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Abstract Real-valued differential forms on Berkovich analytic spaces were introduced by
Chambert-Loir and Ducros in (Formes différentielles réelles et courants sur les espaces de
Berkovich. arXiv:1204.6277, 2012) using superforms on polyhedral complexes. We prove a
Poincaré lemma for these superforms and use it to also prove a Poincaré lemma for real-valued
differential forms on Berkovich spaces. For superformswe further show finite dimensionality
for the associated de Rham cohomology on polyhedral complexes in all (bi-)degrees.We also
show finite dimensionality for the real-valued de Rham cohomology of the analytification of
an algebraic variety in some bidegrees.
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1 Introduction

Chambert-Loir and Ducros recently introduced smooth real-valued differential forms on
Berkovich analytic spaces [2]. Basic ingredients in this new theory are Lagerberg’s super-
forms [7] and new methods from tropical geometry (see for example [4]). Chambert-Loir
and Ducros also introduce currents, develop basic results of pluripotential theory (in partic-
ular an analogue of Bedford-Taylor theory), show a Poincaré-Lelong formula and construct
Monge–Ampère measures on Berkovich analytic spaces. There has also been recent work by
Gubler and Künnemann [3] where they extend the results by Chambert-Loir and Ducros and
give a Berkovich analytic construction of local heights. The results mentioned above show
that the forms introduced by Chambert-Loir and Ducros are of basic interest and should play
for example a crucial role in (non-Archimedean) Arakelov theory.

It is the aim of this paper to prove some foundational results about the differential forms of
Chambert-Loir and Ducros. More precisely we will show that they satisfy a Poincaré lemma
and we will investigate their de Rham cohomology.

Our main object of study is the space of real-valued differential forms introduced by
Chambert-Loir and Ducros, which are bigraded and have differential operators d , d ′ and d ′′
analogous to the operators d , ∂ and ∂ for differential forms on complex manifolds. We are
interested in the de Rham cohomology defined by these operators. Since these forms are
locally defined by superforms on polyhedral complexes, we will prove a Poincaré lemma
for superforms on polyhedral complexes. From this we can deduce finiteness of the de
Rham cohomology of superforms on polyhedral complexes, using techniques analogous
to those from differential geometry. We will also deduce a Poincaré lemma for forms on
Berkovich spaces. With the help of sheaf theory we can then deduce that in some bidegrees
this cohomology depends only on the underlying topological space of the Berkovich space
and agrees with singular cohomology. Finally the theory of skeletons enables us to show that
in these degrees cohomology is finite dimensional in many cases.

In Sect. 2we recall the construction of superforms on polyhedral complexes (as introduced
by Lagerberg in [7], see as well [2] and [5]) and prove a Poincaré lemma for these forms
(Theorem 2.16). The usual pullback of differential forms applied to superforms commutes
with the differential operator along affine maps. For arbitrary maps this is false (cf. 2.7).
Our proof of the Poincaré lemma follows the proof in the classical case. A crucial new tool
is the introduction of a pullback of superforms via C∞-maps, which commutes with the
differential operator. We use this to prove a homotopy formula in Theorem 2.12. This will be
the key result to prove the d ′-Poincaré lemma. In Sect. 3 we prove finiteness of the de Rham
cohomology defined by superforms, using good covers and the Mayer–Vietoris sequence. In
Sect. 4 we introduce real-valued differential forms on analytifications of algebraic varieties
following Gubler’s presentation in [5]. Then we use our result for polyhedral complexes
to prove the Poincaré lemma for real-valued differential forms on the analytification of an
algebraic variety (Theorem 4.5). Afterwards we sketch the argument for a generalization
to a paracompact good analytic space (Theorem 4.8). In Theorem 4.9 we show that, as
a consequence, for a variety X the cohomology of the complex (A•,0(X an), d ′) is finite
dimensional.

The author would like to thank to Walter Gubler, Johann Haas, Klaus Künnemann and
Philipp Vollmer for reading various drafts of this work and providing very useful advise
and the anonymous referee for his very precise review and helpful suggestions. The author
would also like to thank the collaborative research centre SFB 1085 “Higher Invariants” by
the Deutsche Forschungsgemeinschaft for its support.
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A Poincaré lemma for real-valued differential forms on. . . 1151

2 A Poincaré lemma for superforms on polyhedral complexes

2.1 Superforms on polyhedral complexes

Superforms were introduced by Lagerberg in [7] for open subsets of real vector spaces.
They are analogues of (p, q)-forms on complex manifolds. The definition was extended to
polyhedral complexes in [2] (see also [5]). We recall the definitions.

Definition 2.1 (i) For an open subset U ⊂ R
r denote by Ap(U ) the space of smooth real

differential forms of degree p. Then the space of superforms of bidegree (p, q) on U is
defined as

Ap,q(U ) := Ap(U ) ⊗C∞(U ) A
q(U ) = Ap(U ) ⊗R �q

R
r ∗

.

If we choose a basis x1, . . . , xr of Rr we can formally write a superform α ∈ Ap,q(U )

as

α =
∑

|I |=p,|J |=q

αI J d
′xI ∧ d ′′xJ

where I = {i1, . . . i p} and J = { j1, . . . jq} are ordered subsets of {1, . . . , r}, αI J ∈
C∞(U ) are smooth functions and

d ′xI ∧ d ′′xJ := (dxi1 ∧ · · · ∧ dxi p ) ⊗R (dx j1 ∧ · · · ∧ dx jq ).

(ii) There is a differential operator d ′ : Ap,q(U ) = Ap(U ) ⊗R �q
R
r ∗ → Ap+1(U ) ⊗R

�q
R
r ∗ = Ap+1,q(U )which is given by D⊗ id, where D is the usual exterior derivative.

We also have Ap,q(U ) = �p
R
r ∗ ⊗R Aq(U ) and can take the derivative in the second

component.We put a sign on this operator and define d ′′ := (−1)p id⊗D. In coordinates
we have

d ′
(

∑

I J

αI J d
′xI ∧ d ′′xJ

)
=

∑

I J

r∑

i=1

∂αI J

∂xi
d ′xi ∧ d ′xI ∧ d ′′xJ

and

d ′′
(

∑

I J

αI J d
′xI ∧ d ′′xJ

)
=

∑

I J

r∑

i=1

∂αI J

∂xi
d ′′xi ∧ d ′xI ∧ d ′′xJ

= (−1)p
∑

I J

r∑

i=1

∂αI J

∂xi
d ′xI ∧ d ′′xi ∧ d ′′xJ .

We further define d := d ′ + d ′′. The sign in d ′′ is such that d ′ and d ′′ anticommute and
hence d is a differential.

Remark 2.2 (i) There is an obvious symmetry in the definition of d ′ and d ′′. If we switch
factors in Ap,q = Ap ⊗ Aq then we change one into the other (up to sign). We will only
talk about d ′ in the following but corresponding statements are always true for d ′′.

(ii) The operator d ′ is a differential. Hence for each q ∈ {0, . . . , r} we get a complex

0 → A0,q d ′→ A1,q d ′→ · · · d ′→ Ar,q → 0

of sheaves on R
r .
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1152 P. Jell

Remark 2.3 If F : Rr ′ → R
r is an affine map and U ′ ⊂ R

r and U ⊂ R
r are open subsets

such that F(U ′) ⊂ U , then there is a well defined pullback morphism F∗ : Ap,q(U ) →
Ap,q(U ′) that commutes with d ′, d ′′ and d .

We will later define a pullback for a more general situation and use this in our proof of
the Poincaré lemma.

Now we recall the definition of polyhedral complexes and forms on open subsets of
polyhedral complexes following [5]. We refer to [4, Appendix A] for notations and results
we use from convex geometry.

Definition 2.4 (i) A polyhedral complex C inRr is a finite set of polyhedra (which we will
always assume to be convex) in R

r with the following two properties:

(a) For a polyhedron σ ∈ C , if τ is a face of σ we have τ ∈ C .
(b) For two polyhedra σ, τ ∈ C we have that σ ∩ τ is a face of both.

(ii) The support |C | of C is the union of all polyhedra in C .
iii) A polyhedron σ spans an affine spaceAσ and we denote by Lσ the corresponding linear

subspace of Rr .
(iv) Let�be an open subset of |C |. Then a superformα ∈ Ap,q(�)of bidegree (p, q)on� is

given by a superform α′ ∈ Ap,q(V )where V is an open subset ofRr with V ∩|C | = �.
Two forms α′ ∈ Ap,q(V ) and α′′ ∈ Ap,q(W ) (with V ∩ |C | = W ∩ |C | = �)

define the same form in Ap,q(�) if for each σ ∈ C the restrictions of α′ and α′′ to
σ ∩ V = σ ∩ W = σ ∩ � agree, which means that for all x ∈ σ ∩ � and all tangent
vectors v1, . . . , vp, w1, . . . , wq ∈ Lσ we have

〈α′(x); v1, . . . , vp, w1, . . . , wq〉 = 〈α′′(x); v1, . . . , vp, w1, . . . , wq〉.
If α ∈ Ap,q(�) is given by α′ ∈ Ap,q(V ) we write α′|� = α. To simplify the notation
we will often write α|σ for α|σ∩�.

Remark 2.5 (i) Wedonot put any rationality assumptiononour polyhedra, since the aspects
of the theory of superforms we consider do not need it. These assumptions are needed
in [5] to define integration of superforms, but we will not use this.

(ii) The set of superforms on an open subset � of a polyhedral complex C depends only
on the support of C . By this we mean that ifD is another polyhedral complex such that
� is an open subset of |D |, then Ap,q(�) is the same whether we regard � as an open
subset of |C | or |D |.

(iii) The polyhedra in C are partially ordered by the relation

τ ≺ σ :⇔ τ is a face of σ.

We will always assume our polyhedral complex to be of dimension n, meaning that
the maximal dimension of its polyhedra is n. In this case we have Ap,q(�) = 0 for
max(p, q) > n. We say a polyhedral complex is pure of dimension n if all maximal
polyhedra are of dimension n.

(iv) Taking d ′ of a superform on an open subset of Rr is compatible with restriction to
polyhedra. Hence the differential d ′ induces, for an open subset � ⊂ |C |, a differential
d ′ : Ap,q(�) → Ap+1,q(�).

(v) A partition of unity argument shows that Ap,q is indeed a sheaf on |C | and hence for
each q ∈ {0, . . . , n} we get a complex

0 → A0,q d ′→ A1,q d ′→ · · · d ′→ An,q → 0
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A Poincaré lemma for real-valued differential forms on. . . 1153

of sheaves on |C |. The fact that this complex is exact in positive degrees will be the
main result of this section.

(vi) We define Ak(�) := ⊕
p+q=k A

p,q(�). Thus d : Ak(�) → Ak+1(�) is a differential.
We get a complex

0 → A0 d→ A1 d→ · · · d→ A2n → 0

of sheaves on |C |.
(vii) The affine pullback as in Remark 2.3 is compatible with restriction to polyhedra. Hence

if F : Rr ′ → R
r is an affine map, C resp. C ′ are polyhedral complexes in R

r resp.
R
r ′
such that F(|C ′|) ⊂ |C | and � ⊂ |C | resp. �′ ⊂ |C ′| are open subsets such that

F(�′) ⊂ � then the affine pullback induces a well defined pullback F∗ : Ap,q(�) →
Ap,q(�′).

2.2 A d′-Poincaré lemma for superforms on polyhedral complexes

In this subsection we will prove a d ′-Poincaré lemma for superforms on polyhedral com-
plexes. The polyhedral complex C will always be of dimension n.

Lemma 2.6 (Chain Homotopy Lemma) Let C be a polyhedral complex in R
r and � ⊂ |C |

an open subset. Let B = [0, 1] ⊂ R be the closed unit interval and for i = 0, 1

ιi : � → � × {i} ⊂ � × B

the inclusions. Then for all p ∈ {0, . . . , n + 1} and q ∈ {0, . . . , n} there exists a linear map

K ′ : Ap,q(� × B) → Ap−1,q(�), (1)

such that

d ′K ′ + K ′d ′ = ι∗1 − ι∗0. (2)

Proof The proof is a variant of the classical chain homotopy lemma for ordinary differential
forms. Observe first that |C | × B is the support of a polyhedral complex in R

r × R and
hence it makes sense to talk about superforms on � × B. Let α ∈ Ap,q(� × B) be given
by β ∈ Ap,q(V × B ′) for some open set V ⊂ R

r and some open interval B ′ such that
B ⊂ B ′ ⊂ R. Let x1, . . . , xr be a basis of Rr and denote by t the coordinate of B. We write

β =
∑

|I |=p,|J |=q

aI J d
′xI ∧ d ′′xJ

+
∑

|I |=p−1,|J |=q

bI J d
′t ∧ d ′xI ∧ d ′′xJ

+
∑

|I |=p,|J |=q−1

eI J d
′xI ∧ d ′′t ∧ d ′′xJ

+
∑

|I |=p−1,|J |=q−1

gI J d
′t ∧ d ′xI ∧ d ′′t ∧ d ′′xJ . (3)
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1154 P. Jell

Then we define

K ′ : Ap,q(V × B) → Ap−1,q(V )

β �→
∑

|I |=p−1,|J |=q

cI J d
′xI ∧ d ′′xJ

with cI J (x) : =
1∫

0

bI J (x, t)dt.

We show that this definition is independent of the choice of the basis x1, . . . , xr . Let there-
fore y1, . . . , yr be another basis. First of all we notice that the decomposition into the four
summands as in (3) is not affected by our base change. We further notice that

d ′xI ∧ d ′′xJ =
∑

|I ′|=|I |,|J ′|=|J |
λI,I ′λJ,J ′d ′yI ′ ∧ d ′′yJ ′ ,

where λI,I ′ is the determinant of the I × I ′ minor of the base change matrix from x1, . . . , xr
to y1, . . . , yr and similar for J and J ′. Now we have

bI J d
′t ∧ d ′xI ∧ d ′′xJ = bI J

∑

I ′,J ′
λI,I ′λJ,J ′d ′t ∧ d ′yI ′ ∧ d ′′yJ ′

and this term is mapped under K ′ to

∑

I ′,J ′

⎛

⎝
1∫

0

λI,I ′λJ,J ′bI J dt

⎞

⎠ d ′yI ′ ∧ d ′′yJ ′

=
⎛

⎝
1∫

0

bI J dt

⎞

⎠
∑

I ′,J ′
λI,I ′λJ,J ′d ′yI ′ ∧ d ′′yJ ′

=
⎛

⎝
1∫

0

bI J dt

⎞

⎠ d ′xI ∧ d ′′xJ ,

which shows the independence on the choice of the basis.
Given V and B ′ we have the diagram

Ap,q(V × B ′) K ′
��

��

Ap−1,q(V )

��
Ap,q(� × B) �������� Ap−1,q(�).

To get a well defined map on the bottom that makes this diagram commutative, we need that
β|σ×B = 0 for all σ ∈ C implies K ′(β)|σ = 0 for all σ ∈ C . Let therefore σ be a maximal
polyhedron in C andW = V ∩ σ . It suffices to show that if β|W×B = 0, then K ′(β)|W = 0.
Bywhat we did abovewemay choose a basis as we like. Let therefore x1, . . . , xm be a basis of
Lσ and xm+1, . . . , xr a basis of a complement. Then from β|W×B = 0 we get bI J |W×B = 0
for all I, J ⊂ {1, . . . ,m}. This means however that cI J |W = 0 for all I, J ⊂ {1, . . . ,m}.
From that we get K ′(β)|W = 0. Hence setting K ′(α) := K ′(β) is independent of the choice
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A Poincaré lemma for real-valued differential forms on. . . 1155

of the form β by which α is given. It is also independent of the choice of V and B ′. This
gives a well defined map

K ′ : Ap,q(� × B) → Ap−1,q(�)

as required in (1). We will now show that (2) holds. It is enough to check that

d ′K ′β + K ′d ′β = ι∗1β − ι∗0β

holds for every β ∈ Ap,q(V ×B ′), where V is an open subset ofRr and B ′ is an open interval
such that B ⊂ B ′ ⊂ R. It suffices to check the following four cases:

(i) β = aI J d ′xI ∧ d ′′xJ :
We have K ′(β) = 0 and

K ′(d ′(β)) = K ′
(

∂aI J
∂t

d ′t ∧ d ′xI ∧ d ′′xJ
)

+
r∑

i=1

K ′
(

∂aI J
∂xi

d ′xi ∧ d ′xI ∧ d ′′xJ
)

=
⎛

⎝
1∫

0

∂aI J
∂t

dt

⎞

⎠ d ′xI ∧ d ′′xJ

= (aI J (., 1) − aI J (., 0))d
′xI ∧ d ′′xJ

= ι∗1(β) − ι∗0(β)

(ii) β = bI J d ′t ∧ d ′xI ∧ d ′′xJ :
We have ι∗1(β) = ι∗0(β) = 0, since the pullback of d ′t is zero. We further have

d ′K ′(β) =
r∑

i=1

⎛

⎝
1∫

0

∂bI J
∂xi

dt

⎞

⎠ d ′xi ∧ d ′xI ∧ d ′′xJ

and

K ′d ′(β) =
r∑

i=1

K ′
(

∂bI J
∂xi

d ′xi ∧ d ′t ∧ d ′xI ∧ d ′′xJ
)

= −
r∑

i=1

K ′
(

∂bI J
∂xi

d ′t ∧ d ′xi ∧ d ′xI ∧ d ′′xJ
)

= −
r∑

i=1

⎛

⎝
1∫

0

∂bI J
∂xi

dt

⎞

⎠ d ′xi ∧ d ′xI ∧ d ′′xJ .

(iii) β = eI J d ′xI ∧ d ′′t ∧ d ′′xJ :
Similarly to (ii) the pullbacks are zero. Since both β and d ′β have a factor d ′′t by
definition they are sent to 0 by K ′.

(iv) β = gI J d ′t ∧ d ′xI ∧ d ′′t ∧ d ′′xJ :
Same as (iii).

Adding up these parts we have proven that (2) holds on V . Now if α ∈ Ap,q(�× B) is given
by β ∈ Ap,q(V × B ′) then the equation holds for α simply because it holds for β. ��
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1156 P. Jell

In the classical proof of the Poincaré lemma for star shaped subsetsU of Rn the idea is to
pull back differential forms via a contraction of U to its center. This contraction is however
not an affine map. So we will introduce in Definition 2.9 a pullback for superforms along
C∞-maps that still commutes with d ′ (as wewill see in 2.11). This will be a crucial ingredient
in our proof of the Poincaré lemma for superforms. The following example shows that the
direct approach does not work.

Remark 2.7 Given a C∞-map F : V ′ → V , where V ′ resp. V are open subsets of Rr ′
resp.

R
r we can define a naive pullback

F∗ : Ap,q(V ) = Ap(V ) ⊗ Aq(V ) → Ap(V ′) ⊗ Aq(V ′) = Ap,q(V ′),

which is just given by the tensor products of the usual pullback of differential forms. This
pullback however does not commute with the differential d ′ in general, as can be seen in the
following example. Let V ′ = R

2 and V = R and F(x, y) = xy. Denote the coordinate on R

by t . Then we have d ′F∗(d ′′t) = d ′(xd ′′y + yd ′′x) = d ′x ∧ d ′′y + d ′y ∧ d ′′x �= 0, however
d ′(d ′′t) = 0 and thus F∗(d ′d ′′t) = 0.
The reason for this is that the definition of this pullback uses the presentation Ap,q = Ap⊗Aq ,
while the definition of d ′ uses the presentation Ap,q = Ap ⊗ �q

R
r ∗ and thus these two are

not compatible. We would therefore like to define a pullback which uses the presentation
Ap,q = Ap ⊗ �q

R
r ∗.

Lemma 2.8 Let C be a polyhedral complex in R
r , � ⊂ |C | an open subset and W ⊂ R

r

an open subset such that � = W ∩ |C |. Then the restriction map Ap,q(W ) → Ap,q(�) is
surjective. In particular, we may assume that any form α ∈ Ap,q(�) is given by a form on
W.

Proof Let α ∈ Ap,q(�) be given by β ∈ Ap,q(V ). Then α is also given by β|V∩W , hence we
may assume V ⊂ W . Notice that � is a closed subset ofW . Choose a function f ∈ C∞(W )

such that f |� ≡ 1 and suppW f ⊂ V . Then α is given by f |Vβ and this can be extended by
zero to a form in Ap,q(W ). ��
Definition 2.9 (C∞-pullback of (p, q)-forms) We define a pullback for superforms on open
subsets V ⊂ R

r and, under certain conditions, for superforms on polyhedral complexes.

(i) Let V ′ ⊂ R
r ′
and V ⊂ R

r be open subsets. Let F = (sF , LF ) be a pair of maps such
that sF : V ′ → V is a C∞-map and LF : Rr ′ → R

r is linear. We define

F∗ := s∗
F ⊗ L∗

F : Ap,q(V ) =Ap(V ) ⊗R �q
R
r ∗

→Ap(V ′) ⊗R �q
R
r ′ ∗ = Ap,q(V ′).

Explicitly, if β ∈ Ap,q(V ) we have

〈F∗(β)(x); v1, . . . , vp, w1, . . . , wq〉
= 〈β(sF (x)); d(sF )x (v1), . . . , d(sF )x (vp), LF (w1), . . . , LF (wq)〉

for all x ∈ V ′ and vi , wi ∈ R
r ′
, where d(sF )x denotes the differential of sF at x .

(ii) Let C ′ and C be polyhedral complexes in R
r ′
and R

r respectively. Let �′ ⊂ |C ′| and
� ⊂ |C | open subsets and V ′ resp. V open neighbourhoods of �′ resp. � in R

r ′
resp.

R
r . Let sF : V ′ → V be a C∞-map and LF : R

r ′ → R
r a linear map such that

sF (�′) ⊂ �. The pair F = (sF , LF ) is said to allow a pullback from � to �′ if there
exist open subsets W of V and W ′ of V ′ such that W ∩ |C | = �, W ′ ∩ |C ′| = �′,
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A Poincaré lemma for real-valued differential forms on. . . 1157

sF (W ′) ⊂ W and for all β ∈ Ap,q(W ) such that β|� = 0 we have F∗(β)|�′ = 0.
In that case, for a form α ∈ Ap,q(�) we choose β ∈ Ap,q(W ) by which α is given
(which is possible by Lemma 2.8) and we define F∗(α) ∈ Ap,q(�′) to be given by
F∗(β) ∈ Ap,q(W ′). The form F∗(α) ∈ Ap,q(�′) is then independent of the choice of
W , W ′ and β, as will be shown in the next Lemma.

Lemma 2.10 The definition of F∗(α) above is independent of the choice of W,W ′ and β.

Proof The independence ofβ is simply due to the property that F∗ respects forms that restrict
to zero.
Now if bothW1,W ′

1, β1 andW2,W ′
2, β2 have the properties required in the definition above,

then by Lemma 2.8 we can choose a form δ ∈ Ap,q(W1 ∪ W2) such that δ|� = α. By
independence of the form we have

F∗(β1)|�′ = F∗(δ|W1)|�′ = F∗(δ)|W ′
1
|�′ = F∗(δ)|�′

and the same works for F∗(β2)|�′ , which proves exactly the independence we wanted to
show. ��

Remark 2.11 (i) The pullback betweenopen subsets of vector spaces commuteswith taking
d ′ since both use the presentation Ap,q(V ) = Ap(V ) ⊗ R

r ∗. We have F∗ = s∗
F ⊗ L∗

F
and d ′ = D ⊗ id and s∗

F and D commute. If F allows a pullback, then the pullback F∗
between open subsets of the supports of polyhedral complexes commutes with d ′ since
both F∗ and d ′′ are defined via restriction.

(ii) The pullback is functorial in the following sense: Let C , C ′ and C ′′ be polyhedral
complexes, � ⊂ |C |, �′ ⊂ |C ′| and �′′ ⊂ |C ′′| open subsets and V ⊂ R

r resp.
V ′ ⊂ R

r ′
resp. V ′′ ⊂ R

r ′′
open neighbourhoods of � resp �′ resp. �′′. Let further

F = (sF , LF ) and G = (sG , LG) be pairs of maps such that sF : V ′ → V and
sG : V ′′ → V ′ are C∞-maps, LF : Rr ′ → R

r and LG : Rr ′′ → R
r ′
are linear maps

and sF (�′) ⊂ �′ and sG(�′′) ⊂ �′. If both F resp. G allow a pullback from � to �′
resp.�′ to�′′ and we define F ◦G := (sF ◦ sG , LF ◦ LG) then F ◦G allows a pullback
from � to �′′ and we have (F ◦ G)∗ = G∗ ◦ F∗.

(iii) Let F : Rr ′ → R
r be an affinemap and denote byLF := F−F(0) the associated linear

map. Then the pullback via F in the sense of Remark 2.3 is the pullback via (F,LF )

in the sense of Definition 2.9 above.
(iv) The notion of allowing pullback does not depend on the underlying polyhedral com-

plexes C and C ′, since the pullback is defined on an open neighborhood and the
restriction only depends on � and �′ (cf. 2.5).

Theorem 2.12 (Homotopy Formula)Let V be an open subset of Rr . Let further sF : V → V
be a C∞-map and LF := id. Let sG : V ×R → V such that sG(., 0) = sF and sG(., 1) = id.
Let LG = pr1 : Rr ×R → R

r be the projection to the first factor. Denote by F∗ respectively
G∗ the pullback from V to V respectively to V ×R via pairs (sF , LF ) respectively (sG , LG).
Then for α ∈ Ap,q(V ) we have

α − F∗α = d ′K ′G∗α + K ′G∗d ′α

for any operator K ′ satisfying the equality (2) of Lemma 2.6.
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1158 P. Jell

Proof We calculate

id∗ −F∗ = (G ◦ ι1)
∗ − (G ◦ ι0)

∗

= ι∗1 ◦ G∗ − ι∗0 ◦ G∗

= (ι∗1 − ι∗0) ◦ G∗

= (K ′d ′ + d ′K ′)G∗

= K ′d ′G∗ + d ′K ′G∗

(2.11)= K ′G∗d ′ + d ′K ′G∗,

where we denote by ιi the pair (ιi ,Lιi ). Now putting in α and using id∗(α) = α gives the
desired result. ��

Note that if � is an open subset of |C | for some polyhedral complex C in R
r and F resp.

G allows a pullback from � to � resp. � × B, where B = [0, 1] is the closed unit interval,
then the analogue formula also holds for α ∈ Ap,q(�) since all operators are defined via
restriction.

Definition 2.13 Let C be a polyhedral complex in R
r . An open subset � of |C | is called

polyhedrally star shaped with centre z if there is a polyhedral complex D such that � is an
open subset of |D | and for all maximal σ ∈ D the set σ ∩ � is star shaped with centre z in
the sense that for all x ∈ σ ∩ � and for all t ∈ [0, 1] the point z + t (x − z) is contained in
σ ∩ �.

Remark 2.14 It is obvious that if � ⊂ C is a polyhedrally star shaped open subset with
centre z, then � is also star shaped with centre z. The converse is not true however: Take C
such that |C | = [−1, 1] × [−1, 1] ∪ {0} × [1, 2] ∪ [1, 2] × {0} ⊂ R

2. Then � := |C | is star
shaped but not polyhedrally star shaped.

Lemma 2.15 LetC ′ andC bepolyhedral complexes inRr ′
andRr respectively. Let�′ ⊂ |C ′|

and� ⊂ |C | be open subsets and V ′ resp. V open neighbourhoods of�′ resp.� in Rr ′
resp.

R
r . Let sF : V ′ → V be a C∞-map and LF : Rr ′ → R

r a linear map such that sF (�′) ⊂ �.
Suppose there exist polyhedral complexes D ′ in R

r ′
and D in R

r such that �′ resp. � are
open subsets of |D ′| resp. |D | and such that for all maximal σ ′ ∈ D ′ there exists a maximal
σ ∈ D such that we have

(a) ∀x ∈ σ ′ ∩ �′, sF (x) ∈ σ and
(b) ∀w ∈ Lσ ′ , LF (w) ∈ Lσ .

Then F := (sF , LF ) allows a pullback from � to �′.

Proof We first note that Remark 2.11 says that whether F allows a pullback does not depend
on the polyhedral complex and hence we may assume thatD = C andD ′ = C ′. LetW ⊂ V
be an open subset such that W ∩ |C | = � and let β ∈ Ap,q(W ). For F to allow a pullback
we have to show that if β|σ = 0 for all maximal polyhedra σ ∈ C then (F∗β)|σ ′ = 0 for all
maximal σ ′ ∈ C ′.
Let σ ′ ∈ C ′ be a maximal polyhedron and σ ∈ C the maximal polyhedron such that σ and
σ ′ satisfy condictions (a) and (b). We then have that

(c) ∀x ∈ σ ′ ∩ �′, ∀v ∈ Lσ ′ , d(sF )x (v) ∈ Lσ ,
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A Poincaré lemma for real-valued differential forms on. . . 1159

due to condition (a).
For σ ∈ C the fact that β|σ = 0 just means

〈β(x); v1, . . . , vp, w1, . . . , wq〉 = 0

for all x ∈ σ ∩ �, vi , wi ∈ Lσ . But then we have

〈F∗(β)(x); v1, . . . , vp, w1, . . . , wq〉
= 〈β(sF (x)); d(sF )x (v1), . . . , d(sF )x (vp), LF (w1), . . . , LF (wq)〉 = 0

for all x ∈ σ ′ ∩ �′, vi , wi ∈ Lσ ′ by conditions (a), (b) and (c). Hence F∗(β)|σ ′ = 0. This
shows that if β|σ = 0 for all σ ∈ C then F∗(β)|σ ′ = 0 for all maximal and hence all σ ′ ∈ C ′.
Thus F allows a pullback from � to �′. ��
Theorem 2.16 (d ′-Poincaré lemma for polyhedral complexes ) Let C be a polyhedral com-
plex inRr and� ⊂ |C |apolyhedrally star shaped open subsetwith centre z. Letα ∈ Ap,q(�)

with p > 0 and d ′α = 0. Then there exists β ∈ Ap−1,q(�) such that d ′β = α.

Proof We want to use Theorem 2.12 with sF the constant map to the centre z of �. Let
LF = id, sG given by

sG : Rr × R → R
r

(x, t) �→ z + t (x − z)

and LG = pr1. It is easy to check that both F and G have the properties required in Theorem
2.12. We show that they allow a pullback from � to � resp. � × B by showing that they
fulfill the conditions required in Lemma 2.15. Since � is polyhedrally star shaped we know
that there exists a polyhedral complex D such that � is an open subset of |D | and such that
σ ∩ � is star shaped with centre z for all maximal σ ∈ D . We take D ′ to be the polyhedral
complex whose maximal polyhedra are of the form σ × B for σ ∈ D a maximal polyhedron.
Let σ ′ = σ × B ∈ D ′ be such a maximal polyhedron. For (x, t) ∈ σ ′ we have sG(x, t) ∈ σ

because σ ∩ � is star shaped with centre z. Since it is obvious that LG(Lσ ′) ⊂ Lσ , G allows
a pullback from � to � × B by Lemma 2.15. Since sF is constant and LF is the identity
we also see that F has the properties of Lemma 2.15 and hence allows a pullback from �

to �. Now since α ∈ Ap,q(�) with p > 0 we have F∗α = 0 (since sF is a constant map).
Together with our assumption d ′α = 0, Theorem 2.12 yields

α = d ′(K ′G∗α),

which proves the theorem. ��
Remark 2.17 Let C be a polyhedral complex, � ⊂ |C | an open subset and z ∈ � a point.
Let V ⊂ R

r be an open ball around z such that V ∩ |C | ⊂ � and such that V intersects only
polyhedra in C that contain z. Write �′ := V ∩ |C | and let D be the polyhedral subcomplex
of C whose maximal polyhedra are the ones in C which intersect �′. Let σ be a maximal
polyhedron in D . Since V and σ are both convex, σ ∩ V = σ ∩ �′ is convex and hence it
is star shaped with respect to any point and in particular with respect to z. Hence any point
z ∈ |C | has a basis of open neighbourhoods consisting of polyhedrally star shaped open sets.
Corollary 2.18 For all q ∈ {0, . . . , n} the complex

0 → A0,q d ′→ A1,q d ′→ · · · d ′→ An,q → 0

of sheaves on |C | is exact in positive degrees.
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1160 P. Jell

Proof This is a direct consequence of Theorem 2.16 and Remark 2.17. ��
Corollary 2.19 The complex

0 → R → A0,0 d ′→ A1,0 d ′→ · · · d ′→ An,0 → 0 (4)

of sheaves on |C | is exact. The cohomology of its complex of global sections
0 → A0,0(|C |) d ′→ A1,0(|C |) d ′→ · · · d ′→ An,0(|C |) → 0 (5)

is isomorphic to the sheaf cohomology H∗(|C |,R) of the constant sheafR and to the singular
cohomology H∗

sing(|C |,R).

Proof The fact that f ∈ A0,0(�) for � ⊂ |C | is a function and that d ′ f = 0 if and
only if f is locally constant together with Corollary 2.18 show that the complex (4) is
exact. Since the sheaves Ap,q admit partitions of unity, they are fine, hence acyclic [8,
Chapter II, Proposition 3.5 and Theorem 3.11]. This means that the complex (5) calculates
the sheaf cohomology of R. Since |C | is paracompact, Hausdorff and locally compact, this
is the singular cohomology of the topological space |C | [1, Chapter III, Theorem 1.1]. ��
Remark 2.20 We can not expect a d-Poincaré lemma to hold for the following reason: If
J : Ap,q → Aq,p is the operator that switches the factors in the tensor product Ap,q =
Ap ⊗C∞ Aq , then for any function f ∈ A0,0(V ), where V is an open subset of Rr , we have
that d f is invariant under J but there is no need for a d-closed 1-form to be invariant under
J .

3 Finiteness results for the cohomology of superforms on polyhedral
complexes

3.1 Good covers and Mayer–Vietoris-Sequence

In this subsection C is a polyhedral complex in R
r . Recall from Remark 2.5 that Ak =⊕

p+q=k A
p,q . Let (A•, D) denote either the complex (A•, d) or the complex (A•,q , d ′),

for fixed q , of sheaves of superforms on |C |. For an open subset � ⊂ |C | we will write
H•(�) for the cohomology of (A•(�), D). The statements of Theorem 3.2 and Lemma 3.3
are special cases of theorems which are certainly well known. We choose to present them
here with short proofs for the convenience of the reader.

Definition 3.1 Let � ⊂ |C | be an open subset. An open cover (�i )i∈I of � is called a
reasonable cover for (A•, D) if I is finite and for all n ∈ N>0 and for all ι1, . . . , ιn ∈ I
the set �ι1,...,ιn := ⋂n

i=1 �ιi has the property that Hk(�ι1,...,ιn ) is finite dimensional for all
k ∈ N0. It is called a good cover if further Hk(�ι1,...,ιn ) = 0 for all k > 0.

Theorem 3.2 (Mayer–Vietoris-Sequence) Let C be a polyhedral complex and �,�1,�2

open subsets of |C | such that � = �1 ∪ �2. Let further �12 := �1 ∩ �2. Then there exists
a long exact sequence

0 → H0(�) → H0(�1) ⊕ H0(�2) → H0(�12) → · · ·
· · · Hk−1(�12) → Hk(�) → Hk(�1) ⊕ Hk(�2) → Hk(�12) →
→ Hk+1(�) → · · ·
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Proof A partition of unity argument shows that the sequence

0 → A•(�) → A•(�1) ⊕ A•(�2) → A•(�12) → 0

is exact. The result is then obtained by the long exact cohomology sequence. ��
Lemma 3.3 Let � ⊂ |C | be an open subset and (�i )i=1,...,m be a reasonable cover of �

for A•. Then Hk(�) is a finite dimensional real vector space for all k ∈ N0.
If (�i )i=1,...,m is a good cover, then we further have Hk(�) = 0 if k ≥ m.

Proof We use induction onm withm = 1 being just the definition 3.1 in both the reasonable
and the good case. Now let m ≥ 2. Let �′ := ⋃m−1

i=1 �i and for all i = 1, . . . ,m − 1 let
�′

i := �i ∩ �m . Then (�i )i=1,...,m−1 is a reasonable cover of �′ and (�′
i )i=1,...,m−1 is a

reasonable cover of �′ ∩ �m . The Mayer–Vietoris-Sequence Theorem 3.2 shows that for all
k the complex

Hk−1(�′ ∩ �m) → Hk(�) → Hk(�′) ⊕ Hk(�m) (6)

is exact. By induction hypothesis both Hk(�′ ∩ �m) and Hk(�′) are finite dimensional and
by definition so is Hk(�m). Then by exactness of (6), Hk(�) is finite dimensional.
If (�i )i=1,...,m is a good cover, then so are (�i )i=1,...,m−1 and (�′

i )i=1,...,m−1. So for k ≥ m,
by induction hypothesis Hk(�′) = 0 (since k ≥ m − 1) and Hk−1(�′ ∩ �m) = 0 (since
k − 1 ≥ m − 1). Since then also k ≥ 2 we further have Hk(�m) = 0 and (6) becomes

0 → Hk(�) → 0 ⊕ 0,

which shows Hk(�) = 0. ��
3.2 Polyhedral stars

In this subsection C will be a polyhedral complex in the real vector space R
r . We will

introduce a special class of open subsets of |C | and show that these sets are polyhedrally star
shaped.

Definition 3.4 Let σ ∈ C . We denote by σ̊ the relative interior of σ , which is just σ without
its proper faces. We define the polyhedral star of σ to be �σ := ⋃

τ∈C ,σ≺τ τ̊ .

Lemma 3.5 For σ ∈ C the polyhedral star �σ of σ is an open neighbourhood of σ̊ in |C |.
Proof Since σ ≺ σ , we have σ̊ ⊂ �σ . Let z ∈ �σ . Let B be an open neighbourhood of z
in R

r that only intersects polyhedra in C that contain z. Then we have B ∩ |C | ⊂ ⋃
τ :z∈τ τ̊

and since z ∈ �σ there exists some ν ∈ C such that z ∈ ν̊ and σ ≺ ν. Now if z ∈ τ ,
then z ∈ ν ∩ τ , which is a face of both. But since z ∈ ν̊ this can not be a proper face
of ν, hence ν ∩ τ = ν. Thus we have ν ≺ τ and by transitivity σ ≺ τ . We have shown
{τ ∈ C |z ∈ τ } ⊂ {τ ∈ C |σ ≺ τ }. This shows in turn that

⋃
τ :z∈τ τ̊ ⊂ ⋃

τ :σ≺τ τ̊ and thus
B ∩ |C | ⊂ ⋃

τ :σ≺τ τ̊ = �σ . Hence for every point z ∈ �σ , the set �σ contains an open
neighbourhood of z in |C |, which shows that �σ ⊂ |C | is an open set. ��
Lemma 3.6 Let τ1, . . . , τn ∈ C . Then the set of polyhedra in C which contain all τi is either
empty or has a unique minimal (i.e. smallest) element στ1...τn . Further we have

⋂n
i=1 �τi =

�στ1 ...τn
.
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Proof The first assertion is clear since the set of polyhedra which contain all τi is closed
under intersection. The second part is straight from the definition, since

n⋂

i=1

�τi =
⋃

ν:τi≺ν∀i
ν̊ =

⋃

ν:στ1 ...,τn≺ν

ν̊ = �στ1,...,τn
.

��
Lemma 3.7 Let σ ∈ C and z ∈ σ̊ . Then �σ is polyhedrally star shaped with respect to z.

Proof Let D be the polyhedral complex whose maximal polyhedra are the maximal ones in
C that contain σ . Let τ ∈ D be maximal and y ∈ τ ∩�σ . Then there exists ν such that y ∈ ν̊

and σ ≺ ν ≺ τ . Then [y, z) ⊂ ν̊ and hence [y, z] ⊂ ν̊ ∪ σ̊ ⊂ �σ ∩ τ . This just means that
τ ∩ �σ is star shaped, hence �σ is polyhedrally star shaped. ��
3.3 A finite dimensionality result for the operator d′

In this subsection we will use the results of the previous two subsections together with
the Poincaré lemma to shows that the cohomology with respect to d ′ of superforms on
polyhedral complexes is finite dimensional. Note that by symmetry for all statements for d ′
the corresponding statements are true for d ′′. Again C will be a polyhedral complex in R

r .

Definition 3.8 An open subset � ⊂ |C | is called polyhedrally connected if there exists a
polyhedral complex D such that � is an open subset of |D | and such that for each maximal
polyhedron σ in D the set σ ∩ � is connected.

Lemma 3.9 Let � ⊂ |C | a polyhedrally connected open subset. Then H0,q
d ′ (�) is a finite

dimensional real vector space for all q.

Proof Choose a complexD such that� ⊂ |D | is an open set and for all maximal σ ∈ D , the
set σ ∩ � is connected. By definition a superform α ∈ Ap,q(�) on a polyhedral complex is
closed under d ′ if and only if all its restrictions α|σ∩� to maximal polyhedra of D are closed
under d ′. Hence the injection A0,q(�) ↪→ ⊕

maximalσ∈D A0,q(σ ∩�) restricts to an injection

H0,q
d ′ (�) ↪→ ⊕

maximalσ∈D H0,q
d ′ (σ ∩ �). It is easy to see that since σ ∩ � is connected we

have H0,q
d ′ (σ ∩ �) = �q

L
∗
σ , where L

∗
σ denotes the dual of the linear space associated to σ .

Hence the sum is finite dimensional and thus H0,q
d ′ (�) is. ��

Theorem 3.10 H p,q
d ′ (|C |) is finite dimensional for all p, q ∈ N0.

Proof Let τ1, . . . , τk be the minimal polyhedra of C . We claim that the family (�τi )i=1,...,k

is a good cover of |C |. Let therefore z ∈ |C |. Then z is in the relative interior of some
polyhedron σ and there is τi such that τi ≺ σ . This means however that z ∈ �τi . Hence
we have a cover and Lemma 3.7 together with the Poincaré lemma (Theorem 2.16) and
Lemma 3.9 (using that polyhedrally star shaped sets are polyhedrally connected) precisely
shows that this is a good cover. Now Lemma 3.3 shows our result. ��
3.4 A finite dimensionality result for the operator d

We will use the results of the previous three subsections and the Poincaré lemma to prove
finite dimensionality for the cohomology with respect to d of superforms on polyhedral
complexes. Again C will be a polyhedral complex of dimension n in R

r .
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Corollary 3.11 Let C be a polyhedral complex and � ⊂ |C | a polyhedrally star shaped
open subset. Let α ∈ Ak(�) be a d-closed form. Then there exists β ∈ Ak−1(�) such that
α − dβ ∈ A0,k(�) and such that α − dβ is d ′, d ′′ and d-closed. If k > dim C then α is
d-exact.

Proof Write α = α0 + α1 + · · · + αk with αi ∈ Ak−i,i (�). Then the decomposition of
dα ∈ Ak+1(�) = ⊕

p+q=k+1 A
p,q(�) is given by

dα = d ′α0 + (d ′′α0 + d ′α1) + · · · + (d ′′αk−1 + d ′αk) + d ′′αk .

Since those terms have different bidegrees each of them is zero. Therefore the statement is
trivially true if k = 0 and we may from now on assume k > 0.

We construct inductively for i = 0, . . . , k−1 forms βi ∈ Ak−i−1,i (�) such that β−1 = 0
and d ′βi = αi −d ′′βi−1. Note therefore that αi −d ′′βi−1 is d ′-closed for i = 0, . . . , k, since
this is immediate for i = 0 and for i = 1, . . . , k we have

d ′(αi − d ′′βi−1) = d ′αi − d ′d ′′βi−1

= d ′αi + d ′′d ′βi−1

= d ′αi + d ′′αi−1 − d ′′d ′′βi−2

= d ′αi + d ′′αi−1 = 0.

Hence given βi−1, Theorem 2.16 gives us βi ∈ Ak−i−1,i (�) such that d ′βi = αi − d ′′βi−1

for i = 0, . . . , k − 1. We define β := ∑k−1
i=0 βi ∈ Ak−1(�). Then we have

α − dβ =
k−1∑

i=0

(αi − d ′′βi−1 − d ′βi ) + αk − d ′′βk−1 = αk − d ′′βk−1 ∈ A0,k(�).

As shown above we have that αk − d ′′βk−1 is d ′ closed, thus α − dβ is. Since it is also
d-closed, it is d ′′-closed. If k > dim C , then A0,k(�) = 0 and hence α = dβ. ��
Lemma 3.12 Let � ⊂ |C | be an open subset. Let α ∈ A0,k(�) such that d ′α = 0. Then
d ′′α = 0 and dα = 0.

Proof It is sufficient to check this after a restriction to a polyhedron. Let σ ∈ C and let
v1, . . . , vr be a basis of Lσ . Then α|σ = ∑

|J |=k αI d ′′vJ and d ′α|σ = 0 if and only if
∂αJ
∂vi

= 0 for all i, J . But then also d ′′α|σ = 0.
Since d ′α = 0 and d ′′α = 0 we have dα = 0. ��
Corollary 3.13 Let � ⊂ |C | be a polyhedrally star shaped open subset. Then there is a
surjective map H0,k

d ′ (�) � Hk
d (�). In particular Hk

d (�) is finite dimensional for all k ∈ N0.

Proof By Lemma 3.12 the inclusion A0,k(�) ↪→ Ak(�) induces H0,k
d ′ (�) → Hk

d (�)

(note that H0,k
d ′ = ker(d ′

0,k)). Now Corollary 3.11 shows the surjectivity and 3.9 shows

that H0,k
d ′ (�) is finite dimensional, hence Hk

d (�) is. ��

Theorem 3.14 Hk
d (|C |) is finite dimensional for all k ∈ N0.

Proof Let τ1, . . . , τs be the minimal polyhedra in C . Again, as in the proof of Theorem 3.10,
(�τi )i=1,...,s is a cover of |C |. By Corollary 3.13 and Lemma 3.7 this is a reasonable cover.
Hence Lemma 3.3 shows our result. ��
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4 Real-valued differential forms on Berkovich spaces

In this section K is a field which is algebraically closed and complete with respect to an
absolute value. We work with a variety X over K , by which we mean a reduced irreducible
separated K -scheme of finite type. We let n := dim(X) and denote by X an the Berkovich
analytification of X .
The space of real-valued (p, q)-forms on Berkovich analytic spaces was introduced by
Chambert-Loir and Ducros in [2] using analytic moment maps. In [5] Gubler developed
an approach based on algebraic moment maps in the case where the analytic space is the
analytification of an algebraic variety. In that case both approaches lead to the same sheaves
of forms. We will follow Gubler’s approach.

4.1 A d′-Poincaré lemma for forms on Berkovich spaces

Definition 4.1 (i) An open affine subset U of X is called very affine, if it has a closed
embedding to a torus Gs

m , or equivalently if OX (U ) is generated by its units as a K -
algebra. In this case U has a canonical embedding (up to translation) ϕU into a torus
TU . This embedding is constructed by choosing representatives of a basis ϕ1, . . . , ϕr of
the free abelian group MU := OX (U )×/K×, which yields a map ϕU : U → TU :=
Spec K [MU ]. The map ϕU is called the canonical moment map of U . We define the
tropical variety Trop(U ) associated to U to be the image of tropU := trop ◦(ϕU )an :
U an → NU,R, where NU := MU

∗, NU,R := NU ⊗Z R, trop : T
an
U → NU,R is the

tropicalization map of the torus and (ϕU )an : U an → T
an is the analytification of ϕU .

It turns out that Trop(U ) is the support of a polyhedral complex of pure dimension
n = dim(X) in the r dimensional real vector space NU,R. (cf. [4, Theorem 3.3])

(ii) A tropical chart is a pair (V, ϕU ), where V ⊂ X an is an open subset in the analytic
topology and ϕU is the canonical moment map of a very affine Zariski open subset
U ⊂ X , such that V ⊂ U an and V = trop−1

U (�) for an open subset � of Trop(U ).
(iii) If (V, ϕU ) and (V ′, ϕU ′) are tropical charts such thatV ′ ⊂ V andU ′ ⊂ U , then (V ′, ϕU ′)

is called a subchart of (V, ϕU ).

Remark 4.2 (i) The tropical variety Trop(U ) actually has more structure. It is a rational
polyhedral complex (with respect to the lattice NU ), which is equipped with positive
integer weights on its top dimensional faces and satisfies the balancing condition (cf.
[5]). While these properties are used in the theory of differential forms, they are not
needed for the aspects we consider.

(ii) For tropical charts (V, ϕU ) and (V ′, ϕU ′) the pair (V ∩V ′, ϕU∩U ′) is a subchart of both.
(iii) Tropical charts form a basis of the topology of X an.
(iv) If (V ′, ϕU ′) is a subchart of (V, ϕU ) then there is a canonical surjective affine map

ψU ′,U : NU ′,R → NU,R,

with integral linear part, such that the diagram

U ′ ��

tropU ′
��

U

tropU
��

Trop(U ′)
ψU ′,U

�� TropU

commutes.
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Definition 4.3 Let V be an open subset of X an. A (p, q)-differential form α on V is given
by a family (Vi , ϕUi , αi )i∈I such that
(i) For all i ∈ I the pair (Vi , ϕUi ) is a tropical chart and

⋃
i∈I Vi = V .

(ii) For all i ∈ I we have αi ∈ Ap,q(tropUi
(Vi )).

(iii) The αi agree on intersections in the sense that for all i, j ∈ I , we have

ψ∗
Ui∩Uj ,Ui

(αi ) = ψ∗
Ui∩Uj ,Uj

(α j ) ∈ Ap,q(tropUi∩Uj
(Vi ∩ Vj )).

Another such family (V ′
j , ϕU ′

j
, β j ) j∈J defines the same form if there is a common refinement

of the covers of V by tropical charts such that the affine pullbacks to the refined cover agree.
We write Ap,q(V ) for the space of differential forms of bidegree (p, q) on V and Ap,q for
the sheaf of differential forms of bidegree (p, q) on X an. We also write Ak := ⊕

p+q=k A
p,q

for the sheaf of differential forms of degree k.
Since affine pullbacks are compatible with d ′, we can define d ′α to be given by
(Vi , ϕUi , d

′αi )i∈I . This defines a well defined operator d ′ : Ap,q(V ) → Ap+1,q(V ). The
same works for d ′′ and d and we get differential operators d ′′ : Ap,q(V ) → Ap,q+1(V ) and
d : Ak(V ) → Ak+1(V ).

Remark 4.4 It is obvious that d ′ is a differential. Hence for each q ∈ {0, . . . , n} we get a
complex

0 → A0,q d ′→ A1,q d ′→ · · · d ′→ An,q → 0

of sheaves on X an. Theorem 4.5 will show that this complex is always exact in positive
degrees. We also get a complex

0 → A0 d→ A1 d→ · · · d→ A2n → 0

of sheaves on X , but we can not hope for this complex to be exact for the same symmetry
reason as given in 2.20.

Theorem 4.5 (d ′-Poincaré lemma on X an) Let X be a variety and V ⊂ X an an open subset.
Let x ∈ V and α ∈ Ap,q(V ) with p > 0 and d ′α = 0. Then there exists some open W ⊂ V
with x ∈ W and some β ∈ Ap−1,q(W ) such that d ′β = α|W .

Proof Let α be given by a family (Vi , ϕUi , αi )i∈I where (Vi , ϕUi ) are tropical charts, αi ∈
Ap,q(�i ) and �i := tropUi

(Vi ) is an open subset of Trop(Ui ). Choose i such that x ∈
Vi and let z := tropUi

(x). By Remark 2.17 we may choose a polyhedrally star shaped

neighbourhood �′ of z in �i . We define W := trop−1
Ui

(�′). Then α|W is given by the single
chart (W, ϕUi , αi |�′) and d ′α|W is given by (W, ϕUi , d

′αi |�′). Since d ′α|W = 0 and it is
given by a single chart, we know that d ′αi |�′ = 0 [5, Proposition 5.6]. Now Theorem 2.16
applies and gives us β ′ ∈ Ap−1,q(�′) such that d ′β ′ = αi |�′ . The form β ∈ Ap−1,q(W )

given by (W, ϕUi , β
′) now has the desired property. ��

Corollary 4.6 The complex

0 → R → A0,0 d ′→ A1,0 d ′→ · · · d ′→ An,0 → 0 (7)

of sheaves on X an is exact. The cohomology of its complex of global sections

0 → A0,0(X an)
d ′→ A1,0(X an)

d ′→ · · · d ′→ An,0(X an) → 0 (8)

is isomorphic to the sheaf cohomology H∗(X an,R) of the constant sheafR and to the singular
cohomology H∗

sing(X
an,R).
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Proof Let V ⊂ X an an open subset and f ∈ A0,0(V ) given by the family (Vi , ϕUi , fi )i∈I .
Then f can be viewed as a function on V via the definition f (x) := fi ◦ tropUi

(x) for
x ∈ U an

i . This function is continuous and d ′ f = 0 if and only if f is locally constant.
Together with Theorem 4.5 this shows that the complex (7) is exact. Since the sheaves
Ap,q admit partitions of unity [5, Proposition 5.10], they are fine, hence acyclic [8, Chap-
ter II, Proposition 3.5 andTheorem3.11]. Thismeans that the complex (8) calculates the sheaf
cohomology of R. Since X an is paracompact, Hausdorff and locally compact, this is the sin-
gular cohomology of the underling topological space of X an [1, Chapter III, Theorem1.1]. ��
Corollary 4.7 Let X be a variety and V ⊂ X an an open subset. Let α ∈ Ak(V ) such that
dα = 0. Then for x ∈ V there exists an open neighbourhood W of x in V and a form
β ∈ Ak−1(W ) such that α|W − dβ ∈ A0,k(W ) and such that α|W − dβ is closed under d, d ′
and d ′′. If k > dim(X) then α|W is d-exact.

Proof The proof works the same as the proof of Theorem 4.5, using 3.11 instead of 2.16. ��
Theorem 4.8 Let X be a Berkovich analytic space of dimension n. Let Ap,q be the sheaf of
differential (p, q)-forms on X as introduced by Chambert-Loir and Ducros in [2]. Then for
all q ∈ {0, . . . , n} the complex

0 → A0,q d ′→ A1,q d ′→ · · · d ′→ An,q → 0

of sheaves on X is exact in positive degrees. Further the complex

0 → R → A0,0 d ′→ A1,0 d ′→ · · · d ′→ An,0 → 0

of sheaves on X is exact.
If X is a good analytic space which is Hausdorff and paracompact, then the cohomology of
the complex

0 → A0,0(X)
d ′→ A1,0(X)

d ′→ · · · d ′→ An,0(X) → 0

is equal to the sheaf cohomology H∗(X,R) of the constant sheaf R, which is isomorphic to
the singular cohomology H∗

sing(X,R).

Proof Using [2, Lemme 3.2.2] the same arguments as used in the proof of Theorem 4.5 work,
since forms in the sense of [2] are also locally given by forms on polyhedral complexes. If X is
good, Hausdorff and paracompact, then [2, Proposition 3.3.6] shows that there are partitions
of unity and the arguments in the proof of Corollary 4.6 work. The details are left to the
reader. ��

As observed in Remark 2.2 the corresponding statements to Theorems 4.5 and 4.6 are true
for d ′′.

4.2 Finite dimensionality of the de Rham cohomology of differential forms on
Berkovich spaces

We will now again work with the case where our analytic space is the analytification of an
algebraic variety X . We first note that Theorem 3.2 and Lemma 3.3 apply also for forms on
X and open covers of X , since the proofs work exactly the same. However we only have
Theorem 4.5 available, which does not tell us anything about acyclic domains and hence we
can not use the same strategy as in Sect. 3 to proof finite dimensionality results. However
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Theorem 4.8 shows that the cohomology of the complex (A•,0(X an), d ′) is equal to singular
cohomology, hence only depends on the homotopy type of the underlying topological space.
This gives us the possibility to prove finite dimensionality results for this complex.

Theorem 4.9 Let X be a variety. Then H p,0
d ′ (X an) is finite dimensional for all p.

Proof We start with the quasi-projective case. By [6, Theorem 13.2.1] there exists a strong
deformation retraction of X an to a finite simplicial complex S. Finite simplicial complexes
have finite dimensional singular cohomology as is certainly well known from algebraic
topology. Since we also have H p,0

d ′ (X an) = H p
sing(X

an,R) = H p
sing(S,R) the result follows

for quasi-projective varieties. In the general case, let X = ⋃k
i=1Ui be a cover of X by open

affine subvarieties. Since X is separated, all intersections of theUi are affine and since affine
varieties are quasi-projective, this is a reasonable cover. This shows our result. ��
Remark 4.10 There are more result, based on the existence of (formal) models, that state
that a given Berkovich space admits a deformation retraction to a so called skeleton, which
is a finite polyhedral complex. Since this is the only property which we need in the proof of
the previous theorem, we get corresponding finite dimensionality results in all these cases as
well.
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