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Abstract Let X be a compact connected CR manifold of dimension 2n − 1, n ≥ 2 with
a transversal CR S1-action on X . We study the Fourier components of the Kohn–Rossi
cohomology with respect to the S1-action. By studying the Szegö kernel of the Fourier
components we establish the Morse inequalities on X . Using the Morse inequalities we have
established on X we prove that there are abundant CR functions on X when X is weakly
pseudoconvex and strongly pseudoconvex at a point.

1 Introduction

The problem of embedding CR manifolds is prominent in areas such as complex analysis,
partial differential equations and differential geometry. Let X be a compact CR manifold of
dimension2n−1,n ≥ 2.When X is strongly pseudoconvex anddimensionof X is greater than
or equal to five, a classical theorem of Boutet deMonvel [5] asserts that X can be globally CR
embedded into C

N , for some N ∈ N. For a compact strongly pseudoconvex CR manifold of
dimension greater than or equal to five, the dimension of the kernel of the tangential Cauchy–
Riemmannoperator ∂b is infinite andwecanfindmanyCRfunctions to embed X into complex
space. The classical example of non-embeddable three dimensional strongly pseudoconvex
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CR manifold appears implicitly in the non-fillable example of pseudoconcave manifold by
Grauert [15], Andreotti and Siu [1] and Rossi [29] and was explicited by Burns [6]. In [24] it
is shown that a compact strongly pseudoconvex three dimensional CRmanifold which admits
an inner S1-action is the boundary of a compact strongly pseudoconvex surface. By Kohn’s
result [23], this implies that it is embeddedable inC

N for some N (see [21] for another proof).
Bland obtained in [4] that for a CR manifold which admits a free transversal S1-action will
be embedded into complex space if the CR structure admits a normal form relative to this
S1-action which has no negative Fourier coefficients. Epstein [12, TheoremA16] proved
that a three dimensional compact strongly pseudoconvex CR manifold X with a global free
transversal CR S1 action can be embedded into C

N by the positive Fourier components of
CR functions. Since the action is globally free, Epstein considered the quotient of the CR
manifold by the S1-action. The action which is CR and transversal implies that the quotient
X/S1 is a compact Riemann surface with a positive holomorphic line bundle. Then X is CR
isomorphism to the circle bundle with respect to the dual bundle of the positive line bundle.
UsingKodaira’s embedding theorem, Epstein got the embedding theorem of the CRmanifold
by the space of positive Fourier components of CR functions.

Motivated by Epstein’s work, we will consider a compact CR manifold X of dimension
dimX = 2n − 1, n ≥ 2 with a transversal CR S1-action and study the Fourier components
of Kohn–Rossi cohomology of ∂b-complex on X . The transversal CR S1-action need not to
be globally free but locally free. We use T to denote the global vector field induced by the
S1-action. For m ∈ Z and m > 0, we use H0

b,m(X) = {u ∈ C∞(X) : ∂bu = 0, Tu = imu}
to denote them-th positive Fourier component of CR functions (see [12]). The embeddability
of X by positive Fourier components of CR functions is related to the behavior of the S1

action on X . For example, if one can find f1 ∈ H0
b,m(X), . . . , fdm ∈ H0

b,m(X) and g1 ∈
H0
b,m1

(X), . . . , ghm1
∈ H0

b,m1
(X) such that the map

�m,m1 : x ∈ X →
(
f1(x), . . . , fdm (x), g1(x), . . . , ghm1

(x)
)

∈ C
dm+hm1

is a CR embedding. The S1-action on X induces naturally a S1-action on �m,m1(X) and this
S1-action on �m,m1(X) is simply given by the following:

eiθ ◦
(
z1, . . . , zdm , zdm+1, . . . , zdm+hm1

)
=
(
eimθ z1, . . . , e

imθ zdm , eim1θ zdm+1, . . . , e
im1θ zdm+hm1

)
.

Thus, if one can embed suchCRmanifold by positive Fourier components ofCR functions,we
can describe the S1-action explicitly. To study the embedding problem of such CR manifold
by positive Fourier components of CR functions, it is crucial to be able to know

Question 1.1 When dimH0
b,m(X) ≈ mn−1 for m large?

Inspired by Demailly’s holomorphicMorse inequalities on complex manifolds [9,10,27] and
the recentworks of the first-named author andMarinescu in [19], Hsiao [17,18] andHsiao and
Li [22] on the Morse inequalities and Grauert–Riemenschneider criterion on CR manifolds,
we obtain the Morse inequalities for the Fourier components of Kohn–Rossi cohomology of
∂b-complex. See Theorems 2.2 and 2.5 for the main results.

By the Morse inequalities we have obtained, we will show that a compact weakly pseudo-
convex CRmanifolds which admit a transversal CR locally free S1-action will have abundant
CR functions if it has a point where the Levi-form is strongly pseudoconvex (see Theorem 2.6
for the details). This gives an answer of Question 1.1.

123



Morse inequalities for Fourier components of Kohn–Rossi… 443

1.1 Set up and terminology

Let (X, T 1,0X) be a compact connected CR manifold of dimension 2n − 1, n ≥ 2, where
T 1,0X is the given CR structure on X . That is, T 1,0X is a subbundle of the complexified
tangent bundleCT X of rank n−1 , satisfying T 1,0X∩T 0,1X = {0}, where T 0,1X = T 1,0X ,
and [V,V] ⊂ V , where V = C∞(X, T 1,0X).

We assume that X admits a S1-action: S1 × X → X, (eiθ , x) → eiθ ◦ x . Here, we use
eiθ (0 ≤ θ < 2π) to denote the S1-action. Set Xreg = {x ∈ X : ∀eiθ ∈ S1, if eiθ ◦ x =
x, then eiθ = id}. We call x ∈ Xreg a regular point of the S1-action and complements of
Xreg exceptional points. For every k ∈ N, put

Xk :=
{
x ∈ X : eiθ ◦ x �= x, ∀θ ∈

(
0,

2π

k

)
, ei

2π
k ◦ x = x

}
. (1.1)

Thus, Xreg = X1. In this paper, we always assume that Xreg �= ∅. By the Orbit type strati-
fication (see Theorem 1.30 in [28]), there are only finite X ′

ks denoted by X1, Xk1 , . . . , Xkp
which are not empty subset of X such that X = X1 ∪ Xk1 ∪ · · · ∪ Xkp .

Let T ∈ C∞(X, T X) be the global real vector field induced by the S1-action given as
follows

(Tu)(x) = ∂

∂θ

(
u(eiθ ◦ x)

) ∣∣∣
θ=0

, u ∈ C∞(X). (1.2)

Definition 1.2 We say that the S1-action eiθ (0 ≤ θ < 2π) is CR if

[T,C∞(X, T 1,0X)] ⊂ C∞(X, T 1,0X), (1.3)

where [, ] is the Lie bracket between the smooth vector fields on X . Furthermore, we say that
the S1-action is transversal if for each x ∈ X ,

CT (x) ⊕ T 1,0
x (X) ⊕ T 0,1

x X = CTx X. (1.4)

Remark 1.3 The S1-action on X is said to be a locally free group action if T (x) �= 0 for
every x ∈ X . By (1.4), T (x) will not vanish at any point x ∈ X , thus the transversal CR
S1-action defined in Definition1.2 is a locally free group action. For the knowledge of group
action, we refer readers to [13,28]. The classical example of compact CR manifolds with
transversal CR S1-action is the circle bundle with respect to a Hermitian line bundle over a
compact complex manifold. However, there are many examples of compact CR manifolds
with transversal CR S1-action which are not circle bundle.

For example, let X = {(z1, z2) ∈ C
2 : |z1|2 + |z21 + z2|2 + |z2|2 = 1} which is a compact

CR manifold with the following transversal CR S1-action

X × S1 → X, (z1, z2) →
(
eiθ z1, e

2iθ z2
)

.

The S1-action defined above is locally free and free on a dense, open, connected open subset
{(z1, z2) ∈ X : z1 �= 0}.

In general, we have the following

Lemma 1.4 Let X be a compact connected CR manifold with transversal CR locally free
S1-action. Then Xreg is an open, dense subset of X. Moreover, the measure of X\Xreg is zero.

The proof of Lemma 1.4 is a direct corollary of Proposition 1.24 in [28] and similar
results can be found in [11]. For the convenience of readers, we will prove Lemma 1.4 in the
appendix.
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We assume throughout that (X, T 1,0X) is a compact connected CR manifold with a
transversal CR locally free S1-action and we denote by T the global vector field induced by
the S1-action. Letω0 ∈ C∞(X, T ∗X) be the global real 1-form determined by 〈ω0 , u 〉 = 0,
for every u ∈ T 1,0X ⊕ T 0,1X and 〈 ω0 , T 〉 = −1.

Definition 1.5 For x ∈ X , the Levi-form Lx associated with the CR structure is the
Hermitian quadratic form on T 1,0

x X defined as follows. For any U, V ∈ T 1,0
x X , pick

U,V ∈ C∞(X, T 1,0X) such that U(x) = U,V(x) = V . Set

Lx (U, V ) = 1

2i
〈[U,V](x), ω0(x)〉 (1.5)

where [, ] denotes the Lie bracket between smooth vector fields. Note thatLx does not depend
on the choice of U and V .

Definition 1.6 TheCR structure on X is called pseudoconvex at x ∈ X ifLx is positive semi-
definite. It is called strongly pseudoconvex at x if Lx is positive definite. If the CR structure
is (strongly) pseudoconvex at every point of X , then X is called a (strongly) pseudoconvex
CR manifold.

Denote by T ∗1,0X and T ∗0,1X the dual bundles of T 1,0X and T 0,1X , respectively. Define
the vector bundle of (0, q)-forms by T ∗0,q X = �qT ∗0,1X . Let D ⊂ X be an open subset.
Let �0,q(D) denote the space of smooth sections of T ∗0,q X over D and let �0,q

0 (D) be the
subspace of �0,q(D) whose elements have compact support in D.

Fix θ0 ∈ [0, 2π). Let

deiθ0 : CTx X → CTeiθ0 x X

denote the differential map of eiθ0 : X → X . By the property of transversal CR S1 action,
we can check that

deiθ0 : T 1,0
x X → T 1,0

eiθ0◦x X,

deiθ0 : T 0,1
x X → T 0,1

eiθ0◦x X,

deiθ0(T (x)) = T
(
eiθ0 ◦ x

)
.

(1.6)

Let (deiθ0)∗ : �q(CT ∗X) → �q(CT ∗X) be the pull back of deiθ0 , q = 0, 1 . . . , n − 1.
From (1.6), we can check that for every q = 0, 1, . . . , n − 1

(
deiθ0

)∗ : T ∗0,q
eiθ0◦x X → T ∗0,q

x X. (1.7)

Let u ∈ �0,q(X). Define Tu as follows. For any X1, . . . , Xq ∈ T 1,0
x X ,

Tu(X1, . . . , Xq) := ∂

∂θ

((
deiθ

)∗
u
(
X1, . . . , Xq

)) ∣∣∣
θ=0

. (1.8)

From (1.7) and (1.8), we have that Tu ∈ �0,q(X) for all u ∈ �0,q(X). See the discussion
before Lemma 1.19 for another way to define Tu.

Let ∂b : �0,q(X) → �0,q+1(X) be the tangential Cauchy-Riemann operator. It is straight-
forward from (1.6) and (1.8) to see that

T ∂b = ∂bT on �0,q(X) (1.9)
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(see also (1.40)). For every m ∈ Z, put �0,q
m (X) := {u ∈ �0,q(X) : Tu = imu}. From (1.9)

we have the ∂b-complex for every m ∈ Z:

∂b : · · · → �
0,q−1
m (X) → �

0,q
m (X) → �

0,q+1
m (X) → · · · . (1.10)

For every m ∈ Z, the q-th ∂b cohomology (or Kohn–Rossi cohomology) is given by

Hq
b,m(X) := Ker ∂b : �

0,q
m (X) → �

0,q+1
m (X)

Im ∂b : �
0,q−1
m (X) → �

0,q
m (X)

. (1.11)

The starting point of this paper is that without any Levi curvature assumption, for every
m ∈ Z and every q = 0, 1, 2, . . . , n − 1 we have

dim Hq
b,m(X) < ∞. (1.12)

Definition 1.7 We say that a function u ∈ C∞(X) is a Cauchy-Riemann (CR for short)
function if ∂bu = 0 or in the other word, Zu = 0 for all Z ∈ C∞(X, T 1,0X).

Form ∈ Z, when q = 0, H0
b,m(X) is the space of CR functions which lie in the eigenspace

of T and we call H0
b,m(X) the m-th Fourier component of CR functions.

1.2 Hermitian CR geometry

We need

Definition 1.8 Let D be an open set and let V ∈ C∞(D, CT X) be a vector field on D. We
say that V is T -rigid if

deiθ0(V (x)) = V
(
eiθ0 ◦ x

)
(1.13)

for any x, θ0 ∈ [0, 2π) satisfying x ∈ D, eiθ0 ◦ x ∈ D.

Definition 1.9 Let 〈·|·〉 be a Hermitian metric on CT X . We say that 〈·|·〉 is T -rigid if for
T -rigid vector fields V,W on D, where D is any open set, we have

〈V (x)|W (x)〉 = 〈
(
deiθ0V

) (
eiθ0 ◦ x

)
|
(
deiθ0W

) (
eiθ0 ◦ x

)
〉, ∀x ∈ D, θ0 ∈ [0, 2π).

(1.14)

Lemma 1.10 (Theorem 9.2 in [18]) Let X be a compact connected CR manifold with a
transversal CR S1-action. There is always a T -rigid Hermitian metric 〈·|·〉 on CT X such
that T 1,0X⊥T 0,1X, T⊥(T 1,0X⊕T 0,1X), 〈T |T 〉 = 1 and 〈u|v〉 is real if u, v are real tangent
vectors.

From now on, we fix a T -rigid Hermitian metric 〈·|·〉 on CT X satisfying all the properties
in Lemma 1.10. The Hermitian metric 〈·|·〉 on CT X induces by duality a Hermitian metric
on CT ∗X and also on the bundles of (0, q)-forms T ∗0,q X, q = 0, 1 . . . , n− 1. We shall also
denote all these induced metrics by 〈·|·〉. For every v ∈ T ∗0,q X , we write |v|2 := 〈v|v〉. We
have the pointwise orthogonal decompositions:

CT ∗X = T ∗1,0X ⊕ T ∗0,1X ⊕ {λω0 : λ ∈ C},
CT X = T 1,0X ⊕ T 0,1X ⊕ {λT : λ ∈ C}. (1.15)

For any p ∈ X , locally there is an orthonormal frame {U1, . . . ,Un−1} of T 1,0X with
respect to the given T -rigid Hermitian metric 〈·|·〉 such that the Levi-form Lp is diago-
nal in this frame, Lp(Ui ,Uj ) = λ jδi j , where δi j = 1 if i = j , δi j = 0 if i �= j . The
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entries {λ1, . . . , λn−1} are called the eigenvalues of Levi-form at p with respect to the
T -rigid Hermitian metric 〈·|·〉. Moreover, the determinant of Lp is defined by detLp =
λ1(p), . . . , λn−1(p).

Let ( · | · ) be the L2 inner product on �0,q(X) induced by 〈·|·〉 and let ‖·‖ denote the
corresponding norm. Then for all u, v ∈ �0,q(X)

(u|v) =
∫

X
〈u|v〉dvX , (1.16)

where dvX is the volume form on X induced by the T -rigid Hermitian metric. As before, for
m ∈ Z, we denote by

�
0,q
m (X) = {

u ∈ �0,q(X) : Tu = imu
}

(1.17)

the eigenspace of T . Let L2
(0,q),m(X) be the completion of �

0,q
m (X) with respect to (·|·). For

m ∈ Z, let
Q(q)

m : L2
(0,q)(X) → L2

(0,q),m(X) (1.18)

be the orthogonal projection with respect to (·|·). Then for any u ∈ �0,q(X)

Q(q)
m u = 1

2π

∫ π

−π

u(eiθ ◦ x)e−imθdθ.

Byusing the elementary Fourier analysis, it is straightforward to see that for any u ∈ �0,q(X),

N∑
m=−N

Q(q)
m u → u in C∞ topology as N → ∞. (1.19)

Thus for every u ∈ L2
(0,q)(X),

N∑
m=−N

Q(q)
m u → u in L2

(0,q)(X, Lk) as N → ∞. (1.20)

If we denote the limN→∞
∑N

m=−N Q(q)
m u by

∑
m∈Z Q(q)

m u, then we write u = ∑
m∈Z Q(q)

m u.
Thus, we have the following Fourier decomposition:

�0,q(X) =
⊕
m∈Z

�
0,q
m (X), L2

(0,q)(X) =
⊕
m∈Z

L2
(0,q),m(X). (1.21)

By (1.11) and (1.21), we have the following Fourier decomposition of the q-th Kohn–Rossi
cohomology (see (1.39) in [26])

Hq
b (X) ∼=

⊕
m∈Z

Hq
b,m(X). (1.22)

Let ∂
∗
b : �0,q+1(X) → �0,q(X) be the formal adjoint of ∂b with respect to (·|·). Since

the Hermitian metrics 〈·|·〉 are T -rigid, we can check that
T ∂

∗
b = ∂

∗
bT on �0,q(X), ∀q = 1, . . . , n − 1 (1.23)

and from (1.23) we have

∂
∗
b : �

0,q+1
m (X) → �

0,q
m (X), ∀m ∈ Z. (1.24)
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Put

�(q)
b := ∂b∂

∗
b + ∂

∗
b∂b : �0,q(X) → �0,q(X).

Combining (1.9), (1.23) and (1.24), we have

T�(q)
b = �(q)

b T on �0,q(X), ∀q = 0, 1, . . . , n − 1 (1.25)

and (1.25) implies that

�(q)
b : �

0,q
m (X) → �

0,q
m (X), ∀m ∈ Z. (1.26)

We will write �(q)
b,m to denote the restriction of �(q)

b on�
0,q
m (X). For everym ∈ Z, we extend

�(q)
b,m to L2

(0,q),m(X) by

�(q)
b,m : Dom(�(q)

b,m) ⊂ L2
(0,q),m(X) → L2

(0,q),m(X), (1.27)

whereDom(�(q)
b,m) = {u ∈ L2

(0,q),m(X) : �(q)
b,mu ∈ L2

(0,q),m(X) in the sense of distribution}.
The following result follows from Kohn’s L2-estimate (see Theorem 8.4.2 in [7]).

Theorem 1.11 For every s ∈ N0 := N ∪ {0}, there exists a constant Cs > 0 such that

‖u‖s+1 ≤ Cs

(
‖�(q)

b u‖s + ‖Tu‖s + ‖u‖s
)

, ∀u ∈ �0,q(X) (1.28)

where ‖ · ‖s denotes the standard Sobolev norm of order s on X.

From Theorem 1.11, we deduce that

Theorem 1.12 Fix m ∈ Z, for every s ∈ N0, there is a constant Cs,m > 0 such that

‖u‖s+1 ≤ Cs,m

(
‖�(q)

b,mu‖s + ‖u‖s
)

, ∀u ∈ �
0,q
m (X). (1.29)

From Theorem 1.12 and some standard argument in functional analysis, we deduce the
following Hodge theory for �(q)

b,m (see Section 3 in [8])

Theorem 1.13 Fix m ∈ Z. �(q)
b,m : Dom(�(q)

b,m) ⊂ L2
(0,q),m(X) → L2

(0,q),m(X) is a self-

adjoint operator. The spectrum of�(q)
b,m denoted by Spec(�(q)

b,m) is a discrete subset of [0,∞).

For every λ ∈ Spec(�(q)
b,m) the eigenspace with respect to λ

Hq
b,m,λ(X) =

{
u ∈ Dom(�(q)

b,m) : �(q)
b,mu = λu

}
(1.30)

is finite dimensional with Hq
b,m,λ(X) ⊂ �

0,q
m (X) and for λ = 0 we denote by Hq

b,m(X) the

harmonic space Hq
b,m,0(X, Lk) for brevity and then we have the Dolbeault isomorphism

Hq
b,m(X) ∼= Hq

b,m(X). (1.31)

In particular, from (1.31) we have

dim Hq
b,m(X) < ∞,∀ m ∈ Z, ∀ 0 ≤ q ≤ n − 1. (1.32)

123



448 C.-Y. Hsiao, X. Li

Remark 1.14 We would like to mention that transversal property (1.4) of the S1-action is a
necessary condition for the finite dimension of dimHq

b,m(X). In fact, we have the following

counterexample when the S1-action is not transversal. Let

X = S
3 := {

(z1, z2) ∈ C
2 : |z1|2 + |z2|2 = 1

}
.

The S1-action on X is defined by eiθ ◦(z1, z2) = (eiθ z1, e−inθ z2), n ≥ 1. Let T be the global
induced vector field. By definition

T = i

(
z1

∂

∂z1
− z1

∂

∂z1
− nz2

∂

∂z2
+ nz2

∂

∂z2

)
.

We can check that T is not transversal to T 1,0X
⊕

T 0,1X and thus the S1-action defined
above is not transversal. Moreover, we have dimH0

b,m(X) = ∞. This is because the functions

{uk = zm+nk
1 zk2, k = 1, 2, 3, . . .} ⊂ H0

b,m(X) when restricted on X .

1.3 Canonical local coordinates

In this work, we need the following result due to Baouendi–Rothschild–Treves, (see Propo-
sition I.2. in [2]).

Theorem 1.15 Let X be a compact CRmanifold of dimX = 2n−1, n ≥ 2with a transversal
CR S1- action. Let 〈·|·〉 be the given T -rigid Hermitian metric on X. For every point x0 ∈ X,
there exists local coordinates (x1, . . . , x2n−1) = (z, θ) = (z1, . . . , zn−1, θ), z j = x2 j−1 +
i x2 j , j = 1, . . . , n − 1, x2n−1 = θ , defined in some small neighborhood D = {(z, θ) :
|z| < ε, |θ | < δ} of x0 such that

T = ∂

∂θ

Z j = ∂

∂z j
+ i

∂ϕ(z)

∂z j

∂

∂θ
, j = 1, . . . , n − 1

(1.33)

where {Z j (x)}n−1
j=1 form a basis of T 1,0

x X, for each x ∈ D and ϕ(z) ∈ C∞(D, R) is inde-
pendent of θ . Moreover, on D we can take (z, θ) and ϕ so that (z(x0), θ(x0)) = (0, 0)
and ϕ(z) = ∑n−1

j=1 λ j |z j |2 + O(|z|3),∀(z, θ) ∈ D, where {λ j }n−1
j=1 are the eigenvalues of

Levi-form of X at x0 with respect to the given T -rigid Hermitian metric on X.

Remark 1.16 Let D be as in Theorem 1.15. We will always identify D with an open set of
R
2n−1 and we call D canonical local patch and (z, θ, ϕ) canonical coordinates. The constants

ε and δ in Theorem 1.15 depend on x0. Let x0 ∈ D. We say that (z, θ, ϕ) is trivial at x0
if (z(x0), θ(x0)) = (0, 0) and ϕ(z) = ∑n−1

j=1 λ j |z j |2 + O(|z|3), where {λ j }n−1
j=1 are the

eigenvalues of Levi-form of X at x0 with respect to the T -rigid Hermitian metric 〈·|·〉.

Lemma 1.17 Let x0 ∈ Xreg. Then we can find canonical coordinates (z, θ, ϕ) defined in
D = {(z, θ) : |z| < ε0, |θ | < π} such that (z, θ, ϕ) is trivial at x0.

Proof Let (z, θ, ϕ) be any canonical coordinates defined in D1 = {(z, θ) : |z| < ε1, |θ | < δ}
such that (z, θ, ϕ) is trivial at x0. We identify D1 with an open neighborhood of x0. It is clear
that

eit ◦ (z1, 0) �= (z2, 0), ∀0 < |t | < δ, |z1| < ε1, |z2| < ε1. (1.34)
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We claim that

There is a 0 < ε0 < ε1 such that eit ◦ (z1, 0) �= (z2, 0), ∀ δ

2
≤ t ≤ 2π − δ

2
, |z1| < ε0, |z2| < ε0.

(1.35)
If the claim is not true, for every j ∈ N, we can find z1, j , z2, j ∈ C

n−1, θ j ∈ R with
|z1, j | < ε1

j , |z2, j | < ε1
j ,

δ
2 ≤ θ j ≤ 2π − δ

2 such that

eiθ j ◦ (z1, j , 0) = (z2, j , 0), j = 1, 2, . . . . (1.36)

From (1.36), we get eiθ0 ◦ (0, 0) = (0, 0), for some δ
2 ≤ θ0 ≤ 2π − δ

2 . But x0 ∈ Xreg, we
get a contradiction. The claim follows.

Let 0 < ε0 < ε1 be as in (1.35). Consider the map

� : {z ∈ C
n−1 : |z| < ε0} × {θ ∈ R : |θ | < π

} �−→ X,

(z, θ) �−→ eiθ ◦ (z, 0).

We claim that � is injective. If eiθ1 ◦ (z1, 0) = eiθ2 ◦ (z2, 0), for some |z1| < ε0, |z2| < ε0,
|θ1| < π , |θ2| < π . We have ei(θ1−θ2) ◦ (z1, 0) = (z2, 0). We may assume that θ1 ≥ θ2. From
(1.35), we see that 0 ≤ θ1 − θ2 ≤ δ

2 or 2π − δ
2 ≤ θ1 − θ2 < 2π . If 2π − δ

2 ≤ θ1 − θ2 < 2π .
Then, − δ

2 ≤ θ1 − θ2 − 2π < 0 and ei(θ1−θ2−2π) ◦ (z1, 0) = (z2, 0). By (1.34), we get a
contradiction. We must have 0 ≤ θ1 − θ2 ≤ δ

2 . From (1.35), we deduce that θ1 = θ2 and
z1 = z2. Thus, � is injective. When |z| < ε0, we can extend θ to |θ | < π by �. The lemma
follows. ��

In the proof of Theorem 2.1, we need the following

Lemma 1.18 Let x0 ∈ Xk, k ∈ N, k > 1. For every ε > 0, ε small, we can find canonical
coordinates (z, θ, ϕ) defined in Dε = {(z, θ) : |z| < ε0, |θ | < π

k − ε} such that (z, θ, ϕ) is
trivial at x0.

Proof Let (z, θ, ϕ) be any canonical coordinates defined in D1 = {(z, θ) : |z| < ε1, |θ | < δ}
such that (z, θ, ϕ) is trivial at x0. We identify D1 with an open neighborhood of x0. It is clear
that

eit ◦ (z1, 0) �= (z2, 0), ∀0 < |t | < δ, |z1| < ε1, |z2| < ε1. (1.37)

Fix ε > 0, ε small. We claim that

There is a 0 < ε0 < ε1 such that eit ◦(z1, 0) �= (z2, 0), ∀ δ

2
≤ t ≤ 2π

k
− ε

2
, |z1| < ε0, |z2| < ε0.

(1.38)
If the claim is not true, for every j ∈ N, we can find z1, j , z2, j ∈ C

n−1, θ j ∈ R with
|z1, j | < ε1

j , |z2, j | < ε1
j ,

δ
2 ≤ θ j ≤ 2π

k − ε
2 such that

eiθ j ◦ (z1, j , 0) = (z2, j , 0), j = 1, 2, . . . . (1.39)

From (1.39), we get eiθ0 ◦ (0, 0) = (0, 0), for some δ
2 ≤ θ0 ≤ 2π

k − ε
2 . But x0 ∈ Xk , we get

a contradiction. The claim follows.
Let 0 < ε0 < ε1 be as in (1.38). Consider the map

�ε : {z ∈ C
n−1 : |z| < ε0} × {θ ∈ R : |θ | <

π

k
− ε} �−→ X,

(z, θ) �−→ eiθ ◦ (z, 0).
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We claim that �ε is injective. If eiθ1 ◦ (z1, 0) = eiθ2 ◦ (z2, 0), for some |z1| < ε0, |z2| < ε0,
|θ1| < π

k − ε, |θ2| < π
k − ε. We have ei(θ1−θ2) ◦ (z1, 0) = (z2, 0). We may assume that

θ1 ≥ θ2 and hence 0 ≤ θ1 − θ2 < 2π
k − 2ε. From (1.38), we see that 0 ≤ θ1 − θ2 ≤ δ

2 . From
(1.37), we deduce that θ1 = θ2 and z1 = z2. Thus, �ε is injective. When |z| < ε0, we can
extend θ to |θ | < π

k − ε by �ε . The lemma follows. ��
By using canonical coordinates, we get another way to define Tu,∀u ∈ �0,q(X). Let

D be a canonical local patch with canonical coordinates (z, θ, ϕ). By (1.33), {dz j }n−1
j=1 is

the dual frame of {Z j }n−1
j=1. For a multi-index J = ( j1, . . . , jq) ∈ {1, 2, . . . , n}q we set

|J | = q . We say that J is strictly increasing if 1 ≤ j1 < j2 < · · · < jq ≤ n. We put
dz J = dz j1 ∧ dz j2 ∧ · · · ∧ dz jq . It is clearly that {dz J , |J | = q, J strictly increasing} is a
basis for T ∗0,q

x X for every x ∈ D. Let u ∈ �0,q(X). On D, we write u = ∑′
|J |=q u J dz J ,

where the notation
∑′ means the summation over strictly increasing multiindices. Then on

D we can check that

Tu =
′∑

|J |=q

T u J dz
J , ∂bT u = T ∂bu. (1.40)

Lemma 1.19 Fix x0 ∈ X and let D = D̃ × (−δ, δ) ⊂ C
n−1 × R be a canonical local

patch with canonical coordinates (z, θ, ϕ) such that (z, θ, ϕ) is trivial at x0. We can find
orthonormal frame {e j }n−1

j=1 of T
∗0,1X with respect to the fixed T -rigid Hermitian metric such

that on D = D̃ × (−δ, δ), we have e j (x) = e j (z) = dz j + O(|z|),∀x = (z, θ) ∈ D, j =
1, . . . , n − 1. Moreover, if we denote by dvX the volume form with respect to the T -rigid
Hermitian metric on CT X, then on D we have dvX = λ(z)dv(z)dθ with λ(z) ∈ C∞(D̃, R)

which does not depend on θ and dv(z) = 2n−1dx1, . . . , dx2n−2.

Proof From the definition of the T -rigid Hermitian metric, we can check that the inner
product 〈dzk |dz j 〉 does not depend on θ . We denote by gk j (z) = 〈dzk |dz j 〉 on D. Taking

coordinate transformation of z = (z1, . . . , zn−1) if needed such that gk j (x0) = δk j . By
Gram-Schmidt process, we can find an orthonormal frame {e j }n−1

j=1 of T ∗0,1X . Write e j =∑n−1
k=1 b jkdzk, j = 1, . . . , n − 1. Since gk j (z) = 〈dzk |dz j 〉 does not depend on θ on D, we

can check that coefficients {b jk}1≤ j,k≤n−1 do not depend on θ . Then e j (x) = dz j + O(z).

Since −ω0(z, θ) = dθ + ∑n−1
j=1(α j (z, θ)dz j + α j (z, θ)dz j ) and {e1, . . . , en−1, ω0} is an

orthonormal frame of CT X over D, then the volume form on D is defined by dvX =√−1
n−1

e1 ∧ e1 ∧ · · · ∧ en−1 ∧ en−1 ∧ (−ω0). The lemma follows. ��
Remark 1.20 For any x0 ∈ X , let D = D̃×(−δ, δ) be a canonical local patch with canonical
coordinates (z, θ, ϕ) such that (z, θ, ϕ) is trivial at x0. Here, D̃ = {z ∈ C

n−1 : |z| < ε}.
We identify D̃ with an open subset of C

n−1 with complex coordinates z = (z1, . . . , zn−1).

Since {dz j }n−1
j=1 is a frame of T ∗0,1X over D, we will treat them as the frame of T ∗0,1 D̃

which is the bundle of (0, 1)-forms over the domain D̃. Let (gk j (z)) be the Hermitian matrix
defined in the proof of Lemma 1.19. Then we define a Hermitian metric on T ∗0,1 D̃ given by
(gk j (z))n−1

j,k=1 with 〈dzk |dz j 〉 = gk j .We also denote by 〈·|·〉 the Hermitianmetric on T ∗0,1 D̃.

By duality, it will induces a Hermitian metric on T 0,1 D̃. We extend the Hermitian metric to
CT D̃ and T ∗0,q D̃ in the standard way and denote all the Hermitian metrics by 〈·|·〉. Then
{e j (z)}n−1

j=1 defined in Lemma 1.19 is also an orthonormal frame of T ∗0,1 D̃. With respect to

the given Hermitian metric on T ∗0,1 D̃, the volume form on D̃ is given by λ(z)dv(z). Here,
λ(z) ∈ C∞(D̃, R) is the function defined in Lemma 1.19.
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1.4 The scaling technique

In this section, we will recall the scaling technique in [3], developed in [17,19,20,22]. Fix
x0 ∈ X , we take canonical local patch D = D̃ × (−δ, δ) = {(z, θ) : |z| < ε, |θ | < δ} with
canonical coordinates (z, θ, ϕ) such that (z, θ, ϕ) is trivial at x0. In this section, we identify
D̃ with an open subset of C

n−1 = R
2n−2 with complex coordinates z = (z1, . . . , zn−1).

Let L1 ∈ T 1,0 D̃, . . . , Ln−1 ∈ T 1,0 D̃ be the dual frame of e1, . . . , en−1 with respect to the
Hermitian metric 〈·|·〉 defined in Remark 1.20. The Hermitian metric 〈·|·〉 on D̃ we have
chosen in Lemma 1.19 and Remark 1.20 implies that

〈
∂

∂x j
(0)

∣∣∣ ∂

∂xt
(0)

〉
= 2δ j t (1.41)

for j, t = 1, . . . , 2n − 2, and in the coordinates z = (z1, . . . , zn−1), L j = ∂
∂z j

+ O(z), j =
1, . . . , n − 1, where ∂

∂z j
= 1

2

(
∂

∂x2 j−1
− i ∂

∂x2 j

)
, j = 1, . . . , n − 1.

Let M ⊂ C
n−1 be an open set. Let �0,q(M) be the space of smooth (0, q)-forms on M

and let �
0,q
0 (M) be the subspace of �0,q(M) whose elements have compact support in M .

Let (·|·)2ϕ be the weighted inner product on the space �
0,q
0 (D̃) defined as follows:

( f |g) =
∫

D̃
〈 f |g〉e−2ϕ(z)λ(z)dv(z) (1.42)

where f, g ∈ �
0,q
0 (D̃) and λ(z) is as in Lemma 1.19. We denote by L2

(0,q)(D̃, 2ϕ) the

completion of �
0,q
0 (D̃) with respect to (·|·)2ϕ . For r > 0, let D̃r = {z ∈ C

n−1 : |z| < r}.
Here {z ∈ C

n−1 : |z| < r} means that {z ∈ C
n−1 : |z j | < r, j = 1, . . . , n − 1}. For m ∈ N,

let Fm be the scaling map Fm(z) = ( z1√
m

, . . . ,
zn−1√
m

), z ∈ D̃logm . From now on, we assume

m is sufficiently large such that Fm(D̃logm) � D̃. We define the scaled bundle F∗
mT

∗0,q D̃ on
D̃logm to be the bundle whose fiber at z ∈ D̃logm is

F∗
mT

∗0,q D̃|z =
⎧
⎨
⎩

′∑
|J |=q

aJ e
J
(

z√
m

)
: aJ ∈ C, |J | = q, J strictly increasing

⎫
⎬
⎭ . (1.43)

We take the Hermitian metric 〈·|·〉F∗
m
on F∗

mT
∗0,q D̃ so that at each point z ∈ D̃logm ,

{
eJ

(
z√
m

)
: |J | = q, J strictly increasing

}
(1.44)

is an orthonormal frame for F∗
mT

∗0,q D̃ on D̃logm .
Let F∗

m�0,q(D̃r ) denote the space of smooth sections of F∗
mT

∗0,q D̃ over D̃r and let

F∗
m�

0,q
0 (D̃r ) be the subspace of F∗

m�0,q(D̃r ) whose elements have compact support in D̃r .
Given f ∈ �0,q(D̃r ). We write f = ∑′

|J |=q f J eJ . We define the scaled form F∗
m f ∈

F∗
m�0,q(D̃logm) by

F∗
m f =

′∑
|J |=q

f J

(
z√
m

)
eJ

(
z√
m

)
, z ∈ D̃logm . (1.45)

For brevity, we denote F∗
m f by f ( z√

m
). Let P be a partial differential operator of order

one on Fm(D̃logm) with C∞ coefficients. We write P = ∑2n−2
j=1 a j (z)

∂
∂x j

. The scaled
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partial differential operator P(m) on D̃logm is given by P(m) = ∑2n−2
j=1 F∗

ma j
∂

∂x j
. Let

f ∈ C∞(Fm(D̃logm)). We can check that

P(m)(F
∗
m f ) = 1√

m
F∗
m(P f ). (1.46)

Let ∂ : �0,q(D̃) → �0,q+1(D̃) be the Cauchy–Riemmann operator and we have

∂ =
n−1∑
j=1

e j (z) ∧ L j +
n−1∑
j=1

(∂e j ) (z) ∧ (
e j (z) ∧)∗

where
(
e j (z) ∧)∗ : T ∗0,q D̃ → T ∗0,q−1 D̃ is the adjoint of e j (z) ∧ with respect to the

Hermitian metric 〈·∣∣·〉 on T ∗0,q D̃ given in Remark 1.20, j = 1, . . . , n − 1. That is,
〈
e j (z) ∧ u

∣∣∣v
〉
=
〈
u
∣∣∣ (e j (z) ∧)∗ v

〉

for all u ∈ T ∗0,q−1 D̃, v ∈ T ∗0,q D̃.
The scaled differential operator ∂(m) : F∗

m�0,q(D̃logm) → F∗
m�0,q+1(D̃logm) is given by

∂(m) =
n−1∑
j=1

e j

(
z√
m

)
∧ L j,(m) +

n−1∑
j=1

1√
m

(∂e j )

(
z√
m

)
∧
(
e j

(
z√
m

)
∧
)∗

. (1.47)

Similarly,
(
e j
(

z√
m

)
∧
)∗ : F∗

mT
∗0,q X → F∗

mT
∗0,q−1 D̃ is the adjoint of e j

(
z√
m

)
∧ with

respect to 〈·∣∣·〉F∗
m
, j = 1, . . . , n − 1. From (1.46) and (1.47), ∂(m) satisfies that

∂(m)F
∗
m f = 1√

m
F∗
m(∂ f ), ∀ f ∈ �0,q(Fm(D̃logm)). (1.48)

Let (·|·)2mF∗
mϕ be theweighted inner product on the space F∗

m�
0,q
0 (D̃logm) defined as follows:

( f |g)2mF∗
mϕ =

∫

D̃logm

〈 f |g〉F∗
m
e−2mF∗

mϕλ

(
z√
m

)
dv(z). (1.49)

Let ∂
∗
(m) : F∗

m�0,q+1(D̃logm) → F∗
m�0,q(D̃logm) be the formal adjoint of ∂(m) with respect

to (·|·)2mF∗
mϕ . Let ∂

∗,2mϕ : �0,q+1(D̃) → �0,q(D̃) be the formal adjoint of ∂ with respect
to the weighted inner product (·|·)2mϕ . Then we also have

∂
∗
(m)F

∗
m f = 1√

m
F∗
m

(
∂

∗,2mϕ
f
)

, ∀ f ∈ �0,q
(
Fm

(
D̃logm

))
. (1.50)

We now define the scaled complex Laplacian �(q)

(m) : F∗
m�0,q(D̃logm) → F∗

m�0,q(D̃logm)

which is given by �(q)

(m) = ∂
∗
(m)∂(m) + ∂(m)∂

∗
(m). Then (1.48) and (1.50) imply that

�(q)

(m)F
∗
m f = 1

m
F∗
m

(
�(q)
2mϕ f

)
, ∀ f ∈ �0,q

(
Fm

(
D̃logm

))
. (1.51)

Here,
�(q)
2mϕ = ∂ ∂

∗,2mϕ + ∂
∗,2mϕ

∂ : �0,q(D̃) → �0,q(D̃) (1.52)
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is the complex Laplacian with respect to the given Hermitian metric on T ∗0,q D̃ and weight
function 2mϕ(z) on D̃. Since 2mF∗

mϕ = 2�0(z)+ 1√
m
O(|z|3),∀z ∈ D̃logm , where�0(z) =

∑n−1
j=1 λ j |z j |2, we have

lim
m→∞ sup

D̃logm

|∂α
x (2mF∗

mϕ − 2�0)| = 0, ∀α ∈ N
2n−2
0 . (1.53)

Consider C
n−1. Let 〈·|·〉Cn−1 be the Hermitian metric on T ∗0,q

C
n−1 such that

{dz J : |J | = q, J is strictly increasing}
is an orthonormal basis. Let (·|·)2�0 be the L

2 inner product on �
0,q
0 (Cn−1) given by

( f |g)2�0 =
∫

Cn−1
〈 f |g〉e−2�0(z)dv(z), f, g ∈ �

0,q
0 (Cn−1). (1.54)

Put
�(q)
2�0

= ∂ ∂
∗,2�0 + ∂

∗,2�0
∂ : �0,q(Cn−1) → �0,q(Cn−1), (1.55)

where ∂
∗,2�0 is the formal adjoint of ∂ with respect to (·|·)2�0 .

From (1.53), it is not difficult to check that

�(q)

(m) = �(q)
2�0

+ εmPm on D̃logm, (1.56)

where Pm is a second order partial differential operator and all the coefficients of Pm are
uniformly bounded with respect to m in Cμ(D̃logm) norm for every μ ∈ N0 and εm is a
sequence tending to zero as m → ∞. By the convergence property of (1.53) and (1.56), we
have Garding’s inequality for elliptic operator �(q)

(m).

Proposition 1.21 For every r > 0 with D̃2r ⊂ D̃logm and s ∈ N0, there is a constant
Cr,s > 0 independent of m and the point x0 such that

‖u‖2
2mF∗

mϕ,s+2,D̃r
≤ Cs,r

(
‖u‖2

2mF∗
mϕ,D̃2r

+ ‖�(q)

(m)u‖2
2mF∗

mϕ,s,D̃2r

)
(1.57)

for all u ∈ F∗
m�0,q(D̃logm), where ‖u‖2mF∗

mϕ,s,D̃r
is the weighted Sobolev norm of order s

with respect to the weight function 2mF∗
mϕ which is given by

‖u‖2
2mF∗

mϕ,s,D̃r
=

′∑

α∈N2n−2
0 ,|α|≤s,|J |=q

∫

D̃r

|∂α
x u J |2e−2mF∗

mϕλ

(
z√
m

)
dv(z), (1.58)

where u = ∑′
|J |=q u J eJ (

z√
m

) ∈ F∗
m�0,q(D̃logm).

2 Morse inequalities on CR manifolds

Let f1, . . . , fdm be an orthonormal basis ofHq
b,m(X). The Szegö kernel ofHq

b,m(X) is defined
by

�
q
m(x) :=

dm∑
j=1

| f j (x)|2. (2.1)
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It is easy to see that �q
m(x) is independent of the choice of the orthonormal basis and

dimHq
b,m(X) =

∫

X
�

q
m(x)dvX . (2.2)

We denote by X (q) a subset of X such that

X (q) := {x ∈ X : Lx has exactly q negative eigenvalues and n − 1 − q positive eigenvalues}.
Recall that for every k ∈ N, Xk is given by (1.1). The following is our first technical result.

Theorem 2.1 Let X be a compact connected CR manifold with a transversal CR S1-action.
For every q = 0, 1, 2, . . . , n − 1, we have

sup
{
m−(n−1)�

q
m(x) : m ∈ N, x ∈ X

}
< ∞ (2.3)

and for every k ∈ N with Xk �= ∅, we have

lim sup
m→∞

m−(n−1)�
q
m(x) ≤ k

2πn
| detLx | · 1X (q)(x), ∀x ∈ Xk, (2.4)

where 1X (q)(x) denotes the characteristic function of the subset X (q) ⊂ X and Lx is the
Levi-form defined in Definition 1.5.

In particular, for every q = 0, 1, 2, . . . , n − 1, we have

lim sup
m→∞

m−(n−1)�
q
m(x) ≤ 1

2πn
| detLx | · 1X (q)(x), ∀x ∈ Xreg. (2.5)

2.1 Main results

From Lemma 1.4 and Theorem 2.1 and by Fatou’s lemmawe obtain the weakMorse inequal-
ities

Theorem 2.2 (weak Morse inequalities) Let X be a compact connected CR manifold with
a transversal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. Then for every q =
0, 1, 2, . . . , n − 1, we have

dim Hq
b,m(X) ≤ mn−1

2πn

∫

X (q)

| detLx |dvX (x) + o(mn−1), m → ∞. (2.6)

From Theorem 2.2 we deduce Demailly’s weak holomorphic Morse inequalities (see [9,
Theorem0.1] and [27, Theorem 1.7.1]):

Corollary 2.3 (Demailly’s weak morse inequalities) Let M be a compact Hermitian mani-
fold of dimension dimCM = n and let (L , hL) be a Hermitian line bundle over M. Then for
q = 0, 1, 2, . . . , n

dim Hq
∂
(M, Lk) ≤ kn

(2π)n

∫

M(q)

| detRL
x |dvM (x) + o(kn), k → ∞, (2.7)

where Hq
∂
(M, Lk) denotes the q-th ∂-cohomology group with values in Lk, dvM is the

induced volume form on M,RL
x , x ∈ M is the Chern curvature of the Hermitian line bundle

(L , hL) and M(q) is a subset of M whereRL
x has exactly q negative eigenvalues and n − q

positive eigenvalues.
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Proof We take X to be the circle bundle {v ∈ L∗ : |v|2
h−1 = 1} over the compact complex

manifold M where (L∗, h−1) is the dual line bundle of Hermitian line bundle (L , h) over M .
Let (z, λ) be the local coordinates on L∗, where λ is the fiber coordinates. The natural S1-
action on X is defined by eiθ ◦ (z, λ) = (z, eiθλ). Then we can check that X is a compact
CR manifold with a transversal CR S1-action. On X we can check that Lx |T 1,0X = 1

2RL
z

where x = (z, λ). It is well known that (see [26, p.746], Theorem 1.2 in [8]) for k ∈ N,
dimHq

∂
(M, Lk) = dimHq

b,k(X). From (2.6) we have

dimHq
∂
(M, Lk) = dim Hq

b,k(X)

≤ kn

2πn+1

∫

X (q)

| detLx |dvX (x) + o(kn)

≤ kn

2πn+1 × 2π

2n

∫

M(q)

| detRL |dvM + o(kn)

≤ kn

(2π)n

∫

M(q)

| detRL
x |dvM (x) + o(kn).

(2.8)

Thus, we get the conclusion of Corollary 2.3. ��
It should be noticed that the relation between sections of the holomorphic line bundle

and function theory on the associate Grauert tube was first observed by Grauert [14]. The
isomorphism of the subcomplex (�

0,•
m (X), ∂b) to the Dolbeault complex (�0,•(M, Lm), ∂)

was established by Ma-Marinescu [26, p.746].
For σ > 0, we collect the eigenspace of �(q)

b,m whose eigenvalue is less than or equal to σ

(see Theorem 1.13) and define

Hq
b,m,≤σ (X) :=

⊕
λ≤σ

Hq
b,m,λ(X). (2.9)

The Szegö kernel function of the space Hq
b,m,≤mσ (X) is defined by �

q
m,≤mσ (x) =∑dm

j=1 |g j (x)|2, where {g j (x)}dmj=1 is any orthonormal basis for the space Hq
b,m,≤mσ (X).

Our second main technique result is the following

Theorem 2.4 For any sequence vm > 0 with vm → 0 as m → ∞, there exists a constant
C > 0 independent of m and x ∈ X such that

m−(n−1)�
q
m,≤mvm

(x) ≤ C, ∀m ∈ N, ∀x ∈ X. (2.10)

Moreover, there is a sequence δm > 0, δm → 0 as m → ∞, such that for any sequence
vm > 0 with lim

m→∞
δm
vm

= 0, we have

lim
m→∞m−(n−1)�

q
m,≤mvm

(x) = 1

2πn
| detLx | · 1X (q), ∀x ∈ Xreg. (2.11)

Since the measure of X\Xreg = 0, integrating (2.11) and by Fatou’s Lemma we have

dimHq
m,≤mvm

(X) = mn−1

2πn

∫

X (q)

| detLx |dvX (x) + o(mn−1), m → ∞. (2.12)

From Theorem 2.4 and the linear algebraic argument from Demailly in [9,10] and [25], we
obtain the strong Morse inequalities
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Theorem 2.5 (Strong Morse inequalities) Let X be a compact connected CR manifold
with a transversal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. For every
q = 0, 1, 2, . . . , n − 1, as m → ∞, we have

q∑
j=0

(−1)q− jdimH j
b,m(X) ≤ mn−1

2πn

q∑
j=0

(−1)q− j
∫

X ( j)
| detLx |dvX (x) + o(mn−1). (2.13)

In particular, when q = n − 1, as m → ∞, we have the asymptotic Riemann-Roch theorem

n−1∑
j=0

(−1) jdimH j
b,m(X) = mn−1

2πn

n−1∑
j=0

(−1) j
∫

X ( j)
| detLx |dvX (x) + o(mn−1). (2.14)

From Theorem 2.5, we can repeat the procedure in the proof of Corollary 2.3 with minor
change and get Demailly’s strong Morse inequalities. We refer the readers to the book byMa
and Marinescu [27] for the heat kernel approach of Demailly’s Morse inequalities.

When q = 1, from the strong Morse inequality in Theorem 2.5 we have

− dimH0
b,m(X) + dimH1

b,m(X)

≤ mn−1

2πn

∫

X (1)
| detLx |dvX (x) − mn−1

2πn

∫

X (0)
| detLx |dvX (x) + o(mn−1), m → ∞.

(2.15)
The inequality (2.15) implies that

Theorem 2.6 (Grauert–Riemenschneider criterion) Let X be a compact connected CR man-
ifold with a transversal CR S1-action. Assume that dimRX = 2n − 1, n ≥ 2. If X is weakly
pseudoconvex and strongly pseudoconvex at a point, then as m → ∞

dimH0
b,m(X) ≈ mn−1, dimHq

b,m(X) = o(mn−1) for q ≥ 1. (2.16)

In particular, we have dimH0
b (X) = ∞.

Proof Since X is a weakly pseudoconvex manifold and strongly pseudoconvex at least at a
point, we have X (q) = ∅ for every q ≥ 1 and X (0) contains a ball. By the weak Morse
in Theorem 2.2 we have dimHq

b,m(X) = o(mn−1) for q ≥ 1 as m → ∞. By the weak
Morse inequalities for q = 0 and (2.15), we get the conclusion of (2.16). Using the Fourier
decomposition (1.22), we have dimH0

b (X) = ∞. ��
Theorem 2.6 implies a new proof of Grauert–Riemenschneider conjecture (Siu’s criterion) as
stated and solved by Siu [30], [31, Theorem1] and Ma and Marinescu [27, Theorem 2.2.27
(i)].

Corollary 2.7 (Grauert–Riemenschneider conjecture, Siu’s criterion) Let M be a compact
Hermitian manifold and let (L , hL) be a Hermitian line bundle over M. If L is semi-positive
and positive at a point, then L is big.

Proof Applying Theorem 2.6 to the circle bundle of L we get the conclusion of the corollary.
��

Demailly [9, Theorem 0.8(a)] and [27, Theorem 2.2.27(ii)] proved a more general form
of the Grauert–Riemenschneider conjecture, namely that if the integral of c1(L , h)n over
the set of points for which c1(L , h) has one or fewer negative eigenvalues is positive (i.e.∫
M(≤1) c1(L , h)n > 0), then L is big and M is Moishezon.

123



Morse inequalities for Fourier components of Kohn–Rossi… 457

If we set
∫
X (≤1) |detLx |dvX = ∫

X (0) |detLx |dvX − ∫
X (1) |detLx |dvX and assume

that the Levi form of CR manifold is not always semi-positive but that the integral∫
X (≤1) |detLx |dvX > 0, then by (2.15) we still get many CR functions:

Theorem 2.8 Let X be a compact connected CR manifold of dimension 2n − 1 with a
transversal CR S1-action. Assume that

∫

X (≤1)
|detLx |dvX > 0. (2.17)

Then dimH0
b,m(X) ≈ mn−1 as m → ∞. In particular, dimH0

b (X) = ∞.

Theorem 2.8 is the analogue of Demailly’s criterion [9, Theorem 0.8(a)] and [27, Theorem
2.2.27(ii)], for CRmanifolds with transversal CR S1-action and actually implies this criterion
if applied to the Grauert tube. Theorem 2.8 shows that one can allow the Levi form to be
negative in a controlled way and still have a lot of CR functions.

2.1.1 Morse inequalities for m → −∞
In the main results above, we only consider the Morse inequalities for the positive Fourier
component dimHq

b,m(X) as m → ∞. In fact, we also have the Morse inequalities for the

negative Fourier component Hq
b,m(X) as m → −∞. Based on the same arguments as in the

proof of the main results, the bounds for Hq
b,m(X) for m → −∞ will be given in terms of

integrals of the Levi form of X over the sets X (n − 1 − q). More precisely, we have

Theorem 2.9 Let X be a compact connected CR manifold with a transversal CR S1-action.
Assume that dimRX = 2n − 1, n ≥ 2. For every q = 0, 1, 2, . . . , n − 1, as m → −∞, we
have

dim Hq
b,m(X) ≤ |m|n−1

2πn

∫

X (n−1−q)

| detLx |dvX (x) + o(|m|n−1),

q∑
j=0

(−1)q− jdimH j
b,m(X) ≤ |m|n−1

2πn

q∑
j=0

(−1)q− j
∫

X (n−1− j)
| detLx |dvX (x) + o(|m|n−1).

(2.18)
In particular, when q = n−1, as m → −∞, we have the asymptotic Riemann–Roch theorem

n−1∑
j=0

(−1) jdimH j
b,m(X) = |m|n−1

2πn

n−1∑
j=0

(−1) j
∫

X (n−1− j)
| detLx |dvX (x) + o(|m|n−1).

(2.19)

From Theorems 2.2, 2.5 and 2.9, we deduce

Theorem 2.10 Let X be a compact connected CR manifold of real dimension 2n − 1 with a
transversal CR S1-action. Let q ∈ {0, 1, . . . , n − 1}. Assume that the Levi form of X has q
non-positive and n − 1 − q non-negative eigenvalues everywhere. Then

dimH j
b,m(X) = o(mn−1), as m → ∞, for j �= q

dimH j
b,m(X) = o(|m|n−1), as m → −∞, for j �= n − 1 − q.

(2.20)
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If moreover the Levi-form is non-degenerate at some point, then

dimHq
b,m(X) ≈ mn−1, as m → ∞

dimHn−1−q
b,m (X) ≈ |m|n−1, as m → −∞

dimHq
b (X) = ∞, dimHn−1−q

b (X) = ∞.

(2.21)

In particularly, if X is weakly pseudoconvex and strongly pseudoconvex at a point, then

dimHn−1
b,m (X) ≈ |m|n−1 as m → −∞

and in particluar dimHn−1
b (X) = ∞. Moreover, dimHq

b (X) = o(|m|n−1) as m → −∞ for
q ≤ n − 2.

2.2 Proofs of Theorem 2.1 and the weak Morse inequalities

Fix x0 ∈ X and choose canonical local patch D near x0 with canonical coordinates (z, θ, ϕ)

such that (z, θ, ϕ) is trivial at x0. Write D = D̃ × (−δ, δ), D̃ = {z ∈ C
n−1 : |z| < ε}.

In this section, we always treat D̃ as an open subset of C
n−1 with the complex coordinates

z = (z1, . . . , zn−1). We choose the fixed Hermitian metric given on T ∗0,1 D̃ defined in
Remark 1.20 and extend it to T ∗0,q D̃. We still use the notation 〈·|·〉 to denote the Hermitian
metric on T ∗0,q D̃.Let u ∈ �

0,q
m (X). From the definition of�0,q

m (X)we have that Tu = imu.
Then on D, u = ũ(z)eimθ with ũ(z) ∈ �0,q(D̃) and ũ(z) = ∑′

|J |=q ũ J (z)dz J . Before the
proof of the weak Morse inequalities, we first need the following lemma

Lemma 2.11 For all u ∈ �
0,q
m (X), on D we have

∂bu = eimθe−mϕ∂(emϕe−imθu), ∂
∗
bu = eimθe−mϕ∂

∗,2mϕ
(emϕe−imθu),

�(q)
b,mu = eimθe−mϕ�(q)

2mϕ(emϕe−imθu).
(2.22)

Recall that ∂
∗,2mϕ

is as in the discussion before (1.50) and �(q)
2mϕ is given by (1.52).

Proof Let u = ∑′
|J |=q u J dz J . Then ∂bu = ∑′

|J |=q

(
∂uJ
∂z j

− i ∂ϕ(z)
∂z j

∂uJ
∂θ

)
dz j ∧ dz J . By the

assumption of the Lemma 2.11, Tu = imu which implies that on ∂uJ
∂θ

= imuJ on D for
every J . Then

∂bu =
′∑

|J |=q

n−1∑
j=1

(
∂uJ

∂z j
+ m

∂ϕ(z)

∂z j
u J

)
dz j ∧ dz J

= eimθ
′∑

|J |=q

n−1∑
j=1

(
∂ ũ J

∂z j
+ m

∂ϕ(z)

∂z j
ũ J

)
dz j ∧ dz J ,

(2.23)

where u = eimθ ũ(z) on D, ũ(z) = ∑p
|J |=q rimeũ J (z)dz J . Set v(z) = emϕ ũ(z) =∑p

|J |=q rimevJ (z)dz J . Then

∂vJ

∂z j
= ∂

∂z j
(ũ J (z)e

mϕ) = emϕ

(
∂ ũ J

∂z j
+ m

∂ϕ(z)

∂z j
ũ J

)
. (2.24)

Substituting (2.24) to (2.23) we get the conclusion of the first identity of Lemma 2.11.
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Since ∂
∗
bu ∈ �

0,q−1
m (X), on D, we write ∂

∗
bu = eimθ ṽ(z), ṽ(z) ∈ �0,q−1(D̃). Take

χ(θ) ∈ C∞
0 ((−δ, δ)) with

∫
χ(θ)dθ = 1. Let g ∈ �

0,q−1
0 (D̃). We have

(∂
∗
bu|e−2mϕ(z)g(z)χ(θ)eimθ ) = (eimθ ṽ(z)|e−2mϕ(z)g(z)χ(θ)eimθ ) = (ṽ(z)|g(z))2mϕ.

(2.25)
On the other hand, from the proof first identity of Lemma 2.11, we have

(∂
∗
bu|e−2mϕ(z)g(z)χ(θ)eimθ ) = (u|∂b(e−2mϕ(z)g(z)χ(θ)eimθ ))

= (u|χ(θ)eimθe−mϕ(z)∂(e−mϕ(z)g(z))) + (u|(−i)χ ′(θ)eimθe−2mϕ(z)∂ϕ ∧ g(z))

= (emϕ(z)ũ(z)|∂(e−mϕ(z)g(z))2mϕ = (∂
∗,2mϕ

(emϕ ũ)|e−mϕ(z)g(z))2mϕ

= (e−mϕ(z)∂
∗,2mϕ

(emϕ ũ)|g(z))2mϕ.

(2.26)

From (2.25) and (2.26), we get

(ṽ(z)|g(z))2mϕ = (e−mϕ(z)∂
∗,2mϕ

(emϕ ũ)|g(z))2mϕ, ∀g ∈ �
0,q
0 (D̃),

and hence

e−imθ ∂
∗
bu = ṽ = e−mϕ(z)∂

∗,2mϕ
(emϕ ũ) on D.

We get the second identity in Lemma 2.11. The third identity can be deduced directly from
the other two identities. ��

For any u ∈ �0,q(X), u = ∑′
|J |=q u J (z, θ)eJ (z). Here J = ( j1, . . . , jq) with 1 ≤ j1

< · · · < jq ≤ n − 1, eJ = e j1 ∧ · · · ∧ e jq and {e j }n−1
j=1 is the orthonormal frame chosen

in Lemma 1.19. Set Sqm,J (x) = supu∈Hq
b,m (X),‖u‖=1 |uJ (x)|2 which is the extremal function

along the direction eJ . We can repeat the proof of Lemma 2.1 in [19] and conclude that

Lemma 2.12 For every local orthonormal frame {eJ : |J | = q, strictly increasing} of
T ∗0,q X over an open set D, we have for y ∈ D

�
q
m(y) =

′∑
|J |=q

Sqm,J (y). (2.27)

Now we are going to prove Theorem 2.1 and the weak Morse inequality.

Proof Fix x0 ∈ X and choose canonical local patch D = {(z, θ) : |z| < ε, |θ | < δ} with
canonical coordinates (z, θ, ϕ) such that (z, θ, ϕ) is trivial at x0. For any u ∈ Hq

b,m(X) with

‖u‖ = 1, on D we have u(z, θ) = ũ(z)eimθ . Set vm(z) = emϕ(z)ũ(z), z ∈ D. Then from
Lemma 2.11, �(q)

b,mu(z, θ) = 0 and ‖u‖ = 1 we deduce that on D,

�(q)
2mϕvm(z) = 0 and

∫

D̃
|vm(z)|2e−2mϕ(z)λ(z)dv(z) ≤ 1

2δ
, (2.28)

where �(q)
2mϕ is as in (1.52). Set ṽ(m)(z) = m

−(n−1)
2 e

mϕ( z√
m

)
ũ( z√

m
). Then by (1.51) and (2.28)

we have

�(q)

(m)ṽ(m)(z) = 0 and
∫

D̃r

|ṽ(m)(z)|2e−2mϕ( z√
m

)
λ

(
z√
m

)
dv(z) ≤ 1

2δ
, (2.29)
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for any r < logm when m is large. From Proposition 1.21 and (2.29), there exists a constant
C ′
r,s,δ > 0 independent of m and the point x0 such that

‖ṽ(m)‖22mF∗
mϕ,s+2,D̃r

≤ C ′
r,s,δ. (2.30)

Since X is compact we can choose δ which is independent of x0. For s ≥ 2n−2, from (2.30)
and by Sobolev embedding theorem, there exists a constantC ′ which is independent of x0,m
such that

m−(n−1)|u(x0)|2 = m−(n−1)|ũ(0)|2 = |ṽ(m)(0)|2 ≤ C ′. (2.31)

From (2.31) and Lemma 2.12, we get the conclusion of the first part of Theorem 2.1.
Fix |J | = q , J is strictly increasing. There exists a sequence umk ∈ Hq

b,mk
(X) with

‖umk‖ = 1 such that

lim sup
m→∞

m−(n−1)Sqm,J (x0) = lim
k→∞m−(n−1)

k |umk ,J (x0)|2. (2.32)

Tumk = imkumk implies that on D, we have umk = ũmk (z)e
imkθ . Since �(q)

b,mk
(umk ) = 0,

from Lemma 2.11 we have
�(q)
2mkϕ

(emkϕ ũmk (z)) = 0. (2.33)

Moreover,
∫

D̃
|emkϕ ũmk (z)|2e−2mkϕ(z)λ(z)dv(z) =

∫

D̃
|ũmk (z)|2λ(z)dv(z)

= 1

2δ

∫

D
|umk |2λ(z)dv(z)dθ ≤ 1

2δ
.

(2.34)

Similarly, set ṽ(mk )(z) = m
−(n−1)

2
k e

mkϕ( z√
mk

)
ũmk (

z√
mk

). Then from (1.51), (2.33) and (2.34)

we have
�(q)

(mk )
ṽ(mk ) = 0 on D̃logmk , (2.35)

and ∫

D̃logmk

|ṽ(mk )(z)|2F∗
mk
e
−2mkϕ

(
z√
mk

)
λ

(
z√
mk

)
dv(z) ≤ 1

2δ
. (2.36)

For any r > 0 with D̃r ⊂ D̃logm when m >> 1, by Garding’s inequality we have

‖ṽ(mk )‖22mk F∗
mk

ϕ,s+2,D̃r
≤ Cs,r

(
‖ṽ(mk )‖22mk F∗

mk
ϕ,D̃2r

+ ‖�(q)

(mk )
ṽ(mk )‖22mk F∗

mk
ϕ,s,D̃2r

)
,

(2.37)
whereCr,s > 0 is a constant independent ofmk . Combining (2.35), (2.36) and (2.37) we have
‖ṽ(mk )‖22mF∗

mϕ,s+2,D̃r
≤ Cr,s,δ , where Cr,s,δ > 0 is a constant independent of mk . We extend

ṽ(mk ) to C
n−1 by zero outside D̃logmk still denoted by ṽ(mk ). By Sobolev compact embedding

theorem, there exists a subsequence of {ṽ(mk )(z)} which is denoted by {v(mk j )
(z)} such that

ṽ(mk j )
→ v =

p∑
|J |=q

rimevJ (z)dz
J ∈ �0,q(Cn−1) in C∞(K ) topology, ∀K � C

n−1.

(2.38)
From (2.35), (2.36), (2.38) and (1.56), we can check that

�(q)
2�0

v = 0 (2.39)
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and ∫

Cn−1
|v(z)|2e−2�0(z)dv(z) ≤ 1

2δ
. (2.40)

Recall that �0(z) = ∑n−1
j=1 λ j |z j |2. Combining (2.39) and (2.40), we have

|vJ (0)|2 ≤ 1

2δ
Sq
Cn−1,J

(0). (2.41)

Here, Sq
J,Cn−1(0) is the extremal function along the direction dz J on the model space C

n−1

with respect to complex Laplacian �(q)
2m�0

, that is

Sq
J,Cn−1(0) = sup{|uJ (0)|2 : u ∈ �0,q(Cn−1), �(q)

2�0
u = 0,

∫
|u|2e−2�0(z)dv(z) = 1}.

From (2.32), (2.38) and (2.41), we have

lim sup
m→∞

m−(n−1)Sqm,J (x0) = lim
j→∞m−(n−1)

k j
|umk j ,J

(x0)|2

= lim
j→∞ |ṽ(mk j )

(0)|2 = |vJ (0)|2 ≤ 1

2δ
Sq
Cn−1,J

(0). (2.42)

From (2.42) and Lemma 2.12, we deduce that

lim sup
m→∞

m−(n−1)�
q
m(x0) ≤

p∑
|J |=q

rime lim sup
m→∞

m−(n−1)Sqm,J (x0) ≤ 1

2δ

∑′
|J |=q

Sq
J,Cn−1(0).

(2.43)
By Proposition 4.3 in [3], we have that

∑′
|J |=q

Sq
J,Cn−1(0) = 1

(2π)n−1 |2λ1, . . . , 2λn−1| · 1X (q)(x0). (2.44)

From (2.43) and (2.44), we have

lim sup
m→∞

m−(n−1)�
q
m(x0) ≤ 1

2δ
· 1

2πn−1 | detLx0 | · 1X (q)(x0). (2.45)

When x0 ∈ Xk , by Lemma 1.18, δ can be chosen to equal to π
k − ε, for every ε > 0. From

this observation and (2.45), we deduce that

lim sup
m→∞

m−(n−1)�
q
m(x) ≤ k

2π
· 1

2πn−1 | detLx | · 1X (q)(x),∀x ∈ Xk (2.46)

and Theorem 2.1 follows then.
From Lemma 1.4, Theorem 2.1 and by Fatou’s lemma we obtain the weakMorse inequal-

ities and get the conclusion of Theorem 2.2. ��
Now we are going to prove Theorem 2.4 and the strong Morse inequalities.

2.3 Proofs of Theorem 2.4 and the strong Morse inequalities

In this section, wewill establish the strongMorse inequalities on CRmanifolds with transver-
sal CR S1-action. We first recall some well known facts. From Theorem 1.13, we know that
�(q)
b,m has discrete spectrum, each eigenvalues occurs with finite multiplicity and all the eigen-

forms are smooth. Forσ ∈ R, letHq
b,m,≤σ (X)be defined as in (2.9). Similarly, letHq

b,m,>σ (X)

denote the space spanned by the eigenforms of �(q)
b,m whose eigenvalues are >σ .
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Let Qb,m be the Hermitian form on �
0,q
m (X) defined for u, v ∈ �

0,q
m (X) by

Qb,m(u, v) = (∂bu|∂bu) + (∂
∗
bu|∂∗

bv) + (u|v) = (�(q)
b,mu|v) + (u, v).

Let �
0,q
m (X) be the completion of �

0,q
m (X) under the Qb,m in L2

(0,q),m(X). For λ > 0, we
have the orthogonal spectral decomposition with respect to Qb,m

�
0,q
m (X) = Hq

b,m,≤σ

⊕
Hq

b,m,>σ (X), (2.47)

where Hq
b,m,>σ (X) is the completion of Hq

b,m,>σ (X) under Qb,m in L2
(0,q),m(X). For the

proof of Theorem 2.4, we need the following

Proposition 2.13 For any p ∈ X (q) ∩ Xreg, there exists αm ∈ �
0,q
m (X) such that

(1) lim
m→∞m−(n−1)|αm(p)|2 = 1

2πn
| detLp|.

(2) lim
m→∞ ‖αm‖2 = 1.

(3) lim
m→∞

∥∥∥∥
(
m−1�(q)

b,m

)k
αm

∥∥∥∥ = 0,∀k ∈ N.

(4) There exists δm independent of p, δm → 0 such that(
m−1�(q)

b,mαm
∣∣αm

)
≤ δm .

(2.48)

We now fix p ∈ X (q) ∩ Xreg. Let D = D̃ × (−π, π) be a canonical local patch with
canonical coordinates (z, θ, ϕ) such that (z, θ, ϕ) is trivial at p. We take D = {(z, θ) ∈
C
n−1 : |z| < ε, |θ | < π} = D̃ × (−π, π). By Lemma 1.17, this is always possible. Until

further notice, we will work with (z, θ, ϕ) and we will use the same notations as in Section
1.4. Before the proof of Proposition 2.13, we claim that one can find u(z) ∈ �0,q(Cn−1)

such that

�(q)
2�0

u(z) = 0,
∫

Cn−1
|u(z)|2e−2�0(z)dv(z) = 1

2π
,

and |u(0)|2 = 1

2πn
|λ1(p), . . . , λn−1(p)|.

(2.49)

Recall that�(q)
2�0

is given by (1.55). Proof of the claim:We assume that the first q eigenvalues
of the Levi-form are negative, that is, λ1 ≤ · · · ≤ λq < 0 < λq+1 ≤ · · · ≤ λn−1. Set

u(w) =
( |2λ1, . . . , 2λn−1|

(2π)n−1 · 1

2π

) 1
2

e
∑q

j=1 λ j |w j |2dw1 ∧ · · · ∧ dwq . (2.50)

It is easy to check that the form u(w) satisfies the claim. Now we are going to prove Propo-
sition 2.13.

Proof We choose cut-off function χ such that χ(z) ∈ C∞
0 (Cn−1) with χ ≡ 1 in a neighbor-

hood of D 1
2
and suppχ � D1. Here, Dr = {z ∈ C

n−1 : |z1| < r, . . . , |zn−1| < r}. Choose
a function η(t) ∈ C∞(R) satisfying 0 ≤ η(t) ≤ 1 such that η(t) ≡ 1 when t ≥ π2 and

η(t) ≡ 0 when t < π2

4 . Set ηm(θ) = η((π2 − θ2) log2 m),m ∈ N. Then ηm(θ) is a family
of cut-off functions with suppηm � (−π, π). Moreover, we have that limm→∞ ηm(θ) =
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1, a.e. θ ∈ (−π, π) and |ηm | ≤ 1, |η′
m(θ)| = O(log2 m), |η′′

m(θ)| = O(log4 m). Define

um(z, θ) = m
n−1
2 u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
ηm(θ)eimθ , (2.51)

where u(z) ∈ �0,q(Cn−1) is as in (2.50). Then um ∈ �0,q(X) with suppum � D. Set
αm = Q(q)

m um . Then on D we have

αm(z, θ) = 1

2π

∫ π

−π

um(z, t)e−imt dteimθ . (2.52)

From (2.51) we have

‖um‖2 =
∫

X
mn−1|u(

√
mz)|2e−2mϕ(z)χ2

(√
mz

logm

)
η2m(θ)λ(z)dv(z)dθ

=
∫ π

−π

η2m(θ)dθ

∫

D logm√
m

mn−1|u(
√
mz)|2e−2mϕ(z)χ2

(√
mz

logm

)
λ(z)dv(z)

≤ 2π
∫

D logm√
m

mn−1|u(
√
mz)|2e−2mϕ(z)χ2

(√
mz

logm

)
λ(z)dv(z).

(2.53)

Taking limits as m → ∞ and from the construction of u(z) in (2.49), we have

lim sup
m→∞

‖um‖2 ≤ 2π
∫

Cn−1
|u(z)|2e−2�0(z)dv(z) = 2π × 1

2π
= 1. (2.54)

Since on D

αm(z, θ) = Qmum(z, θ) = 1

2π

∫ π

−π

um(z, t)e−imt dteimθ

= 1

2π

∫ π

−π

m
n−1
2 u(

√
mz)e−mϕ(z)χ(

√
mz

logm
)ηm(t)eimt e−imt dteimθ

=
( 1

2π

∫ π

−π

ηm(t)dt
)
m

n−1
2 u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ

= cmm
n−1
2 u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ .

(2.55)

Here cm = 1
2π

∫ π

−π
ηm(t)dt . Then by Fatou’s lemma, we get lim

m→∞ cm = 1. We have

m−(n−1)|αm(p)|2 = m−(n−1)|αm(0, 0)|2 = c2m |u(0)|2 = c2m
|λ1(p), . . . , λn−1(p)|

2πn
. (2.56)

Taking limits in (2.56) asm → ∞, we get the conclusion of the first part of Proposition 2.13.
From (2.55), we have

lim
m→∞

∫

D
|αm(z, θ)|2λ(z)dv(z)dθ

= lim
m→∞ 2π

∫

D̃
|c2m |mn−1|u(

√
mz)|2e−2mϕ(z)χ2

(√
mz

logm

)
λ(z)dv(z)

= 2π
∫

Cn−1
|u(z)|2e−2�0(z)dv(z) = 2π × 1

2π
= 1.

(2.57)
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This implies that lim inf
m→∞ ‖αm‖2 ≥ 1. From (2.54) and the definition of αm we have ‖αm‖2 ≤

‖um‖2 ≤ 1 which implies that lim sup
m→∞

‖αm‖2 ≤ 1. Thus we have lim
m→∞ ‖αm‖2 = 1. Thus

we get the conclusion of the second part of Proposition 2.13. Now we postpone and state the
following lemma

Lemma 2.14

1

m
�(q)
b um = 1

m
�(q)
b

[
m

n−1
2 u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ ηm(θ)

]

= 1

m
m

n−1
2 �(q)

b

[
u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ

]
ηm(θ) + εm,

(2.58)

where ‖εm‖ ≤ δm, δm is a sequence independent of p with δm → 0 as m → ∞.

Proof Let {e j }n−1
j=1 be the orthonormal frame of T ∗0,1X over D given in Lemma 1.19. Let

{U j }n−1
j=1 be the dual frame of {e j }n−1

j=1 with respect to the given T -rigid Hermitian metric on
CT X. Then on D

U j = ∂

∂z j
− iλ j z j

∂

∂θ
+ O(|z|2) ∂

∂θ
, j = 1, . . . , n − 1. (2.59)

By a direct calculation(see Proposition 2.3 in [16])

�(q)
b =

n−1∑
j=1

U
∗
jU j+

n−1∑
j,k=1

e j∧(ek∧)∗◦[U j ,U
∗
k ]+ε(U )+ε(U

∗
)+ zero order terms, (2.60)

where U∗
j is the formal adjoint of Uj , ε(U ) denotes the remainder terms of the form

n−1∑
k=1

ak(z, θ)Uk with ak smooth and similarly for ε(U
∗
). Then by a direct calculation we

have

1

m
�(q)

b um = 1

m
m

n−1
2 �(q)

b

[
u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ

]
ηm(θ)

+ 1

m

(
ε(U

∗
)um(z, θ)

)
η′
m(θ)O(|z|)+ 1

m

(
ε(U )um(z, θ)

)
η′
m(θ)O(|z|)

+ 1

m
um(z, θ)

[
η′
m(θ)O(1) + η′

m(θ)O(|z|) + η′′
m(θ)O

(|z|2)] .

= 1

m
m

n−1
2 �(q)

b

[
u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ

]
ηm(θ) + εm

(2.61)

Here, we have used εm to denote the remaining terms of (2.61). Then by the construction of
ηm we can check that εm = O(

(logm)α

mβ ) where α, β are positive constants. Thus the lemma
follows. ��
Now we are going to prove the third part of Proposition 2.13, we only prove it when k = 1
and the other cases are similar. From Lemma 2.11 we have

�(q)
b

[
u(

√
mz)χ

(√
mz

logm

)
e−mϕ(z)eimθ

]
= eimθe−mϕ�(q)

2mϕ

[
u(

√
mz)χ

(√
mz

logm

)]
.

(2.62)
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From (1.51), (1.56) and �(q)
2�0

u = 0, it is straightforward to check that

∫

X

∣∣∣∣
1

m
m

n−1
2 �(q)

b

[
u(

√
mz)e−mϕ(z)χ

(√
mz

logm

)
eimθ

]
ηm(θ)

∣∣∣∣
2

dvX

=
∫ ∣∣∣∣

1

m
m

n−1
2 eimθ�(q)

2mϕ

[
u(

√
mz)χ

(√
mz

logm

)]
ηm(θ)

∣∣∣∣
2

e−2mϕ(z)λ(z)dv(z)dθ

=
∫ π

−π

|ηm(θ)|2dθ

∫ ∣∣∣∣
1

m
m

n−1
2 eimθ�(q)

2mϕ

[
u(

√
mz)χ

(√
mz

logm

)]∣∣∣∣
2

e−2mϕ(z)λ(z)dv(z)

=
∫ π

−π

|ηm(θ)|2dθ

∫ ∣∣∣∣�(q)

(m)

[
u(z)χ

(
z

logm

)]∣∣∣∣
2

e−2mF∗
mϕ(z)λ

(
z√
m

)
dv(z)

≤ 2π
∫ ∣∣∣∣�(q)

(m)

[
u(z)χ

(
z

logm

)]∣∣∣∣
2

e−2mF∗
mϕ(z)λ

(
z√
m

)
dv(z) ≤ δm,

(2.63)
where δm > 0 is a sequence independent of p with limm→∞ δm = 0. Combining (2.58),
(2.63) and notice that ‖m−1�(q)

b αm‖ ≤ ‖m−1�(q)
b um‖we get the conclusion of the third part

of this proposition. (2) in Proposition 2.13 and (2.63) imply (4) in this proposition. ��
Now we are going to prove Theorem 2.4. The proof of (2.10) is essentially the same as

the proof of (2.3). Therefore we omit the detail. Let αm be the sequence we have chosen in

Proposition 2.13. Then αm = αm,1 + αm,2, αm,1 ∈ Hq
b,m,≤mvm

(X), αm,2 ∈ Hq
b,m,>mvm

(X).

Since

‖αm,2‖2 = (αm,2|αm,2) ≤ 1

mvm

(
�(q)
b,mαm,2

∣∣αm,2

)
= 1

vm

(
1

m
�(q)
b,mαm

∣∣∣um,2

)
≤ δm

vm
→ 0.

(2.64)
From (2.64) and (2) in Proposition 2.13, we get

lim
m→∞ ‖αm,1‖ = 1. (2.65)

Now we claim that
lim

m→∞m−(n−1)|αm,2(p)|2 = 0. (2.66)

On D, we write αm,2(z, θ) = α̃m,2(z)eimθ . Set βm,2(z) = α̃m,2(z)emϕ(z). Then

lim
m→∞m−(n−1)|αm,2(p)|2 = lim

m→∞m−(n−1)|α̃m,2(0)|2

= lim
m→∞m−(n−1)|βm,2(0)|2 = lim

m→∞ |β(m),2(0)|2.
(2.67)

Here we used the notation |β(m),2(z)|2 = m−(n−1)|βm,2(
z√
m

)|2.
From Lemma 2.11 we have

�(q)
b,m

(
αm,2

) = eimθe−mϕ(z)�(q)
2mϕ

(
α̃m,2(z)e

mϕ(z)
)

= eimθe−mϕ(z)�(q)
2mϕ(βm,2). (2.68)

From (2.68) and using induction, we get on D

(�(q)
b )kαm,2 = eimθe−mϕ

(
�(q)
2mϕ

)k
(βm,2(z)). (2.69)

By Garding’s inequality (see Proposition 1.21) and Sobolev embedding theorem, we see that

|β(m),2(0)|2 ≤ Cn,r

(
‖β(m),2‖22mF∗

mϕ,Dr
+ ‖�(q)

(m)β(m),2‖22mF∗
mϕ,n,Dr

)
(2.70)
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for some r > 0. Here Cn,r is a constant independent of p and m. Now, we have

‖β(m),2‖22mF∗
mϕ,Dr

≤ ‖αm,2‖2 → 0. (2.71)

Moreover, from Garding’s inequality and using induction (see Proposition 1.21), we have

‖�(q)

(m)β(m),2‖22mF∗
mϕ,n,Dr

≤ C ′
n+1∑
k=1

∥∥∥∥
(
�(q)

(m)

)k
β(m),2

∥∥∥∥
2

2mF∗
mϕ,Dr ′

, (2.72)

for some r ′ > 0, where C ′ > 0 is a constant independent of m. From (2.69) and (1.51) we
can check that for k ∈ N,

∥∥∥∥
(
�(q)

(m)

)k
β(m),2

∥∥∥∥
2

2mF∗
mϕ,Dr ′

≤ C1

∥∥∥∥
1

mk

(
�(q)
b

)k
αm,2

∥∥∥∥
2

≤ C1

∥∥∥∥
1

mk

(
�(q)
b

)k
αm

∥∥∥∥
2

→ 0,

(2.73)

where C1 > 0 is a constant independent of m. Combining (2.70), (2.71), (2.72) with (2.73),
we have limm→∞ |β(m),2(0)|2 = 0. From (2.67) we have limm→∞ m−(n−1)|αm,2(p)|2 = 0
and the claim (2.66) follows. From (2.66) and (1) in Proposition 2.13, we conclude that

lim
m→∞m−(n−1)|αm,1(p)|2 = |λ1(p), . . . , λn−1(p)|

2πn
. (2.74)

Now,

m−(n−1)�
q
m,≤mvm

(0) ≥ m−(n−1) |αm,1(p)|2
‖αm,1‖2 → |λ1(p), . . . , λn−1(p)|

2πn
. (2.75)

By a similar proof of (2.5), we have

lim sup
m→∞

m−(n−1)�
q
m,≤mvm

(p) ≤ |λ1(p), . . . , λn−1(p)|
2πn

. (2.76)

Combining (2.75) with (2.76), we get the conclusion of Theorem 2.4.
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Appendix

Proof of Lemma 1.4

Proof Set X j = {x ∈ X : ei 2πj ◦ x = x and ∀ 0 < |θ | < 2π
j , eiθ x �= x}. We call such

x the points in X with period 2π
j . Then Xreg = X1 by definition. There are only finite

X j , 1 ≤ j ≤ m such that X = ⋃m
j=1 X j . Then X j ∩ Xk = ∅,∀ j �= k. Now we are

going to show that
⋃m

j=2 X j is a closed subset of X . We assume there exists a sequence
{xk} ⊂ ⋃m

j=2 X j such that xk → x0. W.L.O.G, we assume that the {xk} ⊂ X j for some

j ≥ 2. Then we have ei
2π
j ◦ xk = xk . Taking limits as k → ∞ we have ei

2π
j ◦ x0 = x0. By
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definition, x0 /∈ Xreg. Thus x0 ∈ ⋃m
j=2 X j . This means that

⋃m
j=2 X j is a closed subset of

X and the complement Xreg is an open subset of X .
Second, we are going to check that the measure of X\Xreg is zero. Set Y j = {x ∈ X :

ei
2π
j ◦x = x}, 2 ≤ j ≤ m.Obviously thatY j is a closed subset of X and X j ⊂ Y j , 2 ≤ j ≤ m.

Now we will show that the measure of Y j , 2 ≤ j ≤ m is zero and for convenient we
only show that the measure of Y2 is zero. We use m(Y j ) to denote the measure of Y j for
2 ≤ j ≤ m. If Y2 = ∅, we have m(Y2) = 0. Now we assume that Y2 �= ∅. For any
p ∈ Y2, we have eiπ ◦ p = p. With the rigid Hermitian metric on X , it is easy to check
that the map eiπ : X → X is an isometrically CR isomorphism. Since eiπ ◦ p = p we
have deiπ : TpX → TpX. Here TpX is the tangent space of X at p. There exists a small
neighborhood Uop of op ∈ TpX such that the exponential map

expp : Uop → expp(Uop ) := Vp ⊂ X (2.77)

is a diffeomorphism. Then for any q ∈ Y2 ∩ Vp , there exists a vector Zq ∈ Uop such that
exp(Zq) = q . Since eiπ ◦ q = q , we have that eiπ (expp(Zq)) = q = expp(Zq). The
isometric map eiπ : X → X implies the commutation between eiπ and the exponential map
and we have that

expp ◦deiπ (Zq) = eiπ ◦ expp(Zq) = q = expp(Zq). (2.78)

Since ‖deiπ (Zq)‖ = ‖Zq‖, we have that deiπ (Zq) ∈ Uop . Combining with (2.77), we get
deiπ (Zq) = Zq . This means that Zq is a fixed point of the linear map deiπ : TpX → TpX.

Set H = {Z ∈ TpX : deiπ Z = Z}. By (2.77) and (2.78) we have that

expp(Uop ∩ H) = Vp ∩ Y2. (2.79)

Since Y2 is a closed subset of X , From (2.79) we have that H must be a proper linear subspace
of TpX . Then (2.79) implies that m(Y2) = 0. Similarly, we have m(Y j ) = 0,∀2 ≤ j ≤ m.
From X j ⊂ Y j , 2 ≤ j ≤ m, we have that m(X j ) = 0, 2 ≤ j ≤ m. Moreover (2.79) implies
that Y2 is a nowhere dense subset of X , similarly, Y j , 2 ≤ j ≤ m are nowhere dense subset
of X . Since X j ⊂ Y j , 2 ≤ j ≤ m, we have that Xreg is a dense subset of X . ��
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