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Abstract The aim of this article is to develop the theory of product Hardy spaces associated
with operators which possess the weak assumption of Davies–Gaffney heat kernel estimates,
in the setting of spaces of homogeneous type.We also establish a Calderón–Zygmund decom-
position on product spaces, which is of independent and use it to study the interpolation of
these product Hardy spaces.We then show that under the assumption of generalizedGaussian
estimates, the product Hardy spaces coincide with the Lebesgue spaces, for an appropriate
range of p.
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1 Introduction

Modern harmonic analysis was introduced in the ’50s, with the Calderón–Zygmund theory
at the heart of it. This theory established criteria for singular integral operators to be bounded
on different scales of function spaces, especially the Lebesgue spaces L p , 1 < p < ∞. To
achieve this goal, an integrated part of the Calderón–Zygmund theory includes the theory
of interpolation and the theory of function spaces, in particular end-point spaces such as the
Hardy and BMO spaces. The development of the theory of Hardy spaces in R

n was initiated
by Stein and Weiss [42], and was originally tied to the theory of harmonic functions. Real-
variable methods were introduced into this subject by Fefferman and Stein [21]; the evolution
of their ideas led eventually to characterizations of Hardy spaces via the atomic or molecular
decomposition. See for instance [6,41] and [43]. The advent of the atomic and molecular
characterizations enabled the extension of the Hardy spaces on Euclidean spaces to the more
general setting of spaces of homogeneous type [14].

While the Calderón–Zygmund theory with one parameter was well established in the
four decades of the ’50s to ’80s, multiparameter Fourier analysis was introduced later in
the ’70s and studied extensively in the ’80s by a number of well known mathematicians,
including R. Fefferman, S.-Y. A. Chang, R. Gundy, E.M. Stein, and J.L. Journé (see for
instance [8–10,22–27,33]). For recent works, see also [5,7,29,30].

It is now understood that there are important situations in which the standard theory of
Hardy spaces is not applicable and there is a need to consider Hardy spaces that are adapted
to certain linear operators, similarly to the way that the standard Hardy spaces are adapted
to the Laplacian. In this new development, the real-variable techniques of [14,21] and [13]
are still of fundamental importance.

Recently, a theory of Hardy spaces associated to operators was introduced and developed
bymany authors. The following are some previous closely related results in the one-parameter
setting.

(i) Auscher et al. [2] introduced the Hardy space H1
L(Rn) associated to an operator L ,

and obtained a molecular decomposition, assuming that L has a bounded holomorphic
functional calculus on L2(Rn) and the kernel of the heat semigroup e−t L has a pointwise
Poisson upper bound.

(ii) Under the same assumptions on L as in (i), Duong and Yan [19,20] introduced the space
BMOL(Rn) adapted to L and established the duality of H1

L(Rn) andBMOL∗(Rn), where
L∗ denotes the adjoint operator of L on L2(Rn). Yan [45] also studied the Hardy space
H p
L (Rn) and duality associated to an operator L under the same assumptions as (ii) for

all 0 < p < 1.
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(iii) Auscher et al. [3] and Hofmann and Mayboroda [32], treated Hardy spaces H p
L , p ≥ 1,

(and in the latter paper, also BMO spaces) adapted, respectively, to the Hodge Laplacian
on a Riemannian manifold with a doubling measure, or to a second order divergence
form elliptic operator onRn with complex coefficients, in which settings pointwise heat
kernel bounds may fail.

(iv) Hofmann et al. [31] developed the theory of H1
L(X) and BMOL(X) spaces adapted to a

non-negative, self-adjoint operator L whose heat semigroup satisfies the weak Davies–
Gaffney bounds, in the setting of a space of homogeneous type X .

(v) Kunstmann andUhl [35,44] studied theHardy spaces H p
L (X), 1 < p < ∞, associated to

operators L satisfying the same conditions as in (iv) as well as the generalized Gaussian
estimates for p0 ∈ [1, 2), and proved that H p

L (X) coincides with L p(X) for p0 < p <

p′
0 where p′

0 is the conjugate index of p0.
(vi) Duong and Li [17] considered the Hardy spaces H p

L (X), 0 < p ≤ 1, associated to
non-self-adjoint operators L that generate an analytic semigroup on L2(X) satisfying
Davies–Gaffney estimates and having a bounded holomorphic functional calculus on
L2(X).

In contrast to the above listed established one-parameter theory, the multiparameter theory
is much more complicated and is less advanced. In particular, there has not been much
progress in the last decade in the direction of the paper [20] on singular integral operators
with non-smooth kernels and the related product function spaces.

Deng et al. [16] introduced the product Hardy space H1
L(R × R) associated with an

operator L , assuming that L has a bounded holomorphic functional calculus on L2(R) and
the kernel of the heat semigroup e−t L has a pointwise Poisson upper bound.

Recently, Duong et al. [18] defined the product Hardy space H1
L1,L2

(Rn1 ×R
n2) associated

with non-negative self-adjoint operators L1 and L2 satisfying Gaussian heat kernel bounds,
and then obtained the atomic decomposition, as well as the H1

L1,L2
(Rn1 ×R

n2) → L1(Rn1 ×
R
n2) boundedness of product singular integrals with non-smooth kernels.
In the study of Hardy spaces H p associated to operators, 1 ≤ p < ∞, the assumptions

on these operators determine the relevant properties of the corresponding Hardy spaces.
One would start with the definition of Hardy spaces associated to operators under “weak”
conditions on the operators so that the definition is applicable to a large class of operators.
However, to obtain useful properties such as the coincidence between the Hardy spaces H p

and the Lebesgue spaces L p , one would expect stronger conditions on the operators are
needed. A natural question is to find a weak condition that is still sufficient for the Hardy
spaces and Lebesgue spaces to coincide. We do so in part (γ ) below.

This article is devoted to the study of Hardy spaces associated to operators, in the setting
of product spaces of homogeneous type. Assume that L1 and L2 are two non-negative self-
adjoint operators acting on L2(X1) and L2(X2), respectively, where X1 and X2 are spaces
of homogeneous type, satisfying Davies–Gaffney estimates (DG) (see Sect. 2.2(c)). We note
that the Davies–Gaffney estimates are a rather weak assumption, as they are known to be
satisfied by quite a large class of operators (see Sect. 2.2 below).

Our main results are the following. In this paper we work in the biparameter setting.
However our results, methods and techniques extend to the full k-parameter setting.

(α) We define the product Hardy space H1
L1,L2

(X1 × X2) associated with L1 and L2, in
terms of the area function, and then obtain the corresponding atomic decomposition (Theo-
rem 2.9). This is the generalisation of the results in [18] from the product of Euclidean spaces
under the stronger assumption of Gaussian estimates (GE) (see Sect. 2.2(a)) to the product of
spaces of homogeneous type with the weaker assumption of Davies–Gaffney estimates (DG).
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This is also the extension of [31] from the one-parameter setting to themultiparameter setting.
This part is the content of Sect. 3.

(β) We define the product Hardy space H p
L1,L2

(X1 × X2) for 1 < p < ∞ associated
with L1 and L2, and prove the interpolation result that if an operator T is bounded on
L2(X1× X2) and is also bounded from H1

L1,L2
(X1× X2) to L1(X1× X2), then it is bounded

from H p
L1,L2

(X1 × X2) to L p(X1 × X2) for all p with 1 ≤ p ≤ 2 (Theorem 2.12). The proof
of this interpolation result relies on the Calderon–Zygmund decomposition in the product
setting, obtained in Theorem 2.11 below, which generalizes the classical result of Chang and
Fefferman [9] on H1(R × R). This is done in Sect. 4.

(γ ) Next we assume that L1 and L2 satisfy generalized Gaussian estimates (see
Sect. 2.2(b)) for some p0 ∈ [1, 2). This assumption implies that L1 and L2 are injective
operators (see Theorem 5.1) and satisfy the Davies–Gaffney estimates. We prove that our
product Hardy spaces H p

L1,L2
(X1×X2) coincide with L p(X1×X2) for p0 < p < p′

0, where
p′
0 is the conjugate index of p0 (Theorem 2.13). This is the extension to the multiparameter

setting of the one-parameter result in [44], and is carried out in Sect. 5.
Along this line of research, in [11] we study the boundedness of multivariable spectral

multipliers on product Hardy spaces on spaces of homogeneous type.
In the following section we introduce our assumptions on the underlying spaces X1 and

X2 and the operators L1 and L2, give some examples of such operators, and then state our
main results. Throughout this article, the symbols “c” and “C” denote constants that are
independent of the essential variables.

2 Assumptions, and statements of main results

This section contains background material on spaces of homogeneous type, dyadic cubes,
heat kernel bounds, and finite propagation speed of solutions to the wave equation, as well
as the statements of our main results.

2.1 Spaces of homogeneous type

Definition 2.1 Consider a set X equipped with a quasi-metric d and a measure μ.

(a) A quasi-metric d on a set X is a function d : X × X −→ [0,∞) satisfying (i) d(x, y) =
d(y, x) ≥ 0 for all x , y ∈ X ; (ii) d(x, y) = 0 if and only if x = y; and (iii) the
quasi-triangle inequality: there is a constant A0 ∈ [1,∞) such that for all x , y, z ∈ X ,

d(x, y) ≤ A0[d(x, z) + d(z, y)].
We define the quasi-metric ball by B(x, r) := {y ∈ X : d(x, y) < r} for x ∈ X and
r > 0. Note that the quasi-metric, in contrast to a metric, may not be Hölder regular and
quasi-metric balls may not be open.

(b) We say that a nonzero measure μ satisfies the doubling condition if there is a constant
C such that for all x ∈ X and r > 0,

μ(B(x, 2r)) ≤ Cμ(B(x, r)) < ∞. (2.1)

(c) We point out that the doubling condition (2.1) implies that there exist positive constants
n and C such that for all x ∈ X , λ ≥ 1 and r > 0,

μ(B(x, λr)) ≤ Cλnμ(B(x, r)). (2.2)

Fix such a constant n; we refer to this n as the upper dimension of μ.
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(d) We say that (X, d, μ) is a space of homogeneous type in the sense of Coifman andWeiss
if d is a quasi-metric on X and μ is a nonzero measure on X satisfying the doubling
condition.

Throughout the whole paper, we assume that μ(X) = +∞.
It is shown in [14] that every space of homogeneous type X is geometrically doubling,

meaning that there is some fixed number T such that each ball B in X can be covered by at
most T balls of half the radius of B.

We recall the following construction given by Christ [12], which provides an analogue on
spaces of homogeneous type of the grid of Euclidean dyadic cubes. The following formulation
is taken from [12].

Lemma 2.2 ([12]) Let (X, d, μ) be a space of homogeneous type. Then there exist a col-
lection {I kα ⊂ X : k ∈ Z, α ∈ Ik} of open subsets of X, where Ik is some index set, and
constants C3 < ∞, C4 > 0, such that

(i) μ(X\⋃α I kα ) = 0 for each fixed k, and I kα ∩ I kβ = ∅ if α �= β;

(ii) for all α, β, k, l with l ≥ k, either I lβ ⊂ I kα or I lβ ∩ I kα = ∅;
(iii) for each (k, α) and each l < k there is a unique β such that I kα ⊂ I lβ ;

(iv) diam(I kα ) ≤ C32−k; and
(v) each I kα contains some ball B(zkα,C42−k), where zkα ∈ X.

The point zkα is called the centre of the set I kα . Informally, we can think of I kα as a dyadic
cube with diameter roughly 2−k , centered at zkα . We write �(I kα ) := C32−k .

Given a constant λ > 0, we define λI kα to be the ball

λI kα := B(zkα, λC32
−k);

if λ > 1 then I kα ⊂ λI kα . We refer to the ball λI kα as the cube with the same center as I kα
and diameter λdiam(I kα ), or as the λ-fold dilate of the cube I kα . Since μ is doubling, we have
μ(λI kα ) ≤ Cμ(B(zkα,C42−k)) ≤ Cμ(I kα ).

2.2 Generalized Gaussian estimates, Davies–Gaffney estimates, and finite
propagation speed

Suppose that L is a non-negative self-adjoint operator on L2(X), and that the semigroup
{e−t L }t>0 generated by L on L2(X) has the kernel pt (x, y).

(a) Gaussian estimates: The kernel pt (x, y) has Gaussian upper bounds (GE) if there
are positive constants C and c such that for all x , y ∈ X and all t > 0,

|pt (x, y)| ≤ C

V (x, t1/2)
exp

(

−d(x, y)2

c t

)

. (GE)

(b) Generalized Gaussian estimates: We say that {e−t L }t>0 satisfies the generalized
Gaussian estimates (GGEp), for a given p ∈ [1, 2], if there are positive constants C
and c such that for all x , y ∈ X and all t > 0,

‖PB(x,t1/2)e
−t L PB(y,t1/2)‖L p(X)→L p′ (X)

≤ CV (x, t1/2)−(1/p−1/p′) exp

(

−d(x, y)2

c t

)

,

(GGEp)

where 1/p + 1/p′ = 1.
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1038 P. Chen et al.

(c) Davies–Gaffney estimates: We say that {e−t L }t>0 satisfies the Davies–Gaffney
condition (DG) if there are positive constants C and c such that for all open subsets
U1, U2 ⊂ X and all t > 0,

|〈e−t L f1, f2〉| ≤ C exp

(

−dist(U1,U2)
2

c t

)

‖ f1‖L2(X)‖ f2‖L2(X) (DG)

for every fi ∈ L2(X) with supp fi ⊂ Ui , i = 1, 2. Here dist(U1,U2) :=
infx∈U1,y∈U2 d(x, y).
(d) Finite propagation speed: We say that L satisfies the finite propagation speed
property (FS) for solutions of the correspondingwave equation if for all open setsUi ⊂ X
and all fi ∈ L2(Ui ), i = 1, 2, we have

〈cos(t√L) f1, f2〉 = 0 (FS)

for all t ∈ (0, d(U1,U2)).

As the following lemma notes, it is known that the Davies–Gaffney estimates and the finite
propagation speed property are equivalent. For the proof, see for example [15, Theorem 3.4].

Lemma 2.3 Let L be a non-negative self-adjoint operator acting on L2(X). Then the finite
propagation speed property (FS) and the Davies–Gaffney estimates (DG) are equivalent.

Remark 2.4 Note that when p = 2, it is shown in [15, Lemma3.1] that the generalized
Gaussian estimates are the same as the Davies–Gaffney estimates (DG). Also, when p = 1,
the generalized Gaussian estimates (GGEp) are equivalent to the Gaussian estimates (GE)
(see [4, Proposition 2.9]). By Hölder’s inequality, we see that if an operator satisfies the
generalized Gaussian estimates for some p with 1 < p < 2, then it also satisfies the
generalized Gaussian estimates (GGEq) for all q with p < q ≤ 2. In particular,

(GE) ⇐⇒ (GGEp) with p = 1 �⇒ (GGEp) with p ∈ (1, 2] �⇒ (DG) ⇐⇒ (FS).

We also note that if the generalized Gaussian estimates (GGEp) hold for some p ∈ [1, 2),
then the operator L is injective on L2(X) (see Theorem 5.1).

Suppose L is a non-negative self-adjoint operator acting on L2(X), and satisfying the
Davies–Gaffney estimates (DG). Then the following result holds.

Lemma 2.5 (Lemma 3.5, [31]) Let ϕ ∈ C∞
0 (R) be an even function with suppϕ ⊂ (−1, 1).

Let� denote the Fourier transform of ϕ. Then for every κ = 0, 1, 2, . . . , and for every t > 0,
the kernel K

(t2L)κ�(t
√
L)

(x, y) of the operator (t2L)κ�(t
√
L), which is defined via spectral

theory, satisfies

supp K
(t2L)κ�(t

√
L)

(x, y) ⊆
{
(x, y) ∈ X × X : d(x, y) ≤ t

}
. (2.3)

Examples. We now describe some operators where property (FS) and the estimates (GGEp)
hold for some p with 1 ≤ p < 2.

Let V ∈ L1
loc(R

n) be a non-negative function. The Schrödinger operator with potential V
is defined by L = −
+ V on R

n , where n ≥ 3. From the well-known Trotter–Kato product
formula, it follows that the semigroup e−t L has a kernel pt (x, y) satisfying

0 ≤ pt (x, y) ≤ (4π t)−
n
2 exp

(

−|x − y|2
4t

)

forall t > 0, x, y ∈ R
n . (2.4)
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Product Hardy spaces associated to operators with heat kernel… 1039

See [39, p. 195]. It follows that property (FS) and the estimates (GGEp) hold with p = 1.
Next we consider inverse square potentials, that is V (x) = c/|x |2. Fix n ≥ 3 and assume

that c > −(n − 2)2/4.Define L := −
+V to be the standard quadratic formon L2(Rn, dx).
The classical Hardy inequality

− 
 ≥ (n − 2)2

4
|x |−2, (2.5)

shows that for all c > −(n − 2)2/4, the self-adjoint operator L is non-negative. Set p∗
c :=

n/σ , and σ := max{(n−2)/2−√(n − 2)2/4 + c, 0}. If c ≥ 0 then the semigroup exp(−t L)

is pointwise bounded by the Gaussian semigroup and hence acts on all L p spaces with
1 ≤ p ≤ ∞. If c < 0, then exp(−t L) acts as a uniformly bounded semigroup on L p(Rn)

for p ∈ ((p∗
c )

′, p∗
c ) and the range ((p∗

c )
′, p∗

c ) is optimal (see for example [37]). It is known
(see for instance [15]) that L satisfies property (FS) and the estimates (GGEp) for all p ∈
((p∗

c )
′, 2n/(n + 2)]. If c ≥ 0, then p = (p∗

c )
′ = 1 is included.

It is also known (see [36]) that the estimates (GGEp) hold for some p with 1 ≤ p < 2
(and hence the property (FS) also holds) when L is the second order Maxwell operator with
measurable coefficient matrices, or the Stokes operator with Hodge boundary conditions
on bounded Lipschitz domains in R

3, or the time-dependent Lamé system equipped with
homogeneous Dirichlet boundary conditions.

2.3 Main results: product Hardy spaces associated with operators

We begin this section by defining the Hardy space H2(X1 × X2). Next we introduce the area
function S f , and use it to define the Hardy space H1

L1,L2
(X1 × X2) associated to L1 and L2

(Definition 2.6). We define (H1
L1,L2

, 2, N )-atoms a(x1, x2) (Definition 2.7) and use them to

define the atomic Hardy space H1
L1,L2,at,N

(X1 × X2) (Definition 2.8). We show that these
two definitions of this Hardy space coincide (Theorem 2.9). We also define the Hardy space
H p
L1,L2

(X1 × X2) associated to L1 and L2, via a modified area function (Definition 2.10).

We present the Calderón–Zygmund decomposition of the Hardy spaces H p
L1,L2

(X1 × X2)

(Theorem 2.11). We use this decomposition to establish two interpolation results and to
show that H p

L1,L2
(X1 × X2) coincides with L p(X1 × X2) for an appropriate range of p

(Theorems 2.12 and 2.13).
We work with the product of spaces of homogeneous type (X1, d1, μ1) × (X2, d2, μ2).

Here, for i = 1, 2, (Xi , di , μi ) is a space of homogeneous type with upper dimension ni , as
in Definition 2.1, and μi (Xi ) = ∞.

Following [3], one can define the L2(X1 × X2)-adapted Hardy space

H2(X1 × X2) := R(L1 ⊗ L2), (2.6)

that is, the closure of the range of L1 ⊗ L2 in L2(X1 × X2). Then L2(X1 × X2) is the
orthogonal sum of H2(X1 × X2) and the null space N (L1 ⊗ L2) = { f ∈ L2(X1 × X2) :
(L1 ⊗ L2) f = 0}.

We shall work with the domain (X1 × R+) × (X2 × R+) and its distinguished boundary
X1 × X2. For x = (x1, x2) ∈ X1 × X2, denote by 
(x) the product cone 
(x) := 
1(x1) ×

2(x2), where 
i (xi ) := {(yi , ti ) ∈ Xi × R+ : di (xi , yi ) < ti } for i = 1, 2.

Our first definition of the product Hardy space H1
L1,L2

(X1 × X2) associated to operators
L1 and L2 is via an appropriate area function. For i = 1, 2, suppose that Li is a non-negative
self-adjoint operator on Xi such that the corresponding heat semigroup e−t Li satisfies the
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Davies–Gaffney estimates (DG). Given a function f on L2(X1 × X2), the area function S f
associated with the operators L1 and L2 is defined by

S f (x) :=
(∫∫


(x)

∣
∣
∣
(
t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2

)
f (y)

∣
∣
∣
2 dμ1(y1)dt1dμ2(y2)dt2

t1V (x1, t1)t2V (x2, t2)

)1/2

.

(2.7)

Since L1 and L2 are non-negative self-adjoint operators, it is known from H∞ functional
calculus [38] that there exist constants C1 and C2 with 0 < C1 ≤ C2 < ∞ such that

‖S f ‖2 ≤ C2‖ f ‖2
for all f ∈ L2(X1 × X2), and (by duality)

C1‖ f ‖2 ≤ ‖S f ‖2
for all f ∈ H2(X1 × X2).

Definition 2.6 For i = 1, 2, let Li be a non-negative self-adjoint operator on L2(Xi ) such
that the corresponding heat semigroup e−t Li satisfies the Davies–Gaffney estimates (DG).
The Hardy space H1

L1,L2
(X1 × X2) associated to L1 and L2 is defined as the completion of

the set

{ f ∈ H2(X1 × X2) : ‖S f ‖L1(X1×X2)
< ∞}

with respect to the norm

‖ f ‖H1
L1,L2

(X1×X2)
:= ‖S f ‖L1(X1×X2)

.

We now introduce the notion of (H1
L1,L2

, 2, N )-atoms associated to operators.

Definition 2.7 Let N be a positive integer. A function a(x1, x2) ∈ L2(X1 × X2) is called
an (H1

L1,L2
, 2, N )-atom if it satisfies the following conditions:

(1) there is an open set � in X1 × X2 with finite measure such that supp a ⊂ �; and
(2) a can be further decomposed as

a =
∑

R∈m(�)

aR,

where m(�) is the set of all maximal dyadic rectangles contained in �, and for each
R ∈ m(�) there exists a function bR such that for all σ1, σ2 ∈ {0, 1, . . . , N }, bR belongs
to the range of Lσ1

1 ⊗ Lσ2
2 in L2(X1 × X2) and

(i) aR = (
LN
1 ⊗ LN

2

)
bR ;

(ii) supp
(
Lσ1
1 ⊗ Lσ2

2

)
bR ⊂ CR;

(iii) ||a||L2(X1×X2)
≤ μ(�)−1/2 and

∑

R=I×J∈m(�)

�(I )−4N �(J )−4N
∥
∥
∥
(
�(I )2 L1

)σ1 ⊗ (
�(J )2 L2

)σ2 bR
∥
∥
∥
2

L2(X1×X2)

≤ μ(�)−1.
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Product Hardy spaces associated to operators with heat kernel… 1041

Here R = I × J , C is a fixed constant, and CR denotes the product C I ×C J of the balls
which are the C-fold dilates of I and J respectively, as defined in Section 3.

We can now define an atomic H1
L1,L2,at,N

space, which we shall show is equivalent to the

space H1
L1,L2

defined above via area functions.

Definition 2.8 Let N be a positive integer with N > max{n1, n2}/4, where ni is the upper
doubling dimension of Xi , i = 1, 2. We say that f = ∑

λ j a j is an atomic (H1
L1,L2

, 2, N )-

representation of f if {λ j }∞j=0 ∈ �1, each a j is an (H1
L1,L2

, 2, N )-atom, and the sum

converges in L2(X1 × X2). Set

H
1
L1,L2,at,N (X1 × X2) := {

f : f has an atomic (H1
L1,L2

, 2, N )-representation
}
,

with the norm given by

‖ f ‖
H
1
L1,L2,at,N (X1×X2)

:= inf
{ ∞∑

j=0

|λ j | : f =
∑

j

λ j a j is an atomic (H1
L1,L2

, 2, N )-representation
}
. (2.8)

The Hardy space H1
L1,L2,at,N

(X1 × X2) is then defined as the completion of

H
1
L1,L2,at,N

(X1 × X2) with respect to this norm.

Our first result is that the “area function” and “atomic” H1 spaces coincide,with equivalent
norms, if the parameter N > max{n1, n2}/4.

Theorem 2.9 Let (Xi , di , μi ) be spaces of homogeneous type with upper dimension ni , for
i = 1, 2. Suppose N > max{n1, n2}/4. Then

H1
L1,L2

(X1 × X2) = H1
L1,L2,at,N (X1 × X2).

Moreover,

‖ f ‖H1
L1,L2

(X1×X2)
∼ ‖ f ‖H1

L1,L2,at,N (X1×X2)
,

where the implicit constants depend only on N, n1 and n2.

It follows that Definition 2.8 always yields the same Hardy space H1
L1,L2,at,N

(X1 × X2),
independent of the particular choice of N > max{n1, n2}/4.

The proof of Theorem 2.9 will be given in Section 3.
We turn from the case of p = 1 to the Hardy spaces H p

L1,L2
(X1 × X2) associated to L1

and L2, for 1 < p < ∞.

Definition 2.10 Let L1 and L2 be two non-negative, self-adjoint operators acting on L2(X1)

and L2(X1) respectively, satisfying the Davies–Gaffney condition (DG).

(i) For each p with 1 < p ≤ 2, theHardy space H p
L1,L2

(X1 × X2) associated to L1 and L2

is the completion of the space
{
f ∈ H2(X1 × X2) : S f ∈ L p(X1 × X2)

}
in the norm

‖ f ‖H p
L1,L2

(X1,X2)
= ‖S f ‖L p(X1,X2).
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(ii) For each p with 2 < p < ∞, the Hardy space H p
L1,L2

(X1, X2) associated to L1 and
L2 is the completion of the space DK0,p in the norm

‖ f ‖H p
L1,L2

(X1,X2)
:= ‖SK0 f ‖L p(X1,X2), with K0 := max

{ [ n1
4

]
,
[ n2

4

] }
+ 1,

where

SK f (x)

:=
(∫


(x)
|(t21 L1)

K e−t21 L1 ⊗ (t22 L2)
K e−t22 L2 f (y)|2 dμ1(y1)

V (x1, t1)

dt1
t1

dμ2(y2)

V (x2, t2)

dt2
t2

)1/2

,

(2.9)

and

DK ,p :=
{
f ∈ H2(X1 × X2) : SK f ∈ L p(X1 × X2)

}
.

Next we develop the Calderón–Zygmund decomposition of the Hardy spaces
H p
L1,L2

(X1 × X2), which is a generalization of the result of Chang and Fefferman [9].

Theorem 2.11 Fix p with 1 < p < 2. Take α > 0 and f ∈ H p
L1,L2

(X1 × X2). Then we may

write f = g + b, where g ∈ H2
L1,L2

(X1 × X2) and b ∈ H1
L1,L2

(X1 × X2), such that

‖g‖2
H2
L1,L2

(X1×X2)
≤ Cα2−p‖ f ‖p

H p
L1,L2

(X1×X2)

and

‖b‖H1
L1,L2

(X1×X2)
≤ Cα1−p‖ f ‖p

H p
L1,L2

(X1×X2)
.

Here C is an absolute constant.

As a consequence of the above Calderón–Zygmund decomposition, we obtain the follow-
ing interpolation result.

Theorem 2.12 Suppose that L1 and L2 are non-negative self-adjoint operators such that the
corresponding heat semigroups e−t L1 and e−t L2 satisfy the Davies–Gaffney estimates (DG).
Let T be a sublinear operator which is bounded on L2(X1 × X2) and bounded from
H1
L1,L2

(X1×X2) to L1(X1×X2). Then T is bounded from H p
L1,L2

(X1×X2) to L p(X1×X2)

for all 1 < p < 2.

The proofs of Theorems 2.11 and 2.12 will be given in Sect. 4.
Next, we establish the relationship between the Hardy spaces H p

L1,L2
(X1 × X2) and the

Lebesgue spaces L p(X1 × X2) for a certain range of p.
First note that under the assumption of Gaussian upper bounds (GE), following the

approaches used in [31] in the one-parameter setting, we can obtain that H p
L1,L2

(X1 × X2) =
L p(X1 × X2) for all 1 < p < ∞. Second, if one assumes only theDavies–Gaffney estimates
on the heat semigroups of L1 and L2, then for 1 < p < ∞ and p �= 2, H p

L1,L2
(X1 × X2)may

or may not coincide with the space L p(X1 × X2). An example where the classical Hardy
space can be different from the Hardy space associated to an operator L is when L is the
elliptic divergence form operator with complex, bounded measurable coefficients on R

n ; see
[32].However, it can be verified by spectral analysis that H2

L1,L2
(X1 × X2) = H2(X1 × X2).

Here the L2(X1 × X2)-adapted Hardy space H2(X1 × X2) is as defined in (2.6) above.

123



Product Hardy spaces associated to operators with heat kernel… 1043

Theorem 2.13 Suppose that L1 and L2 are non-negative self-adjoint operators on L2(X1)

and L2(X2), respectively. Suppose that there exists some p0 ∈ [1, 2) such that L1 and L2

satisfy the generalized Gaussian estimates (GGEp0). Let p
′
0 satisfy 1/p0 + 1/p′

0 = 1.

(i) We have H p
L1,L2

(X1 × X2) = L p(X1 × X2) for all p such that p0 < p < p′
0, with

equivalent norms ‖ · ‖H p
L1,L2

and ‖ · ‖L p .

(ii) Let T be a sublinear operator which is bounded on L2(X1 × X2) and bounded from
H1
L1,L2

(X1 × X2) to L1(X1 × X2). Then T is bounded on L p(X1 × X2) for all p such
that p0 < p < p′

0.

The proof of Theorem 2.13 will be given in Section 5.

3 Characterization of the Hardy space H1
L1,L2

(X1 × X2) in terms of atoms

The goal of this section is to provide the proof of Theorem 2.9.
Our strategy is as follows: by density, it is enough to show that when N > max{n1, n2}/4,

we have

H
1
L1,L2,at,N (X1 × X2) = H1

L1,L2
(X1 × X2) ∩ L2(X1 × X2)

with equivalent norms. The proof of this fact proceeds in two steps.

Step 1. H1
L1,L2,at,N

(X1 × X2) ⊆ H1
L1,L2

(X1 × X2)∩L2(X1 × X2), for N >max{n1, n2}/4.
This step relies on the fact that the area function S is bounded on L2(X1 × X2) and that
‖Sa‖L1(X1×X2)

is uniformly bounded for every atom a.
Step 2. H1

L1,L2
(X1 × X2) ∩ L2(X1 × X2) ⊆ H

1
L1,L2,at,N

(X1 × X2), for all N ∈ N. In the
proof of this step we use the tent space approach to construct the atoms in the Hardy spaces
associated to operators in the product setting.

We take these in order.

Proof of Step 1 The conclusion of Step 1 is an immediate consequence of the following pair
of Lemmata.

Lemma 3.1 Fix N ∈ N. Assume that T is a linear operator, or a non-negative sublinear
operator, satisfying the weak-type (2,2) bound

∣
∣{x ∈ X1 × X2 : |T f (x)| > η}∣∣ ≤ Cη−2‖ f ‖2L2(X1×X2)

, for all η > 0,

and that for every (H1
L1,L2

, 2, N )-atom a, we have

‖Ta‖L1(X1×X2)
≤ C (3.1)

with constant C independent of a. Then T is bounded from H
1
L1,L2,at,N

(X1 × X2) to

L1(X1 × X2), and

‖T f ‖L1(X1×X2)
≤ C‖ f ‖

H
1
L1,L2,at,N (X).

Therefore, by density, T extends to a bounded operator from H1
L1,L2,at,N

(X1 × X2) to

L1(X1 × X2).
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The proof of Lemma 3.1 follows directly from that of the one-parameter version:
Lemma 4.3 in [31]. The proof given there is independent of the number of parameters.
We omit the details here.

Lemma 3.2 Let a be an (H1
L1,L2

, 2, N )-atom with N > max{n1, n2}/4. Let S denote the
area function defined in (2.7). Then

‖Sa‖1 ≤ C, (3.2)

where C is a positive constant independent of a.

Given Lemma 3.2, we may apply Lemma 3.1 with T = S to obtain

‖ f ‖H1
L1,L2

(X1×X2)
:= ‖S f ‖L1(X1×X2)

≤ C‖ f ‖
H
1
L1,L2,at,N (X1×X2)

,

from which Step 1 follows.
To finish Step 1, it therefore suffices to verify estimate (3.2) in Lemma 3.2. To do so, we

apply Journé’s covering lemma.
We recall from [28] the formulation of Journé’s Lemma [34,40] in the setting of spaces

of homogeneous type. Let (Xi , di , μi ), i = 1, 2, be spaces of homogeneous type and let
{I kiαi ⊂ Xi }, i = 1, 2, be open cubes as in Lemma 2.2. Let μ = μ1 × μ2 denote the product
measure on X1 × X2. The open set I

k1
α1 × I k2α2 for k1, k2 ∈ Z, α1 ∈ Ik1 and α2 ∈ Ik2 , is called

a dyadic rectangle in X1 × X2. Let � ⊂ X1 × X2 be an open set of finite measure. Denote
by m(�) the maximal dyadic rectangles contained in �, and by mi (�) the family of dyadic
rectangles R ⊂ � which are maximal in the xi -direction, for i = 1, 2.

In what follows, we let R = I × J denote any dyadic rectangle in X1 × X2. Given
R = I × J ∈ m1(�), let Ĵ be the largest dyadic cube containing J such that

μ
(
(I × Ĵ ) ∩ �

)
>

1

2
μ(I × Ĵ ).

Similarly, given R = I × J ∈ m2(�), let Î be the largest dyadic cube containing I such
that

μ
(
( Î × J ) ∩ �

)
>

1

2
μ( Î × J ).

Also, letw(x) be any increasing function such that
∑∞

j=0 jw(c2− j ) < ∞, where c is a fixed

positive constant. In particular, we may take w(x) = xδ for any δ > 0.

Lemma 3.3 ([28]) Let � ⊂ X1 × X2 be an open set with finite measure. Then

∑

R=I×J∈m1(�)

μ(R)w

(
�(J )

�( Ĵ )

)

≤ Cμ(�) (3.3)

and
∑

R=I×J∈m2(�)

μ(R)w

(
�(I )

�( Î )

)

≤ Cμ(�), (3.4)

for some constant C independent of �.

Proof of Lemma 3.2 Given an (H1
L1,L2

, 2, N )-atom a, let � be an open set of finite measure
in X1 × X2 as in Definition 2.7 such that a = ∑

R∈m(�) aR is supported in �.
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For each rectangle R = I × J ⊂ �, let I ∗ be the largest dyadic cube in X1 containing I
such that I ∗ × J ⊂ �̃, where �̃ := {x ∈ X1 × X2 : Ms(χ�)(x) > 1/2} and Ms denotes
the strong maximal function. Next, let J ∗ be the largest dyadic cube in X2 containing J such
that I ∗ × J ∗ ⊂ ˜̃�, where ˜̃� := {x ∈ X1 × X2 : Ms(χ�̃)(x) > 1/2}.

Now let R∗ be the 100-fold dilate of I ∗ × J ∗ concentric with I ∗ × J ∗. That is, R∗ =
100I ∗ × 100J ∗ is the product of the balls 100I ∗ and 100J ∗ centered at the centers of I ∗
and J ∗ respectively, as defined in Sect. 2. An application of the strong maximal function
theorem shows that μ

( ∪R⊂� R∗) ≤ Cμ(˜̃�) ≤ Cμ(�̃) ≤ Cμ(�).
Then we write

‖Sa‖L1(X1×X2)
= ‖Sa‖L1(∪R∗) + ‖Sa‖L1((∪R∗)c).

Thus, by Hölder’s inequality and the property (iii) of the (H1
L1,L2,

, 2, N )-atom, we see that
the first term on the right-hand side is bounded by

‖Sa‖L1(∪R∗) ≤ μ(∪R∗)1/2‖Sa‖L2(X1×X2)
≤ Cμ(�)1/2‖a‖L2(X1×X2)

≤ C.

Now it suffices to prove that
∫

(
⋃

R∗)c
|Sa(x1, x2)| dμ1(x1) dμ2(x2) ≤ C. (3.5)

From the definition of a, we see that the left-hand side of (3.5) is controlled by

∑

R∈m(�)

∫

(R∗)c
|SaR(x1, x2)| dμ1(x1) dμ2(x2)

≤
∑

R∈m(�)

∫

(100I ∗)c×X2

|SaR(x1, x2)| dμ1(x1) dμ2(x2)

+
∑

R∈m(�)

∫

X1×(100J∗)c
|SaR(x1, x2)| dμ1(x1) dμ2(x2)

=:D + E . (3.6)

It suffices to verify that the term D is bounded by a positive constant C independent of
the atom a, since the estimate for E follows symmetrically. For the term D, by splitting the
region of integration (100I ∗)c × X2 into (100I ∗)c ×100J and (100I ∗)c ×(100J )c, we write
D as D(a) + D(b).

Let us first estimate the term D(a). Using Hölder’s inequality, we have

D(a) ≤ C
∑

R∈m(�)

μ2(J )1/2
∫

(100I ∗)c

(∫

100J
|SaR(x1, x2)|2 dμ2(x2)

)1/2

dμ1(x1). (3.7)

Next, we claim that

∫

(100I ∗)c

(∫

100J
|SaR(x1, x2)|2 dμ2(x2)

)1/2

dμ1(x1)

≤ C

(
�(I )

�(I ∗)

)ε1

μ1(I )
1/2
(
�(I )−4N �(J )−4N‖(11 ⊗ (�(J )2L)N )bR‖2L2(X1×X2)

)1/2

(3.8)
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for some ε1 > 0. Assuming this claim holds, then by using Hölder’s inequality, Journé’s
Lemma and property (2)(iii) of Definition 2.7, we have

D(a) ≤ C

⎛

⎝
∑

R∈m(�)

μ(R)

(
�(I )

�(I ∗)

)2ε1
⎞

⎠

1
2

×
⎛

⎝
∑

R∈m(�)

�(I )−4N �(J )−4N‖(11 ⊗ (�(J )2L)N )bR‖2L2(X1×X2)

⎞

⎠

1
2

≤ Cμ(�)
1
2 μ(�)−

1
2

≤ C.

It remains to verify the claim (3.8). Set aR,2 = (11 ⊗ LN
2 )bR ; then aR = (LN

1 ⊗12)aR,2.
Then, from the definition of the area

function, we have
∫

100J
|SaR(x1, x2)|2 dμ2(x2)

=
∫

100J

∫


1(x1)

∫


2(x2)

∣
∣
∣
(
(t21 L1)

N+1e−t21 L1 ⊗ t22 L2e
−t22 L2

)
(aR,2)(y1, y2)

∣
∣
∣
2

× dμ2(y2)dt2
t2V (x2, t2)

dμ1(y1)dt1

t1+4N
1 V (x1, t1)

dμ2(x2)

=
∫


1(x1)

[∫

100J

∫


2(x2)

×
∣
∣
∣t22 L2e

−t22 L2
(
(t21 L1)

N+1e−t21 L1aR,2(y1, ·)
)

(y2)
∣
∣
∣
2 dμ2(y2)dt2
t2V (x2, t2)

dμ2(x2)

]
dμ1(y1)dt1

t1+4N
1 V (x1, t1)

≤ C
∫


1(x1)

∫

X2

∣
∣
∣(t21 L1)

N+1e−t21 L1aR,2(y1, x2)
∣
∣
∣
2
dμ2(x2)

dμ1(y1)dt1

t1+4N
1 V (x1, t1)

, (3.9)

where the last inequality follows from the L2 estimate of the area function on X2.
Define Uj (I ) = 2 j I\2 j−1 I for j ≥ 1. Then we see that (100I ∗)c ⊂ ∪ j>4Uj (I ).

Moreover, we have that μ1(Uj (I )) ≤ C2 jn1μ1(I ). Then, by Hölder’s inequality and the
estimate in (3.9), we get

∫

(100I ∗)c

(∫

100J
|SaR(x1, x2)|2 dμ2(x2)

) 1
2

dμ1(x1)

≤ C
∑

j>4

μ1(Uj (I ))
1/2μ1(I )

1
2

(∫

(100I ∗)c
⋂

Uj (I )

∫ ∞

0

∫

d1(x1,y1)<t1

∫

X2

×
∣
∣
∣(t21 L1)

N+1e−t21 L1aR,2(y1, x2)
∣
∣
∣
2
dμ2(x2)

dμ1(y1)dt1

t1+4N
1 V (x1, t1)

dμ1(x1)

) 1
2

.

Next, we split the integral area (0,∞) for t1 into three parts: (0, �(I )), (�(I ), d1(x1, xI )/4)
and (d1(x1, xI )/4,∞). Then the right-hand side of the above inequality is bounded by the
sum of the following three terms

D(a)
1 + D(a)

2 + D(a)
3 ,

123



Product Hardy spaces associated to operators with heat kernel… 1047

where

D(a)
1 := C

∑

j>4

2 jn1/2μ1(I )
1
2

{∫

X2

∫

(100I ∗)c
⋂

Uj (I )

∫ �(I )

0

∫

d1(x1,y1)<t1

×
∣
∣
∣(t21 L1)

N+1e−t21 L1aR,2(y1, x2)
∣
∣
∣
2 dμ1(y1)dt1

t1+4N
1 V (x1, t1)

dμ1(x1) dμ2(x2)

} 1
2

,

and D(a)
2 and D(a)

3 are the same as D(a)
1 with the integral

∫ �(I )
0 replaced by

∫ d1(x1,xI )/4
�(I ) and

∫∞
d1(x1,xI )/4

, respectively. Here we use xI to denote the center of the dyadic cube I .

Wefirst consider the termD(a)
1 .Wedefine E j (I ) := {y1 : d1(x1, y1) < �(I ) for some x1 ∈

(100I ∗)c ∩Uj (I )}. Then we can see that dist(E j (I ), I ) > 2 j−2�(I ) + �(I ∗). Now we have

D(a)
1 ≤ C

∑

j>4

2 jn1/2μ1(I )
1
2

×
{∫

X2

∫ �(I )

0

∫

E j (I )

∣
∣
∣(t21 L1)

N+1e−t21 L1αR,2(y1, x2)
∣
∣
∣
2 dμ1(y1)dt1

t1+4N
1

dμ2(x2)

} 1
2

≤ C
∑

j>4

2 jn1/2μ1(I )
1
2

{∫ �(I )

0
e−(2 j−2�(I )+�(I ∗))2/(ct21 ) dt1

t1+4N
1

‖aR,2‖2L2(X1×X2)

} 1
2

≤ C
∑

j>4

2 jn1/2μ1(I )
1
2

{
�(I )β

(2 j−2�(I ) + �(I ∗))β
�(I )−4N ‖aR,2‖2L2(X1×X2)

} 1
2

,

where the second inequality follows from the Davies–Gaffney estimates, and the third
inequality follows from the fact that e−x ≤ x−β for all x > 0 and β > 0 and that we
choose β satisfying β > 4N .

Moreover, noting that

∑

j>4

2 jn1/2 �(I )β/2

(2 j−2�(I ) + �(I ∗))β/2 ≤
( �(I )

�(I ∗)

)n1/2−β/2
, (3.10)

we obtain that D(a)
1 is bounded by the right-hand side of (3.8) for ε1 := β/2 − n1/2.

Next we consider the term D(a)
2 . Similarly, we set

Fj (I ) := {y1 : d1(x1, y1) < d1(x1, xI )/4 for some x1 ∈ (100I ∗)c ∩Uj (I )}.

We see that dist(Fj (I ), I ) > 2 j−3�(I ) + �(I ∗). Now we have

D(a)
2 ≤ C

∑

j>4

2 jn1/2μ1(I )
1
2

×
{∫

X2

∫ ∞

�(I )

∫

Fj (I )

∣
∣
∣(t21 L1)

N+1e−t21 L1aR,2(y1, x2)
∣
∣
∣
2 dμ1(y1)dt1

t1+4N
1

dμ2(x2)

} 1
2
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≤ C
∑

j>4

2 jn1/2μ1(I )
1
2

{∫ ∞

�(I )
e−(2 j−3�(I )+�(I ∗))2/(ct21 ) dt1

t1+4N
1

‖aR,2‖2L2(X1×X2)

} 1
2

≤ C
∑

j>4

2 jn1/2μ1(I )
1
2

{
�(I )β

(2 j−3�(I ) + �(I ∗))β
�(I )−4N ‖aR,2‖2L2(X1×X2)

} 1
2

,

where the second inequality follows from the Davies–Gaffney estimates, and β is chosen to
satisfy n1 < β < 4N . Now using (3.10), we obtain that D(a)

2 is bounded by the right-hand
side of (3.8) for ε1 := β/2 − n1/2.

Now we turn to the term D(a)
3 . Since x1 ∈ (100I ∗)c ∩Uj (I ), we can see that d(x1, xI ) >

2 j−1�(I ) + �(I ∗). Thus, the Davies–Gaffney estimates imply that

D(a)
3 ≤ C

∑

j>4

2 jn1/2μ1(I )
1
2

×
{∫

X2

∫ ∞

2 j−1�(I )+�(I ∗)

∫

X1

∣
∣
∣(t21 L1)

N+1e−t21 L1aR,2(y1, x2)
∣
∣
∣
2 dμ1(y1)dt1

t1+4N
1

dμ2(x2)

} 1
2

≤ C
∑

j>4

2 jn1/2μ1(I )
1
2

{∫ ∞

2 j−1�(I )+�(I ∗)

dt1

t1+4N
1

‖aR,2‖2L2(X1×X2)

} 1
2

≤ C
∑

j>4

2 jn1/2μ1(I )
1
2

{
�(I )4N

(2 j−1�(I ) + �(I ∗))4N
�(I )−4N ‖aR,2‖2L2(X1×X2)

} 1
2

,

Now using (3.10), we obtain that D(a)
3 is bounded by the right-hand side of (3.8) for ε1 :=

2N − n1/2.
Combining the estimates of D(a)

1 , D(a)
2 and D(a)

3 , we obtain that the claim (3.8) holds for
ε1 := β/2 − n1/2, and hence D(a) is uniformly bounded.

We now consider the term D(b). Similar to the estimates for the term D(a), we set
Uj1(I ) = 2 j1 I\2 j1−1 I for j1 ≥ 1 and Uj2(J ) = 2 j2 J\2 j2−1 J for j2 ≥ 1. Then we
have (100I ∗)c ⊂ ∪ j1>4Uj1(I ) and (100J )c ⊂ ∪ j2>4Uj2(J ). Moreover, we have the fol-
lowing measure estimate for the annuli: μ1(Uj1(I )) ≤ C2 j1n1μ1(I ) and μ2(Uj2(J )) ≤
C2 j2n2μ2(J ). Now we have

D(b) =
∑

R∈m(�)

∫

(100I ∗)c

∫

(100J )c
|SaR(x1, x2)| dμ1(x1)dμ2(x2)

≤
∑

R∈m(�)

∑

j1>4

∑

j2>4

∫

(100I ∗)c∩Uj1 (I )

∫

(100S)c∩Uj2 (J )

|SaR(x1, x2)| dμ1(x1)dμ2(x2)

≤ C
∑

R∈m(�)

μ(R)1/2
∑

j1>4

∑

j2>4

2 j1n1/22 j2n2/2

×
(∫

(100I ∗)c∩Uj1 (I )

∫

(100J )c∩Uj2 (J )

|SaR(x1, x2)|2 dμ1(x1)dμ2(x2)

) 1
2

, (3.11)

where the second inequality follows from Hölder’s inequality.
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We claim that

∑

j1>4

∑

j2>4

2 j1n1/22 j2n2/2

(∫

(100I ∗)c
⋂

Uj1 (I )

∫

(100J )c
⋂

Uj2 (J )

|SaR(x1, x2)|2 dμ1(x1)dμ2(x2)

) 1
2

≤ C

(
�(I )

�(I ∗)

)ε1 (
�(I )−4N �(J )−4N‖bR‖2L2(X1×X2)

)1/2
(3.12)

for some ε1 > 0, which, together with (3.11), implies that

D(b) ≤ C
∑

R∈m(�)

μ(R)1/2
(

�(I )

�(I ∗)

)ε1 (
�(I )−4N �(J )−4N‖bR‖L2(X1×X2)2

)1/2

≤ C

⎛

⎝
∑

R∈m(�)

μ(R)

(
�(I )

�(I ∗)

)2ε1
⎞

⎠

1/2⎛

⎝
∑

R∈m(�)

�(I )−4N �(J )−4N‖bR‖L2(X1×X2)2

⎞

⎠

1/2

≤ Cμ(�)1/2μ(�)−1/2

≤ C.

From the definitions of the area function S f and the (H1
L1,L2

, 2, N )-atom aR , we have

|SaR(x)|2

=
∫ ∞

0

∫

d1(x1,y1)<t1

∫ ∞

0

∫

d2(x2,y2)<t2

∣
∣
∣(t21 L1)

N+1e−t21 L1 ⊗ (t22 L2)
N+1e−t22 L2(bR)(y1, y2)

∣
∣
∣
2

× dμ1(y1)dt1

t1+4N
1 V (x1, t1)

dμ2(y2)dt2

t1+4N
2 V (x2, t2)

.

Similarly to the estimate for the term D(a), we split the region of integration (0,∞) for t1 into
three parts (0, �(I )), (�(I ), d1(x1, xI )/4) and (d1(x1, xI )/4,∞), and the region of integration
(0,∞) for t2 into three parts (0, �(J )), (�(J ), d2(x2, xJ )/4) and (d2(x2, xJ )/4,∞). Hence
|SaR(x)|2 is decomposed into

|SaR(x)|2

=
⎛

⎝
∫ �(I )

0

∫ �(J )

0
+
∫ �(I )

0

∫ d2(x2,xJ )

4

�(J )
+
∫ �(I )

0

∫ ∞
d2(x2,xJ )

4

+
∫ d1(x1,xI )

4

�(I )

∫ �(J )

0
+
∫ d1(x1,xI )

4

�(I )

∫ d2(x2,xJ )

4

�(J )

+
∫ d1(x1,xI )

4

�(I )

∫ ∞
d2(x2,xJ )

4

+
∫ ∞
d1(x1,xI )

4

∫ �(J )

0
+
∫ ∞
d1(x1,xI )

4

∫ d2(x2,xJ )

4

�(J )
+
∫ ∞
d1(x1,xI )

4

∫ ∞
d2(x2,xJ )

4

⎞

⎠

×
∫

d1(x1,y1)<t1

∫

d2(x2,y2)<t2

∣
∣
∣(t21 L1)

N+1e−t21 L1 ⊗ (t22 L2)
N+1e−t22 L2 (bR)(y1, y2)

∣
∣
∣
2

× dμ1(y1)dt1

t1+4N
1 V (x1, t1)

dμ2(y2)dt2

t1+4N
2 V (x2, t2)

=: d1,1(x1, x2) + d1,2(x1, x2) + d1,3(x1, x2) + d2,1(x1, x2) + d2,2(x1, x2)

+d2,3(x1, x2) + d3,1(x1, x2) + d3,2(x1, x2) + d3,3(x1, x2)

=
3∑

ι=1

3∑

κ=1

dι,κ (x1, x2).
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1050 P. Chen et al.

Now for ι = 1, 2, 3 and κ = 1, 2, 3 we set

D(b)
ι,κ := C

∑

j1>4

∑

j2>4

2
j1n1
2 2

j2n2
2

×
(∫

(100I ∗)c
⋂

Uj1 (I )

∫

(100J )c
⋂

Uj2 (J )

dι,κ (x1, x2) dμ1(x1)dμ2(x2)

) 1
2

.

We first consider D(b)
1,1. Similar to the estimate in D(a)

1 , we define E j1(I ) := {y1 :
d1(x1, y1) < �(I ) for some x1 ∈ (100I ∗)c

⋂
Uj1(I )} and E j2(J ) := {y2 : d2(x2, y2) <

�(J ) for some x2 ∈ (100J )c
⋂

Uj2(J )}. Then we get dist(E j1(I ), I ) > 2 j1−2�(I ) + �(I ∗)
and dist(E j2(J ), J ) > 2 j1−2�(J ). Now we have
∫

(100I ∗)c
⋂

Uj1 (I )

∫

(100J )c
⋂

Uj2 (J )

d1,1(x1, x2) dμ1(x1)dμ2(x2)

=
∫ �(I )

0

∫

E j1 (I )

∫ �(J )

0

∫

E j2 (J )

∣
∣
∣(t21 L1)

N+1e−t21 L1 ⊗ (t22 L2)
N+1e−t22 L2(bR)(y1, y2)

∣
∣
∣
2

× dμ1(y1)dt1

t1+4N
1

dμ2(y2)dt2

t1+4N
2

≤ C
∫ �(I )

0
e−(2 j1−2�(I )+�(I ∗))2/(ct21 ) dt1

t1+4N
1

∫ �(J )

0
e−(2 j2−2�(J ))2/(ct22 ) dt2

t1+4N
2

‖bR‖2L2(X1×X2)

≤ C
�(I )β

(2 j1−2�(I ) + �(I ∗))β
�(I )−4N2− j2β�(J )−4N‖bR‖2L2(X1×X2)

,

where the second inequality follows from the Davies–Gaffney estimates, and the third
inequality follows from the fact that e−x ≤ x−β for all x > 0 and β > 0 and that we
choose β satisfying β > 4N .

Thus,

D(b)
1,1 ≤ C

∑

j1>4

2
j1n1
2

�(I )
β
2

(2 j1−2�(I ) + �(I ∗))
β
2

×
∑

j2>4

2
j2n2
2 2

− j2β

2
(
�(I )−4N �(J )−4N‖bR‖L2(X1×X2)2

)1/2

≤ C

(
�(I )

�(I ∗)

)ε1 (
�(I )−4N �(J )−4N‖bR‖2L2(X1×X2)

)1/2
,

where the second inequality follows from (3.10) with ε1 := β/2 − n1/2. Note that β >

max{n1, n2} follows from the fact that N > max{n1/4, n2/4}.
As for D(b)

1,2, similar to the term D(a)
2 , set Fj2(J ) := {y2 : d2(x2, y2) < d2(x2, xJ )/4 for

some x2 ∈ (100J )c
⋂

Uj2(J )}. Then we can see that dist(Fj2(J ), J ) > 2 j2−3�(J ). Now we
have
∫

(100I ∗)c
⋂

Uj1 (I )

∫

(100J )c
⋂

Uj2 (J )

d1,2(x1, x2) dμ1(x1)dμ2(x2)

=
∫ �(I )

0

∫

E j1 (I )

∫ d2(x2,xJ )

4

�(J )

∫

Fj2 (J )

∣
∣
∣(t21 L1)

N+1e−t21 L1 ⊗ (t22 L2)
N+1e−t22 L2(bR)(y1, y2)

∣
∣
∣
2
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× dμ1(y1)dt1

t1+4N
1

dμ2(y2)dt2

t1+4N
2

≤ C
∫ �(I )

0
e−(2 j1−2�(I )+�(I ∗))2/(ct21 ) dt1

t1+4N
1

∫ ∞

�(J )

e−(2 j2−2�(J ))2/(ct22 ) dt2

t1+4N
2

‖bR‖2L2(X1×X2)

≤ C
�(I )β1

(2 j1−2�(I ) + �(I ∗))β1
�(I )−4N2− j2β2�(J )−4N‖bR‖2L2(X1×X2)

,

where the second inequality follows from the Davies–Gaffney estimates, and the third
inequality follows from the fact that e−x ≤ x−β for all x > 0 and β > 0, and that we
choose β1 satisfying β1 > 4N and β2 satisfying n2 < β2 < 4N . Hence, similar to the
estimate of the term D(b)

1,1,

D(b)
1,2 ≤ C

(
�(I )

�(I ∗)

)ε1 (
�(I )−4N �(J )−4N‖bR‖2L2(X1×X2)

)1/2

with ε1 := β1/2 − n1/2. Note that β1 > n1 follows from the fact that N > n1/4.
As for D(b)

1,3, since x2 ∈ (100J )c ∩Uj2(J ), we see that d2(x2, xJ ) > 2 j2−1�(J ). Thus, the
Davies–Gaffney estimates imply that

∫

(100I ∗)c
⋂

Uj1 (I )

∫

(100J )c
⋂

Uj2 (J )

d1,3(x1, x2) dμ1(x1)dμ2(x2)

=
∫ �(I )

0

∫

E j1 (I )

∫ ∞

2 j2−1�(J )

∫

X2

∣
∣
∣(t21 L1)

N+1e−t21 L1 ⊗ (t22 L2)
N+1e−t22 L2(bR)(y1, y2)

∣
∣
∣
2

× dμ1(y1)dt1

t1+4N
1

dμ2(y2)dt2

t1+4N
2

≤ C
∫ �(I )

0
e−(2 j1−2�(I )+�(I ∗))2/(ct21 ) dt1

t1+4N
1

∫ ∞

2 j2−1�(J )

dt2

t1+4N
2

‖bR‖2L2(X1×X2)

≤ C
�(I )β1

(2 j1−2�(I ) + �(I ∗))β1
�(I )−4N2−4N j2�(J )−4N‖bR‖2L2(X1×X2)

,

in which we choose β1 > 4N . Hence, we have

D(b)
1,3 ≤ C

(
�(I )

�(I ∗)

)ε1 (
�(I )−4N �(J )−4N‖bR‖2L2(X1×X2)

)1/2

with ε1 := β1/2 − n1/2. Note that β1 > n1 follows from the fact that N > n1/4.
For the remaining terms D(b)

ι,κ for ι = 2, 3 and κ = 1, 2, 3, we estimate the integral with
respect to the first variable t1 in a way similar to that for D(a)

ι above, while for the integral
with respect to t2, we use an estimate similar to that used for the t2 integral in D(b)

1,κ above.

This completes the estimate of D(b), and hence that of D.
The estimate for the term E is symmetric to that of D.
Combining the estimates of D and E , we obtain (3.5), which, together with the fact that

‖Sa‖L1(∪R∗) ≤ C , yields the estimate (3.2). Thus Lemma 3.2 is proved. ��
This completes the proof of Step 1. ��

Proof of Step 2 Our goal is to show that every function f ∈ H1
L1,L2

(X1 × X2) ∩
L2(X1 × X2) has an (H1

L1,L2
, 2, M)-atom representation, with appropriate quantitative con-

trol of the coefficients. To this end, we follow the standard tent space approach, and we are
now ready to establish the atomic decomposition of H1

L1,L2
(X1 × X2) ∩ L2(X1 × X2).
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1052 P. Chen et al.

Proposition 3.4 Suppose M ≥ 1. If f ∈ H1
L1,L2

(X1 × X2)∩ L2(X1 × X2), then there exist

a family of (H1
L1,L2

, 2, M)-atoms {a j }∞j=0 and a sequence of numbers {λ j }∞j=0 ∈ �1 such that

f can be represented in the form f = ∑
λ j a j , with the sum converging in L2(X1 × X2),

and

‖ f ‖
H
1
L1,L2,at,N (X1×X2)

≤ C
∞∑

j=0

|λ j | ≤ C‖ f ‖HL1,L2 (X1×X2),

where C is independent of f . In particular,

H1
L1,L2

(X1 × X2) ∩ L2(X1 × X2) ⊂ H
1
L1,L2,at,M (X1 × X2).

Proof Let f ∈ H1
L1,L2

(X1 × X2) ∩ L2(X1 × X2). For each � ∈ Z, define

�� := {(x1, x2) ∈ X1 × X2 : S f > 2�},
B� :=

{

R = I k1α1
× I k2α2

: μ(R ∩ ��) >
1

2A0
μ(R), μ(R ∩ ��+1) ≤ 1

2A0
μ(R)

}

, and

�̃� :=
{

(x1, x2) ∈ X1 × X2 : Ms(χ��
) >

1

2A0

}

,

where Ms is the strong maximal function on X1 × X2.
For each rectangle R = I k1α1 × I k2α2 in X1 × X2, the tent T (R) is defined as

T (R) :=
{
(y1, y2, t1, t2) : (y1, y2) ∈ R, t1 ∈ (2−k1 , 2−k1+1], t2 ∈ (2−k2 , 2−k2+1]

}
.

For brevity, in what follows we will write χT (R) for χT (R)(y1, y2, t1, t2).
Using the reproducing formula, we can write

f (x1, x2) =
∫ ∞

0

∫ ∞

0
ψ(t1

√
L1)ψ(t2

√
L2)(t

2
1 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2)( f )(x1, x2)

dt1dt2
t1t2

=
∫ ∞

0

∫ ∞

0

∫

X1

∫

X2

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

× (t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

=
∑

�∈Z

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

× (t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

=:
∑

�∈Z
λ�a�(x1, x2). (3.13)

Here the coefficients λ� are defined by

λ� := C

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

R∈B�

∫ ∞
0

∫ ∞
0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
L2

μ(�̃�)
1/2,

123



Product Hardy spaces associated to operators with heat kernel… 1053

Also the functions a�(x1, x2) are defined by

a�(x1, x2) := 1

λ�

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

.

First, it is easy to verify property (1) in Definition 2.7, since from Lemma 2.5 and the
definition of the sets B� and �̃�, we obtain that a�(x1, x2) is supported in �̃�.

Next, we can further write

a�(x1, x2) =
∑

R∈m(�̃�)

aR(x1, x2),

where

aR :=
∑

R∈B�,R⊂R

1

λ�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2) dμ1(y1)dμ2(y2)
dt1dt2
t1t2

.

Then property (i) of (2) in Definition 2.7 holds, since aR can be further written as

aR = (LN
1 ⊗ LN

2 )bR,

where

bR :=
∑

R∈B�,R⊂R

1

λ�

∫

T (R)

t2N1 t2N2 Kφ(t1
√
L1)

(x1, y1)Kφ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2) dμ1(y1)dμ2(y2)
dt1dt2
t1t2

.

Next, from Lemma 2.5, we obtain that property (ii) of (2) in Definition 2.7 holds.
We now verify property (iii) of (2). To do so, we write

‖a�‖L2(X1×X2)
= sup

h:‖h‖L2(X1×X2)
=1

|〈a�, h〉|.

Then from the definition of a�, we have

|〈a�, h〉|
=
∣
∣
∣
∣

∫

X1×X2

1

λ�

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2 )( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

h(x1, x2)dμ1(x1)dμ2(x2)

∣
∣
∣
∣

≤ 1

λ�

∑

R∈B�

∫

T (R)

|ψ(t1
√
L1)ψ(t2

√
L2)(h)(y1, y2)|

×∣∣(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2 )( f )(y1, y2)
∣
∣dμ1(y1)dμ2(y2)

dt1dt2
t1t2

≤ 1

λ�

∫

X1×X2

( ∑

R∈B�

∫ ∞

0

∫ ∞

0
|ψ(t1

√
L1)ψ(t2

√
L2)(h)(y1, y2)|2χT (R)

dt1dt2
t1t2

)1/2
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×
( ∑

R∈B�

∫ ∞

0

∫ ∞

0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

)1/2

dμ1(y1)dμ2(y2)

≤ C

λ�

‖h‖L2

∥
∥
∥
∥

( ∑

R∈B�

∫ ∞

0

∫ ∞

0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

)1/2∥∥
∥
∥
L2

≤ μ(�̃�)
−1/2.

In the last inequality, we have used the definition of λ�.
Similarly, from the definition of the function bR , we have for each σ1, σ2 ∈ {0, 1, . . . , N }

that

�(I )−2N �(J )−2N‖(�(I )2L1)
σ1 ⊗ (�(J )2L2)

σ2bR‖L2

= sup
h:‖h‖L2=1

∣
∣〈�(I )−2N �(J )−2N (�(I )2L1)

σ1 ⊗ (�(J )2L2)
σ2bR, h〉∣∣

≤ sup
h:‖h‖L2=1

C

λ�

∑

R∈B�,R⊂R

∫

T (R)

|(�(I )2L1)
σ1φ(t1

√
L1) ⊗ (�(J )2L2)

σ2φ(t2
√
L2)(h)(y1, y2)|

×∣∣(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2 )( f )(y1, y2)
∣
∣ dμ1(y1)dμ2(y2)

dt1dt2
t1t2

.

As a consequence, using the same approach as in the above estimates for a�, we have

∑

R∈m(�̃�)

�(I )−4N �(J )−4N‖(�(I )2L1)
σ1 ⊗ (�(J )2L2)

σ2bR‖2L2

≤ sup
h:‖h‖L2=1

C

λ2�

∑

R∈m(�̃�)

⎛

⎝
∑

R∈B�,R⊂R

∫

T (R)

× |(�(I )2L1)
σ1φ(t1

√
L1) ⊗ (�(J )2L2)

σ2φ(t2
√
L2)(h)(y1, y2)|

× ∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2)( f )(y1, y2)

∣
∣ dμ1(y1)dμ2(y2)

dt1dt2
t1t2

)2

≤ C

λ2�

∥
∥
∥
∥

⎛

⎝
∑

R∈B�

∫ ∞

0

∫ ∞

0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2)( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

⎞

⎠

1/2 ∥
∥
∥
∥

2

L2

≤ μ(�̃�)
−1.

The last inequality follows from the definition of λ�.
Combining the above estimate and the estimate for a�, we have established property (iii)

of (2) in Definition 2.7. Thus, each a� is an (H1
L1,L2

, 2, N )-atom.

To see that the atomic decomposition
∑

� λ�a� converges to f in the L2(X1 × X2) norm,
we only need to show that ‖∑|�|>G λ�a�‖L2(X1×X2)

→ 0 as G tends to infinity. To see this,
first note that

∥
∥
∥
∑

|�|>G

λ�a�

∥
∥
∥
L2(X1×X2)

= sup
h: ‖h‖L2(X1×X2)=1

∣
∣
∣
〈 ∑

|�|>G

λ�a�, h
〉∣∣
∣.
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Next, we have

∣
∣
∣
〈 ∑

|�|>G

λ�a�, h
〉∣∣
∣

=
∣
∣
∣
∣

∫

X1×X2

∑

|�|>G

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2 )( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

h(x1, x2)dμ1(x1)dμ2(x2)

∣
∣
∣
∣

≤
∫

X1×X2

( ∑

|�|>G

∑

R∈B�

∫ ∞

0

∫ ∞

0
|ψ(t1

√
L1)ψ(t2

√
L2)(h)(y1, y2)|2χT (R)

dt1dt2
t1t2

) 1
2

×
⎛

⎝
∑

|�|>G

∑

R∈B�

∫ ∞

0

∫ ∞

0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

⎞

⎠

1
2

dμ1(y1)dμ2(y2)

≤ C‖h‖L2

∥
∥
∥
∥

⎛

⎝
∑

|�|>G

∑

R∈B�

∫ ∞

0

∫ ∞

0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

⎞

⎠

1
2 ∥
∥
∥
∥
L2

→ 0

as G tends to ∞, since ‖S f ‖2 < ∞.
This implies that f = ∑

� λ�a� in the sense of L2(X1 × X2).
Next, we verify the estimate for the series

∑
� |λ�|. To deal with this, we claim that for

each � ∈ Z,

∑

R∈B�

∫

T (R)

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2)( f )(y1, y2)

∣
∣2dμ1(y1)dμ2(y2)

dt1dt2
t1t2

≤ C22(�+1)μ(�̃�).

First we note that

∫

�̃�\��+1

(S f )2(x1, x2) dμ1(x1)dμ2(x2) ≤ 22(�+1)μ(�̃�).

Also we point out that

∫

�̃�\��+1

(S f )2(x1, x2) dμ1(x1)dμ2(x2)

=
∫

�̃�\��+1

∫


1(x1)

∫


2(x2)

×∣∣(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2
)
f (y1, y2)

∣
∣2 dμ1(y1)dμ2(y2) dt1dt2

t1V (x1, t1)t2V (x2, t2)
dμ1(x1)dμ2(x2)

=
∫ ∞

0

∫ ∞

0

∫

X1×X2

∣
∣
(
t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2

)
( f )(y1, y2)

∣
∣2

×μ({(x1, x2)∈�̃�\��+1 : d1(x1, y1) < t1, d2(x2, y2) < t2})dμ1(y1)dμ2(y2) dt1dt2
t1V (x1, t1)t2V (x2, t2)

123



1056 P. Chen et al.

≥
∑

R∈B�

∫

T (R)

∣
∣
(
t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2

)
( f )(y1, y2)

∣
∣2

×μ({(x1, x2) ∈ �̃�\��+1 : d1(x1, y1) < t1, d2(x2, y2) < t2})dμ1(y1)dμ2(y2) dt1dt2
t1V (x1, t1)t2V (x2, t2)

≥ C
∑

R∈B�

∫

T (R)

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2)( f )(y1, y2)

∣
∣2dμ1(y1)dμ2(y2)

dt1dt2
t1t2

,

where the last inequality follows from the definition of B�. This shows that the claim holds.
As a consequence, we have

∑

�

|λ�|

≤ C
∑

�

∥
∥
∥
∥

( ∑

R∈B�

∫ ∞
0

∫ ∞
0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

)1/2∥∥
∥
∥
L2

μ(�̃�)
1/2

≤ C
∑

�

( ∑

R∈B�

∫

T (R)

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2dμ1(y1)dμ2(y2)

dt1dt2
t1t2

)1/2
μ(�̃�)

1/2

≤ C
∑

�

2�+1μ(�̃�) ≤ C
∑

�

2�μ(��)

≤ C‖S f ‖L1(X1×X2)

= C‖ f ‖H1
L1,L2

(X1×X2)
.

Therefore,

‖ f ‖
H
1
L1,L2,at,N (X1×X2)

≤ C‖ f ‖H1
L1,L2

(X1×X2)
,

which completes the proof of Proposition 3.4. ��

Step 2 is now complete. This concludes the proof of Theorem 2.9. ��

4 Calderón–Zygmund decomposition and interpolation on
H p

L1,L2
(X1 × X2)

In this section, we provide the proofs of the Calderón–Zygmund decomposition (Theo-
rem 2.11) and the interpolation theorem (Theorem 2.12) on the Hardy spaces H p

L1×L2
(X1 ×

X2).

Proof of Theorem 2.11 By density, we may assume that f ∈ H p
L1,L2

(X1 × X2) ∩ H2(X1 ×
X2). Let α > 0 and set �� := {(x1, x2) ∈ X1 × X2 : S f (x1, x2) > α2�}, � ≥ 0. Set

B0 :=
{
R = I k1α1

× I k1α1
: μ(R ∩ �0) <

1

2A0
μ(R)

}

and

B� :=
{
R = I k1α1

× I k1α1
: μ(R ∩ ��−1) ≥ 1

2A0
μ(R), μ(R ∩ ��) <

1

2A0
μ(R)

}

for � ≥ 1.
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By using the reproducing formula and the decomposition (3.13) as in the proof of Propo-
sition 3.4, we have

f (x1, x2) =
∑

�∈Z

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2) dμ1(y1)dμ2(y2)
dt1dt2
t1t2

= g(x1, x2) + b(x1, x2),

where

g(x1, x2) :=
∑

R∈B0

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

× (t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

and

b(x1, x2) :=
∑

�>1

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

× (t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

.

As for g, by writing ‖g‖L2(X1×X2)
= suph: ‖h‖L2=1 |〈g, h〉|, and noting that

|〈g, h〉| =
∣
∣
∣
∑

R∈B0

∫

T (R)

ψ(t1
√
L1)ψ(t2

√
L2)(h)(y1, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2 )( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

∣
∣
∣

≤ C‖h‖L2

( ∑

R∈B0

∫

T (R)

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2dμ1(y1)dμ2(y2)

dt1dt2
t1t2

)1/2

,

we have

‖g‖L2 ≤ C

( ∑

R∈B0

∫

T (R)

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2dμ1(y1)dμ2(y2)

dt1dt2
t1t2

)1/2

.

Also note that
∫

S f (x1,x2)≤α

S f (x1, x2)
2dμ1(x1)dμ2(x2)

=
∫

�c
0

∫


1(x1)

∫


2(x2)

∣
∣
(
t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2

)
( f )(y1, y2)

∣
∣2

×dμ1(y1)dμ2(y2) dt1dt2
t1V (x1, t1)t2V (x2, t2)

dμ1(x1)dμ2(x2)

=
∫ ∞

0

∫ ∞

0

∫

X1×X2

∣
∣
(
t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2

)
( f )(y1, y2)

∣
∣2

×μ({(x1, x2) ∈ �c
0 : d1(x1, y1) < t1, d2(x2, y2) < t2}) dμ1(y1)dμ2(y2)dt1dt2

t1V (x1, t1)t2V (x2, t2)

≥ C
∑

R∈B�

∫

T (R)

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2)( f )(y1, y2)

∣
∣2 dμ1(y1)dμ2(y2)

dt1dt2
t1t2

.
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As a consequence, we have

‖g‖2L2 ≤ C
∫

S f (x1,x2)≤α

S f (x1, x2)
2dμ1(x1)dμ2(x2).

It remains to estimate ‖b‖H1
L1,L2

(X1×X2)
. From the definition of the function b(x1, x2), we

have

‖b‖H1
L1,L2

(X1×X2)

≤
∑

�≥1

∥
∥
∥
∥

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2) dμ1(y1)dμ2(y2)
dt1dt2
t1t2

∥
∥
∥
∥
H1
L1,L2

(X1×X2)

.

From the proof of Proposition 3.4, we see that, for � ≥ 1,

1

λ�

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

×(t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

is an (H1
L1,L2

, 2, N )-atom, which we denote it by a�, where λ� is the coefficient of a� defined
by

λ� := C

∥
∥
∥
∥

( ∑

R∈B�

∫ ∞

0

∫ ∞

0

∣
∣(t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 )( f )(y1, y2)

∣
∣2χT (R)

dt1dt2
t1t2

)1/2∥∥
∥
∥
L2

μ(�̃�)
1/2.

Here we point out that the support of a� is �̃ := {(x1, x2) ∈ X1 × X2 : Ms(χ�)(x1, x2) >

1/(2A0)}, where �� = {(x1, x2) ∈ X1 × X2 : S f (x1, x2) > α2�}. Hence, following the
same argument in the proof of Proposition 3.4, we obtain that

|λ�| ≤ Cα2�μ(��).

Moreover, Lemma 3.2 implies that ‖a�‖H1
L1,L2

(X1×X2)
≤ C , where C is a positive constant

independent of a�.
As a consequence, we have

‖b‖H1
L1,L2

(X1×X2)

≤
∑

�≥1

|λ�|
∥
∥
∥
∥
1

λ�

∑

R∈B�

∫

T (R)

Kψ(t1
√
L1)

(x1, y1)Kψ(t2
√
L2)

(x2, y2)

× (t21 L1e
−t21 L1 ⊗ t22 L2e

−t22 L2)( f )(y1, y2)dμ1(y1)dμ2(y2)
dt1dt2
t1t2

∥
∥
∥
∥
H1
L1,L2

(X1,X2)

≤ C
∑

�≥1

α2�μ(��)

≤ C
∫

S f (x1,x2)>α

S f (x1, x2)dμ1(x1)dμ2(x2)
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≤ Cα1−p
∫

S f (x1,x2)>α

S f (x1, x2)
pdμ1(x1)dμ2(x2)

≤ Cα1−p‖ f ‖H p
L1,L2

(X1,X2)
.

��
We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12 Suppose that T is bounded from H1
L1,L2

(X1 × X2) to L1(X1 × X2)

and from H2
L1,L2

(X1× X2) to L2(X1× X2). For any given λ > 0 and f ∈ H p
L1,L2

(X1× X2),
by the Calderón–Zygmund decomposition,

f (x1, x2) = g(x1, x2) + b(x1, x2)

with

‖g‖2
H2
L1,L2

(X1×X2)
≤ Cλ2−p‖ f ‖p

H p
L1,L2

(X1×X2)
and

‖b‖H1
L1,L2

(X1×X2)
≤ Cλ1−p‖ f ‖p

H p
L1,L2

(X1×X2)
.

Moreover, we have already proved the estimates

‖g‖2
H2
L1,L2

(X1×X2)
≤ C

∫

S f (x1,x2)≤α

S f (x1, x2)
2 dμ1(x1)dμ2(x2)

and

‖b‖1
H1
L1,L2

(X1×X2)
≤ C

∫

S f (x1,x2)>α

S f (x1, x2) dμ1(x1)dμ2(x2),

which imply that

‖T f ‖p
L p(X1×X2)

= p
∫ ∞

0
α p−1μ({(x1, x2) : |T f (x1, x2)| > α})dα

≤ p
∫ ∞

0
α p−1μ({(x1, x2) : |Tg(x1, x2)| > α/2})dα

+ p
∫ ∞

0
α p−1μ({(x1, x2) : |Tb(x1, x2)| > α/2})dα

≤ p
∫ ∞

0
α p−2−1

∫

S f (x1,x2)≤α

S f (x1, x2)
2 dμ1(x1)dμ2(x2)dα

+ p
∫ ∞

0
α p−1−1

∫

S f (x1,x2)>α

S f (x1, x2) dμ1(x1)dμ2(x2)dα

≤ C‖ f ‖p
H p
L1,L2

(X1×X2)

for any 1 < p < 2. Hence, T is bounded from H p
L1,L2

(X1 × X2) to L p(X1 × X2). ��

5 The relationship between H p
L1,L2

(X1 × X2) and L p(X1 × X2)

Before proving our main result Theorem 2.13, we point out that Theorem 2.13 is an extension
of Theorem 4.19 in Uhl’s PhD thesis [44, Section 4.4]. In Theorem 4.19 ([44, Section 4.4]),
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to obtain the coincidence of the Hardy space and the Lebesgue space, Uhl assumed that L
is an injective operator on L2(X). Here we note that if L satisfies the generalized Gaussian
estimates (GGEp0) for some 1 ≤ p0 < 2, then L is injective. This result seems new and
leads to the fact that H2(X1 × X2) = L2(X1 × X2) (see the proof of Theorem 2.13 in this
section).

Theorem 5.1 If L satisfies the generalized Gaussian estimates (GGEp0) for some p0 with
1 ≤ p0 < 2, then the operator L is injective on L2(X).

Proof Take φ ∈ L2(X) with Lφ = 0. From the functional calculus,

e−t L − I =
∫ t

0

∂

∂s
e−sLds = −

∫ t

0
Le−sLds.

Then we have

(e−t L − I )(φ) = −
∫ t

0
Le−sLds(φ) = 0,

which implies that

φ = e−t Lφ (5.1)

holds for all t > 0. Note that (5.1) is proved in [31, p. 9].
Next, as shown in Lemma 2.6 of [44], the generalized Gaussian estimates (GGEp0) imply

the following L2 → L p′
0 off-diagonal estimates:

‖PB(x,
√
t)e

−t L PC j (x,
√
t)‖2→p′

0
≤ CV (x,

√
t)−(1/2−1/p′

0)e−c4 j
, (5.2)

where C j (x, r) := B(x, 2 j r)\B(x, 2 j−1r) for j ≥ 1 and C0(x, r) = B(x, r).
As a consequence of Fatou’s lemma, (5.1) and (5.2), we have that

‖φ‖p′
0

≤ lim
t→∞ ‖PB(x,

√
t)φ‖p′

0
= lim

t→∞ ‖PB(x,
√
t)e

−t Lφ‖p′
0

≤ lim
t→∞

∞∑

j=0

‖PB(x,
√
t)e

−t L PC j (x,
√
t)φ‖p′

0

≤ lim
t→∞

∞∑

j=0

CV (x,
√
t)−(1/2−1/p′

0)e−c4 j ‖φ‖2

≤ lim
t→∞CV (x,

√
t)1/p

′
0−1/2‖φ‖2

= 0.

Here in the final step we have used the fact that μ(X) = ∞. Thus, we obtain that φ = 0 a.e.
This completes the proof of Theorem 5.1. ��

Next, we give a vector-valued version of a theorem about the area function associated
with an operator L in the one-parameter setting.

Suppose L is a non-negative self-adjoint operator defined on L2(X; H), where H is a
Hilbert space with a norm | · |H . Moreover, assume that L satisfies the generalized Gaussian
estimates (GGEp0) for some p0 with 1 ≤ p0 < 2.
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We now define an area function SH : L2(X; H) → L2(X) associated with L by

SH f (x) :=
(∫


(x)

∣
∣
(
t2Le−t2L) f (y)

∣
∣2
H

dμ(y) dt

tV (x, t)

)1/2

.

Then we prove the following boundedness result for SH .

Theorem 5.2 Suppose that L is a non-negative self-adjoint operator defined on L2(X; H)

satisfying the generalized Gaussian estimates (GGEp0) for some p0 ∈ [1, 2). Then there
exists a positive constant C such that

‖SH f ‖L p(X) ≤ C‖ f ‖L p(X;H) (5.3)

for all p ∈ (p0, p′
0) and all f ∈ L p(X; H) ∩ L2(X; H).

Proof This boundedness result (5.3) is a vector-valued version of the result (4.15) in Uhl’s
PhD thesis [44, Section4.4]. We restate Uhl’s proof in our vector-valued setting.

Step I. We first prove that ‖SH f ‖L p(X) ≤ C‖ f ‖L p(X;H) for p0 < p ≤ 2.
To see this, we define

g∗
λ,H f (x) :=

(∫ ∞

0

∫

X

(
t

d(x, y) + t

)nλ ∣
∣
(
t2Le−t2L) f (y)

∣
∣2
H

dμ(y)dt

tV (x, t)

)1/2

,

where n is the upper dimension of the doubling measure μ. Then it is easy to see that
‖SH f ‖L p(X) ≤ C‖g∗

λ,H f ‖L p(X) for each λ > 1. Thus, it suffices to prove that for each for p
with p0 < p ≤ 2, there exists a positive constantC such that ‖g∗

λ,H f ‖L p(X) ≤ C‖ f ‖L p(X;H)

for all f ∈ L p(X; H). We do so by interpolation.
We first show the L2 boundedness of g∗

λ,H f . To see this, we point out that by Fubini’s
Theorem,

∫

F
|g∗

λ,H f |2dμ(x) =
∫ ∞

0

∫

X
Jλ,F (y, t)

∣
∣
(
t2Le−t2L

)
f (y)

∣
∣2
H

dμ(y)dt

t
,

with

Jλ,F (y, t) =
∫

F

( t

d(x, y) + t

)Dλ dμ(x)

V (x, t)
,

which holds for any closed set F ⊂ X .
Then we have the estimate

Jλ,F (y, s) ≤ Cλ,

where Cλ is a constant depending only on λ and n but not on F , y or s. This estimate follows
directly from the inequality (4.16) in Uhl’s PhD thesis [44, Section4.4].

As a consequence, we obtain that

‖g∗
λ,H f ‖22 ≤ Cλ

∫ ∞

0

∫

X

∣
∣
(
t2Le−t2L) f (y)

∣
∣2
H

dμ(y)dt

t
≤ Cλ

∫ ∞

0
t4e−2t2 dt

t
‖ f ‖2L2(X;H)

≤ C‖ f ‖2L2(X;H)
.

Next we point out that g∗
λ,H is weak-type (p0, p0). All the calculations and ingredients

of Uhl’s proof in [44, pp.63–74] of this fact for L p0(X), namely the use of the Calderón–
Zygmund decomposition, the L2-integral, duality in the sense of L2, the Hardy–Littlewood
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maximal operator, and the L p0 → L2 estimate, go through in our vector-valued set-
ting L p0(X; H). Thus we need only apply the rest of Uhl’s proof, replacing the absolute
value | · | used there by our norm | · |H .
Step II. We now prove that ‖SH f ‖L p(X) ≤ C‖ f ‖L p(X;H) for 2 ≤ p < p′

0.
To see this, we consider the Littlewood–Paley g-function defined by

GH f (x) :=
(∫ ∞

0
|t2Le−t2L f (x)|2H

dt

t

)1/2

.

We claim that
‖GH f ‖L p(X) ≤ C‖ f ‖L p(H). (5.4)

The proof of (5.4) is exactly the same as that of the proof for the Euclidean, non-vector-
valued case in Auscher’s paper [1, Section 7.1]. The key ingredient of Auscher’s proof is
Theorem 2.2 of [1]. It is noted in [1, Remark 7, after Theorem 2.2] that Theorem 2.2 also
holds in the vector-valued case. Further, the proof of Theorem 2.2 in Auscher’s paper goes
through in the case of spaces of homogeneous type.

Auscher’s proof of (5.4) requires the Davies–Gaffney estimates and (5.2). The Davies–
Gaffney estimates are one of our hypotheses. The estimate (5.2) follows from the generalized
Gaussian estimates (GGEp0), as is shown in Lemma 2.6 of [44]. Thus inequality (5.4) holds.

Then, following the duality argument in Uhl’s proof [44, pp.74–75], we obtain that for all
φ ∈ L(p/2)′(X),

|〈(SH f )2, φ〉| ≤ |〈(GH f )2,M(|φ|)〉|.
Therefore ‖SH f ‖L p(X) ≤ ‖GH f ‖L p(X) ≤ C‖ f ‖L p(H), as required. ��
Remark 5.3 We point out that in Step II in the proof above, we can obtain the following
result as well: ‖SH,ψ f ‖L p(X) ≤ ‖GH,ψ f ‖L p(X) ≤ C‖ f ‖L p(X;H), where ψ appears in the
reproducing formula in (3.13), and

SH,ψ f (x) :=
(∫


(x)

∣
∣
(
ψ(t

√
L)
)
f (y)

∣
∣2
H

dy dt

tV (x, t)

)1/2

,

and

GH,ψ f (x) =
(∫ ∞

0
|ψ(t

√
L) f (x)|2H

dt

t

)1/2

.

Now we can prove Theorem 2.13.

Proof of Theorem 2.13 Note that Part (ii) is a consequence of Part (i) and Theorem 2.12. It
suffices to prove Part (i).

By Theorem 5.1 we obtain that L1 and L2 are injective operators on L2(X1) and L2(X2),
respectively. As a consequence, the null space N (L1⊗L2) = {0}, which yields that H2(X1×
X2) = L2(X1 × X2) since L2(X1 × X2) = H2(X1 × X2) ⊕ N (L1 ⊗ L2). Thus, to prove
H p
L1,L2

(X1 × X2) = L p(X1 × X2) for p0 < p ≤ 2, it suffices to prove that for all f ∈
L2(X1 × X2) ∩ L p(X1 × X2),

‖ f ‖L p(X1×X2) ≤ C‖S f ‖L p(X1×X2) ≤ C‖ f ‖L p(X1×X2). (5.5)

And then the result H p
L1,L2

(X1 × X2) = L p(X1 × X2) for 2 < p < p′
0 follows from the

duality argument. This implies that Part (i) holds.
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We now verify (5.5). First, write the area function as

(∫


(x)
|t21 L1e

−t21 L1 ⊗ t22 L2e
−t22 L2 f (y)|2 dμ1(y1)

V (x1, t1)

dt1
t1

dμ2(y2)

V (x2, t2)

dt2
t2

)1/2

=
(∫


(x1)

[∫


(x2)
|(t21 L1e

−t21 L1Ft2,y2
)
(y1)|2 dμ2(y2)

V (x2, t2)

dt2
t2

]
dμ1(y1)

V (x1, t1)

dt1
t1

)1/2

where Ft2,y2(·) = (
t22 L2e−t22 L2 f

)
(·, y2).

For each x2 ∈ X2, we define the Hilbert-valued function space L2(X1; Hx2) via the
following Hx2 norm:

|Gt2,y2(y1)|Hx2
:=
[∫


(x2)
|Gt2,y2(y1)|2

dμ2(y2)

V (x2, t2)

dt2
t2

]1/2
.

Then L1 can be extended to act on L2(X1; Hx2) in a natural way. Also the generalized
Gaussian estimates can be extended to the semigroup etL acting on L2(X1; Hx2). That is, by
Minkowski’s inequality

‖PB(x1,t1/2)e
−t L1 PB(y1,t1/2)Gt2,y2(·)‖L p′0 (X;H)

=
∥
∥
∥|PB(x1,t1/2)e

−t L1 PB(y1,t1/2)Gt2,y2(·)|H
∥
∥
∥
L p′0 (X1)

≤
∣
∣
∣‖PB(x1,t1/2)e

−t L1 PB(y1,t1/2)Gt2,y2(·)‖L p′0 (X1)

∣
∣
∣
H

≤ CV (x1, t
1/2)−(1/p0−1/p′

0) exp
(

− b
d(x1, y1)2

t

)∣
∣‖Gt2,y2‖L p(X1)

∣
∣
H

≤ CV (x1, t
1/2)−(1/p0−1/p′

0) exp
(

− b
d(x1, y1)2

t

)∥
∥|Gt2,y2 |H

∥
∥
L p(X1)

= CV (x1, t
1/2)−(1/p0−1/p′

0) exp
(

− b
d(x1, y1)2

t

)
‖Gt2,y2‖L p(X;H).

Define the area function SHx2
from L2(Hx2) to L2(X1) by

SHx2
Gt2,y2(x1) :=

(∫


(x1)

∣
∣
(
t2L1e

−t2L1
)
Gt2,y2(y1)

∣
∣2
H

dμ1(y1) dt

tV (x1, t)

)1/2

.

Recall that Ft2,y2(·) = (
t22 L2e−t22 L2 f

)
(·, y2). So byTheorem5.2,wehave for all p ∈ (p0, p′

0)

that

‖S f ‖L p(X1×X2) = ‖SHx2
Ft2,y2(x1)‖L p(X1×X2)

≤ ‖‖Ft2,y2‖L p(Hx2 )‖L p(X2)

= ‖‖|Ft2,y2 |Hx2
‖L p(X2)‖L p(X1)

=
∥
∥
∥
∥

∥
∥
∥
∥

[∫


(x2)
|Ft2,y2(y1)|2

dμ2(y2)

V (x2, t2)

dt2
t2

]1/2 ∥∥
∥
∥
L p(X2)

∥
∥
∥
∥
L p(X1)

=
∥
∥
∥
∥

∥
∥
∥
∥

[∫


(x2)
|((t22 L2)e

−t22 L2 f
)
(y1, y2)|2 dμ2(y2)

V (x2, t2)

dt2
t2

]1/2 ∥∥
∥
∥
L p(X2)

∥
∥
∥
∥
L p(X1)

≤ C‖ f ‖L p(X1×X2).
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We can obtain the other direction, that is, ‖ f ‖L p(X1×X2) ≤ C‖S f ‖L p(X1×X2), by using the
reproducing formula and then the standard duality argument and the L p-boundedness of the
area function for 2 ≤ p < p′

0. This completes the proof of Theorem 2.12. ��
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