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Abstract In this paper, we study the blow up of a sequence of (both extrinsic and intrinsic)
biharmonic maps in dimension four with bounded energy and show that there is no neck
in this process. Moreover, we apply the method to provide new proofs to the removable
singularity theorem and energy identity theorem of biharmonic maps.
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1 Introduction

In this paper, we study the neck analysis in the blow-up of a sequence of biharmonic maps
in dimension four.

Suppose (N , h) is a closed Riemannian manifold which is embedded in RK . Consider the
following functionals for a map u from � ⊂ R

4 to N ,

H(u) =
∫

�

|�u|2 dx,

T (u) =
∫

�

|τ(u)|2 dx
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and

E(u) =
∫

�

∣∣∇udu
∣∣2 dx .

Here τ(u) is the tension field of u, or equivalently, the tangential part of �u and ∇u is the
induced connection of the pullback bundle u∗T N . The critical points of all these functionals
are called biharmonic maps. Usually, critical points of H(u) are called extrinsic biharmonic
maps, because the functional H(u) depends on the particular embedding of (N , h) into the
Euclidean space. Critical points of the other two functionals are called intrinsic biharmonic
maps. In this paper, we study all three types of biharmonic maps and call the critical points
of T (u) intrinsic Laplace biharmonic maps and the critical points of E(u) intrinsic Hessian
biharmonic maps.

The study of biharmonic maps was pioneered by Chang, Wang and Yang [2], which is
followed byWang [18–20],Moser [11], Lamm and Rivière [6], Struwe [17], Scheven [15,16]
and many others. Most of these work is concerned with the regularity problem of biharmonic
maps.

In this paper, we consider a sequence of smooth biharmonic maps {ui }with boundedW 2,2

norm in the critical dimension. Since the functionals are scaling invariant in this dimension,
the theory is similar to the blow-up analysis of harmonic maps in dimension two. Most
important of all, an ε-regularity lemma holds for biharmonic maps with small energy (see
Theorem 2.1 in Sect. 2). Hence, routine arguments as for harmonic maps in dimension two
work for biharmonic maps. It implies that we have a weak limit u∞ from � to N and finitely
many ‘bubble’ maps, ωi : R

4 → N . Since none of the biharmonic functionals above is
conformally invariant, these bubbles are not biharmonic maps from S4, which is a difference
from the theory of harmonic maps.

In the blow-up analysis, we are interested in the following two questions: Is there unac-
counted energy in the limit? Is the image of the weak limit and the bubble maps connected?
The affirmative answer to the first question is known as energy identity, or energy quanti-
zation. This has been proved for critical points of E(u) by Hornung and Moser in [5], for
critical points of H(u) by Wang and Zheng [21,22]. There is also a unified proof for both
cases by Laurain and Rivière in [7].

The main result of this paper is to give an affirmative answer to the second question which
is first studied in Parker’s paper [12] for harmonic maps and in Qing and Tian’s paper [13]
and Lin and Wang’s paper [9] for approximated harmonic maps and usually known as ‘no
neck’ result. For simplicity, we assume that � is B4, the unit ball in R

4 and 0 ∈ B4 is the
only blow-up point. We further assume that there is only one bubble ω : R4 → N . It follows
from an induction argument of Ding and Tian [3] that the result is true for the general case
(see also [8] for more details). Precisely, we prove

Theorem 1.1 Let ui be a sequence of biharmonic maps from B4 to N satisfying∫
B1

∣∣∇2ui
∣∣2 + |∇ui |4 dx < � (1.1)

for some � > 0. Assume that there is a sequence of positive λi → 0 such that

ui (λi x) → ω

on any compact set K ⊂ R
4, that ui converges weakly in W 2,2 to u∞ and that ω is the only

bubble. Then,

lim
δ→0

lim
R→∞ lim

i→∞ oscBδ(0)\Bλi R(0)ui = 0. (1.2)
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Among other things, the theorem implies that lim|x |→∞ ω(x) exists. This observation
enables us to explain the limit in (1.2) as the length of a neck connecting the weak limit and
the bubble, which is shown to be zero by the theorem. The proof of this observation is very
elementary and is given at the end of Sect. 2.

Remark 1.2 The biharmonic map problem is not conformally invariant. So we can not use
the removable singularity theorem to see that lim|x |→∞ ω(x) exists. Note that this problem
is also considered in Lemma 3.4 of [20], where the author showed that even if the problem
is not conformally invariant, the method of proof can still be used.

Remark 1.3 The assumption (1.1) is very natural for extrinsic biharmonic maps, since it
follows from the bound of H(u) and the fact that N is compact. For intrinsic Hessian bihar-
monicmaps, it is also a reasonable assumption because if the sequence has uniformly bounded
energy E(ui ) and uniformly controlled

∫
∂B1

|dui |2 dσ , by Lemma 2.2 and Theorem 2.1 of
[11], (1.1) holds. However, for intrinsic Laplace biharmonic maps, such an assumption is
rather strong and unexpected. The reason is well explained in [11]. We still include this case,
simply to show that our proof is robust and can be applied to a variety of equations.

The proof of Theorem 1.1 requires refined understanding of the maps ui in the neck region
Bδ\Bλi R . As a byproduct of this understanding, we give new proofs to other known results
in the field of neck analysis. The first one is the following energy identity result, which was
proved for extrinsic biharmonic maps by Wang and Zheng [21,22], for intrinsic Hessian
biharmonic maps by Hornung and Moser [5] and for both cases by Laurain and Rivière [7].

Corollary 1.4 [5,7,21,22] Let ui be a sequence of biharmonic maps from B4 to N satisfying∫
B1

∣∣∇2ui
∣∣2 + |∇ui |4 dx < �

for some � > 0. Assume that there is a sequence positive λi → 0 such that

ui (λi x) → ω

on any compact set K ⊂ R
4, that ui converges weakly in W 2,2 to u∞ and that ω is the only

bubble. Then,

lim
δ→0

lim
R→∞ lim

i→∞

∫
Bδ\Bλi R

∣∣∇2u
∣∣2 + |∇u|4 dx = 0. (1.3)

The proof of Corollary 1.4 is completely contained in the proof of Theorem 1.1. Our second
byproduct is a new proof of the removable singularity. In the theory of harmonic maps, it
was first proved by Sacks and Uhlenbeck [14]. Then it became a special case of Hélein’s
regularity theorem [4] for weak harmonic maps of two dimensions. It is Hélein’s idea that
was generalized to the case of biharmonic maps and it was shown in [11] that weak intrinsic
Hessian biharmonic map in W 2,2 is smooth and the case of extrinsic biharmonic maps
and intrinsic Laplace biharmonic maps is proved in [18]. Hence, the removable singularity
theorem of biharmonic maps follows as a corollary of the regularity of weak solution in
dimension 4. While the removable singularity theorem for harmonic map can be approached
via both methods, the Sacks–Uhlenbeck counterpart for biharmonic maps is still missing.

In Sect. 6, we give the Sacks–Uhlenbeck style proof of the following removable singularity
theorem, which is known in [11,18]. It shall be clear in Sect. 6 that the proof here uses the
three circle lemma and follows a similar argument of Theorem 1.1, but it does not rely on
Theorem 1.1.
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Theorem 1.5 [11,18] Let u be a smooth biharmonic map on B1\ {0}. If∫
B1

∣∣∇2u
∣∣2 + |∇u|4 dx < +∞,

then u can be extended to a smooth biharmonic map on B1.

Our proof of Theorems 1.1 and 1.5 for all three types of biharmonic maps are similar.
Hence, we shall present only the complete proof for extrinsic biharmonic maps and show in
Sect. 7 that why the proof works for other cases as well.

The proof contains two ingredients. The first is a generalization of Qing and Tian’s proof
of no neck result for harmonic maps [13]. Precisely, we prove a three circle lemma for
biharmonic functions and then show that the lemma holds for some approximate biharmonic
functions. For ui in the neck region,

ui (x) − 1

|∂Br |
∫

∂Br
ui (x)dσ

will be shown to be approximate biharmonic function in the above sense. Hence, we can
argue as in Qing and Tian to see that the tangential derivatives of ui satisfy some decay
estimate.

Next important idea for the proof is a Pohozaev type argument. In the case of harmonic
maps, it was first introduced to the study of neck analysis by Lin andWang [9] and it says the
tangential part of the energy is the same as the radial part. The computation is generalized
to biharmonic maps in [5,22] and [7]. Because the biharmonic maps satisfy a fourth order
PDE, boundary terms arise in the computation and the authors of [5] and [22] managed to
show that the boundary terms are small so that they can still compare the tangential energy
and the radial energy. In this paper, we make use of this piece of information in a different
way. We derive an ordinary differential inequality for the radial part of energy. Thanks to the
decay of tangential energy, we can prove that the radial energy decays in a similar way in the
neck.

The rest of the paper is organized as follows. In Sect. 2, we set up the notations and recall
the ε-regularity theorem, which is frequently used in the proof of later sections.We also show
that lim|x |→∞ ω exists for a biharmonic map with finite energy from R

4 to N . In Sect. 3,
we prove the three circle lemma, which is used in Sect. 4 to show the exponential decay of
tangential energy. The proof of the main theorem is completed in Sect. 5 by showing the
decay of radial energy. In Sect. 6, we show how to use the method of three circle lemma
to give an elementary proof of the removable singularity theorem. In the last section, we
indicate why the proofs of this paper work for intrinsic biharmonic maps as well.

2 Preliminaries

In this section, we recall some basic results about biharmonic maps in dimension four. For
simplicity, we assume that u is a map from � ⊂ R

4 into some closed Riemannian manifold
N and N is isometrically embedded in R

K .
An extrinsic biharmonic map is a critical point of H(u), hence it satisfies the Euler–

Lagrange equation

�2u = �(B(u)(∇u,∇u)) + 2∇ · 〈�u,∇(P(u))〉 − 〈�(P(u)),�u〉. (2.1)

Here P(y) : RK → TyN is the orthogonal projection fromR
K to the tangent space TyN and

for X, Y ∈ TyN , B(y)(X, Y ) = −∇X P(y)(Y ) is the second fundamental form of N as a
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submanifold in R
K . Since we consider smooth biharmonic maps only, it was proved in [18]

that the above equation is equivalent to

�2u ⊥ TuN .

For intrinsic biharmonic maps, the equations are more complicated. We postpone their
discussion to Sect. 7. It suffices to note here that they are scaling invariant.

The following ε-regularity theorem is the corner stone of the neck analysis of biharmonic
maps. Its proof can be found in Lemma 2.6 of [5], Lemma 5.3 of [16] and Theorem A of
[18].

Theorem 2.1 [5,16,18] There exists ε0 > 0 depending only on N and p > 1 such that if
u ∈ W 4,p(B1) is a biharmonic map satisfying

∫
B1

|∇2u|2 + |∇u|4dx ≤ ε0, then

‖u − u‖W 4,p(B1/2) ≤ C
(‖∇2u‖L2(B1) + ‖∇u‖L4(B1)

)
,

where u is the mean value of u over the unit ball.

In the “Appendix”, we provide a proof which is some elementary PDE arguments and only
depends on the critial nonlinearity of the equation. Hence it applies to all three types of
biharmonic maps. We also note that it’s apriori estimate instead of regularity statement.

To conclude this section, we show how Theorem 1.1 implies that lim|x |→∞ ω exists, as
promised in the introduction.

It suffices to show that for any ε > 0, we can find R large such that for any R′ > R, we
have

oscBR′ \BRω < ε.

Since ui (λi x) converges strongly to ω on BR′ \BR , we need to show that

oscBλi R
′ \Bλi R

ui < ε/2.

This is a consequence of (1.2) because when i is large Bλi R′ is contained in Bδ for any δ > 0.

3 Three circle lemma

This section consists of two parts. In the first part, we show the three circle lemma for
biharmonic functions defined on Br2\Br1 ⊂ R

4. In the second part, we generalize this to
some approximate biharmonic functions.

3.1 Biharmonic functions

Let f be a biharmonic function defined on Br2\Br1 ⊂ R
4. Let ϕl

n(l = 1, . . . , hn, n =
1, 2, 3, . . .) be the eigen-functions of S3 (excluding constant functions), i.e.

�S3ϕ
l
n = −n(n + 2)ϕl

n .

Moreover, we assume that
{
ϕl
n

}
are normalized so that they form an orthonormal basis of

L2(S3). If we denote the coordinates of S3 by θ , then ϕl
n is a function of θ and f is a function

of r and θ , where r = |x |.
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By separation of variables, we can write

f = A0 + B0r
2 + C0r

−2 + D0 log r

+
∞∑
n=1

hn∑
l=1

(
Al
nr

n + Bl
nr

−(n+2) + Cl
nr

n+2 + Dl
nr

−n
)

ϕl
n .

For some L > 0 to be determined later and i ∈ Z
+, set

Ai = Be−(i−1)L \Be−i L

and

Fi ( f ) =
∫
Ai

1

|x |4 f 2dx .

We will prove the following three circle lemma for biharmonic functions.

Theorem 3.1 There is some universal constant L > 0. If f is a nonzero biharmonic function
defined on Ai−1 ∪ Ai ∪ Ai+1 satisfying

∫
S3

f (r, θ)dθ = 0

for all r ∈ [e−(i+1)L , e−(i−1)L ], then
2Fi ( f ) < e−L(Fi−1( f ) + Fi+1( f )).

The proof is direct computation. First, by our assumption, we may assume that

f =
∞∑
n=1

hn∑
l=1

(
Al
nr

n + Bl
nr

−(n+2) + Cl
nr

n+2 + Dl
nr

−n
)

ϕl
n .

Second, since

Fi ( f ) =
∫ e−(i−1)L

e−i L

1

r

(∫
S3

f 2dθ

)
dr

and
{
ϕl
n

}
are orthonormal basis, it suffices to prove the theorem for

f = (Arn + Br−(n+2) + Crn+2 + Dr−n)ϕ

where ϕ is one of
{
ϕl
n

}
.

Finally, we observe that by scaling, it suffices to prove the case i = 0. Hence, in the
following, we assume f is defined on A−1 ∪ A0 ∪ A1.

We note that Fi is a quadratic form of (A, B,C, D). Precisely, we have
∫
Be−(i−1)L \Be−i L

f 2
1

r4
dx

=
∫ e−(i−1)L

e−i L

∫
S3

(Arn + Brn+2 + Cr−n + Dr−n−2)2ϕ2 1

r
drdVS3
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=
∫ e−(i−1)L

e−i L
(Arn + Brn+2 + Cr−n + Dr−n−2)2

1

r
dr

:= (A, B,C, D)Mi

⎛
⎜⎜⎝

A
B
C
D

⎞
⎟⎟⎠ .

Here Mi is a 4 × 4 matrix. Direct computation shows

Mi =

⎛
⎜⎜⎜⎝

g(2n) g(2n + 2) g(0) g(−2)

g(2n + 2) g(2n + 4) g(2) g(0)

g(0) g(2) g(−2n) g(−2n − 2)

g(−2) g(0) g(−2n − 2) g(−2n − 4)

⎞
⎟⎟⎟⎠

where

g(β) =
∫ e−(i−1)L

e−i L
rβ−1dr =

{
L β = 0
1
β
e−iβL(eβL − 1) β �= 0.

By the above discussion, to prove the three circle lemma for biharmonic functions, it
suffices to show that the matrix

e−L(M−1 + M1) − 2M0

is positive definite for some universal constant L > 0.
It turns out that we can choose the universal constant L to be 3. For n = 1, we can check

by hand (or by computer software) that the above 4 by 4 matrix is positive definite. In the
following proof, keep in mind that L = 3 and n ≥ 2 and we need this to justify certain
inequalities. (We will not mention this fact every time we use it.)

We write this matrix in the form of (
A B
BT C

)
. (3.1)

Here

A =
⎛
⎝

(e2nL−1)(e(2n−1)L+e−(2n+1)L−2)
2n

(e(2n+2)L−1)(e(2n+1)L+e−(2n+3)L−2)
2n+2

(e(2n+2)L−1)(e(2n+1)L+e−(2n+3)L−2)
2n+2

(e(2n+4)L−1)(e(2n+3)L+e−(2n+5)L−2)
2n+4

⎞
⎠ ,

B =
(

2L(e−L − 1) − 1
2 (e

−2L − 1)(e−3L + eL − 2)
1
2 (e

2L − 1)(eL + e−3L − 2) 2L(e−L − 1)

)

and

C =
⎛
⎝ − (e−2nL−1)(e−(2n+1)L+e(2n−1)L−2)

2n − (e−(2n+2)L−1)(e−(2n+3)L+e(2n+1)L−2)
2n+2

− (e−(2n+2)L−1)(e−(2n+3)L+e(2n+1)L−2)
2n+2 − (e−(2n+4)L−1)(e−(2n+5)L+e(2n+3)L−2)

2n+4

⎞
⎠ .

In order to show that (3.1) is positive definite, we show that both A and C are positive
definite and they dominate B so that the whole matrix is positive definite. More precisely, we
consider
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(xT , yT )

(
A B
BT C

)(
x
y

)

= xTAx + xTBy + yTBT x + yT Cy.

Let m be the largest coefficient in B, then
∣∣∣xTBy

∣∣∣+
∣∣∣yTBT x

∣∣∣ ≤ 2m |x | |y| (3.2)

Denoting the small eigenvalues of A and C by λ and μ respectively, we have

xTAx ≥ λ |x |2 , yT Cy ≥ μ
∣∣y2∣∣ .

Hence, it suffices to show that

λ |x |2 − 2m |x | |y| + μ |y|2 ≥ 0

for all x and y. This is equivalent to

m2 − λμ < 0. (3.3)

For a two by two symmetric matrix
(
a b

b c

)
,

the smaller eigenvalue is given by

λ = 4(ac − b2)

2(a + c +√(a − c)2 + 4b2)
.

For matrix A, since L = 3, then it is obvious that c > b > a for all n. With this in mind,
we claim that

λ ≥ ac − b2

3c
. (3.4)

In fact, we shall prove below that ac − b2 > 0 and the claim follow from

a + c +
√

(a − c)2 + 4b2 ≤ 6c.

To see ac − b2 > 0, we compute

a = 1

2n
(e2nL − 1)(e(2n−1)L + e−(2n+1)L − 2)

= 1

2n

(
e(4n−1)L − 2e2nL − e(2n−1)L + e−L − e−(2n+1)L + 2

)

≥ 1

2n

(
e(4n−1)L − 2e2nL − e(2n−1)L

)

≥ 1

2n

(
e(4n−1)L − 3e2nL

)
.

Here we used e−2L − e−(2n+1)L + 2 ≥ 0 for all n and L = 3.
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Similarly,

c = 1

2n + 4
(e(2n+4)L − 1)(e(2n+3)L + e−(2n+5)L − 2)

= 1

2n + 4

(
e(4n+7)L + e−L − 2e(2n+4)L − e(2n+3)L − e−(2n+5)L + 2

)

≥ 1

2n + 4

(
e(4n+7)L − 3e(2n+4)L

)
.

We also need upper bound of b and c.

c = 1

2n + 4
(e(2n+4)L − 1)(e(2n+3)L + e−(2n+5)L − 2)

≤ 1

2n + 4
e(4n+7)L

and

b = 1

2n + 2
(e(2n+2)L − 1)(e(2n+1)L + e−(2n+3)L − 2)

≤ 1

2n + 2
e(4n+3)L .

ac − b2 ≥ 1

(2n)(2n + 4)

(
e(4n−1)L − 3e2nL

) (
e(4n+7)L−3e(2n+4)L

)
− 1

(2n + 2)2
e(8n+6)L

≥ 1

(2n)(2n + 4)

(
e(8n+6)L − 6e(6n+7)L

)
− 1

(2n + 2)2
e(8n+6)L

≥ 4

(2n)(2n + 2)2(2n + 4)
e(8n+6)L − 4

n2
e(6n+7)L .

λ ≥ 1

12n(n + 1)2
e(4n−1)L − 8

n
e2nL

For L = 3 and all n ≥ 2, we have

λ ≥ 1

24n(n + 1)2
e(4n−1)L (3.5)

for all n.
Now, we repeat the above argument for

C =
⎛
⎝ − e−2nL−1

2n (e−(2n+1)L + e(2n−1)L − 2) − e−(2n+2)L−1
2n+2 (e−(2n+3)L + e(2n+1)L − 2)

− e−(2n+2)L−1
2n+2 (e−(2n+3)L + e(2n+1)L − 2) − e−(2n+4)L−1

2n+4 (e−(2n+5)L + e(2n+3)L − 2)

⎞
⎠.

We still use a, b and c to denote the coefficients in C and we still have a < b < c. Similar
computation shows that

a = 1

2n

(
1 − e−2nL

) (
e−(2n+1)L + e(2n−1)L − 2

)

= 1

2n

(
e(2n−1)L + e−(2n+1)L − 2 − e−(4n+1)L − e−L + 2e−2nL

)

≥ 1

2n

(
e(2n−1)L − 4

)
,
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c = 1

2n + 4

(
1 − e−(2n+4)L

)
(e−(2n+5)L + e(2n+3)L − 2)

= 1

2n + 4

(
e(2n+3)L + e−(2n+5)L − 2 − e−(4n+9)L − e−L + 2e−(2n+4)L

)
,

1

2n + 4

(
e(2n+3)L − 4

)
≤ c ≤ 1

2n + 4
e(2n+3)L ,

b = 1

2n + 2

(
1 − e−(2n+2)L

) (
e−(2n+3)L + e(2n+1)L − 2

)

≤ 1

2n + 2
e(2n+1)L ,

and

ac − b2 ≥ 1

(2n)(2n + 4)

(
e(2n−1)L − 4

) (
e(2n+3)L − 4

)
− 1

(2n + 2)2
e(4n+2)L

≥ 4

(2n)(2n + 4)(2n + 2)2
e(4n+2)L − 8

(2n)(2n + 4)
e(2n+3)L .

In summary,

μ ≥ ac − b2

3c

≥ 2n + 4

3
e−(2n+3)L

(
4

(2n)(2n + 4)(2n + 2)2
e(4n+2)L − 8

(2n)(2n + 4)
e(2n+3)L

)

≥ 1

12n(n + 1)2
e(2n−1)L .

Finally, by the formula of B, we see m ≤ 1
2e

3L . For n ≥ 2, m2 < λμ is implied by

1

4
e6L <

1

24n(n + 1)
e(4n−1)L 1

12n(n + 1)2
e(2n−1)L ,

which is true if L = 3. This concludes the proof of Theorem 3.1.

3.2 Approximate biharmonic functions

By an approximate biharmonic function, we mean a smooth solution u defined on Br2\Br1
satisfying

�2u(r, θ) = a1∇�u + a2∇2u + a3∇u + a4u

+ 1

|∂Br |
∫

∂Br
b1∇�u + b2∇2u + b3∇u + b4u. (3.6)

Here ai and bi are smooth functions, which will be small in the sense that for some small
η > 0,

∣∣a j
∣∣+ ∣∣b j

∣∣ ≤ η

|x | j on Br2\Br1 . (3.7)

Sometimes, to emphasize (3.7), we say the function is an η-approximate biharmonic function.

Remark 3.2 Note that if u is η-approximate biharmonic function on Br2\Br1 , u( x
λ
) is also

η-approximate biharmonic on Bλr2\Bλr1 .
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(3.6) is not the usual type of PDE because of the integral term. However, we still have the
interior L p estimate.

Lemma 3.3 Suppose that u : B4\B1 → R is an approximate biharmonic function and

4∑
i=1

‖ai‖L∞ + ‖bi‖L∞ ≤ C.

Then we have

‖u‖W 4,p(B3\B2) ≤ C ‖u‖L p(B4\B1) .

There is a similar lemma for approximate harmonic function in [10] (see Lemma 3.1).

Proof For 0 < σ < 1, set Aσ = B3+σ \B2−σ and A′
σ = B3+ 1+σ

2
\B2− 1+σ

2
. Let ϕ be a cut-off

function supported in A′
σ satisfying: (1) ϕ ≡ 1 in Aσ ; (2)

∣∣∇ jϕ
∣∣ ≤ c

(1−σ) j
for j = 1, 2, 3, 4

and some universal constant c; (3) ϕ is a function of |x |.
Computing directly, we have

�2(ϕu) = �(ϕ�u + 2∇ϕ∇u + u�ϕ)

= ϕ�2u + 4∇�u∇ϕ + 4∇2u∇2ϕ + 2�u�ϕ + 4∇�ϕ∇u + �2ϕu

= ϕa1∇�u + ϕa2∇2u + ϕa3∇u + ϕa4u

+ϕ
1

|∂Br |
∫

∂Br
b1∇�u + b2∇2u + b3∇u + b4u

+ 4∇�u∇ϕ + 4∇2u∇2ϕ + 2�u�ϕ + 4∇�ϕ∇u + �2ϕu.

Next, we estimate the L p(p > 1) norm of the right hand side of the above equation. By our
choice of ϕ and the assumption of a1, we have

‖∇�u∇ϕ‖L p(A′
σ ) + ‖ϕa1∇�u‖L p(A′

σ ) ≤ C

1 − σ

∥∥∇3u
∥∥
L p(A′

σ )
.

Moreover, Jensen’s inequality implies that
∫
A′

σ

ϕ p

|∂Br |p
(∫

∂Br
b1∇�u

)p

dx

≤
∫
A′

σ

ϕ p 1

|∂Br |
(∫

∂Br
|b1∇�u|p

)
dx

≤ C
∫
A′

σ

∣∣∇3u
∣∣p dx .

Similar argument applies to the remaining terms and gives an estimate of L p norm of�2(ϕu),
by which the L p estimate of bi-Laplace operator implies

‖ϕu‖W 4,p(A′
σ ) ≤ C

(∥∥∇3u
∥∥
L p(A′

σ )

1 − σ
+
∥∥∇2u

∥∥
L p(A′

σ )

(1 − σ)2
+ ‖∇u‖L p(A′

σ )

(1 − σ)3
+ ‖u‖L p(A′

σ )

(1 − σ)4

)
.

In particular, we have

(1 − σ)4
∥∥∇4u

∥∥
L p(Aσ )

≤ C
(
(1 − σ)3

∥∥∇3u
∥∥
L p(A′

σ )
+ (1 − σ)2

∥∥∇2u
∥∥
L p(A′

σ )

+ (1 − σ)‖∇u‖L p(A′
σ ) + ‖u‖L p(A′

σ )

)
.
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818 L. Liu, H. Yin

By setting

� j = sup
0≤σ≤1

(1 − σ) j
∥∥∥∇ j u

∥∥∥
L p(Aσ )

and noting that

A′
σ = A 1+σ

2
and 1 − σ = 2

(
1 − 1 + σ

2

)
,

we obtain

�4 ≤ C(�3 + �2 + �1 + �0). (3.8)

We claim that for j = 1, 2, 3, the following interpolation inequality holds for any ε > 0,

� j ≤ ε4− j�4 + C

ε j
�0.

In fact, by the definition of � j , for any γ > 0, there is σγ ∈ [0, 1] such that

� j ≤ (1 − σ j )
j
∥∥∥∇ j u

∥∥∥
L p(Aσγ )

+ γ

≤ ε4− j (1 − σγ )4
∥∥∇4u

∥∥
L p(Aσγ )

+ C

ε j
‖u‖L p(Aσγ ) + γ

≤ ε4− j�4 + C

ε j
�0 + γ.

Here we used the interpolation inequality
∥∥∥∇ j u

∥∥∥
L p(Aσγ )

≤ η4− j
∥∥∇4u

∥∥
L p(Aσγ )

+ C

η j
‖u‖L p(Aσγ )

with η = ε(1 − σγ ). We remark that the constant in the above interpolation inequality is
independent of σγ ∈ [0, 1] (see the proof of Lemma 5.6 in [1]). By sending γ to 0 and
choosing small ε, we obtain from (3.8)

�4 ≤ C�0,

from which our lemma follows. ��
Now, we prove the three circle lemma for approximate biharmonic functions. For two

positive integers l1 and l2 with (l1 > l2), set

� =
l1⋃

i=l2

Ai

and recall that Ai = Be−(i−1)L \Be−i L where L is the universal constant in Theorem 3.1.

Theorem 3.4 There is some constant η0 > 0 such that the following is true. Assume that
u : � → R

K is an η0-approximate biharmonic function in the sense of (3.6) and that∫
∂Br

udθ = 0 (3.9)

for r ∈ [e−l1L , e−(l2−1)L ]. Then for any integer i with l1 > i > l2, we have

(a) if Fi+1(u) ≤ e−L Fi (u), then Fi (u) ≤ e−L Fi−1(u);
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Neck analysis for biharmonic maps 819

(b) if Fi−1(u) ≤ e−L Fi (u), then Fi (u) ≤ e−L Fi+1(u);
(c) either Fi (u) ≤ e−L Fi−1(u), or Fi (u) ≤ e−L Fi+1(u).

Proof The exact value of i does not matter, because Fi is invariant under scaling. Hence,
we consider only the case of i = 2. Assume the theorem is not true. We have a sequence of
ηk → 0 and a sequence of uk defined on A1 ∪ A2 ∪ A3 satisfying

�2uk(r, θ) = ak1∇�uk + ak2∇2uk + ak3∇uk + ak4uk (3.10)

+ 1

|∂Br |
∫

∂Br
bk1∇�uk + bk2∇2uk + bk3∇uk + bk4uk

with

|aki | + |bki | ≤ ηk on A1 ∪ A2 ∪ A3. (3.11)

By taking subsequence, we assume that one of (a), (b) and (c) is not true for uk . If (a) is not
true, then we have

F2(uk) ≥ eL F3(uk) and F2(uk) > e−L F1(uk).

If (b) is not true, then

F2(uk) ≥ eL F1(uk) and F2(uk) > e−L F3(uk).

If (c) is not true, then

F2(uk) > e−L max{F1(uk), F3(uk)}.
In any case, we control F1(uk) and F3(uk) by F2(uk). Multiplying by a constant to uk if
necessary, we assume that F2(uk) = 1 for all k. The above discussion shows that

‖uk‖L2(A1∪A2∪A3)
≤ C.

Lemma 3.3 shows that (by passing to a subsequence) we have

uk ⇀ u weakly in L2(A1 ∪ A2 ∪ A3),

uk → u strongly in L2(A2).

By (3.10) and (3.11),we know that u is a nonzero biharmonic function defined on A1∪A2∪A3

satisfying (3.9). Theorem 3.1 implies that

2F2(u) < e−L(F1(u) + F3(u)). (3.12)

If (c) does not hold for uk , we have

2F2(uk) ≥ e−L(F1(uk) + F3(uk)).

By the strong convergence of uk in L2(A2) and weak convergence in L2(A1 ∪ A2 ∪ A3), we
have

2F2(u) ≥ e−L(F1(u) + F3(u)),

which is a contradiction to (3.12). Similar argument works for other cases. ��
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820 L. Liu, H. Yin

4 Decay of tangential energy

In this section, we assume that ui is a sequence of biharmonic maps defined on B1 ⊂ R
4,

which blows up at 0, converges to a weak limit u∞ and for some sequence λi → 0, we obtain
the only bubble map

ω(x) = lim
i→∞ ui (λi x).

The neck region is � = Bδ\Bλi R for small δ and large R. Assume without loss of
generality that

� =
li⋃

l=l0

Al

for Al = Be−(l−1)L \Be−l L and l0 < li . Note that li is related to λi and changes with i .
As in [3], for any ε > 0, we may assume by choosing δ small and R large, that

∫
Al

∣∣∇2ui
∣∣2 + |∇ui |4 < ε4 < ε0, (4.1)

for l = l0, . . . , li and sufficiently large i . Since our aim is to prove

lim
δ→0

lim
R→∞ lim

i→∞ oscBδ\Bλi R
ui = 0,

it suffices to show that for any ε > 0 and let δ and R be determined as above and show

oscBδ\Bλi R
ui < Cε

for i sufficiently large.
Set

u∗
i (r) = 1

|∂Br |
∫

∂Br
u(r, θ)dσ.

By scaling and Poincaré inequality, we see
∫
Al

1

|x |4
∣∣ui − u∗

i

∣∣2 dx ≤ Cε2. (4.2)

Lemma 4.1 There exists some ε1 > 0 that if ε < ε1 in (4.1), wi = ui − u∗
i is an η0-

approximate biharmonic function in the sense of (3.6). Here η0 is the constant in Theorem
3.4.

Proof For simplicity, we omit the subscript i . Recall that the Euler–Lagrange equation of
biharmonic map is

�2u = α1(u)∇�u#∇u + α2(u)∇2u#∇2u

+α3(u)∇2u#∇u#∇u + α4(u)∇u#∇u#∇u#∇u. (4.3)

Here αi (u) is a smooth function of u and # is some ’product’ for which we are only interested
in the properties such as

|∇�u#∇u| ≤ C |∇�u| |∇u| .
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Neck analysis for biharmonic maps 821

Since � = ∂2

∂r2
+ 3

r
∂
∂r + 1

r2
�S3 and

∫
S3 � f dθ = 0 for any f , we have

�2u∗(r) = 1

|∂Br |
∫

∂Br
�2udσ

= 1

|∂Br |
∫

∂Br
α1(u)∇�u#∇u + α2(u)∇2u#∇2u

+α3(u)∇2u#∇u#∇u + α4(u)∇u#∇u#∇u#∇udσ

= I + I I + I I I + I V .

Computing directly, we get

I = 1

|∂Br |
∫
Br

α1(u)∇�u#∇u − α1(u
∗)∇�u#∇u

+α1(u
∗)∇�u#∇u − α1(u

∗)∇�u∗#∇u

+α1(u
∗)∇�u∗#∇u − α1(u

∗)∇�u∗#∇u∗dσ

+α1(u
∗)∇�u∗#∇u∗

= 1

|∂Br |
∫

∂Br
β4[u](u − u∗) + β1[u]∇�(u − u∗)

+β3[u]∇(u − u∗)dσ + α1(u
∗)∇�u∗#∇u∗.

Here βi [u] is some expression depending on u, u∗ and their derivatives. Those βi ’s may differ
from line to line in the following. However, thanks to Theorem 2.1, we have

|βi | (x) ≤ η0

|x |i

if ε in (4.1) is smaller than some ε1. We shall require the above holds for all βi and β ′
i below

by asking ε1 to be smaller and smaller.
The same computation gives

I I = 1

|∂Br |
∫
Br

β4[u](u − u∗) + β2[u]∇2(u − u∗)dσ + α2(u
∗)∇2u∗#∇2u∗,

I I I = 1

|∂Br |
∫

∂Br
β4[u](u − u∗) + β2[u]∇2(u − u∗) + β3[u]∇(u − u∗)dσ

+α3(u
∗)∇2u∗#∇u∗#∇u∗

and

I V = 1

|∂Br |
∫

∂Br
β4[u](u − u∗) + β3[u]∇(u − u∗)dσ + α4(u

∗)∇u∗#∇u∗#∇u∗#∇u∗.

In summary, u∗ satisfies an equation similar to (4.3) except an error term of the form

1

|∂Br |
∫

∂Br
β1[u]∇�w + β2[u]∇2w + β3[u]∇w + β4[u]wdσ.

Subtract the equation of u∗ with (4.3) and handle the terms like α1(u)∇�u#∇u −
α1(u∗)∇�u∗#∇u∗ as before to get
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�2w = β ′
1[u]∇�w + β ′

2[u]∇2w + β ′
3[u]∇w + β ′

4[u]w
+ 1

|∂Br |
∫

∂Br
β1[u]∇�w + β2[u]∇2w + β3[u]∇w + β4[u]wdσ. (4.4)

This concludes the proof of the lemma. ��
Now we apply Theorem 3.4 to the function wi .

Lemma 4.2 For sufficiently small ε > 0, we have

Fl(wi ) ≤ Cε2
(
e−L(l−l0) + e−L(li−l)

)
.

Proof We start from l = l0 +1 and consider Al−1 ∪ Al ∪ Al+1. By (c) of Theorem 3.4, either
Fl(wi ) ≤ e−L Fl−1(wi ), or Fl(wi ) ≤ e−L Fl+1(wi ). If the first case occurs, we move on by
adding l by 1 and repeat the same discussion. The argument above stops if (1) l = li − 1 so
that we can not increase l any more, or (2) we find some l ′ so that [by (b) of Theorem 3.4]

Fl−1(wi ) ≥ eL Fl(wi ) for l = l0 + 1, . . . , l ′

and

Fl+1(wi ) ≥ eL Fl(wi ) for l = l ′, . . . , li − 1.

One may check that the lemma is true in either case, because we have

Fl0(wi ), Fli (wi ) ≤ Cε2

by (4.2). ��
We conclude this section by showing a pointwise decay estimate.

Lemma 4.3

max
Al

|x |p
∣∣∣∂ p

r ∇̃q
S3
ui
∣∣∣ ≤ Cε

(
e− L

2 (l−l0) + e− L
2 (li−l)

)
(4.5)

for all integers p + q ≤ 3 and q ≥ 1. Or equivalently, by setting r = et and taking u as a
function of (t, θ), we have∣∣∣∂ p

t ∇̃q
S3
ui
∣∣∣ (t, θ) ≤ Cε

(
e− 1

2 (log δ−t) + e− 1
2 (t−log λi R)

)
. (4.6)

Here ∇̃S3 is the partial derivative with respect to θ in polar coordinates (r, θ), or equivalently,
the gradient operator on the unit sphere S3.

Proof Setting

w̃(x) = wi (e
−(l−1)L x),

we estimate

‖w̃‖2L2(A1)
≤ CFl(wi ) ≤ Cε2

(
e−L(l−l0) + e−L(li−l)

)
.

Similarly, ‖w̃‖L2(A0∪A1∪A2)
is bounded by a similar quantitywith a larger constantC . Lemma

3.3 and the Sobolev embedding theorem implies that

‖w̃‖C3(A1)
≤ Cε

(
e− L

2 (l−l0) + e− L
2 (li−l)

)
.
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Neck analysis for biharmonic maps 823

Noticing the fact that ∇̃S3u
∗
i is always zero, we have∥∥∥∇̃S3 ũ
∥∥∥
C2(A1)

≤ Cε
(
e− L

2 (l−l0) + e− L
2 (li−l)

)
.

Scaling back, we have

max
A1

∣∣∣∂ p
r ∇̃q

S3
ui
∣∣∣ ≤ Cε

(
e− L

2 (l−l0) + e− L
2 (li−l)

)
.

The second inequality is trivial from (4.5). ��

5 Decay of radial energy

In previous section, we showed that in (4.5) that the tangential derivative of ui satisfies some
decay estimate. We will show in this section that this is also true for radial derivative of
ui . Argument of this kind usually uses the so called Pohozaev estimate, which was first
introduced into the neck analysis of harmonic maps by Lin and Wang in [9]. It has been
generalized to the case of biharmonic maps by various authors, see for example [5,7,22].

In this paper, we use essentially the same computation. However, instead of deriving an
inequality relating the tangential energy and the radial energy, we obtain an ODE for the
radial energy on the boundary of balls, in which the tangential energy appears as coefficients.
Our result is proved with the help of this ODE.

It turns out the computation is easier and clearer in cylinder coordinates. Recall that in
polar coordinates in R

4,

�u =
(

∂2

∂r2
+ 3

r

∂

∂r
+ 1

r2
�̃S3

)
u.

Here �̃S3 is the Laplace operator on the standard S3. By setting r = et , we have

�u = e−2t
(
∂2t + 2∂t + �̃S3

)
u.

Direct computation shows that

�2u = e−4t
(
∂2t + �̃S3 − 2∂t

) (
∂2t + �̃S3 + 2∂t

)
u

= e−4t
(
(∂2t + �̃S3)

2 − 4∂2t
)
u. (5.1)

Suppose that u is a biharmonic map defined on Br . Recall that u is a biharmonic map if
and only if�2u is normal to the tangent space TuN . On the other hand ∂t u is a tangent vector
at u(x) ∈ N . Therefore, ∫

S3
�2u · ∂t udθ = 0

for all t , where dθ is the volume element of S3. By (5.1), we have∫
S3

∂t u∂4t u + ∂t u�̃2
S3u + 2∂t u∂2t �̃S3u − 4∂t u∂2t udθ = 0. (5.2)

By integrating by parts and noticing that

∂t u∂4t u = ∂t

(
∂t u∂3t u − 1

2

∣∣∂2t u
∣∣2
)

,
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we obtain

∂t

∫
S3
2∂t u∂3t u − ∣∣∂2t u

∣∣2 +
∣∣∣�̃S3u

∣∣∣2 − 2
∣∣∣∂t ∇̃S3u

∣∣∣2 − 4 |∂t u|2 dθ = 0. (5.3)

We claim that

lim
t→−∞

∫
S3
2∂t u∂3t u − ∣∣∂2t u

∣∣2 +
∣∣∣�̃S3u

∣∣∣2 − 2
∣∣∣∂t ∇̃S3u

∣∣∣2 − 4 |∂t u|2 dθ = 0.

To see this, u is a smooth map defined on Br for some r > 0. The limit t → −∞ is the same
as the limit r → 0. It suffices to translate back the integral into polar coordinates and note
that

∂r u, ∂2r u, ∂3r u,
1

r
∇̃S3u,

1

r2
�̃S3u,

1

r
∂r ∇̃S3u

are bounded near the origin.
Integrating (5.3) from −∞ to t , we get

∫
S3
2∂t u∂3t u − ∣∣∂2t u

∣∣2 +
∣∣∣�̃S3u

∣∣∣2 − 2
∣∣∣∂t ∇̃S3u

∣∣∣2 − 4 |∂t u|2 dθ = 0

for all t . Using

∂t u∂3t u = ∂t (∂t u∂2t u) − ∣∣∂2t u
∣∣2 ,

the above equation can be written as

∂t

∫
S3

∂t u∂2t udθ −
∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθ = �(t), (5.4)

where

�(t) =
∫
S3

−1

2

∣∣∣�̃S3u
∣∣∣2 +
∣∣∣∂t ∇̃S3u

∣∣∣2 .

This is the ODE that we mentioned at the beginning of this section.
Now, we apply the above computation to the sequence of biharmonic maps ui . ui as a

function of (t, θ) satisfies (5.4). By (4.6), we know that for t ∈ [log λi R, log δ],

|�i (t)| ≤ Cε2
(
e−(log δ−t) + e−(t−log(λi R))

)
.

Moreover, by ε0-regularity (Theorem 2.1) and (4.1), we have

max
t∈[log λi R,log δ]max

θ∈S3
∣∣∣∇̃ku
∣∣∣ ≤ Cε.

for k ≤ 3. Here ∇̃ is the gradient of [log(λi R), log δ] × S3 with the product metric. Hence,
by integrating (5.4) from [log λi R, log δ], we have

∫ log δ

log λi R

∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθdt ≤ Cε2. (5.5)

Remark 5.1 We remark that in fact, the argument above gives an independent proof of the
energy identity in the blow up analysis of biharmonic maps.
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For some fixed t0 ∈ [log λi R, log δ], set

F(t) =
∫ t0+t

t0−t

∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθdt.

F is defined for 0 ≤ t ≤ min {t0 − log λi R, log δ − t0}. Integrating (5.4) from t0− t to t0+ t ,
we obtain

F(t) ≤ 1

2
√
3

(∫
{t0−t}×S3

+
∫

{t0+t}×S3

)
3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθ

+
∫ t0+t

t0−t
|�i (s)| ds.

Direct computation shows
∫ t0+t

t0−t
|�i (s)| ds ≤ Cε2

(
e−(log δ−t0) + e−(t0−log λi R)

)
et .

Hence,

F(t) ≤ 1

2
∂t F(t) + Cε2

(
e−(log δ−t0) + e−(t0−log λi R)

)
et .

Multiplying e−2t to both sides of the inequality, we have

(e−2t F(t))′ ≥ −Cε2
(
e−(log δ−t0) + e−(t0−log λi R)

)
e−t .

We assume without loss of generality that log δ − t0 ≤ t0 − log λi R. Then, we integrate the
above inequality from t = 1 to t = log δ − t0 to get

F(1) ≤ e−2(log δ−t0)+2F(log δ − t0) + Cε2
(
e−(log δ−t0) + e−(t0−log λi R)

)

≤ Cε2
(
e−(log δ−t0) + e−(t0−log λi R)

)
.

Here we used (5.5).
By the Lemma 4.3, we have

∫ t0+1

t0−1

∫
S3

|∇̃2u|2 + |∇̃u|2dθdt ≤ Cε2
(
e−(log δ−t0) + e−(t0−log λi R)

)
.

Direct computation shows that
∫
B
et0+1\B

et0−1

|∇2u|2 + 1

|x |2 |∇u|2dx ≤ C
∫ t0+1

t0−1

∫
S3

|∇̃2u|2 + |∇̃u|2dθdt

≤ Cε2
(
e−(log δ−t0) + e−(t0−log λi R)

)
.

Then by Sobolev embedding and the ε-regularity (Theorem 2.1), we have

max
|x |=et0

|x |k
∣∣∣∇ku
∣∣∣ ≤ Cε

(
e− 1

2 (log δ−t0) + e− 1
2 (t0−log λi R)

)

for k ≤ 3.
So, we proved the decay of first derivative of u(x). It is easy to derive the no neck estimate

from here. Hence, we complete the proof of Theorem 1.1.
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6 Another proof of the removable singularity

In this section, we will give a proof of Theorem 1.5 following the argument of Sacks and
Uhlenbeck in [14].

In previous sections, to prove Theorem 1.1, we study the behavior of biharmonic maps
on the neck region Bδ\Bλi R and proved that in terms of cylinder coordinates (t, θ), the
derivatives of u (with respect to the cylinder coordinates) decay with the distance to both
ends of the cylinder [log λi R, log δ] × S3. It is natural to expect that the argument can be
applied to the study of isolated singularities.

For any ε > 0, by shrinking the size of the ball, we assume without loss of generality that∫
B1

∣∣∇2u
∣∣2 + |∇u|4 dx ≤ ε4.

By Theorem 2.1, we have ∣∣∣∇ku
∣∣∣ ≤ ε

|x |k , (6.1)

where k ≤ 3.
Set as before

u∗(r) = 1

|∂Br |
∫

∂Br
udθ.

Lemma 4.1 implies that w = u−u∗ is an η0-approximate biharmonic function if ε is chosen
to be small. Set

Fl =
∫
Al

1

|x |4 |w|2 dx .

Similar to the proof of Theorem 3.4, we claim that

Fl ≥ eL Fl+1

for any l > 2. If this is not true, by (c) of Theorem 3.4, there is some l0 > 2 such that

Fl0+1 ≤ e−L Fl0+2

and by (b) of the same theorem, we know that for all l > l0 + 1

Fl ≤ e−L Fl+1.

However, this is not possible since

Fl ≤ C
∫

[−l L,−(l−1)L]×S3
|w|2 dθdt ≤ C

∫
[−l L,−(l−1)L]×S3

|∇u|2 dθdt

and u as a function of (t, θ) has bounded energy on the cylinder (−∞, 0] × S3 (see (6.1)).
The same argument as before we know that for any p + q ≤ 3 and q ≥ 1 and t ∈ (−∞, 0]∣∣∣∂ p

t ∇̃q
S3
u
∣∣∣ (t, θ) ≤ Cεe

t
2 . (6.2)

The proof of Sect. 5 implies

∂t

∫
S3

∂t u∂2t udθ −
∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθ = �(t) (6.3)

defined for u as a function (t, θ) with |�| ≤ Cε2et .
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Remark 6.1 In the proof of (6.3) in Sect. 5, we need to justify that the limit of∫
S3
2∂t u∂3t u − ∣∣∂2t u

∣∣2 +
∣∣∣�̃S3u

∣∣∣2 − 2
∣∣∣∂t ∇̃S3u

∣∣∣2 − 4 |∂t u|2 dθ (6.4)

is zero when t → −∞. However, u is not smooth at 0 as in Sect. 5. Fortunately, we have∫
B1

∣∣∇2u
∣∣2 + |∇u|4 dx < +∞.

Therefore, Theorem 2.1 implies

max
Bρ

ρk
∣∣∣∇ku
∣∣∣ = o(1)

as ρ → 0. It follows that the integrand of (6.4) goes to zero when t → −∞.

For any t0 < −1, we define for t ∈ (0,−t0 − 1)

F(t) =
∫ t0+t

t0−t

∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθds

Integrating (6.3), we have

F(t) ≤
(∫

{t0−t}×S3
+
∫

{t0+t}×S3

)
|∂t u| ∣∣∂2t u

∣∣ dθ + Cε2
∫ t0+t

t0−t
esds.

Hence,

F(t) ≤ 1

2
F ′(t) + Cε2et0+t .

Multiplying −e−2t to both sides of the above inequality and integrating from t = 1 to
t = −t0 − 1, we get

e2t0F(−t0 − 1) − e−2F(1) ≥ −Cε2et0 .

Therefore,

F(1) ≤ Cε2et0 + Ce2t0F(−t0 − 1). (6.5)

We claim that F(−t0 −1) is uniformly bounded by Cε2 with respect to t0. This follows from
the fact that ∫ −1

−∞

∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 dθdt < Cε2.

To see this, we integrate (6.3) from −∞ to 0. It suffices to show that

lim
t→−∞

∫
S3

|∂t u| ∣∣∂2t u
∣∣ dθ = 0.

The reason is the same as in Remark 6.1.
In summary, we have shown that

∫ t0+1

t0−1

∫
S3

|∇̃2u|2 + |∇̃u|2dθdt ≤ Cε2et0 .

Then the same arguments in the previous section tells us

|x | |∇u| ≤ Cε|x | 12 .
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828 L. Liu, H. Yin

This concludes that u is Hölder continuous as a function defined on B1. Higher regularity
follows from the proof of Theorem 5.1 of [2].

7 Intrinsic biharmonic maps

When we consider intrinsic biharmonic maps, the key difference in the proof is the Pohozaev
type argument in Sect. 5. Here we shall show that why the proof is robust enough so that it
works for intrinsic biharmonic maps as well.

The starting point of the argument in Sect. 5 is (5.2), which uses the fact that u is extrinsic
biharmonic map if and only if �2u is normal to the tangent space TuN . For intrinsic bihar-
monic maps, this is no longer true. However, we recognize that the right hand side of (5.2)
is just

r
∫

∂Br
P(u)(�2u) · r∂r udσ. (7.1)

Here P(u) is the projection to TuN . It is known that the Euler Lagrange equation of intrinsic
biharmonic maps are of the form

P(u)
(�2u + additional terms

) = 0.

Next, we show case by case how to modify the argument in Sect. 5.

7.1 Intrinsic Laplace biharmoinc maps

Since ∫
|τ(u)|2 dx =

∫
|�u|2 − |B(u)(∇u,∇u)|2 dx,

the additional term is contributed by the variation of
∫ |B(u)(∇u,∇u)|2 dx .

Let’s consider the variation given by ut = �(u+tϕ). Here� is the nearest point projection
to N defined in a neighborhood of N . Compute

d

dt
|t=0

∫
|B(∇ut ,∇ut )|2 = 2

∫
B(∇u,∇u)∇u B(∇u,∇u)P(u)ϕ

+ 2B(∇u,∇u)B(∇u,∇(P(u)ϕ))

The contribution to the Euler–Lagrange equation of this part is

I = P(u)

[
2B(∇u,∇u)∇u B(∇u,∇u) − 4

∑
i

∇i (B(∇u,∇u)B(∇i u, ·))
]

. (7.2)

For a better understanding of the above terms, we use local coordinates. Let xi be coordinate
system of� and yα be the coordinates ofRK in which N is embedded.We extend the domain
of B to a neighborhood of N . Hence,

Bα(∇u,∇u) = Bα
βγ ∂i u

β∂i u
γ .

(7.2) in coordinates is

P(u)αβ

[
2Bγ (∇u,∇u)∂yα B

γ (∇u,∇u) − 4
∑
i

∂xi

(
Bγ (∇u,∇u)Bγ

ηα∂i u
η
)]

.
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To follow the computation in Sect. 5, we shall multiply the Euler–Lagrange equation by
xk∂kuβ and integrate over ∂Br . Before that, we need the following lemma.

Lemma 7.1 Let X = (X1, . . . , X4) be a vector field. We have

divX = ∂r (Xr ) + 3

r
Xr + divS3X

T .

Here r = |x | and Xr = (X, ∂r ) and XT is the projection of X to the tangent space of ∂Br ,
divS3 is the divergence operator of ∂Br .

Proof The proof is basic computation. We present it for the sake of completeness. Let {ωi }
be an orthonormal frame of the tangent bundle of ∂Br (locally). Due to the decomposition
X = Xr∂r + XT , we have

divX = (∇∂r X, ∂r ) +
∑
i

(∇ωi X, ωi )

= (∇∂r (Xr∂r ), ∂r ) + (∇∂r X
T , ∂r )

+
∑
i

(∇ωi (Xr∂r ), ωi ) + (∇ωi X
T , ωi )

= ∂r (Xr ) + 3

r
Xr + divS3X

T .

Here we have used the following facts from Riemannian geometry:

1. ∇∂r ∂r = 0;
2. (∇∂r X

T , ∂r ) = −(XT ,∇∂r ∂r ) = 0;
3. (∇ωi ∂r , ω j ) = 1

r δi j .

��

Now we may proceed to compute the effect of the additional term I on the Pohozaev
inequality. For simplicity, we split I into I1 − I2 [as is obvious in (7.2)] and compute

∫
∂Br

I2r∂r udσ.

Since r∂r u is a tangent vector of TuN , we may forget the P(u) in I . We notice that the
remaining part of I2 is the divergence of

X = 4(Bγ (∇u,∇u)Bγ
ηα∂i u

η).

Hence, we may apply the above lemma to get
∫

∂Br
I2r∂r udσ =

∫
∂Br

(
∂r Xr + 3

r
Xr + divS3X

T
)
r∂r udσ

=
∫

∂Br
∂r
(
4B(∇u,∇u)Bηα∂r u

η
)
r∂r u

α

+ 12B(∇u,∇u)B(∂r u, ∂r u)

− 4B(∇u,∇u)B(∇S3u,∇S3(r∂r u))dσ,

where ∇S3 the gradient of ∂Br .

123



830 L. Liu, H. Yin

Using cylinder coordinates (t, θ) where r = et , the first line above becomes∫
S3
r3∂r
(
4B(∇u,∇u)Bηα∂r u

η
)
r∂r u

αdθ

=
∫
S3
r3∂r

[
1

r3

(
4B(∇̃u, ∇̃u)Bηα∂t u

η
)]

∂t u
αdθ

= 1

r

∫
S3

−12B(∇̃u, ∇̃u)B(∂t u, ∂t u) + ∂t

[(
4B(∇̃u, ∇̃u)Bηα∂t u

η
)]

∂t u
αdθ.

Here ∇̃ is the gradient on S3 × (−∞, 0] with product metric.
Notice that the second line cancels with the first term above. Hence, we have∫

∂Br
I2r∂r udσ

= 1

r

∫
S3
4∂t (B(∇̃u, ∇̃u)B(∂t u, ∂t u)) + 2B(∇̃u, ∇̃u)∇u B(∇̃u, ∇̃u)∂t u

−2B(∇̃u, ∇̃u)∂t (B(∂t u, ∂t u)) − 2B(∇̃u, ∇̃u)∂t (B(∇̃S3u, ∇̃S3u))dθ.

In summary, ∫
∂Br

(I1 − I2)r∂r udσ

= 1

r
∂t

∫
S3

−4B(∇̃u, ∇̃u)B(∂t u, ∂t u) +
∣∣∣B(∇̃u, ∇̃u)

∣∣∣2 dθ.

If we multiply the Euler–Lagrange equation of intrinsic Laplace biharmonic map with
r∂r u and integrate over ∂Br , we obtain∫

S3
∂t u∂4t u + ∂t u�̃2

S3u + 2∂t u∂2t �̃S3u − 4∂t u∂2t udθ

+ ∂t

∫
S3
2B(∇̃u, ∇̃u)B(∂t u, ∂t u) − 1

2

∣∣∣B(∇̃u, ∇̃u)

∣∣∣2 dθ = 0. (7.3)

Rewriting the first line as before and integrating over (−∞, t) again, we obtain

0 =
∫
S3

∂t u∂3t u − 1

2

∣∣∂2t u
∣∣2 + 1

2

∣∣∣�̃S3u
∣∣∣2 −
∣∣∣∂t ∇̃S3u

∣∣∣2 − 2 |∂t u|2

+ 2B(∇̃u, ∇̃u)B(∂t u, ∂t u) − 1

2

∣∣∣B(∇̃u, ∇̃u)

∣∣∣2 dθ.

The ∂t u∂3t u term is dealt with as before and we move everything involving tangential deriv-
ative to the right to get

∂t

∫
S3

∂t u∂2t udθ −
∫
S3

3

2

∣∣∂2t u
∣∣2 + 2 |∂t u|2 − �(t)dθ = �(t),

where

�(t) =
∫
S3

−1

2

∣∣∣�̃S3u
∣∣∣2 +
∣∣∣∂t ∇̃S3u

∣∣∣2 − B(∂t u, ∂t u)B(∇̃S3u, ∇̃S3u) + 1

2

∣∣∣B(∇̃S3u, ∇̃S3u)

∣∣∣2

and

� = 3

2
|B(∂t u, ∂t u)|2 .

123



Neck analysis for biharmonic maps 831

Noticing that � is a fourth order polynomial of ∂t u. By ε0-regularity (Theorem 2.1), if ε

in (4.1) is chosen to be small, we have

|�(t)| ≤ 1

2
|∂t u|2 .

Remark 7.2 This is exactly why the additional term causes no trouble. The contribution to
the radial part is a fourth order term. By ε0-regularity, it is controlled by a second order term
with a small coefficient and can be absorbed into the positive term.

Therefore, by setting

F(t) =
∫ t0+t

t0−t

∫
S3

3

2

∣∣∂2t u
∣∣2 + 3

2
|∂t u|2 dθdt,

we have

F(t) ≤
(∫

{t0−t}×S3
+
∫

{t0+t}×S3

)
|∂t u| ∣∣∂2t u

∣∣ dθ +
∫ t0+t

t0−t
|�(t)| dt

≤ 1

2
F ′(t) +

∫ t0+t

t0−t
|�(t)| dt.

The rest of the proof is the same as the case of extrinsic biharmonic map.

7.2 Intrinsic Hessian biharmonic map

We are interested in the Euler–Lagrange equation of the intrinsic Hessian biharmonic map.
As noted in [11], it is the same as the Euler–Lagrange equation of the functional

∫
�

|τ(u)|2 + 〈R(u)
(
∂i u, ∂ j u

)
∂ j u, ∂i u〉dx .

We want to compute the effect of this additional curvature term on the Pohozaev argument
and show that the previous proof works for this case as well.

If the variation is given by ut = �(u + tϕ), then the variation of the additional term is

d

dt
|t=0

∫
〈R(ut )

(
∂i ut , ∂ j ut

)
∂ j ut , ∂i ut 〉dx

=
∫

(∇u R)(∇u, . . .)P(u)ϕ +
∑
(α)

Rαβγ δ∂i (P
α(u)ϕ)∂ j u

β∂ j u
γ ∂i u

δdx .

Here by
∑

(α), we mean a summation of four terms and the other three are similar and can
be obtained by replacing α with β, γ or δ.

Hence, in comparison with the Euler–Lagrange equation of the intrinsic Laplace bihar-
monic maps, there is an additional term

J := J1 − J2 = P(u)

⎡
⎣(∇u R)(∇u, . . .) −

∑
(α)

∂i (Rαβγ δ∂ j u
β∂ j u

γ ∂i u
δ)

⎤
⎦ .
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Applying Lemma 7.1, we have

∫
∂Br

J2r∂r udσ =
∑
(α)

∫
∂Br

∂r
(
Rαβγ δ∂ j u

β∂ j u
γ ∂r u

δ
)
r∂r u

α

+ 3Rαβγ δ∂r u
α∂ j u

β∂ j u
γ ∂r u

δ

− Rαβγ δ∇S3(r∂r u
α)∂ j u

β∂ j u
γ ∇S3u

δ dσ

=
∑
(α)

∫
S3
r3∂r

(
1

r3
Rαβγ δ∇̃i u

β ∇̃i u
γ ∂t u

δ

)
r∂r u

α

+ 3

r
Rαβγ δ∂t u

α∇̃i u
β ∇̃i u

γ ∂t u
δ

−1

r
Rαβγ δ∇̃S3(∂t u

α)∇̃i u
β ∇̃i u

γ ∇̃S3u
δdθ

= 1

r

∑
(α)

∫
S3

∂t

(
Rαβγ δ∂t u

α∇̃i u
β∇̃i u

γ ∂t u
δ
)

− Rαβγ δ∂
2
t u

α∇̃i u
β ∇̃i u

γ ∂t u
δ − Rαβγ δ∇̃S3(∂t u

α)∇̃i u
β ∇̃i u

γ ∇̃S3u
δdθ.

The symmetry of Riemann curvature tensor implies that

∫
∂Br

(J1 − J2)r∂r udσ = 1

r

∫
S3

−∂t

(
4Rαβγ δ∂t u

α∇̃i u
β ∇̃i u

γ ∂t u
δ
)

+ ∂t

(
Rαβγ δ∇̃ j u

α∇̃i u
β ∇̃i u

γ ∇̃ j u
δ
)
dθ.

The rest of the proof are the same as in the previous subsection.

Appendix

Proof of Theorem 2.1 It will be convenient to assume that u = 0. Since u is a biharmonic
map, then it satisfies the Euler–Lagrange

�2u = ∇3u#∇u + ∇2u#∇2u + ∇2u#∇u#∇u + ∇u#∇u#∇u#∇u.

Let 0 < σ < 1 and σ ′ = 1+σ
2 , take cut-off function ϕ ∈ C∞

0 (Bσ ′) satisfying ϕ ≡ 1 in Bσ ,
|∇ϕ| ≤ 4

1−σ
.

Direct computation shows that

�2(ϕu) = �(ϕ�u + 2∇u∇ϕ + u�ϕ)

= ϕ�2u + 4∇�u∇ϕ + 2�u�ϕ + 4∇2u∇2ϕ + 4∇u∇�ϕ + u�2ϕ

= (∇3u#∇u + ∇2u#∇2u + ∇2u#∇u#∇u + ∇u#∇u#∇u#∇u)ϕ

+∇3u#∇ϕ + ∇2u#∇2ϕ + ∇u#∇3ϕ + u∇4ϕ

= (∇3(ϕu)#∇u + ∇2(ϕu)#∇2u + ∇2u#∇u#∇(ϕu) + ∇u#∇u#∇u#∇(ϕu))

+∇3u#∇ϕ + ∇2u#∇2ϕ + ∇u#∇3ϕ + u∇4ϕ + ∇2u#∇u#∇ϕ + ∇2ϕ#∇u#∇u

+∇u#∇u#∇u#∇ϕ.
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Assume first that 1 < p < 4
3 . By the standard L p theory, we have

‖∇4(ϕu)‖L p(B1) ≤ C

(
‖∇u‖L4(B1)‖∇3(ϕu)‖

L
4p
4−p (B1)

+ ‖∇2u‖L2(B1)‖∇2(ϕu)‖
L

4p
4−2p (B1)

+‖∇2u‖L2(B1)‖∇u‖L4(B1)‖∇(ϕu)‖
L

4p
4−3p (B1)

+ ‖∇u‖3L4(B1)
‖∇(ϕu)‖

L
4p

4−3p (B1)

+ ‖∇3u‖L p(Bσ ′ )
1 − σ

+ ‖∇2u‖L p(Bσ ′ )
(1 − σ)2

+ ‖∇u‖L p(Bσ ′ )
(1 − σ)3

+ ‖u‖L p(Bσ ′ )
(1 − σ)4

+ ‖∇2u#∇u‖L p(Bσ ′ )
1 − σ

+ ‖∇u#∇u‖L p(Bσ ′ )
(1 − σ)2

+ 1

1 − σ
‖∇u#∇u#∇u‖L p(Bσ ′ )

)
,

By the Sobolev embedding, if ε0 is sufficiently small, we get

‖∇4(ϕu)‖L p(B1) ≤ C
( 1

1 − σ
‖∇3u‖L p(Bσ ′ )

+ 1

(1 − σ)2
‖∇2u‖L p(Bσ ′ ) + 1

(1 − σ)3
‖∇u‖L p(Bσ ′ )

+ 1

(1 − σ)4
‖u‖L p(Bσ ′ ) + 1

1 − σ
‖∇2u#∇u‖L p(Bσ ′ )

+ 1

(1 − σ)2
‖∇u#∇u‖L p(Bσ ′ )

+ 1

1 − σ
‖∇u#∇u#∇u‖L p(Bσ ′ )

)
.

Setting

� j = sup
0≤σ≤1

(1 − σ) j‖∇ j u‖L p(Bσ )

and noticing that 1 − σ = 2(1 − σ ′),1 < p < 4
3 , we have

�4 ≤ C
(
�3 + �2 + �1 + �0 + ‖∇2u#∇u‖L p(B1) + ‖∇u#∇u‖L p(B1)

+‖∇u#∇u#∇u‖L p(B1)
)

≤ C
(
�3 + �2 + �1 + �0 + ‖∇2u‖L2(B1) + ‖∇u‖L4(B1)

)
.

Using the interpolation inequality as in Sect. 3.2, we get

�4 ≤ C
(
�0 + ‖∇2u‖L2(B1) + ‖∇u‖L4(B1)

)
≤ C
(‖∇2u‖L2(B1) + ‖∇u‖L4(B1)

)
.

We start with p = 16
13 . The above argument implies that

‖u‖
W 4, 1613 (B7/8)

≤ C(
∥∥∇2u

∥∥
L2(B1)

+ ‖∇u‖L4 (B1)).

The Sobolev embedding theorem implies
∥∥∇3u

∥∥
L

16
9 (B7/8)

+ ∥∥∇2u
∥∥
L

16
5 (B7/8)

+ ‖∇u‖L16(B7/8) ≤ C(
∥∥∇2u

∥∥
L2(B1)

+ ‖∇u‖L4 (B1)).
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With this, we can bound the L
8
5 norm of the right hand side of the Euler–Lagrange equation.

The interior L p estimate then shows u is bounded inW 4, 85 in B3/4. The lemma is then proved
by bootstrapping method. ��
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