
Math. Z. (2016) 284:285–307
DOI 10.1007/s00209-016-1657-2 Mathematische Zeitschrift

Existence of Dirac eigenvalues of higher multiplicity

Nikolai Nowaczyk1

Received: 19 May 2015 / Accepted: 27 January 2016 / Published online: 15 April 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this article, we prove that on any compact spin manifold of dimension m ≡
0, 6, 7 mod 8, there exists a metric, for which the associated Dirac operator has at least one
eigenvalue of multiplicity at least two. We prove this by “catching” the desired metric in a
subspace of Riemannian metrics with a loop that is not homotopically trivial. We show how
this can be done on the sphere with a loop of metrics induced by a family of rotations. Finally,
we transport this loop to an arbitrary manifold (of suitable dimension) by extending some
known results about surgery theory on spin manifolds.
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1 Introduction and statement of the results

For this entire article, let (M,�) be a closed Riemannian spin manifold of dimension m
and � : ˜GL

+
M → GL+ M be a fixed topological spin structure on M . For any Riemannian

metric g onM , we denote by�
g
K
M → M the spinor bundle with respect to g andK ∈ {R, C}.

The associated Dirac operator is denoted by /Dg
K
. We think of this operator as an unbounded

operator
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Existence of Dirac eigenvalues of higher multiplicity 287

/Dg
K

: H1(�
g
K
M) ⊂ L2(�

g
K
M) → L2(�

g
K
M)

densely defined on the first order Sobolev space H1(�
g
K
M) of sections of �

g
K
M . In that

sense the operator has a spectrum spec /Dg
K

⊂ R. One is usually interested in the case K = C.
In terms of a local orthonormal frame, the Dirac operator is given by /Dg

K
= ∑m

i=1 ei · ∇g
ei

and its spectrum comprises of those λ ∈ R for which there exists a non-trivial spinor field
ψ ∈ �(�

g
K
M) such that

/Dg
K

ψ = λψ. (1.1)

The Eq. (1.1) is called the Dirac equation and our main result about it is as follows.

Main Theorem (Existence of higher multiplicities) Let (M,�) be a closed spin manifold
of dimension m ≡ 0, 6, 7 mod 8. There exists a Riemannian metric g̃ on M such that

the complex Dirac operator /Dg̃
C
has at least one eigenvalue of multiplicity at least two. In

addition, g̃ can be chosen such that it agrees with an arbitrary metric g outside an arbitrarily
small open subset on the manifold.

1.1 Dahl’s conjecture

The result of the Main Theorem fits nicely into the context of a conjecture by Dahl [9], which
deals with the question of what sequences of real numbers can occur as Dirac spectra. In
general, the Dirac spectrum depends on the metric and even on the spin structure, see [10].
On the other hand, all Dirac spectra have certain properties in common.

Lemma 1.1 (Properties of Dirac spectra) Let (M,�) be a closed spin manifold and g be any
Riemannian metric on M. Then /Dg

C
is a self-adjoint elliptic first order differential operator

and its spectrum satisfies the following properties:

(D1) spec /Dg
K

⊂ R is discrete and unbounded from both sides.
(D2) In case m ≡ 2, 3, 4 mod 8, there exists a quaternionic structure on the spinor space

(hence and all eigenspaces are even-dimensional over C).
(D3) In case m �≡ 3 mod 4, the Dirac spectrum is symmetric about zero including multi-

plicities.
(D4) The kernel of the Dirac operator satisfies the estimate

dimC ker /Dg
C

≥

⎧

⎪

⎨

⎪

⎩

| Â(M)|, m ≡ 0, 4 mod 8,

1, m ≡ 1 mod 8 and α(M) �= 0,

2, m ≡ 2 mod 8 and α(M) �= 0.

Here, Â(M) denotes the Â-genus and α(M) denotes the α-genus.
(D5) The growth of the Dirac eigenvalues satisfies a certain Weyl’s law.

For a proof of these elementary facts as well as for an introduction into spin geometry in
general, the reader is referred to [11,16,24].

Lemma 1.1 raises the question whether or not one can prescribe Dirac spectra artibrarily
as long as one does not violate its assertions.

Conjecture 1.2 ([9]) Let k ∈ N,
1,
2 ∈ R,
1 < 
2, and (M,�) be a compact spin
manifold. For any non-zero λ1 ≤ · · · ≤ λk ∈]
1,
2[ satisfying (D2) and (D3), there exists
a metric g on M such that

spec /Dg
C

∩]
1,
2[= {λ1 ≤ · · · ≤ λk},
where the eigenvalues are counted with multiplicities.
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In the same article, Dahl also gives a proof of this conjecture in the case where all eigen-
values are simple, see [9, Thm. 1]. In this context, an eigenvalue λ is called simple if its
multiplicitiy

μ(λ) := dimK ker( /Dg
C

−λ), K :=
{

H, m ≡ 2, 3, 4 mod 8,

C, otherwise

is equal to 1. Here, H denotes the quaternions.

Remark 1.3 (Multiplicities) Denote by μK(λ) := dimK ker( /Dg
K

−λ) the multiplicity of an
eigenvalue λ over K ∈ {R, C}. Then the various notions of multiplicity are related by

μ(λ) =

⎧

⎪

⎨

⎪

⎩

μC(λ) = μR(λ), m ≡ 0, 6, 7 mod 8,

μC(λ) = 1
2μR(λ), m ≡ 1, 5 mod 8,

1
2μC(λ) = 1

4μR(λ), m ≡ 2, 3, 4 mod 8.

We will be primarily concerned with the case m ≡ 0, 6, 7 mod 8, where all these notions
agree, see also Remark 1.4.

The question what one can say about Conjecture 1.2 in case of higher multiplicities has
been open ever since. One would guess that one can prescribe eigenvalues of arbitrary finite
multiplicity. Unfortunately, the proof of Conjecture 1.2 in case of simple multiplicities does
not carry over to higher multiplicities. Therefore, the aim of this article is to introduce some
new techniques to approach Conjecture 1.2 in case of higher multiplicities, which will allow
us to prove the Main Theorem.

Remark 1.4 (Real vs. complex spin geometry) The restriction in the dimension in the asser-
tion of the Main Theorem stems from the fact that we need tools from real and from complex
spin geometry. In dimensions m ≡ 0, 6, 7 mod 8, complex spin geometry is the complex-
ification of real spin geometry. More precisely, the complexification of an irreducible real
representation of the real Clifford algebra will be an irreducible complex representation of the
complex Cilfford algebra. This follows from the explicit classification of real and complex
Clifford algebras, see for instance [24, I.§4]. Hence the complexification of the real spinor
representation is a complex one. This behavior under complexification goes through for all
other structures on the spinor bundle, in particular Clifford multiplication, the spinorial con-
nection and the Dirac operator. Thus, in dimensions m ≡ 0, 6, 7 mod 8, we can jump back
and forth between the real and the complex spin geometry.

Remark 1.5 (Neighborhood) The precise nature of the neighborhood mentioned in the Main
Theorem will become clear in the proof. It will be a surgery disc around a point, where
we perform a connected sum, see in Fig. 5. However, g̃ will typically not be in a small
C1-neighborhood of g in the space R(M) of Riemannian metrics on M .

1.2 Proof strategy

The key idea to prove the Main Theorem is the following simple topological reasoning to
which we will refer to as the Lasso Lemma, see Fig. 1.

Lemma 1.6 (“Lasso Lemma”)Let X be a simply connected topological space and let Y ⊂ X
be any subspace. Let γ : S1 → Y be a loop and E → Y be a vector bundle such that
γ ∗E → S1 is not trivial. Then X\Y is not empty.
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Existence of Dirac eigenvalues of higher multiplicity 289

Fig. 1 The “Lasso Lemma”

Y

X \ Y

γ

Proof Since X is simply connected, there exists a homotopy H : I 2 → X from γ to the
constant loop. Since γ ∗E → S1 is not trivial, γ cannot be null-homotopic in Y . Thus, there
has to be at least one point in X\Y that is hit by H , hence X\Y �= ∅. �
Remark 1.7 Of coursewe can identify I 2 with D2 andobtain that any extension H : D2 → X
of γ : S1 → Y satisfies H(p) ∈ X\Y for at least one p ∈ D2.

We will apply this reasoning in the following way: We set X (M) := (R(M), C1), the
space of all Riemannian metrics on M endowed with C1-topology. The set Y (M) will be a
subspace of metrics tailor-made such that X (M)\Y (M) �= ∅ directly implies the existence
of an eigenvalue of higher multiplicity. (The set Y (M) contains the set of all metrics for
which all eigenvalues are simple, see Definition 3.1. We use Y (M) instead of this simpler
set for technical reasons.) The bundle E := E(M) consists of the span of the eigenspinors
corresponding to a certain finite set of eigenvalues, see Definition 3.1. For the loop γ we will
have to construct a suitable loop g : S1 → Y (M) of Riemannian metrics.

Unfortunately, we will not be able to construct this loop directly. Therefore, we will use
the following strategy: In Sect. 4.1, we consider loops of spin diffeomorphisms ( fα)α∈S1 on
M and study loops of metrics induced by setting gα := ( f −1

α )∗g, α ∈ S1, g ∈ R(M). We
will work out a criterion when this loop induces a non-orientable bundle over S1 as desired,
see Theorem 4.12. This reduces the problem of finding a loop of metrics to finding a loop of
spin diffeomorphisms (which might be even harder in general). In Sect. 4.2, we will show
that the family of rotations by degree α on the sphere Sm will suit our purpose, if we start
with a metric g0 that is obtained from the round metric by a small perturbation. This will
give us the desired loop of metrics on the sphere Sm .

Finally, we will have to transport the loop of metrics on the sphere Sm to our original
manifold M . Any smooth m-manifold M is diffeomorphic to M�Sm , where � denotes a
connected sum, which is a special type of surgery. In Sect. 4.3, we will review the concept
of surgery in the setting of Riemannian spin geometry and ultimately show that the existence
of a suitable loop of metrics is stable under certain surgeries, see Theorem 4.26. Applying
this to the connected sum will yield the desired result, see also Fig. 5.

1.3 Comparison to results for Laplace, Schrödinger and other operators

One should note that Conjecture 1.2 has not only been formulated for the Dirac operator.
The Laplace operator on functions and the Schrödinger operator has been studied by Colin
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290 N. Nowaczyk

de Verdiére [6–8]. Some parts of these articles are formulated for more general classes of
self-adjoint positive operators (notice however that the Dirac operator is not positive). These
results were generalized later by Jammes [18–21] to the case of a Hodge Laplacian acting
on p-forms and even to the Witten Laplacian.

It is interesting to note how the research on the problem of prescribing the eigenvalues of
the Laplace operator has progressed: Jammes started with simple eigenvalues, advanced to
double eigenvalues and finally considered eigenvalues of arbitrary multiplicity. Therefore,
we think that a similar approach for the Dirac operator is reasonable.

A similar problem is given by the Laplace operator � = −∑

i ∂
2
i on a domain � ⊂ R

m

with Dirichlet boundary conditions. The spectrum {λ j (�)} j∈N of � depends on �, but it
cannot be prescribed arbitrarily by varying � among all domains of R

m with a fixed volume.
By the theorem of Faber-Krahn, the Ball B of volume c satisfies λ1(B) = min{λ1(�) |
�⊂̊ R

m, |�| = c}. Analogously, by the theorem of Kran-Szegö, the minimum of λ2(�)

among all bounded open subsets of R

m with given volume is achieved by the union of two
identical balls. A proof of these results (and many more results in this direction) can be found
in [14].

While it is possible to prescribe eigenvalues of highermultiplicity for the Laplace operator,
there are other physically motivated operators L for which Lu = λu always implies that λ is

simple. For instance, consider the Sturm–Liouville operator Lu := −
(

d
dx

(

p · d
dx

)+ q
)

u =
λu on L2([a, b]) subject to the boundary conditions

cau(a) + dau
′(a) = 0, cbu(b) + dbu

′(b) = 0. (1.2)

for some fixed constants ca, da, cb, db ∈ R. Here, p is differentiable and positive and q is
continuous. As a domain for L we can choose the closure of the C2 functions satisfying
the boundary conditions (1.2) under the L2-scalar product. Then L is an elliptic self-adjoint
operator of second order depending on the functions p and q . However, any eigenvalue λ of
L is always simple regardless of the choice of p and q , see for instance [12, Thm 4.1].

2 Construction of the set

The construction of a subset Y (M) suitable to apply Lemma 1.6 needs a consistent enumera-
tion of the spectrum for all metrics by globally defined continuous functions. This is possible
by the following result.

Theorem 2.1 ([26, Main Thm. 2]) There exists a family of continuous functions {λ j :
R(M) → R} j∈Z such that for all g ∈ R(M), the sequence (λ j (g)) j∈Z represents all the
eigenvalues of /Dg

K
(counted with multiplicities) and is non-decreasing, i.e. all g ∈ R(M)

satisfy λ j (g) ≤ λk(g), if j ≤ k.

We fix one such family for the entire article.

Definition 2.2 (Construction of Y (M)) Let k ∈ 2N +1 be a fixed number (whose precise
value will be specified later, see Remark 4.15). Then

Y (M) := {g ∈ R(M) | ∃1 ≤ j ≤ k : μ(λ j (g)) ∈ 2N +1,

λ0(g) < λ1(g), λk(g) < λk+1(g)}, (2.1)

i.e. Y (M) is the set of all metrics, where at least one of the eigenvalues with index 1, . . . , k
is of odd multiplicity.
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Existence of Dirac eigenvalues of higher multiplicity 291

Remark 2.3 One might wonder, why we define Y (M) in such a complicated manner. For the
moment we recall that X (M) = R(M) and convince ourselves that

X (M)\Y (M) = {g ∈ R(M) | ∀1 ≤ j ≤ k : μ(λ j (g)) ∈ 2N or

λ0(g) = λ1(g) or λk(g) = λk+1(g)}
⊂ {g ∈ R(M) | ∃1 ≤ j ≤ k : μ(λ j (g)) ≥ 2}.

Therefore, if we can show that X (M)\Y (M) is not empty, we have shown the existence of
an eigenvalue of higher multiplicity.

3 Construction of the bundle

3.1 Definition of E(M) as a set

The construction of the vector bundle E(M) as a set is straightforward.

Definition 3.1 (Construction of E(M)) Let k be a fixed number as in Definition 2.2. We
define

Eg(M) := span{ψ ∈ H1(�
g
R
M) | ∃1 ≤ j ≤ k : /Dg

R
ψ = λ j (g)ψ},

E(M) :=
∐

g∈Y (M)

Eg(M) → Y (M), (3.1)

where the bundle projection simply maps a ψ ∈ H1(�
g
R
M) to g. That means that at each

g ∈ Y (M), the bundle Eg(M) is spanned by the eigenspaces corresponding to the eigenvalues
λ1(g), . . . , λk(g) mentioned in Definition 2.2.

Remark 3.2 Recall that {λ j } j∈Z evaluated at any g ∈ R(M) is a non-decreasing enumeration
of the Dirac spectrum spec /Dg

K
counted with multiplicities. This is why we had to add the

conditions λ0(g) < λ1(g) and λk(g) < λk+1(g) in (2.1); they ensure that the vector spaces
defined in (3.1) have constant dimension, thus E(M) has constant rank.

Notice that E(M) consists of real vector spaces, since they are spannedby real eigenspinors
of the real Dirac operator. We want to use E(M) to make a conclusion about the complex
Dirac operator, so we will have to jump between the real and the complex spin geometry as
discussed in Remark 1.4.

3.2 Topologization of E(M)

It remains only to topologize E(M) and show that it is a continuous vector bundle. The
topology will be the subspace topology of a universal spinor field bundle. The continuity
claim will follow from standard arguments of functional analysis.

For the definition of a topology on E(M), we need to compare the spinors in spinor
bundles formed with respect to two different metrics, let’s say g, h ∈ R(M). The problem
is that the the two Dirac operators /Dg

K
and /Dh

K
cannot be compared directly, because not

only the operators depend on the metric, but also their domains. Therefore, the expression
/Dg
K

− /Dh
K
does not make any sense. A solution to this problem is to systematically construct

identification isomorphisms (of Hilbert spaces)

β̄h,g : L2(�h
K
M) → L2(�

g
K
M) (3.2)

123



292 N. Nowaczyk

for any two metrics g and h and use these maps to pull back one Dirac operator to the domain
of definition of the other. In the Riemannian case, this program has been carried out in [5]
by means of a connection, but can also be described using only the Lifting Theorem, see
[25]. There is also an alternative approach using generalized cylinders that also works in the
Lorentz case, see [3]. We will apply these results in the following way.

Theorem 3.3 (Universal spinor field bundle) The universal spinor field bundle defined by

L2(�KM) := ∐

g∈R(M) L
2(�

g
K
M) → R(M)

ψ ∈ L2(�
g
K
M) �→ g

has a unique topology as a Hilbert bundle such that for any g ∈ R(M),

β̄g : L2(�KM) → L2(�
g
K
M) × R(M)

ψ ∈ L2(�h
K
M) �→ (β̄h,g(ψ), h),

is a global trivialization. Here, β̄h,g is the identification isomorphism (3.2).

Proof We fix a metric g ∈ R(M) and define the topology on L2(�KM) by simply declaring
β̄g to be a trivialization. To see that this topology is independent of g, one has to show that
the identification isomorphisms β̄h,g themselves depend C1-continuously on the metric. This
is clear from the construction, but a bit tedious to carry out, see [27, Chapter 4] for details.

�
Theorem 3.4 (Continuity of eigenbundles) Let Y ⊂ R(M) be any subspace and k ∈ N

such that

∀g ∈ Y : λ0(g) < λ1(g), λk(g) < λk+1(g).

Then the eigenbundle

E :=
∐

g∈Y

k
∑

j=1

ker( /Dg
K

−λ j (g)) → Y

is a continuous vector bundle of rank k over K, when endowed with the subspace topology
inherited from the universal spinor field bundle L2(�

g
K
M) from Theorem 3.3.

Proof For any g in Y , we can find a simple closed curve c : S1 → C such that
λ1(g), . . . , λk(g) lie inside the area enclosed by c and the rest of the spectrum lies out-
side this area. Since the λ j ’s are continuous, the same holds in a small neighborhood of g.
We obtain that the expression

Pg(ψ) := − 1

2π i

∮

c
(z − /Dg

K
)−1ψdz (3.3)

depends continuously on g. It is shown in [22, Theorem 6.17, p. 178] that Pg and id−Pg

define operators with spectrum λ1(g), . . . , λk(g) respectively {λ j (g), j �= 1, . . . , k}. Since
the Dirac operator is self-adjoint, it follows that (3.3) is actually the spectral projection onto
the sum of eigenspaces spanned by λ1(g), . . . , λk(g). As a result the images of the various
Pg’s assemble to a continuous vector bundle, see [27, Thm. 4.5.2] for more details. �
Corollary 3.5 (Topologization of E(M)) The bundle E(M) → Y (M) from Definition 3.1
is a continuous vector bundle of rank k
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3.3 Triviality of vector bundles over S1

Ultimately, we want to apply Lemma 1.6 and therefore, we will have to verify that a real
vector bundle over S1 is not trivial. The question whether or not a vector bundle is trivial can
in general be approached by various topological machineries. But we are mainly interested
in vector bundles over S1 and here the situation is very simple: The set of isomorphism
classes of vector bundles of rank k over S1 has only two elements, see for instance [13, p.25].
One class represents the trivial, hence orientable bundles, the other class consists of vector
bundles that are non-orientable, hence non-trivial.

Remark 3.6 (Sign of a vector bundle) A neat criterion to check when a real vector bundle
E → S1 of rank k is not orientable is the following: Let GL E → S1 be the principal
GLk-bundle of frames of E . Let I := [0, 1] be the unit interval and denote by πS1 : I → S1

the canonical projection. Since I is contractible, π∗
S1

(GL E) → I has a global section �.
For any such section �, there exists A ∈ GLk such that �(1) = �(0).A. Clearly,

det(A) > 0 ⇐⇒ E is orientable ⇐⇒ E is trivial.

We define sgn(E) := sgn(�) := sgn(det(A)) ∈ Z2 := {±1} to be the sign of E .

It will be very important that the sign of a vector bundle is stable under small deformations
of the bundle in the following sense.

Theorem 3.7 (Sign stability) Let H → X be a Hilbert bundle and E, Ẽ → X be two k-
dimensional subbundles of H with induced metric. Denote by SẼ → X the bundle of unit
spheres of Ẽ . If

∀x ∈ X : dist(Ex , SẼx ) < 1, (3.4)

then E ∼= Ẽ . In particular, if X = S1, then sgn(E) = sgn(Ẽ).

Proof Let P : H → H be the orthogonal projection onto E . Let x ∈ X, ṽ ∈ SẼx be arbitrary
and assume Px (ṽ) = 0. By definition, this simply means that ṽ is perpendicular to Ex . This
implies

dist(Ex , ṽ) = ‖Px (ṽ) − ṽ‖ = ‖ṽ‖ = 1,

which contradicts our assumption (3.4). Consequently, P|Ẽ : Ẽ → E is an isomorphism.
�

4 Construction of the loop

4.1 Loops of metrics via loops of diffeomorphisms

In this section, we introduce a technique to produce certain loops of metrics via loops of spin
diffeomorphisms. We denote by Diff(M) the diffeomorphism group of M endowed with the
usual C∞-topology, see for instance [17, Chpt. 2.1]. We will also use this topology on all
the other mapping spaces.
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294 N. Nowaczyk

Definition 4.1 (Associated loops of metrics) Let f : S1 → Diff(M) be a loop of diffeomor-
phisms and g ∈ R(M) be any Riemannian metric. The family of metrics

g : S1 → R(M)

α �→ gα := ( f −1
α )∗g

is called an associated loop of metrics.

We are primarily interested in loops spin diffeomorphisms. Since there exist slightly
different conventions, we fix the following notion.

Definition 4.2 (Spin diffeomorphism) An orientation-preserving diffeomorphism f of M is
a spin diffeomorphism (or just “is spin”), if there exists f̂ such that

˜GL
+
M

f̂

�2:1

˜GL
+
M

�2:1

GL+ M
f∗

GL+ M

M
f

M

commutes. We say f̂ is a spin lift of f . We define

Diffspin(M) := { f ∈ Diff(M) | f is spin},
̂Diff

spin
(M) := {( f, f̂ ) | � ◦ f̂ = f∗ ◦ �},

the spin diffeomorphism group (with lift).

Notice that in case M is connected and f is spin, there are always two spin lifts f̂± of f and
f̂− = f̂+.(−1), where .(−1) denotes the action of −1 ∈ ˜GL

+
m . With a bit more work, one

can show the following relation.

Theorem 4.3 Let M be connected. The canonical projection

prspin : ̂Diff
spin

(M) → Diffspin(M), ( f, f̂ ) �→ f,

is a 2 : 1 covering space.

Proof This follows essentially from the fact that � : ˜GL
+
M → GL+ M is a 2 : 1-covering

and that locally f∗ = � ◦ f̂ ◦ �−1. A detailed proof can be found in [27, Thm. 2.6.4]. �
Definition 4.4 (Odd/even) A loop of spin diffeomorphisms f : S1 → Diffspin(M) is even,
if there exists a loop f̂ such that

̂Diff
spin

(M)

prspin2:1

S1
f

f̂

Diffspin(M)

(4.1)

commutes. A loop is odd, if it is not even.
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Remark 4.5 (Associated isotopy) Recall that we think of S1 as I/ ∼ and that πS1 : I → S1

denotes the canonical projection. Clearly, h := f ◦ πS1 : I → Diffspin is a path. By the path

lifting property of covering spaces, there exists a lift ĥ : I → ̂Diff
spin

(M) of h. Nevertheless,
ĥ will in general only be a path, but not a loop:

̂Diff
spin

(M)

prspin2:1

I
h

ĥ

Diffspin(M).

(4.2)

We say h is the isotopy associated to f .

Definition 4.6 (Sign) Let f : S1 → Diffspin(M) be a loop and h be its associated isotopy.
The unique number sgn( f ) ∈ Z2 such that ĥ(0) = sgn( f )ĥ(1) is called the sign of f .

The sign of f does not depend on the choice of the lift ĥ. Apparently, f is even if and
only if sgn( f ) = +1. One can show that the sign has the following abstract characterization.

Lemma 4.7 The map prspin : ̂Diff
spin

(M) → Diffspin(M) is a principal Z2-bundle. The
connecting homomorphism δ from its long exact homotopy sequence

π1(̂Diff
spin

(M), (idM , id
˜GL+

M ))

prspin�

π1(Diffspin(M), idM )
δ

π0({(idM ,±id
˜GL+

M )})

satisfies δ( f ) = (idM , sgn( f ) id
˜GL+

M ) for any loop f : (S1, 0) → (Diffspin(M), idM ).

Proof Any 2:1-covering is normal, hence a principalZ2-bundle. Therefore, the claim follows
from the definition of the connecting homomorphism δ. �
Lemma 4.8 The sign induces a group homomorphism

sgn : π1(Diff
spin(M), idM ) → Z2

and the elements of ker sgn are precisely the homotopy classes of even loops.

Proof It follows from Lemma 4.7 that sgn is well-defined on homotopy classes. To see that
sgn is a group homomorphism, let f (1), f (2) ∈ π1(Diffspin(M), idM ) and consider

f := f (2) ∗ f (1) : S1 → Diffspin(M)

t �→
{

f (1)(2t), 0 ≤ t ≤ 1
2 ,

f (2)(2t − 1), 1
2 ≤ t ≤ 1.

Let f̂ (1) be a lift of f (1) starting at the identity and f̂ (2) be a lift of f (2) starting hat f̂ (1)(1).
Then f̂ = f̂ (2) ∗ f̂ (1) is a lift of f and

f̂ (1) = f̂ (2)(1) = sgn( f (2)) f̂ (2)(0) = sgn( f (2)) f̂ (1)(1)

= sgn( f (2)) sgn( f (1)) f̂ (1)(0) = sgn( f (2)) sgn( f (1)) f̂ (0),

thus sgn( f ) = sgn( f (2)) sgn( f (1)). Clearly, the constant map S1 → Diffspin(M), α �→ idM ,
lifts to the constant map α �→ (idM , id

˜GL+
M ), so sgn is a group homomorphism as claimed.

�
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Remark 4.9 Although one cannot just replace the isotopy h associated to the loop f by the
loop f itself in (4.1), there always exists a lift f̃ such that

S1
f̃

·2

̂Diff
spin

(M)

prspin2:1

S1 f
Diffspin(M)

commutes. Here, ·2 denotes the non-trivial double cover of S1. This follows from the fact that
due to Lemma 4.8, we have sgn( f ◦ ·2) = sgn( f )2 = +1 and thus, f ◦ ·2 is even (although
f itself might not be even).

Remark 4.10 In the special case where f : S1 → Diffspin(M) is a group action, the notions
of odd and even in the sense of Definition 4.4 coincide with the notions of an odd and even
group action in the sense of [24, IV.§3, p.295].

Remark 4.11 Let f : S1 → Diffspin(M) be a loop and h be its associated isotopy as in
Remark 4.5. For any t ∈ I , we get an induced isometry

h̄t : �
g0
K
M → �

gt
K
M

ψ = [s, v] �→ [ĥt (s), v]
between all the spinor bundles �

gt
K
M . The induced map on sections, denoted by h̄t , satisfies

/Dgt
K

◦h̄t = h̄t ◦ /Dg0
K

(4.3)

and therefore maps eigenspinors to eigenspinors.

The following will be crucial to verify the hypothesis of Lemma 1.6.

Theorem 4.12 Let Y ⊂ R(M) be any subset, f : S1 → Diffspin(M) be a loop of spin
diffeomorphisms and g ∈ R(M) such that the associated loop of metrics α �→ ( f −1

α )∗g is a
map g : S1 → Y . Furthermore, let E ⊂ L2(�RM) → Y be a vector bundle of rank k. Let
h̄t be the map induced by f as in Remark 4.11 and assume h̄t (E) ⊂ E for any t ∈ I . Then
g∗E → S1 is not orientable if and only if f is odd and k is odd, i.e.

sgn(g∗E) =
{

−1, f is odd and k is odd,

+1, otherwise,

where sgn is as in Remark 3.6.

Proof For any basis (0, (ψ1, . . . , ψk)) ∈ g∗E |0, the curve
� : I → GL(g∗E)

t �→ (t, (h̄t (ψ1), . . . , h̄t (ψn)))

is a curve of frames for g∗E → S1 as in Remark 3.6. By definition, we have h̄1 = sgn( f )h̄0.
Consequently, �(1) = �(0).A, where A = sgn( f ) Ik , which has determinant sgn( f )k . By
definition,

sgn(g∗E) = sgn(�) = sgn(det(A)) = sgn( f )k,

which implies the result. �
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4.2 The sphere

We have not yet shown that there exists an odd loop f : S1 → Diffspin(M) and in general it
is very difficult to construct non-trivial loops of spin diffeomorphisms. Fortunately, the most
obvious candidate on the sphere does the job.

Theorem 4.13 For any α ∈ R,m ∈ N, we define the rotation

Rα :=
⎛

⎝

Im−1 0 0
0 cos(α) − sin(α)

0 sin(α) cos(α)

⎞

⎠ : R

m+1 → R

m+1 .

The map f : S1 → Diffspin(Sm), α �→ R2πα|Sm , is an odd loop of spin diffeomorphisms.

Proof Chose the round metric g◦ on Sm . In this case, the spin structure on Sm is simply given
by the universal cover ϑm+1 : Spinm+1 → SOm+1. By a tedious calculation carried out in
[27, Lem. 5.4.5], one can check that the lift f̂ of f is given by

∀α ∈ S1 : v �→ (cos( α
2 ) + sin( α

2 )em−1em)v.

It follows from this explicit formula that f is odd. �
To obtain an associated loop of metrics gα = ( f −1

α )∗g0, we need a start metric g0.
Obviously, we cannot take the round metric g◦, since rotations are an isometry with respect
to g◦, so the resulting loop would be trivial. A way out is provided by the following.

Theorem 4.14 (Odd neighborhood theorem) Let (M,�) be a closed spinmanifold of dimen-
sion m ≡ 0, 6, 7 mod 8 and g0 be any Riemannian metric on M. In every C1-neighborhood
of g0 ∈ R(M), there exists g ∈ R(M) such that /Dg

K
has an eigenvalue λ of odd multiplicity.

Proof The idea of this proof is as follows: By [9, Thm. 1], there exists a metric g1 ∈ R(M)

such that /Dg1
K

has an eigenvalue of multiplicity 1, which is odd. Connect the metric g0 with
g1, i.e. define the path gt := tg1 + (1− t)g0, t ∈ I , see Fig. 2. This path is real-analytic. As
explained in [15, Lem. A.0.16], the Dirac operators /Dg0,gt are the restriction of a self-adjoint
holomorphic family of type (A) onto I . Therefore, the eigenvalues of /Dgt

K
can be described

by a real-analytic family of functions {λ j : I → R} j∈N. This means that for any t ∈ I ,

Fig. 2 Finding an odd metric
near g0

εgt

R(M)

g0

g1
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the sequence (λ j (t)) j∈N represents all the eigenvalues of /Dgt
K
counted with multiplicity (but

possibly not ordered by magnitude). To prove the claim, we argue by contradiction: If the
claim is wrong, there exists an open neighborhood around 0 in which all metrics gt have
only eigenvalues of even multiplicity. Since the eigenvalue functions λ j are real analytic, this
behavior extends to all of I and therefore, all the eigenvalues of g1 have even multiplicity as
well. But this contradicts the choice of g1. The technical details of this last argument are a
bit cumbersome and can be found in [27, Thm. 5.4.6]. �
Remark 4.15 (Choice of k) We define the number k to be the dimension of the eigenspace
of the eigenvalue of odd multiplicitiy, whose existence is asserted by Theorem 4.14.

Remark 4.16 ByTheorem4.14, Theorem4.12 andTheorem3.4,we have verified the hypoth-
esis of Lemma 1.6 on the sphere, i.e. we have verified a sufficient criterion, which implies
that the sphere admits a metric for which at least one eigenvalue is of higher multiplicity
(which is well known). We will show in the next section that this criterion is stable under
certain surgeries, which will allow us to verify it on much more general manifolds than just
the sphere.

4.3 Surgery and eigenbundles

We introduce some basic notions concerning the surgery theory of spin manifolds and recall
some well known results by Bär and Dahl [2]. Similar techniques are also used in [1]. We
denote by Sl the l-dimensional unit sphere and by Dl the open unit ball.

Definition 4.17 (Surgery)Let N be a smoothn-manifold, let f : Sl×D
n−l → N , 0 ≤ l ≤ n,

be a smooth embedding and set S := f (Sl × {0}),U := f (Sl × Dn−l). The manifold

Ñ :=
(

(N\U ) � (D
l+1 × Sn−l−1)

)

/ ∼,

where ∼ is the equivalence relation generated by

∀x ∈ Sl × Sn−l−1 : x ∼ f (x) ∈ ∂U,

is obtained by surgery in dimension l along S from N . The number n − l is the codimension
of the surgery. The map f is the surgery map and S is the surgery sphere.

Remark 4.18 The space Ñ is again a smooth manifold (see for instance [23, IV.1] for a very
detailed discussion of the connected sum). The manifold Ñ is always of the form

Ñ = (N\U ) ∪̇Ũ , (4.4)

where Ũ ⊂ Ñ is open. Here, by slight abuse of notation, (N\U ) ⊂ N also denotes the image
of N\U in the quotient Ñ , see Fig. 3.

Remark 4.19 (Spin structures and surgery) It can be shown that if one performs surgery in
codimension n− l ≥ 3, the spin structure on N always extends uniquely (up to equivalence)
to a spin structure on Ñ , if l �= 1. In case l = 1, the boundary Sl × Sn−l−1 has two different
spin structures, but only one of them extends to Dl+1 × Sn−l−1. Adopting the convention
from [2, p. 56], we assume that the map f is chosen such that it induces the spin structure
that extends. Also, we will only perform surgeries in codimension n − l ≥ 3.
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Fig. 3 The manifold after
surgery. Notice that ∂Ũ is
identified with ∂U ⊂ (N\U )

Ũ

N \ U U

S

It is natural to ask how the Dirac spectra of a spin manifold before and after surgery are
related to one another. The result is roughly that a finite part of the spectrum before surgery is
arbitrarily close to the spectrum after surgery. For a precise statement, the following notion
is useful.

Definition 4.20 ((
1,
2, ε)-spectral close) Let T : H → H and T ′ : H ′ → H ′ be two
densely defined operators on Hilbert spaces H and H ′ (over K) with discrete spectrum. Let
ε > 0 and 
1,
2 ∈ R,
1 < 
2. Then T and T ′ are (
1,
2, ε)-spectral close if

(i) 
1,
2 /∈ (spec T ∪ spec T ′).
(ii) The operators T and T ′ have the same number k of eigenvalues in ]
1,
2[, counted

with K-multiplicities.
(iii) If {λ1 ≤ · · · ≤ λk} are the eigenvalues of T in ]
1,
2[ and {λ′

1 ≤ · · · ≤ λ′
k} are the

eigenvalues of T ′ in ]
1,
2[, then
∀1 ≤ j ≤ k : |λ j − λ′

j | < ε.

Using this terminology, a central result is the following

Theorem 4.21 ([2, Thm. 1.2]) Let (Nn, g,�g) be a closed Riemannian spin manifold, let

0 ≤ l ≤ n − 3 and f : Sl × D
n−l → N be any surgery map with surgery sphere S as in

Definition4.17. For any ε > 0 (sufficiently small) andany
 > 0,±
 /∈ spec /Dg
C
, there exists

a Riemannian spin manifold (Ñ ε, g̃ε), which is obtained from (N , g) by surgery such that

/Dg
C
and /Dg̃ε

C
are (−
,
, ε)-spectral close. This manifold is of the form Ñ ε = (N\Uε)∪̇Ũε,

where Uε is an (arbitrarily small) neighborhood of S and the metric g̃ε can be chosen such
that g̃|N\Uε = g|N\Uε .

We will need not only the statement of Theorem 4.21, but also some arguments from the
proof, which relies on estimates of certain Rayleigh quotients and these are very useful in
their own right. One of the technical obstacles here is that the spinors on N and the spinors
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Fig. 4 Preparing a manifold
N = Uε ∪ Aε ∪ Vε for surgery

Ũε

Vε Aε Uε

on Ñ ε cannot be compared directly, since they are defined on different manifolds. A simple
yet effective tool to solve this problem are cut-off functions adapted to the surgery.

Definition 4.22 (Adapted cut-off functions) In the situation of Theorem 4.21, assume that
for each ε > 0 (sufficiently small), we have a decomposition of N into N = Uε∪̇Aε∪̇Vε,
where

Uε := {x ∈ N | dist(x, S) < rε },
Aε := {x ∈ N | rε ≤ dist(x, S) ≤ r ′

ε},
(4.5)

for some rε, r ′
ε > 0. A family of cut-off functions χε ∈ C∞

c (N ) is adapted to these decom-
positions, if

(i) 0 ≤ χε ≤ 1,
(ii) χε ≡ 0 on a neighborhood of Ūε ,
(iii) χε ≡ 1 on Vε,
(iv) |∇χε| ≤ c

rε
on N for some constant c > 0.

In case Ñ ε = (N\Uε)∪̇Ũε is obtained from N by surgery, the restriction χε|N\Uε can be
extended smoothly by zero to a function χε ∈ C∞

c (Ñ ε). The situation is depicted in Fig. 4.

Remark 4.23 (Cutting off spinor fields)We can use the cut-off functions fromDefinition 4.22
to transport spinor fields from (N , g) to (Ñ ε, g̃ε) and vice versa: For any ψ ∈ L2(�

g
K
N ),

we can think of χεψ as an element in L2(�
g̃
K
Ñ ε) by extending χεψ to all of Ñ ε by zero.

Analogously, for any ψ̃ ∈ L2(�
g̃
K
Ñ ε), we can think of χεψ̃ as an element in L2(�

g
K
N )

by extending χεψ̃ |N\Ũε
by zero to N . This correspondence is not an isomorphism, but one

does not loose “too much”: It preserves smoothness and it is shown in [2] that under the
assumptions of Theorem 4.21, for each eigenspinor ψ̃ε ∈ L2(�

g̃ε

K
Ñ ε) to an eigenvalue
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λ̃ε ∈] − 
,
[, the spinor field ψε := χεψ̃ε ∈ L2(�
g
K
N ) satisfies

‖ /Dg
K

ψε‖L2(�
g
K
N ) < (
 + ε

2 )‖ψ̃ε‖
L2

(

�
g̃
K
Ñ ε

), (4.6)

‖ψε‖L2(�
g
K
N ) ≥ 
 + ε

2


 + ε
‖ψ̃ε‖

L2
(

�
g̃
K
Ñ ε

). (4.7)

The proof of Eqs. (4.6) and (4.7) is an integral part of the proof of Theorem 4.21, see [2,
p. 69]. In combination, they imply the following crucial estimate for the Rayleigh quotient

‖ /Dg
K

ψε‖2
L2(�

g
K
N )

‖ψε‖2
L2(�

g
K
N )

< (
 + ε)2. (4.8)

This estimate is then used to apply the min–max principle, see Theorem 6.1, which gives the
conclusion of Theorem 4.21.

We will need the following version of Theorem 4.21 that is slightly more general.

Theorem 4.24 Let (N ,�) be a closed spin manifold of dimension n ≥ 3, let 0 ≤ l ≤ n − 3
and f be a surgery map with surgery sphere S ⊂ N of dimension l as in Definition 4.17. Let
(Z , τZ ) be a compact topological space,

g : (Z , τZ ) → (R(N ), C2)

be a continuous family of Riemannian metrics and let 
1,
2 ∈ C0(Z , R),
1 < 
2, such
that

∀z ∈ Z : 
1(z),
2(z) /∈ spec /Dgz
K

.

Then the following hold:

(i) For any ε > 0 (sufficiently small), there exists a spin manifold (Ñ ε, �̃ε), and a contin-
uous family of Riemannian metrics

g̃ε : (Z , τZ ) → (R(Ñ ε), C2)

such that for each z ∈ Z, themanifold (Ñ ε, g̃ε
z ) is obtained from (N , gz)by surgery along

S and such that for all z ∈ Z, the operators /Dgz
K
and /D

g̃ε
z

K
are (
1(z),
2(z), ε)-spectral

close.
(ii) For any open neighborhood U ⊂ N of the surgery sphere, one can choose g̃ε such that

∀z ∈ Z : g̃ε
z |N\U = gz |N\U . (4.9)

(iii) If ψ̃ε
z ∈ L2(�

g̃ε
z

K
Ñ ε), z ∈ Z, is in the span of the eigenspinors corresponding to eigen-

values in [
1(z),
2(z)] and χε
z is the cut-off function from Definition 4.22, the spinor

field ψε
z := χε

z ψ̃
ε
z satisfies

‖( /Dgz
K

−cz)ψε
z ‖2L2(�

gz
K

N )

‖ψε
z ‖2L2(�

gz
K

N )

< (lz + ε)2, (4.10)

where cz := 1
2 (
1(z) + 
2(z)), lz := 1

2 |
2(z) − 
1(z)|.
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m

Fig. 5 Connected sum with a sphere

Remark 4.25 Theorem 4.24 generalizes Theorem 4.21 in the following ways.

(i) The metric g is replaced by a compact C2-continuous family of metrics. It has already
been observed by Dahl in a later paper, see [9, Thm. 4], that the proof of Theorem 4.21
goes through in this case.

(ii) The interval [−
,
] is replaced by the interval [
1,
2], whichmight not be symmetric
around zero. This is why one has to introduce c and l in (4.10).

(iii) The field is K ∈ {R, C}. This simply makes no difference in the proof.
(iv) We replaced the constants
1,
2 by continuous functions on Z . This is possible, since

their key function in the proof is to ensure that at any z ∈ Z no eigenvalues enter or leave
the spectral interval [
1(z),
2(z)]. Since they are continuous, they are also bounded,
so uniform estimates are possible. (This generalization is not really needed in our proof
of the Main Theorem.)

These generalizations are all straightforward, but some more arguments can be found in [27,
A.8].

We are now able to prove the main result of this section (which will be applied for Z = S1

below) (Fig. 5).

Theorem 4.26 (surgery stability) Assume the hypothesis of Theorem 4.24 and in addition
that g : Z → Y (N ), where Y (N ) is as in Definition 3.1 and let E(N ) → Y (N ) be the
corresponding eigenbundle as in Theorem 3.4. Let g̃ε : Z → R(Ñ ε) be the family from the
conclusion of Theorem 4.24. Then for ε small enough, g̃ε : Z → Y (Ñ ε) and the correspond-
ing eigenbundle E(Ñ ε) → Y (Ñ ε) satisfies

g∗E ∼= (g̃ε)∗ Ẽε

as vector bundles over Z.

Proof The idea of the proof is to show that the situation of the Lasso Lemma (Lemma 1.6)
still holds, if one perturbs everything a bit, see Fig. 6.

Step 1 g̃ε : Z → Y (Ñ ε): By the conclusion of Theorem 4.24, we obtain that for each z ∈ Z ,

the operators /Dgz
K
and /D

g̃ε
z

K
are (
1(z),
2(z), ε)-spectral close.We fix some z0 ∈ Z and take

an enumeration of /D
g̃ε
z0

K
such that λ̃ε

1(g̃
ε
z0) is the smallest eigenvalue > 
1(z0). Let {λ̃ε

j } j∈Z
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Y

Ỹ

X \ Y

X̃ \ Ỹ
g

g̃

X = R(N) X̃ = R(Ñ)

Fig. 6 Lasso before surgery and after surgery

be the corresponding enumeration of eigenvalues on Ñ ε as in Theorem 2.1. We obtain, that
for ε small enough

∀z ∈ Z : λ̃ε
0(g̃

ε
z ) ≤ 
1(z) < λ̃ε

1(g̃
ε
z ) ≤ · · · ≤ λ̃ε

k(g̃
ε
z ) < 
2(z) ≤ λ̃ε

k+1(g̃
ε
z ).

Therefore, for each z ∈ Z , there are k eigenvalues between 
1(z) and 
2(z). Since k is odd,
at least one eigenvalue must have odd multiplicity. Hence g̃ε : Z → Ỹ ε(N ).

Step 2 (Passing from Ñ ε to N ): Let L2(�KN ) → R(N ) be the universal spinor field bundle,
see Theorem 3.3, E(N ) be the bundle from Definition 3.1 and define

H := g∗(L2(�KN )) → Z ,

E := g∗(E(N )) → Z ,

Ẽε := (g̃ε)∗(E(Ñ ε)) → Z .

For any z ∈ Z , letχε
z , be the canonical cut-off functions fromDefinition 4.22. These functions

can be chosen such that χε
z depends continuously on z. We consider the map

P : Ẽε → H, �
(

�
g̃ε
z

K
Ñ ε

)

� ψ̃ε
z �→ ψε

z := χε
z ψ̃

ε
z ∈ �

(

�
gz
K
N

)

,

see also Remark 4.23. In case P(ψ̃ε
z ) = 0, we obtain ψ̃ε

z = 0 by the weak unique continu-
ation property for Dirac type operators, see [4, Rem. 2.3c)]. Therefore, this is a continuous
morphism of vector bundles that is fibrewise injective. Hence, P has constant rank and its
image Eε := P(Ẽε) ⊂ H → Z is a continuous vector bundle isomorphic to Ẽε .

Step 3 (Analyze Rayleigh quotients): We consider the λ j ’s as functions on Z by pulling them
back via g (and analogously for λ̃ε

j ). For any z ∈ Z , if λ1(z), . . . , λk(z) are the eigenvalues of

/Dgz
K
in [
1(z),
2(z)], then (λ1(z)−cz)2, . . . , (λk(z)−cz)2 are the eigenvalues of ( /D

gz
K

−cz)2

in [0, l(z)2], where cz := 1
2 (
1(z) + 
2(z)) and lz := 1

2 |
2(z) − 
1(z)|. The span of their
collective eigenspinors is the same space Ez . It follows from (4.10) that theRayleigh quotients
satisfy
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∀z ∈ Z : ∀ψε
z ∈ �

(

�
gz
K
N

) :
‖ (

/Dgz
K

−cz
)

ψε
z ‖2L2(�

gz
K

N )

‖ψε
z ‖2L2(�

gz
K

N )

< (lz + ε)2.

Now, choose ε small enough such that for all z ∈ Z , we have lz + ε < ρk+1(z), where
ρk+1(z) is the (k + 1)-th eigenvalue of ( /Dgz

K
−cz)2. This is possible due to the continuity of

g and since

∀z ∈ Z : λ0(z) ≤ 
1(z) < λ1(z) ≤ · · · ≤ λk(z) < 
2(z) ≤ λk+1(z)

by hypothesis. By Theorem 6.2, we obtain

∀z ∈ Z : ∀1 ≤ j ≤ k : d(Ez, ψ
ε
z )

2 ≤ l(z) + ε

ρk+1(z)
< 1.

By Theorem 3.7, we obtain that E ∼= Eε ∼= Ẽε.
All in all, we have verified the hypothesis of Lemma 1.6 for E(Ñ ε) → Y (Ñ ε) and g̃ε ,

which proves the claim. �
Remark 4.27 Theorem 4.26 holds also for other sets than Y (N ). For instance it holds for the
larger set

{g ∈ R(N ) | λ0(g) < λ1(g), λk(g) < λk+1(g)},
with essentially the same proof. It does not hold for arbitrary subsets of R(N ) though. For
instance, if one replaces the condition ∃1 ≤ j ≤ k : λ j ∈ 2N +1 by ∃1 ≤ j ≤ k : λ j ∈ 2N,
the first step of the proof no longer holds, because an eigenvalue of even multiplicity might
split up into two eigenvalues of odd multiplicity.

5 Proof of the Main Theorem

We are now in a position to put all the results together to prove the Main Theorem (stated
below again for convenience).

Main Theorem (Existence of higher multiplicities) Let (M,�) be a closed spin manifold
of dimension m ≡ 0, 6, 7 mod 8. There exists a Riemannian metric g̃ on M such that

the complex Dirac operator /Dg̃
C
has at least one eigenvalue of multiplicity at least two. In

addition, g̃ can be chosen such that it agrees with an arbitrary metric g outside an arbitrarily
small open subset on the manifold.

Proof The idea is to apply the surgery stability theorem Theorem 4.26, to the connected sum
M�Sm , see Fig. 5.

Step 1 (Build lasso on the sphere): By Theorem 4.13, there exists an odd loop of spin
diffeomorphisms on Sm . By Theorem 4.14, there exists a metric on Sm , for which at least
one eigenvalue λ has an odd multiplicity k. The associated loop of metrics gSm is a C2-
continuous map gSm : S1 → Y (Sm), where Y (Sm) is as in Definition 2.2. We obtain the
associated real eigenbundle E(Sm) as in Definition 3.1. By Theorem 3.4, E(Sm) → Y (Sm)

is a continuous vector bundle of rank k. By Theorem 4.12, this bundle it not trivial. This
verifies the hypothesis of Lemma 1.6 on the sphere.

Step 2 (Prepare M for surgery): Define the manifold N := M � Sm . Choose any metric
g̃ on M . We obtain the loop g := g̃ � gSm : S1 → R(N ). In case λ ∈ spec g̃, we first
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scale gSm a little such that λ /∈ spec g̃. We obtain that spec gz is constant with respect to
z ∈ S1. Since the spectrum is also discrete, we can certainly find continuous (even constant)
functions 
1,
2 : S1 → R such that

∀z ∈ S1 : λ0(gz) ≤ 
1 < λ1(gz) = · · · = λk(gz)
︸ ︷︷ ︸

=λ

< 
2 ≤ λk+1(gz).

It follows that g : S1 → Y (N ). We get that E(N ) → Y (N ) is a non-trivial vector bundle
of real rank k, since it is isomorphic to the pullback of E(M) → Y (M) along the map
R(N ) → R(M), g � h �→ g.

Step 3 (Perform surgery): We extend the loop g : S1 → Y (N ) to a disc D2 → R(N ), which
is still denoted by g, and set Z := D2. We apply Theorem 4.24 to N in dimension l = 0
for K = R, i.e. we obtain a connected sum Ñ ε = M�Sm together with a resulting family
g̃ε : D2 → R(Ñ ε) of metrics. By Theorem 4.26, this gives a loop g̃ε|S1 : S1 → Y (Ñ ε) and
the corresponding bundle E(Ñ ε) → Y (Ñ ε) satisfies (g̃ε|S1)∗E(Ñ ε) ∼= (g|S1)∗(E(N )), thus
it is also not trivial.

All in all, we have verified the hypothesis of Lemma 1.6 on Ñ ε = M�Sm , which is spin
diffeomorphic to M . This proves the first part of the Main Theorem. Recall from Remark 1.7
that our metric lies somewhere on the disc g̃ε : D2 → R(M). Therefore, the second claim
follows from (4.9). �
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6 Appendix: Rayleigh quotients and the min–max principle

In this section, we provide a version of the min–max principle suitable for our needs, see
also [28, XIII.1].

Theorem 6.1 (Min–max principle) Let H be a Hilbert space and T : D(T ) ⊂ H → H be
a densely defined self-adjoint operator with compact resolvent. Assume that the spectrum of
T satisfies b ≤ λ1 ≤ λ2 ≤ · · · for some lower bound b ∈ R. Then for any k ∈ N, we have

λk = min
U⊂D(T ),
dim(U )=k

max
x∈U,
‖x‖=1

〈T x, x〉, (6.1)

where the min is taken over all linear subspaces U ⊂ D(T ) of dimension k.

Theorem 6.2 Let H be a Hilbert space, T : H → H be a densely defined operator, self-
adjoint with compact resolvent. Let 
 > 0 and k ∈ N and assume that the first k + 1 distinct
eigenvalues of T satisfy

0 ≤ λ1 < · · · < λk < 
 < λk+1.

Define E (ν) := ker(T − λν), V := ⊕k
ν=1 E

(ν), and let x ∈ D(T ), ‖x‖ = 1, such that
〈T x, x〉 ≤ 
 + ε. Then the distance between x and V satisfies dist(V, x)2 ≤ 
+ε

λk+1
.
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Proof Consider the orthogonal decomposition

x =
∞
∑

ν=1

x (ν), x (ν) ∈ E (ν).

By hypothesis

ε + 
 ≥ 〈T x, x〉 =
〈

k
∑

ν=1

T x (ν) +
∞
∑

ν=k+1

T x (ν),

k
∑

ν=1

x (ν) +
∞
∑

ν=k+1

x (ν)

〉

=
〈

k
∑

ν=1

λνx
(ν) +

∞
∑

ν=k+1

λνx
(ν),

k
∑

ν=1

x (ν) +
∞
∑

ν=k+1

x (ν)

〉

=
k

∑

ν=1

λν‖x (ν)‖2 +
∞
∑

ν=k+1

λν‖x (ν)‖2

≥ λk+1

∞
∑

ν=k+1

‖x (ν)‖2.

Let PV : H → H be the orthogonal projection onto V . We obtain

dist(V, x)2 = ‖PV (x) − x‖2 =
∞
∑

ν=k+1

‖x (ν)‖2 ≤ 
 + ε

λk+1
.

�
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