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Abstract We develop several applications of the fact that the Yokonuma–Hecke algebra
of the general linear group GL is isomorphic to a direct sum of matrix algebras associated
to Iwahori–Hecke algebras of type A . This includes a description of the semisimple and
modular representation theory of the Yokonuma–Hecke algebras of GL and a complete clas-
sification of all the Markov traces for them. Finally, from these Markov traces, we construct
3-variables polynomials which are invariants for framed and classical knots and links, and
investigate their properties with the help of the isomorphism. In particular, for classical knots,
a consequence of the construction is that the obtained set of invariants is topologically equiv-
alent to the HOMFLYPT polynomial. We thus recover results of Chlouveraki et al. (2015,
arXiv:1505.06666) about the Juyumaya–Lambropoulou invariants.

1 Introduction

1.1.TheYokonuma–Hecke algebras have been introduced byYokonuma in [22] as centraliser
algebras of the permutation representation of Chevalley groups G with respect to a maximal
unipotent subgroup of G. They are thus particular cases of unipotent Hecke algebras and
they admit a natural basis indexed by double cosets (see [21] for more details on general
unipotent Hecke algebras). For the Yokonuma–Hecke algebras, the natural description has
been transformed into a simple presentation with generators and relations [9,11]. Assume
that q is a power of a prime number then, from this presentation, one can observe that
the Yokonuma–Hecke algebra of G = GLn(Fq) (sometimes called the Yokonuma–Hecke
algebra of type A) is a deformation of the group algebra of the complex reflection group of
type G(d, 1, n), where d = q − 1.
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In this paper, we will consider the generic Yokonuma–Hecke algebras Yd,n (n ∈ Z≥0)
depending on two indeterminates u and v and a positive integer d , over the ring C[u±1, v].
The algebra Yd,n is also a deformation of the group algebra of the complex reflection group
of type G(d, 1, n), for any d , and the Yokonuma–Hecke algebra of GLn(Fq) is obtained by
considering the specialization u2 = q , v = q − 1 and the case d = q − 1.

There exist others well-known deformations of complex reflection groups of type
G(d, 1, n) which have been intensively studied during the last past years : the Ariki–Koike
algebras. These algebras turn out to have a deep representation theory (in both semisimple
andmodular cases) which is now quite well-understood (see for example [6] for an overview).

For the Yokonuma–Hecke algebra Yd,n , the set of simple modules has been explicitly
described in the semisimple situation in combinatorial terms in [3] (see also [20] for general
results on the semisimple representation theory of unipotent Hecke algebras). In addition,
a criterion of semi simplicity has been deduced. Finally, a certain symmetrizing form has
been defined and the associated Schur elements (which control a part of the representation
theory of the algebra) have been calculated. They appear to have a particular simple form,
namely products of Schur elements of Iwahori–Hecke algebras of type A. Thus, the study of
the representation theory and the symmetric structure suggests a deep connection between
the Yokonuma–Hecke algebra Yd,n and the Iwahori–Hecke algebra of type A.

In another way, a motivation for studying the Yokonuma–Hecke algebra comes from
topology and more precisely the theory of knot and link invariants. Indeed, the algebra Yd,n

is naturally a quotient of the framed braid group algebra, and in turn can be used to search for
isotopy invariants for framed links in the same spirit as the Iwahori–Hecke algebra of type
A is used to obtain an invariant for classical links (the HOMFLYPT polynomial).

In [10], Juyumaya introduced on Yd,n an analogue of the Ocneanu trace of the Iwahori–
Hecke algebra of type A. This tracewas subsequently usedby Juyumaya andLambropoulou to
produce isotopy invariants for framed links [12,15]. Remarkably, they also produced isotopy
invariants for classical links and singular links [13,14]. Even though the obtained invariants
for classical links are different from the HOMFLYPT polynomial (excepted in some trivial
cases), all the computed examples seem to indicate that the invariants for classical links
obtained from Yd,n so far are topologically equivalent to the HOMFLYPT polynomial [2].
In fact, if we restrict to classical knots, such an equivalence has been announced in [1].

Again, it seems reasonable to expect an underlying connection between the algebra Yd,n

and the Iwahori–Hecke algebra of type A which could explain this fact.

1.2. In this paper,wegive several answers andnew results in both directions: the representation
theory and the knots and links theory. After recalling several results and detailing the structure
of the algebras (in Sect. 2), in the third section, we indeed show that, over the ring C[u±1, v],
there is an isomorphism between the Yokonuma–Hecke algebra Yd,n and a direct sum of
matrix algebras over tensor products of Iwahori–Hecke algebras of type A. This result is in
fact a special case of a result by Lusztig [18]1 but we give

The direct sum is naturally indexed by the set of compositions of n with d parts. Moreover,
we provide explicit formulas for this isomorphism (and its inverse) which will allow us to
concretely translate questions and problems from one side to the other.

Then, we first develop in Sect. 4 the applications of the isomorphism theorem concern-
ing representation theory. Indeed, the isomorphism can be rephrased by saying that the
Yokonuma–Hecke algebra Yd,n is Morita equivalent to a direct sum of tensor products of
Iwahori–Hecke algebras of type A. As the result is valid in the generic situation (over the

1 We thank G. Lusztig for pointing us this fact.
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ring C[u±1, v]), it passes to the specializations of the parameters u and v. This implies that
both the semisimple and the modular representation theories of Yd,n can be deduced from
the corresponding ones of the Iwahori–Hecke algebra of type A, which are well-studied (see
e.g. [7]). In particular, the classification of simple modules of Yd,n and the decomposition
matrices (in characteristic 0) follow.

In addition, the isomorphism theorem provides a natural symmetrizing form on Yd,n

derived from the canonical symmetrizing form of the Iwahori–Hecke algebra of type A. As
a first application of the explicit formulas, we show that this symmetrizing form actually
coincides with the symmetrizing form defined in [3], which provides a direct proof and an
explanation of the form of the Schur elements. We thus in particular recover the results of
[3].

1.3.Another class of applications of the isomorphism theoremconcerns the theory of classical
and framed knots and links (Sects. 5 and 6). Indeed, we obtain a complete classification of
the Markov traces on the family, on n, of the Yokonuma–Hecke algebras Yd,n (Theorem
5.3). This is done in two steps. First we translate, with the help of the isomorphism theorem,
the Markov trace properties into properties of traces on tensor products of Iwahori–Hecke
algebras of type A; then we fully characterize these traces using the known uniqueness of
the Markov trace on the Iwahori–Hecke algebras of type A. In particular, we show that all
the Markov traces on Yd,n are related with the unique Markov trace on the Iwahori–Hecke
algebras of type A.

We note that we use a different definition of a Markov trace on Yd,n than in [10,12–15]. In
there, the standard approach initiated by Jones for classical links was followed (see [8] and
references therein). The first step is the construction on Yd,n of an analogue of the Ocneanu
trace by Juyumaya [10]. Additional conditions were imposed in [10] in order to obtain the
existence and unicity of this trace. Then, a rescaling procedure is necessary to construct
invariants and, as it turned out, the trace does not rescale directly as in the classical case. A
non-trivial rescaling procedurewas implemented by Juyumaya andLambropoulou in [13–15]
by means of the so-called “E-system” and led to further restrictions on the parameters.

In the definition we use here for the Markov trace on Yd,n , the imposed conditions are
the minimal ones allowing to obtain link invariants, namely, the centrality and the so-called
Markov condition (see Sect. 5.2). This will allow us to avoid any kind of rescaling procedure
during the construction of invariants. This approach is explained in [7, section4.5] in the
classical setting of the Iwahori–Hecke algebras of type A.

With the definition used here, the space of Markov traces has a structure of C[u±1, v±1]-
module. Our approach via the isomorphism theorem provides a distinguished basis, which is
indexed by the set of compositions into d parts with all parts equal to 0 or 1. Thus the space
of Markov traces on the Yokonuma–Hecke algebras has dimension 2d − 1.

1.4. Finally, the last section is devoted to the construction and the study of invariants for
classical links and framed links. Following Juyumaya and Lambropoulou, we realize Yd,n as
a quotient of the framed braid group. Actually we do more: we introduce a one-parameter
family of homomorphisms from the group algebra of the framed braid group to the algebra
Yd,n (deforming the canonical homomorphism). Then, for each homomorphism of this family
and each Markov trace on Yd,n , we construct an invariant for classical and framed links.
As mentioned above, no rescaling is needed and the invariant is simply obtained by the
composition of the homomorphism followed by the Markov trace.

The obtained invariants are Laurent polynomials in three variables: two of these variables
are the parameters u and v in the definition of Yd,n , and the third one is the parameter
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appearing in the homomorphism from the group algebra of the framed braid group to Yd,n .
Among these invariants, we recover the ones obtained by Juyumaya and Lambropoulou by
taking a particular value for this third parameter and some specific Markov traces.

Restricting to classical links, we use our construction via the isomorphism theorem to
prove two results devoted to the comparison of the obtained invariants with the HOMFLYPT
polynomial.

First we show that the HOMFLYPT polynomial is contained in them. More precisely,
among the 2d − 1 basic Markov traces, there are d of them whose associated invariants
coincide with the HOMFLYPT polynomial. These basic Markov traces are the ones indexed
by compositions into d parts with only one part equal to 1 and all the others equal to 0 (in
the particular case of the Juyumaya–Lambropoulou invariants, this result corrresponds to [2,
Corollary1]).

Then, we show that the invariants obtained from the others basicMarkov traces are always
equal to 0when applied to a classical knot. For classical knots, this solves completely the study
of these invariants, which are thus shown to be topologically equivalent to the HOMFLYPT
polynomial. This gives, in particular, a different proof of results of [1] about the Juyumaya–
Lambropoulou invariants.

Notations

• We fix an integer d ≥ 1, and we let {ξ1, . . . , ξd} be the set of roots of unity of order d .
We will often use without mentioning that 1

d

∑
0≤s≤d−1 ξ s

aξ−s
b is equal to 1 if a = b and

is equal to 0 otherwise.
• Let A be an algebra defined over a commutative ring R. If R′ is a commutative ring

with a given ring homomorphism θ : R → R′, we will denote the specialized algebra
R′

θA := R′ ⊗R A where the tensor product is defined via θ . In particular, if R′ is a
commutative ring containing R as a subring, we denote simply by R′A := R′ ⊗R A the
algebra with ground ring extended to R′.

• We will denote by Mi, j an elementary matrix with 1 in position (i, j) and 0 everywhere
else (the size of the matrix will always be given by the context).

2 Definitions and first properties

2.1 The Iwahori–Hecke algebra of type A

Let n ∈ Z≥1 and let u and v be indeterminates. The Iwahori–Hecke algebra Hn of type An−1

is the associative C[u±1, v]-algebra (with unit) with a presentation by generators :

T1, . . . , Tn−1,

and relations:

Ti Tj = Tj Ti for all i, j = 1, . . . , n − 1 such that |i − j | > 1,
Ti Ti+1Ti = Ti+1Ti Ti+1 for all i = 1, . . . , n − 2,

T 2
i = u2 + vTi for all i = 1, . . . , n − 1.

(1)

Note that H1 = C[u±1, v]. It is convenient also to set H0 := C[u±1, v].
Let R be a ring and let θ : C[u±1, v] → R be a specialization such that θ(u2) = 1 and

θ(v) = 0 then the specialized algebra RθHn is naturally isomorphic to the group algebra
RSn of the symmetric group.
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Remark 2.1 Let q be an indeterminate. Another usual presentation ofHn is obtained by the
specialization θ : C[u±1, v] → C[q, q−1] given by θ(u2) = 1 and θ(v) = q − q−1.

Letw ∈ Sn and si1 . . . sir a reduced expression ofw (where (i1, . . . , ir ) ∈ {1, . . . , n−1}r

and si ∈ Sn denotes the transposition (i, i +1) for i = 1, . . . , n −1). Then, by Matsumoto’s
lemma (see [7, §1.2]), the element Ti1 . . . Tir does not depend of the choice of the reduced
expression of w and thus, the element Tw := Ti1 . . . Tir is well-defined. Then Hn is free
as a C[u±1, v]-module with basis {Tw | w ∈ Sn} (see [7, Thm.4.4.6]). In particular it has
dimension n!.

We also set T̃i := u−1Ti , for i ∈ {1, . . . , n − 1} and,

T̃w := u−�(w)Tw = T̃i1 . . . T̃ir , for w ∈ Sn . (2)

where �(w) is the length of w. The set {T̃w | w ∈ Sn} is also a C[u±1, v]-basis of Hn .

2.2 Compositions of n

Let Compd(n) be the set of compositions of n with d parts (or d-compositions of n), that is
the set of d-tuples of non negative integers μ = (μ1, . . . , μd) such that

∑
1≤a≤d μa = n.

The set of d-compositions of n is denoted by Compd(n). We denote by |μ| := n the size of
the composition μ.

For μ ∈ Compd(n), the Young subgroup Sμ is the subgroup Sμ1 × · · · × Sμd of Sn ,
where Sμ1 acts on the letters {1, . . . , μ1}, Sμ2 acts on the letters {μ1 + 1, . . . , μ2}, and so
on. The subgroupSμ is generated by the transposition (i, i + 1) with i ∈ Iμ := {1, . . . , n −
1}\{μ1, μ1 + μ2, . . . , μ1 + · · · + μd−1}.

Similarly, we have an associated subalgebraHμ ofHn generated by {Ti | i ∈ Iμ}. This is
a free C[u±1, v]-module with basis {Tw | w ∈ Sμ} (or {T̃w | w ∈ Sμ}). The algebra Hμ is
naturally isomorphic toHμ1 ⊗· · ·⊗Hμr , where the tensor products are overC[u±1, v]. Note
that the defining relations of Hμ in terms of the generators Ti with i ∈ Iμ, are the relations
from (1) involving only those generators.

Letμ ∈ Compd(n). For a ∈ {1, . . . , d}, we denote byμ[a] the composition in Compd(n+
1) defined by

μ
[a]
b := μb if b �= a, and μ[a]

a := μa + 1. (3)

Conversely, if μa ≥ 1, we define μ[a] ∈ Compd(n − 1) to be the unique composition such
that

(μ[a])[a] = μ. (4)

We also define the base of μ, denoted by [μ], to be the d-composition defined by

[μ]a =
{
1 if μa ≥ 1,
0 if μa = 0,

for a = 1, . . . , d. (5)

The composition [μ] belongs to Compd(N ) where N is the number of non-zero parts in μ.
We denote by Comp0d(n) the set of d-compositions of n where all the parts belong to {0, 1},
and we set

Comp0d :=
⋃

n≥1

Comp0d(n) = {[μ] | μ ∈
⋃

n≥1

Compd(n)}. (6)
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2.3 The Yokonuma–Hecke algebra

Wedefine theYokonuma–Hecke algebra Yd,n as the associativeC[u±1, v]-algebra (with unit)
with a presentation by generators:

g1, g2, . . . , gn−1, t1, . . . , tn,

and relations:

gi g j = g j gi for all i, j = 1, . . . , n − 1 such that |i − j | > 1,
gi gi+1gi = gi+1gi gi+1 for all i = 1, . . . , n − 2,

ti t j = t j ti for all i, j = 1, . . . , n,

gi t j = tsi ( j)gi for all i = 1, . . . , n − 1 and j = 1, . . . , n,

td
j = 1 for all j = 1, . . . , n,

g2
i = u2 + vei gi for all i = 1, . . . , n − 1,

(7)

where, for all i = 1, . . . , n − 1,

ei := 1

d

∑

0≤s≤d−1

t s
i t−s

i+1.

Note that the elements ei are idempotents and that we have gi ei = ei gi for all i =
1, . . . , n − 1. The elements gi are invertible, with

g−1
i = u−2gi − u−2vei , for all i = 1, . . . , n − 1. (8)

We also set

g̃i := u−1gi , for i ∈ {1, . . . , n − 1}.
We note that g̃2

i = 1 + u−1vei g̃i and also that g̃−1
i = g̃i − u−1vei , for i = 1, . . . , n − 1.

Let R be a ring and let θ : C[u±1, v] → R be a specialization such that θ(u2) = 1 and
θ(v) = 0 then the specialized algebra Rθ Yd,n is naturally isomorphic to the group algebra
RG(d, 1, n) of the complex reflection group G(d, 1, n) ∼= (Z/dZ) 
Sn . Note that in the case
where d = 1 then Y1,n is nothing but the Iwahori–Hecke algebra of type An−1 as defined in
Sect. 2.1.

Remark 2.2 The presentation used in [3] of the Yokonuma–Hecke algebra is obtained, sim-
ilarly to Remark 2.1, by a specialization θ : C[u±1, v] → C[q, q−1] such that q is an
indeterminate, θ(u2) = 1 and θ(v) = q −q−1. The precise connections between the presen-
tation above and the presentation used in [2,10,12–15] will be carefully investigated in Sect.
6 (see also [3, Remark1]).

Remark 2.3 Both the Iwahori-Hecke algebras and the Yokonuma-Hecke algebras can be
defined over more general rings. However, for our purpose (see §2.4), we need to assume
that the base ring contains the d-roots of the unity. Hence, for convenience, we here choose
to work over the ring C[u±1, v].

We set, for w ∈ Sn and si1 . . . sir a reduced expression for w,

gw := gi1 . . . gir and g̃w := u−�(w)gw = g̃i1 . . . g̃ir . (9)

Again, by Matsumoto’s lemma (see [7, §1.2]), the elements gw and g̃w are well-defined. The
following multiplication rules in Yd,n follow directly from the definitions. For w ∈ Sn and
i ∈ {1, . . . , n − 1}, we have
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g̃w g̃i =
{

g̃wsi if l(wsi ) > l(w),

g̃wsi + u−1vg̃wei if l(wsi ) < l(w); (10)

g̃i g̃w =
{

g̃si w if l(siw) > l(w),

g̃si w + u−1vei g̃w if l(siw) < l(w).
(11)

By [10] and Remark 2.2, Yd,n is a free C[u±1, v]-module with basis

{tk1
1 . . . tkn

n g̃w | w ∈ Sn, k1, . . . , kn ∈ Z/dZ} (12)

and the rank of Yd,n is dnn!. The algebra Yd,n−1 naturally embeds in the algebra Yd,n in an
obvious way.

Remark 2.4 For the isomorphism theorem,wewill mainly use the elements g̃i and g̃w instead
of gi and gw . Concerning this part, we could have given the presentation of Yd,n in terms of
the generators g̃i and thus remove one of the variables u or v. However, the generators gi

will be used systematically starting from Sect. 5 for applications to links theory.

2.4 A decomposition of Yd,n

We consider the commutative subalgebraAn := 〈t1, . . . , tn〉 of Yd,n . This algebra is naturally
isomorphic to the group algebra of (Z/dZ)n over C[u±1, v], and we will always implicitly
make this identification in the following.

A complex character χ of the group (Z/dZ)n is characterized by the choice of χ(t j ) ∈
{ξ1, . . . , ξd} for each j = 1, . . . , n. We denote by Irr(An) the set of complex characters of
(Z/dZ)n , extended to An .

Definition 2.5 For each χ ∈ Irr (An), we denote by Eχ the primitive idempotent of An

associated to χ , that is, characterized by χ ′(Eχ ) = 0 if χ ′ �= χ and χ(Eχ ) = 1.

The idempotent Eχ is explicitly written in terms of the generators as follows:

Eχ =
∏

1≤i≤n

⎛

⎝ 1

d

∑

0≤s≤d−1

χ(ti )
s t−s

i

⎞

⎠ . (13)

By definition, we have, for all χ ∈ Irr(An) and i = 1, . . . , n,

ti Eχ = Eχ ti = χ(ti )Eχ . (14)

The symmetric group Sn acts by permutations on (Z/dZ)n and in turn acts on Irr(An). The
action is given by the formula:

w(χ)
(
ti
) = χ(tw−1(i)), for all i = 1, . . . , n, w ∈ Sn and χ ∈ Irr(An).

In the algebra Yd,n , due to the relation gwti = tw(i)gw for i = 1, . . . , n andw ∈ Sn , we have

gw Eχ = Ew(χ)gw and g̃w Eχ = Ew(χ)g̃w. (15)

Let χ ∈ Irr(An). For a = 1, . . . , d , denote by μa the cardinal of the set { j ∈
{1, . . . , n} | χ(t j ) = ξa}. Then the sequence (μ1, . . . , μd) is a d-composition of n which is
denoted by

Comp(χ) := (μ1, . . . , μd) ∈ Compd(n).

Let μ ∈ Compd(n). Then we denote by

O(μ) := {χ ∈ Irr(An) | Comp(χ) = μ}
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the orbit of the element χ ∈ Irr(An) under the action of the symmetric group and

mμ := �Oμ = n!
μ1!μ2! . . . μd ! .

Definition 2.6 Let μ ∈ Compd(n). We set

Eμ :=
∑

Comp(χ)=μ

Eχ =
∑

χ∈O(μ)

Eχ .

Due to the commutation relation (15), the elements Eμ, with μ ∈ Compd(n), are central in
Yd,n . Moreover, as the set {Eχ | χ ∈ Irr(An)} is a complete set of orthogonal idempotents, it
follows at once that the set {Eμ | μ ∈ Compd(n)} forms a complete set of central orthogonal
idempotents in Yd,n . In particular, we have the following decomposition of Yd,n into a direct
sum of two-sided ideals:

Yd,n =
⊕

μ∈Compd (n)

EμYd,n . (16)

2.5 Another basis for Yd,n

We here give another basis for Yd,n using the idempotents we just defined. As the subalgebra
An of Yd,n is isomorphic to the group algebra of (Z/dZ)n over C[u±1, v], the set {Eχ | χ ∈
Irr(An)} is a C[u±1, v]-basis of An , as well as the set {tk1

1 . . . tkn
n | k1, . . . , kn ∈ Z/dZ}. So

from the knowledge of the C[u±1, v]-basis (12) of Yd,n , we also have that the set

{Eχ g̃w | χ ∈ Irr(An), w ∈ Sn} (17)

is a C[u±1, v]-basis of Yd,n . Moreover, this basis is compatible with the decomposition (16)
of Yd,n since, for μ ∈ Compd(n), we have Eχ g̃w ∈ EμYd,n if and only if Comp(χ) = μ. In
other words, the set

{Eχ g̃w | χ ∈ Irr(An) with Comp(χ) = μ, w ∈ Sn}
is a C[u±1, v]-basis of EμYd,n .

Now we will label the elements of Irr(An) in a useful way for the following. This is done
as follows. We first consider a distinguished element in each orbitO(μ). Letμ ∈ Compd(n).
We denote

χ
μ
1 ∈ Irr(An),

the character given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

χ
μ
1 (t1) = . . . = χ

μ
1 (tμ1) = ξ1,

χ
μ
1 (tμ1+1) = . . . = χ

μ
1 (tμ1+μ2) = ξ2,

...
...

...
...

...
...

...

χ
μ
1 (tμ1+···+μd−1+1) = . . . = χ

μ
1 (tμd ) = ξd .

(18)

Note that the stabilizer of χ
μ
1 under the action ofSn is the Young subgroupSμ. In each left

coset inSn/Sμ, we take a representative of minimal length (such a representative is unique,
see [7, §2.1]). We denote by

{π1,μ, . . . , πmμ,μ}
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this set of distinguished left coset representatives ofSn/Sμ with the convention thatπ1,μ = 1
(recall that mμ := �O(μ)). Then, if we set for all k = 1, . . . , mμ:

χ
μ
k := πk,μ(χ

μ
1 ), (19)

we have by construction that

O(μ) = {χμ
1 , . . . , χμ

mμ
}.

To sum up, we have the following C[u±1, v]-basis of Yd,n :

{Eχ
μ
k

g̃w | w ∈ Sn, k = 1, . . . , mμ, μ ∈ Compd(n)}, (20)

where, for each μ ∈ Compd(n), the subset {Eχ
μ
k

g̃w | w ∈ Sn, k = 1, . . . , mμ} is a

C[u±1, v]-basis of the two-sided ideal EμYd,n .

3 The isomorphism theorem

The aim of this part is to prove that Yd,n and
⊕

μ∈Compd (n) Matmμ(Hμ) are isomorphic as

C[u±1, v]-algebras. We will exhibit an explicit isomorphism between the two algebras.

3.1 The statement

Let μ ∈ Compd(n). We recall that EμYd,n is a two-sided ideal of Yd,n and is also a unital
subalgebra with unit Eμ. We define a linear map

�μ : Matmμ(Hμ) → EμYd,n,

by setting, for any matrix consisting of basis elements T̃wi, j ofHμ (that is, with wi, j ∈ Sμ),

�μ

(
(T̃wi, j )1≤i, j≤mμ

) =
∑

1≤i, j≤mμ

Eχ
μ
i

g̃
πi,μwi, j π

−1
j,μ

Eχ
μ
j
. (21)

We also define a linear map

	μ : EμYd,n → Matmμ(Hμ),

as follows. Let k ∈ {1, . . . , mμ} and w ∈ Sn , and let j ∈ {1, . . . , mμ} be uniquely defined
(given k) by the relation w(χ

μ
j ) = χ

μ
k . Note that we thus have π−1

k,μwπ j,μ ∈ Sμ. We then
set

	μ(Eχ
μ
k

g̃w) = T̃
π−1

k,μwπ j,μ
Mk, j , (22)

where we recall that Mk, j denotes the elementary matrix with 1 in position (k, j).
Now we can state the main result of this section. Recall the decomposition (16) of Yd,n .

Theorem 3.1 Let μ ∈ Compd(n). The linear map �μ is an isomorphism of C[u±1, v]-
algebra with inverse map 	μ. In turn,

�n :=
⊕

μ∈Compd (n)

�μ :
⊕

μ∈Compd (n)

Matmμ(Hμ) → Yd,n

is an isomorphism with inverse map:

	n :=
⊕

μ∈Compd (n)

	μ : Yd,n →
⊕

μ∈Compd (n)

Matmμ(Hμ).

The rest of this section is devoted to the proof of the theorem.
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3.2 Preliminary results

We first prove a series of useful lemmas.

Lemma 3.2 Let μ ∈ Compd(n) and i ∈ {1, . . . , mμ}. We consider a reduced expression
si1 . . . sik of πi,μ. Then for all l ∈ {1, . . . , k}, we have:

eil Esil+1 ...sik (χ
μ
1 ) = Esil+1 ...sik (χ

μ
1 )eil = 0

Proof By definition, πi,μ is the (unique) element of Sn with minimal length satisfying
πi,μ(χ

μ
1 ) = χ

μ
i . As a consequence, we have for all l = 1, . . . , k:

sil · sil+1 . . . sik (χ
μ
1 ) �= sil+1 . . . sik (χ

μ
1 )

which is equivalent to

sil+1 . . . sik (χ
μ
1 )(til ) �= sil+1 . . . sik (χ

μ
1 )(til+1).

Thus by (14), we have

til Esil+1 ...sik (χ
μ
1 ) �= til+1Esil+1 ...sik (χ

μ
1 ).

This discussion shows that

til t
−1
il+1

Esil+1 ...sik (χ
μ
1 ) = ξ j Esil+1 ...sik (χ

μ
1 )

for a d-root of unity ξ j �= 1. We conclude that

Esil+1 ...sik (χ
μ
1 )eil = eil Esil+1 ...sik (χ

μ
1 ) =

⎛

⎝
∑

0≤s≤d−1

ξ s
j

⎞

⎠ Esil+1 ...sik (χ
μ
1 ) = 0

where we note, for the first equality, that eil commutes with any Eχ . �

Lemma 3.3 For all μ ∈ Compd(n), 1 ≤ i, j ≤ mμ and w ∈ Sn, we have:

(i) Eχ
μ
1

g̃−1
πi,μ

g̃w g̃π j,μ Eχ
μ
1

= Eχ
μ
1

g̃
π−1

i,μwπ j,μ
Eχ

μ
1

;

(ii) Eχ
μ
i

g̃πi,μ g̃w g̃−1
π j,μ

Eχ
μ
j

= Eχ
μ
i

g̃
πi,μwπ−1

j,μ
Eχ

μ
j
.

Proof Let us denote a reduced expression of πi,μ by si1 . . . sik . We have :

Eχ
μ
1

g̃−1
πi,μ

g̃w = Eχ
μ
1

g̃−1
ik

. . . g̃−1
i1

g̃w

= g̃−1
ik

. . . g̃−1
i2

Esi2 ...sik (χ
μ
1 ) g̃−1

i1
g̃w.

Recall that for all j = 1, . . . , n,wehave g̃−1
j = g̃ j −u−1ve j . Thus,with repeated applications

of Lemma 3.2 together with the multiplication rule (11), we deduce that:

Eχ
μ
1

g̃−1
πi,μ

g̃w = g̃−1
ik

. . . g̃−1
i2

Esi2 ...sik (χ
μ
1 ) g̃si1w

= g̃−1
ik

. . . g̃−1
i3

Esi3 ...sik (χ
μ
1 ) g̃−1

i2
g̃si1w

= . . .

= Eχ
μ
1

g̃
π−1

i,μw
.
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Now let us denote by s j1 . . . s jl a reduced expression of π j,μ, we have:

Eχ
μ
1

g̃−1
πi,μ

g̃w g̃π j,μ Eχ
μ
1

= Eχ
μ
1

g̃
π−1

i,μw
g̃π j,μ Eχ

μ
1

= Eχ
μ
1

g̃
π−1

i,μw
g̃ j1 . . . g̃ jl Eχ

μ
1

= Eχ
μ
1

g̃
π−1

i,μw
g̃ j1 Es j2 ...s jl (χ

μ
1 ) g̃i2 . . . g̃il .

As above, with repeated applications of Lemma 3.2 together with themultiplication rule (10),
we obtain:

Eχ
μ
1

g̃−1
πi,μ

g̃w g̃π j,μ Eχ
μ
1

= Eχ
μ
1

g̃
π−1

i,μws j1
Es j2 ...s jl (χ

μ
1 ) g̃ j2 . . . g̃ jl

= Eχ
μ
1

g̃
π−1

i,μws j1
g̃ j2 Es j3 ...s jl (χ

μ
1 ) g̃ j3 . . . g̃ jl

= . . .

= Eχ
μ
1

g̃
π−1

i,μwπ j,μ
Eχ

μ
1
,

which proves item (i). Let us now prove item (i i). We have by (19) and (15) :

Eχ
μ
i

g̃πi,μ g̃w g̃−1
π j,μ

Eχ
μ
j

= g̃πi,μ Eχ
μ
1

g̃w Eχ
μ
1

g̃−1
π j,μ

= g̃πi,μ Eχ
μ
1

g̃
π−1

i,μπi,μwπ−1
j,μπ j,μ

Eχ
μ
1

g̃−1
π j,μ

= g̃πi,μ Eχ
μ
1

g̃−1
πi,μ

g̃
πi,μwπ−1

j,μ
g̃π j,μ Eχ

μ
1

g̃−1
π j,μ

,

where the last equality comes from item (i). Theproof is concludedusing that g̃πi,μ Eχ
μ
1

g̃−1
πi,μ

=
Eχ

μ
i
and g̃π j,μ Eχ

μ
1

g̃−1
π j,μ

= Eχ
μ
j
. �

Lemma 3.4 Let μ ∈ Compd(n). The map

φμ : Hμ → Eχ
μ
1

Yd,n Eχ
μ
1
,

defined on the generators by

∀i ∈ Iμ, φμ(Ti ) = Eχ
μ
1

gi Eχ
μ
1
,

extends to an homomorphism of algebras.

Proof Recall that the subspace Eχ
μ
1

Yd,n Eχ
μ
1
is a unital subalgebra of Yd,n with unit Eχ

μ
1
.

We first note that if i ∈ Iμ then si (χ
μ
1 ) = χ

μ
1 . We thus have

gi Eχ
μ
1

= Eχ
μ
1

gi

and this relation easily implies that the elements Eχ
μ
1

gi Eχ
μ
1
with i ∈ Iμ satisfy the braid

relations. It remains to check the “quadratic relation”. We have

(Eχ
μ
1

gi Eχ
μ
1
)2 = Eχ

μ
1

g2
i Eχ

μ
1= u2Eχ

μ
1

+ vEχ
μ
1

ei gi Eχ
μ
1= u2Eχ

μ
1

+ vEχ
μ
1

gi Eχ
μ
1

The last equality comes from the fact that for i ∈ Iμ we have ti Eχ
μ
1

= ti+1Eχ
μ
1
, and thus

ei Eχ
μ
1

= Eχ
μ
1

ei = Eχ
μ
1
.

Thus all the defining relations of Hμ = Hμ1 ⊗ · · · ⊗ Hμd are satisfied so that φμ can be
extended to a homomorphism of algebras. �
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Remark 3.5 One can actually show that the morphism φμ is an isomorphism. Indeed the
lemma implies that φμ is given on the standard basis of Hμ by φμ(Tw) = Eχ

μ
1

gw Eχ
μ
1
,

w ∈ Sμ. Moreover, if w ∈ Sμ then w(χ
μ
1 ) = χ

μ
1 and therefore φμ(Tw) = Eχ

μ
1

gw . So it
remains to check that {Eχ

μ
1

gw | w ∈ Sμ} is a basis of Eχ
μ
1

Yd,n Eχ
μ
1
. The linear independence

is immediate, while the spanning property follows from the following calculation, for a basis
element Eχν

i
gw of Yd,n and ν ∈ Compd(n),

Eχ
μ
1

· Eχν
i

gw · Eχ
μ
1

= Eχ
μ
1

Eχν
i

Ew(χ
μ
1 )gw =

{
Eχ

μ
1

gw if μ = ν, i = 1 and w ∈ Sμ;
0 otherwise.

In the following, we will not use the fact that φμ is actually an isomorphism (actually, it is a
consequence of Theorem 3.1 below).

3.3 Proof of the main result

Proof of Theorem 3.1 We are now in position to prove Theorem 3.1. Let μ ∈ Compd(n).

1. We first prove that �μ is a morphism. Before this, we note that by Lemma 3.3(ii), for
all 1 ≤ i, j ≤ mμ and w ∈ Sμ, we have:

Eχ
μ
i

g̃
πi,μwπ−1

j,μ
Eχ

μ
j

= Eχ
μ
i

g̃πi,μ g̃w g̃−1
π j,μ

Eχ
μ
j

= g̃πi,μ Eχ
μ
1

g̃w Eχ
μ
1

g̃−1
π j,μ

= g̃πi,μ φμ(T̃w) g̃−1
π j,μ

. (23)

Now, let i, j, k, l ∈ {1, . . . , mμ} and w,w′ ∈ Sμ. We have:

�μ

(
T̃w Mi, j

)
�μ

(
T̃w′ Mk,l

) = Eχ
μ
i

g̃
πi,μwπ−1

j,μ
Eχ

μ
j

Eχ
μ
k

g̃
πk,μw′π−1

l,μ
Eχ

μ
l
.

As Eχ
μ
j
and Eχ

μ
k
belong to a family of pairwise orthogonal idempotents, this is equal to 0 if

j �= k. On the other hand, we also have that T̃w Mi, j · T̃w′ Mk,l is equal to 0 if j �= k.
So it remains only to consider the situation j = k. If j = k, we obtain

�μ

(
T̃w Mi, j

)
�μ

(
T̃w′ M j,l

) = Eχ
μ
i

g̃
πi,μwπ−1

j,μ
Eχ

μ
j

· Eχ
μ
j

g̃
π j,μw′π−1

l,μ
Eχ

μ
l

= g̃πi,μ φμ(T̃w) g̃−1
π j,μ

· g̃π j,μ φμ(T̃w′) g̃−1
πl,μ

= g̃πi,μ φμ(T̃w · T̃w′) g̃−1
πl,μ

, (24)

where we used successively (23) and Lemma 3.4. On the other hand, we have that T̃w Mi, j ·
T̃w′ M j,l is equal to T̃w T̃w′ Mi,l . The product T̃w T̃w′ can be written uniquely as

T̃w T̃w′ =
∑

x∈Sμ

cx T̃x ,

for some coefficients cx ∈ C[u±1, v]. We have now

�μ

(
T̃w T̃w′ Mi,l

) =
∑

x∈Sμ

cx Eχ
μ
i

g̃
πi,μxπ−1

j,μ
Eχ

μ
j

=
∑

x∈Sμ

cx g̃πi,μ φμ(T̃x ) g̃−1
πl,μ

,

by (23) again. Comparing with (24) concludes the verification that �μ is a morphism of
algebras.
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2. We now prove that �μ and 	μ are inverse maps. Let w ∈ Sn and let i ∈ {1, . . . , mμ}.
Let also j ∈ {1, . . . , mμ} be uniquely defined by χ

μ
i = w(χ

μ
j ). By definition of �μ and 	μ,

we have

�μ ◦ 	μ(Eχ
μ
i

g̃w) = �μ(T̃
π−1

i,μwπ j,μ
Mi, j ) = Eχ

μ
i

g̃w Eχ
μ
j
.

As χ
μ
j = w−1(χ

μ
i ) and Eχ

μ
i
is an idempotent, we conclude that this is indeed equal to

Eχ
μ
i

g̃w .
On the other hand, let w ∈ Sμ and i, j ∈ {1, . . . , mμ}.
	μ ◦ �μ

(
T̃w Mi, j

) = 	μ

(
Eχ

μ
i

g̃
πi,μwπ−1

j,μ
Eχ

μ
j

)

= 	μ

(
Eχ

μ
i

g̃
πi,μwπ−1

j,μ

)
(because πi,μwi, jπ

−1
j,μ(χ

μ
j ) = χ

μ
i )

= T̃
π−1

i,μπi,μwπ−1
j,μπ j ′,μ

Mi, j ′ ,

where the integer j ′ ∈ {1, . . . , mμ} is uniquely defined by πi,μwπ−1
j,μ(χ

μ

j ′) = χ
μ
i . As w ∈

Sμ, this condition yields j ′ = j , which concludes the proof. �
Example 3.6 Let d = 2 and n = 4. We will give explicitly in this example the images of
g1, . . . , gn−1, t1, . . . , tn and e1, . . . , en−1 of Yd,n under the isomorphism	n of Theorem 3.1.
In the matrices below, the dots stand for coefficients equal to 0.

First, we note that, for any μ ∈ Compd(n), the matrix 	μ(ti )(i ∈ {1, . . . , n}) is diagonal,
more precisely, we have:

	μ(ti ) = 	μ(Eμti ) = 	μ

⎛

⎝
∑

1≤k≤mμ

Eχ
μ
k

ti

⎞

⎠ = 	μ

⎛

⎝
∑

1≤k≤mμ

χ
μ
k (ti )Eχ

μ
k

⎞

⎠

=
∑

1≤k≤mμ

χ
μ
k (ti )Mk,k .

We will denote by Diag(x1, . . . , xN ) a diagonal matrix with coefficients x1, . . . , xN on the
diagonal. We also recall that, for i = 1, . . . , n − 1, we have gi = ug̃i and

	μ(g̃i ) = 	μ(Eμg̃i ) = 	μ

⎛

⎝
∑

1≤k≤mμ

Eχ
μ
k

g̃i

⎞

⎠ =
∑

1≤k≤mμ

T̃
π−1

k,μsi π jk ,μ
Mk, jk ,

where, for each k ∈ {1, . . . , mμ}, the integer jk ∈ {1, . . . , mμ} is uniquely determined by
si (χ

μ
jk
) = χ

μ
k .

• Let μ = (4, 0) or μ = (0, 4). Then mμ = 1 and Hμ ∼= H4. There is only one character
in the orbit O(μ), which is χ

μ
1 = (ξa, ξa, ξa, ξa), where a = 1 if μ = (4, 0) and a = 2

if μ = (0, 4). In this situation, we have

gi �→ (Ti ), t j �→ (ξa), ei �→ (1), for i = 1, 2, 3 and j = 1, 2, 3, 4,

where a = 1 if μ = (4, 0) and a = 2 if μ = (0, 4).
• Let μ = (3, 1). Then mμ = 4 and Hμ ∼= H3 ⊗ H1 and we identify it below with H3.

We order the characters in the orbit O(μ) as follows:

χ
μ
1 = (ξ1, ξ1, ξ1, ξ2), χ

μ
2 = (ξ1, ξ1, ξ2, ξ1),

χ
μ
3 = (ξ1, ξ2, ξ1, ξ1) and χ

μ
4 = (ξ2, ξ1, ξ1, ξ1).
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Thus we have π1,μ = 1, π2,μ = s3, π3,μ = s2s3 and π4,μ = s1s2s3 . The map 	μ is
given by:

g1 �→

⎛

⎜
⎜
⎝

T1 · · ·
· T1 · ·
· · · u
· · u ·

⎞

⎟
⎟
⎠ , g2 �→

⎛

⎜
⎜
⎝

T2 · · ·
· · u ·
· u · ·
· · · T1

⎞

⎟
⎟
⎠ , g3 �→

⎛

⎜
⎜
⎝

· u · ·
u · · ·
· · T2 ·
· · · T2

⎞

⎟
⎟
⎠ ;

t1 �→ Diag(ξ1, ξ1, ξ1, ξ2), t2 �→ Diag(ξ1, ξ1, ξ2, ξ1),

t3 �→ Diag(ξ1, ξ2, ξ1, ξ1), t4 �→ Diag(ξ2, ξ1, ξ1, ξ1);
e1 �→ Diag(1, 1, 0, 0), e2 �→ Diag(1, 0, 0, 1), e3 �→ Diag(0, 0, 1, 1).

• Let μ = (1, 3). Then mμ = 4 and Hμ ∼= H1 ⊗ H3 and we identify it below with H3.
We order the characters in the orbit O(μ) as follows:

χ
μ
1 = (ξ1, ξ2, ξ2, ξ2), χ

μ
2 = (ξ2, ξ1, ξ2, ξ2),

χ
μ
3 = (ξ2, ξ2, ξ1, ξ2) and χ

μ
4 = (ξ2, ξ2, ξ2, ξ1).

Thus we have π1,μ = 1, π2,μ = s1, π3,μ = s2s1 and π4,μ = s3s2s1 . The map 	μ is
given by:

g1 �→

⎛

⎜
⎜
⎝

· u · ·
u · · ·
· · T1 ·
· · · T1

⎞

⎟
⎟
⎠ , g2 �→

⎛

⎜
⎜
⎝

T1 · · ·
· · u ·
· u · ·
· · · T2

⎞

⎟
⎟
⎠ , g3 �→

⎛

⎜
⎜
⎝

T2 · · ·
· T2 · ·
· · · u
· · u ·

⎞

⎟
⎟
⎠ ;

t1 �→ Diag(ξ1, ξ2, ξ2, ξ2), t2 �→ Diag(ξ2, ξ1, ξ2, ξ2),

t3 �→ Diag(ξ2, ξ2, ξ1, ξ2), t4 �→ Diag(ξ2, ξ2, ξ2, ξ1);
e1 �→ Diag(0, 0, 1, 1), e2 �→ Diag(1, 0, 0, 1), e3 �→ Diag(1, 1, 0, 0).

• Let μ = (2, 2). Then mμ = 6 and Hμ ∼= H2 ⊗ H2. We order the characters in the orbit
O(μ) as follows:

χ
μ
1 = (ξ1, ξ1, ξ2, ξ2), χ

μ
2 = (ξ1, ξ2, ξ1, ξ2), χ

μ
3 = (ξ2, ξ1, ξ1, ξ2),

χ
μ
4 = (ξ1, ξ2, ξ2, ξ1), χ

μ
5 = (ξ2, ξ1, ξ2, ξ1), χ

μ
6 = (ξ2, ξ2, ξ1, ξ1) .

Thus we have π1,μ = 1, π2,μ = s2, π3,μ = s1s2, π4,μ = s3s2, π5,μ = s1s3s2 and
π6,μ = s2s1s3s2 . The map 	μ is given by (where T ′

1 := T1 ⊗ 1 and T ′′
1 := 1 ⊗ T1):

g1 �→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

T ′
1 · · · · ·
· · u · · ·
· u · · · ·
· · · · u ·
· · · u · ·
· · · · · T ′′

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, g2 �→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

· u · · · ·
u · · · · ·
· · T ′

1 · · ·
· · · T ′′

1 · ·
· · · · · u
· · · · u ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

g3 �→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

T ′′
1 · · · · ·
· · · u · ·
· · · · u ·
· u · · · ·
· · u · · ·
· · · · · T ′

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

;
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t1 �→ Diag(ξ1, ξ1, ξ2, ξ1, ξ2, ξ2), t2 �→ Diag(ξ1, ξ2, ξ1, ξ2, ξ1, ξ2),
t3 �→ Diag(ξ2, ξ1, ξ1, ξ2, ξ2, ξ1), t4 �→ Diag(ξ2, ξ2, ξ2, ξ1, ξ1, ξ1);
e1 �→ Diag(1, 0, 0, 0, 0, 1), e2 �→ Diag(0, 0, 1, 1, 0, 0), e3 �→ Diag(1, 0, 0, 0, 0, 1).

3.4 Natural inclusions of subalgebras

We recall that, for any n ≥ 1, the algebra Yd,n is naturally embedded into Yd,n+1, as the
subalgebra generated by t1, . . . , tn, g1, . . . , gn−1. If x ∈ Yd,n , we will abuse notation and
write also x for the corresponding element of Yd,n+n′ , n′ ≥ 1. Very often the context will
make clear where x lives, and otherwise we will specify it explicitly.

Let n ≥ 1 and μ = (μ1, . . . , μd) ∈ Compd(n). For any μ′ ≥ μ for the natural order on
compositions (namely, μ′

a ≥ μa for a = 1, . . . , d), we have a natural embedding ofHμ into
Hμ′

. Explicitly, using the isomorphisms

Hμ � Hμ1 ⊗ · · · ⊗ Hμd and Hμ′ � Hμ′
1
⊗ · · · ⊗ Hμ′

d
,

the embedding is given by

Hμ1 ⊗ · · · ⊗ Hμd � x1 ⊗ · · · ⊗ xd �→ x1 ⊗ · · · ⊗ xd ∈ Hμ′
1
⊗ · · · ⊗ Hμ′

d
.

When μ′ = μ[a] for a ∈ {1, . . . , d}, see (3), the natural embeddingHμ ⊂ Hμ[a]
is expressed

on the basis {T̃w, w ∈ Sμ} of Hμ by

Hμ � T̃w �→ T̃(μ1+···+μa+1,...,n−1,n)w (μ1+···+μa+1,...,n−1,n)−1 ∈ Hμ[a]
, (25)

where (μ1 + · · · + μa + 1, . . . , n − 1, n) is the cyclic permutation on μ1 + · · · + μa +
1, . . . , n − 1, n.

Inclusion of basis elements Let Eχ
μ
k

g̃w be an element of the basis of Yd,n , where μ ∈
Compd(n), k ∈ {1, . . . , mμ} and w ∈ Sn .

For a ∈ {1, . . . , d}, denote by ka the integer in {1, . . . , mμ[a] } such that χμ[a]
ka

∈ Irr(An+1)

is the character given by

χ
μ[a]
ka

(ti ) = χ
μ
k (ti ), if i = 1, . . . , n, and χ

μ[a]
ka

(tn+1) = ξa .

The characters {χμ[a]
ka

, a = 1, . . . , d} are all the irreducible characters of An+1 containing

χ
μ
k in their restriction to An , and therefore we have Eχ

μ
k

= ∑
1≤a≤d E

χ
μ[a]
ka

in An+1 . Thus,

in Yd,n+1, we have:

Eχ
μ
k

g̃w =
∑

1≤a≤d

E
χ

μ[a]
ka

g̃w. (26)

A formula for πka,μ[a] Let a ∈ {1, . . . , d}. We recall that πk,μ is defined as the element of
Sn of minimal length such that πk,μ(χ

μ
1 ) = χ

μ
k , and similarly, πka ,μ[a] is the element of

Sn+1 of minimal length such that πka ,μ[a](χμ[a]
1 ) = χ

μ[a]
ka

. Writing symbolically a character
χ ∈ An+1 as the collection (χ(t1), . . . , χ(tn+1)), we have

χ
μ[a]
1 = (ξ1, . . . , ξ1︸ ︷︷ ︸

μ1

, . . . , ξa, . . . , ξa︸ ︷︷ ︸
μa+1

, . . . , ξd . . . , ξd︸ ︷︷ ︸
μd

) and χ
μ[a]
ka

= (χ
μ
k , ξa),
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so that the last occurrence of ξa in χ
μ[a]
1 is in positionμ1+· · ·+μa +1. Also, χμ

1 is obtained

from χ
μ[a]
1 by removing this last ξa . It is thus straightforward to see that

πka ,μ[a] = πk,μ · (μ1 + · · · + μa + 1, . . . , n, n + 1)−1. (27)

In the remaining of the paper, to simplify notations, we will often write πk = πk,μ if there
is no ambiguity on the choice of μ and also πka := πka ,μ[a] , for any k ∈ {1, . . . , mμ} and
a ∈ {1, . . . , d}.
Inclusion of matrix algebras The successive compositions of the isomorphism �n , the
natural embedding ofYd,n inYd,n+1 and the isomorphism	n+1 = �−1

n+1 gives the embedding
ι of the following diagram:

Yd,n+1
	n+1−−−−→

⊕

μ∈Compd (n+1)

Matmμ(Hμ)

⋃
�
⏐
⏐
⏐ ι

Yd,n
�n←−−−

⊕

μ∈Compd (n)

Matmμ(Hμ)

In the formula below, an element x ∈ Hμ is also seen as an element of Hμ[a]
, for any

a ∈ {1, . . . , d}, via the natural embeddings recalled above. We keep the same notation x .

Proposition 3.7 The embedding ι is given by ι = ⊕
μ∈Compd (n) ιμ, where the injective mor-

phisms ιμ are given by:

ιμ : Matmμ(Hμ) →
⊕

1≤a≤d

Matm
μ[a] (Hμ[a]

)

x Mi, j �→
∑

1≤a≤d

x Mia , ja

,

for any μ ∈ Compd(n), any x ∈ Hμ and any i, j ∈ {1, . . . , mμ}.

Proof Let Eχ
μ
i

g̃w be an element of the basis of Yd,n , whereμ ∈ Compd(n), i ∈ {1, . . . , mμ}
and w ∈ Sn . Let j ∈ {1, . . . , mμ} be uniquely determined by w(χ

μ
i ) = χ

μ
j . We have

�−1
n (Eχ

μ
i

g̃w) = T̃
π−1

i wπ j
Mi, j .

On the other hand, we have, using (26),

	n+1(Eχ
μ
i

g̃w) =
∑

1≤a≤d

	n+1(E
χ

μ[a]
ia

g̃w)

=
∑

1≤a≤d

T̃
π−1

ia
wπ ja

Mia , ja ,

since, for any a ∈ {1, . . . , d}, the integer ja ∈ {1, . . . , mμ[a] } is indeed such that w(χ
μ[a]
ja

) =
χ

μ[a]
ia

(asw ∈ Sn). Sowe only have to check that T̃
π−1

ia
wπ ja

is the image inHμ[a]
of T̃

π−1
i wπ j

∈
Hμ under the natural embedding. This is an immediate consequence of (25) and (27). �
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4 Applications to representation theory

This section presents the first applications of the isomorphism theorem obtained in the pre-
ceding section. First we study the consequences on the representation theory of Yd,n and then
we concentrate on the symmetric structure of this algebra.

4.1 Simple modules

The case of an isomorphism between an algebra and a matrix algebra is a classical example
of Morita equivalence which will be discussed in the next subsection. In fact, in this case,
the equivalence is explicit. In particular, due to the isomorphism, any simple Yd,n-modules
is of the form

(M1 ⊗ · · · ⊗ Md)mμ,

where μ = (μ1, . . . , μd) is a d-composition of n and Ma is a simple module of Hμa , for
each a = 1, . . . , d (see for example [17, §17.B]).

As the representation theory of the Iwahori–Hecke algebra is quite well understood (at
least in characteristic 0, see for example [7, ch. 8, 9, 10] for the semisimple case and [6] for
the modular case), we can deduce from Theorem 3.1 the following results:

• Let θ : A → k be a specialization to a field k such that θ(u2) = 1 and θ(v) = q − q−1

for an element in q ∈ k×. Let kθ Yd,n be the specialized algebra then kθ Yd,n is split
semisimple if and only if for all μ ∈ Compd(n), the algebra kθHμ is split semisimple.
By [6, Ex.3.1.19], this happens if and only if:

∏

1≤m≤n

(1 + q2 + · · · + q2m−2) �= 0

we thus recover the semisimplicity criterion found in [3, §6].
• The simple kθ Yd,n(q)-modules are naturally labelled by the set of d-partitions of rank n

when the algebra is split semisimple. Moreover, in the non semisimple case, if we set

e := min{i > 0 | 1 + q2 + · · · + q2i−2 = 0}
then the simple modules are labelled by the d-tuples of partitions such that each partition
is e-regular.

• The irreducible characters are completely determined by the irreducible characters of the
Iwahori–Hecke algebra of type A. For M ∈ Irr(kθHμ) with character χM , the character
of the simple kθ Yd,n-module (M)mμ is given by:

χ(h) = χM ◦ TrMatmμ
◦ 	μ(h), for h ∈ kθ Yd,n,

where TrMatmμ
is the usual trace function on the matrix algebra. In particular, the

decomposition matrices of the Yokonuma–Hecke algebra are entirely determined by
the decomposition matrices of the Iwahori–Hecke algebra of type A.

4.2 A Morita equivalence

From Theorem 3.1, we can thus deduce (see for example [17, Ch.17]) a Morita equivalence
between the Yokonuma–Hecke algebra and a direct sum of Iwahori–Hecke algebras of type
A over any ring.
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Proposition 4.1 Let R be a commutative ring and θ : C[u±1, v] → R be a specialization.
Then the algebra Rθ Yd,n is Morita equivalent to

⊕
μ∈Compd (n) RθHμ.

In addition, consider the Hecke algebra of the complex reflection group G(d, 1, n)

(also known as Ariki–Koike algebra). Let R be a commutative ring with unit and let
Q := (Q0, . . . , Qd−1) ∈ Rd and x ∈ R×. The Hecke algebra of G(d, 1, n) is the R-algebra
HQ,x

n with generators

T0, T1, . . . , Tn−1,

and relations :

Ti Ti+1Ti = Ti+1Ti Ti+1 (i = 1, . . . , n − 2),

Ti Tj = Tj Ti (| j − i | > 1),

(Ti − x)(Ti + x−1) = 0 (i = 1, . . . , n − 1).

(T0 − Q0)(T0 − Q1) . . . (T0 − Qd−1) = 0

Remark 4.2 Note that if d = 1 and R = C[x, x−1] then HQ,x
n is nothing but the Iwahori–

Hecke algebra of type An−1 with parameter x of Remark 2.1.

Now assume in addition that for all a �= b and −n < i < n the element x2i Qa − Qb is an
invertible element of R. By [4,5], over R,HQ,x

n is Morita equivalent to
⊕

μ∈Compd (n) RθHμ.
We thus deduce the following result.

Corollary 4.3 Under the above hypothesis, assume that θ : A → R is a specialization such
that θ(u2) = 1 and θ(v) = x − x−1 then Rθ Yd,n is Morita equivalent to HQ,x

n .

4.3 Symmetrizing form and Schur elements

We now study the symmetric structure of the Yokonuma–Hecke algebra. The algebra Yd,n is
symmetric and thus it has a symmetrizing formwhich controls part of its representation theory.
We will in particular recover results obtained in [3] concerning the symmetric structure of
Yd,n . In fact, the isomorphism theorem will also give an explanation and a new interpretation
of these results.

Preliminaries on symmetric algebras We recall that a symmetric algebra H over a com-
mutative ring R is an R-algebra equipped with a trace function

τ : H → R

such that the bilinear form

H × H → R
(h1, h2) �→ τ (h1h2)

is non-degenerate.We refer to [7, Ch.7] for a study of the properties of the symmetric algebras.
In particular, if K is a field containing R and such that K H is split semisimple, then for all
V ∈ Irr(K H), there exists sV in the integral closure of R in K such that

τ =
∑

χ∈Irr(H)

(1/sV ) χV ,
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where τ is extended to K H andχV is the character associated toV . The elements sV are called
the Schur elements associated to τ and they are known to control part of the representation
theory of H . We will use the following general result.

Lemma 4.4 (i) Let N ∈ Z>0. The algebra MatN (H) is a symmetric algebra with sym-
metrizing form τmat := τ ◦TrMatN , whereTrMatN is the usual trace function onMatN (H).

(ii) Let M be a simple K H-module and sM its Schur element associated to τ . Then the Schur
element smat

M of the simple MatN (K H)-module M N associated to τmat is equal to sM .

Proof (i) The form τmat is clearly a trace function. All we have to do is to check that this
is non-degenerate. Let b1 ∈ MatN (H) and assume that for all b2 ∈ MatN (H), we have
τmat(b1.b2) = 0. Let h ∈ H and consider the element b3 := h.IdN ∈ MatN (H) where IdN

is the identity matrix in MatN (H). Then we have

τmat(b1.b2b3) = τ ◦ TrMatN (hb1.b2)
= τ (h.TrMatN (b1.b2))

As this element is zero for all h ∈ H and as τ is a symmetrizing trace, we have
TrMatN (b1.b2) = 0 for all b2 ∈ MatN (H). This implies that b1 = 0.

(ii) Let EM be a primitive idempotent of K H associated to the simple module M . Then,
by definition, we have τ (EM ) = 1/sM . Now let Emat

M ∈ MatN (K H) be the matrix with EM

in position (1, 1) and 0 everywhere else. Then Emat
M is a primitive idempotent of MatN (K H)

associated to the simple module M N . Thus, we calculate

1/smat
M = τmat(Emat

M ) = τ ◦ TrMatN (Emat
M ) = τ (EM ) = 1/sM ,

which is the desired result. �
Symmetric structure of Yd,n The Iwahori–Hecke algebra of type A is a symmetric algebra
with symmetrizing form τ n : Hn → C[u±1, v] given on the basis elements by

τ n(T̃w) =
{
1 if w = 1,
0 otherwise.

This, in turn, implies the existence of a symmetrizing form for all μ = (μ1, . . . , μd) ∈
Compd(n) onHμ by restriction: τμ : Hμ → C[u±1, v]. Seeing as usualHμ asHμ1 ⊗· · ·⊗
Hμd , this linear form satisfies, for all (w1, . . . , wd) ∈ Sμ1 × · · · × Sμd ,

τμ(T̃w1 ⊗ · · · ⊗ T̃wd ) = τμ1(T̃w1) . . . τμd (T̃wd ). (28)

For any n ≥ 1 and λ a partition of n, let Mλ be the simple module of the split semisimple
algebra C(u, v)Hn . We denote by sλ := sMλ the Schur element of Mλ associated to τ . We
also set s∅ := 1.

Now let λ = (λ1, . . . , λd) be a d-tuple of partitions such that μ = (|λ1|, . . . , |λd |). Then
Mλ1 ⊗· · ·⊗ Mλd is a simpleC(u, v)Hμ-module and, from (28), its Schur element associated
to τμ, denoted by sλ, is given by:

sλ = sλ1 . . . sλd . (29)

Finally, from Lemma 4.4(i), we obtain a symmetrizing form on the algebra
⊕

μ∈Compd (n)

Matmμ(Hμ) given by
⊕

μ∈Compd (n) τμ ◦ TrMatmμ
. Moreover, from Lemma 4.4(ii), the asso-

ciated Schur element of the simple module indexed by a d-partition λ = (λ1, . . . , λd) of n
is given by Formula (29).

Let us come back to the Yokonuma–Hecke algebra Yd,n . By the discussion in Sect. 4.1,
we know that the simple C(u, v)Yd,n-modules are labelled by the set of d-partitions of n.
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From the preceding discussion together with the isomorphism theorem (Theorem 3.1), we
obtain naturally a symmetrizing form on Yd,n given explicitly by

ρn :=
⊕

μ∈Compd (n)

τμ ◦ TrMatmμ
◦	μ,

and moreover, the associated Schur elements are given by Formula (29).

Alternative formula for ρn In [3], it is proved that the following formula defines a sym-
metrizing form ρ̃n : Yd,n → C[u±1, v] on Yd,n :

ρ̃n(ta1
1 . . . tan

n g̃w) =
{

dn if a1 = · · · = an = 1 and w = 1,
0 otherwise.

It turns out that the form ρ̃n actually coincides with the natural symmetrizing form ρn .

Proposition 4.5 The form ρ̃n coincides with the symmetrizing form ρn on Yd,n.

Proof We study the values taken by the two traces on the basis given by

{Eχ g̃w | χ ∈ Irr(An), w ∈ Sn}.
So let us fix μ ∈ Compd(n), k ∈ {1, . . . , mμ} and w ∈ Sn . We have, using Formula (13) for
Eχ

μ
k
,

ρ̃n(Eχ
μ
k

g̃w) = ρ̃n

⎛

⎝

⎛

⎝
∏

1≤i≤n

1

d

∑

0≤s≤d−1

χ
μ
k (ti )

s t−s
i

⎞

⎠ g̃w

⎞

⎠

= ρ̃n

⎛

⎝

⎛

⎝
∏

1≤i≤n

1

d

⎞

⎠ g̃w

⎞

⎠

=
{
1 if w = 1,
0 otherwise.

On the other hand we have

ρn(Eχ
μ
k

g̃w) = τμ ◦ TrMatmμ
◦	μ(Eχ

μ
k

g̃w)

= τμ ◦ TrMatmμ
(T̃

π−1
k,μwπ j,μ

Mk, j )

where j ∈ {1, . . . , mμ} satisfies w(χ
μ
j ) = χ

μ
k . We have j = k if and only if π−1

k,μwπk,μ ∈
Sμ. We obtain :

ρn(Eχ
μ
k

g̃w) =
{
1 if π−1

k,μwπk,μ = 1 ⇐⇒ w = 1,
0 otherwise.

and this concludes the proof. �

Remark 4.6 The Schur elements associated to ρ̃ were obtained in [3] by a direct calculation.
FromProposition 4.5 and the discussion before it, we recover the result, namely that the Schur
elements associated to ρ̃ are given by Formula (29). Furthermore, we note that Proposition
4.5 implies immediately the centrality and the non-degeneracy of ρ̃ (which was also proved
by direct calculations in [3]).
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5 Classification of Markov traces on Yokonuma–Hecke algebras

In this section, we use the isomorphism theorem to obtain a complete classification ofMarkov
traces on Yd,n . We use a definition of Markov traces analogous to the one in [7, section4.5]
for the Iwahori–Hecke algebras of type A. From now on, we extend the ground ring to
C[u±1, v±1] and keep the same notations (Hn,Hμ, Yd,n, ...) for the extended algebras.

5.1 Markov traces on Iwahori–Hecke algebras of type A

AMarkov trace on the family of algebras {Hn}n≥1 is a family of linear functions τn : Hn →
C[u±1, v±1] (n ≥ 1) satisfying:

(M1) τn(xy) = τn(yx), for n ≥ 1 and x, y ∈ Hn; (T race condition)

(M2) τn+1(xTn) = τn+1(xT −1
n ) = τn(x), for n ≥ 1 and x ∈ Hn . (Markov condition)

(30)
It is a normalized Markov trace if it satisfies in addition

(M0) τ1(1) = 1. (Normali zation condition) (31)

In (M2) and in the following as well, we keep the same notation x for an element ofHn and
the corresponding element of Hn+n′ , n′ ≥ 1, using the natural embedding of Hn in Hn+n′ .

It is a classical result that a normalized Markov trace on {Hn}n≥1 exists and is unique
[7, section 4.5]. From now on, {τn}n≥1 will be this unique normalized Markov trace. For
later use, we also set τ0 : H0 := C[u±1, v±1] → C[u±1, v±1] to be the identity map on
C[u±1, v±1].

As Tn − u2T −1
n = v for any n ≥ 1, we have, using the Markov condition, that

τn+1(x) = v−1(1 − u2)τn(x) for any n ≥ 1and any x ∈ Hn, (32)

and by induction on n, using that τ1(1) = 1, we obtain

τn(1) = (
v−1(1 − u2)

)n−1 for any n ≥ 1. (33)

We will need later the following properties of the Markov trace {τn}n≥1. For the second
item, we recall that Hμ � Hμ1 ⊗ · · · ⊗ Hμd and these two algebras are identified. Recall
also that this algebra is naturally embedded in Hn for any μ = (μ1, . . . , μd) ∈ Compd(n).
See (5) for the definition of [μ].
Lemma 5.1 (i) For any n ≥ 1, we have:

τn+1(xTk y) = τn+1(xT −1
k y) = τn(xy), for any k ∈ {1, . . . , n} and x, y ∈ Hk . (34)

(ii) For any n ≥ 1 and any μ ∈ Compd(n), we have:

τn(x1⊗· · ·⊗xd) = (
v−1(1−u2)

)|[μ]|−1
τμ1(x1) . . . τμd (xd), for any x1⊗· · ·⊗xd ∈ Hμ.

(35)

Proof (i) Let n ≥ 1, k ∈ {1, . . . , n} and x, y ∈ Hk . We proceed by induction on n − k. For
k = n, Equation (34) follows directly from Conditions (M1) and (M2). Assume k < n. Then
Tk+1 exists in Hn+1 and commutes with x and y. By centrality of τn+1, we have

τn+1(xT ±1
k y) = τn+1(xTk+1T ±1

k T −1
k+1y).
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Using the braid relation Tk+1T ±1
k T −1

k+1 = T −1
k T ±1

k+1Tk and the induction hypothesis, we
conclude that

τn+1(xT ±1
k y) = τn+1(xT −1

k T ±1
k+1Tk y) = τn(xT −1

k Tk y) = τn(xy).

(ii) Let n ≥ 1, μ ∈ Compd(n) and x = x1 ⊗ · · · ⊗ xd ∈ Hμ. First assume that x = 1. We
have, using (33) and the convention τ0(1) = 1,

τμ1(1) . . . τμd (1) =
∏

μa≥1

(
v−1(1 − u2)

)μa−1 = (
v−1(1 − u2)

)n−|[μ]|
,

which yields, together with (33), Formula (35) for x = 1.
Let now x �= 1. We proceed by induction on n (the case n = 1 being covered by the case

x = 1). Using that x �= 1, we take a ∈ {1, . . . , d} to be such that xa+1 = · · · = xd = 1 and
xa = h1Tkh2 ∈ Hμa with k ∈ {1, . . . , μa − 1} and h1, h2 ∈ Hk (in particular, μa ≥ 2). We
set ν = μ[a] ∈ Compd(n − 1) (that is, νa = μa − 1 and νb = μb if b �= a). We calculate,
using item (i),

τn(x) = τn(x1 ⊗ · · · ⊗ xa−1 ⊗ h1Tkh2 ⊗ 1 · · · ⊗ 1)

= τn−1(x1 ⊗ · · · ⊗ xa−1 ⊗ h1h2 ⊗ 1 · · · ⊗ 1);
using induction hypothesis, we then obtain

τn(x) = (
v−1(1 − u2)

)|[ν]|−1
τν1(x1) . . . τνa−1(xa−1)τνa (h1h2)τνa+1(1) . . . τνd (1);

finally, we have [ν] = [μ], since μa ≥ 2, and moreover, using item (i), τνa (h1h2) =
τμa−1(h1h2) = τμa (h1Tkh2). So we conclude that Formula (35) is satisfied. �
5.2 Markov traces on Yokonuma–Hecke algebras

A Markov trace on the family of algebras {Yd,n}n≥1 is a family of linear functions ρn :
Yd,n → C[u±1, v±1] (n ≥ 1) satisfying:

(M1) ρn(xy) = ρn(yx), for any n ≥ 1 and x, y ∈ Yd,n; (Trace condition)
(M2) ρn+1(xgn) =

ρn+1(xg−1
n ) = ρn(x), for any n ≥ 1 and x ∈ Yd,n . (Markov condition)

(36)

Remark 5.2 For the Markov traces on the Iwahori–Hecke algebras, there is no loss of gen-
erality in considering the normalized Markov trace. Indeed, it is straightforward to see that
if {τn}n≥1 is a Markov trace on {Hn}n≥1 such that τ1(1) = 0, then all the linear functions τn

are identically 0. So we can assume that τ1(1) �= 0 and normalize it so that τ1(1) = 1.
This remark is no longer valid for the Yokonuma–Hecke algebras, for which a Markov

trace {ρn}n≥1 may satisfy ρ1(1) = 0 without being trivial (see the classification below).
Therefore, we will work in the general setting of non-normalized Markov traces.

Let n ≥ 1 and let κ be any linear function from Yd,n to C[u±1, v±1] satisfying the
trace condition κ(xy) = κ(yx), ∀x, y ∈ Yd,n . Recall the isomorphisms �μ and 	μ =
�−1

μ between Matmμ(Hμ) and EμYd,n given by (21)-(22). For each μ ∈ Compd(n), the
composed map κ ◦ �μ is a linear map from Matmμ(Hμ) to C[u±1, v±1] also satisfying the
trace condition. As the usual trace of a matrix is the only trace function on a matrix algebra
(up to normalization), the map κ ◦ �μ is of the form:

κ ◦ �μ = κμ ◦ TrMatmμ
,
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for some trace function κμ : Hμ → C[u±1, v±1]. In other words, we have

κ(x) =
∑

μ∈Compd (n)

κμ ◦ TrMatmμ
◦	μ(Eμx), for x ∈ Yd,n,

(where we wrote x = ∑
μ∈Compd (n) Eμx) and we refer to the maps κμ as the trace functions

associated to κ .

Classification of Markov traces on {Yd,n}n≥1 We are now ready to give the classification of
Markov traces on the Yokonuma–Hecke algebras {Yd,n}n≥1 which is the main result of this
section. We refer to Sect. 2, (5) and (6), for the definition of the base [μ] of a composition μ

and of the set Comp0d .

Theorem 5.3 A family {ρn}n≥1 of linear functions, ρn : Yd,n → C[u±1, v±1], is a Markov
trace on the family of algebras {Yd,n}n≥1 if and only if there is a set of parameters {αμ0 , μ0 ∈
Comp0d} ⊂ C[u±1, v±1] such that

ρn(x) =
∑

μ∈Compd (n)

ρμ ◦ TrMatmμ
◦	μ(Eμx), for n ≥ 1 and x ∈ Yd,n, (37)

where the associated trace functions ρμ : Hμ → C[u±1, v±1] are given by

ρμ = α[μ] · τμ1 ⊗ · · · ⊗ τμd , for any μ ∈ Compd(n). (38)

The remaining of this section is devoted to the proof of the Theorem.

Preliminary lemmas Let {ρn}n≥1 be a family of linear functions ρn : Yd,n → C[u±1, v±1]
satisfying the trace condition (M1).

Lemma 5.4 The family {ρn}n≥1 satisfies the Markov condition (M2) if and only if the asso-
ciated traces ρμ satisfy, for any μ ∈ ⋃

n≥1 Compd(n) and any a ∈ {1, . . . , d} such that
μa ≥ 1,

ρμ[a]
(x1 ⊗ · · · ⊗ xa Tμa ⊗ · · · ⊗ xd) = ρμ[a]

(x1 ⊗ · · · ⊗ xa T −1
μa

⊗ · · · ⊗ xd)

= ρμ(x1 ⊗ · · · ⊗ xa ⊗ · · · ⊗ xd), (39)

for any x1 ⊗ · · · ⊗ xd ∈ Hμ.

Proof Let n ≥ 1 and x ∈ Yd,n . In the proof, we will often use the notations and the results
explained in Sect. 3.4. First, note that it is enough to take x = Eχ

μ
i

g̃w , an element of the
basis of Yd,n , where μ ∈ Compd(n), i ∈ {1, . . . , mμ} and w ∈ Sn . For later use, we denote
by b the integer in {1, . . . , d} such that χμ

i (tn) = ξb.
We recall that 	μ(x) = T̃

π−1
i wπ j

Mi, j , where j ∈ {1, . . . , mμ} is uniquely determined by

w(χ
μ
j ) = χ

μ
i . Thus, we have:

ρn(x) = ρμ ◦ TrMatmμ
◦	μ(x)

=
{
0 if w(χ

μ
i ) �= χ

μ
i ;

ρμ(T̃
π−1

i wπi
) if w(χ

μ
i ) = χ

μ
i .

(40)

Now, in Yd,n+1, we have (due to defining formulas (9) for gw and g̃w)

xgn = u
∑

1≤a≤d

E
χ

μ[a]
ia

g̃wsn ,
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and we note that, for 1 ≤ a ≤ d , we havewsn(χ
μ[a]
ia

) = χ
μ[a]
ia

if and only if sn(χ
μ[a]
ia

) = χ
μ[a]
ia

and w(χ
μ[a]
ia

) = χ
μ[a]
ia

(because w ∈ Sn). It means that wsn(χ
μ[a]
ia

) = χ
μ[a]
ia

if and only if

a = b and w(χ
μ
i ) = χ

μ
i . Thus we obtain:

ρn+1(xgn) = u
∑

1≤a≤d

ρμ[a] ◦ TrMatm
μ[a] ◦	μ[a](xgn)

=
{
0 if w(χ

μ
i ) �= χ

μ
i ;

u ρμ[b]
(T̃

π−1
ib

wsnπib
) if w(χ

μ
i ) = χ

μ
i .

We write π−1
ib

wsnπib
= π−1

ib
wπib

· π−1
ib

snπib
. Recall that πib = πi · (μ1 + · · · + μb +

1, . . . , n, n + 1)−1, see (27); moreover,

πi (n + 1) = n + 1, and πi (μ1 + · · · + μb) = n,

since πi ∈ Sn and πi is the element of minimal length sending χ
μ
1 on χ

μ
i . Therefore we

have

π−1
ib

snπib
= (μ1 + · · · + μb, μ1 + · · · + μb + 1) and

π−1
ib

wπib
(μ1 + · · · + μb + 1) = μ1 + · · · + μb + 1,

We conclude that T̃
π−1

ib
wsnπib

= T̃
π−1

ib
wπib

T̃μ1+···+μb = u−1T̃
π−1

ib
wπib

Tμ1+···+μb , and in turn

ρn+1(xgn) =
{
0 if w(χ

μ
i ) �= χ

μ
i ;

ρμ[b]
(T̃

π−1
ib

wπib
Tμ1+···+μb ) if w(χ

μ
i ) = χ

μ
i .

(41)

Now we will calculate ρn+1(xg−1
n ) using g−1

n = u−2(gn − ven). First we note that
en x = ∑

1≤a≤d en E
χ

μ[a]
ia

g̃w , which gives en x = E
χ

μ[b]
ib

g̃w , since en Eχ = 0 whenever

χ(tn) �= χ(tn+1). In addition we have w(χ
μ[b]
ib

) = χ
μ[b]
ib

if and only if w(χ
μ
i ) = χ

μ
i .

Therefore, we obtain, using first the centrality of ρn+1,

ρn+1(xen) = ρn+1(en x)

= ρμ[b] ◦ TrMatm
μ[b] ◦	μ[b](E

χ
μ[b]
ib

g̃w)

=
{
0 if w(χ

μ
i ) �= χ

μ
i ;

ρμ[b]
(T̃

π−1
ib

wπib
) if w(χ

μ
i ) = χ

μ
i .

As we have T −1
μ1+···+μb

= u−2(Tμ1+···+μb − v) in Hμ[b]
, we conclude that

ρn+1(xg−1
n ) =

{
0 if w(χ

μ
i ) �= χ

μ
i ;

ρμ[b]
(T̃

π−1
ib

wπib
T −1

μ1+···+μb
) if w(χ

μ
i ) = χ

μ
i

(42)

To sum up, in (40)–(42), we obtained first that

ρn(x) = ρn+1(xgn) = ρn+1(xg−1
n ) = 0, if w(χ

μ
i ) �= χ

μ
i .

Furthermore, if w(χ
μ
i ) = χ

μ
i , then we write T̃

π−1
i wπi

= x1 ⊗ · · · ⊗ xd ∈ Hμ, and we

note that, due to (25) and (27), T̃
π−1

ib
wπib

is the image in Hμ[b]
of T̃

π−1
i wπi

under the natural
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inclusion Hμ ⊂ Hμ[b]
. So, if w(χ

μ
i ) = χ

μ
i , Formulas (40)–(42) read

ρn(x) = ρμ(x1 ⊗ · · · ⊗ xb ⊗ · · · ⊗ xd) and

ρn+1(xg±1
n ) = ρμ[b]

(x1 ⊗ · · · ⊗ xbT ±1
μb

⊗ · · · ⊗ xd).

We conclude the proof of the Lemma by noticing that, when i runs through {1, . . . , mμ},
every b such that μb ≥ 1 is obtained, and moreover every element of Hμ can be written as
T̃

π−1
i wπi

for some w ∈ Sn satisfying w(χ
μ
i ) = χ

μ
i . �

Lemma 5.5 The family {ρn}n≥1 satisfies the Markov condition (M2) if and only if the asso-
ciated traces ρμ satisfy, for any μ ∈ ⋃

n≥1 Compd(n) and any a ∈ {1, . . . , d} such that
μa ≥ 1,

ρμ[a]
(x1 ⊗ · · · ⊗ xa Tk ⊗ · · · ⊗ xd) = ρμ[a]

(x1 ⊗ · · · ⊗ xa T −1
k ⊗ · · · ⊗ xd)

= ρμ(x1 ⊗ · · · ⊗ xa ⊗ · · · ⊗ xd),
(43)

for any k ∈ {1, . . . , μa} and any x1 ⊗ · · · ⊗ xd ∈ Hμ such that xa ∈ Hk ⊂ Hμa .

Proof The “if” is a direct consequence of Lemma 5.4, using the assumption with k = μa .
To prove the “only if”, we assume that the family {ρn}n≥1 satisfies the Markov condition

(M2), and we proceed by induction onμa −k (it is very similar to the proof of Lemma 5.1(i),
so we only sketch it). The case μa − k = 0 is Lemma 5.4. So let k < μa . Then Tk+1 exists
in Hμa+1 and commutes with xa . By centrality of ρμ[a]

, we have

ρμ[a]
(x1 ⊗ · · · ⊗ xa T ±1

k ⊗ · · · ⊗ xd) = ρμ[a]
(x1 ⊗ · · · ⊗ xa Tk+1T ±1

k T −1
k+1 ⊗ · · · ⊗ xd).

Using Tk+1T ±1
k T −1

k+1 = T −1
k T ±1

k+1Tk and the induction hypothesis, we obtain Formula (43).
�

Proof of Theorem 5.3 We are now ready to prove Theorem 5.3. Let {ρn}n≥1 be a Markov
trace on {Yd,n}n≥1. As explained before Theorem 5.3, the existence of associated traces ρμ,
such that Formula (37) holds, follows from the trace condition for ρn . We set αμ := ρμ(1)
for any μ ∈ Comp0d .

Let n ≥ 1, μ ∈ Compd(n) and x = x1 ⊗ · · · ⊗ xd ∈ Hμ. We will prove that

ρμ(x) = α[μ] · τμ1(x1) . . . τμd (xd). (44)

First assume that μ = [μ] (which is always true if n = 1), so that every μa is 0 or 1. Then
we have x = 1 and Formula (44) follows from τ1(1) = τ0(1) = 1.

Assume now that μ �= [μ]. We proceed by induction on n. First let x �= 1, so that we
have a ∈ {1, . . . , d} such that xa �= 1 (in particular, μa ≥ 2). We set xa = h1Tkh2, where
k ∈ {1, . . . , μa − 1} and h1, h2 ∈ Hk ⊂ Hμa . We denote ν := μ[a] ∈ Compd(n − 1) (that
is, νa = μa − 1 and νb = μb if b �= a), so that we have

ρμ(x) = ρμ(x1 ⊗ · · · ⊗ h1Tkh2 ⊗ · · · ⊗ xd)

= ρν(x1 ⊗ · · · ⊗ h1h2 ⊗ · · · ⊗ xd)

= α[ν]τμ1(x1) . . . τμa−1(h1h2) . . . τμd (xd)

= α[μ]τμ1(x1) . . . τμa (h1Tkh2) . . . τμd (xd),

where we first used (43) from Lemma 5.5, then the induction hypothesis and finally the
property of τμa stated in item (i) of Lemma 5.1 (we also noted that [ν] = [μ] since μa ≥ 2).
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Finally let x = 1. As μ �= [μ], we can choose a ∈ {1, . . . , d} such that μa ≥ 2. We recall
that, in Hμa , we have 1 = v−1(T1 − u2T −1

1 ). Setting again ν := μ[a] ∈ Compd(n − 1), we
calculate (below v−1(T1 − u2T −1

1 ) is inserted in the a-th factor of the tensor product):

ρμ(1) = ρμ(1 ⊗ · · · 1 ⊗ v−1(T1 − u2T −1
1 ) ⊗ 1 · · · ⊗ 1) = v−1(1 − u2)ρν(1),

where we used (43) in Lemma 5.5. Using the induction hypothesis, together with the fact
that [ν] = [μ] (since μa ≥ 2), we obtain

ρμ(1) = α[μ]v−1(1 − u2)τμ1(1) . . . τμa−1(1) . . . τμd (1) = α[μ]τμ1(1) . . . τμa (1) . . . τμd (1),

where we used that τμa (1) = v−1(1−u2)τμa−1(1) (Formula (33)). This concludes the proof
of Formula (44).

For the converse part of the theorem, we only have to check that, given a set of parameters
{αμ, μ ∈ Comp0d} ⊂ C[u±1, v±1], the family {ρn}n≥1 of linear functions given by (37) and
(38) is a Markov trace. The trace condition is obviously satisfied as well as Equation (39).
The proof is concluded using Lemma 5.4. �

Remark 5.6 In view of Lemma 5.1, item (ii), the associated traces of a Markov trace {ρn}n≥1

described by Theorem 5.3 can be formally expressed as

ρμ = α[μ]
(
v−1(1 − u2)

)|[μ]|−1 · τn, for any μ ∈ Compd(n),

where τn acts on Hμ by restriction from Hn (note that Lemma 5.1, item (ii), asserts in
particular that the right hand side evaluated on x ∈ Hμ indeed belongs to C[u±1, v±1]).

Basis of the space of Markov traces The classification of Markov traces on {Yd,n}n≥1

given by Theorem 5.3 can be formulated by saying that the space of Markov traces is a
C[u±1, v±1]-module (for pointwise addition and scalar multiplication), which is free and of
rank the cardinal of the set Comp0d . We have

�Comp0d =
∑

1≤k≤d

(
d
k

)

= 2d − 1.

Further, Theorem 5.3 provides a natural basis for this module. Indeed, for any μ0 ∈ Comp0d ,
let {ρμ0,n}n≥1 be the family of linear functions given by Formulas (37)-(38), for the following
choice of parameters:

αμ0 := 1 and αν0 := 0, for ν0 ∈ Comp0d such that ν0 �= μ0.

Then, {ρμ0,n}n≥1 is a Markov trace on {Yd,n}n≥1 and it is given by

ρμ0,n(x) =
∑

μ∈Compd (n)

[μ]=μ0

(τμ1 ⊗ · · · ⊗ τμd ) ◦ TrMatmμ
◦	μ(Eμx), for n ≥ 1 and x ∈ Yd,n .

(45)
It follows from the classification that the following set is a C[u±1, v±1]-basis of the space of
Markov traces on {Yd,n}n≥1:

{ {ρμ0,n}n≥1 | μ0 ∈ Comp0d
}
. (46)
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6 Invariants for links and Z/dZ-framed links

Now that we have obtained a complete description of the Markov traces for Yd,n , we will
use them to deduce invariants for both framed and classical knots and links. In addition, we
compare these invariants with the one coming from the study of the Iwahori-Hecke algebra
of type A: the HOMFLYPT polynomial.

6.1 Classical braid group and HOMFLYPT polynomial

Let n ∈ Z≥1. The braid group Bn (of type An−1) is generated by elements σ1, . . . , σn−1,

with defining relations:

σiσ j = σ jσi for all i, j = 1, . . . , n − 1 such that |i − j | > 1,
σiσi+1σi = σi+1σiσi+1 for all i = 1, . . . , n − 2.

(47)

With the presentation (1), the Iwahori–Hecke algebra Hn is a quotient of the group alge-
bra over C[u±1, v±1] of the braid group Bn . We denote by δH,n the associated surjective
morphism:

δH,n : C[u±1, v±1][Bn
] → Hn, σi �→ Ti , i = 1, . . . , n − 1 .

The classical Alexander’s theorem asserts that any link can be obtained as the closure of
some braid. Next, the classical Markov’s theorem gives necessary and sufficient conditions
for two braids to have the same closure up to isotopy (see, e.g., [8]). The condition is that the
two braids are equivalent under the equivalence relation generated by the conjugation and
the so-called Markov move, namely, generated by

αβ ∼ βα (α, β ∈ Bn, n ≥ 1) and ασ±1
n ∼ α (α ∈ Bn, n ≥ 1). (48)

Note that, in the Markov move, we consider α alternatively as an element of Bn or of Bn+1

by the natural embedding Bn ⊂ Bn+1.
The conditions (M1) and (M2) in (30) for the Markov trace {τn}n≥1 on the algebras Hn

reflect this equivalence relation and, as a consequence, we obtain an isotopy invariant for
links as follows. Let K be a link and βK ∈ Bn a braid on n strands having K as its closure.
The map �H from the set of links to the ring C[u±1, v±1] defined by

�H(K ) = τn ◦ δH,n(βK ),

only depends on the isotopy class of K (this is immediate, comparing (30) and (48)), and
thus provides an isotopy invariants for links.

Remark 6.1 The Laurent polynomial �H(K ) in u, v is called the HOMFLYPT polynomial.
It was first obtained by a slightly different approach, using the Ocneanu trace on Hn and
a rescaling procedure, see [8] and references therein. We followed the approach in [7, sec-
tion4.5], where the connections between both approaches are specified. We will carefully
detail this connection in the more general context of the Yokonuma–Hecke algebras below.

6.2 Z/dZ-framed braid group and Z/dZ-framed links

Roughly speaking, a Z/dZ-framed braid is a usual braid with an element of Z/dZ (the
framing) attached to each strand. Similarly, a Z/dZ-framed link is a classical link where
each connected component carries a framing in Z/dZ. The notion of isotopy for framed
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links is generalized straightforwardly from the classical setting. We refer to [15,16] for more
details on framed braids and framed links.

Let d ∈ Z≥1. The Z/dZ-framed braid group, denoted by Z/dZ 
 Bn , is (isomorphic to) the
semi-direct product of the abelian group (Z/dZ)n by the braid group Bn , where the action
of Bn on (Z/dZ)n is by permutation. In other words, the group Z/dZ 
 Bn is generated by
elements σ1, σ2, . . . , σn−1, t1, . . . , tn, and relations:

σiσ j = σ jσi for all i, j = 1, . . . , n − 1 such that |i − j | > 1,
σiσi+1σi = σi+1σiσi+1 for all i = 1, . . . , n − 2,

ti t j = t j ti for all i, j = 1, . . . , n,
σi t j = tsi ( j)σi for all i = 1, . . . , n − 1 and j = 1, . . . , n,

td
j = 1 for all j = 1, . . . , n.

(49)

The closure of a Z/dZ-framed braid is naturally a Z/dZ-framed link (the framing of a
connected component is the sum of the framings of the strands forming this component after
closure). Given a classical link, from the classical Alexander’s theorem, we have a classical
braid closing to this link, and it is immediate that by adding a suitable framing on this braid,
one can obtain any possible framing on the given link. So the analogue ofAlexander’s theorem
is also true for Z/dZ-framed braids and links.

Moreover, the Markov’s theorem has also been generalized to the Z/dZ-framed setting
(see [16, Lemma1] or [15, Theorem 6]). The necessary and sufficient conditions for two
Z/dZ-framed braids to have the same closure up to isotopy is formally the same as for usual
braids; namely, the two braids have to be equivalent under the equivalence relation generated
by

α̃β̃ ∼ β̃α̃ (α̃, β̃ ∈ Z/dZ 
 Bn, n ≥ 1) and α̃σ±1
n ∼ α̃ (α̃ ∈ Z/dZ 
 Bn, n ≥ 1). (50)

The conditions (M1) and (M2) in (36) for a Markov trace {ρn}n≥1 on the Yokonuma–Hecke
algebras reflect this equivalence relation, and this will allow to use theMarkov traces obtained
in the previous section to construct isotopy invariants for Z/dZ-framed links.

A family of morphisms from the group algebra of Z/dZ 
 Bn to Yd,n Let γ be another
indeterminate and set R := C[u±1, v±1, γ ±1]. We define:

δ
γ

Y,n : σi �→ (
γ + (1 − γ )ei

)
gi (i = 1, . . . , n − 1), t j �→ t j ( j = 1, . . . , n). (51)

Lemma 6.2 The map δ
γ

Y,n extends to an algebras homomorphism from R
[
Z/dZ 
 Bn

]
to

RYd,n.

Proof We have to check that the defining relations (49) are satisfied by the images of the
generators, and also that the images of the generators are invertible elements of RYd,n . For
the latter statement, it is easily checked that

((
γ + (1 − γ )ei

)
gi

)−1 = (
γ −1 + (1 − γ −1)ei

)
g−1

i , i = 1, . . . , n − 1. (52)

The three last relations in (49) are satisfied since the elements ei ’s and t j ’s commute. Then,
if |i − j | > 1, a direct calculation shows that the image of the first relation in (49) is

(γ + (1 − γ )ei
)
(γ + (1 − γ )e j

)
gi g j = (γ + (1 − γ )e j

)
(γ + (1 − γ )ei

)
g j gi ,

since gi e j = e j gi and g j ei = ei g j whenever |i − j | > 1. This relation is satisfied in RYd,n .
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Finally, using again the commutation relations between the generators gi ’s and t j , we
calculate the image of the first relation in (49), and obtain

(γ + (1 − γ )ei
)
(γ + (1 − γ )ei,i+2

)
(γ + (1 − γ )ei+1

)(
gi gi+1gi − gi+1gi gi+1) = 0,

where ei,i+2 := 1

d

∑

0≤s≤d−1
t s
i t−s

i+2. This relation is also satisfied in RYd,n . �

Remark 6.3 If we specialize the parameter γ to 1, we obtain the natural surjective morphism
from the group algebra over C[u±1, v±1] of the group Z/dZ 
 Bn to its quotient Yd,n with
the presentation (7) of Sect. 2. For other values of γ , this morphism is related with other
equivalent presentations of Yd,n ; see below Sect. 6.5.

6.3 Invariants for classical and Z/dZ-framed links from Yd,n

Invariants for Z/dZ-framed links from Yd,n Let {ρn}n≥1 be a Markov trace on the
Yokonuma–Hecke algebras {Yd,n}n≥1 (defined by Conditions (M1) and (M2) in (36)), and
extend it R-linearly to {RYd,n}n≥1.

Let K̃ be a Z/dZ-framed link and β̃K̃ ∈ Z/dZ 
 Bn a Z/dZ-framed braid on n strands
having K̃ as its closure. We define a map F�

γ

Y,ρ from the set of Z/dZ-framed links to the
ring R by

F�
γ

Y,ρ(K̃ ) = ρn ◦ δ
γ

Y,n(β̃K̃ ), (53)

where the map δ
γ

Y,n is defined in (51). For μ0 ∈ Comp0d , we denote by F�
γ

Y,μ0
the map cor-

responding to the Markov trace {ρμ0,n}n≥1 considered in (45). The classification of Markov
traces of the previous section, together with the construction detailed in this section, lead to
the following result.

Theorem 6.4 1. For any Markov trace {ρn}n≥1 on {Yd,n}n≥1, the mapF�
γ

Y,ρ is an isotopy

invariant for Z/dZ-framed links with values in R = C[u±1, v±1, γ ±1].
2. The set of invariants for Z/dZ-framed links obtained from the Yokonuma–Hecke alge-
bras via this construction consists of all R-linear combinations of invariants from the
set {

F�
γ

Y,μ0 | μ0 ∈ Comp0d
}

. (54)

Proof 1. By the Markov’s theorem for Z/dZ-framed links, we have to check that the map
givenby {ρn◦δ

γ

Y,n}n≥1 from the set ofZ/dZ-framedbraids to the ring R coincide on equivalent
braids, for the equivalence relation generated by the moves in (50).

From the trace condition (M1) in (36) for {ρn}n≥1 and the fact that the maps δ
γ

Y,n (n ≥ 1)

are algebra morphisms (Lemma 6.2), it follows at once that the map ρn ◦ δ
γ

Y,n (n ≥ 1)

coincides on α̃β̃ and β̃α̃ for any two braids α̃, β̃ ∈ Z/dZ 
 Bn .
Next, let n ≥ 1 and α̃ ∈ Z/dZ 
 Bn . We set xα̃ := δ

γ

Y,n(α̃) ∈ Yd,n . Note that, seeing xα̃ as

an element of Yd,n+1, we also have xα̃ := δ
γ

Y,n+1(α̃), by definition of {δγ

Y,n}n≥1. From (51)
and (52), we have

ρn+1 ◦ δ
γ

Y,n+1(α̃σ±1
n ) = ρn+1

(
xα̃

(
γ ±1 + (1 − γ ±1)en

)
g±1

n

)
,

and we need to prove that it is equal to ρn ◦ δ
γ

Y,n(α̃) = ρn(xα̃). This will follow from the
Markov condition (M2) in (36) for {ρn}n≥1 together with the following fact:

ρn+1(xeng±1
n ) = ρn+1(xg±1

n ), for any n ≥ 1 and x ∈ Yd,n . (55)
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This last relation is true for any linear map κ on Yd,n+1 satisfying the trace condition since,
for s ∈ {1, . . . , d},

κ(xt−s
n+1t s

n g±1
n ) = κ(xt−s

n+1g±1
n ts

n+1) = κ(t s
n+1xt−s

n+1g±1
n ) = κ(xg±1

n ),

where we used successively the relation tng±1
n = g±1

n tn+1, the trace condition and the fact
that tn+1 commutes with x ∈ Yd,n .

2. This is simply a reformulation of the classification of Markov traces {ρn}n≥1 on
{Yd,n}n≥1 given by Theorem 5.3 leading to the basis

{ {ρμ0,n}n≥1 | μ0 ∈ Comp0d
}
in (46).

�
Invariants for classical links fromYd,n The classical braid group Bn is naturally a subgroup
of the Z/dZ-framed braid group Z/dZ 
 Bn (a classical braid is seen as a Z/dZ-framed braid
with all framings equal to 0). Therefore, one can restrict the maps F�

γ

Y,ρ in (53) to classical
links, and obtain invariants for classical links since the Markov’s theorem is formally the
same for classical and Z/dZ-framed links; compare (48) and (50).

Explicitly, let K be a link and βK ∈ Bn a braid on n strands having K as its closure. We
now see βK as an element of the Z/dZ-framed braid group Z/dZ 
 Bn and we set

�
γ

Y,ρ(K ) = ρn ◦ δ
γ

Y,n(βK ). (56)

Forμ0 ∈ Comp0d , we denote by �
γ

Y,μ0 the map corresponding to theMarkov trace {ρμ0,n}n≥1

considered in (45). According to the above discussion, the following corollary is immediately
deduced from Theorem 6.4

Corollary 6.5 1. For any Markov trace {ρn}n≥1 on {Yd,n}n≥1, the map �
γ

Y,ρ is an isotopy

invariant for classical links with values in R = C[u±1, v±1, γ ±1].
2. The set of invariants for classical links obtained from the Yokonuma–Hecke algebras
via this construction consists of all R-linear combinations of invariants from the set

{
�

γ

Y,μ0 | μ0 ∈ Comp0d
}

. (57)

Note that, in the definition of the invariant �
γ

Y,ρ(K ) in (56), even though the word βK only

contains generators σi (and no t j ), the image δ
γ

Y,n(βK ) in the algebra Yd,n does involve in
general the generators t j (more precisely, it involves the elements ei ). Indeed, first, the image
of σi by the map δ

γ

Y,n contains the idempotent ei . Besides, even if γ is specialized to 1, as

soon as one σ 2
i for example appears in βK , then the last relation of (7) is used to calculate

ρn ◦ δ1Y,n(βK ), and this last relation involves the idempotent ei .

Example 6.6 Let d = 2. We will explicitly give �
γ

Y,μ0(K ) for μ0 ∈ Comp02 and some
classical links K . Using the notations of [19], let K1 = L10a46 and K2 = L10a110. For
each of these two links, one can find in [19] a braid on 4 strands closing to the link. Namely,
the braid β1 = σ 2

1 σ−1
2 σ−1

3 σ−1
2 σ 3

1 σ−1
2 σ−1

3 σ−1
2 σ1 admits K1 as its closure, while the braid

β1 = σ−1
1 σ 3

2 σ−1
1 σ−1

3 σ 3
2 σ−1

3 admits K2 as its closure. Thus we can use the calculations made
in Example 3.6.

• We first consider μ0 = (1, 0) or μ0 = (0, 1). Then we have, by definition, �γ

Y,μ0(Ki ) =
τ4◦	μ◦δ

γ

Y,4(βi ) (i = 1, 2),whereμ is the composition (4, 0) or (0, 4), and τ4 comes from
the unique Markov trace {τn}n≥1 on the Iwahori–Hecke algebras. It is straightforward to
see that in this situation, from the formulas in Example 3.6, we have δ

γ

Y,4(βi ) = δH,4(βi ),
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and in turn that we have �
γ

Y,μ0(Ki ) = �H(Ki ) (the HOMFLYPT polynomial). This is a

general property of the invariants �
γ

Y,μ0 when |μ0| = 1; see Proposition 6.12 below.

• Then we consider μ0 = (1, 1). By definition, we have (i = 1, 2)

�
γ

Y,μ0(Ki ) =
(
(τ3⊗τ1)◦Tr◦	(3,1)+(τ1⊗τ3)◦Tr◦	(1,3)+(τ2⊗τ2)◦Tr◦	(2,2)

)
◦δ

γ

Y,4(βi ),

(58)

where Tr is the usual trace of a matrix. So we need first to calculate 	μ ◦ δ
γ

Y,4(βi ) for
μ = (3, 1), (1, 3), (2, 2). Take for example i = 1 and μ = (3, 1). According to Example
3.6, the generators g1, g2 and g3 map under 	(3,1) ◦ δ

γ

Y,4 respectively to
⎛

⎜
⎜
⎝

· uγ · ·
uγ · · ·
· · T1 ·
· · · T1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

T1 · · ·
· · uγ ·
· uγ · ·
· · · T2

⎞

⎟
⎟
⎠ and

⎛

⎜
⎜
⎝

T2 · · ·
· T2 · ·
· · · uγ

· · uγ ·

⎞

⎟
⎟
⎠ .

Performing the matrix multiplication corresponding to the braid β1 given above, we obtain

	(3,1) ◦ δ
γ

Y,4(β1)

=

⎛

⎜
⎜
⎜
⎜
⎝

· · (uγ )2 T 2
1 T −1

2 T −1
1 T2T −1

1 ·
· T 2

1 T −1
2 T 3

1 T2T1
(uγ )4

· ·
· · · uγ T −1

2 T 3
1 T −1

2
(uγ )5 T −1

1 T −1
2 T −1

1 T −1
2 T1 · · ·

⎞

⎟
⎟
⎟
⎟
⎠

This gives a contribution (i.e. a term in the sum (58)) to �
γ

Y,μ0(K1) equal to
1

(uγ )4
τ3

(T 2
1 T −1

2 T 3
1 T2T1). It is easy to see that the composition (1, 3) gives the same contribution

to �
γ

Y,μ0(K1). A similar calculation shows that the composition (2, 2) gives a contribution
equal to 0 (this can also be deduced without calculation from the fact that the underlying
permutation of β1 is (1, 2, 4) and this cycle structure makes impossible for 	(2,2) ◦ δ

γ

Y,4(β1)

to have a non-zero diagonal term).
A similar procedure for β2 shows that the compositions (3, 1) and (1, 3) give both a

contribution to �
γ

Y,μ0(K2) equal to 0, while the composition (2, 2) gives a contribution equal

to 2
(uγ )4

τ2(T 3
1 )2.

Quite remarkably, even though the two calculations involve different compositions and
different elements of Iwahori–Hecke algebras, these two calculations lead finally to

�
γ

Y,μ0(K1) = �
γ

Y,μ0(K2) = 2

(uγ )4
(2u2 − u4 + v2)2.

From [19], we note that these two links K1, K2 are topologically different and are however not
distinguished by theHOMFLYPTpolynomial.We just checked that they are not distinguished
neither by the invariants �

γ

Y,μ0 (when d = 2) coming from the Yokonuma–Hecke algebras.

In fact,wewill prove below in Proposition 6.13 that (for any d), the set of invariants {�γ

Y,μ0}
is topologically equivalent to the HOMFLYPT polynomial when restricted to classical knots.
We note that the question remains open for classical links which are not knots. However,
computational data seem to indicate that the invariants are topologically equivalent as well
for all classical links (we checked this by direct calculations, as in the example here, for
d = 2 and links up to 10 crossings; see also [2]).
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332 N. Jacon, L. Poulain d’Andecy

6.4 Comparison of invariants for classical links

As already explained, when calculating the invariant for a classical link using the Yokonuma–
Hecke algebras, the additional generators t j play a non-trivial role, and therefore these
invariants are a priori different from the HOMFLYPT polynomial. In this part, we will
compare the set of invariants for classical links obtained from the Yokonuma–Hecke algebras
with the HOMFLYPT polynomial. Themain question is whether or not they are topologically
equivalent.

According to Corollary 6.5, we can express any invariant for classical links obtained from
the algebras Yd,n via the above construction as a linear combination of the invariants denoted
�

γ

Y,μ0 , where μ0 ∈ Comp0d . The main question is whether we have, for any two classical
links K1, K2,

(
∀μ0 ∈ Comp0d , �

γ

Y,μ0(K1) = �
γ

Y,μ0(K2)
)

?⇐⇒ �H(K1) = �H(K2).

In this part, we will show first that the set {�γ

Y,μ0 | μ0 ∈ Comp0d} contains �H, so that
only one half of the equivalence is not trivial. Secondly, we will show that this equivalence is
true whenever we restrict our attention to classical knots. We refer to [1,2] for similar results
about Juyumaya–Lambropoulou invariants. Note that these invariants are shown in Sect. 6.5
below to be certain linear combinations of the set {�γ

Y,μ0 | μ0 ∈ Comp0d} for some specific
value of γ .

The HOMFLYPT polynomial from Yd,n Among the basic invariants �
γ

Y,μ0 , we consider in

this paragraph the ones for which |μ0| = 1.

Proposition 6.7 Let μ0 ∈ Compd(1). We have, for any classical link K ,

�
γ

Y,μ0(K ) = �H(K ).

In particular, the set of invariants for classical links obtained from Yd,n contains the HOM-
FLYPT polynomial.

Proof Let μ0 ∈ Compd(1) (so that μ0 automatically belongs to Comp0d ). So there exists
a ∈ {1, . . . , d} such that μ0 = (0, . . . , 0, 1, 0, . . . , 0) with 1 in a-th position. Note that a
compositionμwith d parts satisfies [μ] = μ0 if and only ifμ = (0, . . . , 0, n, 0, . . . , 0)with
n in a-th position for some n ≥ 1.

So let n ≥ 1 and μ = (0, . . . , 0, n, 0, . . . , 0) with n in a-th position. In this situation, we
have Hμ ∼= Hn and mμ = 1. According to Formula (45), the linear function ρμ0,n is then
given by

ρμ0,n(x) = τn ◦ 	μ(Eμx), for any x ∈ Yd,n . (59)

The defining formula (22) for the isomorphism 	μ becomes simply 	μ(Eμgw) = Tw for
w ∈ Sn , and in particular, we have

	μ(Eμgi ) = Ti , for any i = 1, . . . , n − 1. (60)

Note that Eμei = Eμ, for any i = 1, . . . , n − 1, since, for the considered μ, we have
Eμti = Eμti+1 (both are equals to ξa Eμ). Therefore

Eμδ
γ

Y,n(σi ) = Eμ

(
γ + (1 − γ )ei

)
gi = Eμgi , for any i = 1, . . . , n − 1. (61)
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To conclude, let β ∈ Bn be a classical braid. Equations (60)-(61), together with the fact that
	μ is a morphism, yields

	μ

(
Eμδ

γ

Y,n(β)
) = δH,n(β),

which gives in turn, using (59), that ρμ0,n ◦δ
γ

Y,n(β) = τn ◦δH,n(β). This is the desired result.
�

Equivalence of invariants for classical knots Let β ∈ Bn , for some n ≥ 1, be a classical
braid. From the presentation (47) of Bn , there is a surjective morphism from Bn to the
symmetric group Sn given by σi �→ si = (i, i + 1) for i = 1, . . . , n − 1. We will denote
β̄ ∈ Sn the image of β and refer to it as the underlying permutation of β.

Now, the necessary and sufficient condition for the closure of β to be a knot (that is, a
link with only one connected component) is that the underlying permutation β̄ leaves no
non-trivial subset of {1, . . . , n} invariant. In other words, the closure of β is a knot if and
only if β̄ is a cycle of length n.

Proposition 6.8 For any classical knot K and any μ0 ∈ Comp0d ,

�
γ

Y,μ0(K ) =
{

�H(K ) if |μ0| = 1,
0 otherwise.

In particular, for classical knots, the invariants obtained from Yd,n are topologically equiv-
alent to the HOMFLYPT polynomial.

Proof Let K be a classical knot and β ∈ Bn , for some n ≥ 1, a classical braid closing to K .
To save space during the proof, we set xβ := δ

γ

Y,n(β) ∈ Yd,n .

Let μ0 ∈ Comp0d with |μ0| > 1. According to Proposition 6.7, we only have to prove that
�

γ

Y,μ0(K ) = 0 which is equivalent to ρμ0,n(xβ) = 0. We will actually prove the following
stronger statement:

TrMatmμ
◦	μ

(
Eχ

μ
k

xβ

) = 0, for any μ ∈ Compd(n) such that [μ] = μ0,

and any k ∈ {1, . . . , mμ}.
The required assertionwill then follow from (45) and the fact that Eμxβ = ∑

1≤k≤mμ
Eχ

μ
k

xβ .
We first note that, in the framed braid group Z/dZ 
 Bn , we have βt j = tβ̄( j)β, for

j = 1, . . . , n, due to the fourth relation in (49). Therefore, in Yd,n , we have xβ t j = tβ̄( j)xβ ,
for j = 1, . . . , n, and in turn xβ Eχ = Eβ̄(χ)xβ for any character χ of (Z/dZ)n .

Then let μ ∈ Compd(n) such that [μ] = μ0 and k ∈ {1, . . . , mμ}. We recall that π ∈ Sn

satisfiesπ(χ
μ
k ) = χ

μ
k if and only ifπ belongs to a subgroup ofSn conjugated toSμ (namely,

to πk,μS
μπ−1

k,μ with the notations of Sect. 2). By the assumption on μ, we have at least two
integersa, b ∈ {1, . . . , d} such thatμa, μb ≥ 1, and thus the subgroupSμ = Sμ1×· · ·×Sμd

contains no cycle of length n. This means in particular that β̄−1(χ
μ
k ) �= χ

μ
k since β̄ is a cycle

of length n as K is a knot.
Finally, we write Eχ

μ
k

xβ = E2
χ

μ
k

xβ = Eχ
μ
k

xβ Eβ̄−1(χ
μ
k ) and we conclude the proof with

the following calculation

TrMatmμ
◦	μ(Eχ

μ
k

xβ Eβ̄−1(χ
μ
k )) = TrMatmμ

◦	μ(Eβ̄−1(χ
μ
k )Eχ

μ
k

xβ) = 0,

where we used that Eχ Eχ ′ = 0 if χ �= χ ′. �
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Remark 6.9 Note that in general, for an arbitraryMarkov trace {ρn}n≥1, the invariant�
γ

Y,ρ(K )

is an element of the ring R = C[u±1, v±1, γ ±1]. For a classical knot K , Proposition6.8 asserts
in particular that every invariant �

γ

Y,μ0(K ) (μ0 ∈ Comp0d ) belongs actually to the subring

C[u±1, v±1]. Further, for a classical link K , Proposition 6.7 asserts in particular that, when
μ0 ∈ Compd(1), the invariant �γ

Y,μ0(K ) belongs as well to the subring C[u±1, v±1]. So for
classical links, the parameter γ in fact starts to play a non-trivial role when K is not a knot
and |μ0| > 1 (see Example 6.6).

6.5 Connections with the approach of Juyumaya–Lambropoulou

Analogue of the Ocneanu trace and invariants Let q be an indeterminate. In [2,10,12–
15], the Yokonuma–Hecke algebra is presented as a certain quotient of the group algebra
over C[q, q−1] of the Z/dZ-framed braid group Z/dZ 
 Bn . Namely, there are generators
G1, G2, . . . , Gn−1 and t1, . . . , tn, satisfying the same relations as in (7) (with gi replaced by
Gi ) except the last one, which is replaced by

G2
i = 1 + (q − 1)ei + (q − 1)ei Gi , i = 1, . . . , n − 1 .

To avoid confusion, we will denote this algebra by Ỹd,n , and we will give an explicit isomor-
phism between Ỹd,n and Yd,n later.

Let z be another indeterminate. For convenience, we set k := C(
√

q, z). Let c1, . . . , cd−1

be arbitrary elements of k and set c0 := 1. In [10], it is proved that there is a unique k-linear
function tr on the chain, in n, of algebras kỸd,n with values in k satisfying:

(C0) tr(1) = 1,
(C1) tr(xy) = tr(yx), for any n ≥ 1 and x, y ∈ Ỹd,n;
(C2) tr(xGn) = z tr(x), for any n ≥ 1 and x ∈ Ỹd,n .

(C3) tr(xtb
n+1) = cb tr(x), for any n ≥ 0, x ∈ Ỹd,n and b ∈ {0, . . . , d − 1}.

(62)

Note that here, Ỹd,n is identified with a subalgebra of Ỹd,n+1 for any n ≥ 1.
In [15], it is explained how to obtain isotopy invariants for classical and framed links from

the linear function tr (see also [2,14] for classical and framed links and [13] for singular
links). This is done as follows.

First we take the parameters {c0, c1, . . . , cd−1} to be solutions of the so-called E-system
[14, Appendix]. To do so, we fix a non-empty subset S ⊂ {1, . . . , d}, and we set

cb := 1

|S|
∑

a∈S

ξb
a , for b = 0, 1, . . . , d − 1, (63)

where we recall that {ξ1, . . . , ξd} is the set of d-th roots of unity. We denote trS the unique
linear function satisfying (62) for the values (63) of the parameters c0, c1, . . . , cd−1, and we
set:

ES := 1

|S| , λS := z + (1 − q)ES

qz
and DS := 1√

λSz
, (64)

where the field k is extended by an element
√

λS . We denote by kS this new field.
We let δ̃(S)

Y,n be the surjective morphism from kS
[
Z/dZ 
 Bn

]
to kSỸd,n , defined by

δ̃
(S)
Y,n : σi �→ √

λSGi (i = 1, . . . , n − 1), t j �→ t j ( j = 1, . . . , n) . (65)

The fact that δ̃(S)
Y,n defines indeed an algebra morphism follows from the homogeneity of the

relations (49) in the braid generators σi .
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Finally, let K̃ be a Z/dZ-framed link and β̃K̃ ∈ Z/dZ 
 Bn a Z/dZ-framed braid on n

strands having K̃ as its closure. Then we define the map F�Y,S from the set of Z/dZ-framed
links to the field kS by

F�Y,S(K̃ ) = Dn−1
S · trS ◦̃δ

(S)
Y,n(β̃K̃ ). (66)

Theorem 6.10 (Juyumaya–Lambropoulou [15]) For any S ⊂ {1, . . . , d}, the map F�Y,S is
an isotopy invariant for Z/dZ-framed links.

Remark 6.11 As in the previous section, the invariants F�Y,S can be restricted to give invari-
ants for classical links [14]. We denote �Y,S the corresponding invariants for classical links.

Comparison with invariants F�
γ
Y,ρ We keep S a fixed non-empty subset of {1, . . . , d}, and

c0, c1, . . . , cd−1 the associated solution (63) of the E-system. In order to relate the invariant
F�Y,S (respectively, �Y,S) to the invariants of the form F�

γ

Y,ρ (respectively, �γ

Y,ρ) obtained
in Sect. 6.3, we denote

ρ̃S,n : kSỸd,n → kS, ρ̃S,n(x) := Dn−1
S · trS(x),

and define new generators by

gi := √
λS

(√
q + (1 − √

q)ei
)
Gi , i = 1, . . . , n − 1. (67)

Straightforward calculations show first that this change of generators is invertible since

Gi = √
λS

−1(√
q−1 + (1 − √

q−1
)ei

)
gi , i = 1, . . . , n − 1, (68)

and moreover, that these new generators g1, . . . , gn−1 satisfy all the defining relation in (7)
of Yd,n , where

u := √
qλS and v := (q − 1)

√
λS, (69)

Thus, Formulas (67) and (68) provide mutually inverse isomorphisms between kSỸd,n and
kSYd,n , and in turn, the linear maps ρ̃S,n (n ≥ 1) can be seen, via this isomorphism, as linear
maps on kSYd,n . We note the following formula, which is derived directly from (69) and (64):

v−1(1 − u2) = DS

|S| . (70)

Proposition 6.12 (i) The family of linear maps {ρ̃S,n}n≥1 satisfies Conditions (M1) and
(M2) in (36), and is thus a Markov trace on {kSYd,n}n≥1.

(ii) Moreover, we have

F�Y,S = F�
√

q−1

Y,ρ̃S
. (71)

Proof (i) The trace condition (M1) is obviously satisfied by the linear maps ρ̃S,n . From
Theorem 6.10, it follows that the family of linear maps {ρ̃S,n}n≥1 satisfies

ρ̃S,n+1(xGn) = ρ̃S,n(x)√
λS

and ρ̃S,n+1(xG−1
n ) = √

λS ρ̃S,n(x), for any n ≥ 1 and x ∈ Yd,n .

It follows from Formula (67) and a short calculation that g−1
i = √

λS
−1(√

q−1 + (1 −√
q−1)ei

)
G−1

i . According to this and to Formula (67), the Markov condition (M2) will be
satisfied if
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ρ̃S,n+1(xenG±1
n ) = ρ̃S,n+1(xG±1

n ), for any n ≥ 1 and x ∈ Yd,n

The end of the proof of Theorem 6.4 item 1, from Relation (55), can be repeated here.
(ii) This is immediate in view of (66) and (68), taking into account the definition (65) of

δ̃
(S)
Y,n . �
At this point, we proved that the invariants F�Y,S (and thus �Y,S as well) are included

in the sets of invariants constructed in this paper. For a given S, to identify precisely to
which invariant F�Y,S corresponds, in view of (71), it remains to determine the Markov
trace {ρ̃S,n}n≥1 in terms of the classification given in Theorem 5.3.

Proposition 6.13 Using notations as in Theorem 5.3, the Markov trace {ρ̃S,n}n≥1 on
{k̃Yd,n}n≥1 is given by the following choice of parameters:

αμ0 =

⎧
⎪⎨

⎪⎩

0 if μ0
a > 0 for some a /∈ S,

D|μ0|−1
S

|S||μ0| otherwise.
(72)

Proof Let {αμ0 , μ0 ∈ Comp0d} be the set of parameters, which is to be determined, corre-
sponding to {ρ̃S,n}n≥1. We recall that, from the classification result, the associated traces ρ̃

μ
S

are of the form

ρ̃
μ
S = α[μ] · τμ1 ⊗ · · · ⊗ τμd , for any μ ∈ Compd(n).

For a ∈ {1, . . . , d}, we denote by αa (respectively, χa) the parameter (respectively, the
character) corresponding to the composition (0, . . . , 0, 1, 0, . . . , 0) with 1 in a-th position.

First, Condition (C3) in (62) for n = 0 gives

ρ̃S,1(t
b
1 ) = cb, b = 0, . . . , d − 1.

On the other hand, we write tb
1 = ∑

1≤a≤d Eχa ξ
b
a , and we obtain

ρ̃S,1(t
b
1 ) =

∑

1≤a≤d

ξb
a αa = cb, b = 0, . . . , d − 1.

Inverting the Vandermonde matrix of size d with coefficients ξ i−1
j in row i and column j ,

this yields:

αa = 1

d

∑

0≤b≤d−1

ξ−b
a cb, a = 1, . . . , d. (73)

Taking into account now the values of cb in (63) corresponding to S, we obtain Formula (72)
when |μ0| = 1.

Let n > 0. Condition (C3) in (62) now gives

ρ̃S,n+1(xtb
n+1) = DScbρ̃S,n(x), x ∈ Yd,n, b = 0, . . . , d − 1.

Let μ ∈ Compd(n) and let χ
μ
1 be the character of (Z/dZ)n defined in (19). We then have,

by construction,

ρ̃S,n(Eχ
μ
1
) = ρ̃

μ
S (1),

while, on the other hand, writing Eχ
μ
1

tb
n+1 = ∑

1≤a≤d ξb
a E

χ
μ[a]
1

, we have

ρ̃S,n+1(Eχ
μ
1

tb
n+1) =

∑

1≤a≤d

ξb
a ρ̃

μ[a]
S (1), b = 0, . . . , d − 1.
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We conclude that, for any μ ∈ Compd(n) and b = 0, . . . , d − 1, we have
∑

1≤a≤d

ξb
a α[μ[a]] · τμ1(1) . . . τμa+1(1) . . . τμd (1) = DS cb α[μ] · τμ1(1) . . . τμa (1) . . . τμd (1).

Inverting the samematrix as above, and using the already obtained formula (73), we conclude
that

α[μ[a]] · τμ1(1) . . . τμa+1(1) . . . τμd (1)

= DSαaα[μ] · τμ1(1) . . . τμa (1) . . . τμd (1), a = 1, . . . , d .

Now when μa = 0, this yields α[μ[a]] = DSαaα[μ], which is what is needed to conclude the
proof. �
Remark 6.14 Following Remark 5.6 after the proof of Theorem 5.3, we notice that the
associated traces corresponding to {ρ̃S,n}n≥1 are given, for μ ∈ Compd(n), by

ρ̃
μ
S =

⎧
⎨

⎩

0 if μa > 0 for some a /∈ S,
1

|S| · τn otherwise.

where τn acts onHμ by restriction fromHn . This follows directly from Proposition 6.13 and
(70).

Remark 6.15 Proposition 6.13 gives the explicit decomposition of the Markov trace
{ρ̃S,n}n≥1 in the basis

{ {ρμ0,n}n≥1 | μ0 ∈ Comp0d
}
and in turn, together with Proposi-

tion 6.12, relates explicitly the invariant F�Y,S with the invariants obtained in this paper.
Concretely, we have:

F�Y,S =
∑

μ0∈Comp0d

αμ0F�
√

q−1

Y,μ0 ,

where the coefficients αμ0 are given by (72), and the variables u and v are expressed in terms
of variables q and λS according to (69).
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