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Abstract In this paper we prove aMoser–Trudinger inequality for the Euler–Lagrange func-
tional of general singular Liouville systems on a compact surface. We characterize the values
of the parameters which yield coercivity for the functional, hence the existence of energy-
minimizing solutions for the system, and we give necessary conditions for boundedness from
below.We also provide a sharp inequality under assuming the coefficients of the system to be
non-positive outside the diagonal. The proofs use a concentration-compactness alternative,
Pohožaev-type identities and blow-up analysis.
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1 Introduction

An essential tool in the study of the embeddings of Sobolev spaces is the Moser–Trudinger
inequality, which gives compact embedding in any L p space for finite p ≥ 1 and also
exponential integrability.

If we consider a 2-dimensional compact Riemannian manifold (�, g), due to well-known
works from Moser [18] and Fontana [13] we get

log
ˆ

�

eudVg −
 

�

udVg ≤ 1

16π

ˆ
�

|∇u|2dVg + C ∀ u ∈ H1(�), (1)
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1170 L. Battaglia

where ∇ = ∇g is the gradient given by the metric g and C = C�,g is a constant depending
only on � and g.

This inequality has fundamental importance in the study of the Liouville equations of the
kind

− �u = ρ

(
heu´

�
heudVg

− 1

)
, (2)

where � = �g is the Laplace-Beltrami operator, ρ a positive real parameter, h a positive
smooth function and� is supposed, without loss of generality, to have area equal to |�| = 1.
In fact, the solutions of (2) are critical points of the functional

Iρ(u) = 1

2

ˆ
�

|∇u|2dVg − ρ

(
log

ˆ
�

heudVg −
ˆ

�

udVg

)
;

using the inequality (1) we can control the last term by the Dirichlet energy, thus showing
that Iρ is bounded from below on H1(�) if and only if ρ is smaller or equal to 8π .

Equations like (2) have great importance in different contexts like the Gaussian curvature
prescription problem (see for instance [6,7]) and abelian Chern–Simonsmodels in theoretical
physics ([21,24]).

An extension of the inequality (1), which takes into consideration power-type weights,
was given by Chen [8] and Trojanov [22]. For a given p ∈ � and α ∈ (−1, 0], they showed
that

(1+α)

(
log

ˆ
�

d(·, p)2αeudVg −
ˆ

�

udVg

)
≤ 1

16π

ˆ
�

|∇u|2dVg+C ∀ u ∈ H1(�).

(3)
This inequality allows to treat singularities in the Eq. (2), that is to consider equations like

− �u = ρ

(
heu´

�
heudVg

− 1

)
− 4π

M∑
m=1

αm(δpm − 1), (4)

where we take arbitrary p1, . . . , pM ∈ � and αm > −1 for any m ∈ {1, . . . , M}.
This is a natural extension of (2), which allows to consider the same problems in a more

general context. For instance, it arises in the Gaussian curvature prescription problem on
surfaces with conical singularities and in Chern–Simons vortices theory.

Defining Gp as the Green function of −� on � centered at a point p, through the change
of variables

u �→ u + 4π
M∑

m=1

αmG pm (5)

Equation (4) becomes

−�u = ρ

(
h̃eu´

�
h̃eudVg

− 1

)

with h̃ = he−4π
∑M

m=1 αmG pm .
SinceGp has the same behavior as 1

2π log 1
d(·,p) around p, then h̃ behaves like d(·, pm)2αm

around each singular point pm , hence the energy functional
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Moser–Trudinger inequalities for singular Liouville systems 1171

Iρ(u) = 1

2

ˆ
�

|∇u|2dVg − ρ

(
log

ˆ
�

h̃eudVg −
ˆ

�

udVg

)

can be estimated, as in the regular case, using (3).
The purpose of this paper is to extend inequality (3) to singular Liouville systems of the

type

−�ui =
N∑
j=1

ai jρ j

(
h j eu j´

�
h j eu j dVg

− 1

)
− 4π

M∑
m=1

αim(δpm − 1), i = 1, . . . , N ,

where A = (ai j ) is a N × N symmetric positive definite matrix and ρi , hi , αim are as before.
Applying, similarly to (5), the change of variables

ui �→ ui + 4π
M∑

m=1

αimG pm ,

the system becomes

− �ui =
N∑
j=1

ai jρ j

(
h̃ j eu j´

�
h̃ j eu j dVg

− 1

)
, i = 1, . . . , N , (6)

with h̃ j having the same behavior around the singular points.
The system has a variational formulation with the energy functional

Jρ(u) := 1

2

N∑
i, j=1

ai j
ˆ

�

∇ui · ∇u jdVg −
N∑
i=1

ρi

(
log

ˆ
�

h̃i e
ui dVg −

ˆ
�

uidVg

)
, (7)

with ai j indicating the entries of the inverse matrix A−1 of A.
A recent paper by the author and Malchiodi ([2]) gives an answer for the particular case

of the SU (3) Toda system, that is N = 2 and A is the Cartan matrix
(

2 −1
−1 2

)
.

This is a particularly interesting case, due to its application in the description of holomorphic
curves in CPN in geometry ([3,5,9]) and in the non-abelian Chern–Simons theory in physics
([12,21,24]).

The authors prove a sharp inequality, that is they show that the functional Jρ is
bounded from below if and only if both the parameters ρi are less or equal than
4π min {1, 1 + minm αim}, thus extending the result in the regular case from [15].

Concerning general regular Liouville systems, Wang [23] gave necessary and sufficient
conditions for the boundedness from below of Jρ , following previous results in [10,11] for
the problem on Euclidean domains with Dirichlet boundary conditions. Analogous results
were given in [20] for the standard unit sphere

(
S
2, g0

)
and in [19] for a similar problem.

In these papers, the authors introduce, for any I ⊂ {1, . . . , N }, the following function of
the parameter ρ:

�I(ρ) = 8π
∑
i∈I

ρi −
∑
i, j∈I

ai jρiρ j .
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1172 L. Battaglia

What they prove is boundedness frombelow for Jρ for anyρ ∈ R
N+ which satisfies�I(ρ) > 0

for all the subsets I of {1, . . . , N }, whereas infH1(�)N Jρ = −∞ whenever �I(ρ) < 0 for
some I ⊂ {1, . . . , N }.

The first main result of this paper is an extension of the results from [10,11,23] to the case
of singularities.

Similarly to Liouville equation, we will have to multiply some quantities by 1 + αim .
Precisely, we have:

Theorem 1.1 Let Jρ be the functional defined by (7) and set, for ρ ∈ R
N
>0, x ∈ � and

i ∈ I ⊂ {1, . . . , N }:

αi (x) =
{

αim if x = pm
0 otherwise

�I,x (ρ) := 8π
∑
i∈I

(1 + αi (x))ρi −
∑
i, j∈I

ai jρiρ j

�(ρ) := min
I⊂{1,...,N },x∈�

�I,x (ρ). (8)

Then, Jρ is bounded from below if �(ρ) > 0, whereas Jρ is unbounded from below if
�(ρ) < 0.

Notice that, in the definition of �, the minimummakes sense because it is taken in a finite
set, since αi (x) = 0 for all points of� but a finite number, and for all the former points�I,x

is defined in the same way.
As a consequence of this result, we obtain information about the existence of solutions

for the system (6).

Corollary 1.2 The functional Jρ is coercive in H
1
(�) if and only if �(ρ) > 0.

Therefore, if this occurs, then Jρ admits a minimizer u which solves (6).

Theorem 1.1 leaves an open question about what happens when �(ρ) = 0. In this case,
as we will see in the following Sections, one encounters blow-up phenomena which are not
yet fully known for general systems.

Anyway, we can say something more if we assume in addition ai j ≤ 0 for any i, j ∈
{1, . . . , N } with i �= j . First of all, we notice that in this case

�(ρ) = min
i∈{1,...,N }

(
8π(1 + α̃i )ρi − aiiρ

2
i

)
, where

α̃i := min
m∈{1,...,M},x∈�

αi (x) = min

{
0, min

m∈{1,...,M} αim

}
; (9)

hence the sufficient condition in Theorem 1.1 is equivalent to assuming ρi <
8π(1+α̃i )

aii
for

any i .
With this assumption, studying what happens when �I(ρ) = 0 is reduced to a single-

component local blow-up, which can be treated by using an inequality from [1]. Therefore,
we get the following sharp result:

Theorem 1.3 Let Jρ be defined by (7), α̃i as in (9) and�(ρ) as in Theorem 1.1, and suppose
ai j ≤ 0 for any i, j ∈ {1, . . . , N } with i �= j .

Then, Jρ is bounded from below on H1(�)N if and only if �(ρ) ≥ 0, namely if and only
if ρi ≤ 8π(1+α̃i )

aii
for any i ∈ {1, . . . , N }.

We remark that the assuming A to be positive definite is necessary. If it is not, then Jρ is
unbounded from below for any ρ.
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Moser–Trudinger inequalities for singular Liouville systems 1173

In fact, suppose there exists v ∈ R
N such that

∑N
i, j=1 a

i jviv j ≤ −θ |v|2 for some θ > 0.

Then, we consider the family of functions uλ(x) := λv · x ; by Jensen’s inequality we get

Jρ
(
uλ

) ≤ 1

2

N∑
i, j=1

ai j
ˆ

�

∇uλ
i · ∇uλ

jdVg −
N∑
i=1

ρi

ˆ
�

log h̃idVg

≤ −θ

2
λ2|v|2 + C

−→
n→+∞ −∞.

We also notice that, with respect to the scalar case, in Theorem 1.1 and Corollary 1.2 the pos-
itive coefficients αim’s may affect the definition of �(ρ), hence the conditions for coercivity
and boundedness from below of Jρ .

On the other hand, under the assumptions of Theorem 1.3, coercivity and boundedness
from below only depend on the negative αim’s, just like for the scalar equation.

The plan of this paper is the following: in Sect. 2 we will introduce some notations and
some preliminary results whichwill be used throughout the rest of the paper. In Sect. 3wewill
show a sort of Concentration-compactness theorem, showing the possible non-compactness
phenomena for solutions of the system (6). Finally, in Sects. 4 and 5 we will give the proof
of the two main theorems.

2 Notations and preliminaries

In this section, we will give some useful notation and some known preliminary results which
will be needed to prove the two main theorems.

Given two points x, y ∈ �, we will indicate the metric distance on � between them as
d(x, y). We will indicate the open metric ball centered in p having radius r as

Br (x) := {y ∈ � : d(x, y) < r}.
For any subset of a topological space A ⊂ X we indicate its closure as A and its interior part
as Å.

Given a function u ∈ L1(�), the symbol u will indicate the average of u on �. Since we
assume |�| = 1, we can write:

u =
ˆ

�

udVg =
 

�

udVg.

We will indicate the subset of H1(�) which contains the functions with zero average as

H
1
(�) := {

u ∈ H1(�) : u = 0
}
.

Since the functional Jρ defined by (7) is invariant by addition of constants, it will not be

restrictive to study it on H
1
(�)N rather than on H1(�)N .

We will indicate with the letter C large constants which can vary among different lines
and formulas. To underline the dependence of C on some parameter α, we indicate with Cα

and so on.
We will denote as oα(1) quantities which tend to 0 as α tends to 0 or to +∞ and we will

similarly indicate bounded quantities as Oα(1), omitting in both cases the subscript(s) when
it is evident from the context.

123



1174 L. Battaglia

First of all, we need a result from Brezis and Merle [4]. It is a classical estimate about
exponential integrability of solutions of some elliptic PDEs.

Lemma 2.1 ([4], Theorem 1) Take r > 0, � := Br (0) ⊂ R
2, f ∈ L1(�) with ‖ f ‖L1(�) <

4π and u solving {−�u = f in �

u = 0 on ∂�
.

Then, for anyq ∈
[
1, 4π

‖ f ‖L1(�)

)
there exists a constantC = Cq,r such that

´
�
eq|u(x)|dx ≤ C.

Acrucial role in the proof of both Theorems 1.1 and 1.3will be played by the concentration
values of the sequences of solutions of (6).

For a sequence un = {
un1, . . . , u

n
N

}
n∈N of solutions of (6) with ρ = ρn = {

ρn
1 , . . . , ρn

N

}
,

we define (up to subsequences), for i ∈ {1, . . . , N }, the concentration value of its i th com-
ponent around a point x ∈ � as

σi (x) := lim
r→0

lim
n→+∞ ρn

i

´
Br (x)

h̃i eu
n
i dVg´

�
h̃i eu

n
i dVg

. (10)

In a recent paper ([16], see also [14] for the regular case) it was proved, by a Pohožaev
identity, that the concentration values satisfy the following algebraic relation, which involves
the same quantities as in Theorem 1.1:

Proposition 2.2 ([14], Lemma 2.2; [16], Proposition 3.1) Let {un}n∈N be a sequence of
solutions of (6), αi (x) and �I,x as in (8) and σ(x) = (σ1(x), . . . , σN (x)) as in (10). Then,

�{1,...,N },x (σ (x)) = 8π
N∑
i=1

(1 + αi (x))σi (x) −
N∑

i, j=1

ai jσi (x)σ j (x) = 0.

To study the concentration phenomena of solutions of (6) wewill use the following simple
but useful calculus Lemma:

Lemma 2.3 ([15], Lemma 4.4) Let {an}n∈N and {bn}n∈N two sequences of real numbers
satisfying

an −→
n→+∞ +∞ lim

n→+∞
bn

an
≤ 0.

Then, there exists a smooth function F : [0,+∞) → R which satisfies, up to subsequences,

0 < F ′(t) < 1 ∀ t > 0 F ′(t) −→
t→+∞ 0 F

(
an

) − bn −→
n→+∞ +∞.

Finally, as anticipated in the introduction, we will need a singular Moser–Trudinger
inequality for Euclidean domains by Adimurthi and Sandeep [1], and its straightforward
corollary.

Theorem 2.4 ([1], Theorem 2.1) For any r > 0, α ∈ (−1, 0] there exists a constant C =
Cα,r such that if � := Br (0) ⊂ R

2 and u ∈ H1
0 (�), then

ˆ
�

|∇u(x)|2dx ≤ 1 ⇒
ˆ

�

|x |2αe4π(1+α)u(x)2dx ≤ C

123



Moser–Trudinger inequalities for singular Liouville systems 1175

Corollary 2.5 For any r > 0, α ∈ (−1, 0] there exists a constant C = Cα,r such that if
� := Br (0) ⊂ R

2 and u ∈ H1
0 (�), then

(1 + α) log
ˆ

�

|x |2αeu(x)dx ≤ 1

16π

ˆ
�

|∇u(x)|2dx + C

Proof By the elementary inequality u ≤ θu2 + 1
4θ with θ = 4π(1+α)´

� |∇u(y)|2dy we get

(1 + α) log
ˆ

�

|x |2αeu(x)dx ≤ (1 + α) log
ˆ

�

|x |2αeθu(x)2+ 1
4θ dx

= 1

16π

ˆ
�

|∇u(y)|2dy + (1 + α) log

×
ˆ

�

|x |2αe
4π(1+α)

(
u(x)√´

� |∇u(y)|2dy

)2

dx

≤ 1

16π

ˆ
�

|∇u(y)|2dy + C.

��

3 A Concentration-compactness theorem

The aim of this section is to prove a result which describes the concentration phenomena
for the solutions of (6), extending what was done for the two-dimensional Toda system in
[2,17].

We actually have to normalize such solutions to bypass the issue of the invariance by
translation by constants and to have the parameter ρ multiplying only the constant term.

In fact, for any solution u of (6) the functions

vi := ui − log
ˆ

�

h̃i e
ui dVg + log ρi (11)

solve {−�vi = ∑N
j=1 ai j

(̃
h j ev j − ρ j

)
´
�
h̃i evi dVg = ρi

i = 1, . . . , N . (12)

Moreover, we can rewrite in a shorter way (10) as

σi (x) = lim
r→0

lim
n→+∞

ˆ
Br (x)

h̃ni e
vni dVg.

For such functions, we get the following concentration-compactness alternative:

Theorem 3.1 Let {un}n∈N be a sequence of solutions of (6) with ρn −→
n→+∞ ρ ∈ R

N+ and

h̃ni = V n
i h̃i with V n

i −→
n→+∞ 1 in C1(�)N , {vn}n∈N be defined as in (11) and Si be defined,

for i ∈ {1, . . . , N }, by

Si :=
{
x ∈ � : ∃ xn −→

n→+∞ x such that vni
(
xn

) −→
n→+∞ +∞

}
. (13)

Then, up to subsequences, one of the following occurs:

123



1176 L. Battaglia

• If Si = ∅ for any i ∈ {1, . . . , N }, then vn −→
n→+∞ v in W 2,q(�)N for some q > 1 and

some v which solves (12).
• If Si �= ∅ for some i, then it is a finite set for all such i’s. If this occurs, then there is a

subset I ⊂ {1, . . . , N } such that vnj −→
n→+∞ −∞ in L∞

loc

(
�\ ⋃N

j ′=1 S j ′
)
for any j ∈ I

and vnj −→
n→+∞ v j in W

2,q
loc

(
�\⋃N

j ′=1 S j ′
)
for some q > 1 and some suitable v j , for any

j ∈ {1, . . . , N }\I.
Since h̃ j is smooth outside the points pm’s, the estimates in W 2,q(�) are actu-

ally in C2,α
loc

(
�\⋃M

m=1 pm
)
and the estimates in W 2,q

loc

(
�\⋃N

j ′=1 S j ′
)
are actually in

C2,α
loc

(
�\

(⋃N
j ′=1 S j ′ ∪ ⋃M

m=1 pm
))

. Anyway, estimates in W 2,q will suffice in most of

the paper.
To prove Theorem 3.1 we need two preliminary lemmas.
The first is a Harnack-type alternative for sequences of solutions of PDEs. It is inspired

by [4,17].

Lemma 3.2 Let � ⊂ � be a connected open subset, { f n}n∈N a bounded sequence in
Lq
loc(�)∩L1(�) for some q > 1 and {wn}n∈N bounded from above and solving−�wn = f n

in �.
Then, up to subsequences, one of the following alternatives holds:

• wn is uniformly bounded in L∞
loc(�).

• wn −→
n→+∞ −∞ in L∞

loc(�).

Proof Take a compact set K � � and cover it with balls of radius r
2 , with r smaller than

the injectivity radius of �. By compactness, we can write K ⊂ ⋃H
h=1 Br

2
(xh). If the second

alternative does not occur, then up to relabeling we get supBr (x1) wn ≥ −C .
Then, we consider the solution zn of{−�zn = f n in Br (x1)

zn = 0 on ∂Br (x1)
,

which is bounded in L∞(Br (x1)) by elliptic estimates. This means that, for a large constant
C , the function C − wn + zn is positive, harmonic and bounded from below on Br (x1), and
moreover its infimum is bounded from above; therefore, applying the Harnack inequality
(which is allowed since r is small enough) we get that C − wn + zn is uniformly bounded in

L∞
(
Br

2
(x1)

)
, hence wn is.

At this point, by connectedness, we can relabel the index h in such a way that Br
2
(xh) ∩

Br
2
(xh+1) �= ∅ for any h ∈ {1, . . . , H − 1} and we repeat the argument for Br

2
(x2): since it

has nonempty intersection with Br
2
(x1), we have supBr (x2) wn ≥ −C , hence we get bound-

edness in L∞
(
Br

2
(x2)

)
. In the same way, we obtain the same result in all the balls Br

2
(xh),

whose union contains K, therefore wn must be uniformly bounded on K and we get the
conclusion. ��

The second Lemma basically says that if all the concentration values in a point are under a
certain threshold, and in particular if all of them equal zero, then compactness occurs around
that point.

On the other hand, if a point belongs to some set Si , then at least a fixed amount of mass
has to accumulate around it; hence, being the total mass uniformly bounded from above, this
can occur only for a finite number of points, so we deduce the finiteness of the Si ’s.

123



Moser–Trudinger inequalities for singular Liouville systems 1177

Precisely, we have the following, inspired again by [17], Lemma 4.4:

Lemma 3.3 Let {vn}n∈N and Si be as in (13) and σi as in (10), and suppose σi (x) < σ 0
i for

any i ∈ {1, . . . , N }, where

σ 0
i := 4π min

{
1, 1 + min j∈{1,...,N },m∈{1,...,M} α jm

}
∑N

j=1 a
+
i j

.

Then, x /∈ Si for any i ∈ {1, . . . , N }.
Proof First of all we notice that σ 0

i is well-defined for any i because aii > 0, hence∑N
j=1 a

+
i j > 0.

Under the hypotheses of the Lemma, for large n and small r we haveˆ
Br (x)

h̃ni e
vni dVg < σ 0

i . (14)

Let us consider wn
i and zni defined by

⎧⎨
⎩

−�wn
i = −

N∑
j=1

ai jρn
j in Br (x)

wn
i = 0 on ∂Br (x)

,

⎧⎨
⎩

−�zni =
N∑
j=1

a+
i j h̃

n
j e

vnj in Br (x)

zni = 0 on ∂Br (x)

. (15)

Is it evident that the wn
i ’s are uniformly bounded in L∞(Br (x)).

As for the zni ’s, we can suppose to be working on a Euclidean disc, up to applying a

perturbation to h̃ni which is smaller as r is smaller, hence for r small enough we still have the
strict estimate (14).

Therefore, we get

∥∥−�zni
∥∥
L1(Br (x))

=
N∑
j=1

a+
i j

ˆ
Br (x)

h̃nj e
vnj dVg <

N∑
j=1

a+
i jσ

0
j ≤ 4π min{1, 1 + αi (x)}

and we can apply Lemma 2.1 to obtain
´
Br (x)

eq|zni |dVg ≤ C for some q > 1
min{1,1+αi (x)} .

If αi (x) ≥ 0, then taking q ∈
(
1, 4π‖−�zni ‖L1(Br (x))

)
we have

ˆ
Br (x)

(
h̃ni e

zni
)q

dVg ≤ Cr

ˆ
Br (x)

eq|zni |dVg ≤ C.

On the other hand, if αi (x) < 0, we choose

q ∈
(
1,

4π∥∥−�zni
∥∥
L1(Br (x))

− 4παi (x)

)
q ′ ∈

(
4π

4π − q
∥∥−�zni

∥∥
L1(Br (x))

,
1

−αi (x)q

)

and, applying Hölder’s inequality,ˆ
Br (x)

(
h̃ni e

zni
)q

dVg ≤ Cr

ˆ
Br (x)

d(·, x)2qαi (x)eqz
n
i dVg

≤ C

(ˆ
Br (x)

d(·, x)2qq ′αi (x)dVg

) 1
q′ (ˆ

Br (x)
e
q q′
q′−1

|zni |dVg

)1− 1
q′

≤ C,

123



1178 L. Battaglia

because qq ′αi (x) > −1 and q q ′
q ′−1αi (x) < 4π‖−�zni ‖L1(Br (x))

. Hence h̃ni e
zni is uniformly

bounded in Lq(Br (x)) for some q > 1.
Now, let us consider vni − zni − wn

i : it is a subharmonic sequence by construction, so for
any y ∈ Br

2
(x) we get

vni (y) − zni (y) − wn
i (y) ≤

 
B r
2
(y)

(
vni − zni − wn

i

)
dVg

≤ C
ˆ
B r
2
(y)

(vni − zni − wn
i )

+dVg

≤ C
ˆ
Br (x)

(
(vni − zni )

+ + (wn
i )

−)
dVg

≤ C

(
1 +

ˆ
Br (x)

(
vni − zni

)+ dVg

)
.

Moreover, since themaximumprinciple yields zni ≥0, taking θ =
{
1 if αi (x) ≤ 0

∈
(
0, 1

1+αi (x)

)
if αi (x) > 0 ,

we get ˆ
Br (x)

(
vni − zni

)+ dVg ≤
ˆ
Br (x)

(vni )+dVg

≤ 1

eθ

ˆ
Br (x)

eθvni dVg

≤ C
∥∥∥(̃
hni

)−θ
∥∥∥
L

1
1−θ (Br (x))

(ˆ
Br (x)

h̃ni e
vni dVg

)θ

≤ C.

Therefore, we showed that vni − zni − wn
i is bounded from above in Br

2
(x), that is evni −zni −wn

i

is uniformly bounded in L∞
(
Br

2
(x)

)
. Since the same holds for ewn

i and h̃ni e
zni is uniformly

bounded in Lq
(
Br

2
(x)

)
for some q > 1, we deduce that also

h̃ni e
vni = h̃ni e

zni evni −zni −wn
i ewn

i

is bounded in the same Lq
(
Br

2
(x)

)
.

Thus,we have an estimate on
∥∥−�zni

∥∥
Lq

(
B r
2
(x)

) for any i ∈ {1, . . . , N }, hence by standard
elliptic estimates we deduce that zni is uniformly bounded in L∞

(
Br

2
(x)

)
. Therefore, we

also deduce that

vni = (
vni − zni − wn

i

) + zni + wn
i

is bounded from above on Br
2
(x), which is equivalent to saying x /∈ ⋃N

i=1 Si . ��
From this proof, we notice that, under the assumptions of Theorem 1.3, the same result

holds for any single index i ∈ {1, . . . , N }. In other words, the upper bound on one σi implies
that x /∈ Si .
Corollary 3.4 Suppose ai j ≤ 0 for any i �= j .

Then, for any given i ∈ {1, . . . , N } the following conditions are equivalent:
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Moser–Trudinger inequalities for singular Liouville systems 1179

• x ∈ Si .
• σi (x) �= 0.
• σi (x) ≥ σ ′

i = 4π min{1,1+minm αim }
aii

.

Proof The third statement trivially implies the second and the second implies the first, since if
vni is bounded from above in Br (x) then h̃ni e

vni is bounded in Lq(Br (x)). Finally, ifσi (x) < σ ′
i

then the sequence h̃ni e
zni defined by (15) is bounded in Lq for q > 1,so one can argue as in

Lemma 3.3 to get boundedness from above of vni around x , that is x /∈ Si . ��
We can now prove the main theorem of this Section.

Proof of Theorem 3.1 If Si = ∅ for any i , then evni is bounded in L∞(�), so −�vni is
bounded in Lq(�) for any

q ∈
[
1,

1

−min j∈{1,...,N },m∈{1,...,M} α jm

)
.

Therefore, we can apply Lemma 3.2 to vni on �, where we must have the first alternative
for every i , since otherwise the dominated convergence would give

´
�
h̃ni e

vni dVg −→
n→+∞ 0

which is absurd; standard elliptic estimates allow to conclude compactness in W 2,q(�).
Suppose now Si �= ∅ for some i ; from Lemma 3.3 we deduce

|Si |σ 0
i ≤

∑
x∈Si

max
j

σ j (x) ≤
N∑
j=1

∑
x∈Si

σ j (x) ≤
N∑
j=1

ρ j ,

hence Si is finite.
For any j ∈ {1, . . . , N }, we can apply Lemma 3.2 on �\⋃N

j ′=1 S j ′ with f n =∑N
j ′=1 a j j ′

(
h̃nj ′e

vn
j ′ − ρn

j ′
)
, since the last function is bounded in Lq

loc

(
�\⋃N

j ′=1 S j ′
)
.

Therefore, either vnj goes to −∞ or it is bounded in L∞
loc, and in the last case we get

compactness in W 2,q
loc by applying again standard elliptic regularity. ��

4 Proof of Theorem 1.1

Here we will prove the theorem which gives sufficient and necessary conditions for the
functional Jρ to be bounded from below.

In other words, setting

E :=
{
ρ ∈ R

N+ : Jρ is bounded from below on H1(�)N
}

, (16)

we will prove that {� > 0} ⊂ E ⊂ {� ≥ 0}.
As a first thing, we notice that the set E is not empty and it verifies a simple monotonicity

condition.

Lemma 4.1 The set E defined by (16) is nonempty.
Moreover, for any ρ ∈ E then ρ′ ∈ E provided ρ′

i ≤ ρi for any i ∈ {1, . . . , N }.
Proof Let θ > 0 be the biggest eigenvalue of the matrix (ai j ). Then,

Jρ(u) ≥
N∑
i=1

(
1

2θ

ˆ
�

|∇ui |2dVg − ρi

(
log

ˆ
�

h̃i e
ui dVg − ui

))
.
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Therefore, from scalar Moser–Trudinger inequality (3), we deduce that Jρ is bounded from
below if ρi ≤ 8π(1+α̃i )

θ
, hence E �= ∅.

Suppose now ρ ∈ E and ρ′
i ≤ ρi for any i . Then, through Jensen’s inequality, we get

Jρ′(u) = Jρ(u) +
N∑
i=1

(ρi − ρ′
i ) log

ˆ
�

eui−ui+log h̃i dVg

≥ −C +
N∑
i=1

(ρi − ρ′
i )

ˆ
�

log h̃idVg

≥ −C

for any u ∈ H1(�)N , hence the claim. ��
It is interesting to observe that a similar monotonicity condition is also satisfied by the set

{� > 0} (although one can easily see that it is not true if we replace � with �I,x ).

Lemma 4.2 Let ρ, ρ′ ∈ R
N+ be such that �(ρ) > 0 and ρ′

i ≤ ρi for any i ∈ {1, . . . , N }.
Then, �(ρ′) > 0.

Proof Suppose by contradiction �(ρ′) ≤ 0, that is �I,x (ρ
′) ≤ 0 for some I, x .

This cannot occur for I = {i} because it would mean ρ′
i ≥ 8π(1+αi (x))

aii
, so the same

inequality would for ρi , hence �(ρ) ≤ �I,x (ρ) ≤ 0.
Therefore, there must be some I, x such that �I,x (ρ

′) ≤ 0 and �I\{i},x (ρ′) > 0 for any
i ∈ I; this implies

0 < �I\{i},x (ρ′) − �I,x (ρ
′)

= 2
∑
j∈I

ai jρ
′
iρ

′
j − aiiρ

′
i
2 − 8π(1 + αi (x))ρ

′
i

< ρ′
i

⎛
⎝2

∑
j∈I

ai jρ
′
j − 8π(1 + αi (x))

⎞
⎠ . (17)

It will be not restrictive to suppose, from now on, ρ′
1 ≤ ρ1 and ρ′

i = ρi for any i ≥ 2, since
the general case can be treated by exchanging the indices and iterating.

Assuming this, we must have 1 ∈ I, therefore we obtain:
0 < �I,x (ρ) − �I,x (ρ

′)

= 8π(1 + α1(x))(ρ1 − ρ′
1) − a11

(
ρ′
1
2 − ρ2

1

)
− 2

∑
j∈I\{1}

a1 j (ρ
′
1 − ρ1)ρ j

= (ρ1 − ρ′
1)

⎛
⎝8π(1 + α1(x)) − a11(ρ

′
1 + ρ1) − 2

∑
j∈I\{1}

a1 jρ j

⎞
⎠

< (ρ1 − ρ′
1)

⎛
⎝8π(1 + α1(x)) − 2

∑
j∈I

a1 jρ
′
j

⎞
⎠ ,

which is negative by (17). We found a contradiction. ��
We will now show that if the parameter ρ lies in the interior of E then not only the

functional is bounded from below but it is coercive in the space of zero-average functions.
In particular, this fact allows to deduce the “if” part in Corollary 1.2 from Theorem 1.1.
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On the other hand, if ρ belongs to the boundary of E , then the scenario is quite different.

Lemma 4.3 Suppose ρ ∈ E̊ . Then, there exists a constant C = Cρ such that

Jρ(u) ≥ 1

C

N∑
i=1

ˆ
�

|∇ui |2dVg − C.

Moreover, Jρ admits a minimizer which solves (6).

Proof Choosing δ ∈
(
0, d(ρ,∂E)√

N |ρ|
)
one has (1 + δ)ρ ∈ E , so

Jρ(u) = δ

2(1 + δ)

N∑
i, j=1

ai j
ˆ

�

∇ui · ∇u jdVg + 1

1 + δ
J(1+δ)ρ(u)

≥ δ

2θ(1 + δ)

N∑
i=1

ˆ
�

|∇ui |2dVg − C,

hence we get the former claim.
To get the latter, we notice that, due to invariance by translation, any minimizer can be

supposed to be in H
1
(�)N ; therefore, we can restrict Jρ to this subspace. Here, the above

inequality implies coercivity, and it is immediate to see that Jρ is also lower semi-continuous,
hence the existence of minimizers follows from direct methods of calculus of variations. ��
Lemma 4.4 Suppose ρ ∈ ∂E. Then, there exists a sequence {un}n∈N ⊂ H1(�)N such that

N∑
i=1

ˆ
�

∣∣∇uni
∣∣2 dVg −→

n→+∞ +∞ lim
n→+∞

Jρ (un)∑N
i=1

´
�

∣∣∇uni
∣∣2 dVg

≤ 0

Proof We first notice that (1 − δ)ρ ∈ E for any δ ∈ (0, 1). In fact, otherwise, from Lemma
4.1 we would get ρ′ /∈ E as soon as ρ′

i ≥ (1 − δ)ρi for some i , hence ρ /∈ ∂E .
Now, suppose by contradiction that for any sequence un one gets

N∑
i=1

ˆ
�

∣∣∇uni
∣∣2 dVg −→

n→+∞ +∞ ⇒ Jρ (un)∑N
i=1

´
�

∣∣∇uni
∣∣2 dVg

≥ ε > 0.

Therefore, we would have

Jρ(u) ≥ ε

2

N∑
i=1

ˆ
�

|∇ui |2dVg − C;

hence, indicating as θ ′ the smallest eigenvalue of the matrix A, for small δ we would get

Jρ(u) = (1 + δ)J(1+δ)ρ(u) − δ

2

N∑
i, j=1

ai j
ˆ

�

∇ui · ∇u jdVg

≥
(

(1 + δ)
ε

2
− δ

2θ ′

) N∑
i=1

ˆ
�

|∇ui |2 − C

≥ −C.

So we obtain (1+ δ)ρ ∈ E ; being also (1− δ)ρ ∈ E (by Lemma 4.1), we get a contradiction
with ρ ∈ ∂E . ��
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To see what happens when ρ ∈ ∂E , we build an auxiliary functional using Lemma 2.3.

Lemma 4.5 Fix ρ′ ∈ ∂E and define:

anρ′ := 1

2

N∑
i, j=1

ai j
ˆ

�

∇uni · ∇unjdVg bnρ′ := Jρ′
(
un

)

J ′
ρ′,ρ(u) = Jρ(u) − Fρ′

⎛
⎝1

2

N∑
i, j=1

ai j
ˆ

�

∇ui · ∇u jdVg

⎞
⎠ ,

where un is given by Lemma 4.4 and Fρ′ by Lemma 2.3.
If ρ ∈ E̊ , then J ′

ρ′,ρ is bounded from below on H1(�)N and its infimum is achieved by a
solution of

−�

⎛
⎝ui −

N∑
i, j=1

ai j f u j

⎞
⎠ =

N∑
j=1

ai jρ j

(
h̃ j eu j´

�
h̃ j eu j dVg

− 1

)
, i = 1, . . . , N ,

with f = (
Fρ′

)′ ( 1
2

∑N
i, j=1 a

i j
´
�

∇ui · ∇u jdVg

)
.

On the other hand, J ′
ρ′,ρ′ is unbounded from below.

Proof For ρ ∈ E̊ , we can argue as in Lemma 4.3, since the continuity follows from the
regularity of F and the coercivity from the behavior of F ′ at the infinity.

For ρ = ρ′, if we take un as in Lemma 4.4 we get

J ′
ρ′,ρ′

(
un

) = bnρ′ − Fρ′
(
anρ′

)
−→

n→+∞ −∞.

��
Now we can prove the first half of Theorem 1.1, that is Jρ is bounded from below if

�(ρ) > 0.
Proof of {� > 0} ⊂ E Suppose by contradiction there is some ρ′ ∈ ∂E with �(ρ) > 0 and
take a sequence ρn ∈ E with ρn −→

n→+∞ ρ′.
Then, byLemma4.5, the auxiliary functional Jρ′,ρn admits aminimizerun , so the functions

vni defined as in (11) solve⎧⎪⎨
⎪⎩

−�vni =
N∑

j, j ′=1
ai j b j j ′,n

(
h̃ j e

vnj − ρn
j

)
´
�
h̃ni e

vni dVg = ρn
i

i = 1, . . . , N

where bi j,n is the inverse matrix of bni j := δi j − ai j f n , hence bi j,n −→
n→+∞ δi j .

We can then apply Theorem 3.1. The first alternative is excluded, since otherwise we
would get, for any u ∈ H1(�)N ,

J ′
ρ′,ρ′(u) = lim

n→+∞ J ′
ρ′,ρn (u) ≥ lim

n→+∞ J ′
ρ′,ρn

(
vn

) = J ′
ρ′,ρ′(v) > −∞,

thus contradicting Lemma 4.5.
Therefore, blow up must occur; this means, by Lemma 3.3, that σi (p) �= 0 for some

i ∈ {1, . . . , N } and some p ∈ �.
By Proposition 2.2 follows �(σ) ≤ 0. On the other hand, since σi ≤ ρ′

i for any i , Lemma
4.2 yields �(ρ′) ≤ 0, which contradicts our assumptions. ��
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To prove the unboundedness from below of Jρ in the case �(ρ) < 0 we will use suitable
test functions, whose properties are described by the following:

Lemma 4.6 Define, for x ∈ � and λ > 0, ϕ = ϕλ,x as

ϕi := −2(1 + αi (x)) logmax{1, λd(·, x)}.
Then, as λ → +∞, one has

ˆ
�

∇ϕi · ∇ϕ jdVg = 8π(1 + αi (x))(1 + α j (x)) log λ + O(1)

ϕi = −2(1 + αi (x)) log λ + O(1)
ˆ

�

h̃i e
∑N

j=1 θ jϕ j dVg ≥ Cλ−2(1+αi (x)) if
N∑
i=1

θ j (1 + α j (x)) > 1 + αi (x).

Proof It holds

∇ϕi =
{
0 if d(·, x) < 1

λ

−2(1 + αi (x))
∇d(·,x)
d(·,x) if d(·, x) > 1

λ

.

Therefore, being |∇d(·, x)| = 1 almost everywhere on �:
ˆ

�

∇ϕi · ∇ϕ jdVg

= 4(1 + αi (x))(1 + α j (x))
ˆ

�\B 1
λ

(x)

dVg

d(·, x)2
= 8π(1 + αi (x))(1 + α j (x)) log λ + O(1).

For the average of ϕi , we getˆ
�

ϕidVg = −2(1 + αi (x))
ˆ

�\B 1
λ

(x)
(log λ + log d(·, x))dVg + O(1)

= −2(1 + αi (x)) log λ + O(1).

For the last estimate, choose r > 0 such that Bδ(x) does not contain any of the points pm
for m = 1, . . . , M , except possibly x .

Then, outside such a ball, e
∑N

j=1 θ jϕ j ≤ Cλ
−2

∑N
j=1 θ j (1+α j (x)).

Therefore, under the assumptions of the Lemma,
ˆ

�\Bδ(x)
h̃i e

∑N
i=1 θ jϕ j dVg = o

(
λ−2(1+αi (x))

)
,

hence ˆ
�

h̃i e
∑N

i=1 θ jϕ j dVg ≥
ˆ
Bδ(x)

h̃i e
∑N

i=1 θ jϕ j dVg

≥ C

⎛
⎝ˆ

B 1
λ

(x)
d(·, x)2αi (x)dVg + 1

λ
2

∑N
j=1 θ j (1+α j (x))
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ˆ
A 1

λ
,δ

(x)
d(·, x)2αi (x)−2

∑N
i=1 θ j (1+α j (x))dVg

⎞
⎠

≥ Cλ−2(1+αi (x)),

which concludes the proof. ��
Proof of E ⊂ {� ≥ 0} Take ρ, I, x such that �I,x (ρ) < 0 and �I\{i},x (ρ) ≥ 0 for any
i ∈ I, and consider the family of functions

{
uλ

}
λ>0 defined by

uλ
i :=

∑
j∈I

ai jρ j

4π(1 + αi (x))
ϕ

λ,x
j .

By Jensen’s inequality we get

Jρ
(
uλ

) ≤ 1

2

N∑
i, j=1

ai j
ˆ

�

∇uλ
i · ∇uλ

jdVg +
∑
i∈I

ρi

(
uλ
i − log

ˆ
�

h̃i e
uλ
i dVg

)
+ C

= 1

2

∑
i, j∈I

ai jρiρ j

16π2(1 + αi (x))(1 + α j (x))

ˆ
�

∇ϕi · ∇ϕ jdVg

+
∑
i, j∈I

ai jρiρ j

4π(1 + α j (x))
ϕ j −

∑
i∈I

ρi log
ˆ

�

h̃i e
∑

j∈I
ai j ρ j

4π(1+α j (x))
ϕ j
dVg + C.

At this point, we would like to apply Lemma 4.6 to estimate Jρ
(
uλ

)
. To be able to do this,

we have to verify that

1

4π

∑
j∈I

ai jρ j > 1 + αi (x) ∀ i ∈ I.

If I = {i}, then ρi >
8π(1+αi (x))

aii
, so it follows immediately. For the other cases, it follows

from (17).
So we can apply Lemma 4.6 and we get from the previous estimates:

Jρ
(
uλ

) ≤
⎛
⎝ 1

4π

∑
i, j∈I

ai jρiρ j − 1

2π

∑
i, j∈I

ai jρiρ j + 2
∑
i∈I

ρi (1 + αi (x))

⎞
⎠ log λ + C

= −�I,x (ρ)

4π
log λ + C −→

n→+∞ −∞.

��
Proof of Corollary 1.2 The coercivity in the case � < 0, hence the existence of minimizing
solutions for (6) follows from Theorem 1.1 and Lemma 4.3.

If instead �(ρ) ≥ 0, then one can find out the lack of coercivity by arguing as before with
the sequence uλ, which verifies

N∑
i=1

ˆ
�

∣∣∇uλ
i

∣∣2 dVg −→
λ→+∞ +∞ Jρ

(
uλ

) ≤ −�I,x (ρ)

4π
log λ + C ≤ C.

��
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5 Proof of Theorem 1.3

Here we will finally prove a sharp inequality in the case when the matrix ai j has non-positive
entries outside its main diagonal.

As already pointed out in the introduction, the function �(ρ) can be written in a much
shorter form under these assumptions, so the condition �(ρ) ≥ 0 is equivalent to ρi ≤
8π(1+α̃i )

aii
for any i ∈ {1, . . . , N }.

Moreover, thanks to Lemma 4.1, in order to prove Theorem 1.3 for all such ρ’s it will
suffice to consider

ρ0 :=
(
8π(1 + α̃1)

a11
, . . . ,

8π(1 + α̃N )

aNN

)
. (18)

By what we proved in the previous Section, for any sequence ρn ↗
n→+∞

ρ0 one has

inf
H1(�)N

Jρn = Jρn (un) ≥ −Cρn ,

so Theorem 1.3 will follow by showing that, for a given sequence {ρn}n∈N, the constant
Cn = Cρn can be chosen independently of n.

As a first thing, we provide a Lemma which shows the possible blow-up scenarios for
such a sequence un .

Here, the assumption on ai j is crucial since it reduces largely the possible cases.

Lemma 5.1 Let ρ0 be as in (18), {ρn}n∈N such that ρn ↗ ρ0, un a minimizer of Jρn and vn

as in (11). Then, up to subsequences, there exists a set I ⊂ {1, . . . , N } such that:

• If i ∈ I, then Si = {xi } for some xi ∈ � which satisfy α̃i = αi (xi ) and σi (xi ) = ρ0
i , and

vni −→
n→+∞ −∞ in L∞

loc

(
�\⋃

j∈I{x j }
)
.

• If i /∈ I, then Si = ∅ and vni −→
n→+∞ vi in W 2,q

loc

(
�\⋃

j∈I{x j }
)
for some q > 1 and

some suitable vi .

Moreover, if ai j < 0 then xi �= x j .

Proof From Theorem 3.1 we get a I ⊂ {1, . . . , N } such that Si �= ∅ for i ∈ I.
If Si �= ∅, then by Corollary 3.4 one gets

0 < σi (x) ≤ ρ0
i ≤ 8π(1 + αi (x))

aii

for all x ∈ Si , hence
0 = �{1,...,N },x (σ (x))

≥
N∑
j=1

(
8π(1 + α j (x))σ j (x) − a j jσ j (x)

2)

≥ 8π(1 + αi (x))σi (x) − aiiσi (x)
2

≥ 0. (19)

Therefore, all these inequalities must actually be equalities.
From the last, we have σi (x) = ρ0

i = 8π(1+αi (x))
aii

, hence αi (x) = α̃i . On the other hand,

since
∑

x∈Si
σi (x) ≤ ρ0

i , it must be σi (x) = 0 for all but one xi ∈ Si , so Corollary 3.4 yields
Si = {xi }.
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Let us now show that vni −→
n→+∞ −∞ in L∞

loc.

Otherwise, Theorem 3.1 would imply vni −→
n→+∞ vi almost everywhere, therefore by

Fatou’s Lemma we would get the following contradiction:

σi (xi ) <

ˆ
�

h̃i e
vi dVg + σi (xi ) ≤

ˆ
�

h̃ni e
vni dVg = ρn

i ≤ ρi = σi (xi ).

Since also inequality (19) has to be an equality, we get ai jσi (xi )σ j (xi ) for any i, j ∈ I, so
whenever ai j < 0 there must be σ j (xi ) = 0, so xi �= x j .

Finally, ifSi = ∅, the convergence inW 2,q
loc follows fromwhatwe just proved andTheorem

3.1. ��
We basically showed that if a component of the sequence vn blows up, then all its mass

concentrates at a single point which has the lowest singularity coefficient.
The next Lemma gives some more important information about the convergence or the

blow-up of the components of vn .

Lemma 5.2 Let vni , vi , ρ0, I and xi as in Lemma 5.1.
Then,

• If i ∈ I, then the sequence vni − vni converges to some Gi in W 2,q
loc

(
�\ ⋃

j∈I{x j }
)
for

some q > 1 and weakly in W 1,q ′
(�) for any q ′ ∈ (1, 2), and Gi solves:⎧⎨

⎩
−�Gi = ∑

j∈I
ai jρ0

j

(
δx j − 1

) + ∑
j /∈I

ai j
(
h̃ j ev j − ρ0

j

)

Gi = 0
.

• If i /∈ I, then vni −→
n→+∞ vi in the same space, and vi solves:

⎧⎨
⎩

−�vi = ∑
j∈I

ai jρ0
j

(
δx j − 1

) + ∑
j /∈I

ai j
(
h̃ j ev j − ρ0

j

)
´
�
h̃i evi dVg = ρ0

i

. (20)

Proof From Lemma 5.1 follows that, for i ∈ I, h̃ni evni ⇀
n→∞ ρ0

i δxi in the sense of measures;

in fact, for any φ ∈ C(�)∣∣∣∣
ˆ

�

h̃ni e
vni φdVg − ρ0

i φ(xi )

∣∣∣∣ ≤
ˆ

�

h̃ni e
vni |φ − φ(xi )|dVg + ∣∣ρn

i − ρ0
i

∣∣ |φ(xi )|

≤ ε

ˆ
Bδ(xi )

h̃ni e
vni dVg + 2‖φ‖L∞(�)

ˆ
�\Bδ(xi )

h̃ni e
vni dVg

+ ∣∣ρn
i − ρ0

i

∣∣ ‖φ‖L∞(�)

≤ ερn
i + 2‖φ‖L∞(�)o(1) + o(1)‖φ‖L∞(�),

which is, choosing properly ε, arbitrarily small. Therefore, vi solves (20).

On the other hand, if q ′ ∈ (1, 2), then q ′
q ′−1 > 2, so any function φ ∈ W

1, q′
q′−1 (�) is

actually continuous, hence∣∣∣∣
ˆ

�

∇
(
vni − vni − Gi

)
· ∇φdVg

∣∣∣∣
=

∣∣∣∣
ˆ

�

(−�vni + �Gi
)
φdVh

∣∣∣∣
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≤
∑
j∈I

ai j

∣∣∣∣
ˆ

�

h̃ j e
vnj φdVg − ρ0

jφ(p)

∣∣∣∣

+
∑
j /∈I

ai j

∣∣∣∣
ˆ

�

h̃ j

(
evnj − ev j

)
φdVg

∣∣∣∣ −→
n→+∞ 0.

Therefore, we get weak convergence in W 1,q ′
(�) for any q ′ ∈ (1, 2); standard elliptic

estimates yield convergence in W 2,q
loc

(
�\⋃

j∈I{x j }
)
.

In the same way we prove the same convergence of vni to vi . ��
From these information about the blow-up profile of vn we deduce an important fact which

will be used to prove the main Theorem:

Corollary 5.3 Let vn and xi be as in Lemmas 5.1 and 5.2 and wn be defined by wn
i =∑N

j=1 a
i jvnj for i ∈ {1, . . . , N }.

Then, wn
i − wn

i is uniformly bounded in W 2,q
loc (�\{xi }) for some q > 1 if i ∈ I, whereas

if i /∈ I it is bounded in W 2,q(�).

Proof Since −�wn
i = h̃ni e

vni − ρn
i , the claim follows from the boundedness of evni in

L∞
loc(�\{xi }) and from standard elliptic estimates. ��
The last Lemmawe need is a localized scalarMoser–Trudinger inequality for the blowing-

up sequence.

Lemma 5.4 Let wn
i be as in Corollary 5.3 and xi as in the previous Lemmas. Then, for any

i ∈ I and any small r > 0 one has

aii
2

ˆ
Br (xi )

∣∣∇wn
i

∣∣2 dVg − ρn
i

(
log

ˆ
Br (xi )

h̃i e
aiiwn

i dVg − aiiwn
i

)
≥ −Cr .

Proof Since � is locally conformally flat, we can choose r small enough so that we can
apply Corollary 2.5 up to modifying h̃ni . We also take r so small that Br (xi ) contains neither
any x j for x j �= xi nor any pm for m = 1, . . . , M (except possibly xi ).

Let zn be the solution of{−�zni = h̃ni e
vni − ρn

i in Br (xi )
zni = 0 on ∂Br (xi )

.

Then, wn
i − wn

i − zni is harmonic and it has the same value as wn
i − wn

i on ∂Br (xi ), so from
standard estimates∥∥∥wn

i − wn
i − zni

∥∥∥
C1(Br (xi ))

≤ C
∥∥∥wn

i − wn
i

∥∥∥
C1(∂Br (xi ))

≤ C.

From Lemma 5.2 we get∣∣∣∣
ˆ
Br (xi )

∣∣∇wn
i

∣∣2 dVg −
ˆ
Br (xi )

∣∣∇zni
∣∣2 dVg

∣∣∣∣ =
∣∣∣∣
ˆ
Br (xi )

∣∣∇ (
wn
i − zni

)∣∣2 dVg

+ 2
ˆ
Br (xi )

∇wn
i · ∇ (

wn
i − zni

)
dVg

∣∣∣∣
≤
ˆ
Br (xi )

∣∣∇ (
wn
i − zni

)∣∣2 dVg
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+2
∥∥∇wn

i

∥∥
L1(�)

∥∥∇ (
wn
i − zni

)∥∥
L∞(Br (xi ))

≤ Cr .

Moreover,
ˆ
Br (xi )

h̃i e
aii

(
wn
i −wn

i

)
dVg ≤ e

aii
∥∥∥wn

i −wn
i −zni

∥∥∥
L∞(Br (xi ))

ˆ
Br (xi )

h̃i e
aii zni dVg

≤ Cr

ˆ
Br (xi )

d(·, xi )2α̃i eaii zni dVg.

Therefore, since α̃i ≤ 0 and aiiρn
i ≤ 8π(1 + α̃i ), we can apply Corollary 2.5 to get the

claim:

aii
2

ˆ
Br (xi )

∣∣∇wn
i

∣∣2 dVg − ρn
i log

ˆ
Br (xi )

h̃i e
aii

(
wn
i −wn

i

)
dVg

≥ 1

2aii

ˆ
Br (xi )

∣∣∇ (
aii z

n
i

)∣∣2 dVg

−ρn
i log

ˆ
Br (xi )

d(·, xi )2α̃i eaii zni dVg − Cr

≥ −Cr

��
Proof of Theorem 1.3 As noticed before, it suffices to prove the boundedness from below of
Jρn (un) for a sequence ρn ↗

n→+∞
ρ0 and a sequence of minimizers un for Jρn . Moreover,

due to invariance by addition of constants, one can consider vn in place of un .
Let us start by estimating the term involving the gradients.
From Corollary 5.3 we deduce that the integral of |∇wn

i |2 outside a neighborhood of xi
is uniformly bounded for any i ∈ I, and the integral on the whole � is bounded if i /∈ I.

For the same reason, the integral of ai j∇wn
i · ∇wn

j on the whole surface is uniformly
bounded. In fact, if ai j �= 0, then xi �= x j , then∣∣∣∣

ˆ
�

∇wn
i · ∇wn

j dVg

∣∣∣∣ ≤
ˆ

�\Br (x j )

∣∣∣∇wn
i · ∇wn

j

∣∣∣ dVg +
ˆ

�\Br (xi )

∣∣∣∇wn
i · ∇wn

j

∣∣∣ dVg

≤ ∥∥∇wn
i

∥∥
Lq′

(�)

∥∥∥∇wn
j

∥∥∥
Lq′′

(�\Br {x j })
+ ∥∥∇wn

i

∥∥
Lq′′

(�\Br {xi })
∥∥∥∇wn

j

∥∥∥
Lq′

(�)

≤ Cr ,

with q as in Corollary 5.3, q ′ =
{

2q
3q−2 < 2 if q < 2
1 if q ≥ 2

and q ′′ =
{

2q
2−q if q < 2
∞ if q ≥ 2

.

Therefore, we can write

N∑
i, j=1

ai j
ˆ

�

∇vni · ∇vnj dVg =
N∑

i, j=1

ai j

ˆ
�

∇wn
i · ∇wn

j dVg

≥
∑
i∈I

aii

ˆ
Br (xi )

∣∣∇wn
i

∣∣2 dVg − Cr .
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To deal with the other term in the functional, we use the boundedness of wn
i away from

xi : choosing r as in Lemma 5.4, we getˆ
�

h̃ni e
vni −vni dVg ≤ 2

ˆ
Br (xi )

h̃ni e
vni −vni dVg

= 2
ˆ
Br (xi )

h̃i e
∑N

j=1 ai j
(
wn

j−wn
j

)
dVg

≤ Cr

ˆ
Br (xi )

h̃i e
aii

(
wn
i −wn

i

)
dVg.

Therefore, using Lemma 5.4 we obtain

Jρn
(
vn

) = 1

2

N∑
i, j=1

ai j
ˆ

�

∇vni · ∇vnj dVg −
N∑
i=1

ρn
i

(
log

ˆ
�

h̃ni e
vni dVg − vni

)

≥
∑
i∈I

(
aii
2

ˆ
Br (xi )

∣∣∇wn
i

∣∣2 dVg − ρn
i

(
log

ˆ
Br (xi )

h̃i e
aiiwn

i dVg − aiiwn
i

))
− Cr

≥ −Cr

Since the choice of r does not depend on n, the proof is complete. ��
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