derived from the generalized hypergeometric system by confluence of
singularities (cf. Sect.2). The Hamiltonian system (2)—(3) determines the Hamiltonian vector
field

3 d 2q1 d
H= qi— —2qi " —
X ‘ha q1pP1 7 — (q1_1)3 z jqjPj a1
d 3 3
2 1 (q p'7> j (q p~—). ®)
jez,, "\ Vaq; " op; (ql—l)ZZ "\Vagq; " op;
Let
n
Hy =) piBj(q1, p). ©)
j=2

Note that H; does not depend on ¢g. Suppose that the nonresonance condition (NRC) holds:

Yy =) € 27O, D iy £0, @)
j=2
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Nonintegrability of Hamiltonian system 1007

i.e. ;t;’s are linearly independent over Z"~!. Moreover, assume
(TC): For k € J', the equation

d
qi 7 v = 2w = Bi(q1,0) ®)
q1
has no solution v holomorphic at g; = 0, and for k € J, the equation
d qiw 1B (0, 0)
2 1
—w = 2pup———— = Bi(q1,0) + px————5 + Bx(0,0) ©®
Mg, @ -2 (g1 —1)?

has no solution w holomorphic at g; = 1.
Let £2; C C be a domain containing {g; = 0, 1}, and £2, C C~lpea neighborhood of
(p1, g, p) = (0,0,0) and define £2 := £21 x £2,. Then we have

Theorem 1 Assume that (NRC) and (TC) are satisfied. Then, there exists §2 such that the
Hamiltonian system (2) is not C®-integrable in $2. More precisely, for every first integral
@ satisfying xg+mn,® = 0 and holomorphic in §2, there exists a holomorphic function
defined in some neighborhood of the origin t = 0 such that ¢ (q1,q, p1, p) = ¥ (H + Hy)
in some neighborhood of the origin.

In spite of the non integrability shown in Theorem 1 we have the integrability about a singular
point of x 7+ p, . We recall that the Hamiltonian system corresponding to H + H| has irregular
singularities at g1 = 0 and g1 = 1. We have

Proposition 1 Suppose that H,(q1, p) be independent of p,, for every v € J'. Then, xp+m,
is analytically Liouville-integrable in some neighborhood of the origin.

Remark (i) In Sect.5 we show that (TC) holds on an open dense set in the set of analytic
functions. (TC) also implies that H; could be replaced by € H; with an arbitrary small ¢ # 0.
On the other hand, it is necessary in Theorem 1 that H; does not vanish identically because
H is integrable in view of Lemma 1 (cf. Sect. 3). Hence the non-integrability occurs by an
arbitrary small non-zero generic perturbation.

By Proposition 1 we see that our class of Hamiltonians contains subclass for each of which
the integrability at the origin holds. Hence the (non-) integrability in Theorem 1 is caused by
the interference of singular points.

(i) Of course, a globally integrable system is locally integrable. So, it is sufficient for the
proof of Theorem 1 to prove the local non-integrability.

(iii) In these days, monodromy is usually treated from the point of view of the differential
Galois theory (for example, see [7]) because of enrichment of the theory however, we treat
it from another point of view.

2 Confluence of singularities
In this section we deduce (3) from the genelarized hypergeometric system
dv
(z—C)— = Av, (10)
dz
where C = diag(A,'Ay), Aj being (n—1) x (n—1) matrix with eigenvalues Ay, . . ., A, such
that; # Oforall j (cf.[1,4]). For the sake of simplicity, we assume A} = diag(A2, ..., A,).

We assume A = diag(A1, Ay), where Ay isan (n — 1) x (n — 1) constant matrix satisfying
A1A1 = A1 Ay. For simplicity, we further assume A = diag(ts, ..., 7).
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1008 Y. Sasaki, M. Yoshino

Letv ='(q, p) € C2"~ D Define

H=(z—A)""p, Aig), (1)
where ((x2, ..., Xn), " (¥2, -5 Yn)) = Dlo<p<p XkYk- Then, (10) is written in the Hamil-
tonian system

dq dp
e H,(z,q, p), 2= —Hy(z,q, p). (12)

Now we operate the confluence of regular singularities. Let v, and (Av), denote the vth
entry of v and Av, respectively. Then we can write (12) in the form

(z =2 )dvv = (Av)
v = (Av),.
¢ dz '
Substituting z = 1/¢, we have
dv
2¢Uy -1 -1
= )T (Av)y. 13
dc te ) (Av) 13)

In the following, a — b denotes the replacement of a by b.

Let¢ — e‘ln; and A, > €Ay, forv € J, A, > Ay, forv € J'. Multiply the vth row of A
in (13) by e ! if v € J’ and take the limit € — 0. Then (12) is reduced to the Hamiltonian
system

d d
— 2L —aarg, L = —rayp, (14)
dn dn
where 20 = diag(2,, ..., 2,) and
- ! (vel,
Ay = (15)

' =)t wed.

Note that (14) is irregular singular at n = 0.

In order to introduce another singular point, choose any a # 0 such that a # k;l for all
jandput{ =n —a.Let¢ — e !¢ and (A), — € '(A),. Make substitution a > e la
for j € J' and a > a for j € J and take the limit ¢ — 0. Then (12) is reduced to a
Hamiltonian system with irregular points at 0 and —a. Set @ = —1. Finally, by transforming

to the autonomous system and putting u; := (;, we obtain (3).

3 Proof of Proposition 1

Let H and H; be given by (3) and (6), respectively. First we show

Lemma 1 Ifk € J, then xg has first integrals

k k
qr €Xp (*ﬂ ) Pk €Xp (— K ) (16)
q1—1 q1—1

while, for k € J' it has
Mk Mk
qk exp (—) , Dk exp (——) . a7
q1 q1

Note that x g is analytically integrable at ¢g; = 0 or ¢ = 1, because gi px is an analytic first
integral about the singular point g; = O org; = 1.
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Nonintegrability of Hamiltonian system 1009

Proof of Lemma 1 The assertion is easily verified in view of the definition of first integrals.

Remark Lemma 1 says that in the C*° class the Hamiltonian is superintegrable. The pertur-
bation in Proposition 1 breaks some first integrals, but not all of them. The remaining ones
are not either sufficiently regular for integrability near both points.

Proof of Proposition I We have Hj not depending on pi, k € J', g1, qx, k = 2,...,n by
hypothesis and (6). So the dynamical equations give that gz, k € J', q1, px. k = 2,...,n
are first integrals of H;. Thus in particular

Mk
Pkqr, (k€ J'), prexp (_cn —

1), (kel) (18)

are first integrals of Hp, and are analytic at 0. As these are also first integrals of H, they are
in involution and first integrals of H + Hj. This ends the proof.

4 Proof of Theorem 1

Let ¢ =: u be a holomorphic first integral in £2 and expand u at p = 0

w= ualq.q, pp°. (19)
o

Substitute (19) into x4 p,u = 0 and compare the powers like p’ = 1 of both sides. Then
we have the equation of ug = uo(q1, g, p1)

2

d q 0
2 1
gipi,uog+ D Mjqj——uo+ ———= > Mjqj—uo=0. (20)
taip vol jez;‘ g, (ql—l)zg‘ " ag;

Indeed, no constant term in p appears from x g, u in view of the definition of x4, .
Substituting the expansion ug = Zﬁ uo,(q1, pl)qﬁ into (20), we see that Uy := ug,o
satisfies {q%m, Up} = 0, namely

d d
(611* — 2P1*) Up =0. (21)
9q1 ap1

Substitute the expansion Uy = Zv,u cwqf‘p‘f into (21). Then we have
ZV’H Cyu(p — 2v)q{‘p‘f = 0. It follows that ¢, , = 0 for  # 2v. Hence we obtain

Uo = chiv‘hzvp]l) = Zcu.zu(qlzpl)”. (22)
v v

It follows that there exists a function of one variable #, ¢o(¢) holomorphic in some neighbor-
hood of # = 0 such that Uy = ¢o(g? p1)-
Next, we focus on the equation of 1o g with 8 # 0

2
2 91
{gipr uoph+ D 1jBjuop + @17 > wiBjuop =0.
jelt! jel

Expand
wop = Y wpu(q)py. 23)
v
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1010 Y. Sasaki, M. Yoshino

and consider the equation of wg . If v = 0, then, by comparing the coefficients of p(l) =1,
we have
» d ai
at—wpo+ | DB+ 5 D 1iBj | wpo=0. (24)
dq, = (g1 = 1? &

Since B # 0, it follows from (NRC), (7), that either A" := Zjej, wiBj #0or A =
Zjej wiBj # 0is valid. If A” # 0, then we have wgo = 0 in some neighborhood of
q1 = 0. Indeed, by subsituting the expansion wg o = > C;q{ into (24) and by using the
relations

d
2 I+1
q] ——wp0 = E Cilg
ld‘]l P =0 !

and

2 00

q1 1+2

o D biepo =2 Calt
a1 jel 1=0

for some C;, we obtain
CoA' =0 ie. Cyp=0,
CiA'+Cyp-0=0 ie. C; =0,
CrA +Cy+C1 =0 ie. Cy =0,

Note that C(/) = 0 since Cp = 0. Hence we have wg o = 0.
In the case where A’ = 0 and A # 0, (24) is written in

d
(g1 — l)sz“wB’O + Awg,o = 0. (25)

Similarly to the case A’ # 0, we obtain wg o = 0in some neighborhood of g1 = 1. Therefore,
we have wg o = 0in £2;.
Next, by comparing the coefficients of p % = p1, we have the equation of wg 1(q1)

d q2

2 14 1

= —2g ) aopr+( A+ ——A)wp =0. (26)
(‘11qu QI) P ( (q1 — 1)? ) Pl

Similarly to the above, A’ # 0 implies wg,; = 0 near g; = 0, while A” = 0 and A # 0

imply wg,1 = 0 near g = 1. Hence we have wg | = 0 in §£2. By the same argument we

obtain wg,, = 0 in £2; for all v € NU {0}. It follows that ug, g = 0 for all 8 # 0.
Therefore, we have

o = u00(qi p1) + Y uop(gip)g” = do(aip1) 27)
B#0

for some ¢o(#) of one variable being analytic at ¢+ = 0. Note that

ulp=o0 — po(H + Hy)|p=o = uo(q1, p1) — ¢o(H|p=0)
= ¢o(gi p1) — o(qip1) = 0.

Hence, without loss of generality, we may assume u|,—o = 0.
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Nonintegrability of Hamiltonian system 1011

Next we consider uy, = uq(q1, p1,q) for o] = 1. Write « = ¢ (2 < k < n) where
er :=1(0,...,0,1,0,...,0) is the kth unit vector. Then, u, satisfies
0
{qlpl ua}+2ﬂ] QJa —8k,j ) Ua
jelJ’

_ 1)2 Z’u/ (qf a (Sk,j) Ug = 0’ (28)

where & ; is the Kronecker’s delta, 8, ; = 1if k = j, and =0 if otherwise. Note that, because
ug = 0, xp, gives no term.
Substitute the expansion ug = > g Ua,p(q1, P1 )g” into (28), and compare the powers like

(41

¢° = 1. Then we have the equation of Ug,0

2
q
{6]12171, ua,O} — Mk Z (Sk,j Ug,0 — (%1)2 Zﬂjtsk,j Uy, ) = 0. 29)
jel’ 7 jeJ
If k € J/, then
{atp1. a0} — 1ktta0 = 0.
Because i # 0 by (NRC) condition, we have uy o = 0.
On the other hand, if k € J, then

2 9
, - =0.
{%Pl ua,o} G —1)2 MikUa,0
By considering the equation around g; = 1 together with (NRC) condition we obtain
ug,o = 0.
Next we consider uq g(8 # 0) (@ = (a2, ..., o), 0j =8 1)
{aip1.uap} + Z wji(Bj —ajuap
jeJ’
pr
+ > uj(Bj — ajuap =0 (30)
(g1 =1 &

If B # «, then (NRC) condition yields uq g = 0, by the similar argument as in the above. If
B = «a, then we have {6112 P1, Ua,o} = 0. Hence, there exists ¢, (¢) of one variable ¢ such that
Ug,a = ¢a(gip1). Therefore we obtain

u= " ¢ulgipg®p® + O(p. 31)
lor|=1
Now we consider the equation for u, when |¢| = 2. We substitute (19) and (31) into

the equation xz4p,u = 0 and compare the powers like p® (|a| = 2). In order to get the
expressions of the powers like p®, we note that the following terms appear from y gu:

9 q} 9
{qlpl,ua}-i—ZM; (61/a Olj)ua+mZMj q/'gi—aj Uy
jeJ’ jeJ -
)3 > mia5 1qba_e,-. (32)
jeJ
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1012 Y. Sasaki, M. Yoshino

On the other hand, the following terms appear from yx g, u.

9
Zv:a ;P?Bj(qmp) qvpv)
9
“5a | 2 PiBi@p) —(Z $q” P*). (33)
J ||=1

Note that the second term in (33) is O(| p|3 ). Hence it does not appear in the recurrence
formula because || = 2. Moreover, since we consider terms of O (| p|2), the first term yields

2> e, Bu(q1, 008020, (34)

Therefore, by comparing the powers like p* in x4 p,u = 0 we have

d
{atp1. ”a}‘*‘zlh (%aq O‘J)”a

jelJ’
T v E M (‘11 O‘j) Ug
(fh 1) Y dq
2q1 o 0
+( _ 1)3q E M P) ¢ot—ej +2 E ¢e,,Bv(q1, O)(Sa,Ze,, =0. (35)
q1 el Pl "

Expand u, withrespectto g, uy = Zﬁ ug,p(q1, pl)q/g and insert the expansion into (35). By

comparing the power of ¢# we obtain the recurrence relation for ug, 6(q1, p1). We consider
4 cases:

(1) o # 2e, forevery v and f # «.
(i) a = 2ej for some k and B8 # «, 0.
(iii) a = 2ej for some k and 8 = 0.

@iv) B =«.

Case (i): We note that the fourth and the fifth terms of the left-hand side of (35) yield no
term in the recurrence relation for uy g. Indeed, the fourth term is a monomial of ¢*. Hence,
uq,p satisfies

{q%pl,ua,ﬁ}+zw(ﬂ;—aj>ua,,3+( )ZZu,w, @j)ugp=0. (36)

jeJ’ jel

By virtue of (NRC) and B # a, either 3, pj(Bj — aj) # O or
ZJ-EJ wj(Bj —a;) # 0 holds. One can easily show that uy g = 0 by the holomorphy of
Ug,B-
z‘ase (ii): Because the fourth and fifth terms of the left-hand side of (35) do not yield terms
by the assumption 8 # «, 0, we see that u, g satisfies (36). Therefore, we have uy g = 0.
Case (iii): Letk € J'. Because the fourth term of the left-hand side of (35) is a monomial
q%, uq o satisfies

{43p1, a0} — 21tktta,0 + 20e, (g7 p1) Bi(gi, 0) = 0. 37)
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Nonintegrability of Hamiltonian system 1013

Expand uq,0(q1, p1) = 2, 4a,0,v(q1) p] and compare the constant terms in p; of both sides
of (37). Then we have

d
q%d—qlua,o,o — 2U4kite,0,0 + 2¢¢, (0) Bi (g1, 0) = 0. (38)
If ¢¢, (0) # 0, then v := uq 0,0/ (—2¢,, (0)) satisfies
d
at—v — 2uv = Bi(q1. 0),
dqi
which contradicts (TC). Hence, ¢, (0) = 0 and (38) reduces to

d
q7 ——1g.0.0 — 2/tkUa,0,0 = 0.
dqi

(NRC) condition implies 2pux # 0, and the holomorphcity of uy 00 at g1 = O tells us
Ug,0,0 = 0.
Next, uq,0,1 satisfies

d
(q%d—ql - qu) Ua 0.1 — 20tikta0,1 + 2Bi(q1, 0)¢), (0)g = 0. (39)
Since g,0,1(q1) = O(g7), we put ue,0,1(q1) = qiiie,0,1(q1) With i := iia,0,1(q1) satisfying
2 d 7 /
qi ——i — 2upit = —2Bi(q1, 0)¢,, (0).

dq

If ¢);k (0) # 0, then, by puttingv = it/ (—2¢;k (0)), we have a contradiction to (TC). Therefore,
¢ék (0)=0and &z = 0.

Similarly we can show w0, = 0 and ¢’ (0) = 0 for v € N U {0}, which implies
ug,0=0and ¢, =0 foreveryk € J .

Letk € J. Then uy o satisfies

2
_ 1
(1 — 1)?
Expand uq,0(q1, p1) = D, ta,0,0(q1) p}. Then uy 0,0 satisfies

(g1, ua0) — 2k Ua,0 + 2¢e (g7 1) Bi(q1, 0) = 0.

@t
(g1 —1)?
If ¢¢, (0) # 0, then, by (40) we have B (0, 0) = 0. Onthe other hand, v := u¢,0,0/(—2¢¢, (0))
satisfies

d
ar Jqy 0.0 = 21tk a0.0 + 20, (0)Bi (1, 0) = 0. (40)

2

q
ﬁv = Bi(q1,0),

which contradicts (TC). So, ¢, (0) = 0 and (40) reduces to

2 2
—v — 2k
q1 7

d
(q1 — 1)27mua,o,o — 2ugtg,0,0 = 0.

Again we have uy 0,0 = 0.
Next, consider the equation of ug 0,1

d q2
2 i / 2
(ql P 2q1) Ug,0,1 — 2Lk (G D le0! = —2¢,,(0)qi Bi(q1,0).  (41)
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1014 Y. Sasaki, M. Yoshino

Observing uy,0,1(0) = 0, we put uq 0,1(q1) = cq1 + qlzv. Substituting it into (41), we have
¢ = —2¢,, (0)Bx(0, 0) and v satisfies

1
~2¢,,(0) [Bk (g1, 0) + B(0,0) + 2B (0, 0) e (qlqﬁ ]
d q1 )
2
= — —2up———— | v.
(‘“ dgi -2
By use of (TC), we obtain ¢, (0) = 0 and ug,0,1 = 0.
In general, uq 0,1, (v > 2) satisfies
a} & (0)

qPBi(q1,0). (42

d
(Q]ZT - 2Vq1) Ug,0,v — 214k Ug,0,p = —2
q1

1
(q1 — D? v!

Since we easily see uy 0,y = 0(g>~ 1), we put Ug 00 = cqlz”_1 + qlz"w. Then we have
¢ = —2¢"(0) B¢ (0, 0)/v! and w satisfies
2¢,, (0) q1
- [Bk(ql, 0) + Bi(0,0) + 2B (0, O)Mki]

(@1 —1)?
d q?
2 1
= 22— Juw.
(q‘ dgi " (41—1)2)

By virtue of (TC), we obtain ¢é:) (0) = 0and w = 0. Therefore, uy,0,, = Oforallv € NU{0}.
Because of analyticity, we have uy 0 = 0 and ¢, = Oforevery k € J. Consequently, ¢,, =0
holds forallk € J' U J.

Case (iv): Because ¢,, = 0 for every k by what we have proved in the above, the fourth
and fifth terms of the left-hand side of (35) do not yield terms in the recurrence relation.
Hence, uy o satisfies {‘112 P1, Ug,o} = 0. It follows that there exists a function of one variable
¢o (1) such that uq o = ¢u (g7 p1).

Therefore we have proved

u= "> ¢ulgipy) ¢“p* + O(pl*).

la|=2
Finally we shall prove
Lemma 2 Suppose
_ 2 oo v+1
u= > ¢ulgipg*“p” + O(pl"*") (43)
lo|=v

for some v > 1. Then we have

(1) ¢o = 0 for all a satisfying |«| = v.
(ii) Forevery o satisfying |a| = v+ 1, there exists a holomorphic function ¢, of one variable
such that
=Y ¢ulgipg®p” + 0(p|"*). (44)
|a|=v+1

We have already proved (43) for v = 1, 2. Note that the lemma ends the proof of Theorem
1 because we have u = 0 as an analytic function of ¢ and p.
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Nonintegrability of Hamiltonian system 1015

Proof of Lemma 2 By comparing the coefficients of p* in xz4m,u = 0 we have

a
ek + Xt (o5 =)
7 4qj

qai 3
T
<q1—1>2§ "\ Mog; )
2q1 0 9H, 3
4 wigipi | —uy, +> — —u, =0, (45)
(@1 —1)3 (; 7 J)apl v %“ ap; dq; "

where |y| < ol and o =y +e;.
Let |@| = v + 1. Substituting the expansion u, = Z,s uq,p(q1, pl)qﬂ into (45) and by
using (43), we obtain the relation for uy, g

2
q
{qlzpls Ma,ﬁ} + Z’ul(ﬂ] — Olj)l/ta,ﬁ + ﬁ Z“‘](ﬂj _ aj)uo(,ﬂ
' N
q1 a )
2 ., 5
+ (@1 —1)3 ZJ:“J apld’a ¢; (@i P1)dap
+2 > Su2e,8Bj(q1,0)pa—e; (j — 1) = 0. 46)
jeJrus

Indeed, because it is easy to show the expressions up to the fourth term in the left-hand side
of (46), we consider the fifth term, which corresponds to the fifth term in the left-hand side
of (45). In view of (43) we may consider 2 > iPj Bj(g1,0)in % because other terms have

no effect to (45). Hence we may consider terms containing p*~¢ in 32/ uy. By (43) the

coefficient of the term containing p*~¢/ is (a; — l)q"_ze-/’ Bji(q1,0)pq— ;- Hence we have
the desired expression.
Set B :=> _;puj(Bj —aj)and B := Zjej wj(B; — a;). We consider 4 cases.

Case (1) The case where « —2¢; # S for j =2,...,nand B’ # 0. Clearly we have 8 # «.
It follows that the fourth and the fifth terms in the left-hand side of (46) vanish. Hence we
have uy g = 0 by considering (46) at g1 = 0.

Case (2) The case where o —2¢; # B for j =2,...,n, B # a and B’ = 0. By (NRC)
we have B # 0. Hence the fourth and the fifth terms in the left-hand side of (46) vanish. We
have uy g = 0 by considering (46) at g1 = 1.

Case (3) The case where o — 2¢; = 8 for some k. Clearly, we have 8 # «. Assume k € J.
Then, for every j € J' we have j # k, and hence «; = 8, which implies B’ = 0. Equation
(46) is reduced to

2

{afp1,uap) — 2k g p + 2(@; — Doy, B (g1, 0) = 0.

qi
q1 — 1)?
Expand uy g = Ziio Ug,p,v(q1)py. We will show that ¢, vanishes.
Indeed, v := uq g, satisfies

5 dv ‘112

— =2 ————v = —2(ax — D)Pg—e, (0)Br(q1,0).
7 dqi (g1 — 1)? ok a
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Note that op = 2 4 B > 2. If ¢y, (0) # O, then w 1= v/(—2(ctx — 1)pg—¢, (0)) is a
holomorphic solution at g; = 0 of the equation

dw ai Bi(q1.0)
— — 27 W = Dbrl4g1,Y).
dqi (g1 —1)?

Because one can verify B;(0,0) = 0, we have a contradiction to (TC). Hence we have
¢a—e;(0) =0and ug g o = 0.
Next, v = ugy, g,1 satisfies

9

dv q2
2 1 / 2
— —2up———v —2 = —2(ax — 1 0)gi B ,0).
W gy ~ 2 = 2 (k = Doy, (0)g7 Bi(q1. 0)
By comparing the coefficients of q12 of both sides we see that v = O(qlz). Similarly to the
above, w = vq, % leads to a contradiction to (TC). Hence, we have d)[kek 0) = 0 and
Ug,p1 =0.
In general, v = ugy g, (v > 2) satisfies
dv q; 2(ar — 1)
2 1 v) 2v
— —2u————=v—2 = 0 B ,0).
N gy ~ g =t ~ 2 o7 Yo (0)q1" Bi(g1. 0)

Similarly to the above, we have ¢>§Bek (0) = 0 and uy g,y = 0. Therefore, ¢y, = 0 and
ugp=0fork e J.
Let k € J'. Equation (46) is reduced to

{afp1,uap} — 24kt p + 2(k — Dpo—e, Bi(q1,0) = 0.

The holomorphicity of uy g at g1 = 0 and (TC) implies ¢y, (0) = 0 and uy g = 0 for
k € J'. Therefore, ¢, = 0 for k € J'. Because ¢, = 0 for k € J, we have ¢, = 0 for all &
with |a| = v.

Case (4) The case B = «a. We have {q12p1, ugo} = 0, since we have proved ¢, = 0 for
|| = v. Hence, there exists ¢, such that uy o = ¢o (qlzpl).
Consequently, we have proved the lemma. O

5 Properties of (TC)

We will show that (TC) holds for almost all B(q1, 0). Set g1 = t, Bi(t,0) =: a(t) and
¢ := g, and write (8) in the form

Z%U —2cv = alr). (47)

Clearly, if a(t) is a constant function, then (TC) does not hold since (47) has a constant
solution v = —a(0)/(2¢). We first prove

t

Proposition 2 Suppose that a(t) is a polynomial of degree £ > 1. Then (47) has an analytic
solution at t = 0 if and only if (47) has a polynomial solution v of degree £ — 1. The set of
a(t) for which (47) has a polynomial solution is contained in the set of codimension one of
the set of polynomials of degree £.

Remark For a given polynomial v of degree ¢ — 1, define a(¢) by (47). Clearly the set of a’s
such that (47) has a polynomial solution is an infinite set.
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Proof of Proposition 2 Let a(t) = Zﬁ'zo ajt! (a; # 0) and let v(t) = Zjozo v‘/tj be the
analytic solution of (47). By inserting the expansions into (47) and by comparing the powers
of + we obtain

vo = —ap/2c), v, =m—Dv,—1/Q2c) —a,/2c), n=1,2,... (48)

If n > ¢, then we have v, = (n — 1)v,—1/(2c). Therefore, if vy = 0, then v, = 0 forn > £.
Hence v is a polynomial. On the other hand, if v, # 0,thenv, = (2c)t—n (n—1)(n=2) - L.
It follows that v(#) is not analytic in any neighborhood of the origin, which contradicts to the
assumption. Hence v is a polynomial of degree £ — 1. The converse statement is trivial.

We will show the latter half. By the recurrence formula (48), one easily sees that vy
is a nontrivial linear function of ao, ..., a;. Hence the condition vy, = 0 is satisfied for a
polynomial a(¢) on the set of codimension 1. This completes the proof. O

Example We give an example of By (g1, 0)’s satisfying the condition (TC) in Theorem 1.
We use the notation in Proposition 2. If k € J’, then we look for a(r) = By (t, 0) such that
a(t) = at 4+ Bt? for some complex constants v and f. In order to verify that (47) has no
solution v being analytic at t = 0, we expand v(¢) = Z?‘io v jt/ and consider the recurrence
relation (48). We assume thatc = py # 0. Clearly, wehave vy = —a/(2c) and v] —2cvy = B.
It follows that vy = —(/(2¢) + B)/(2c). Forn > 3, we have v,, = (n — 1)v,—1/(2¢), which
implies v, = (n — D)!(2¢)2 " v,. Therefore, if vy # 0, then v does not converge. Hence (47)
has no analytic solution. We observe that v, # 0 holds if «/(2¢) + B8 # 0.

Next we assume k € J, and we consider (9) in (TC). (9) is rewritten in (53) which follows.
We look for b(t) such that b(t) = yt2 + 8¢ for some complex constants y and §. We set
q1 =t + 1. Since b(0) = 0, we have a(0) = 0. Hence, by (53) we have the relation

att+1) =a(g) = (y + )@ +1)> = g2y — 5+ 8q1).

In order to verify (TC) we argue as in the above. We expand w(¢) in the series w(t) = wot? +
w33+ - - and we subsitutute it into (53). By comparing the powers of #> of both sides we have
wy = —y/(2c¢). Similarly, we have w3 = —(y /c+6)/(2c). If y +c§ # 0, then we have w3 #
0 and we see that the formal power series expansion of w(t) = wat? 4+ w3t + - - - diverges.
Hence we have the desired property. Consequently, we choose By (q1,0) = aq1 + ﬂqlz with
a/(2¢) + B #O0fork € J/, and B(q1,0) = qlz(y —&8+48q1) withy +¢6 #0fork € J.
Then we see that (TC) is satisfied.

Next we study (TC) when a(t) is an analytic function. By replacing v(¢) and a(t) with
v(t) —v(0) and a(t) — a(0), 2cv(0) = —a(0)), respectively, we may assume that v(0) = 0
and a(0) = 0 in (47). Then we have

Proposition 3 The set of analytic functions a(t)’s at the origin such that (47) has an analytic
solution v is contained in the set of codimension 1 of the set of germs of analytic functions
att =0.

Proof Let v be the analytic solution of (47) at t = 0. Set v(r) = tv(¢) and a(t) = ra(t).
Then

d
tzaﬁ—i—tﬁ—Zcﬁ =a(r). (49)
We make the (formal) Borel transform B(v) to (49)
- 0 Zn—l
B@)(z) =v(z) := Z vnm. (50)

n=1
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Because v(¢) and a(t) are analytic at t = 0, it follows that 5(v)(z) and B(a)(z) are entire
functions of exponential type of order 1. Recalling that B ((tz% + t)ﬁ) (z) = zB(v)(z) we
have

(z = 20)B(v) = B(a)(2)- (51)

It follows that
Ba)(2c) = 0. (52)

o0

This shows that the germ {a,,},2 | of a(¢) at # = 0 is contained in the hyperplane. This ends
the proof. O

Next we consider (9) in (TC). Wesett =¢q; — 1,a(t + 1) := By (t + 1,0), ¢ = g and
a(0) = By (0, 0). Then (9) can be written in

2d 1 a0 B
(z T ZC)w_ 7([+1)2a(t+1)+ (t+1)2(z +c@t+ 1) =: b(r). (53)

This equation has the same form as (47). We determine w(0) by —2cw(0) = b(0). If we
make the appropriate change of unknown functions w and b as before, one may assume that
w(0) = 0 and b(0) = 0. In view of the definition of b(¢) we have ca(0) = 0. Hence we have
a(0) = 0. It follows that b(¢) = r2a(r + 1)/ + D2, In the following we assume w(0) = 0
and a(0) = 0. Then we have

Proposition 4 Suppose that a(t) is holomorphic in a connected domain containing t = 0
andt = 1. Then the set of a(t) for which (53) has an analytic solution is contained in the set
of codimension one of the set of germs of analytic functions at t = Q.

Proof Let w(t) be an analytic solution of (53) at t = 0. We set o := a’(0) and a(z) =
az + A(z)z? for some analytic function A(z). Then, by the general formula w is given by

2¢ ! 2¢ o
w = exp (—7) (K+/ exp (7) (m+A(s+1)) ds), (54)

where K and v # 0 are some constants. We take a smooth curve y which connects t and
the origin such that it stays in the half space, i (¢/#) < 0 near the origin. Then the limit

0 2c o
/T exp (7) (m + A(s + 1)) ds

. ! 2¢ o
= lim exp| — —— 4+ A(s+ 1) ) ds (55)
tey,t—0 J; s s+ 1
exists and it is a non-constant analytic function of 7. If the condition
0 2¢ o
K + exp|l — )| ——+AG+1))ds #0 (56)
T s s+ 1

holds, then, by taking the limit r — 0, 91 (c¢/t) < 01in (54) we see that w(#) tends to infinity,
which contradicts to the analyticity of w at the origin. Hence we have

T 2¢ o
K = / exp (—) (7 + A(s + 1)) ds. 57
0 s s+ 1

By substituting (57) to (54) we have

t
w(r) = exp (—?) /0 (%) (SO‘ﬁ + A(s + 1)) ds. (58)
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We take 7 sufficiently close to the origin such that the Taylor expansion A(s+1) = >0 o ans"
converges for < |¢]. Because w(te?™) = w(t) holds by the analyticity of w, it follows

s

that .
te 2¢ o
exp| — —— + A+ 1)) ds =0. (59)
P s s+ 1
2mi
By calculating the residue we have [/ exp (%) :%;ds = 2mia(l — ¢~*). The non-

resonance condition implies ¢ = 1z # 0, and hence 1 — e™2¢ # 0. Hence, by (59) the germ
of A(z)/a at z = 1 (in case @ # 0) or that of A(z) at z = 1(in case « = 0) is contained in
some hyperplane of the set of germs of analytic functions.

We recall that A(z) is analytic in some domain containing z = 0 and z = 1. We will
show that by the analytic continuation from z = 1 to z = 0 the germ of A(z) atz = 1 is
transformed to that of A(z) at z = 0 by an infinite matrix. If we can prove this, then the germ
of A(z) or A(z)/a at z = O is contained in some hyperplane. In view of a(z) = az+ A (2)z3,
the germ of a(z) at z = 0 is contained in some hyperplane.

We take a rectifiable curve which connects z = 1 and z = 0. First we consider the analytic
continuation from z = 1 to z = zp, where zq is contained in the disk centered at z = 1 in
which A(z) is analytic. Let A(z) = Z;’;O an(z — 1)" be the expansion at z = 1. Then the
Taylor expansion of A(z) at z = zo is given by

S Eo S e (60)
e (n—k)!
It follows that the germ at z = z¢ is given by
00 o0
(Z an (Z)(zo - 1)'“") : 61)
n=k k=0

Hence the germ at z = 1 is transformed to the one in (60) by the infinite matrix

A= ((zO — -k (”)) , (62)
k kl0,1,..;n—0,1,...

where we set the (k, n)-component (k > n) to be zero. Note that if |zo— 1] is sufficiently small,
then A defines a continuous linear operator on the space of sequences with an appropriate
norm. Therefore, if the germ of A(z) at z = 1 is contained in the hyperplane, then the germ
of A(z) at z = zo is contained in some hyperplane. By finite times of analytic continuation
we see that the germ of A(z) at z = 0 is contained in some hyperplane. This completes the
proof. O
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