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Abstract Let X be a compact connected CR manifold of dimension 2n — 1, n > 2 with
a transversal CR S!-action on X. We study the Fourier components of the Kohn—-Rossi
cohomology with respect to the S'-action. By studying the Szegd kernel of the Fourier
components we establish the Morse inequalities on X. Using the Morse inequalities we have
established on X we prove that there are abundant CR functions on X when X is weakly
pseudoconvex and strongly pseudoconvex at a point.

1 Introduction

The problem of embedding CR manifolds is prominent in areas such as complex analysis,
partial differential equations and differential geometry. Let X be a compact CR manifold of
dimension2n—1,n > 2. When X is strongly pseudoconvex and dimension of X is greater than
or equal to five, a classical theorem of Boutet de Monvel [5] asserts that X can be globally CR
embedded into CV, for some N € N. For a compact strongly pseudoconvex CR manifold of
dimension greater than or equal to five, the dimension of the kernel of the tangential Cauchy—
Riemmann operator 9}, is infinite and we can find many CR functions to embed X into complex
space. The classical example of non-embeddable three dimensional strongly pseudoconvex
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CR manifold appears implicitly in the non-fillable example of pseudoconcave manifold by
Grauert [15], Andreotti and Siu [1] and Rossi [29] and was explicited by Burns [6]. In [24] it
is shown that a compact strongly pseudoconvex three dimensional CR manifold which admits
an inner S'-action is the boundary of a compact strongly pseudoconvex surface. By Kohn’s
result [23], this implies that it is embeddedable in CN forsome N (see [21] for another proof).
Bland obtained in [4] that for a CR manifold which admits a free transversal S!-action will
be embedded into complex space if the CR structure admits a normal form relative to this
S'-action which has no negative Fourier coefficients. Epstein [12, Theorem A16] proved
that a three dimensional compact strongly pseudoconvex CR manifold X with a global free
transversal CR S action can be embedded into CV by the positive Fourier components of
CR functions. Since the action is globally free, Epstein considered the quotient of the CR
manifold by the S'-action. The action which is CR and transversal implies that the quotient
X/S! is a compact Riemann surface with a positive holomorphic line bundle. Then X is CR
isomorphism to the circle bundle with respect to the dual bundle of the positive line bundle.
Using Kodaira’s embedding theorem, Epstein got the embedding theorem of the CR manifold
by the space of positive Fourier components of CR functions.

Motivated by Epstein’s work, we will consider a compact CR manifold X of dimension
dimX = 2n — 1, n > 2 with a transversal CR S'-action and study the Fourier components
of Kohn—Rossi cohomology of 8;-complex on X. The transversal CR S!-action need not to
be globally free but locally free. We use T to denote the global vector field induced by the
Sl action. Form € Z and m > 0, we use Hé)’m(X) ={ueC®X):0pu=0,Tu=imu)
to denote the m-th positive Fourier component of CR functions (see [12]). The embeddability
of X by positive Fourier components of CR functions is related to the behavior of the S'
action on X. For example, if one can find f; € H,gm(X), ooy fa, € H,Rm(X) and g; €

Hl?.,ml X),..., 8hm, € ng),ml (X) such that the map

Py 15 € X = (F100, s L, (@), 106, g1y, (6)) € TP

is a CR embedding. The S I_action on X induces naturally a S !_action on D, m, (X) and this
S1-action on @, m, (X) is simply given by the following:

i0 im0 im0 im0 im0
e’ o (z1,~~.,de,Zd,,l+1,-..,Zd,,,+h,,,l) = (e 2.z, e 2,01, e Zd,n+h,,,l)-

Thus, if one can embed such CR manifold by positive Fourier components of CR functions, we
can describe the S'-action explicitly. To study the embedding problem of such CR manifold
by positive Fourier components of CR functions, it is crucial to be able to know

Question 1.1 When dimHé)’m(X) ~m"! form large?

Inspired by Demailly’s holomorphic Morse inequalities on complex manifolds [9,10,27] and
the recent works of the first-named author and Marinescu in [19], Hsiao [17, 18] and Hsiao and
Li [22] on the Morse inequalities and Grauert—Riemenschneider criterion on CR manifolds,
we obtain the Morse inequalities for the Fourier components of Kohn—Rossi cohomology of
dp-complex. See Theorems 2.2 and 2.5 for the main results.

By the Morse inequalities we have obtained, we will show that a compact weakly pseudo-
convex CR manifolds which admit a transversal CR locally free S!-action will have abundant
CR functions if it has a point where the Levi-form is strongly pseudoconvex (see Theorem 2.6
for the details). This gives an answer of Question 1.1.
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1.1 Set up and terminology

Let (X, T0x ) be a compact connected CR manifold of dimension 2n — 1, n > 2, where
710X is the given CR structure on X. That is, T1-9X is a subbundle of the complexified
tangent bundle CT X of rank n — 1 , satisfying T"0X N 7% X = {0}, where TO' X = T1.0X,
and [V, V] C V, where V = C°(X, T10X).

We assume that X admits a $'-action: S! x X — X, (eie, x) — €'Y o x. Here, we use
¢ (0 < 6 < 27) to denote the S'-action. Set Xyee = {x € X : Ve'¥ € S!, if e ox =
x, then ¢'? = id}. We call x € Xreg a regular point of the § I_action and complements of
Xreg €xceptional points. For every k € N, put

i60

i AL
Xk:=[xeX:e ox #x, VOG(O,T),ekox=x]. (1.1)
Thus, X;eg = X. In this paper, we always assume that X,ee # ¢. By the Orbit type strati-
fication (see Theorem 1.30 in [28]), there are only finite X ,’<s denoted by X, Xy, ..., Xk
which are not empty subset of X such that X = X; U Xz, U---U X,
Let T € C*®(X, TX) be the global real vector field induced by the S'-action given as
follows

P

(Tu)(x) = % (u(ei" ox)) ‘020, u e C¥(X). (12)

Definition 1.2 We say that the S'-action ¢’ (0 < 6 < 27) is CR if
[T, C®(X, T"°X)] c c>®(x, T"°X), (1.3)

where [, ] is the Lie bracket between the smooth vector fields on X. Furthermore, we say that
the S!-action is transversal if for each x € X,

CTx) ®TOX) o T™'X =CT, X. (1.4)

Remark 1.3 The S'-action on X is said to be a locally free group action if T'(x) # O for
every x € X. By (1.4), T(x) will not vanish at any point x € X, thus the transversal CR
S'-action defined in Definition1.2 is a locally free group action. For the knowledge of group
action, we refer readers to [13,28]. The classical example of compact CR manifolds with
transversal CR $'-action is the circle bundle with respect to a Hermitian line bundle over a
compact complex manifold. However, there are many examples of compact CR manifolds
with transversal CR $!-action which are not circle bundle.

For example, let X = {(z1, 22) € C2: 72+ |z% + 222 +|z2/? = 1} which is a compact
CR manifold with the following transversal CR S'-action

X xS > X, (z1,22) = (6’921,e2’9zz).

The S'-action defined above is locally free and free on a dense, open, connected open subset
{(z1,22) € X : 71 #0}.

In general, we have the following

Lemma 1.4 Let X be a compact connected CR manifold with transversal CR locally free
S-action. Then Xieg is an open, dense subset of X. Moreover, the measure of X\ X ey is zero.

The proof of Lemma 1.4 is a direct corollary of Proposition 1.24 in [28] and similar
results can be found in [11]. For the convenience of readers, we will prove Lemma 1.4 in the
appendix.
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We assume throughout that (X, 7"9X) is a compact connected CR manifold with a
transversal CR locally free S'-action and we denote by T the global vector field induced by
the S!-action. Let wg € C®° (X, T*X) be the global real 1-form determined by (wq, u ) = 0,
for every u € T'9X @ 7% X and (wy, T) = —1.

Definition 1.5 For x € X, the Levi-form £, associated with the CR structure is the
Hermitian quadratic form on Txl X defined as follows. For any U,V € TXI’OX , pick
U,V e C®X, T"0X) such that U (x) = U, V(x) = V. Set

_ 1 _
LU, V)= E([U, V1(x), wo(x)) (1.5)
where [, ] denotes the Lie bracket between smooth vector fields. Note that £, does not depend
on the choice of I/ and V.

Definition 1.6 The CR structure on X is called pseudoconvex at x € X if £, is positive semi-
definite. It is called strongly pseudoconvex at x if £, is positive definite. If the CR structure
is (strongly) pseudoconvex at every point of X, then X is called a (strongly) pseudoconvex
CR manifold.

Denote by 7*!-9X and 7*%1 X the dual bundles of 719X and 70! X, respectively. Define
the vector bundle of (0, ¢)-forms by T*%9X = A9T*0-1X Let D C X be an open subset.
Let %9 (D) denote the space of smooth sections of 7*%9X over D and let Qg’q(D) be the
subspace of 2%:9 (D) whose elements have compact support in D.

Fix 6y € [0, 27). Let

de'™ : CT X — CT,ig, X

denote the differential map of ¢!% : X — X. By the property of transversal CR S' action,

we can check that )
de'® . T\0x 710 x

e%ox

dei® - Txo,IX — TE%;OXX, (1.6)

deé®(T(x) =T (el'90 ° x) .

Let (de'®)* : A9(CT*X) — A9(CT*X) be the pull back of de®, g = 0,1...,n — 1.

From (1.6), we can check that foreveryg =0,1,...,n — 1
. *
(de”’O) : T;S(;’ixx - 1%, (1.7

Letu € Q%4 (X). Define Tu as follows. For any X, ..., X, € Tx]"OX,

a

TuXy, o Xg) = oo (@) (e X)) | (1.8)

From (1.7) and (1.8), we have that Tu € Q%9 (X) for all u € Q%9(X). See the discussion
before Lemma 1.19 for another way to define T'u.

Letd, : Q%9(X) — Q%9+1(X) be the tangential Cauchy-Riemann operator. It is straight-
forward from (1.6) and (1.8) to see that

Td, = 0,T on Q%9(X) (1.9)
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(see also (1.40)). For every m € Z, put Q?,;q(X) = {u € Q¥9(X) : Tu = imu}. From (1.9)
we have the 9;-complex for every m € Z:

o= 2N x) 5 % (x) - QI (x) ... (1.10)

For every m € Z, the g-th 3, cohomology (or Kohn—Rossi cohomology) is given by

Kerd, : Q27 (X) — Q%9 (x)
ma, : Q5 1 x) » ¥9x)

The starting point of this paper is that without any Levi curvature assumption, for every
me Zandeveryqg =0,1,2,...,n — 1 we have

dim Hyl  (X) < oc. (1.12)

H, (X):=

(1.11)

Definition 1.7 We say that a function u € C *(X) is a Cauchy-Riemann (CR for short)
function if 3,1 = 0 or in the other word, Zu = 0 forall Z € C®(X, T1-0X).

Form € Z,whenq = 0, H,g . (X) is the space of CR functions which lie in the eigenspace
of T and we call H, 1? o (X) the m-th Fourier component of CR functions.

1.2 Hermitian CR geometry

We need

Definition 1.8 Let D be an open set and let V € C*° (D, CT X) be a vector field on D. We
say that V is T-rigid if
deé(V(x) =V (eigo o x) (1.13)

for any x, 6y € [0, 27) satisfying x € D, ¢! o x € D.

Definition 1.9 Let (-|-) be a Hermitian metric on CT X. We say that (-|-) is T-rigid if for
T -rigid vector fields V, W on D, where D is any open set, we have

(V@)W ) = ((deieOV) (efeo ox) | (deieOW) (e”o ox)), Vx € D, 6 € [0, 27).
(1.14)

Lemma 1.10 (Theorem 9.2 in [18]) Let X be a compact connected CR manifold with a
transversal CR S'-action. There is always a T-rigid Hermitian metric (-|-) on CT X such
that TYOXLTO X, T L(THOX T X), (T|T) = 1 and (u|v) is real ifu, varereal tangent
vectors.

From now on, we fix a T -rigid Hermitian metric (-|-) on CT X satisfying all the properties
in Lemma 1.10. The Hermitian metric (-|-) on CT X induces by duality a Hermitian metric
on CT*X and also on the bundles of (0, ¢)-forms T*0.9x, qg=0,1...,n—1.Weshall also
denote all these induced metrics by (-|-). For every v € T4 X we write |v]? := (v|v). We
have the pointwise orthogonal decompositions:

CT*X =T*"9X @ T X & {hop : 1 € C},

_ 71,0 0,1 . (1'15)
CTX =T X T"'X® (AT : 1 € C}.

For any p € X, locally there is an orthonormal frame {Uj, ..., U,_1} of 719X with
respect to the given 7'-rigid Hermitian metric (-|-) such that the Levi-form £, is diago-
nal in this frame, £,(U;, U;j) = A;6;j, where §;; = 1if i = j, 6;; = 0if i # j. The
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entries {Aq,...,A,—1} are called the eigenvalues of Levi-form at p with respect to the
T-rigid Hermitian metric (-|-). Moreover, the determinant of £, is defined by det £, =
A(p)s ooy Ap—1(p).

Let (-]-) be the L? inner product on Q%4(X) induced by (-]-) and let ||-|| denote the
corresponding norm. Then for all u, v € Q%9 (X)

(ulv) =/<u|v>dvx, (L16)
X

where dvy is the volume form on X induced by the T-rigid Hermitian metric. As before, for
m € Z, we denote by

il (X) = {u e Q¥9(X) : Tu = imu) (1.17)
the eigenspace of T'. Let L%O,q),m (X) be the completion of QS{q (X) with respect to (-|-). For
m € 7, let

WLy 00 = LY ) (X) (1.18)

be the orthogonal projection with respect to (-|-). Then for any u € Q%9(X)
T

1 . 4
f,?)u = —/ u@? o x)e "0 qp.
27 J_p

By using the elementary Fourier analysis, it is straightforward to see that forany u € Q%9 (X),

N
Z Qf,?)u — u in C* topology as N — 00. (1.19)
m=—N

Thus for every u € L%O’q)(X),

N
> oWu—uin LY (X, L*) as N — oc. (1.20)
m=—N
If we denote the limy 0o SN_ 09y by > ez 0Py, then we write u = > e 0Dy,
Thus, we have the following Fourier decomposition:

0, _ 0, 2 _ 2
QM (X) = € 2 (X), Lig ) X) = €D Lo 4.m0)- (1.21)
meZ mez
By (1.11) and (1.21), we have the following Fourier decomposition of the g-th Kohn—Rossi
cohomology (see (1.39) in [26])

HI(X) = P HY, (X). (1.22)

mez

Let 3, : Q091 (X) — Q04(X) be the formal adjoint of 3, with respect to (-|-). Since
the Hermitian metrics (-|-) are T -rigid, we can check that

T3, =09,Ton Q"9(X), Vg=1,...,n—1 (1.23)
and from (1.23) we have

*

3,0t (X) > QYY(X), Vm ez (1.24)
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Put
O .= 850, + 0,95 : Q41(X) - Q%(X).

Combining (1.9), (1.23) and (1.24), we have

7O = 09T on Q%4(X), Vg=0,1,...,n—1 (1.25)
and (1.25) implies that

09 QN(X) - Q4(X), Vm e L. (1.26)

We will write IZII(f;1 to denote the restriction of D;)q) on Q04 (X). For every m € Z, we extend
Oy, o L2) | (X) by

D}j{; :Dom(D,(f,)n) C L gy (X) = L ) 0 (X, (1.27)

where Dom(O})) = {u € L%\ (X) : O\ uw € L2 | (X) in the sense of distribution}.

The following result follows from Kohn’s L?-estimate (see Theorem 8.4.2 in [7]).

Theorem 1.11 For every s € No := N U {0}, there exists a constant Cs > 0 such that

s = €5 (1T ulls + 1T uls + lulls) - Vue € 209(X) (128)
where || - ||g denotes the standard Sobolev norm of order s on X.

From Theorem 1.11, we deduce that
Theorem 1.12 Fix m € Z, for every s € Ny, there is a constant Cs ,, > 0 such that
< Cym (109 Vi e QU4 (X 1.29
lulls+1 < Csm ||l h,mu”S + llulls ), u € Q" (X). (1.29)

From Theorem 1.12 and some standard argument in functional analysis, we deduce the

following Hodge theory for Dl(f:n (see Section 3 in [8])

Theorem 1.13 Fix m € Z. Ell(f;l : Dom([]l(;fr)n) C L%Og)’m(X) — L%O,q),m(x) is a self-
q

adjoint operator. The spectrum of Dé’) denoted by SpeC(Dgfr)n) is a discrete subset of [0, 00).

m
For every A € Spec([lg,’,)n) the eigenspace with respect to A

HY 50 = [u € Dom @) : O u = ) (1.30)

b,m

is finite dimensional with szm’)\(X) C Q(,),,’q (X) and for A = 0 we denote by szm (X) the
harmonic space ’HZ m. 0K L) for brevity and then we have the Dolbeault isomorphism

Hp L, (X) = H L (X). (1.31)
In particular, from (1.31) we have

dim H! (X) <oo,VmeZ, VO<g<n-—1 (1.32)
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Remark 1.14 We would like to mention that transversal property (1.4) of the S'-action is a
necessary condition for the finite dimension of dimHZ o (X). In fact, we have the following

counterexample when the S'-action is not transversal. Let
X=8:={Gz2)eC:|al’+laf =1},

The S!-action on X is defined by €0 (z1,22) = (€21, e7925), n > 1.Let T be the global
induced vector field. By definition

T ( 0 _ 0 0 4z 3)
=\ — A= —no2—Thia2— |-
1321 1321 zazz 2322

We can check that T is not transversal to 710X @ 771X and thus the S'-action defined

above is not transversal. Moreover, we have dim H, 1? o (X) = o0o. This is because the functions

{up = z’,”*”"z’g, k=1,2,3,...}C ng)m(X) when restricted on X.

1.3 Canonical local coordinates

In this work, we need the following result due to Baouendi—Rothschild—Treves, (see Propo-
sition 1.2. in [2]).

Theorem 1.15 Let X be a compact CR manifold of dimX = 2n—1, n > 2 with a transversal
CR S'- action. Let (-|-) be the given T -rigid Hermitian metric on X. For every point xo € X,
there exists local coordinates (x1, ..., Xx,—1) = (2,0) = (21, ...,2p-1,0), 2 = X251 +
ix2j, j=1,....,n—1,x5-1 = 0, defined in some small neighborhood D = {(z, ) :
|z| < &,10| < 8} of xo such that

_ d

T
d d

9 @(Z)i’
0z; dz; 06

(1.33)
Zj

j=1...,n—1

where {Z ; (x)};’.;} form a basis of Txl’OX, for each x € D and ¢(z) € C*°(D, R) is inde-
pendent of 6. Moreover, on D we can take (z,0) and ¢ so that (z(xop), 0(x0)) = (0,0)
and ¢(z) = Z?;} Ailzil? + 0(1z1%),¥(z, 0) € D, where {Aj};'.;i are the eigenvalues of
Levi-form of X at xo with respect to the given T -rigid Hermitian metric on X.

Remark 1.16 Let D be as in Theorem 1.15. We will always identify D with an open set of
R2"~1 and we call D canonical local patch and (z, 6, ¢) canonical coordinates. The constants
e and § in Theorem 1.15 depend on x¢. Let xo € D. We say that (z, 0, @) is trivial at xg
if (z(x0), 6(x0)) = (0,0) and ¢(2) = 321 251z + O(Iz), where {3,;}1_} are the
eigenvalues of Levi-form of X at xo with respect to the 7T'-rigid Hermitian metric (-|-).

Lemma 1.17 Let xo € Xieg. Then we can find canonical coordinates (z, 6, ¢) defined in
D ={(z,0) : |z| < €0, 10| < 7w} such that (z, 0, @) is trivial at xo.

Proof Let (z, 0, @) be any canonical coordinates defined in D1 = {(z,0) : |z] < €1, |0] < &}
such that (z, 6, ¢) is trivial at xo. We identify D with an open neighborhood of xg. It is clear
that .

€' o (z1,0) # (z2,0), YO0 < |t] <38, lz1] < &1, |22 < €1. (1.34)
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We claim that

. 5 8
Thereis a0 < gy < &1 such that ¢’ o (z1, 0) # (22, 0), VE <t <2m— ok |z1] < €0, |z2] < €o-

(1.35)
If the claim is not true, for every j € N, we can find 7y j,22,; € cr-1 0; € R with
1 9

|zl < a2l < 5 <0 <27 — ¢ such that

€% 0(21,7.0) = (22,.0), j=12.... (1.36)

From (1.36), we get €% 5 (0,0) = (0, 0), for some % <6y <2m — %. But xp € Xreg, wWe
get a contradiction. The claim follows.
Let 0 < g9 < €1 be as in (1.35). Consider the map

P:{zeC izl <e) x{feR: 0] <7} X,

(z,0) — €% 6 (z,0).

We claim that @ is injective. If e o (z1,0) = e o (z2, 0), for some |z1| < &g, |z2] < €0,
01| < 7, 162] < 7. We have ¢! @179 o (1, 0) = (z2, 0). We may assume that 6; > 6. From
(1.35), weseethat 0 <0 — 6 < Sor2n —§ <0, -6, <27.1f2m — 3 <6, -0, <27,
Then, =3 < 6; — 6, — 27 < 0 and /@ =272 6 (71, 0) = (22, 0). By (1.34), we get a
contradiction. We must have 0 < 6] — 6, < %. From (1.35), we deduce that #; = 6, and
71 = z2. Thus, ® is injective. When |z| < &g, we can extend 6 to |#| < by ®. The lemma
follows. O

In the proof of Theorem 2.1, we need the following

Lemma 1.18 Let xg € Xi, k € N, k > 1. For every € > 0, € small, we can find canonical
coordinates (z, 0, @) defined in D = {(z,0) : |z| < €0, |0]| < % — €} such that (z,0, @) is
trivial at x.

Proof Let (z, 0, @) be any canonical coordinates defined in D1 = {(z,0) : |z] < €1, |0] < &}
such that (z, 6, ¢) is trivial at xo. We identify D with an open neighborhood of xg. It is clear
that _

e 0(21,0) # (z2,0), VO < [t] <8, |z1] < &1, |z2] < 1. (1.37)

Fix € > 0, € small. We claim that

. ) 2w €
Thereis a0 < gy < &1 such that ¢/ o(z1, 0) # (22, 0), ‘v/E <t < —3 |z1] < €0, |22] < €0.

k
(1.38)
If the claim is not true, for every j € N, we can find zy j,22,; € cr-1, 0; € R with
|21, < &, lz2,51 < %, § < 6; < 3 — § such that
¢%o0(z1,,0) = (22,00, j=12.... (1.39)

From (1.39), we get €% 6 (0, 0) = (0, 0), for some % <6y < 27” — % But xg € Xk, we get
a contradiction. The claim follows.
Let 0 < g9 < €1 be as in (1.38). Consider the map

d>€:{z€(C”_]:|z|<80}><{96]R:|9|<%—e}|—>X,

(z,0) —> ¢'% 0 (z,0).
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We claim that ®, is injective. If ¢/?' o (z1, 0) = €'® o (22, 0), for some |z1| < €0, |22| < €0,

61l < T — € 162] < T — €. We have 0170 6 (71,0) = (z2,0). We may assume that

01 > 6, and hence 0 < 01 — 6, < == — 2¢. From (1.38), we see that) < 0) — 0, < % From
(1.37), we deduce that 6; = 6, and z1 = z2. Thus, @, is injective. When |z| < &p, we can
extend 0 to |0] < % — € by ®.. The lemma follows. ]

By using canonical coordinates, we get another way to define Tu,Vu € Q%9(X). Let
D be a canonical local patch with canonical coordinates (z, 8, ¢). By (1.33), {dzj} 71 is
the dual frame of {Zj};f;i. For a multi-index J = (ji,...,Jjg) € {1.2,...,n}9 we set
|J| = g. We say that J is strictly increasing if 1 < j; < j» < --- < j; < n. We put
7’ = dzj Ndzj, A--- Adzj,. Ttis clearly that dz’, 11l =q.J strictly increasing} is a
basis for TX*O’qX forevery x € D. Letu € Qo’q(X). On D, we write u = Zil\=q uydz’,
where the notation > means the summation over strictly increasing multiindices. Then on

D we can check that
/

Tu= Y Tu;dz’, 3yTu=Tau. (1.40)

IJ1=q
Lemma 1.19 Fixxo € X and let D = D x (=68,8) C C" ! x R be a canonical local
patch with canonical coordmates (z, 0, @) such that (z,0, ¢) is trivial at xo. We can find
orthonormal frame {e’ } of T*91 X with respect to the fixed T-rigid Hermitian metric such

thaton D = D x (=8, 8), we have ¢’ (x) = ¢/ (z) = dz; + 0(|z]),Vx = (z,0) € D, j =

1,...,n — 1. Moreover, if we denote by dvx the volume form with respect to the T-rigid
Hermitian metric on CT X, then on D we have dvx = A(z)dv(z)d6 with M(z) € C*®°(D, R)
which does not depend on 6 and dv(z) = 2= lgxy, .., dxon—a.

Proof From the definition of the T-rigid Hermitian metric, we can check that the inner
product {(dzy|dz;) does not depend on 6. We denote by gk/ (z) = (dzx|dz;) on D. Taking
coordinate transformation of z = (z1,..., z,—1) if needed such that gkj (x0) = &;j. By
Gram-Schmidt process, we can find an orthonormal frame {e/ }'J’.;} of T*%1X. Write e/ =
ZZ;II bxdzk, j =1,...,n — 1. Since gEj(z) = (dZx|dz ;) does not depend on 6 on D, we
can check that coefficients {bjE}lij,kgn—] do not depend on 6. Then e/ (x) = dz; + 0(2).
Since —wo(z, ) = df + X1 |(aj(z. 0)dz; + aj(z, 0)dz,) and {e!,. .., ", wp} is an
orthonormal frarne of CTX over D, then the volume form on D is defined by dvy =

J=1"" le] Ael Ao AT A e A (—wp). The lemma follows. O
Remark 1.20 Forany xg € X,let D = D x (—3, 8) be a canonical local patch with canonical
coordinates (z 0, @) such that (z, 8, @) is trivial at xo. Here, D= {z e C"™ 1 Dz < e}
We identify D with an open subset of C"*~ I with complex coordinates z = (21, ..., Zn—1)-

Since {dz]}]:1 is a frame of T**1X over D, we will treat them as the frame of 7*0:1 D
which is the bundle of (0, 1)-forms over the domain D. Let (gzj (z)) be the Hermitian matrix
defined in the proof of Lemma 1.19. Then we define a Hermitian metric on 7*%! D given by
(gki (2))] =) With (dZk|dz;) = g%/ We also denote by (-|-) the Hermitian metric on 701 D.
By duallty, it will induces a Hermitian metric on 79! D. We extend the Hermitian metric to

CT D and T*%4 D in the standard way and denote all the Hermitian metr~ics by (:|-). Then
{e/ (z)}’/’.;% defined in Lemma 1.19 is also an orthonormal frame of 7% D. With respect to

the given Her~mitian metric on T*%1 D, the volume form on D is given by A(z)dv(z). Here,
A(z) € C*(D, R) is the function defined in Lemma 1.19.
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1.4 The scaling technique

In this section, we will recall the scaling technique in [3], developed in [17,19,20,22]. Fix
X0 € X, we take canonical local patch D = D x (=6,8) ={(z,0) : |z] < &, 10| < 8} with
canonical coordinates (z, 6, ¢) such that (z, 8, ¢) is trivial at x¢. In this section, we identify
D with an open subset of cr1 = R?2 with complex coordinates z = (21, ..., 2Zn—1)-
LetL; € T'OD, ..., L,_1 € T"9D be the dual frame of e, . .., e"~! with respect to the
Hermitian metric (-|-) defined in Remark 1.20. The Hermitian metric (-|-) on D we have
chosen in Lemma 1.19 and Remark 1.20 implies that

<—(0)’—(0)>_25 (1.41)

3x,

for j,t =1,...,2n — 2, and in the coordinates z = (z1,...,2,-1), Lj = % +0(2),j=
9 _ 1 9 . 9 -

l,...,n—l,whereﬁj—E(BXZH —zm),J—l,...,n—l.

Let M C C* ! bean open set. Let QY%9(M) be the space of smooth (0, g)-forms on M
and let Qg’q (M) be the subspace of Q%9 (M) whose elements have compact support in M.
Let (-|-)24 be the weighted inner product on the space Qg’q (l~)) defined as follows:

(flg) = / (flg)e 2 Dn(z)dv(z) (1.42)

where f, g € Qoq(D) and A(z) is as in Lemma 1.19. We denote by L(o q)(D, 2¢) the

completion of Qoq(D) with respect to (-|-)2,. For r > 0, let D, = ={zeC 'zl <r).

Here {z € C*~! : |z| < r} means that {z € C" ! : |z|<r]_1 .,n—1}. Form € N,
Zn—1

let F, be the scaling map Fy,(z) = (L, ) z € D]o m- From now on, we assume
N g

m is sufficiently large such that F, (510gm) S D. We define the scaled bundle F,; T*94 D on
Dlogm to be the bundle whose fiber at z € Dlogm is

/
F,;le*O‘qb|Z = Z aye’ (ﬁ) tay € C, |J|=gq, J strictly increasing ¢ . (1.43)
IJ1=q

We take the Hermitian metric (:|-) x on F,; T*94 D so that at each point z € b]ogm,

[ej (ﬁ) |J|=gq, J strictly increasing] (1.44)

is an orthonormal frame for F)’ T7#04 D on Dlogm.
Let F Q%4 (D,) denote the space of smooth sections of F *7+0.4 D over D, and let

Fy QO q(D ) be the subspace of F Q%4 (D,) whose elements have compact support in D,.
Given f € Q04 (D,). We write f = Zm:q fre’. We define the scaled form Fif e
FQ2%4(Diogm) by

Z ~
Fif= MZ fj( ) (ﬁ) z € Diogm. (1.45)

For brevity, we denote F,: f by f (ﬁ). Let P be a partial differential operator of order

one on Fy, (ﬁlogm) with C* coefficients. We write P = Z?" 12 aj (Z)a The scaled
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partial differential operator P, on Diogn is given by Pu) = Z%” 2 Fra; ax . Let
f € C®(Fy (Dlogm))- We can check that

Piny (Fpp f) = w(Pf). (1.46)

f m
Let 3 : Q09(D) — QU9+1(D) be the Cauchy—Riemmann operator and we have

n—1 n—1
3= ej@ALj+ D (3e;) (D) A (ej @A)
j=1

j=1

where (ej () A)" : T*4D — T*%9-1D is the adjoint of e¢; (z) A with respect to the
Hermitian metric (~’~) on T*%4 D given in Remark 1.20, j = 1,...,n — 1. That s,

)=
forallu € T*0971D v e T*4D.
The scaled differential operator 3, : F,: Q%4 (Dlogm) — FrQbatl (Dlogm) is given by

ze,( )z e () n (e () ) - as

(e @A) v)

<ej (2)Au

* ~
similarly, (e; (=) A)" : FiT*4X — FiT*041D is the adjoint of ¢; () A with
respect to (~’~)p;l, j=1,...,n—1.From (1.46) and (1.47), 5(,,,) satisfies that

I Fpyf = 2(0f), Vf € QY (Fu(Diogm))- (1.48)

\/> m

Let (|-)2m Fz o be the weighted inner product on the space F; Qg’q (ﬁlogm) defined as follows:

(f18)2mFzy = / (flg)pe 2 A( ﬂ)dv@ (1.49)

logm

Let E?m) i 3 QO+l (Dlogm) — F Q04 (Dk,gm) be the formal adjoint of 5(,,1) with respect

to (-|)amFye- Let 3 219 QOa+1(D) - Q04(D) be the formal adjoint of 3 with respect
to the Welghted inner product (-|-)2/,,. Then we also have

Vo Fisf = ﬁF; (5*’2’”“’ f) . Vf e Q0 (Fm ([)bgm)) . (1.50)

We now define the scaled complex Laplacian Dgfn)) F Q04 (D1Og m) — F QOa (D]ogm)

which is given by (%) = 8, 3m) + )3 - Then (1.48) and (1.50) imply that

OW FLf = —F* (0%, 7). Vs e (Fu (Diogn))- (1.51)
Here,
Oy, =33 +3°"5 . (D) — (D) (1.52)
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is the complex Laplacian with respect to the given Hermitian metric on 7*09 D and weight
function 2me(z) on D. Since 2m F, ¢ = 2P (z) + ﬁ 0(|z|3), Vz € Diogm» where ®y(z) =

-1
22021 2jlzjl?, we have

lim sup |82 (2mF}ip —2®0)| =0, Va € N"™2. (1.53)
m—0o0 ~

Dlogm
Consider C"~!. Let (-| -)cn—1 be the Hermitian metric on T7*9-4C"—1 such that
{dEj 1 |J| =g, J is strictly increasing}

is an orthonormal basis. Let (-|-)24, be the L? inner product on Qg’q (cnh given by

(f18)20, = / l(flg)e_z%(Z)dv(z), frgeui@h. (1.54)
(O
Put ——=%,20 —%,2®0=
mggo =307 £ 37 . hacrly - Oa Y, (1.55)

where 5*’2% is the formal adjoint of 3 with respect to (-| 2wy
From (1.53), it is not difficult to check that

D(q)

@) =05+ enPm on Diogm. (1.56)

where P, is a second order partial differential operator and all the coefficients of P, are
uniformly bounded with respect to m in C“(Blogm) norm for every u € Ng and ¢, is a
sequence tending to zero as m — 0o. By the convergence property of (1.53) and (1.56), we
have Garding’s inequality for elliptic operator Dgfn)).

Proposition 1.21 For every r > 0 with Dzr C [)10g m and s € Ny, there is a constant
C,s > 0 independent of m and the point x such that

2 2 (@) 2
< . ~ ~
”””2m1«“,;<p,s+2,Dr =G, (Hunsz;;(p,Dz, + ”l:l(m)u”QmF,fl(p,s,Dzr) (1.57)

forallu € F, Qe (Dlogm)7 where ||u||2mF*¢ 5.B, is the weighted Sobolev norm of order s
with respect to the weight function 2m F, ¢ which is given by

!

— * Z
1.5, = >, / |0YugPe=>"n e (ﬁ) dv(z).  (1.58)

-2 r
aeNy" % el <s, | |=q

where u = Z‘/“:q ujej(ﬁ) € Fn’:QO’q(DIOgm).

2 Morse inequalities on CR manifolds

Let fi, ..., fu, beanorthonormal basis of HZ’ n(X). The Szegd kernel of ’HZ, (X)) is defined
by

d}’ll
I () = D10 @.1)

Jj=1
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It is easy to see that IT}, (x) is independent of the choice of the orthonormal basis and

dim H} , (X) = / M7, (x)dvx. (22)
X

We denote by X (g) a subset of X such that
X(gq) := {x € X : L, has exactly g negative eigenvalues and n — 1 — ¢ positive eigenvalues}.

Recall that for every k € N, Xy is given by (1.1). The following is our first technical result.

Theorem 2.1 Let X be a compact connected CR manifold with a transversal CR S'-action.
Foreveryq =0,1,2,...,n — 1, we have

sup [m_(”_l)l'lzl(x) :meN, x € X] < 00 (2.3)
and for every k € N with X # (}, we have
: —(n—1)m79 k
lim sup m M (x) < s—|detLy| - 1x ) (x), Vx € Xy, 2.4
m—00 2

where 1x(4)(x) denotes the characteristic function of the subset X(q) C X and Ly is the
Levi-form defined in Definition 1.5.

In particular, for everyqg =0,1,2,...,n — 1, we have
|
limsupm =" "DTT (x) < —— | det Ly | - 1x(g)(x), VX € Xreg. (2.5)
m—00 2mh

2.1 Main results

From Lemma 1.4 and Theorem 2.1 and by Fatou’s lemma we obtain the weak Morse inequal-
ities

Theorem 2.2 (weak Morse inequalities) Let X be a compact connected CR manifold with
a transversal CR S'-action. Assume that dimgX = 2n — 1,n > 2. Then for every q =
0,1,2,...,n—1, we have

n—1

/ |det Loldvx (x) + o(m"™"), m — 0. (2.6)
X(@)

. q m
dim Hh’m(X) <

From Theorem 2.2 we deduce Demailly’s weak holomorphic Morse inequalities (see [9,
TheoremO.1] and [27, Theorem 1.7.1]):

Corollary 2.3 (Demailly’s weak morse inequalities) Let M be a compact Hermitian mani-
fold of dimension dimcM = n and let (L, h™) be a Hermitian line bundle over M. Then for
q=0,1,2,...,n

n

dim H (M, Lk <

< 2y / o |det RE|dvoy (x) + o(K"), k — oo, .7
M(q

where Hg (M, L*) denotes the q-th 3-cohomology group with values in L¥, dvy is the

induced volume form on M, R)Ig , X € M is the Chern curvature of the Hermitian line bundle
(L, h%) and M(q) is a subset of M where R)I; has exactly q negative eigenvalues and n — q
positive eigenvalues.
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Proof We take X to be the circle bundle {v € L* : |v|121,1 = 1} over the compact complex

manifold M where (L*, h~") is the dual line bundle of Hermitian line bundle (L, k) over M.
Let (z, A) be the local coordinates on L*, where A is the fiber coordinates. The natural S L
action on X is defined by e'? o (z,A) = (z, ¢!?2). Then we can check that X is a compact
CR manifold with a transversal CR S'-action. On X we can check that £, |;10y = %RZL
where x = (z, 1). It is well known that (see [26, p.746], Theorem 1.2 in [8]) for k € N,
dimHg (M, L% = dimHik(X). From (2.6) we have

. k :
dimHI (M, L*) = dim H} ,(X)
kn
<— |det £, |dvx (x) + o(k™)
27t /X<q) i
k" 2w
< —— X —
— 27‘[""‘1 on
k"
(27.[);1

(2.8)
/ [det RE|dvy + o(k™)
M(q)

=

/ | det RE|dvp (x) + o(K").
M(q)
Thus, we get the conclusion of Corollary 2.3. O

It should be noticed that the relation between sections of the holomorphic line bundle
and function theory on the associate Grauert tube was first observed by Grauert [14]. The
isomorphism of the subcomplex (Q,(:;'(X), dp) to the Dolbeault complex (QO*‘(M, L™),09)

was established by Ma-Marinescu [26, p.746].

For o > 0, we collect the eigenspace of Dl(;’)

(see Theorem 1.13) and define

» Whose eigenvalue is less than or equal to o

Hp <o (X) =P HL (X 2.9)
A<o
The Szegd kernel function of the space M}, _,.,(X) is defined by T} _,,, (x) =

Z‘;’il lgj (x)|?, where {g; (x)}?’;1 is any orthonormal basis for the space Hg’m’smg (X).
Our second main technique result is the following

Theorem 2.4 For any sequence v,, > 0 with v,, — 0 as m — 00, there exists a constant
C > 0O independent of m and x € X such that

m~ 7Ol L (x) <C, VmeN, VxeX. (2.10)
Moreover, there is a sequence §,, > 0,8,, — 0 as m — 00, such that for any sequence
vy > 0 with lim iﬂ =0, we have
m—o0 Um

e 1
lim m~ DI, (x) = S|4t Ll - Ix(g), VX € Xreg. (2.11)

m— 00

Since the measure of X\ Xreg = 0, integrating (2.11) and by Fatou’s Lemma we have

n—1

dim™M;, _,,, (X) = / |det L, |dvx (x) + o(m"™ 1), m — oc. (2.12)
N X(g)

2"

From Theorem 2.4 and the linear algebraic argument from Demailly in [9,10] and [25], we
obtain the strong Morse inequalities
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Theorem 2.5 (Strong Morse inequalities) Let X be a compact connected CR manifold
with a transversal CR S'-action. Assume that dimgxX = 2n — 1,n > 2. For every
qg=0,1,2,....,n—1,as m — 00, we have

q ) . mh—1
— . J
E (=14 ]dlme’m(X) < o

q

Z(—l)'ﬂ‘/ | det Ly|dvx (x) +o(m"™"). (2.13)
= = X(j)
In particular, when ¢ = n — 1, as m — 0o, we have the asymptotic Riemann-Roch theorem

n—1 n—1 n—1

> (=1idimH],, (X) = z _ Z(—nf/ |det Ly |dvx (x) +o(m"™ ). (2.14)
i ’ 2" <3 X(j)

From Theorem 2.5, we can repeat the procedure in the proof of Corollary 2.3 with minor
change and get Demailly’s strong Morse inequalities. We refer the readers to the book by Ma
and Marinescu [27] for the heat kernel approach of Demailly’s Morse inequalities.

When g = 1, from the strong Morse inequality in Theorem 2.5 we have

—dimH}) ,(X) + dimH, ,,(X)

n—1 n—1

/ | det £, |dvx (x) — =
X(1)

o /X(O) | det Ly|dvy (x) + o(m™ 1), m — oco.

(2.15)

- 271}1
The inequality (2.15) implies that

Theorem 2.6 (Grauert-Riemenschneider criterion) Let X be a compact connected CR man-
ifold with a transversal CR S'-action. Assume that dimgX = 2n — 1, n > 2. If X is weakly
pseudoconvex and strongly pseudoconvex at a point, then as m — 00

dimHy ,, (X) = m"™", dimH,  (X) = o(m"™") forq > 1. (2.16)
In particular, we have dimng)(X) = oQ.

Proof Since X is a weakly pseudoconvex manifold and strongly pseudoconvex at least at a
point, we have X (q) = @ for every ¢ > 1 and X (0) contains a ball. By the weak Morse
in Theorem 2.2 we have dimH,im(X) = o(m" 1) for g > 1 as m — oo. By the weak
Morse inequalities for ¢ = 0 and (2.15), we get the conclusion of (2.16). Using the Fourier
decomposition (1.22), we have dimHg (X) = o0. m]

Theorem 2.6 implies a new proof of Grauert-Riemenschneider conjecture (Siu’s criterion) as
stated and solved by Siu [30], [31, Theorem 1] and Ma and Marinescu [27, Theorem 2.2.27
®].

Corollary 2.7 (Grauert—Riemenschneider conjecture, Siu’s criterion) Let M be a compact
Hermitian manifold and let (L, h™) be a Hermitian line bundle over M. If L is semi-positive
and positive at a point, then L is big.

Proof Applying Theorem 2.6 to the circle bundle of L we get the conclusion of the corollary.
]

Demailly [9, Theorem 0.8(a)] and [27, Theorem 2.2.27(ii)] proved a more general form
of the Grauert—Riemenschneider conjecture, namely that if the integral of ¢ (L, h)" over
the set of points for which c¢;(L, #) has one or fewer negative eigenvalues is positive (i.e.
fM(El) c1(L, h)" > 0), then L is big and M is Moishezon.
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If we set fX(<1) |detLy|dvy = fX(O) |detly|dvy — fX(l) |detLy|dvyx and assume
that the Levi form of CR manifold is not always semi-positive but that the integral
fx(<1) |detLy|dvx > 0, then by (2.15) we still get many CR functions:

Theorem 2.8 Let X be a compact connected CR manifold of dimension 2n — 1 with a
transversal CR S'-action. Assume that

/ |detLy|dvy > 0. (2.17)
X(<1)

Then dimngm(X) ~m" Vasm — oo. In particular, dimH,?(X) =

Theorem 2.8 is the analogue of Demailly’s criterion [9, Theorem 0.8(a)] and [27, Theorem
2.2.27(ii)], for CR manifolds with transversal CR S'-action and actually implies this criterion
if applied to the Grauert tube. Theorem 2.8 shows that one can allow the Levi form to be
negative in a controlled way and still have a lot of CR functions.

2.1.1 Morse inequalities for m — —o0

In the main results above, we only consider the Morse inequalities for the positive Fourier
component dimH, , (X) as m — oo. In fact, we also have the Morse inequalities for the

negative Fourier component Hb n(X) asm — —oo. Based on the same arguments as in the

proof of the main results, the bounds for H;{m (X) for m — —oo will be given in terms of
integrals of the Levi form of X over the sets X (n — 1 — ¢). More precisely, we have

Theorem 2.9 Let X be a compact connected CR manifold with a transversal CR S'-action.

Assume that dimpX = 2n — 1,n > 2. Foreveryq =0,1,2,...,n — 1, asm — —o0, we
have
|m|nfl
dim H (X) < / | det Ly |dvy (x) + o(jm|"™"),
’ 27" x(—1—¢)
q |m|n 1 4
> (~1)7 I dimH], (X) < > (=1 1/ | det Ly |dvx (x) + o(lm|"™ ).
j=0 j=0 X(n—1—j)
(2.18)
In particular, when g = n—1, asm — —o0, we have the asymptotic Riemann—Roch theorem
n—1 ) ) |n 1 n
D (~D/dimHj,,(X) = Z( 1/ / | det Li|dvx (x) + o(m|"™).
=0 ’ X(n—1-j)
(2.19)

From Theorems 2.2, 2.5 and 2.9, we deduce

Theorem 2.10 Let X be a compact connected CR manifold of real dimension 2n — 1 with a
transversal CR S'-action. Let ¢ € {0, 1, ..., n — 1}. Assume that the Levi form of X has q
non-positive and n — 1 — q non-negative eigenvalues everywhere. Then

dimH}f’m(X) =om"™"), asm — oo, forj#q

\ (2.20)
dimH, , (X) = o(lm|"™"), as m — —oo, forj #n—1—gq
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If moreover the Levi-form is non-degenerate at some point, then
dimH,  (X) ~ m" ' asm — oo
dimH, (X)) ~ [m|"7!, asm — —oo 2.21)
dimH (X) = oo, dimH, ™' 79 (X) =
In particularly, if X is weakly pseudoconvex and strongly pseudoconvex at a point, then
dimHir_n] (X) =~ m|" ' asm — —o0

and in particluar dimH}:’_] (X) = 00. Moreover, dimH}? X) =o(m|"™ Yasm — —o0 for
g <n-—2.

2.2 Proofs of Theorem 2.1 and the weak Morse inequalities

Fix x¢ € X and choose canonical local patch D near xo with canonical coordinates (z, 6, ¢)
such that (z, 6, ¢) is trivial at xq. Write D = D x (-4, 6) D= {zeC !z <eh
In this section, we always treat D as an open subset of C"*~! with the complex coordinates

= (21,...,2n—1). We choose the fixed Hermitian metric given on T*01D defined in
Remark 1.20 and extend it to 7*%-9 D. We still use the notation (+]-) to denote the Hermitian
metric on 7*%9D. Letu € Q%7 (X). From the definition of Q7 (X) we have that Tu = imu.
Then on D, u = ii(z)e™? with i(z) € Q4(D) and ii(z) = X[, il (z)dZ’ . Before the
proof of the weak Morse inequalities, we first need the following lemma

Lemma 2.11 Forallu € Q%q(X), on D we have

— . _ — . —x . _ 7*72m .
dpu = ezm(?e mwa(emwe 1m9u)’ abu — ezmﬂe mey ‘/’(ezmpe 1m0u)’

4 ‘ (2.22)
D(b‘%u = e'mge_m“’lil(zzzw (€™M y).

Recall that 5*’2m¢ is as in the discussion before (1.50) and D;‘fzw is given by (1.52).

Proof Letu = 3|, -, uydz’. Then dpu = > ii=q (8'1-’ — 2 3"’) dz; ndz’. By the

0z 9z

assumption of the Lemma 2.11, Tu = imu which implies that on 8;‘0’ = imuy on D for

every J. Then

314] 3 (2) _ _
Bu= z(az ) ) di na?
J J

J 1
- (2.23)
du 09() -\ -
1m0 J @
- dz; ndz’
S5 (1294, ) azy
|J|=q j=1 7 J
where u = ¢"%i(z) on D, i(z) = X[)_, rimeii; (2)dz7’. Set v(z) = €"%i(z) =
>0 =, rimevy(2)dz’ . Then
aUJ me (812] aQD(Z) B )
— e uj(z)e =" Ly . 594
sz 8 ( J( ) ) az} aZ] ( )

Substituting (2.24) to (2.23) we get the conclusion of the first identity of Lemma 2.11.
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Since d,u € Q%77'(X), on D, we write 9,u = ¢™3(z), 1(z) € QUI~1(D). Take

X(0) € C3°((~5,8)) with [ x(0)d6 = 1. Let g € Q™" (D). We have

@pule " Dg(@)x (0)e) = (@ 5(2)|e "D (2)x O)e™) = (B(2)|g(2)2mg-
(2.25)
On the other hand, from the proof first identity of Lemma 2.11, we have

@pule™ " g@)x O)e™) = uldp(e "D g (@) x @)e™))
= (u|X(G)eimee—Wl(/’(Z)g(e—m(ﬂ(Z)g(Z))) + (u|(_i)X/(e)eimee—Zm(p(z)g(p A g(z))
= (emw(z),jt(z)|5(6*m<ﬂ(2)g(z))2m(p _ (5*,2m‘/)(em<pﬁ)|efm¢p(z)g(z))2m¢

_ -k, 21 ~
= (e mtp(z)a* mw(emwu”g(z))Zm(p'

(2.26)

From (2.25) and (2.26), we get

- _ —%,2, ~ 0, ~
(5(2)18(@)amp = (T (™iD)|(2))amy. Vg € 2 (D),
and hence
e_imggzu =7 = e_m‘/’(Z)g*’zm(p(em"’ﬁ) on D.

We get the second identity in Lemma 2.11. The third identity can be deduced directly from

the other two identities. O
For any u € QU4(X),u = 3| ;1_, us(z,0)e’ (z). Here J = (ji, ..., jg) with 1 < j
< < jg=<n-—1, e/ = et Ao Aedaand {ej};f;{ is the orthonormal frame chosen

in Lemma 1.19. Set SZL J(x) = SUPerd (). Jlull=1 7 (x)|® which is the extremal function

along the direction e/ . We can repeat the proof of Lemma 2.1 in [19] and conclude that

Lemma 2.12 For every local orthonormal frame {e’ : |J| = q, strictly increasing} of
709X over an open set D, we have for y € D

M) = > Sk 0. (2.27)
[J1=q

Now we are going to prove Theorem 2.1 and the weak Morse inequality.

Proof Fix x¢p € X and choose canonical local patch D = {(z,0) : |z| < ¢, |8] < &} with
canonical coordinates (z, €, ¢) such that (z, 8, ¢) is trivial at xg. For any u € Hz’m (X) with

lull = 1, on D we have u(z,0) = ii(z)e™?. Set v, (z) = "??ii(z),z € D. Then from
Lemma 2.11, D}f’,)nu(z, 0) = 0 and ||u|| = 1 we deduce that on D,
1
0% um(z) =0 and / [un (@) e DR ()dv() < o (2.28)
D

2m

where 05%) is as in (1.52). Set i) (2) = m = e ﬁ)ﬁ(ﬁ). Then by (1.51) and (2.28)
we have
(2.29)

- - —2me(—%= z 1
Dgfn))v(m)(z) =0 and /~ |v(m)(z)|26 m(p(\/ﬁ))\ (ﬁ) dv(z) < %

-
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for any r < logm when m is large. From Proposition 1.21 and (2.29), there exists a constant
C ; 5.5 > 0independent of m and the point xo such that

< C

~ 2
106113, 5125, = Cras.s- (2.30)

Since X is compact we can choose § which is independent of xo. For s > 2n — 2, from (2.30)
and by Sobolev embedding theorem, there exists a constant C’ which is independent of x¢, m
such that

m™ " Vlu(eo)? = m™ " VN 0) = [56n 0)1* < C". (2.31)
From (2.31) and Lemma 2.12, we get the conclusion of the first part of Theorem 2.1.
Fix |J| = q, J is strictly increasing. There exists a sequence u,,, € HZ e (X) with
[lttm; || = 1 such that
limsupm™~"=V$? | (x0) = Jim mk "D e (x0) P (2.32)
m— 00

Tupy, = imgu,, implies that on D, we have u,,, = iy, (2)e!™?  Since Dl(,qm (umy) =0,

from Lemma 2.11 we have

D(q)

o€ it (2)) = 0. (2.33)

Moreover,

/ (M i (2) 229 (2)du(2) = / i, () PRV ()
b b (2.34)

/ |ty P2 (2)dv(2)dO < 218

—(n=1)
Similarly, set Dy, (z) = m, * mk‘p(ﬁk i (5

). Then from (1.51), (2.33) and (2.34)

1\
we have )
Dégn)k)ﬁ(mk) = 0 on Diog (2.35)
and ( )
b 2, 72T d ! 2.36
\/;logmk |v(mk)(Z)|kae \/7k U(Z) - 26 ( ’ )

For any r > 0 with D, C ﬁlogm when m >> 1, by Garding’s inequality we have

~ 2 ~ 2 @) =~ 2
10Gmy) ||2mkF,’2k<ﬂ,S+2,Dr <Cs, (“v(mk) ”2mkF,Zk<ﬂ,Dzr + ”D(mk)v(mk) ”2mkF,f,k<PvS»ﬁ2r) )
(2.37)
where Cr s > 0is aconstant independent of my. Combining (2.35), (2.36) and (2.37) we have

10 my) ||2mF*¢ 2.5, < Cs,s. Where C, 5 5 > 0 is a constant independent of m;. We extend

() to C"~! by zero outside 510g my, still denoted by ¥, ). By Sobolev compact embedding
theorem, there exists a subsequence of {V,,)(z)} which is denoted by {v,, kj)(z)} such that

14
Ty — v = > rimevy(2)dz’ € @*9(C""!) in C*(K) topology, VK € C".

I l1=¢
(2.38)
From (2.35), (2.36), (2.38) and (1.56), we can check that
O v=0 (2.39)
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and 1
/ lv(z)[2e 220@dy(z) < —. (2.40)
(Cn—l 28

Recall that ®(z) = Z;’;i jlz;1>. Combining (2.39) and (2.40), we have

lus(0)*> < (0). (2.41)

=2 Ser-1.g

Here, SZ - (0) is the extremal function along the direction dz’ on the model space C"~!
(9)

with respect to complex Laplacian [, , , that is

§9 01 (0) = sup{Juy () : u € Q4(C"), 05 u =0, / ul?e 22O du(z) = 1.

From (2.32), (2.38) and (2.41), we have

lim supm_("_l)SZ’J(XO) = ,lggomk |umk J(x0)|

Zjirgolﬁ(mkﬂ(o)l =y OF = 28t ,0). (242

From (2.42) and Lemma 2.12, we deduce that
14

limsupm =" DT1%(x) < > rimelimsupm= V8 (x) < LS (0.
m—>oop mit0) = ‘”Z:q m—>oop )= 28 Z”‘:q J.cnt
(2.43)
By Proposition 4.3 in [3], we have that
/ q . 1

Zm:q S)n1© = G 12 2k Lx (ko) (2.44)

From (2.43) and (2.44), we have
~(n=1pp 1 _1
lim sup m Il (x0) < — | det Lyl - 1xq)(x0)- (2.45)
m—>00 28 2 2n—1

When xo € Xi, by Lemma 1.18, § can be chosen to equal to % — ¢, for every € > 0. From
this observation and (2.45), we deduce that

—(n—1)m79 k 1
lim sup m I, (x) < — P— [det Ly| - 1x(p(x), Vx € Xi (2.46)

m—00 2 2 n—

and Theorem 2.1 follows then.
From Lemma 1.4, Theorem 2.1 and by Fatou’s lemma we obtain the weak Morse inequal-
ities and get the conclusion of Theorem 2.2. O

Now we are going to prove Theorem 2.4 and the strong Morse inequalities.

2.3 Proofs of Theorem 2.4 and the strong Morse inequalities

In this section, we will establish the strong Morse inequalities on CR manifolds with transver-
sal CR S!-action. We first recall some well known facts. From Theorem 1.13, we know that
Déq) has discrete spectrum, each eigenvalues occurs with finite multiplicity and all the eigen-

forms are smooth. Foro € R, let Hb m, <o (X) bedefined asin (2.9). Similarly, let Hb m>o (X)

denote the space spanned by the eigenforms of D(q) whose eigenvalues are >o.
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Let Qp.,» be the Hermitian form on Q%4 (X) defined for u, v € Q%9(X) by
Qb v) = @puldpu) + @uld4v) + (lv) = O ulv) + . v).

Let Q%q (X) be the completion of SZ?,;q (X) under the Oy, in L%O 0 n(X). For A > 0, we
have the orthogonal spectral decomposition with respect to Qp

il (X) = H] o DHY =0 (X, (2.47)

b,m,<o b,m,>o

where H? (X) is the completion of HI (X) under Qp ,, in L? (X). For the

bm,>o b,m,>o 0,9),m
proof of Theorem 2.4, we need the following

Proposition 2.13 For any p € X(q) N Xreg, there exists oy, € Qg{q (X) such that

1
: —(n—1) 2 _
(1) lim m lem (P)I* = Sl det L.
2) lim fonl?* = 1.
m—0Q
k
3 tim || (im0, ) an| =0,k e N, (2.48)

(4) There exists 8, independent of p, 8,, — 0 such that

(m_IDlgq) am’am) <&m.

,m

We now fix p € X(q) N Xpep. Let D = D x (—m, ) be a canonical local patch with
canonical coordinates (z, 9, <p2 such that (z, 0, @) is trivial at p. We take D = {(z,60) €
C"!:)z] <& 10| < 7} = D x (—x, w). By Lemma 1.17, this is always possible. Until

further notice, we will work with (z, 8, ¢) and we will use the same notations as in Section
1.4. Before the proof of Proposition 2.13, we claim that one can find u(z) € Q%4(C"")

such that 1
@ =0, [ P v =
C . (2.49)
and [u(O)* = Z—[21(p), - A1 (P,
T

Recall that @;‘go is given by (1.55). Proof of the claim: We assume that the first g eigenvalues
of the Levi-form are negative, thatis, A\; <--- <A; <0 <Xyy1 < -+ < Ay_1. Set

1

2A1y ooy 2Ap— 1\2 w2 o

u(w) = (% . 27) eZi=1 M il0il g A A di,. (2.50)
T T

It is easy to check that the form u(w) satisfies the claim. Now we are going to prove Propo-
sition 2.13.

Proof We choose cut-off function yx such that x(z) € Cgo (€1 with x = 1 in a neighbor-
hood 0fD7% and suppxy € D;. Here, D, = {z € C" 1V zil < ..., |ze=1] < r}. Choose

2

a function n(r) € C*®(R) satisfying 0 < n(¢r) < 1 such that n(tr) = 1 when r > 7~ and

n(t) = 0 when t < ”Tz Set 0, (0) = n((w? — 6%)log? m), m € N. Then ,,(0) is a family
of cut-off functions with suppn,, € (—m, 7). Moreover, we have that lim,,_, oo 7, (0) =
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1, a.e.0 € (—m, ) and |5, < 1, |n§n(9)| = 0(log2m), |n;1(9)| = 0(log4m). Define

N

um(z,0) = m%u(\/ﬁz)e_m‘p(z)x (
logm

) Nm (0)e'™? (2.51)

where u(z) € QU4(C" ") is as in (2.50). Then u,, € Q¥9(X) with suppu,, € D. Set
oy = Qf,‘,’)um Then on D we have

1 T . .
tm(z,0) = — / um(z, e~ M dret™? (2.52)
2 ),
From (2.51) we have
luml? = / "Hu(Jmz)Pe 20 x2 (lvog ) My (O)A(2)dv(2)do
X
T _ B Jmz
= / ny, (0)d6 / m"Hu(Ymz)Fe 20 x2 (—) A(2)dv(2)
—x Dlogm logm (2.53)
N
<2 / m" = u(mz)Pe e 2 (—V’"Z) M@)dv(2).
Dlogm logm
S
Taking limits as m — oo and from the construction of u(z) in (2.49), we have
1
lim sup [Jup > < 271/ lu(2)2e 22O dy(z) = 27 x — = 1. (2.54)
m— 00 cn—1 21
Since on D

/g

1 . .
U (2,0) = Ot (2,6) = / U (z, 1)e" ™ dre™?
JT

—TT

b4 /mz
L m 2 u(r)e—mw(z)x( )77 (t)ezmt _”"’dze’me

2 (2.55)
1 . '
(& e ()
= cmm"5 u(y/mz)e @ (ﬂ) eme
logm
Here ¢, = % ffﬂ Nm (t)dt. Then by Fatou’s lemma, we get lim ¢, = 1. We have
m—00
A s Ap—
0D g () = =D (0, O = (@) = & B At 5

2"

Taking limits in (2.56) as m — oo, we get the conclusion of the first part of Proposition 2.13.
From (2.55), we have

lim / ot (., 0) > A(2)dv(z)dO
m—0oQ D

= lim 27 / 2 1m"~Hu(Ymz)|?e=2meE 2(@) A(2)dv(z) (2.57)

m— 00 logm

1
= 271/ lu(2))?e 2*Dgdu(z) =27 x — = 1.
Cn—l 27T
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This implies that ]im inf llaw > = 1. From (2.54) and the definition of o, we have ||o,, ||> <
luml> < 1 Wthh 1mphes that hm sup llm |I*> < 1. Thus we have hm llam|I*> = 1. Thus

we get the conclusion of the second part of Proposition 2.13. Now we postpone and state the
following lemma

Lemma 2.14
1 1 . .
—0@y,, = —09 [mT‘un/nTz)e*me (—*/”TZ ) e”’“’nm(e)]
m m log m (2.58)
L o) —mp(z), (VM2 imo |
=—m z 00, |u(v/mz)e ¢ @ N (0) + &m,

where ||ep || < 8m, Om is a sequence independent of p with §,, — 0 as m — oo.

Proof Let {e/ }”:i be the orthonormal frame of T*%1X over D given in Lemma 1.19. Let

{U; }'} "be the dual frame of {e/ }" ! with respect to the given T-rigid Hermitian metric on
CTX. Then on D

_ ] d .
Uj= E)Zj 1A1Z189+0(|z| )— j=1...,n—1. (2.59)

By a direct calculation(see Proposition 2.3 in [16])

n—1
oW = ZU Uj+ > e AN olU ;. Upl+e(U)+e(U")+ zero order terms, (2.60)
Jj=1 Jok=1

where U;‘ is the formal adjoint of Uj, ¢(U) denotes the remainder terms of the form
n—1 . .

> ax(z, 0)Uy with ax smooth and similarly for (U *). Then by a direct calculation we
k=1

have

1 1 Jm
— 0wy = —m"T O [u(ﬁ ye e ( ) ”"9] M@
m m log

1 Tk / 7T /
+ = (@ unz.0) M@ 02D+ (@i . 6)) DO
m m (2.61)

! 1 / " 2
+ ;um(z, 0) [0, (0)O 1) +n,,0)O(Iz]) + 0, (0)O (1217)] .

1 n— RV
= 7mTIDl(;]) [u(«/mz)e_m‘”@x (ﬂ) lme] 77m(9) + Em
m logm

Here, we have used ¢, to denote the remaining terms of (2.61). Then by the construction of
nm we can check that &, = O( (lo'i ;,") ) where «, B are positive constants. Thus the lemma
follows. O

Now we are going to prove the third part of Proposition 2.13, we only prove it when k = 1
and the other cases are similar. From Lemma 2.11 we have

Dl(f) [u(JrTz)x (7@) e_m“’(Z)eimei| = eim‘)e—m‘pﬂgx(ﬂ [M(M)X (7@)} .
(2.62)
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From (1.51), (1.56) and Elggou = 0, it is straightforward to check that

o (2) o
_ %m R [”(F)X(F)] —2m¢(2)k(z)dv(z)d9

bd 2
= [ mm@rao [ ‘— eI @ [uwnTz)x (@)H =2 (2)dv(2)
- m logm

bd 2
= [ mm@rao [ ‘DE% [u(z)x (logm)} T Wu( f) dv(2)

2
SZH/‘DEq)) [u(m( ) )] e i “'(“A( )dv(z) < b,
" logm
vm (2.63)

where §,, > 0 is a sequence independent of p with lim,,_ 0 6, = 0. Combining (2.58),
(2.63) and notice that [|m 'O, || < [lm~' 0" u,, || we get the conclusion of the third part
of this proposition. (2) in Proposition 2.13 and (2.63) imply (4) in this proposition. O

Now we are going to prove Theorem 2.4. The proof of (2.10) is essentially the same as
the proof of (2.3). Therefore we omit the detail. Let o, be the sequence we have chosen in

.. q q
Proposition 2.13. Then o, = oy, 1 + 2, 1 € Hb’mquvm (X),amp € Hb,m,>mvm (X).
Since

1 1 (1 )
ot 2117 = (em2lem2) = —— (T5) ctm2fern.2) = ( D;";am\um,z) == >0
muvy, ’ Um Um

(2.64)
From (2.64) and (2) in Proposition 2.13, we get
lim o 1]l = 1. (2.65)
m— 00
Now we claim that
lim m~""Via,,2(p)|* = 0. (2.66)
m-—0Q0
On D, we write o, 2(z, 0) = &m,z(z)eime. Set Bn.2(z) = &m,z(z)em‘/’(z). Then
lim_m™ " Vlog 2(p)? = Tim_m™""1ay 2(0)
m— 00 o) m— 00 (267)
= lim m~ "B, 20 = lim [Bim2(0).
m—0Q0 m—00

Here we used the notation | B 2(2)|> = m*<"*1>|ﬁm,2(ﬁ)|2.
From Lemma 2.11 we have

D,(fr)n (om2) = eimee_’"‘p(z)D;'f;w (&m,z(z)em‘p(Z)) = e"’"Ge—'W(Z)D;% (Bmp2). (2.68)
From (2.68) and using induction, we get on D
R S (Dggw) B2 (2)). (2.69)

By Garding’s inequality (see Proposition 1.21) and Sobolev embedding theorem, we see that

1B 2O = Cor (1B 2Bz, + 100 Bon2 B30, ) (2.70)
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for some r > 0. Here C, , is a constant independent of p and m. Now, we have

1Bm)2 15z g0, < ot 2> — 0. 2.71)
Moreover, from Garding’s inequality and using induction (see Proposition 1.21), we have

n+1

(q) 2
1O By 2 W3z g, <C D
k=1

2
k
(@)
(D(m)) /S(m),z
2mF5¢, Dy

, 2.72)

for some ’ > 0, where C’ > 0 is a constant independent of m. From (2.69) and (1.51) we
can check that for k € N,

@\ ?
” (DJZ)) Bm).2

2
1 @\*

q)
T(Db ) Am,2
2mFy¢.Dy n

1 ko2
r (O)

where C1 > 0 is a constant independent of m. Combining (2.70), (2.71), (2.72) with (2.73),
we have 1im,; o0 |Bun).2(0)]? = 0. From (2.67) we have lim,,— 0o m ™"~ D]a, 2(p)[> = 0
and the claim (2.66) follows. From (2.66) and (1) in Proposition 2.13, we conclude that

<C1

2.73)
< Cl

— 0,

lim m~ " Vla,, 1(p)I* i (2.74)
m—>00 2
Now,
2
—— —(— A(p), - A1 (P
(n=1) 4 0) > (n 1)|0‘m,1(P)| [A1 n . 275
R i e 27 27
By a similar proof of (2.5), we have
A sy Ap—
1imSqu_(”_l)nfn,gmum(p)5| 1(p) n 1(P)|' 2.76)

m—00 2"

Combining (2.75) with (2.76), we get the conclusion of Theorem 2.4.
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Appendix

Proof of Lemma 1.4

2 .
Proof Set X; = {x e X :¢'7 ox =xandV 0 < |9 < 27’7,e19x # x}. We call such

x the points in X with period 27” Then X, = X by definition. There are only finite
Xj,1 < j < msuchthat X = (J7_; X;. Then X; N Xy = #,¥j # k. Now we are
going to show that U;n:z X is a closed subset of X. We assume there exists a sequence

{xx} C U;”zz X such that xy — xo. W.L.O.G, we assume that the {x;} C X; for some
2 - 2
j = 2.Then we have ' / o x; = x;. Taking limits as k — oo we have ¢' 7 o xg = xo. By

@ Springer



Morse inequalities for Fourier components of Kohn—Rossi. .. 467

definition, xo ¢ Xreg. Thus xo € [J'}_, X;. This means that | J7_, X is a closed subset of
X and the complement Xy, is an open subset of X.
Second, we are going to check that the measure of X\ X, is zero. Set ¥; = {x € X :

e'ZTZrox = x},2 < j < m.Obviously thatY; isaclosed subsetof Xand X; C ¥;,2 < j <m.
Now we will show that the measure of ¥;,2 < j < m is zero and for convenient we
only show that the measure of Y> is zero. We use m(Y;) to denote the measure of Y; for
2 < j<mlIfY, = @, we have m(Y) = 0. Now we assume that Y» # @. For any
p € Y3, we have ¢/ o p = p. With the rigid Hermitian metric on X, it is easy to check
that the map ¢'™ : X — X is an isometrically CR isomorphism. Since ¢/™ o p = p we
have de'™ : T,X — T,X. Here T, X is the tangent space of X at p. There exists a small
neighborhood U,, of 0, € T, X such that the exponential map

exp,, Uo, — expp(UUp) =V, CcX (2.77)

is a diffeomorphism. Then for any g € Y N V), there exists a vector Z; € U,, such that
exp(Z,) = q. Since '™ o g = g, we have that e’”(expp(Zq)) = q = exp,(Zy). The
isometric map ¢'™ : X — X implies the commutation between ¢'”™ and the exponential map
and we have that

exp, ode'™(Z,) = e o exp,(Zy) = q = exp,(Zy). (2.78)

Since ||dei”(Zq)|| = ||Z4|l, we have that dei”(Zq) € U,,. Combining with (2.77), we get
de'™(Z,) = Z,. This means that Z, is a fixed point of the linear map de’™ : T,X — T,X.
Set H={Z € T,X : de'™ Z = Z}. By (2.77) and (2.78) we have that

expp(Uop NH)=V,NY,. (2.79)

Since Y, is a closed subset of X, From (2.79) we have that H must be a proper linear subspace
of T, X. Then (2.79) implies that m(Y>) = 0. Similarly, we have m(Y;) = 0,V2 < j < m.
From X; C Y;,2 < j < m, we have that m(X;) = 0,2 < j < m. Moreover (2.79) implies
that ¥, is a nowhere dense subset of X, similarly, ¥;, 2 < j < m are nowhere dense subset
of X. Since X; C Y;,2 < j < m, we have that X, is a dense subset of X. O
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