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Abstract We develop several applications of the fact that the Yokonuma—Hecke algebra
of the general linear group GL is isomorphic to a direct sum of matrix algebras associated
to Iwahori—Hecke algebras of type A . This includes a description of the semisimple and
modular representation theory of the Yokonuma—Hecke algebras of GL and a complete clas-
sification of all the Markov traces for them. Finally, from these Markov traces, we construct
3-variables polynomials which are invariants for framed and classical knots and links, and
investigate their properties with the help of the isomorphism. In particular, for classical knots,
a consequence of the construction is that the obtained set of invariants is topologically equiv-
alent to the HOMFLYPT polynomial. We thus recover results of Chlouveraki et al. (2015,
arXiv:1505.06666) about the Juyumaya—Lambropoulou invariants.

1 Introduction

1.1. The Yokonuma—Hecke algebras have been introduced by Yokonuma in [22] as centraliser
algebras of the permutation representation of Chevalley groups G with respect to a maximal
unipotent subgroup of G. They are thus particular cases of unipotent Hecke algebras and
they admit a natural basis indexed by double cosets (see [21] for more details on general
unipotent Hecke algebras). For the Yokonuma—Hecke algebras, the natural description has
been transformed into a simple presentation with generators and relations [9,11]. Assume
that ¢ is a power of a prime number then, from this presentation, one can observe that
the Yokonuma-Hecke algebra of G = GL,(IF;) (sometimes called the Yokonuma—-Hecke
algebra of type A) is a deformation of the group algebra of the complex reflection group of
type G(d, 1,n), whered = q — 1.
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In this paper, we will consider the generic Yokonuma—Hecke algebras Y, , (n € Zx¢)
depending on two indeterminates « and v and a positive integer d, over the ring C[u™!, v].
The algebra Y, , is also a deformation of the group algebra of the complex reflection group
of type G(d, 1, n), for any d, and the Yokonuma—-Hecke algebra of GL, (F,) is obtained by
considering the specialization u> = g, v =¢ — 1 and the case d = g — 1.

There exist others well-known deformations of complex reflection groups of type
G(d, 1, n) which have been intensively studied during the last past years : the Ariki—Koike
algebras. These algebras turn out to have a deep representation theory (in both semisimple
and modular cases) which is now quite well-understood (see for example [6] for an overview).

For the Yokonuma-Hecke algebra Yy ,, the set of simple modules has been explicitly
described in the semisimple situation in combinatorial terms in [3] (see also [20] for general
results on the semisimple representation theory of unipotent Hecke algebras). In addition,
a criterion of semi simplicity has been deduced. Finally, a certain symmetrizing form has
been defined and the associated Schur elements (which control a part of the representation
theory of the algebra) have been calculated. They appear to have a particular simple form,
namely products of Schur elements of Iwahori-Hecke algebras of type A. Thus, the study of
the representation theory and the symmetric structure suggests a deep connection between
the Yokonuma—Hecke algebra Yy ,, and the Iwahori-Hecke algebra of type A.

In another way, a motivation for studying the Yokonuma—Hecke algebra comes from
topology and more precisely the theory of knot and link invariants. Indeed, the algebra Yy ,
is naturally a quotient of the framed braid group algebra, and in turn can be used to search for
isotopy invariants for framed links in the same spirit as the Iwahori—Hecke algebra of type
A is used to obtain an invariant for classical links (the HOMFLYPT polynomial).

In [10], Juyumaya introduced on Y, , an analogue of the Ocneanu trace of the Iwahori—
Hecke algebra of type A. This trace was subsequently used by Juyumaya and Lambropoulou to
produce isotopy invariants for framed links [12,15]. Remarkably, they also produced isotopy
invariants for classical links and singular links [13,14]. Even though the obtained invariants
for classical links are different from the HOMFLYPT polynomial (excepted in some trivial
cases), all the computed examples seem to indicate that the invariants for classical links
obtained from Yy , so far are topologically equivalent to the HOMFLYPT polynomial [2].
In fact, if we restrict to classical knots, such an equivalence has been announced in [1].

Again, it seems reasonable to expect an underlying connection between the algebra Yy ,,
and the Iwahori—-Hecke algebra of type A which could explain this fact.

1.2. In this paper, we give several answers and new results in both directions: the representation
theory and the knots and links theory. After recalling several results and detailing the structure
of the algebras (in Sect. 2), in the third section, we indeed show that, over the ring (C[uil ,v],
there is an isomorphism between the Yokonuma-Hecke algebra Y, , and a direct sum of
matrix algebras over tensor products of Iwahori-Hecke algebras of type A. This result is in
fact a special case of a result by Lusztig [18]! but we give

The direct sum is naturally indexed by the set of compositions of n with d parts. Moreover,
we provide explicit formulas for this isomorphism (and its inverse) which will allow us to
concretely translate questions and problems from one side to the other.

Then, we first develop in Sect. 4 the applications of the isomorphism theorem concern-
ing representation theory. Indeed, the isomorphism can be rephrased by saying that the
Yokonuma-Hecke algebra Y, , is Morita equivalent to a direct sum of tensor products of
Iwahori—Hecke algebras of type A. As the result is valid in the generic situation (over the

' We thank G. Lusztig for pointing us this fact.
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ring C[u™!, v]), it passes to the specializations of the parameters « and v. This implies that
both the semisimple and the modular representation theories of Y, , can be deduced from
the corresponding ones of the Iwahori—Hecke algebra of type A, which are well-studied (see
e.g. [7]). In particular, the classification of simple modules of Y, , and the decomposition
matrices (in characteristic 0) follow.

In addition, the isomorphism theorem provides a natural symmetrizing form on Y4,
derived from the canonical symmetrizing form of the Iwahori—Hecke algebra of type A. As
a first application of the explicit formulas, we show that this symmetrizing form actually
coincides with the symmetrizing form defined in [3], which provides a direct proof and an
explanation of the form of the Schur elements. We thus in particular recover the results of

[3].

1.3. Another class of applications of the isomorphism theorem concerns the theory of classical
and framed knots and links (Sects. 5 and 6). Indeed, we obtain a complete classification of
the Markov traces on the family, on n, of the Yokonuma—Hecke algebras Y, , (Theorem
5.3). This is done in two steps. First we translate, with the help of the isomorphism theorem,
the Markov trace properties into properties of traces on tensor products of Iwahori—-Hecke
algebras of type A; then we fully characterize these traces using the known uniqueness of
the Markov trace on the Iwahori—Hecke algebras of type A. In particular, we show that all
the Markov traces on Yy , are related with the unique Markov trace on the Iwahori—-Hecke
algebras of type A.

We note that we use a different definition of a Markov trace on Yy , thanin [10,12-15]. In
there, the standard approach initiated by Jones for classical links was followed (see [8] and
references therein). The first step is the construction on Y, , of an analogue of the Ocneanu
trace by Juyumaya [10]. Additional conditions were imposed in [10] in order to obtain the
existence and unicity of this trace. Then, a rescaling procedure is necessary to construct
invariants and, as it turned out, the trace does not rescale directly as in the classical case. A
non-trivial rescaling procedure was implemented by Juyumaya and Lambropoulou in [13-15]
by means of the so-called “E-system” and led to further restrictions on the parameters.

In the definition we use here for the Markov trace on Y, ,, the imposed conditions are
the minimal ones allowing to obtain link invariants, namely, the centrality and the so-called
Markov condition (see Sect. 5.2). This will allow us to avoid any kind of rescaling procedure
during the construction of invariants. This approach is explained in [7, section4.5] in the
classical setting of the Iwahori—-Hecke algebras of type A.

With the definition used here, the space of Markov traces has a structure of C[u*!,
module. Our approach via the isomorphism theorem provides a distinguished basis, which is
indexed by the set of compositions into d parts with all parts equal to 0 or 1. Thus the space
of Markov traces on the Yokonuma—Hecke algebras has dimension 27 — 1.

v:l:l]_

1.4. Finally, the last section is devoted to the construction and the study of invariants for
classical links and framed links. Following Juyumaya and Lambropoulou, we realize Yy , as
a quotient of the framed braid group. Actually we do more: we introduce a one-parameter
family of homomorphisms from the group algebra of the framed braid group to the algebra
Y4 » (deforming the canonical homomorphism). Then, for each homomorphism of this family
and each Markov trace on Yy ,, we construct an invariant for classical and framed links.
As mentioned above, no rescaling is needed and the invariant is simply obtained by the
composition of the homomorphism followed by the Markov trace.

The obtained invariants are Laurent polynomials in three variables: two of these variables
are the parameters u# and v in the definition of Y, ,, and the third one is the parameter
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appearing in the homomorphism from the group algebra of the framed braid group to Yy 5.
Among these invariants, we recover the ones obtained by Juyumaya and Lambropoulou by
taking a particular value for this third parameter and some specific Markov traces.

Restricting to classical links, we use our construction via the isomorphism theorem to
prove two results devoted to the comparison of the obtained invariants with the HOMFLYPT
polynomial.

First we show that the HOMFLYPT polynomial is contained in them. More precisely,
among the 24 _ 1 basic Markov traces, there are d of them whose associated invariants
coincide with the HOMFLYPT polynomial. These basic Markov traces are the ones indexed
by compositions into d parts with only one part equal to 1 and all the others equal to 0 (in
the particular case of the Juyumaya—Lambropoulou invariants, this result corrresponds to [2,
Corollary1]).

Then, we show that the invariants obtained from the others basic Markov traces are always
equal to 0 when applied to a classical knot. For classical knots, this solves completely the study
of these invariants, which are thus shown to be topologically equivalent to the HOMFLYPT
polynomial. This gives, in particular, a different proof of results of [1] about the Juyumaya—
Lambropoulou invariants.

Notations

e We fix an integer d > 1, and we let {1, ..., &} be the set of roots of unity of order d.
We will often use without mentioning that % 2 0<s<d—1 £3&, " isequalto 1 ifa = b and
is equal to O otherwise.

e Let A be an algebra defined over a commutative ring R. If R’ is a commutative ring
with a given ring homomorphism 6 : R — R’, we will denote the specialized algebra
Ry A := R’ ®r A where the tensor product is defined via 6. In particular, if R’ is a
commutative ring containing R as a subring, we denote simply by R'A := R’ Qg A the
algebra with ground ring extended to R’.

e We will denote by M; ; an elementary matrix with 1 in position (i, j) and 0 everywhere
else (the size of the matrix will always be given by the context).

2 Definitions and first properties
2.1 The Iwahori-Hecke algebra of type A

Letn € Z>1 and let u and v be indeterminates. The Iwahori—-Hecke algebra H,, of type A, —1
is the associative C[u*!, v]-algebra (with unit) with a presentation by generators :

T, ..., Th—,
and relations:
LT, =T1,T; foralli, j=1,...,n— lsuchthat|i — j| > 1,
TiTiiT; = T LTy foralli=1,...,n =2, 1)

T? = u? +T; foralli=1,...,n— 1.

Note that H; = C[u™!, v]. It is convenient also to set H := C[u*!, v].

Let R be aring and let 6 : Clu*!,v] > Rbea specialization such that 0u?) =1 and
0(v) = 0 then the specialized algebra Rg’H, is naturally isomorphic to the group algebra
R&,, of the symmetric group.
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Remark 2.1 Let g be an indeterminate. Another usual presentation of 7, is obtained by the
specialization 6 : Clu*!, v] — Clg, q_l] given by 9(u2) =landO(v) =q — q_l.

Letw € 6, ands;, ...s;, areduced expression of w (where (i1, ...,i,) € {l,...,n—1}"
and s; € 6, denotes the transposition (i, + 1) fori = 1, ..., n —1). Then, by Matsumoto’s
lemma (see [7, §1.2]), the element T;, ... T;, does not depend of the choice of the reduced
expression of w and thus, the element T,, := T;, ... T; is well-defined. Then H, is free
as a C[u™!, v]-module with basis {T,, | w € &,} (see [7, Thm.4.4.6]). In particular it has
dimension n!.

We also set 7~", =u 1T}, fori € {1,...,n— 1} and,

Ty :=u T, =T, ...7~’,-r, forw € G,,. 2)

where £(w) is the length of w. The set {Tw |w e &,}is also a Clu®T!, v]-basis of H,,.

2.2 Compositions of n

Let Comp,(n) be the set of compositions of n with d parts (or d-compositions of n), that is
the set of d-tuples of non negative integers i = (i1, ..., nq) such that >, _ _, pa = n.
The set of d-compositions of n is denoted by Comp, (n). We denote by |u| := n the size of
the composition p.

For € Comp, (n), the Young subgroup G* is the subgroup &, x --- x &, of &,
where &, acts on the letters {1, ..., 1}, &,, acts on the letters {x; + 1, ..., u2}, and so
on. The subgroup G* is generated by the transposition (i, i + 1) withi € I,, :={1,...,n —
IN{per, 1 +p2, o+ + a1}

Similarly, we have an associated subalgebra H* of ‘H,, generated by {T; | i € 1,}. This is
a free C[u*!, v]-module with basis {T}, | w € &} (or {Tw | w € &*}). The algebra H" is
naturally isomorphic to H,,; ®- - - ® H,,, , where the tensor products are over Clu*!, v]. Note
that the defining relations of H* in terms of the generators 7; with i € I, are the relations
from (1) involving only those generators.

Letu € Comp,(n).Fora € {1, ..., d}, wedenote by wl the composition in Comp; (n +
1) defined by

W=y ifb#a,  and  pl =, 41 3)

Conversely, if i, > 1, we define uj,) € Comp,(n — 1) to be the unique composition such
that
()™ = 1. 0

We also define the base of u, denoted by [1], to be the d-composition defined by

L ifp, > 1, .
[M]“_[O it = 0. fora=1,...,d. %)
The composition [w] belongs to Comp, (N) where N is the number of non-zero parts in p.
We denote by Compg (n) the set of d-compositions of n where all the parts belong to {0, 1},
and we set

Compg = U Compg(n) ={[ul | n e U Comp,(n)}. (6)

n>1 n>1

@ Springer
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2.3 The Yokonuma—-Hecke algebra

We define the Yokonuma—-Hecke algebra Yy ,, as the associative Clu?!, v]-algebra (with unit)
with a presentation by generators:

81,82+ 8n—1,11s ..., In,
and relations:
8igi = &j&i foralli, j=1,...,n— lsuchthat|i — j| > 1,
8i8i+18 = gi+18i&+1 foralli=1,...,n—2,
l‘,‘Ij:l‘jl,' fOI’aHi,j:l,...,l’l, 7
gitj = 1y()8i foralli=1,....n—land j=1,....n, )
1}1:1 forallj=1,...,n,
g?:uQ—i-ve,-g,- foralli=1,...,n—1,
where, foralli =1,...,n—1,
1 _
¢ = Z A
0<s<d-—1
Note that the elements e; are idempotents and that we have gie; = e;g; for all i =
1,...,n — 1. The elements g; are invertible, with
g ' =utg —utve;, foralli=1,....n—1. )
We also set
gi=ulg. fori e {1,...,n—1}.
We note thatg? =1 —|—u_1ve,~§,- and also thatglf1 =g —u e, fori=1,....,n—1.

Let R be aring and let 0 : Clu*!,v] > Rbea specialization such that 6u?) = 1 and
0(v) = 0O then the specialized algebra RyYy , is naturally isomorphic to the group algebra
RG(d, 1, n) of the complex reflection group G(d, 1, n) = (Z/dZ)1 &, . Note that in the case
where d = 1 then Y7 , is nothing but the Iwahori—Hecke algebra of type A,,_; as defined in
Sect. 2.1.

Remark 2.2 The presentation used in [3] of the Yokonuma—Hecke algebra is obtained, sim-
ilarly to Remark 2.1, by a specialization 6 : Clu*!, v] — Clg, ¢~'] such that ¢ is an
indeterminate, 0 (%) = 1 and 6(v) = g — ¢ ~". The precise connections between the presen-
tation above and the presentation used in [2, 10, 12—15] will be carefully investigated in Sect.
6 (see also [3, Remarkl1]).

Remark 2.3 Both the Iwahori-Hecke algebras and the Yokonuma-Hecke algebras can be
defined over more general rings. However, for our purpose (see §2.4), we need to assume
that the base ring contains the d-roots of the unity. Hence, for convenience, we here choose
to work over the ring Clu*!, v].

We set, for w € &, and s;, ... s;, areduced expression for w,

Gu = u"tW

w =g -.-& and gy 8w =8ij - 8i,- )

Again, by Matsumoto’s lemma (see [7, §1.2]), the elements g,, and g, are well-defined. The
following multiplication rules in Y, , follow directly from the definitions. For w € &,, and
ief{l,...,n— 1}, we have
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~ ~ gwsi if l(ws;) > I(w),
Susi = [gws,. +u e if Lwsi) < [(w): (19)

~~ | &sw if I(s;w) > [(w),
Sigw = [gs,.w Fulveigy, if l(siw) < [(w). an

By [10] and Remark 2.2, Y, , is a free C[u*!, v]-module with basis
(g, lwe &, kil ky € Z/dT) (12)

and the rank of Y, , is d"n!. The algebra Y, ,— naturally embeds in the algebra Y, , in an
obvious way.

Remark 2.4 For the isomorphism theorem, we will mainly use the elements g; and g, instead
of g; and g,,. Concerning this part, we could have given the presentation of Yy , in terms of
the generators g; and thus remove one of the variables u or v. However, the generators g;
will be used systematically starting from Sect. 5 for applications to links theory.

2.4 A decomposition of Y; ,,

We consider the commutative subalgebra A, := (t1, ..., t,) of Yy ,. This algebra is naturally
isomorphic to the group algebra of (Z/dZ)" over C[u™!, v], and we will always implicitly
make this identification in the following.

A complex character x of the group (Z/dZ)" is characterized by the choice of x (¢;) €
{&1,...,&4} foreach j = 1,...,n. We denote by Irr(A4,,) the set of complex characters of
(Z/dZ)", extended to A,,.

Definition 2.5 For each x € Irr (A,), we denote by E, the primitive idempotent of A,
associated to x, that is, characterized by x'(E,) = 0if x’ # x and x(E,) = L.

The idempotent E, is explicitly written in terms of the generators as follows:

E.= ][] é > oxw . (13)

1<i<n 0<s<d—1
By definition, we have, for all x € Irr(A,) andi =1,...,n,
l‘,’EX =Exl‘i=)((ti)EX. (14)

The symmetric group &,, acts by permutations on (Z/dZ)" and in turn acts on Irr(A4,). The
action is given by the formula:

w0 () = xty-1)) foralli=1,...,n,w € &, andx € Irr(A,).
In the algebra Y ;,, due to the relation g,,t; = ty)guw fori =1,...,nand w € &,, we have
gwEy = Ew(x)8w and gwEy = Ewx)8uw- (15)

Let x € Irr(A4,). Fora = 1,...,d, denote by u, the cardinal of the set {j €
{1,...,n}| x(t;) = &,}. Then the sequence (i1, ..., (tg) is a d-composition of n which is
denoted by

Comp(x) = (1, ..., ng) € Comp,(n).
Let u € Comp,(n). Then we denote by

O() := {x € Irr(A,) | Comp(x) = u}
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the orbit of the element x € Irr(A,) under the action of the symmetric group and

n!

= B = pilpa! .. gl

Definition 2.6 Let 1 € Comp,(n). We set

Epi= >, Ex= >, Ey

Comp(x)=n x€O(n)

Due to the commutation relation (15), the elements E,,, with © € Comp,(n), are central in
Y4 . Moreover, as the set {E, | x € Irr(A,)} is a complete set of orthogonal idempotents, it
follows at once that the set {E,, | © € Comp,(n)} forms a complete set of central orthogonal
idempotents in Yy ,,. In particular, we have the following decomposition of Y, , into a direct
sum of two-sided ideals:

Yan= B  EuVan (16)

pneComp, (n)

2.5 Another basis for Y, ,,

We here give another basis for Yy ,, using the idempotents we just defined. As the subalgebra
A, of Yy , is isomorphic to the group algebra of (Z/dZ)" over Clu®!, v], the set {Ey | x €
Irr(A,)} is a Clu™!, v]-basis of A,, as well as the set {t{‘I .. .t,/{" | ki, ..., ky, € Z/dZ}. So
from the knowledge of the Clu*!, v]-basis (12) of Y4 1, we also have that the set

{Ex8uw | x €Irr(Ay), w € &) a7

is a C[u*!, v]-basis of Y4 n. Moreover, this basis is compatible with the decomposition (16)
of Yy , since, for u € Comp,(n), we have E, g,, € E,, Yy , if and only if Comp(x) = p. In
other words, the set

(Ex&w | x € Im(A,) with Comp(x) = . w € &,

is a C[u™!, v]-basis of E Yqn.

Now we will label the elements of Irr(A,) in a useful way for the following. This is done
as follows. We first consider a distinguished element in each orbit O(u). Let u € Comp (n).
We denote

Xl e T (A,

the character given by

I)ch‘(tl) =..= Ia(f(tul) =&,
X1 (I{L1+1) = = X1 (tu.1+;tz) = E%, )
Xiu(tﬂ1+"'+ﬂd_1+l) = ... = X{L(tud) = Sd'

Note that the stabilizer of x;* under the action of &, is the Young subgroup &*. In each left
cosetin &, /G*, we take a representative of minimal length (such a representative is unique,
see [7, §2.1]). We denote by

{771,/4» ceey ﬁm,l,u}
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this set of distinguished left coset representatives of &, /&* with the convention that 7y ,, = 1
(recall that m;, := gO(u)). Then, if we setforall k =1, ..., my:

Xe =T (xp), 19
we have by construction that
O =1{x1' - xi )
To sum up, we have the following Clu®!, v]-basis of Yan:
{Exfgw |we6, k=1,...,my,, ueCompy(n)}, (20)

where, for each © € Comp,(n), the subset {Exfgw lwe Gy k=1,...,m,}isa
Clu™!, v]-basis of the two-sided ideal E. Yqn.

3 The isomorphism theorem

The aim of this part is to prove that ¥, , and ) jeComp, (n) Mat,,, (H*) are isomorphic as
Clu*!, v]-algebras. We will exhibit an explicit isomorphism between the two algebras.

3.1 The statement

Let u € Comp,(n). We recall that E,, Y, , is a two-sided ideal of Y, and is also a unital
subalgebra with unit £,,. We define a linear map

@ : Maty, (") — EpYan,

by setting, for any matrix consisting of basis elements fw,-‘j of H* (thatis, with w; ; € G*),

(D,u,((Twiyj)lfi,jfmﬂ) = Z EX,'M gﬂi’uwivjn/?;]i EX;.“ (21)
I<i,j<my

We also define a linear map
W, : Ey Yqn — Mat,,, (H"),

as follows. Letk € {1,...,m,} and w € &,, and let j € {1, ..., m,} be uniquely defined
(given k) by the relation w(xj‘) = X,ﬁ‘. Note that we thus have nkf;wn]m € G*. We then
set

V) = Tyt M (22)
where we recall that My ; denotes the elementary matrix with 1 in position (k, j).

Now we can state the main result of this section. Recall the decomposition (16) of Yy 5.
Theorem 3.1 Let i € Comp,(n). The linear map ®, is an isomorphism of Clu*!, v]-
algebra with inverse map W . In turn,

o= P o P Maty,(H) > Yan
neCompy (n) neCompy (n)
is an isomorphism with inverse map:
W, = @ W, : Yg,—> @ Mat,,, (H").
jeCompy (n) jneCompy (n)
The rest of this section is devoted to the proof of the theorem.
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3.2 Preliminary results

We first prove a series of useful lemmas.

Lemma 3.2 Let n € Comp,(n) andi € {1,...,my}. We consider a reduced expression
Siy - Sip of wi . Then foralll € {1, ..., k}, we have:

=0

i Esizﬂ Sy 00 T E5i1+1 sy () Gl

Proof By definition, m; , is the (unique) element of &, with minimal length satisfying
rri,,l()({‘) = Xi“. As a consequence, we have forall/ =1, ..., k:

Siy Sipr - Sin (X)) # Sigyy - Si (1)
which is equivalent to
Siver « - Sig X)) # Sipyy - 8iy (X)) Wiy1)-
Thus by (14), we have
t By, syt F i1 B -

This discussion shows that

el — £,
tllti,H ES"I+1 -Siy (Xr) - S] Esil+1 <oSig (X]M)

for a d-root of unity &; # 1. We conclude that

C— e — s —
E5i1+1~~~\"ik (x}H i = i E-vi,+,...sl-k(xf) = Z §j E5i1+|~-sik xH = 0
0<s<d-—1
where we note, for the first equality, that e;, commutes with any E, . O

Lemma 3.3 Forall n € Comp,(n), 1 <i, j <my, andw € &,, we have:

. ~ 1= = _ = )
W) Eyr 8z, 8uw8nj, Eyn = Eyn 8t Eu

.. ~ ~ ~_1 _ ~
(i) Eyp 8\ 8w8ir,, Ex}‘ =E 8w ) Exj"
Proof Let us denote a reduced expression of 7; ;, by s;, ...s;,. We have :

=1 = ~1 1~
Eyw g, 8w = fi‘i g,»k;-l-g,-, 8w L
=8 -8 E3i2~~5ik(XfL) 8i, 8w

Recallthatforall j =1, ..., n,wehave fg’fl =g —u~lye j- Thus, with repeated applications
of Lemma 3.2 together with the multiplication rule (11), we deduce that:

~ 1 = _ =1 =1 ~

Exfl Smiy 8w = 8i -+ 80y ESI'Q'"SIIk(X{l) 8siyw
s e | ] ~

=8 -85 ESi3.~Sik(fo) 8iy 8sijw

w .
X om,w
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Now let us denote by s, ...sj, areduced expression of 7 ,,, we have:

Ey g” 8w 8. Ey v =E, i g, le 8rju Exfl
= EX{L g”,-,_ulw gj---8j EX]“
= EX{A gn;l:w 8 Esjz-usj,()(f) 8iy -+ - 8i;-

As above, with repeated applications of Lemma 3.2 together with the multiplication rule (10),
we obtain:

~ ] ~ ~ ~
EX]M gni,[L gw gﬂjvl‘ E H - E H gn'_lejl ESJ YJI(X ) glz gj[

i

= E t gn L WSy §j2 Esj3..‘sj,(x1 ) ng .- 'gjl

:Eug

mpwry Ext
which proves item (7). Let us now prove item (ii). We have by (19) and (15) :

EX,'H gﬂtu gw gj?jlu EX;I = gﬂi.;t E “ gw E H g;jlﬂ

Zri Byt 8 Eng,!
87i gn n,,lwnjunj“ gﬂ,ﬂ

= e
= 87 E gﬂy w gmuwn 1 g”/u E gﬂ, "
where the last equality comes fromitem (7). The proofis concluded using that g, , E X &x; lu =
= =1
Eyprand &y Byt 8z, = Byt o
Lemma 3.4 Let u € Comp,(n). The map
Py HH* — EXfLYd’"EXf’
defined on the generators by
Vi€ Iy, @u(T) = EngiEp,
extends to an homomorphism of algebras.

Proof Recall that the subspace E e YynE Xl is a unital subalgebra of Yy ,, with unit £ R
We first note that if i € I, then s; (Xf‘) = X{L- We thus have

Gk =E,ngi

and this relation easily implies that the elements E Al 8i E e with i € I, satisfy the braid
relations. It remains to check the “quadratic relation”. We have

(EyniEyp)” = EyuglE
u E ;L+UE ue,g,E g
= 2E u—}-vE Mg,E "

The last equality comes from the fact that fori € I, we have t; E x = it E Xl and thus

eiEXft = Exluei = EXfl'

Thus all the defining relations of H* = H,, ® --- ® H,, are satisfied so that ¢,, can be
extended to a homomorphism of algebras. O
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Remark 3.5 One can actually show that the morphism ¢,, is an isomorphism. Indeed the
lemma implies that ¢,, is given on the standard basis of H" by ¢, (Tw) = E, 2 gwE, i
w € G*. Moreover, if w € G* then w()(l ) = )(1 and therefore ¢, (Ty) = E ugw So it
remains to check that { £ Xl 8w |we &"}isabasisof E,nYq,E, . The lmearmdependence
is immediate, while the spanning property follows from tlhe followmg calculation, for a basis
element Exi”gw of Yy, and v € Comp,(n),

Exf‘gw ifu=v,i=1andw € G,

Eyp - Ex8uw-Eyp = En Exv Eyy 8w = [

0 otherwise.

In the following, we will not use the fact that ¢,, is actually an isomorphism (actually, it is a
consequence of Theorem 3.1 below).

3.3 Proof of the main result
Proof of Theorem 3.1 We are now in position to prove Theorem 3.1. Let u € Comp, (n).

1. We first prove that ®,, is a morphism. Before this, we note that by Lemma 3.3(ii), for
all1 <i, j <m, and w € G*, we have:

Eyt By punt Bt = Eyt 8oy Bu &), Byt
= &m, Eyp 8w Exf‘ gj;jl.ﬂ
= 8mi, bu(Tw) 3, gn] “ (23)
Now, leti, j, k,l € {1,...,m,}and w, w" € &*. We have:

@ (Tw M, j) @p(Tuy Mis) = Eyn gmm_l Eyn E gnk#wn_l E,n.

N
As E o~ and £ Xl belong to a family of pairwise orthogonal idempotents, this is equal to 0 if
J

j # k. On the other hand, we also have that T, M; ;- Tw/ My ; is equal to O if j # k.
So it remains only to consider the situation j = k. If j = k, we obtain

(T Mij) ®u(Tur Mja) = Eyr &yt Ey v Epng 1 E

J.n J I Tj.uW JTI 0
= gn,-,M ¢M(Tw) gﬂj# : gn.,-,ﬂ ¢u(Tw’) gﬂl‘u
= Znip du(Tw - Tu) 82 (24)

where we used successwely (23) and Lemma 3 4. On the other hand, we have that Tw M, ;-
T M; ; is equal to Ty, T,y M; ;. The product Ty T / can be written uniquely as

fTy= > of
xeGH

for some coefficients ¢, € C[u*!, v]. We have now
‘:Du(fw Tw/ M,‘J) = Z Cx EX,‘M §nwxn__1 EXf-L

D ex By $u(TO 2

xeGH

by (23) again. Comparing with (24) concludes the verification that ®,, is a morphism of
algebras.
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2. We now prove that ®,, and W, are inverse maps. Letw € &, andleti € {1, ..., m}.
Letalso j € {1, ..., m,} beuniquely defined by Xi“ = w(X]’.‘). By definition of ®, and ¥,
we have

d,0 \I/,L(EX;A gw) = (D“(Tﬂ,-jlwnj,u M; ;) = EX,'M Sw Ex}"
As X]‘.L = w_l(Xi“ ) and E M is an idempotent, we conclude that this is indeed equal to
EX,.“ -
On the other hand, let w € &* and i, j € {1,...,m,]}.
Wy o®y, (Tw Mi’j) =Yy (E)(,M gﬂ[)ﬂwﬂ;[ll EX/,i)
= \,I,J“ (EXIM gﬂmwn;;) (because ”i,uwi,j”;i()(f) = Xi”)
= Tnl.jﬂlrr,-_“wn;ﬁnj,# Misj/’
where the integer j' € {1,...,m,} is uniquely defined by ni,uwn;;(xﬁ) =x/ Asw €
GSH, this condition yields j* = j, which concludes the proof. O

Example 3.6 Let d = 2 and n = 4. We will give explicitly in this example the images of

8l,---y8n—1,t,....tnandey, ..., ey,—1 of Yy , under the isomorphism W, of Theorem 3.1.
In the matrices below, the dots stand for coefficients equal to 0.
First, we note that, for any u € Comp,(n), the matrix W, (;)( € {1, ..., n}) is diagonal,

more precisely, we have:

W) = Vu(Eut) =W | D Egeti | =W | D0 X E»

I<k<my I<k<my
= > X&) Mg
I<k<m,
We will denote by Diag(xy, ..., xy) a diagonal matrix with coefficients xp, ..., xy on the
diagonal. We also recall that, fori = 1,...,n — 1, we have g; = ug; and

Vu@) =Y Eug) =V | 2 Egli|= > T, M,
I<k<my 1<k<my
where, for each k € {1, ..., m,}, the integer ji € {1,...,m,} is uniquely determined by

si(xXj) = xi -

o Let u = (4,0)or u = (0,4). Then m, = 1 and H* = Hy4. There is only one character
in the orbit O (i), which is Xfl =(&,,84,84,8,),wherea=1if u=(4,0)anda =2
if w = (0, 4). In this situation, we have

g (1), ti— (&), e (1), fori =1,2,3and j =1,2,3,4,

wherea =1if u = (4,0) anda = 2 if u = (0, 4).
o Let u = (3,1). Then m;, = 4 and H* = H3 ® H; and we identify it below with H3.
We order the characters in the orbit O(u) as follows:
X! =ELEL,6,8), x3 = (ELELE &),
Xy =(1.6,&.6) and x) = (&, &, & 8).
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Thus we have 7y, = 1, w2, = s3, 73,;, = s253 and 74, = 515253 . The map W, is

given by:
T] . . . - u
y 82>

gl H . . . u . .
u . . . Tl

t1 = Diag(é1, &1, &1, 82),

t3 — Diag(é1, &2, &1, 1),
e; — Diag(1,1,0,0), e+ Diag(1,0,0,1),

e Let u = (1,3). Then m;, = 4 and H* = H; ® H3 and we identify it below with H3.

. u . .
) 83 . . T2

t» — Diag(&1, &1, &, &1),

t4 — Diag(&, &1, &1, &1);
e3 — Diag(0,0, 1, 1).

We order the characters in the orbit O(u) as follows:

¢1.6.5.8), x3 =& 6.6, 8),

m
X1 =
{'=(.6.6.8) and x) = (&, &, 6. &).

X
Thus we have 7y, = 1, m2;, = $1, 73, = s251 and 74, = s3s5251 . The map W, is

given by:

u - o - -

'/[ . . . . . u . . T
a= | o e e

t1 — Diag(&1, &2, &, &),

t3 — Diag(&2, 62, &1, 62),
e; — Diag(0,0,1,1), e+ Diag(1,0,0,1),

e Let u = (2,2). Then m, = 6 and H* = H> ® H>. We order the characters in the orbit

) — Diag(2, &1, 62, £2),

t4 — Diag(&, &, 62, &1);
e3 — Diag(l, 1,0, 0).

O(w) as follows:
xi = (&, 81,61, 6),

x| =E1.6,6.8), x) =66, 6),
xi = EL6.6.6), x§=E6.8.6), x5 =& 6,6.8).

Thus we have 1, = 1, mp,, = s2, M3, = 5152, T4, = $352, W5, = $15352 and
6, = $2515352 . The map W, is given by (where 7| :=T1 ® 1 and T} := 1 ® T}):

I
o .
D 7 B S u
—
gl ....u
"
U

=
83 .
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t1 — Diag(&1, &1, &2, &1, 62, 62), 1o — Diag(éy, &, &1, 6, 61, &),
t3 — Diag(&, &1, £1, 52,62, 81), 14— Diag(&, £, 6,41, 81,61);
e; — Diag(1,0,0,0,0,1), e+ Diag(0,0,1,1,0,0), e3 — Diag(1,0,0,0,0, 1).

3.4 Natural inclusions of subalgebras

We recall that, for any n > 1, the algebra Y, , is naturally embedded into Yy ,+1, as the
subalgebra generated by #1,...,1,, 81, ..., 8—1. If x € Y4 ,, we will abuse notation and
write also x for the corresponding element of Y, ,,4,/, n’ > 1. Very often the context will
make clear where x lives, and otherwise we will specify it explicitly.

Letn > 1and u = (1, ..., a) € Comp,(n). For any p' > u for the natural order on
compositions (namely, i1, > p, fora =1, ..., d), we have a natural embedding of H* into
HM . Explicitly, using the isomorphisms

H' > Hyy ® - @Hy, and H' >H, @ @H, .
the embedding is given by

Hy ® - @Hy, 301 ® - Qxg> X1 @ @xg €Hy @ @My

When ' = M[f] fora € {1, ..., d}, see (3), the natural embedding H* C H”[a] is expressed
on the basis {T;,, w € &"} of H* by

~ ~ [a]
n n
RS Tw = Ty gt L= L) w G ptg +en—1my =1 € HE (25)

where (u; + --- 4+ g + 1,...,n — 1, n) is the cyclic permutation on 1 + - -+ + ©g +
1,...,n—1,n.

Inclusion of basis elements Let £ X! gw be an element of the basis of Yy ,, where u €
Compy(n), ke {l,...,m,}andw € G,,.
la]
Fora € {1, ..., d}, denote by k, the integerin {1, ..., mu[‘”} such that X;ifl € Irr(A,41)
is the character given by
! m o plal
Xi, @) =x @), ifi=1,....,n, and  x  (at1) =&

la] . . . .
The characters { X/Z , a =1,...,d} are all the irreducible characters of 4,4 containing
X,i‘ in their restriction to A4,,, and therefore we have E W= Zl <a<d Ex ua in Ay . Thus,

ka

in Y4 n+1, we have:

Exli‘g;w = Z E “[alguw (26)
1<a<d ka
A formula for T g, el Leta € {1, ...,d}. We recall that 7y , is defined as the element of
S,, of minimal length such that 7y, ( X{i ) = X/? , and similarly, T, ) is the element of
lal [al
&1 of minimal length such that 7 a1 (x;" ) = x;, - Writing symbolically a character
x € A,41 as the collection (x (1), ..., x(th+1)), we have
[a] lal
X{L :(517~'~7$15'~-s$av~~~7€a7~-~»§d"'a$d) and X]gl :(X]iLvéa)v
——— —— ———
1 Ha+1 Hd
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la]
so that the last occurrence of &, in X]M isin position 1 +- - -+ g + 1. Also, XIM is obtained

[a) . . . .
from x!* by removing this last £,. It is thus straightforward to see that
1 y g g

pguled = T - (W1 + -+ B + 1, onon+ D70 27)
In the remaining of the paper, to simplify notations, we will often write 7y = my , if there
is no ambiguity on the choice of w and also 7y, = T, pulels for any k € {I,...,m,} and
aefl,...,d}.

Inclusion of matrix algebras The successive compositions of the isomorphism &,,, the
natural embedding of Y , in Yy 41 and the isomorphism ¥, | = <I>;Jr | gives the embedding
¢ of the following diagram:

v,
Yan+1 s @ Mat,,,, (H")

peCompy, (n+1)
U K
D,
Yon <—— D Mat,, H"
peCompy (n)

In the formula below, an element x € H* is also seen as an element of H“m, for any
a € {1,...,d}, via the natural embeddings recalled above. We keep the same notation x.

Proposition 3.7 The embedding v is given by 1 = P where the injective mor-

phisms v, are given by:

jeComp, (n) Ly

[a]
e Maty, (H") - @ Maty i, (")

1<a<d
XDALj [and ZE: .xhdghm '
1<a<d
forany i € Compy(n), any x € H* and any i, j € {1, ..., m,}.
Proof Let Ex_u’gw be an element of the basis of Yy ,, where u € Comp,(n),i € {1, ..., m;}
andw € 6,. Let j € {1,...,m,} be uniquely determined by w()(i”) = )(]’.L. We have

q);l(EXiﬂgw) = fnflwnj Mi'j.
On the other hand, we have, using (26),

Wit By ) = D Wnit (B o) Bu)

1<a<d _
= Z Tniglwnja Mig s
1<a<d
since, forany a € {1, ..., d}, the integer j, € {1, ..., mu[a]} is indeed such that w(Xﬁ[aJ) =
Xl.’:[aj (asw € G,). So we only have to check that Tlﬂi—l wr, is the image in D o fﬂi—l wr, €
‘H* under the natural embedding. This is an immediate consequence of (25) and (27). ]
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4 Applications to representation theory

This section presents the first applications of the isomorphism theorem obtained in the pre-
ceding section. First we study the consequences on the representation theory of Yy , and then
we concentrate on the symmetric structure of this algebra.

4.1 Simple modules

The case of an isomorphism between an algebra and a matrix algebra is a classical example
of Morita equivalence which will be discussed in the next subsection. In fact, in this case,
the equivalence is explicit. In particular, due to the isomorphism, any simple Y, ,-modules
is of the form

M| Q- Q My)"™,

where u = (i1, ..., ;tq) is a d-composition of n and M, is a simple module of #,,,, for
eacha =1,...,d (see for example [17, §17.B]).

As the representation theory of the Iwahori—Hecke algebra is quite well understood (at
least in characteristic 0, see for example [7, ch. 8, 9, 10] for the semisimple case and [6] for
the modular case), we can deduce from Theorem 3.1 the following results:

e Letf : A — k be aspecialization to a field k such that Ow?) =1and 6(v) = qg—q~!
for an element in ¢ € k™. Let kyYy , be the specialized algebra then kgYy , is split
semisimple if and only if for all © € Comp,(n), the algebra kg H" is split semisimple.
By [6, Ex.3.1.19], this happens if and only if:

[] a+a*+-+g"H#0

l<m<n

we thus recover the semisimplicity criterion found in [3, §6].
e The simple ky Y4 ,(g)-modules are naturally labelled by the set of d-partitions of rank n
when the algebra is split semisimple. Moreover, in the non semisimple case, if we set

e::min{i>0|1+q2+~-~+42i_2:0}

then the simple modules are labelled by the d-tuples of partitions such that each partition
is e-regular.

e The irreducible characters are completely determined by the irreducible characters of the
Iwahori—-Hecke algebra of type A. For M € Irr(kog H*) with character x s, the character
of the simple kg Y, ,-module (M)™* is given by:

x () = xm o Trmay,, o W (h), forh € kY4 p,

where Trma,, is the usual trace function on the matrix algebra. In particular, the
decomposition matrices of the Yokonuma—Hecke algebra are entirely determined by
the decomposition matrices of the Iwahori—Hecke algebra of type A.

4.2 A Morita equivalence
From Theorem 3.1, we can thus deduce (see for example [17, Ch.17]) a Morita equivalence

between the Yokonuma—Hecke algebra and a direct sum of Iwahori—Hecke algebras of type
A over any ring.
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Proposition 4.1 Let R be a commutative ring and 0 : Clu™', v] — R be a specialization.
Then the algebra RyYy ,, is Morita equivalent to @ueCompd(n) RoHM.

In addition, consider the Hecke algebra of the complex reflection group G(d, 1, n)
(also known as Ariki—Koike algebra). Let R be a commutative ring with unit and let
Q:=(Qo....,0Q4-1) € R?and x € R*. The Hecke algebra of G (d, 1, n) is the R-algebra
HE* with generators

Ty, Th, ..., Ty—1,
and relations :
LTinTi =TT =1,...,n=2),
LTy =T;T; (I —il > 1),
(T —x) (T +x"H=0G=1,....,n—1).
(To — Qo)(To — Q1) ... (To — Qa—1) =0

Remark 4.2 Note that if d = 1 and R = C[x, x '] then H,?’x is nothing but the Iwahori—
Hecke algebra of type A,_; with parameter x of Remark 2.1.

Now assume in addition that for all @ # b and —n < i < n the element x2 Q, — Q,, is an

invertible element of R. By [4,5], over R, HI™ is Morita equivalent to @ jueComp, (m) RoH".
We thus deduce the following result.

Corollary 4.3 Under the above hypothesis, assume that 0 : A — R is a specialization such
that 9(u2) =1landfB(v) =x — x~ ! then Ry Yy n is Morita equivalent to Hy; .

4.3 Symmetrizing form and Schur elements

We now study the symmetric structure of the Yokonuma—Hecke algebra. The algebra Y , is
symmetric and thus it has a symmetrizing form which controls part of its representation theory.
We will in particular recover results obtained in [3] concerning the symmetric structure of
Y4 n. In fact, the isomorphism theorem will also give an explanation and a new interpretation
of these results.

Preliminaries on symmetric algebras We recall that a symmetric algebra H over a com-
mutative ring R is an R-algebra equipped with a trace function

7T:H—> R

such that the bilinear form

Hx H — R
(hi, h2) = T(hihy)

is non-degenerate. We refer to [7, Ch.7] for a study of the properties of the symmetric algebras.
In particular, if K is a field containing R and such that K H is split semisimple, then for all
V e Irr(K H), there exists sy in the integral closure of R in K such that

T= Z (1/sv) xv,

yelr(H)
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where T isextended to K H and yy is the character associated to V. The elements sy are called
the Schur elements associated to T and they are known to control part of the representation
theory of H. We will use the following general result.

Lemma 4.4 (i) Let N € Z~q. The algebra Maty (H) is a symmetric algebra with sym-

metrizing form T™ := T oTrya ~» Where Tty is the usual trace function on Maty (H).
(ii) Let M be a simple K H-module and sy its Schur element associated to T. Then the Schur

element sy of the simple Maty (K H)-module MN associated to T is equal to sy.
Proof (i) The form ™ is clearly a trace function. All we have to do is to check that this
is non-degenerate. Let b1 € Maty (H) and assume that for all b, € Maty(H), we have
M (hy.by) = 0. Let h € H and consider the element b3 := h.Idy € Maty (H) where Idy
is the identity matrix in Maty (H). Then we have

™ (by.byb3) = T 0 Trmary (hb1.b2)
= 7 (h. TrMaty (b1.52))

As this element is zero for all # € H and as 7 is a symmetrizing trace, we have
TrMaty (b1.02) = 0 for all by € Maty (H). This implies that b1 = 0.

(ii) Let E s be a primitive idempotent of K H associated to the simple module M. Then,
by definition, we have T(E ;) = 1/sp. Now let E?‘,Iat € Maty (K H) be the matrix with E
in position (1, 1) and O everywhere else. Then E E"“ is a primitive idempotent of Maty (K H)
associated to the simple module M " . Thus, we calculate

1/siPt = T™E"Y) = 7 o Trmary (EN) = T©(Em) = 1/sum,
which is the desired result. O

Symmetric structure of Y, ,, The Iwahori—-Hecke algebra of type A is a symmetric algebra
with symmetrizing form =, : H, — Clu*!, v] given on the basis elements by

~ 1 ifw=1,
Tn(Tw) = ‘0 otherwise.
This, in turn, implies the existence of a symmetrizing form for all © = (1, ..., q) €
Comp, (n) on H* by restriction: T/ : H* — Clu®™!, v]. Seeing as usual H* as H,,, @ -+ ®
‘H,,» this linear form satisfies, for all (wy, ..., wg) € & x -+ X &,
T (T, ® @ Tupy) = Ty (Tw)) - . Ty (T (28)

For any n > 1 and X a partition of n, let M, be the simple module of the split semisimple
algebra C(u, v)’H,. We denote by s, := sy, the Schur element of M; associated to T. We
also set sy := 1.

Now let A = (A1, ..., A9) be a d-tuple of partitions such that u = (|A!], ..., |A¢|). Then
M, ®---® M, is asimple C(u, v)H"-module and, from (28), its Schur element associated
to T/, denoted by sy, is given by:

S = Spl...8d. 29)

Finally, from Lemma 4.4(i), we obtain a symmetrizing form on the algebra @@ jueComp, (n)
Maty,, (H") given by @ weCompy () o TrMatmﬂ . Moreover, from Lemma 4.4(ii), the asso-

ciated Schur element of the simple module indexed by a d-partition A = (A', ..., 1%) of n
is given by Formula (29).

Let us come back to the Yokonuma—Hecke algebra Y, ,. By the discussion in Sect. 4.1,
we know that the simple C(u, v)Yy ,-modules are labelled by the set of d-partitions of n.
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From the preceding discussion together with the isomorphism theorem (Theorem 3.1), we
obtain naturally a symmetrizing form on Y, , given explicitly by

0, = @ ™o TrMat,,,H oW,
pneCompy, (n)
and moreover, the associated Schur elements are given by Formula (29).

Alternative formula for p,, In [3], it is proved that the following formula defines a sym-
metrizing form p,, : Y4, — Clu*!, v] on Yan:

~ - d" ifaj=---=a,=landw =1
ay ap _ n )
Pul - 0y &) = [0 otherwise.

It turns out that the form p,, actually coincides with the natural symmetrizing form p,,.

Proposition 4.5 The form p,, coincides with the symmetrizing form p, on Yq ,.

Proof We study the values taken by the two traces on the basis given by
{E)(gw | x € Ir(Ay), w e &,}.

Soletus fix u© € Comp,(n), k € {1,...,m,}and w € &,,. We have, using Formula (13) for

EX;ﬁL’

,ﬁn(EX]ilgw) =0, H % Z X]il’(l‘i)s ti_s 8w
I<i<n = 0<s<d-1
1
= ;En H E gw
1<i<n
1 ifw=1,
[ 0  otherwise.

On the other hand we have

pn(EX]itgw) =M OTrMﬁtmﬂ O‘I’M(Exlitgw)
=1lo Trmat,,, (T”k__,le”./m My ;)
where j € {1,...,m,} satisfies w()(]‘.‘) = X/f- We have j = k if and only if rrkflltwrrk_ﬂ S
G*. We obtain : '

I i wme, =1 & w=1,

E ng,) =
Pu(Eyjr8w) (0 otherwise.

and this concludes the proof. O

Remark 4.6 The Schur elements associated to p were obtained in [3] by a direct calculation.
From Proposition 4.5 and the discussion before it, we recover the result, namely that the Schur
elements associated to p are given by Formula (29). Furthermore, we note that Proposition
4.5 implies immediately the centrality and the non-degeneracy of p (which was also proved
by direct calculations in [3]).
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S Classification of Markov traces on Yokonuma—-Hecke algebras

In this section, we use the isomorphism theorem to obtain a complete classification of Markov
traces on Yy ,. We use a definition of Markov traces analogous to the one in [7, section4.5]
for the Iwahori-Hecke algebras of type A. From now on, we extend the ground ring to
Clu*!, v*!] and keep the same notations (H,, H", Y4, ...) for the extended algebras.

5.1 Markov traces on Iwahori—-Hecke algebras of type A

A Markov trace on the family of algebras {#, },>1 is a family of linear functions , : H, —
Clu®!, v (n > 1) satisfying:

M1) 7, (xy) = 1, (yx), forn > 1land x,y € H,; (Trace condition)
M2) 141(xTy) = ‘C,H_l(xTn_l) =1,(x), forn>1landx € H,. (Markov condition)
(30)

It is a normalized Markov trace if it satisfies in addition
MO) 71(1) = 1. (Normalization condition) (31

In (M2) and in the following as well, we keep the same notation x for an element of H,, and
the corresponding element of H,,;,, n’ > 1, using the natural embedding of H,, in H,, .
It is a classical result that a normalized Markov trace on {H,},>1 exists and is unique
[7, section 4.5]. From now on, {7,},>1 will be this unique normalized Markov trace. For
later use, we also set 7y : Ho := Clu™!, vE!] = CluT!, v¥'] to be the identity map on
(C[uil , vil ]
As T, —u*T, ! = v forany n > 1, we have, using the Markov condition, that

T () = v ' 1 —u?)7,(x)  forany n > land any x € H,,, (32)
and by induction on n, using that 71 (1) = 1, we obtain
() =@ ' —u?))"" foranyn > 1. (33)

We will need later the following properties of the Markov trace {z,},>1. For the second
item, we recall that H* ~ H,, ® --- ® H,, and these two algebras are identified. Recall
also that this algebra is naturally embedded in #,, for any u = (i1, ..., uq) € Comp,(n).
See (5) for the definition of [u].

Lemma 5.1 (i) Foranyn > 1, we have:
Thr1(xTry) = rn+1(ka_ly) =1,(xy), foranyke{l,...,n}andx,y € Hi. (34)

(ii) For anyn > 1 and any u € Comp,(n), we have:

7, (X1® - -Qxg) = (U*l(1—1,;2))HMI_1'1,'M1 x1) ... Ty (xq), forany x1®---Qxy4 € HP.
(35)

Proof (i) Letn > 1,k € {1,...,n} and x, y € Hj. We proceed by induction on n — k. For
k = n, Equation (34) follows directly from Conditions (M1) and (M2). Assume k < n. Then

Ti+1 exists in H,41 and commutes with x and y. By centrality of 7,41, we have

Tl T Y) = T T T T ).
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TkﬂT—] = Tk_]Ti] T, and the induction hypothesis, we

Using the braid relation T, k1 s

k+1
conclude that

T T Y) = T T TN Ty) = 10T Ty) = Ta(xy).

(i) Letn > 1, u € Compy(n) and x = x; @ - - - ® x4 € H*. First assume that x = 1. We
have, using (33) and the convention 7o(1) = 1,

(Dt () = [T (7@ =) " = 71— udy)"

Ha>1

which yields, together with (33), Formula (35) for x = 1.

Let now x # 1. We proceed by induction on n (the case n = 1 being covered by the case
x = 1). Using that x # 1, we takea € {1, ...,d} tobe suchthatx,1 |1 =--- = x4 = 1 and
Xq = h1Tihy € Hy, withk € {1, ..., us — 1} and hy, hy € H (in particular, u, > 2). We
set v = pg) € Compy(n — 1) (thatis, v, = g — 1 and v, = uyp if b # a). We calculate,
using item (i),

Tn(x) = Tn(.Xl R Qxy—1 ®thkh2®1®1)
=T 1 (X1 Q- X1 @h1hh ®1---® 1);

using induction hypothesis, we then obtain

0,0) = (07 (1 = ®) M ) Lt e 1) T (1B T, (1) - Ty (1)

finally, we have [v] = [u], since u, > 2, and moreover, using item (i), 7,,(h1h2) =
Tuu—1(h1h2) = 1, (h1Tihy). So we conclude that Formula (35) is satisfied. O

5.2 Markov traces on Yokonuma-Hecke algebras

A Markov trace on the family of algebras {Yy ,},>1 is a family of linear functions p,
Yy, — Clu®!, v (n > 1) satisfying:

M1) pp(xy) = pn(yx), foranyn > landx,y € Yy ,; (Trace condition)

M2) ppi1(xgn) = (36)
,onH(xgn_l) = pp(x), foranyn > landx €Yy ,. (Markov condition)

Remark 5.2 For the Markov traces on the Iwahori—-Hecke algebras, there is no loss of gen-
erality in considering the normalized Markov trace. Indeed, it is straightforward to see that
if {t,},>1 is a Markov trace on {H,},>1 such that 7y (1) = 0, then all the linear functions 7,
are identically 0. So we can assume that 71 (1) # 0 and normalize it so that 71 (1) = 1.

This remark is no longer valid for the Yokonuma—Hecke algebras, for which a Markov
trace {p,}n>1 may satisfy p;(1) = O without being trivial (see the classification below).
Therefore, we will work in the general setting of non-normalized Markov traces.

Let n > 1 and let k¥ be any linear function from Y, , to Clu®T!, v satisfying the
trace condition «(xy) = «(yx), Vx,y € Yy ,. Recall the isomorphisms ®, and ¥, =
<I>;1 between Mat,,,, (H,.) and E,Y, , given by (21)-(22). For each 1 € Comp,(n), the
composed map « o @, is a linear map from Mat,, , (H,,) to Clu*!, v*!] also satisfying the
trace condition. As the usual trace of a matrix is the only trace function on a matrix algebra
(up to normalization), the map « o @, is of the form:

ko®, =«"o TrMmat,,,, »
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for some trace function k# : H* — C[u®!, v¥!]. In other words, we have

k()= D «"oTrya,, oWu(Eux), forx € Yun,
ueCompy(n)

(where we wrote x = >
associated to k.

jueCompy (n) Enx) and we refer to the maps «** as the trace functions

Classification of Markov traces on (Y ,,},~1 We are now ready to give the classification of
Markov traces on the Yokonuma—Hecke algebras {Y; ,},>1 which is the main result of this
section. We refer to Sect. 2, (5) and (6), for the definition of the base [] of a composition p
and of the set Compg.

Theorem 5.3 A family {p,},>1 of linear functions, p, : Y4, — Clu®!, v, is a Markov
trace on the family of algebras (Y n}n>1 if and only if there is a set of parameters {a 0, u’ e
Comp?,} C Clu™', v*"] such that

pn(x) = z oo TrMmat,, oWVu(Epx),  forn = 1landx € Yy, (37
pneCompy, (n)

where the associated trace functions p* : H"* — Clu™!, vt!] are given by
Pt =gt @ - ®1y,, foranyp € Compy(n). (38)

The remaining of this section is devoted to the proof of the Theorem.

Preliminary lemmas Let {0, },>1 be a family of linear functions p, : Y;, — Clu™!, vF!]
satisfying the trace condition (M1).

Lemma 5.4 The family {p,},>1 satisfies the Markov condition (M2) if and only if the asso-
ciated traces p* satisfy, for any u € Unzl Comp,(n) and any a € {1, ...,d} such that
Ha > 1,

P @ ®xaTy, @ ®x) = pM (1 @ ® Ty ® - @ xa)

=t ® - ®x, ® - Qxy), (39)
forany x1 ® --- Q@ xg € HM.

Proof Letn > 1 and x € Yy 5. In the proof, we will often use the notations and the results
explained in Sect. 3.4. First, note that it is enough to take x = E Xygw, an element of the
1

basis of Yy ,,, where u € Comp,(n), i € {1, ..., m,}and w € &,. For later use, we denote
by b the integer in {1, ..., d} such that x! (tn) = &.
Werecall that W, (x) =T -1, M, j, where j € {1, ..., m,} is uniquely determined by
i J

w(x}) = x{'. Thus, we have:

pn(x) = pto TrMath oW, (x)
o it w(x) # 1 (40)
T AT ifw =X
Now, in Yz ,+1, we have (due to defining formulas (9) for g,, and g,)
Xg&n = U Z E ulal gws,,v

l<a<d '@
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[a] [a] [a]
and we note that, for 1 < a < d, wehave ws, (x/. ) = x,. ifandonlyifs,(x; = X

[al la] lal lal
and w(xl” ) = X“ (because w € &,). It means that wsn(xi’: ) = Xl.‘: if and only if
a =band w(xl )= Xz . Thus we obtain:

[a]
puri(xgn) =u D p"" o Trmay, oW yal (xgn)
l<a<d g
0 . if w(x") # x!“:
= : By _ M
ol (Tnflws ”b) ifw(x; ) =x -

We write nizlwsnnib = nizlwn'ib . ”i,_,lsn”ib' Recall that 7r;, = m; - (1 + - + up +
1,....n,n+ 1)_1, see (27); moreover,

nmin+1)=n+1, and m(u+- -+ up) =n,

since m; € G, and 7; is the element of minimal length sending XfL on Xi“ . Therefore we
have
7, s, = (W14, i+ +up+1)  and

7wty (e 1) =

~ ~ 1= )
We conclude that Tﬂ wsym, = T”illw”i,, Tyt = Tﬂilw”ih Ty +-+p,» and in turn
0” 1fw(x,)7éx,, il
Pnt1(xgn) = pH (Tn_lwrr Ty tty) lfw(Xi#) — Xi ) 41)
Now we will calculate pn+1(xgn_1) using g,,‘l = u‘z(g,, — vey). First we note that
enX = D \<y<qnE ,a18w, Which gives e,x = E gy, since ¢, E, = 0 whenever
-~ Xig i
[5] i)
X (tn) # x(ty+1). In addition we have w(XI.’Z ) = le if and only if w(x ) = l.“.
Therefore, we obtain, using first the centrality of p,41,
Pn+1(xen) = ppy1(enx)
[5]
= p*" o Trymay, 01 O‘J’M[b](E 21 8w)
o if w(x,’f) # X
p* (T,,—lwﬂb) if w(x/) = x/".
Aswehave Ty =2 (Ty 4. gy, — v) in ", we conclude that
: © n.
pni1(xg; ) 0 Hwlo )2 (42)
1 = - : [N
n+1iEEn (Trflwrr TMH‘ +Mb) lfw(Xi )= X
To sum up, in (40)—(42), we obtained first that

Pn(X) = pur1(xgn) = pus1(xg, ) =0, ifw(x!) # x"

Furthermore, if w(x/") = x/, then we write T 1 =X Q- - ®xg € H* and we

;o wWT;

i

note that, due to (25) and (27), T n—l wn, is the image in H“[bJ of T ~1,,. under the natural
b 1
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inclusion H* € H*". So, if w(x/*) = x/", Formulas (40)~(42) read

@) =p"x1® - ®xp ®---®xyg) and
)
pry1(xgy) = p" (x) (X)---@thT,fEbl ® - ® xq).

We conclude the proof of the Lemma by noticing that, when i runs through {1, ..., m,},
every b such that up > 1 is obtained, and moreover every element of H* can be written as
T -1, forsome w € &, satisfying w(x/) = x/". u]

Lemma 5.5 The family {p,},>1 satisfies the Markov condition (M2) if and only if the asso-
ciated traces p* satisfy, for any p € Unzl Comp,(n) and any a € {1, ...,d} such that
Ha =1,

P ® @ T® ®x) = P @ R T ® - ® xa) (43)
=prX® QX ® - ®xy),

foranyk e {l,..., pus} and any x; @ - - - ® xq € H" such that x, € Hy C H,,.

Proof The “if” is a direct consequence of Lemma 5.4, using the assumption with k = (.

To prove the “only if”, we assume that the family {p,},>1 satisfies the Markov condition
(M2), and we proceed by induction on 11, — k (it is very similar to the proof of Lemma 5.1(i),
so we only sketch it). The case u, — k = 0 is Lemma 5.4. So let k < 4. Then Ty exists
in H,,+1 and commutes with x,. By centrality of p“[al , we have

la] [a] —
P @ ®xa T @ ®xg) = pM (1@ @ xa Tk T T @ - @ xa).

Using Tj41 TkjEl Tk:_ll = Tk_1 Tkﬁll Ty and the induction hypothesis, we obtain Formula (43).
O

Proof of Theorem 5.3 We are now ready to prove Theorem 5.3. Let {p,},>1 be a Markov
trace on {Yy »}»>1. As explained before Theorem 5.3, the existence of associated traces p*,
such that Formula (37) holds, follows from the trace condition for p,. We set o, := p*(1)
forany p € Comp?l.

Letn > 1, u € Compy(n) and x =x1 ® - - - ® x4 € H*. We will prove that

PH(x) = oy - T, (X1) - Ty (Xg). (44)

First assume that = [p¢] (which is always true if n = 1), so that every p, is 0 or 1. Then
we have x = 1 and Formula (44) follows from 7;(1) = to(1) = 1.

Assume now that 1 # [u]. We proceed by induction on n. First let x # 1, so that we
have a € {1,...,d} such that x, # 1 (in particular, i, > 2). We set x, = h|Tiho, where
kefl,...,us — 1}yand hy, hy € Hy C H,,. We denote v := g € Comp,(n — 1) (that
is, Vg = g — 1 and vy = pup if b # a), so that we have

Prx)=pt 1 Q@ QhiTihy ® -+ Q xq)
=p'x1Q - Qhthy® - ®xq)
:a[v]ful(xl)---T,u,afl(hth)n-fud(xd)
= o) Ty (X1) oo T, (M Tih2) - Ty (Xa),

where we first used (43) from Lemma 5.5, then the induction hypothesis and finally the
property of 7, stated in item (i) of Lemma 5.1 (we also noted that [v] = [u] since pu, > 2).
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Finally let x = 1. As u # [u], we can choose a € {1, ..., d} such that u, > 2. We recall
that, in 7, we have 1 = v (T — uszl). Setting again v := [, € Comp,(n — 1), we
calculate (below v~ (T} — ule_l) is inserted in the a-th factor of the tensor product):

PP =ptA® - 1@v (T =T H el @) =v (1 —uH)p"(),

where we used (43) in Lemma 5.5. Using the induction hypothesis, together with the fact
that [v] = [u] (since u, > 2), we obtain

(1) = a4 = uH T, (D1 (D) 7y (1) = o T, (1) -1, (1) 1, (1),

where we used that 7, (1) = v (1= uz)tﬂa,1 (1) (Formula (33)). This concludes the proof
of Formula (44).

For the converse part of the theorem, we only have to check that, given a set of parameters
{ay, p € Comp)} C Clu*!, v¥!], the family {p,},=1 of linear functions given by (37) and
(38) is a Markov trace. The trace condition is obviously satisfied as well as Equation (39).
The proof is concluded using Lemma 5.4. O

Remark 5.6 Inview of Lemma 5.1, item (ii), the associated traces of a Markov trace {0, },>1
described by Theorem 5.3 can be formally expressed as

o
P = Ll Ty, for any . € Comp,(n),

(U*I (1— uz))l[MJl—l

where 7, acts on H* by restriction from H, (note that Lemma 5.1, item (ii), asserts in
particular that the right hand side evaluated on x € H* indeed belongs to Clu®!, vE1)).

Basis of the space of Markov traces The classification of Markov traces on {Yg »}n>1
given by Theorem 5.3 can be formulated by saying that the space of Markov traces is a
Clu*!, v*!']-module (for pointwise addition and scalar multiplication), which is free and of
rank the cardinal of the set Compg. We have

ttCompg = Z (Z) =2¢_1.
l<k<d

Further, Theorem 5.3 provides a natural basis for this module. Indeed, for any /LO € Compg,
let {p,0 ,}n>1 be the family of linear functions given by Formulas (37)-(38), for the following
choice of parameters:

o0 =1 and a0 :=0, for w0 e Compg such that v° #~ ;1,0.

Then, {Puo,n}nzl is a Markov trace on {Y4 ,},>1 and it is given by

P, ()= D Ty ® ®Ty,) 0 Trvay,,, oWu(Eyx),  forn > landx € Yy,.
pneCompy (n)
tui=x0
(45)

It follows from the classification that the following set is a Clu*!, v¥!]-basis of the space of
Markov traces on {Yy }n>1:

{{pu0.u}n=1 | 1° € Comp} }. (46)
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6 Invariants for links and 7 /d7Z-framed links

Now that we have obtained a complete description of the Markov traces for Yy ,, we will
use them to deduce invariants for both framed and classical knots and links. In addition, we
compare these invariants with the one coming from the study of the Iwahori-Hecke algebra
of type A: the HOMFLYPT polynomial.

6.1 Classical braid group and HOMFLYPT polynomial

Let n € Zx,. The braid group B, (of type A,_1) is generated by elements oy, ..., 0,1,
with defining relations:
0i0j = 0;j0; foralli, j=1,...,n— 1lsuchthat|i — j| > 1, @7
0i0;+10; = 0j410;0i41 foralli=1,...,n—2.

With the presentation (1), the Iwahori-Hecke algebra H,, is a quotient of the group alge-
bra over C[uT!, vF!] of the braid group B,. We denote by 67, the associated surjective
morphism:

SHon ¢ (C[uil,vil][B,,]—)H,,, opt—>T;,, i=1,...,n—1.

The classical Alexander’s theorem asserts that any link can be obtained as the closure of
some braid. Next, the classical Markov’s theorem gives necessary and sufficient conditions
for two braids to have the same closure up to isotopy (see, e.g., [8]). The condition is that the
two braids are equivalent under the equivalence relation generated by the conjugation and
the so-called Markov move, namely, generated by

afp ~Ba (@,f€By, n>1) and o' ~a (@€B,, n=1). (48)

Note that, in the Markov move, we consider « alternatively as an element of B, or of B4
by the natural embedding B, C Bj1.

The conditions (M1) and (M2) in (30) for the Markov trace {7,},>1 on the algebras H,
reflect this equivalence relation and, as a consequence, we obtain an isotopy invariant for
links as follows. Let K be a link and Sx € B, a braid on n strands having K as its closure.
The map I'y from the set of links to the ring C[u*!, v*!] defined by

Pn(K) = T4 0 83,0 (BK),

only depends on the isotopy class of K (this is immediate, comparing (30) and (48)), and
thus provides an isotopy invariants for links.

Remark 6.1 The Laurent polynomial '3 (K) in u, v is called the HOMFLYPT polynomial.
It was first obtained by a slightly different approach, using the Ocneanu trace on H,, and
a rescaling procedure, see [8] and references therein. We followed the approach in [7, sec-
tion4.5], where the connections between both approaches are specified. We will carefully
detail this connection in the more general context of the Yokonuma—Hecke algebras below.

6.2 7Z/dZ-framed braid group and 7Z/dZ-framed links
Roughly speaking, a Z/dZ-framed braid is a usual braid with an element of Z/dZ (the

framing) attached to each strand. Similarly, a Z/dZ-framed link is a classical link where
each connected component carries a framing in Z/dZ. The notion of isotopy for framed
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links is generalized straightforwardly from the classical setting. We refer to [15, 16] for more
details on framed braids and framed links.

Letd € Z>;. The Z/dZ-framed braid group, denoted by Z/dZ? By, is (isomorphic to) the
semi-direct product of the abelian group (Z/dZ)" by the braid group B,, where the action
of B, on (Z/dZ)" is by permutation. In other words, the group Z/dZ: B, is generated by

elements o1, 02, ...,0,-1,1, ..., ty, and relations:
0i0j = 0;j0; foralli,j=1,...,n—1suchthat|i — j| > 1,
0;0;4+10; = 0410041 forall i = 1,...,n — 2,
tl‘tj:tjtl‘ foralli,j:l,...,n, (49)
Oitj = ty(j)0i foralli=1,...,n—land j=1,...,n,
=1 forall j=1,...,n.

The closure of a Z/dZ-framed braid is naturally a Z/dZ-framed link (the framing of a
connected component is the sum of the framings of the strands forming this component after
closure). Given a classical link, from the classical Alexander’s theorem, we have a classical
braid closing to this link, and it is immediate that by adding a suitable framing on this braid,
one can obtain any possible framing on the given link. So the analogue of Alexander’s theorem
is also true for Z/dZ-framed braids and links.

Moreover, the Markov’s theorem has also been generalized to the Z/dZ-framed setting
(see [16, Lemmal] or [15, Theorem 6]). The necessary and sufficient conditions for two
7./dZ-framed braids to have the same closure up to isotopy is formally the same as for usual
braids; namely, the two braids have to be equivalent under the equivalence relation generated
by

af ~ pa (&,f € Z/dZ:B,, n>1) and aot! ~& (@€ Z/dZ:By, n > 1). (50)

The conditions (M1) and (M2) in (36) for a Markov trace {p, },>1 on the Yokonuma—Hecke
algebras reflect this equivalence relation, and this will allow to use the Markov traces obtained
in the previous section to construct isotopy invariants for Z/dZ-framed links.

A family of morphisms from the group algebra of Z/dZ: B, to Y4, Let y be another
indeterminate and set R := C[u™', v*!, y*1]. We define:

(S;n : ai|—>()/+(1—y)ei)gi G=1,....,n=1), t;j—=1t; (j=1,...,n). (1

Lemma 6.2 The map 8; . extends to an algebras homomorphism from R[Z/dZ N Bn] to
RY4n.

Proof We have to check that the defining relations (49) are satisfied by the images of the
generators, and also that the images of the generators are invertible elements of RYy . For
the latter statement, it is easily checked that

-1
(b+a=-pe)a) = +a-yHa)g". i=l..n-1 2

The three last relations in (49) are satisfied since the elements e;’s and ¢;’s commute. Then,
if i — j| > 1, a direct calculation shows that the image of the first relation in (49) is

r+A=pe)y+UA—=yej)gigi=w+A—pe)y+1—yei)gg.

since giej; = e;jg; and gje; = e;g; whenever |i — j| > 1. This relation is satisfied in RY .
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Finally, using again the commutation relations between the generators g;’s and ¢;, we
calculate the image of the first relation in (49), and obtain

(r+ 1 =pei)(y + A —peiiv2) (v + (1 — y)eir1)(8igi+18 — gi+18igi+1) =0,

1 . L . .
where €; 12 1= 7 Zo<s<d . I t1+2 This relation is also satisfied in RYy ;. ]
Remark 6.3 If we specialize the parameter y to 1, we obtain the natural surjective morphism
from the group algebra over C[uT!, v*!] of the group Z/dZ: B, to its quotient Y, , with
the presentation (7) of Sect. 2. For other values of y, this morphism is related with other
equivalent presentations of Yy ,; see below Sect. 6.5.

6.3 Invariants for classical and Z/dZ-framed links from Yy ,

Invariants for Z/dZ-framed links from Y, , Let {p,},>1 be a Markov trace on the
Yokonuma-Hecke algebras {Y; ,},>1 (defined by Conditions (M1) and (M2) in (36)), and
extend it R-linearly to {RYy n}n>1.

Let K be a 7, /dZ-framed link and B % € Z/dZ: By a Z/dZ-framed braid on n strands
having K as its closure. We define a map FF; , from the set of Z/dZ-framed links to the
ring R by ; ~

FTy (K) = pn 08y, (Bg), (53)

where the map 8 , 18 defined in (51). For ul e Comp ;> We denote by Fl“y Y.t the map cor-
responding to the Markov trace {0,0 ,}n>1 considered in (45). The classification of Markov
traces of the previous section, together with the construction detailed in this section, lead to
the following result.

Theorem 6.4 1. For any Markov trace { p }n>1 on{Y4 n}n>1, the map Fl";p is an isotopy
invariant for Z.)dZ-framed links with values in R = Clu™', v*!, y*1].
2. The set of invariants for 7./ dZ-framed links obtained from the Yokonuma—Hecke alge-
bras via this construction consists of all R-linear combinations of invariants from the
set

{Fr;M0 | 1% € Comp)) } (54)

Proof 1. By the Markov’s theorem for Z/dZ-framed links, we have to check that the map
givenby {p, 06; 2 n>1 fromthe setof Z/dZ-framed braids to the ring R coincide on equivalent
braids, for the equivalence relation generated by the moves in (50).

From the trace condition (M1) in (36) for {p, },>1 and the fact that the maps S;n n>1)

are algebra morphisms (Lemma 6.2), it follows at once that the map p, o 8;}1 n=>1

coincides on @B and Ba for any two braids @, € Z/dZ B,.
Next, letn > 1 and @ € Z/dZ: B,. We set x5 := S;n(&) € Y4 . Note that, seeing xg as

an element of Y ,4+1, we also have x5 := 8;n+] (), by definition of {8,’2,,};131. From (51)
and (52), we have

Pn+1 © (Syn+1(ad ) = Pn+1 (xa( Ly (1- j:l)e’n) il)’

and we need to prove that it is equal to p, o S;ﬂ(&) = pp(xg). This will follow from the
Markov condition (M2) in (36) for {p, },>1 together with the following fact:

,o,,+1(xeng,jf1) = ,0,,+1(xg,jf1), foranyn > landx € Yy . (55)
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This last relation is true for any linear map « on Yy 41 satisfying the trace condition since,
fors € {1,...,d},

+1 K —s _+1 +1
K(th+1 ;; 8n ) - K(th+1gn n+1) = K(tr:+1x’/‘n+1gn ) = K(Xgn )’

where we used successively the relation #, g,jfl = g,ﬂfltnﬂ, the trace condition and the fact

that 7,11 commutes with x € Yy .
2. This is simply a reformulation of the classification of Markov traces {p,},>1 on
{Yd.n}n=1 given by Theorem 5.3 leading to the basis { {p,0 ,}a=1 | 1° € Comp) } in (46).
O

Invariants for classical links from Y4 ,, The classical braid group B,, is naturally a subgroup
of the Z/dZ-framed braid group Z/dZ: B, (a classical braid is seen as a Z/dZ-framed braid
with all framings equal to 0). Therefore, one can restrict the maps FFV Y.p in (53) to classical
links, and obtain invariants for classical links since the Markov’s theorem is formally the
same for classical and Z/dZ-framed links; compare (48) and (50).

Explicitly, let K be a link and Bx € B, a braid on n strands having K as its closure. We
now see B as an element of the Z/dZ-framed braid group Z/dZ : B, and we set

Iy (K) = pu 08, (Bx)- (56)

For 0 e Compg, we denote by Fg 10 the map corresponding to the Markov trace {0,,0 ,, }n>1

considered in (45). According to the above discussion, the following corollary is immediately
deduced from Theorem 6.4

Corollary 6.5 1. For any Markov trace {pn}n>1 0n {Yg n}n>1, the map F;p is an isotopy
invariant for classical links with values in R = Clu*!, v*!, yil].
2. The set of invariants for classical links obtained from the Yokonuma—Hecke algebras

via this construction consists of all R-linear combinations of invariants from the set
Y 0 0
{17 01 1 e Comp} |. 57)

Note that, in the definition of the invariant 1"; p(K ) in (56), even though the word Sg only
contains generators o; (and no ¢;), the image (S;H(ﬂ k) in the algebra Y, , does involve in
general the generators #; (more precisely, it involves the elements ¢;). Indeed, first, the image
of o; by the map 51};,;1 contains the idempotent ¢;. Besides, even if y is specialized to 1, as
soon as one O’iz for example appears in Bk, then the last relation of (7) is used to calculate
Pn © 6%,, 2 (B ), and this last relation involves the idempotent ;.

Example 6.6 Let d = 2. We will explicitly give F;MO (K) for 10 € Compg and some
classical links K. Using the notations of [19], let K; = L10a46 and K> = L10al10. For
each of these two links, one can find in [19] a braid on 4 strands closing to the link. Namely,
the braid ) = 01202_ 103_102_ 101302_ 103_102_ 101 admits K as its closure, while the braid
B1 = al_l 62301_1 03_] 023’03_] admits K> as its closure. Thus we can use the calculations made
in Example 3.6.

e We first consider 1 = (1, 0) or u® = (0, 1). Then we have, by definition, FV oK) =

140V, 08, 4(ﬂ,) (i = 1,2),where w is the composition (4, 0) or (0, 4), and 74 comes from
the unique Markov trace { T, }n>1 on the Iwahori-Hecke algebras. It is straightforward to
see that in this situation, from the formulas in Example 3.6, we have 14 4( Bi) =Su.4(Bi),
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and in turn that we have F;MO(K i) = 'y (K;) (the HOMFLYPT polynomial). This is a
general property of the invariants F; 10 when |1°| = 1; see Proposition 6.12 below.

e Then we consider u° = (1, 1). By definition, we have (i = 1, 2)

I 0 (K = ((®m)oTroWe 1) +@ 8w)oTroWn 3 +(8m)0o TroW e, ) o8], 4 (),
(58)

where Tr is the usual trace of a matrix. So we need first to calculate W, o 8; 4(Bi) for
w=@3,1),,3),(2,2). Take for example i = 1 and u = (3, 1). According to Example
3.6, the generators g1, g2 and g3 map under W3 1) o 6; 4 Tespectively to

uy - - Tl . . . T2
uy - . . ’ . Suy - and T2
. Tl . . u]/ . . . . . uy

Tl . . . T2 --ouy

Performing the matrix multiplication corresponding to the braid B; given above, we obtain
W1y 08y 4(B)

: wy)? T2, 17 1!

27, T3y
= (uy)*
. : uy T, ' 215!
w7 :

This gives a contribution (i.e. a term in the sum (58)) to I‘; #O(K 1) equal to WTS
’ uy

(T12 T2_1T13 T,Ty). It is easy to see that the composition (1, 3) gives the same contribution
to F; HO(K 1). A similar calculation shows that the composition (2, 2) gives a contribution
equal’to 0 (this can also be deduced without calculation from the fact that the underlying
permutation of B is (1, 2, 4) and this cycle structure makes impossible for W, ) o 8;’ 4+(B1)
to have a non-zero diagonal term).

A similar procedure for B, shows that the compositions (3, 1) and (1, 3) give both a
contribution to F; 10 (K>) equal to 0, while the composition (2, 2) gives a contribution equal
to ﬁrz(Tf)z.

Quite remarkably, even though the two calculations involve different compositions and
different elements of Iwahori—Hecke algebras, these two calculations lead finally to

(2u2 —ut+ v2)2.

Y _r —
[y oKD =Ty o(K2) = )
From [19], we note that these two links K1, K3 are topologically different and are however not
distinguished by the HOMFLYPT polynomial. We just checked that they are not distinguished
neither by the invariants I‘; 0 (when d = 2) coming from the Yokonuma—Hecke algebras.

In fact, we will prove below in Proposition 6.13 that (for any d), the set of invariants {Fg 10 }
is topologically equivalent to the HOMFLYPT polynomial when restricted to classical knots.
We note that the question remains open for classical links which are not knots. However,
computational data seem to indicate that the invariants are topologically equivalent as well
for all classical links (we checked this by direct calculations, as in the example here, for
d = 2 and links up to 10 crossings; see also [2]).
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6.4 Comparison of invariants for classical links

As already explained, when calculating the invariant for a classical link using the Yokonuma—
Hecke algebras, the additional generators ¢; play a non-trivial role, and therefore these
invariants are a priori different from the HOMFLYPT polynomial. In this part, we will
compare the set of invariants for classical links obtained from the Yokonuma—Hecke algebras
with the HOMFLYPT polynomial. The main question is whether or not they are topologically
equivalent.

According to Corollary 6.5, we can express any invariant for classical links obtained from
the algebras Y, ,, via the above construction as a linear combination of the invariants denoted
I’ ., where u° e Compg. The main question is whether we have, for any two classical

Y, 9’
links K1, K>,

?
(VMO € Comp}, F;MO(KI) = F;Mo(Kz)) — TI'n(K) =Tn(K).

In this part, we will show first that the set {1";H0 | ul e Compg} contains '3, so that
only one half of the equivalence is not trivial. Secondly, we will show that this equivalence is
true whenever we restrict our attention to classical knots. We refer to [1,2] for similar results
about Juyumaya—Lambropoulou invariants. Note that these invariants are shown in Sect. 6.5
below to be certain linear combinations of the set { F; 0 | 1u e Compg} for some specific
value of y.

The HOMFLYPT polynomial from Y, , Among the basic invariants F; 00 We consider in
this paragraph the ones for which %] = 1.

Proposition 6.7 Let 1° € Comp, (1). We have, for any classical link K,
Iy 0 (K) = Ty(K).

In particular, the set of invariants for classical links obtained from Y, , contains the HOM-
FLYPT polynomial.

Proof Let u° € Comp, (1) (so that w® automatically belongs to Compg). So there exists
a € {l1,...,d} such that uo =(0,...,0,1,0,...,0) with 1 in a-th position. Note that a
composition p with d parts satisfies [u] = u¥ if and onlyif u = (0,...,0,n,0,...,0) with
n in a-th position for some n > 1.

Soletn > 1and u = (0,...,0,n,0,...,0) with n in a-th position. In this situation, we
have H* = H,, and m, = 1. According to Formula (45), the linear function Pud.n is then
given by

P05 (X) = Ty 0 Wy (Ex), forany x € Y4 5. (59)

The defining formula (22) for the isomorphism W, becomes simply W, (E, gw) = Ty, for
w € &,, and in particular, we have

v, (E.g) =T, foranyi =1,...,n—1. (60)

Note that E,e; = Ey, forany i = 1,...,n — 1, since, for the considered u, we have
E,t; = E,t; 11 (both are equals to &, E,,). Therefore

Eu8y,(00) = Eu(y + (1 —y)ei)gi = Eugi,  foranyi=1,....,n—1. 61)
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To conclude, let 8 € B, be a classical braid. Equations (60)-(61), together with the fact that
W, is a morphism, yields

U (Eud)  (B)) = 8rn ().

which gives in turn, using (59), that Puo.n © 8;,1 (B) = 1, 081.,(B). This is the desired result.
O

Equivalence of invariants for classical knots Let 8 € B,,, for some n > 1, be a classical
braid. From the presentation (47) of B, there is a surjective morphism from B, to the
symmetric group &, given by o; — s; = (i,i + 1) fori = 1,...,n — 1. We will denote
B € &, the image of B and refer to it as the underlying permutation of S.

Now, the necessary and sufficient condition for the closure of 8 to be a knot (that is, a
link with only one connected component) is that the underlying permutation 8 leaves no
non-trivial subset of {1, ..., n} invariant. In other words, the closure of 8 is a knot if and
only if B is a cycle of length .

Proposition 6.8 For any classical knot K and any 11° € Compg,

Tr(K) ifInl =1,

14 _
FY,MO (K) = [ 0 otherwise.

In particular, for classical knots, the invariants obtained from Y, ,, are topologically equiv-
alent to the HOMFLYPT polynomial.

Proof Let K be a classical knot and § € B, for some n > 1, a classical braid closing to K.
To save space during the proof, we set xg := 8;}1 B) € Yan.

Let ¥ € Compg with |°] > 1. According to Proposition 6.7, we only have to prove that
F;MO (K) = 0 which is equivalent to p,0 ,(xg) = 0. We will actually prove the following
stronger statement:

TrMat,,,, ©Wp (Exﬁ‘xﬁ) =0, forany u € Comp,(n) such that [p] = 1,
andany k € {1, ..., m,}.

The required assertion will then follow from (45) and the fact that E, xg = >, <k<m, E X8

We first note that, in the framed braid group Z/dZ : By, we have Bt; = 13/ B, for
J =1,...,n, due to the fourth relation in (49). Therefore, in Yy ,, we have xgt; = 15(j)XB>
forj=1,...,n,andinturn xg E, = EB(X)X/’ for any character x of (Z/d7Z)".

Then let © € Compy (n) such that [u] = wlandk e (L, ..., my}. Werecall thatw € 6,
satisfies 7w ( If ) = X/f if and only if 7 belongs to a subgroup of &,, conjugated to G* (namely,
to mk,, &H ;. ;14 with the notations of Sect. 2). By the assumption on p, we have at least two
integersa, b € {1, ..., d}suchthat u,, i, > 1,and thus the subgroup & = &, x---x&,,
contains no cycle of length n. This means in particular that 3~ (X,ii) #~ X,f since 8 is a cycle
of length n as K is a knot.

Finally, we write Exfxﬂ = E)chxﬁ = EX,’fxﬁEB*

) and we conclude the proof with

the following calculation

TrMath O\IJM(EX;Ax,gEBq(XIiA)) = TrMath O\P“(EB’I(XZL)EX;/:X’S) =0,

where we used that E, E,» = 0if x # x'. |
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Remark 6.9 Note thatin general, for an arbitrary Markov trace { o, },>1, the invariant F; »(K)
isanelementofthering R = Clu®!, v*t!, y*!]. Foraclassical knot K , Proposition 6.8 asserts
in particular that every invariant F; u0 (K) (u° € Compg) belongs actually to the subring

(C[uil, vE!. Further, for a classical link K, Proposition 6.7 asserts in particular that, when
/,LO € Comp,(1), the invariant F; 0 (K) belongs as well to the subring Clu®!, v*!]. So for
classical links, the parameter y in fact starts to play a non-trivial role when K is not a knot
and |0 > 1 (see Example 6.6).

6.5 Connections with the approach of Juyumaya-Lambropoulou

Analogue of the Ocneanu trace and invariants Let ¢ be an indeterminate. In [2,10,12—
15], the Yokonuma—Hecke algebra is presented as a certain quotient of the group algebra
over Clg, ¢~ '] of the Z/dZ-framed braid group Z/dZ : B,. Namely, there are generators
G1,Ga,...,Gy_1and 1y, ..., t,, satisfying the same relations as in (7) (with g; replaced by
G ) except the last one, which is replaced by

Gl=1+(—Dei+(q—1eGi, i=1,....,n—1.

To avoid confusion, we will denote this algebra by 174,", and we will give an explicit isomor-
phism between )7d,,, and Yy , later.

Let z be another indeterminate. For convenience, we set k := C(,/q, z). Letcy, ..., cq—1
be arbitrary elements of k and set co := 1. In [10], it is proved that there is a unique k-linear
function tr on the chain, in n, of algebras k?d,,, with values in k satisfying:

(CO) tr(1) =1, B
(C1) tr(xy) = tr(yx), foranyn > 1 and x, y € Yan:
(C2) r(xG,) = ztr(x), foranyn > landx € Yy,.

(C3) tr(xtfl’ﬂ) =cptr(x), foranyn >0, x € )7d,n andb €{0,...,d — 1}.

(62)

Note that here, ?d,n is identified with a subalgebra of )7d,,1+1 forany n > 1.

In [15], itis explained how to obtain isotopy invariants for classical and framed links from
the linear function tr (see also [2,14] for classical and framed links and [13] for singular
links). This is done as follows.

First we take the parameters {co, ci, ..., cq—1} to be solutions of the so-called E-system
[14, Appendix]. To do so, we fix a non-empty subset S C {1, ..., d}, and we set

1 b
= &, forb=0,1,....d—1, (63)
1] aes
where we recall that {§y, ..., &;} is the set of d-th roots of unity. We denote trg the unique
linear function satisfying (62) for the values (63) of the parameters ¢y, ci, ..., cq—1, and we
set:
1 1—¢g)E 1
Egm b g iHUZDE 0 by , (64)
S| qz VAsz

where the field & is extended by an element /As. We denote by kg this new field.
We let FS;Sz be the surjective morphism from kg [Z JdZ? B,,] to kg ?d, n, defined by

3O i VAsGr (i=1,...,n—1), it (j=1,...,n). (65

The fact that ’(Svy')l defines indeed an algebra morphism follows from the homogeneity of the
relations (49) in the braid generators o;.
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Finally, let K be a Z/dZ-framed link and ,é[g € Z/dZ B, a 7Z/dZ-framed braid on n

strands having K as its closure. Then we define the map FAy g from the set of Z/dZ-framed
links to the field ks by
FAys(K) = Dt~ - trs 08y (Bg). (66)

Theorem 6.10 (Juyumaya—Lambropoulou [15]) Forany S C {1, ..., d}, the map FAy g is
an isotopy invariant for 7./dZ-framed links.

Remark 6.11 As in the previous section, the invariants FAy ¢ can be restricted to give invari-
ants for classical links [14]. We denote Ay, g the corresponding invariants for classical links.

Comparison with invariants FT'y, Y Wekeep S a fixed non-empty subset of {1, ..., d}, and
cp, C1, - .., Cq—1 the associated solutlon (63) of the E- system In order to relate the invariant
FAys (respectlvely, Ay ) to the invariants of the form FF Y.p (respectively, I' Y, p) obtained
in Sect. 6.3, we denote

s : ks¥an — ks, psa(x) = D§ " - trs(x),

and define new generators by

g =vVis(Vg+ 1 = ye)Gi, i=1,....n—1 (67)

Straightforward calculations show first that this change of generators is invertible since

G :Jﬂ_l(ﬁ*1+(1—\/q‘*‘)ei)gi, i=1,...,n—1, (68)

and moreover, that these new generators g, ..., g,—1 satisfy all the defining relation in (7)

of Y4, where
=./qArs and v:= (g — 1)y/As, (69)

Thus, Formulas (67) and (68) provide mutually inverse isomorphisms between kg 17[1,,, and
ksY4.n,and in turn, the linear maps ps_, (n > 1) can be seen, via this isomorphism, as linear
maps on ksYy ,. We note the following formula, which is derived directly from (69) and (64):
D
-1 2 S
v (1 —u’)=—. (70)
S|
Proposition 6.12 (i) The family of linear maps {ps ,}n>1 satisfies Conditions (M1) and
(M2) in (36), and is thus a Markov trace on {ksY4 n}n>1.
(i) Moreover, we have

—1
FAys=Fry?l . 1)

Proof (i) The trace condition (M1) is obviously satisfied by the linear maps ps ,. From
Theorem 6.10, it follows that the family of linear maps {ps ,},>1 satisfies

~ Ps.n(X) ~ _ ~

Bsnt1(xGy) = 22 and Bs i1 (xGy ') = Vi Bs.a(x), foranyn > landx € Yy, .
VAs

It follows from Formula (67) and a short calculation that g_1 = J/As - (f_l + (1 -

Ja )el) -l . According to this and to Formula (67), the Markov condition (M2) will be
satisfied if
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Psni1(xenGyl) = psns1(xGi"),  foranyn > landx € Yy,

The end of the proof of Theorem 6.4 item 1, from Relation (55), can be repeated here.

(i1) This is immediate in view of (66) and (68), taking into account the definition (65) of
<(S)
Sy - O

At this point, we proved that the invariants FAy g (and thus Ay g as well) are included
in the sets of invariants constructed in this paper. For a given S, to identify precisely to
which invariant FAy, g corresponds, in view of (71), it remains to determine the Markov
trace {0s.»}n>1 in terms of the classification given in Theorem 5.3.

PNroposition 6.13 Using notations as in Theorem 5.3, the Markov trace {psn}n>1 on
(kY4 n}n=1 is given by the following choice of parameters:
0 if u > 0 for some a ¢ S,

- , (72)
otherwise.

Proof Let {« 10> ,uo € Compg} be the set of parameters, which is to be determined, corre-
sponding to {ps ,}n>1. We recall that, from the classification result, the associated traces ﬁg
are of the form
55 =Ty @ ®Ty,, forany u € Comp,(n).
For a € {1,...,d}, we denote by «, (respectively, x,) the parameter (respectively, the
character) corresponding to the composition (0, ...,0, 1,0, ..., 0) with 1 in a-th position.
First, Condition (C3) in (62) for n = 0 gives
Psa () = cp, b=0,...,d—1.
On the other hand, we write z]b =2 1<a<d Exa g2, and we obtain

Psa) = > &hag=c,,  b=0,....d-1

1<a=<d
Inverting the Vandermonde matrix of size d with coefficients 5;_1 in row i and column j,
this yields:

1 _

%= > &, a=1,....d. (73)
0<b<d—1
Taking into account now the values of ¢, in (63) corresponding to S, we obtain Formula (72)
when |0 = 1.
Let n > 0. Condition (C3) in (62) now gives
Psar1(xtl ) = Dscppsn(x),  x €Ygn, b=0,....d—1.

Let u € Comp,(n) and let x f'“ be the character of (Z/dZ)" defined in (19). We then have,
by construction,

Ps.n(E ) = pg (1),

while, on the other hand, writing Exf‘[;]:ﬂ = Zlgagd SabEX/L[aJ , we have
1
= b bl
Psari(Eguty )= D &5 (D, b=0....d-1
l<a<d
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We conclude that, for any u € Comp,(n) andb =0, ...,d — 1, we have

> Eouan Ty (D) T 11 (1) 7y (1) = Dy cp gy - Ty (1) 7, (1) 10, (1),

1<a<d

Inverting the same matrix as above, and using the already obtained formula (73), we conclude
that

oy lal] - Ty (Dot (D Ty, (1)
= Dgagoqu) - T (1) oot (1) ooy, (1), a=1,...,d.

Now when p, = 0, this yields opylal) = Dgagoq,, which is what is needed to conclude the
proof. O

Remark 6.14 Following Remark 5.6 after the proof of Theorem 5.3, we notice that the
associated traces corresponding to {05 ,},>1 are given, for u € Comp,(n), by

0 if ug > 0 forsomea ¢ S,

A=
S 50 -1,  otherwise.

where 7, acts on H* by restriction from H,. This follows directly from Proposition 6.13 and
(70).

Remark 6.15 Proposition 6.13 gives the explicit decomposition of the Markov trace
{ps.n}n>1 in the basis {{Pﬂo,n}nzl | u0e Comp2 } and in turn, together with Proposi-
tion 6.12, relates explicitly the invariant FAy s with the invariants obtained in this paper.
Concretely, we have:

—1

q

FAys= D a FTY! .

Y,S w Y’,U'O
n0eComp)

where the coefficients 0 are given by (72), and the variables u and v are expressed in terms

of variables ¢ and A g according to (69).
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